framework.py 125.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
S
rename  
sneaxiy 已提交
21
from .wrapped_decorator import signature_safe_contextmanager
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
Q
qiaolongfei 已提交
30

M
minqiyang 已提交
31
from .. import compat as cpt
32
from .proto import framework_pb2
33
try:
P
peizhilin 已提交
34
    if os.name == 'nt':
P
peizhilin 已提交
35
        import sys
P
peizhilin 已提交
36 37 38 39 40
        third_lib_path = os.path.abspath(os.path.dirname(
            __file__)) + os.sep + '..' + os.sep + 'libs'
        os.environ['path'] += ';' + third_lib_path
        sys.path.append(third_lib_path)

41
    from . import core
42
except ImportError as e:
P
peizhilin 已提交
43
    if os.name == 'nt':
44
        executable_path = os.path.abspath(os.path.dirname(sys.executable))
P
peizhilin 已提交
45
        raise ImportError(
46 47 48 49 50
            """NOTE: You may need to run \"set PATH=%s;%%PATH%%\"
        if you encounters \"DLL load failed\" errors. If you have python
        installed in other directory, replace \"%s\" with your own
        directory. The original error is: \n %s""" %
            (executable_path, executable_path, cpt.get_exception_message(e)))
P
peizhilin 已提交
51 52 53 54 55 56
    else:
        raise ImportError(
            """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
        if you encounters \"libmkldnn.so not found\" errors. If you have python
        installed in other directory, replace \"/usr/local/lib\" with your own
        directory. The original error is: \n""" + cpt.get_exception_message(e))
57
except Exception as e:
58
    raise e
59
from . import unique_name
Y
Yu Yang 已提交
60

61
__all__ = [
62 63 64 65
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
66
    'name_scope',
S
sneaxiy 已提交
67 68 69
    'cuda_places',
    'cpu_places',
    'cuda_pinned_places',
L
lujun 已提交
70
    'in_dygraph_mode',
71
]
Y
Yu Yang 已提交
72

Q
qiaolongfei 已提交
73 74 75 76
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
77 78
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
79 80
_dygraph_tracer_ = None
_dygraph_current_expected_place_ = None
81 82


L
lujun 已提交
83
def in_dygraph_mode():
L
lujun 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96
    """
    Check program status(tracer), Whether it runs in dygraph mode or not

    Returns:
        out (boolean): True if the program is running in dynamic graph mode

    Examples:
        .. code-block:: python

            if fluid.in_dygraph_mode():
                pass

    """
L
lujun 已提交
97
    return _dygraph_tracer_ is not None
98 99


L
lujun 已提交
100 101
def _dygraph_tracer():
    return _dygraph_tracer_
102

W
Wu Yi 已提交
103

M
minqiyang 已提交
104
def _current_expected_place():
L
lujun 已提交
105
    return _dygraph_current_expected_place_
M
minqiyang 已提交
106 107


S
sneaxiy 已提交
108 109 110 111 112
def _cpu_num():
    return int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))


def cuda_places(device_ids=None):
L
lujun 已提交
113
    """
S
add doc  
sneaxiy 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
    Create a list of :code:`fluid.CUDAPlace` objects.

    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_gpus` would be checked first. If
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
    be [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    If :code:`FLAGS_selected_gpus` is not set, all visible
    gpu places would be returned.  

    If :code:`device_ids` is not None, it should be the device
    ids of gpus. For example, if :code:`device_ids=[0,1,2]`, 
    the returned list would be 
    [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    
    Args: 
        device_ids (None|list(int)|tuple(int)): gpu device id list.

    Returns:
        out (list(fluid.CUDAPlace)): gpu place list.
L
lujun 已提交
133 134 135 136 137 138 139

    Examples:
        .. code-block:: python

            cuda_places = fluid.cuda_places()

    """
S
sneaxiy 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
        gpus_env = os.getenv("FLAGS_selected_gpus")
        if gpus_env:
            device_ids = [int(s) for s in gpus_env.split(",")]
        else:
            device_ids = six.moves.range(core.get_cuda_device_count())
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


def cpu_places(device_count=None):
L
lujun 已提交
154
    """
S
add doc  
sneaxiy 已提交
155 156 157 158 159 160 161 162 163 164 165 166
    Create a list of :code:`fluid.CPUPlace` objects.
    
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
    If :code:`CPU_NUM` is not set, the device count would
    be determined by :code:`multiprocessing.cpu_count()`. 

    Args:
        device_count (None|int): device number.

    Returns:
        out (list(fluid.CPUPlace)): cpu place list.
L
lujun 已提交
167 168 169 170 171 172 173

    Examples:
        .. code-block:: python

            cpu_places = fluid.cpu_places()
    """

S
sneaxiy 已提交
174 175 176 177 178 179
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
180
    """
S
add doc  
sneaxiy 已提交
181 182 183 184 185 186 187 188 189 190 191 192
    Create a list of :code:`fluid.CUDAPinnedPlace` objects.

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
    If :code:`CPU_NUM` is not set, the device count would
    be determined by :code:`multiprocessing.cpu_count()`. 

    Args:
        device_count (None|int): device number.

    Returns:
        out (list(fluid.CUDAPinnedPlace)): cuda pinned place list.
L
lujun 已提交
193 194 195 196 197 198 199 200 201

    Examples:
        .. code-block:: python

            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
202 203 204 205 206 207 208
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
        device_count = _cpu_num()
    return [core.cuda_pinned_places()] * device_count


209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
235
@signature_safe_contextmanager
236 237 238 239 240 241 242 243 244 245 246 247
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
248

249 250 251 252 253 254 255 256 257 258 259
          with fluid.name_scope("s1"):
              a = fluid.layers.data(name='data', shape=[1], dtype='int32')
              b = a + 1
              with fluid.name_scope("s2"):
                  c = b * 1
              with fluid.name_scope("s3"):
                  d = c / 1
          with fluid.name_scope("s1"):
              f = fluid.layers.pow(d, 2.0)
          with fluid.name_scope("s4"):
              g = f - 1
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
    """
    # TODO(panyx0718): Only [0-9a-z].
    assert prefix, "namescope prefix cannot be empty."
    global _name_scope
    _name_scope = _name_scope.child(prefix)
    yield
    _name_scope = _name_scope.parent()


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
279 280 281
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
282 283 284 285


def grad_var_name(var_name):
    """
286 287
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
288 289 290
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
291

292
def convert_np_dtype_to_dtype_(np_dtype):
293 294
    """
    Convert the data type in numpy to the data type in Paddle
295

296
    Args:
297
        np_dtype(np.dtype): the data type in numpy.
298

299 300
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
301 302

    """
303 304
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
305
        return core.VarDesc.VarType.FP32
306
    elif dtype == np.float64:
307
        return core.VarDesc.VarType.FP64
308
    elif dtype == np.float16:
309
        return core.VarDesc.VarType.FP16
310
    elif dtype == np.int32:
311
        return core.VarDesc.VarType.INT32
312
    elif dtype == np.int16:
313
        return core.VarDesc.VarType.INT16
314
    elif dtype == np.int64:
315
        return core.VarDesc.VarType.INT64
316
    elif dtype == np.bool:
317
        return core.VarDesc.VarType.BOOL
318 319
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
320 321
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
322 323
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
324
    else:
M
minqiyang 已提交
325
        raise ValueError("Not supported numpy dtype %s" % dtype)
326 327 328


def dtype_is_floating(dtype):
329 330 331
    """
    Check the data type is floating or not.
    Args:
332
        dtype(np.dtype|core.VarDesc.VarType): data type.
333 334 335 336 337
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
338
    if not isinstance(dtype, core.VarDesc.VarType):
339 340
        dtype = convert_np_dtype_to_dtype_(dtype)

341 342 343 344
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
345 346


Y
Yang Yang(Tony) 已提交
347
def _debug_string_(proto, throw_on_error=True):
348 349 350 351 352 353 354 355 356 357 358
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
359
    error_fields = list()
Y
Yang Yang(Tony) 已提交
360
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
361 362
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
363 364 365
    return proto.__str__()


X
Xin Pan 已提交
366
class Variable(object):
367
    """
368 369 370
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
371
    two variables in different blocks could have the same name.
372

373 374
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
375

376
    Most of a Variable's member variables can be setted to be None. It mean
377
    it is not available or will be specified later.
378 379

    Args:
380
        block(Block): The block that the variable belongs to.
381 382
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
383 384
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
385
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
386
            Some kinds of variable do not contain shape, just set it to None.
387 388 389
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
390
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
391
            series data.
392
            Default: None
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
415 416
    """

Y
Yu Yang 已提交
417 418
    def __init__(self,
                 block,
Y
Yu Yang 已提交
419
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
420 421 422 423
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
424
                 capacity=None,
Q
QI JUN 已提交
425
                 persistable=None,
F
fengjiayi 已提交
426
                 error_clip=None,
Y
Yu Yang 已提交
427
                 stop_gradient=False,
F
fengjiayi 已提交
428
                 is_data=False,
Y
Yu Yang 已提交
429
                 **kwargs):
Y
Yu Yang 已提交
430 431
        self.block = block
        if name is None:
Y
Yu Yang 已提交
432
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
433

Y
Yu Yang 已提交
434
        if dtype is not None:
435
            if not isinstance(dtype, core.VarDesc.VarType):
436
                dtype = convert_np_dtype_to_dtype_(dtype)
437

L
lujun 已提交
438
        if in_dygraph_mode():
M
minqiyang 已提交
439
            # record vars in tracer rather than blocks
M
minqiyang 已提交
440 441
            self._ivar = kwargs.get("ivar", None)
            if not self._ivar:
442 443 444
                self._ivar = core.VarBase(
                    name, dtype if dtype else core.VarDesc.VarType.FP32,
                    list(shape) if shape else [],
X
fix  
Xin Pan 已提交
445 446
                    _current_expected_place(), stop_gradient, True
                    if persistable else False)
M
minqiyang 已提交
447
            if persistable:
L
lujun 已提交
448
                _dygraph_tracer().trace_var(name, self)
M
minqiyang 已提交
449
            self.op = None
M
minqiyang 已提交
450
        else:
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
            self.error_clip = error_clip

            is_new_var = False
            name = cpt.to_text(name)
            self.desc = self.block.desc.find_var(cpt.to_bytes(name))

            if self.desc is None:
                self.desc = self.block.desc.var(cpt.to_bytes(name))
                is_new_var = True

            if is_new_var:
                self.desc.set_type(type)
            elif self.desc.type() != type:
                raise ValueError(
                    "Variable {0} has been created before. The "
                    "previous type is {1}; the new type is {2}. They"
                    " are not matched".format(self.name, self.desc.type(),
                                              type))

            if shape is not None:
                if is_new_var:
                    self.desc.set_shape(shape)
                else:
                    old_shape = self.shape
                    shape = tuple(shape)
                    if shape != old_shape:
                        raise ValueError(
                            "Variable {0} has been created before. the previous "
                            "shape is {1}; the new shape is {2}. They are not "
                            "matched.".format(self.name, old_shape, shape))
            if dtype is not None:
                if is_new_var:
                    self.desc.set_dtype(dtype)
                else:
                    old_dtype = self.dtype
                    if dtype != old_dtype:
                        raise ValueError(
                            "Variable {0} has been created before. "
                            "The previous data type is {1}; the new "
                            "data type is {2}. They are not "
                            "matched.".format(self.name, old_dtype, dtype))

            if lod_level is not None:
                if is_new_var:
                    self.desc.set_lod_level(lod_level)
                else:
                    if lod_level != self.lod_level:
                        raise ValueError(
                            "Variable {0} has been created before. "
                            "The previous lod_level is {1}; the new "
                            "lod_level is {2}. They are not "
                            "matched".format(self.name, self.lod_level,
                                             lod_level))
            if persistable is not None:
                if is_new_var:
                    self.desc.set_persistable(persistable)
                else:
                    if persistable != self.persistable:
                        raise ValueError(
                            "Variable {0} has been created before."
                            "The previous persistable is {1}; the new "
                            "persistable is {2}. They are not matched".format(
                                self.name, self.persistable, persistable))

            if capacity is not None:
                if is_new_var:
                    self.desc.set_capacity(capacity)
                else:
                    # TODO(abhinavarora) : Compare with set capacity once,
                    # get_capacity is implemented
                    pass

M
minqiyang 已提交
523
            self.block.vars[name] = self
524
            self.op = None
525
            self._stop_gradient = stop_gradient
526
            self.is_data = is_data
Y
Yu Yang 已提交
527

528
    def numpy(self):
M
minqiyang 已提交
529
        new_ivar = self._ivar._copy_to(core.CPUPlace(), True)
P
Paddle CI 已提交
530
        return np.array(new_ivar.value().get_tensor())
531

532 533
    def backward(self, backward_strategy=None):
        from .dygraph import BackwardStrategy
534
        if backward_strategy is None:
535 536
            backward_strategy = BackwardStrategy()
            backward_strategy.sort_sum_gradient = False
537 538 539

        self._ivar._run_backward(backward_strategy)
        _dygraph_tracer()._clear_ops()
540

541
    def gradient(self):
542 543
        new_ivar = self._ivar._grad_ivar()._copy_to(core.CPUPlace(), True)
        return np.array(new_ivar.value().get_tensor())
544

545
    def clear_gradient(self):
X
Xin Pan 已提交
546
        self._ivar._clear_gradient()
X
Xin Pan 已提交
547

548
    def __str__(self):
Y
Yang Yang(Tony) 已提交
549 550
        return self.to_string(True)

F
update  
fengjiayi 已提交
551
    def to_string(self, throw_on_error, with_details=False):
552 553 554 555
        """
        Get debug string.

        Args:
556 557
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
558
            with_details(bool): more details about variables and parameters
559 560
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
561

562 563
        Returns:
            str: The debug string.
564
        """
L
lujun 已提交
565
        if in_dygraph_mode():
L
lujun 已提交
566
            # TODO(panyx0718): add more dygraph debug info.
567 568 569
            return 'name %s, dtype: %s shape: %s %s' % (
                self.name, self.dtype, self.shape,
                str(self._ivar.value().get_tensor()))
570

F
update  
fengjiayi 已提交
571 572
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
573
        protostr = self.desc.serialize_to_string()
574
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
575 576 577 578
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
579 580
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
581
        return res_str
582 583 584

    __repr__ = __str__

585
    def set_desc(self, input):
586 587 588 589 590 591 592 593 594
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
595 596
        self.desc = input

597
    @property
598
    def stop_gradient(self):
L
lujun 已提交
599
        if in_dygraph_mode():
M
minqiyang 已提交
600 601
            return self._ivar.stop_gradient
        else:
602
            return self._stop_gradient
603

604 605
    @stop_gradient.setter
    def stop_gradient(self, s):
L
lujun 已提交
606
        if in_dygraph_mode():
M
minqiyang 已提交
607
            self._ivar.stop_gradient = s
608
        else:
609
            self._stop_gradient = s
610

611 612
    @property
    def persistable(self):
L
lujun 已提交
613
        if in_dygraph_mode():
614 615 616
            return self._ivar.persistable
        else:
            return self.desc.persistable()
617

Y
Yu Yang 已提交
618 619
    @persistable.setter
    def persistable(self, p):
L
lujun 已提交
620
        if in_dygraph_mode():
621 622 623
            return self._ivar.persistable
        else:
            self.desc.set_persistable(p)
Y
Yu Yang 已提交
624

Y
Yu Yang 已提交
625 626
    @property
    def name(self):
L
lujun 已提交
627
        if in_dygraph_mode():
628 629 630
            return self._ivar.name
        else:
            return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
631

T
typhoonzero 已提交
632 633
    @name.setter
    def name(self, new_name):
L
lujun 已提交
634
        if in_dygraph_mode():
635 636 637
            self._ivar.name = new_name
        else:
            self.desc.set_name(new_name)
T
typhoonzero 已提交
638

Y
Yu Yang 已提交
639 640 641
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
L
lujun 已提交
642
        if in_dygraph_mode():
643 644 645
            return self._ivar.shape
        else:
            return tuple(self.desc.shape())
Y
Yu Yang 已提交
646 647

    @property
F
fengjiayi 已提交
648
    def dtype(self):
L
lujun 已提交
649
        if in_dygraph_mode():
650 651 652
            return self._ivar.dtype
        else:
            return self.desc.dtype()
Y
Yu Yang 已提交
653 654 655

    @property
    def lod_level(self):
L
lujun 已提交
656
        # TODO(minqiyang): Support lod_level in dygraph mode
H
Hongyu Liu 已提交
657 658
        if in_dygraph_mode():
            raise Exception("Dygraph model DO NOT supprt lod")
659
        return self.desc.lod_level()
Y
Yu Yang 已提交
660

Y
Yu Yang 已提交
661 662
    @property
    def type(self):
L
lujun 已提交
663
        if in_dygraph_mode():
664 665 666
            return self._ivar.dtype
        else:
            return self.desc.type()
Y
Yu Yang 已提交
667

W
Wu Yi 已提交
668
    def _set_error_clip(self, error_clip):
669 670 671 672 673 674 675 676 677
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
678 679
        self.error_clip = error_clip

680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
            raise ValueError("slice step cannot be zero")

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
767
    def _cloneVar(self, copy=False):
768 769 770 771 772
        if not copy:
            return self.block.create_var(
                name=unique_name.generate(".".join(self.name)),
                dtype=self.dtype,
                persistable=self.persistable,
773
                stop_gradient=self.stop_gradient, )
774 775 776 777
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
778
        new_var = self._cloneVar()
779 780 781 782 783 784 785 786 787 788
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
789
        new_var = self._cloneVar()
790 791 792 793 794 795 796 797 798 799
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
800
                return self._cloneVar(True)
801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
819
                return self._cloneVar(True)
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
            index = int(item)
            if (index > 0 and index >= self.shape[axis])\
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
        """
        Slice the variable.

        Args:
            item(int/slice/tuple) : the index.

        Returns:
            Sliced variable
        """
        new_var = None
        if isinstance(item, tuple):
            if len(item) > len(self.shape):
                raise IndexError("Too many indexes")
W
wopeizl 已提交
842 843 844 845 846 847
            fixedSize = True
            for i in range(len(self.shape)):
                if self.shape[i] == -1:
                    fixedSize = False
                    break

848
            newitem = self._reconstructSliceinfo(item) or item
W
wopeizl 已提交
849 850
            if fixedSize:
                check, info = self._detectContinuesSlice(newitem)
851
                if check:
W
wopeizl 已提交
852 853 854 855 856 857 858 859
                    starts = info[0]
                    ends = info[1]
                    axes = [i for i in range(len(starts))]
                    return self._sliceVar(axes, starts, ends)
                else:
                    new_var = self
                    for index, o in enumerate(newitem):
                        new_var = new_var._sliceAndConcatVar(o, index)
860 861 862 863 864 865 866 867
            else:
                new_var = self
                for index, o in enumerate(newitem):
                    new_var = new_var._sliceAndConcatVar(o, index)
        else:
            new_var = self._sliceAndConcatVar(item, 0)
        return new_var

Y
Yu Yang 已提交
868

F
fengjiayi 已提交
869 870 871
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
872

873 874
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
875 876 877 878
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
879
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
880 881 882 883 884
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
885 886 887 888
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
889 890 891 892 893 894 895 896 897
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
898
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
899 900 901 902 903 904
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
905 906 907 908 909 910 911 912
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
913 914
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
915 916
        return self.op_proto_map[type]

917 918 919 920
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
921
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
922 923
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName()
924 925
        }

F
fengjiayi 已提交
926

X
Xin Pan 已提交
927
class Operator(object):
928
    """
929 930 931 932 933 934 935
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
936
        type(str): The type of operator. Default None.
937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
957
        Block.append_op or Block._prepend_op instead.
958 959 960 961 962 963 964 965 966 967

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
968
    """
969
    OP_WITHOUT_KERNEL_SET = {
970 971 972
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
        'ncclInit', 'select', 'checkpoint_notify', 'gen_nccl_id'
973
    }
974

Y
Yu Yang 已提交
975 976
    def __init__(self,
                 block,
Y
Yu Yang 已提交
977
                 desc,
Y
Yu Yang 已提交
978 979 980
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
981
                 attrs=None):
L
lujun 已提交
982
        if in_dygraph_mode():
983 984
            if type is None:
                raise ValueError(
985
                    "`type` to initialized an Operator can not be None.")
986
            self.iop = core.OpBase(type)
M
minqiyang 已提交
987
            self.previous_ops = []
M
minqiyang 已提交
988

M
minqiyang 已提交
989
            self.attrs = attrs if attrs else {}
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
1004
                )] = self.block.program._op_role
1005 1006 1007

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
1008 1009
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
1010 1011 1012 1013 1014 1015 1016 1017

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
1018
                    "`type` to initialized an Operator can not be None.")
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
                op_attrs[callstack_var_name] = list(
                    reversed(traceback.format_stack()))[1:]

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
                        if not isinstance(in_args, list):
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
1050
                        for index, arg in enumerate(in_args):
1051 1052 1053 1054
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
1055
                            elif isinstance(arg, Variable):
1056
                                in_arg_names.append(cpt.to_text(arg.name))
1057 1058 1059 1060
                            else:
                                raise ValueError(
                                    "not suprt args type , should be[ string_type, binary_type, Varibale]"
                                )
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
                        out_arg_names.append(cpt.to_text(arg.name))
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
1087
                        if not in_dygraph_mode():
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
                            arg.op = self
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
1107
    def _has_kernel(self, op_type):
1108 1109
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
1110
    def to_string(self, throw_on_error):
1111
        """
1112 1113
        Get debug string.

1114
        Args:
1115 1116
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
1117

1118 1119
        Returns:
            str: The debug string.
1120 1121

        """
1122
        protostr = self.desc.serialize_to_string()
1123
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
1124 1125 1126 1127
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
1128 1129 1130

    __repr__ = __str__

F
fengjiayi 已提交
1131 1132
    @property
    def type(self):
L
lujun 已提交
1133
        if in_dygraph_mode():
1134 1135 1136
            return self.iop.type
        else:
            return self.desc.type()
F
fengjiayi 已提交
1137 1138

    def input(self, name):
1139
        """
1140
        Get the input arguments according to the input parameter name.
1141

1142 1143
        Args:
            name(str): The input parameter name.
1144

1145 1146 1147
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
1148
        """
F
fengjiayi 已提交
1149 1150
        return self.desc.input(name)

W
Wu Yi 已提交
1151
    def _rename_input(self, old_name, new_name):
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
1162
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
1163

W
Wu Yi 已提交
1164
    def _rename_output(self, old_name, new_name):
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
1175
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
1176

F
fengjiayi 已提交
1177 1178 1179 1180
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
1181 1182 1183 1184 1185 1186 1187 1188
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
1189
    def output(self, name):
1190
        """
1191
        Get output arguments by the output parameter name.
1192

1193 1194
        Args:
            name(str): The output parameter name.
1195

1196 1197 1198
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
1199
        """
F
fengjiayi 已提交
1200 1201 1202 1203 1204 1205
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

1206 1207 1208 1209 1210 1211 1212 1213
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
1214
    def has_attr(self, name):
1215
        """
1216 1217
        Whether this Operator has the attribute with name or not.

1218
        Args:
1219
            name(str): the attribute name.
1220

1221 1222
        Returns:
            bool: True if has this attribute.
1223 1224

        """
F
fengjiayi 已提交
1225 1226 1227
        return self.desc.has_attr(name)

    def attr_type(self, name):
1228
        """
1229
        Get the type of attribute by attribute's name.
1230

1231 1232
        Args:
            name(str): the attribute name.
1233

1234 1235
        Returns:
            core.AttrType: the attribute type.
1236
        """
F
fengjiayi 已提交
1237 1238
        return self.desc.attr_type(name)

W
Wu Yi 已提交
1239
    def _set_attr(self, name, val):
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
1250 1251
        self._update_desc_attr(name, val)

1252 1253 1254
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
1266 1267
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
1268 1269
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
1270
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
1271 1272 1273 1274
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
1275
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
1276

F
fengjiayi 已提交
1277 1278 1279 1280 1281
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
1282
        """
1283 1284
        Get the attribute by name.

1285
        Args:
1286
            name(str): the attribute name.
1287

1288 1289
        Returns:
            bool|int|str|float|list: The attribute value. The return value
1290 1291
            can be any valid attribute type.
        """
F
fengjiayi 已提交
1292
        return self.desc.attr(name)
Y
Yu Yang 已提交
1293

W
Wu Yi 已提交
1294
    def _block_attr_id(self, name):
1295
        """
G
gongweibao 已提交
1296
        Get the block attribute's id by name.
1297

1298 1299
        Args:
            name(str): the attribute name.
1300

1301 1302
        Returns:
            int: the block index.
1303
        """
W
Wu Yi 已提交
1304
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
1305

W
Wu Yi 已提交
1306
    def _block_attr(self, name):
G
gongweibao 已提交
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
1317
        id = self._block_attr_id(name)
G
gongweibao 已提交
1318 1319 1320
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
1321
    def _blocks_attr(self, name):
G
gongweibao 已提交
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
1332
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
1333 1334 1335 1336 1337
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
1338
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
1349
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
1350

J
JiayiFeng 已提交
1351
    def all_attrs(self):
F
fengjiayi 已提交
1352
        """
1353 1354 1355
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
1356
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
1357 1358 1359 1360
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
1361 1362
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
1363
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
1364 1365 1366
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
1367
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
1368 1369 1370 1371
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
1372 1373
        return attr_map

Y
Yu Yang 已提交
1374

Y
Yu Yang 已提交
1375
class Block(object):
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
1390
        use `Program._create_block()` to create a block.
1391 1392 1393 1394

    Examples:
        .. code-block:: python

1395 1396 1397
            import paddle.fluid as fluid

            cur_program = fluid.Program()
1398 1399 1400 1401 1402 1403 1404 1405 1406
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
1407
    def __init__(self, program, idx):
Y
Yu Yang 已提交
1408
        self.desc = program.desc.block(idx)
1409
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
1410
        self.ops = list()  # operator list
Y
Yu Yang 已提交
1411
        self.program = program
1412
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
1413

1414
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1415 1416
        return self.to_string(True)

F
fengjiayi 已提交
1417 1418
    def to_string(self, throw_on_error, with_details=False):
        """
1419 1420
        Get debug string.

F
fengjiayi 已提交
1421 1422
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1423
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1424
            with_details(bool): more details about variables and parameters
1425 1426
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1427

1428 1429
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1430 1431 1432 1433
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1434
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
1435 1436
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1437
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1438
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1439
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1440
            for op in self.ops:
F
fengjiayi 已提交
1441 1442
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1443 1444 1445
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1446 1447
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1448 1449
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1450 1451 1452

    __repr__ = __str__

Y
Yu Yang 已提交
1453 1454
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1455
        return self.desc.parent
Y
Yu Yang 已提交
1456

Y
Yu Yang 已提交
1457 1458 1459 1460
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1461
    def _set_forward_block_idx(self, idx):
1462 1463 1464 1465 1466 1467 1468 1469 1470
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1471
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1472

Y
Yu Yang 已提交
1473 1474
    @property
    def idx(self):
Y
Yu Yang 已提交
1475
        return self.desc.id
Y
Yu Yang 已提交
1476

Q
Qiao Longfei 已提交
1477
    def var(self, name):
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1491
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1492 1493 1494
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1495 1496
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1497
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1498
        return v
Q
Qiao Longfei 已提交
1499

X
Xin Pan 已提交
1500
    def _find_var_recursive(self, name):
1501 1502 1503 1504 1505 1506 1507
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
1508
            Variable: the Variable with the giving name. Or None if not found.
1509
        """
Y
Yu Yang 已提交
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
1534
        return None
Y
Yu Yang 已提交
1535

X
Xin Pan 已提交
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1555

Q
Qiao Longfei 已提交
1556
    def all_parameters(self):
1557
        return list(self.iter_parameters())
1558

1559
    def iter_parameters(self):
M
minqiyang 已提交
1560
        return (item[1] for item in six.iteritems(self.vars)
1561
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1562

Y
Yu Yang 已提交
1563
    def create_var(self, *args, **kwargs):
1564
        var = Variable(block=self, *args, **kwargs)
1565 1566
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1567
        return var
Y
Yu Yang 已提交
1568

Q
Qiao Longfei 已提交
1569 1570 1571
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1572
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1573 1574
        """
        Rename variable in vars and ops' inputs and outputs
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1587
        """
M
minqiyang 已提交
1588 1589
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1590

T
typhoonzero 已提交
1591
        if not self.has_var(name):
1592
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1593 1594
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1595
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1596 1597 1598 1599 1600 1601 1602
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1603
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1604 1605 1606 1607
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1608
        orig_var_type = v.type
M
minqiyang 已提交
1609
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1610
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1611
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1612
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1613 1614 1615 1616
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1617
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1618 1619 1620 1621 1622 1623 1624
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1625
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1626 1627
            var = Variable(
                self,
T
typhoonzero 已提交
1628
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1629 1630 1631 1632
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1633
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1634 1635 1636
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1637
        self._sync_with_cpp()
1638
        return var
T
typhoonzero 已提交
1639

W
Wu Yi 已提交
1640 1641
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1642
        self.desc._remove_var(cpt.to_bytes(name))
1643 1644
        del self.vars[name]

Y
Yu Yang 已提交
1645 1646
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1647
        param = Parameter(global_block, *args, **kwargs)
1648
        if 'initializer' in kwargs:
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1669
        return param
Y
Yu Yang 已提交
1670

Y
Yu Yang 已提交
1671
    def append_op(self, *args, **kwargs):
1672 1673 1674 1675 1676 1677
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
1678
        if in_dygraph_mode():
1679 1680 1681
            attrs = kwargs.get("attrs", {})
            if _dygraph_tracer_._train_mode == False:
                # eval mode
1682 1683 1684 1685 1686
                if ('trainable_statistics' not in attrs
                    ) or not attrs['trainable_statistics']:
                    attrs['is_test'] = True
                else:
                    attrs['is_test'] = False
1687

1688 1689 1690 1691
            op = Operator(
                block=self,
                desc=None,
                type=kwargs.get("type", None),
M
minqiyang 已提交
1692 1693
                inputs=None,
                outputs=None,
1694
                attrs=attrs)
1695

M
minqiyang 已提交
1696 1697 1698
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
1699
            # currently, we only support stop_gradient in dygraph mode.
M
minqiyang 已提交
1700 1701 1702 1703
            _dygraph_tracer().trace_op(op,
                                       kwargs.get("inputs", {}),
                                       kwargs.get("outputs", {}),
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
1704
        else:
1705 1706 1707 1708 1709 1710 1711 1712 1713
            op_desc = self.desc.append_op()
            op = Operator(
                block=self,
                desc=op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
1714
            self.ops.append(op)
M
minqiyang 已提交
1715

1716 1717
        return op

W
Wu Yi 已提交
1718
    def _insert_op(self, index, *args, **kwargs):
1719 1720 1721 1722 1723 1724 1725 1726 1727
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1728 1729
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1730 1731 1732 1733
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1734
    def _remove_op(self, index):
1735 1736 1737 1738 1739 1740 1741 1742 1743
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1744 1745
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1746 1747
        del self.ops[index]

W
Wu Yi 已提交
1748
    def _slice_ops(self, start, end):
1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1759
        return self.ops[start:end]
Y
Yancey1989 已提交
1760

W
Wu Yi 已提交
1761
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
1762
        if in_dygraph_mode():
1763 1764 1765 1766
            op = Operator(
                self,
                None,
                type=kwargs.get("type", None),
M
minqiyang 已提交
1767 1768 1769 1770 1771 1772 1773 1774
                inputs=None,
                outputs=None,
                attrs=kwargs.get("attrs", {}))

            _dygraph_tracer().trace_op(op,
                                       kwargs.get("inputs", {}),
                                       kwargs.get("outputs", {}),
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
1775
        else:
1776 1777 1778 1779 1780 1781 1782 1783
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
1784
            self.ops.insert(0, op)
1785

Y
Yu Yang 已提交
1786 1787
        return op

W
Wu Yi 已提交
1788
    def _sync_with_cpp(self):
1789
        """
1790 1791
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1792
        """
Q
Qiao Longfei 已提交
1793 1794 1795 1796 1797
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1798
        # sync variables removed from c++ end
1799
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1800
            if not self.desc.find_var(cpt.to_bytes(var)):
1801 1802
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1803
        # sync operators from cpp
1804 1805 1806 1807
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1824 1825 1826 1827 1828

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1829
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1830 1831 1832 1833 1834 1835 1836

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1850 1851 1852 1853
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1854
    def _copy_param_info_from(self, other):
1855
        """
1856 1857
        Copy the information of parameters from the other block.

1858
        Args:
1859 1860 1861 1862 1863
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1864 1865 1866 1867 1868

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1869 1870
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1871
        for p in other.iter_parameters():
1872 1873 1874
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1875
                raise ValueError("_copy_param_info_from should be invoked with "
1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1888
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1889
                error_clip=p.error_clip,
1890 1891 1892
                name=v.name)
            self.vars[new_p.name] = new_p

1893
    def _clone_variable(self, var, force_persistable=True):
1894 1895
        """
        Clone a variable into current block.
1896

1897 1898
        Args:
            var: the variable to be cloned.
1899 1900 1901
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
1902 1903

        Returns:
1904
            Variable: the new  variable cloned from 'var' in current block.
1905 1906
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1907 1908 1909 1910 1911
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1912 1913
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1914
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1915 1916 1917 1918 1919 1920
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
1921
                persistable=True if force_persistable else var.persistable,
F
fengjiayi 已提交
1922
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1923 1924 1925 1926 1927 1928 1929
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
1930
                persistable=True if force_persistable else var.persistable,
F
fengjiayi 已提交
1931
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1932
        return ret_var
1933

Y
Yu Yang 已提交
1934

1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

2030
    def remove_input_by_id(self, node_id):
2031 2032 2033 2034 2035 2036
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2037
        self.node.remove_input(node_id)
2038

2039
    def remove_input(self, node):
2040 2041 2042 2043
        """
        Remove a node from inputs.

        Args:
2044
            node(IrNode): the node being removed.
2045
        """
2046
        self.node.remove_input(node.node)
2047

2048
    def append_input(self, node):
2049 2050 2051 2052
        """
        Append a node in inputs.

        Args:
2053
            node(IrNode): the node being appended.
2054
        """
2055
        self.node.append_input(node.node)
2056 2057 2058 2059 2060 2061 2062 2063

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

2064
    def remove_output_by_id(self, node_id):
2065 2066 2067 2068 2069 2070
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2071
        self.node.remove_output(node_id)
2072

2073
    def remove_output(self, node):
2074 2075 2076 2077
        """
        Remove a node from outputs.

        Args:
2078
            node(IrNode): the node being removed.
2079
        """
2080
        self.node.remove_output(node.node)
2081

2082
    def append_output(self, node):
2083 2084 2085 2086
        """
        Append a node in outputs.

        Args:
2087
            node(IrNode): the node being appended.
2088
        """
2089
        self.node.append_output(node.node)
2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().persistable()

2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().shape()

2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        self.node.op()._rename_input(old_input_name, new_input_name)

2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().set_type(new_type)

2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
            all(isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
            isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output_arg_names()

2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


2344 2345
class IrGraph(object):
    """
2346
    Python IrGraph. Beneath it is a core.Graph, which is used for
2347
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
2348 2349
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
2350 2351 2352 2353
    """

    def __init__(self, graph, for_test=False):
        """
2354 2355
        Construct an IrGraph using core.Graph.

2356 2357 2358 2359 2360 2361 2362 2363 2364
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

2365 2366 2367 2368
    def clone(self):
        """
        Create a new and duplicated IrGraph.

2369 2370 2371
        Warns:
            The method only clones the graph structure, not its attributes.

2372 2373 2374
        Returns:
            IrGraph: A new and duplicated graph.
        """
2375
        g = self.graph.clone()
2376 2377
        return IrGraph(g, self._for_test)

2378
    def is_test(self):
2379 2380 2381
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
2382 2383
        return self._for_test

W
WangZhen 已提交
2384
    def all_nodes(self):
2385 2386 2387
        """
        Return all nodes included in the graph as a set.
        """
2388
        return {IrNode(node) for node in self.graph.nodes()}
2389

2390
    def all_var_nodes(self):
2391 2392 2393
        """
        Return all variable nodes included in the graph as a set.
        """
2394
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
2395

2396
    def all_persistable_nodes(self):
2397 2398 2399
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
2400 2401 2402 2403 2404
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
2405
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
2406

2407
    def all_op_nodes(self):
2408 2409 2410
        """
        Return all operator nodes included in the graph as a set.
        """
2411
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
2412

2413
    def create_persistable_node(self, name, var_type, shape, var_dtype):
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
2425
            IrVarNode: the created persistable variable node.
2426
        """
2427 2428 2429 2430 2431
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
2432
        return IrVarNode(self.graph.create_var_node(var_desc))
2433 2434

    def create_var_node(self, name, var_type, shape, var_dtype):
2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
2446
            IrVarNode: the created variable node.
2447 2448
        """

2449 2450 2451 2452
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
2453
        return IrVarNode(self.graph.create_var_node(var_desc))
2454 2455

    def create_var_node_from_desc(self, var_desc):
2456 2457 2458 2459 2460 2461 2462 2463
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
2464
            IrVarNode: the created variable node.
2465
        """
2466
        return IrVarNode(self.graph.create_var_node(var_desc))
2467 2468

    def create_op_node(self, op_type, attrs, inputs, outputs):
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
            outputs(dict): the outpus of the operator node.

        Returns:
2479
            IrOpNode: the created operator node.
2480
        """
2481 2482
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
2483
        for attr, value in six.iteritems(attrs):
2484
            self._update_desc_attr(op_desc, attr, value)
2485
        for input_name, var_nodes in six.iteritems(inputs):
2486 2487 2488 2489
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
2490
        for output_name, var_nodes in six.iteritems(outputs):
2491 2492 2493 2494
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
2495
        return IrOpNode(self.graph.create_op_node(op_desc))
2496 2497

    def create_op_node_from_desc(self, op_desc):
2498 2499 2500 2501 2502 2503 2504
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
2505
            IrOpNode: the created operator node.
2506
        """
2507
        return IrOpNode(self.graph.create_op_node(op_desc))
2508 2509

    def update_input_link(self, old_input_node, new_input_node, op_node):
2510 2511 2512 2513
        """
        Update the input's link of a operator node.

        Args:
2514 2515 2516
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
2517
        """
2518 2519
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
        self.graph.nodes() and op_node.node in self.graph.nodes(), \
W
WangZhen 已提交
2520
        'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
2521 2522 2523 2524
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
2525
        op_node.rename_input(old_input_node.name(), new_input_node.name())
2526 2527

    def link_to(self, node_in, node_out):
2528 2529 2530 2531
        """
        Connect two nodes.

        Args:
2532 2533
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
2534
        """
2535
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
2536
            'The two arguments(node_in&node_out) must be in the graph nodes.'
2537 2538
        node_in.append_output(node_out)
        node_out.append_input(node_in)
2539 2540

    def safe_remove_nodes(self, remove_nodes):
2541 2542 2543 2544 2545 2546 2547
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
2548
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
2549 2550 2551 2552
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
2553 2554
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
2555

Z
Zhen Wang 已提交
2556 2557 2558 2559 2560 2561 2562 2563
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
2564
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
2565 2566 2567 2568
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
2569
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
2570 2571 2572
                        ]
                    else:
                        var_nodes[each_var_name].append(
2573 2574
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
2575 2576
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
2577
    def has_circle(self):
2578 2579 2580 2581 2582 2583
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
2584 2585 2586
        return core.has_circle(self.graph)

    def graph_num(self):
2587 2588 2589 2590 2591 2592
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
2593 2594 2595
        return core.graph_num(self.graph)

    def topology_sort(self):
2596 2597 2598 2599 2600 2601
        """
        Perform the topology sort operation on the graph.

        Notes: the `graph` cannot contain a circle.

        Returns:
Z
Zhen Wang 已提交
2602
            list(IrNode): nodes in topology order.
2603
        """
2604
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
2605
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
2606 2607

    def build_adjacency_list(self):
2608 2609 2610 2611
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
2612
            dict{IrNode: set(IrNode)}: the adjacency list.
2613
        """
2614 2615 2616 2617 2618
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
2619

2620 2621 2622 2623 2624 2625 2626 2627
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
2628
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
2629 2630 2631 2632 2633
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

2634 2635 2636 2637 2638 2639 2640 2641 2642
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
                            + ' -o ' + pdf_save_path, shell=True)
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

2643
        remove_ctr_vars = set()
2644
        if remove_ctr_var:
2645
            for node in self.all_var_nodes():
2646 2647 2648
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
2649 2650
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

2651 2652
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
2653 2654 2655 2656 2657 2658
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
2670 2671 2672
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
2673
        WARN: When the graph includes backward operator nodes, the
2674 2675 2676 2677 2678 2679
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
2680
        convert_pass = core.get_pass('graph_to_program_pass')
2681 2682
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
2683 2684 2685 2686
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
2714
class Program(object):
D
dzhwinter 已提交
2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
2726
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
2727 2728

    Returns:
Y
yuyang18 已提交
2729
        A empty program.
D
dzhwinter 已提交
2730 2731

    Examples:
2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
2745 2746 2747

    """

2748 2749
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
2750 2751
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
2752
        self._seed = 0
Y
yuyang18 已提交
2753
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
2754
        self.__op_role_var = []
T
tangwei12 已提交
2755

2756 2757
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
2758
        self._is_distributed = False
2759
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
2760
        self._is_chief = False
2761 2762 2763
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
2764
        self._endpoints = []
2765 2766 2767
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
2768
        self._trainers_endpoints = []
2769
        # the distributed lookup table names
T
tangwei12 已提交
2770
        self._distributed_lookup_table = None
2771 2772 2773

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
2774 2775 2776 2777
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
        self._hierarchical_allreduce_exter_nranks = 0
2778

D
dzhwinter 已提交
2779
        # @deprecated(the python memory optimize transpiler is deprecated)
D
dzhwinter 已提交
2780
        # whether the program is optimized by memory_optimize_transpiler
D
dzhwinter 已提交
2781
        self.__is_mem_optimized = False
D
dzhwinter 已提交
2782

2783 2784 2785
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
2786
        self._program_config = None
2787

H
hutuxian 已提交
2788 2789 2790
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

D
dzhwinter 已提交
2791
    @property
D
dzhwinter 已提交
2792
    def _is_mem_optimized(self):
D
dzhwinter 已提交
2793 2794
        # if the program is optimized, operator input/outputs
        # maybe same, which conflict with save_inference_model.
D
dzhwinter 已提交
2795
        return self.__is_mem_optimized
D
dzhwinter 已提交
2796

D
dzhwinter 已提交
2797 2798 2799
    @_is_mem_optimized.setter
    def _is_mem_optimized(self, target):
        self.__is_mem_optimized = target
Y
yuyang18 已提交
2800 2801

    @property
2802
    def _op_role(self):
Y
yuyang18 已提交
2803 2804 2805 2806 2807 2808 2809 2810
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
2811
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
2812 2813 2814 2815
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
2816 2817
        return self._current_role

2818 2819
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
2820 2821 2822
        self._current_role = role

    @property
2823
    def _op_role_var(self):
Y
yuyang18 已提交
2824
        """
2825
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
2826

2827
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
2828 2829 2830

        Notes: This is a very low-level API. Users should not use it directly.
        """
2831
        return self.__op_role_var
Y
yuyang18 已提交
2832

2833 2834 2835 2836 2837 2838 2839 2840 2841
    @contextlib.contextmanager
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
        yield
        self._current_role = tmp_role

S
rename  
sneaxiy 已提交
2842
    @signature_safe_contextmanager
W
Wu Yi 已提交
2843
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
2844 2845 2846 2847 2848 2849 2850
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
2851
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
2852 2853 2854 2855

        Examples:

            >>> p, g = backward(...)
W
Wu Yi 已提交
2856
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
2857 2858
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
2859
        tmp_role = self._current_role
2860
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
2861

Y
yuyang18 已提交
2862 2863
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
2864
        self.__op_role_var = [
2865 2866 2867
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
2868
        yield
2869
        self.__op_role_var = tmp_var
X
Xin Pan 已提交
2870
        self._current_role = tmp_role
Y
Yu Yang 已提交
2871

S
rename  
sneaxiy 已提交
2872
    @signature_safe_contextmanager
X
Xin Pan 已提交
2873
    def _lr_schedule_guard(self, is_with_opt=False):
2874 2875 2876 2877 2878 2879 2880
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
2881 2882 2883 2884
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
2885 2886 2887 2888 2889 2890 2891

        Examples:

            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
2892 2893

        tmp_role = self._current_role
2894
        tmp_var = self.__op_role_var
2895

2896 2897
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
2898 2899
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
2900
        # TODO(typhoonzero): how to set target learning rate var
2901
        self.__op_role_var = []
2902
        yield
2903
        self.__op_role_var = tmp_var
2904
        self._current_role = tmp_role
2905

2906
    def __str__(self):
Y
yuyang18 已提交
2907 2908 2909 2910 2911 2912 2913 2914 2915
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
2916 2917
        return self.to_string(True)

F
fengjiayi 已提交
2918 2919 2920
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
2921

F
fengjiayi 已提交
2922
        Args:
Y
yuyang18 已提交
2923 2924
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
2925

Y
yuyang18 已提交
2926 2927 2928 2929
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

H
haowang101779990 已提交
2930 2931
        Returns:
            str : The debug string.
Y
yuyang18 已提交
2932 2933 2934 2935

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
2936

2937 2938 2939 2940 2941 2942 2943 2944 2945
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
                print(prog_string)

F
fengjiayi 已提交
2946 2947 2948 2949 2950 2951 2952 2953 2954
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
2955 2956
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2957 2958
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2959

W
Wu Yi 已提交
2960
    def _get_desc(self):
Y
yuyang18 已提交
2961 2962 2963 2964 2965 2966 2967
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
2968 2969
        return self.desc

X
version  
Xin Pan 已提交
2970 2971 2972
    def _version(self):
        return self.desc._version()

2973
    def clone(self, for_test=False):
Y
yuyang18 已提交
2974 2975 2976
        """
        Create a new, duplicated program.

2977

Y
yuyang18 已提交
2978 2979 2980 2981
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
2982

Y
yuyang18 已提交
2983
        * Set for_test to False when we want to clone the program for training.
2984 2985 2986 2987
        * Set for_test to True when we want to clone the program for testing.
          We will not do any prune on program here, So if you just want an
          forward program for testing, please use :code:`clone` before using
          :code:`Opimizer.minimize`
Y
yuyang18 已提交
2988

2989 2990 2991 2992
        Notes: 
        1. :code:`Program.clone()` method DOES NOT clone :code:`py_reader`.
        2. This API DOES NOT prune any operator. Use
        :code:`clone(for_test=True)` before backward and optimization please. E.g.
L
Luo Tao 已提交
2993

2994 2995 2996 2997 2998
        .. code-block:: python

            test_program = fluid.default_main_program().clone(for_test=True)
            optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            optimizer.minimize()
2999 3000

        Args:
Y
yuyang18 已提交
3001 3002
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
3003

D
dzhwinter 已提交
3004
        Returns:
Y
yuyang18 已提交
3005 3006 3007 3008
            Program: The new, duplicated Program object.

        Examples:

3009 3010 3011 3012 3013 3014
        Notes: The Program Descs' order maybe different after :code:`clone` and
        this will not affect your training or testing progress. In the following
        example we give you an simple method :code:`print_prog(program)` to
        print Program Descs inorder to make sure you have same print result
        after :code:`clone`:

3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109
            .. code-block:: python

                import paddle.fluid as fluid
                import six


                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


        1. To clone a test program, the sample code is:
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

                    train_program = fluid.Program()
                    startup_program = fluid.Program()
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            img = fluid.layers.data(name='image', shape=[784])
                            hidden = fluid.layers.fc(input=img, size=200, act='relu')
                            hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                            loss = fluid.layers.cross_entropy(
                                                      input=fluid.layers.fc(hidden, size=10, act='softmax'),
                                        label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = fluid.layers.mean(loss)
                            test_program = train_program.clone(for_test=False)
                    print_prog(test_program)
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                            sgd.minimize(avg_loss)


        2. The clone method can be avoid if you create program for training and program for testing individually.
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
                    def network(is_test):
                        img = fluid.layers.data(name='image', shape=[784])
                        hidden = fluid.layers.fc(input=img, size=200, act='relu')
                        hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                        loss = fluid.layers.cross_entropy(
                            input=fluid.layers.fc(hidden, size=10, act='softmax'),
                            label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = fluid.layers.mean(loss)
                        return avg_loss


                    train_program_2 = fluid.Program()
                    startup_program_2 = fluid.Program()
                    test_program_2 = fluid.Program()
                    with fluid.program_guard(train_program_2, startup_program_2):
                        with fluid.unique_name.guard():
                             sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                             sgd.minimize(avg_loss)
                    # the test startup program is not used.
                    with fluid.program_guard(test_program_2, fluid.Program()):
                        with fluid.unique_name.guard():
                            loss = network(is_test=True)
                    print(test_program_2)

        The two code snippets above will generate and print same programs.
3110 3111
        """
        if for_test:
X
Xin Pan 已提交
3112
            p = self._inference_optimize(prune_read_op=False)
3113
        else:
3114
            p = Program()
G
gongweibao 已提交
3115 3116
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
3117
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
3118 3119 3120
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
3121 3122

            p._current_role = self._current_role
3123
            p.__op_role_var = self.__op_role_var
G
gongweibao 已提交
3124

W
Wu Yi 已提交
3125
            p._sync_with_cpp()
3126

W
Wu Yi 已提交
3127
        p._copy_param_info_from(self)
W
Wu Yi 已提交
3128
        p._copy_data_info_from(self)
3129
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
3130
        return p
3131

W
Wu Yi 已提交
3132
    def _prune(self, targets):
Y
yuyang18 已提交
3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
3148 3149 3150 3151 3152 3153
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
3154 3155
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
3156
                    # and we need to find the current op that generate this
3157 3158 3159 3160 3161 3162 3163 3164
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

3165
                    t = t.op
3166 3167 3168 3169
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
3170
                else:
3171 3172
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
3173 3174 3175 3176

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
3177 3178 3179
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
3180
        res._sync_with_cpp()
3181 3182
        return res

X
Xin Pan 已提交
3183
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
3184
        """
F
fengjiayi 已提交
3185 3186 3187 3188 3189
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

3190
        3. change the :code:`is_test`
Y
yuyang18 已提交
3191 3192 3193
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

3194
        Args:
X
Xin Pan 已提交
3195 3196
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
3197

Y
yuyang18 已提交
3198 3199 3200 3201 3202 3203
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
3204
        res = Program()
3205
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
3206 3207 3208 3209

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
3210
        if prune_read_op:
3211 3212 3213 3214 3215 3216 3217 3218 3219
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
3220
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
3221 3222

        # change all `is_test` attributes to True
M
minqiyang 已提交
3223
        for i in six.moves.range(res.desc.num_blocks()):
3224
            block = res.desc.block(i)
M
minqiyang 已提交
3225
            for j in six.moves.range(block.op_size()):
3226 3227
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
3228
                    op._set_attr('is_test', True)
M
minqiyang 已提交
3229 3230 3231
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
3232
        res._sync_with_cpp()
3233 3234
        return res

3235 3236
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
3237 3238 3239 3240 3241 3242 3243
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
3244
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
3245 3246 3247 3248

        Returns:
            Program: A deserialized program desc.
        """
3249 3250
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
3251
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
3252
        p._sync_with_cpp()
3253
        return p
Y
Yu Yang 已提交
3254

3255
    @staticmethod
3256
    def _construct_from_desc(desc):
3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
3272 3273
    @property
    def random_seed(self):
Y
yuyang18 已提交
3274 3275 3276 3277 3278
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                random_seed = prog.random_seed
                print(random_seed)
                prog.random_seed = 1
                print(prog.random_seed)
Y
yuyang18 已提交
3290
        """
D
dzhwinter 已提交
3291 3292
        return self._seed

Q
qiaolongfei 已提交
3293 3294
    @property
    def num_blocks(self):
Y
yuyang18 已提交
3295 3296
        """
        The number of blocks in this program.
3297 3298 3299 3300 3301 3302 3303 3304 3305

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                num_blocks = prog.num_blocks
                print(num_blocks)
Y
yuyang18 已提交
3306
        """
Q
qiaolongfei 已提交
3307 3308
        return self.desc.num_blocks()

D
dzhwinter 已提交
3309 3310 3311 3312 3313 3314
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
3315
    def __repr__(self):
3316
        return self.__str__()
3317

Y
Yu Yang 已提交
3318
    def global_block(self):
Y
yuyang18 已提交
3319 3320
        """
        Get the first block of this program.
3321 3322 3323 3324 3325 3326 3327 3328 3329

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                gb_block = prog.global_block()
                print(gb_block)
Y
yuyang18 已提交
3330
        """
Y
Yu Yang 已提交
3331 3332
        return self.blocks[0]

Q
Qiao Longfei 已提交
3333
    def block(self, index):
Y
yuyang18 已提交
3334 3335 3336 3337 3338 3339 3340
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
3341 3342 3343 3344 3345 3346 3347 3348 3349

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
3350
        """
Q
Qiao Longfei 已提交
3351 3352
        return self.blocks[index]

Y
Yu Yang 已提交
3353
    def current_block(self):
Y
yuyang18 已提交
3354 3355 3356
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
3357 3358 3359 3360 3361 3362 3363 3364 3365

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
3366
        """
Y
Yu Yang 已提交
3367 3368
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
3369
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
3370 3371 3372 3373 3374 3375 3376 3377 3378 3379
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
3380
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
3381 3382 3383
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
3384 3385 3386 3387
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
3388
    def _rollback(self):
Y
yuyang18 已提交
3389 3390 3391 3392 3393
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
3394 3395
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
3396
    def _sync_with_cpp(self):
Y
yuyang18 已提交
3397 3398 3399 3400 3401 3402 3403 3404 3405 3406
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
3407 3408 3409
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
3410
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
3411

W
Wu Yi 已提交
3412
    def _copy_param_info_from(self, other):
3413
        """
3414
        Copy the information of parameters from other program.
D
dzhwinter 已提交
3415

Y
yuyang18 已提交
3416 3417 3418
        Notes: This is a very low level API. Users should not invoke it
        directly.

3419 3420 3421 3422 3423 3424 3425
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
3426
            raise TypeError("_copy_param_info_from should be invoked with "
3427 3428 3429
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
3430
            raise ValueError("_copy_param_info_from should be invoked with two "
3431
                             "program, with represent the same topology")
W
Wu Yi 已提交
3432
        self.global_block()._copy_param_info_from(other.global_block())
3433

3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
3449
        self._parameters_on_pservers = other._parameters_on_pservers
3450
        self._endpoints = other._endpoints
3451
        self._ps_endpoint = other._ps_endpoint
3452 3453
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
3454
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
3455 3456
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
3457

Y
yuyang18 已提交
3458 3459 3460
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
3461 3462 3463 3464 3465 3466 3467
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
3468
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
3469 3470 3471
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
3472
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
3473
                             "program, with represent the same topology")
3474
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
3475 3476 3477
            if var.is_data:
                self.global_block().var(var.name).is_data = True

3478
    def list_vars(self):
Y
yuyang18 已提交
3479 3480 3481 3482 3483
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                img = fluid.layers.data(name='img', shape=[1,28,28], dtype='float32')
                label = fluid.layers.data(name='label', shape=[128,1], dtype='int64')
                for var in prog.list_vars():
                    print(var)
Y
yuyang18 已提交
3495
        """
3496
        for each_block in self.blocks:
3497
            for each_var in list(each_block.vars.values()):
3498 3499
                yield each_var

Y
Yu Yang 已提交
3500

Y
Yu Yang 已提交
3501
class Parameter(Variable):
3502
    """
3503
    Parameter is derived from Variable. A parameter is a persistable
3504
    Variable, and will be updated by optimizers after each iteration.
3505
    The training of a neural network is essentially the updating of
3506 3507
    its parameters.

3508
    Relative to a general Variable, a Parameter has several its own
3509 3510
    member variables:

3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
3523 3524
    """

Y
Yu Yang 已提交
3525 3526 3527 3528 3529 3530 3531 3532 3533 3534
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
3535 3536 3537

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
3538 3539 3540 3541
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

3542 3543
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
3544
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
3545

W
wanghaoshuang 已提交
3546
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
3547

F
fengjiayi 已提交
3548 3549 3550
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
3551 3552 3553
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
3554

F
update  
fengjiayi 已提交
3555 3556 3557 3558 3559 3560 3561 3562
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

3563 3564 3565 3566 3567 3568 3569 3570 3571
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
3572 3573 3574 3575 3576 3577
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
3578
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
3579
            for attr_name in additional_attr:
3580 3581
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
3582 3583
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
3584 3585 3586 3587
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
3588

Y
Yu Yang 已提交
3589
# program is a global instance.
Y
Yu Yang 已提交
3590 3591
_main_program_ = Program()
_startup_program_ = Program()
3592

3593

3594
def default_startup_program():
Y
Yu Yang 已提交
3595
    """
Y
yuyang18 已提交
3596 3597 3598 3599 3600 3601 3602 3603 3604
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
3605

Y
Yu Yang 已提交
3606 3607
    Returns:
        Program: startup program
3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

                print("main program is: {}".format(fluid.default_main_program()))
                print("start up program is: {}".format(fluid.default_startup_program()))
Y
Yu Yang 已提交
3623
    """
Y
Yu Yang 已提交
3624
    return _startup_program_
3625

3626

3627
def default_main_program():
Y
Yu Yang 已提交
3628
    """
Y
yuyang18 已提交
3629 3630 3631 3632 3633 3634 3635 3636 3637
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
3638

Y
Yu Yang 已提交
3639 3640
    Returns:
        Program: main program
3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669

    Examples:
        ..  code-block:: python

            import paddle.fluid as fluid
            
            # Sample Network:
            data = fluid.layers.data(name='image', shape=[3, 224, 224], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            
            conv1 = fluid.layers.conv2d(data, 4, 5, 1, act=None)
            bn1 = fluid.layers.batch_norm(conv1, act='relu')
            pool1 = fluid.layers.pool2d(bn1, 2, 'max', 2)
            conv2 = fluid.layers.conv2d(pool1, 16, 5, 1, act=None)
            bn2 = fluid.layers.batch_norm(conv2, act='relu')
            pool2 = fluid.layers.pool2d(bn2, 2, 'max', 2)
            
            fc1 = fluid.layers.fc(pool2, size=50, act='relu')
            fc2 = fluid.layers.fc(fc1, size=102, act='softmax')
            
            loss = fluid.layers.cross_entropy(input=fc2, label=label)
            loss = fluid.layers.mean(loss)
            opt = fluid.optimizer.Momentum(
                learning_rate=0.1,
                momentum=0.9,
                regularization=fluid.regularizer.L2Decay(1e-4))
            opt.minimize(loss)
            
            print(fluid.default_main_program())
Y
Yu Yang 已提交
3670
    """
Y
Yu Yang 已提交
3671
    return _main_program_
Y
Yu Yang 已提交
3672 3673 3674 3675 3676


def switch_main_program(program):
    """
    Switch the main program to a new program.
3677

Y
Yu Yang 已提交
3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
3692
    Switch the startup program to a new program
Y
Yu Yang 已提交
3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
3705
@signature_safe_contextmanager
Y
Yu Yang 已提交
3706 3707
def program_guard(main_program, startup_program=None):
    """
3708 3709
    Change the global main program and startup program with `"with"` statement.
    Layer functions in the Python `"with"` block will append operators and
Y
yuyang18 已提交
3710
    variables to the new main programs.
3711

Y
Yu Yang 已提交
3712
    Examples:
3713 3714 3715
       .. code-block:: python
       
         import paddle.fluid as fluid
Y
yuyang18 已提交
3716

3717 3718 3719 3720 3721
         main_program = fluid.Program()
         startup_program = fluid.Program()
         with fluid.program_guard(main_program, startup_program):
             data = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
             hidden = fluid.layers.fc(input=data, size=10, act='relu')
Y
yuyang18 已提交
3722 3723 3724

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
3725

Y
Yu Yang 已提交
3726
    Examples:
3727
       .. code-block:: python
Y
yuyang18 已提交
3728

3729 3730 3731 3732 3733 3734
         import paddle.fluid as fluid

         main_program = fluid.Program()
         # does not care about startup program. Just pass a temporary value.
         with fluid.program_guard(main_program, fluid.Program()):
             data = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
3735

Y
Yu Yang 已提交
3736
    Args:
3737 3738 3739
        main_program(Program): New main program inside `"with"` statement.
        startup_program(Program): New startup program inside `"with"` statement.
            None means not changing startup program.
Y
Yu Yang 已提交
3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
3752 3753


W
Wu Yi 已提交
3754
def _get_var(name, program=None):
X
xuwei06 已提交
3755
    """
Y
yuyang18 已提交
3756
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
3757

X
xuwei06 已提交
3758 3759 3760
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
3761
        If None, default_global_program() will be used.
X
xuwei06 已提交
3762 3763 3764 3765 3766 3767 3768

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
3769
    assert isinstance(program, Program)
X
xuwei06 已提交
3770 3771

    return program.global_block().var(name)
3772 3773


S
rename  
sneaxiy 已提交
3774
@signature_safe_contextmanager
L
lujun 已提交
3775 3776 3777 3778
def _dygraph_guard(tracer):
    global _dygraph_tracer_
    tmp_trace = _dygraph_tracer_
    _dygraph_tracer_ = tracer
M
minqiyang 已提交
3779

3780
    yield
P
Paddle CI 已提交
3781

L
lujun 已提交
3782
    _dygraph_tracer_ = tmp_trace
P
Paddle CI 已提交
3783 3784


S
rename  
sneaxiy 已提交
3785
@signature_safe_contextmanager
L
lujun 已提交
3786 3787 3788 3789
def _dygraph_place_guard(place):
    global _dygraph_current_expected_place_
    tmp_place = _dygraph_current_expected_place_
    _dygraph_current_expected_place_ = place
M
minqiyang 已提交
3790

3791
    yield
M
minqiyang 已提交
3792

L
lujun 已提交
3793
    _dygraph_current_expected_place_ = tmp_place