framework.py 258.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
import collections
X
Xin Pan 已提交
16
from collections import defaultdict
H
huzhiqiang 已提交
17
from collections.abc import Iterable
Q
qiaolongfei 已提交
18
import contextlib
19
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
20
import os
F
fengjiayi 已提交
21
import re
22
import traceback
23
import six
24
import copy
25
from types import MethodType, FunctionType
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
30
import sys
31
import logging
M
minqiyang 已提交
32
from .. import compat as cpt
33
from .proto import framework_pb2
34 35

from . import core
36
from . import unique_name
37 38
import paddle.version as fluid_version
import warnings
39
import functools
40
from .variable_index import _getitem_impl_, _setitem_impl_
Y
Yu Yang 已提交
41

42
__all__ = [
43 44 45 46
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
47
    'name_scope',
J
jianghaicheng 已提交
48
    'ipu_shard_guard',
49
    'set_ipu_shard',
S
sneaxiy 已提交
50 51
    'cuda_places',
    'cpu_places',
52
    'xpu_places',
53
    'mlu_places',
S
sneaxiy 已提交
54
    'cuda_pinned_places',
J
Jiabin Yang 已提交
55
    '_non_static_mode',
L
lujun 已提交
56
    'in_dygraph_mode',
57
    'is_compiled_with_cinn',
C
chengduo 已提交
58
    'is_compiled_with_cuda',
59
    'is_compiled_with_rocm',
60
    'is_compiled_with_xpu',
61
    'is_compiled_with_npu',
62
    'Variable',
63
    'require_version',
64
    'device_guard',
G
guofei 已提交
65 66
    'set_flags',
    'get_flags',
67
]
Y
Yu Yang 已提交
68

Q
qiaolongfei 已提交
69 70 71 72
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
73 74
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
75
_dygraph_tracer_ = None
76
_in_eager_mode_ = (os.environ.get('FLAGS_enable_eager_mode', '1') == '1')
77
_global_expected_place_ = None
78
_current_device = None
79
global_prog_seed = 0
80
_current_pipeline_stage = None
81
_already_patch_eager_tensor = False
J
Jiabin Yang 已提交
82
_already_patch_varbase = False
83
_current_cuda_graph_mode = None
84
_global_flags_ = core.globals()
L
Leo Chen 已提交
85 86
_enable_standalone_executor_ = (os.environ.get('FLAGS_USE_STANDALONE_EXECUTOR',
                                               None))
87
_dy2st_enable_standalone_executor_ = (os.environ.get(
88
    'FLAGS_DY2ST_USE_STANDALONE_EXECUTOR', 1))
J
Jiabin Yang 已提交
89 90

# Some explanation of our execution system 2022.03
91
# For now we have 3 kinds of execution system, since we refactored dygraph mode to
J
Jiabin Yang 已提交
92
# build a fast execution system for dynamic mode. But we can't just remove all legacy
93
# code once we present the new system for some historical reason. That's why we have
J
Jiabin Yang 已提交
94
# these flags.
95
#
J
Jiabin Yang 已提交
96
# 1. _non_static_mode():
97
# _non_static_mode means  we are now running in legacy dygraph mode or dygraph mode.
J
Jiabin Yang 已提交
98 99 100 101
# 2. dygraph_mode():
# This flags inidicates we are now running in dygraph mode which called eager mode before.
# 3. _in_legacy_dygraph():
# This flags inidicates we are now running in legacy dygraph mode
102
#
J
Jiabin Yang 已提交
103
# They have a relation ship as below:
104
# Both dygraph_mode and _in_legacy_dygraph are _non_static_mode, but if you are running in
J
Jiabin Yang 已提交
105
# dygraph mode means you are not in _in_legacy_dygraph.
106
#
J
Jiabin Yang 已提交
107 108 109 110 111 112
# Why we have to make different of _in_legacy_dygraph and dygraph_mode?
# In some performance issue, we find that python if statement cause server performance problem
# and we need our new dygraph mode becomes as fast as it could be. That's why we make these flags
# to make sure in most case, we find new dygraph mode first with only one if statement.


113 114 115 116 117
def _update_monkey_methods(is_eager):
    """
    Update monkey methods of VarBase or eager.Tensor while
    switching eager mode and legacy mode.
    """
118
    from paddle import _C_ops, _legacy_C_ops
119 120 121
    from .dygraph.varbase_patch_methods import monkey_patch_varbase
    from .dygraph import monkey_patch_math_varbase

122 123 124
    global _already_patch_eager_tensor
    global _already_patch_varbase

125
    assert isinstance(is_eager, bool)
126
    # switch into eager mode
127
    if is_eager:
128
        _legacy_C_ops.switch_to_eager_ops()
129 130 131 132 133 134
        if not _already_patch_eager_tensor:
            monkey_patch_varbase()
            monkey_patch_math_varbase()

            _already_patch_eager_tensor = True
    # switch back into legacy mode
135
    else:
136
        _legacy_C_ops.switch_to_core_ops()
137 138 139 140 141
        if not _already_patch_varbase:
            monkey_patch_varbase()
            monkey_patch_math_varbase()

            _already_patch_varbase = True
142

143 144 145 146 147 148 149 150 151 152 153
    # switch Paddle.Tensor bind type
    _switch_tensor_bind_type(is_eager)


def _switch_tensor_bind_type(is_eager):
    import paddle
    if is_eager:
        paddle.Tensor = core.eager.Tensor
    else:
        paddle.Tensor = core.VarBase
    paddle.Tensor.__qualname__ = 'Tensor'
154 155


J
Jiabin Yang 已提交
156 157 158
def _enable_legacy_dygraph():
    global _in_eager_mode_
    _in_eager_mode_ = False
159
    _update_monkey_methods(is_eager=False)
J
Jiabin Yang 已提交
160 161 162 163 164


def _disable_legacy_dygraph():
    global _in_eager_mode_
    _in_eager_mode_ = True
165
    _update_monkey_methods(is_eager=True)
J
Jiabin Yang 已提交
166 167 168 169 170 171 172


def _in_eager_without_dygraph_check():
    global _in_eager_mode_
    return _in_eager_mode_


173 174 175 176 177 178 179 180 181
# FIXME(dev): We haven't fully verified eager mode on XPU/NPU et.al but
# only GPU/CPU. Remove this after we improve this feature.
_is_first_import_ = True


def _fallback_legacy_dygraph():
    global _in_eager_mode_
    global _is_first_import_
    need_fallback = False
C
Chen Weihang 已提交
182 183 184
    # Only enable eager on CPU/GPU/XPU
    is_not_support = core.is_compiled_with_npu() or core.is_compiled_with_ipu(
    ) or core.is_compiled_with_mlu()
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205

    if _in_eager_mode_ and is_not_support:
        # switch into legacy dygraph mode
        warnings.warn(
            "We will fallback into legacy dygraph on NPU/XPU/MLU/IPU/ROCM devices. Because we only support new eager dygraph mode on CPU/GPU currently. "
        )
        _in_eager_mode_ = False
        if not _is_first_import_:
            _enable_legacy_dygraph()
        need_fallback = True

    need_fallback = False
    _is_first_import_ = False

    return need_fallback


# switch into legacy mode if need while import paddle
_fallback_legacy_dygraph()


J
Jiabin Yang 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
def in_dygraph_mode():
    """

    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .

    Returns:
        bool: Whether paddle runs in dynamic graph mode.

    Examples:
        .. code-block:: python

            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode

    """
    return (_dygraph_tracer_ is not None) and _in_eager_mode_


def _in_legacy_dygraph():
    return (not _in_eager_mode_) and (_dygraph_tracer_ is not None)


def _non_static_mode():
    return _dygraph_tracer_ is not None
242 243 244


@signature_safe_contextmanager
J
Jiabin Yang 已提交
245
def _test_eager_guard(place=None):
C
Chen Weihang 已提交
246 247
    # FIXME(dev): We haven't fully verified eager mode on NPU et.al but
    # only GPU/CPU/XPU. Remove this after we improve this feature.
248 249 250
    already_fallback = _fallback_legacy_dygraph()
    if not already_fallback:
        _disable_legacy_dygraph()
251
    try:
J
Jiabin Yang 已提交
252
        yield
253
    finally:
254 255
        if not already_fallback:
            _enable_legacy_dygraph()
256 257


258 259
global_ipu_index = -1
global_ipu_stage = -1
J
jianghaicheng 已提交
260 261 262 263
ipu_index_attr_name = 'ipu_index'
ipu_stage_attr_name = 'ipu_stage'


L
Leo Chen 已提交
264 265 266 267 268 269 270 271 272 273 274
@signature_safe_contextmanager
def _enable_standalone_executor(enable=True):
    global _enable_standalone_executor_
    original_ = _enable_standalone_executor_
    _enable_standalone_executor_ = enable
    try:
        yield
    finally:
        _enable_standalone_executor_ = original_


J
jianghaicheng 已提交
275
@signature_safe_contextmanager
276
def ipu_shard_guard(index=-1, stage=-1):
J
jianghaicheng 已提交
277 278 279 280
    """
    Used to shard the graph on IPUs. Set each Op run on which IPU in the sharding and which stage in the pipelining.

    Args:
W
Weilong Wu 已提交
281
        index(int, optional): Specify which ipu the Tensor is computed on, (such as '0, 1, 2, 3').
282
            The default value is -1, which means the Op only run on IPU 0.
W
Weilong Wu 已提交
283
        stage(int, optional): Specify the computation order of the sharded model(such as '0, 1, 2, 3').
284
            The sharded model will be computed from small to large. The default value is -1,
J
jianghaicheng 已提交
285
            which means no pipelining computation order and run Ops in terms of graph.
286

J
jianghaicheng 已提交
287
    **Note**:
288 289 290
    Only if the enable_manual_shard=True, the 'index' is able to be set not -1. Please refer
    to :code:`paddle.static.IpuStrategy` .
    Only if the enable_pipelining=True, the 'stage' is able to be set not -1. Please refer
J
jianghaicheng 已提交
291
    to :code:`paddle.static.IpuStrategy` .
292
    A index is allowed to match none stage or a stage. A stage is only allowed to match a new or
J
jianghaicheng 已提交
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
    duplicated index.

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
            with paddle.static.ipu_shard_guard(index=0, stage=0):
                b = a + 1
            with paddle.static.ipu_shard_guard(index=1, stage=1):
                c = b + 1
            with paddle.static.ipu_shard_guard(index=0, stage=2):
                d = c + 1
    """
    if not core.is_compiled_with_ipu():
        raise ValueError(
            "Can not use this function since PaddlePaddle is not compiled with IPU"
        )

    global global_ipu_index
    global global_ipu_stage
    prev_ipu_index = global_ipu_index
    prev_ipu_stage = global_ipu_stage
    global_ipu_index = index
    global_ipu_stage = stage
    try:
        yield
    finally:
        global_ipu_index = prev_ipu_index
        global_ipu_stage = prev_ipu_stage


328 329 330 331 332 333 334 335 336
def set_ipu_shard(call_func, index=-1, stage=-1):
    """
    Shard the ipu with the given call function. Set every ops in call function to the given ipu sharding.

    Args:
        call_func(Layer|function): Specify the call function to be wrapped.
        index(int, optional): Specify which ipu the Tensor is computed on, (such as ‘0, 1, 2, 3’).
            The default value is -1, which means the Op only run on IPU 0.
        stage(int, optional): Specify the computation order of the sharded model(such as ‘0, 1, 2, 3’).
337
            The sharded model will be computed from small to large. The default value is -1,
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
            which means no pipelining computation order and run Ops in terms of graph.

    Returns:
        The wrapped call function.


    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='float32')
            relu = paddle.nn.ReLU()
            relu = paddle.static.set_ipu_shard(relu, index=1, stage=1)
            relu(a)
    """

    def decorate(func):

        def wrapper(*args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return func(*args, **kwargs)

        return wrapper

    from .dygraph.layers import Layer
    if not isinstance(call_func, Layer):
        if callable(call_func):
            return decorate(call_func)
        else:
            raise TypeError(
                "Unsupported type. Only accept paddle.nn.Layer or function.")

    # patch paddle.nn.Layer
    class BlockFn(type(call_func)):

        def __call__(self, *args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return super().__call__(*args, **kwargs)

    BlockFn.__name__ = type(call_func).__name__
    call_func.__class__ = BlockFn
    return call_func


385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
470 471
    min_version_to_check = min_version_split + zero_version[
        len(min_version_split):]
472 473 474

    if max_version is not None:
        max_version_split = max_version.split('.')
475 476
        max_version_to_check = max_version_split + zero_version[
            len(max_version_split):]
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


492
def _dygraph_not_support_(func):
493

494
    def __impl__(*args, **kwargs):
J
Jiabin Yang 已提交
495 496
        assert not _non_static_mode(
        ), "We don't support %s in dynamic graph mode" % func.__name__
497 498 499 500 501 502
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
503

504
    def __impl__(*args, **kwargs):
J
Jiabin Yang 已提交
505
        assert _non_static_mode(
506 507 508 509 510 511 512
        ), "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode." % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _static_only_(func):
513

514
    def __impl__(*args, **kwargs):
J
Jiabin Yang 已提交
515
        assert not _non_static_mode(
516
        ), "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode." % func.__name__
517 518 519 520 521
        return func(*args, **kwargs)

    return __impl__


522 523 524 525 526
def _set_pipeline_stage(stage):
    global _current_pipeline_stage
    _current_pipeline_stage = stage


527 528 529 530 531 532
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
533
# same base class.
534
def _fake_interface_only_(func):
535

536 537
    def __impl__(*args, **kwargs):
        raise AssertionError(
538 539 540 541 542
            "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n"
            "  1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n"
            "  2. If you are using `@paddle.jit.to_static`, you can turn off ProgramTranslator by calling `paddle.jit.ProgramTranslator().enable(False)`. "
            "If you have to translate dynamic graph to static graph, please use other API to replace '%s'."
            % (func.__name__, func.__name__))
543 544 545 546

    return __impl__


T
tangwei12 已提交
547 548
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
549 550 551 552
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
553

554 555 556 557 558 559 560 561 562 563 564 565 566
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
                DeprecationWarning)
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


567 568
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
569
static_only = wrap_decorator(_static_only_)
570
fake_interface_only = wrap_decorator(_fake_interface_only_)
571 572


L
lujun 已提交
573 574
def _dygraph_tracer():
    return _dygraph_tracer_
575

W
Wu Yi 已提交
576

577 578 579 580
def _global_flags():
    return _global_flags_


M
minqiyang 已提交
581
def _current_expected_place():
582 583 584
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
585 586 587 588 589
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
590
                _global_expected_place_ = core.CUDAPlace(_cuda_ids()[0])
591 592 593 594 595
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
596 597 598 599 600 601
        elif core.is_compiled_with_xpu():
            try:
                device_count = core.get_xpu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
602
                _global_expected_place_ = core.XPUPlace(_xpu_ids()[0])
603 604 605 606 607
            else:
                warnings.warn(
                    "You are using XPU version Paddle, but your XPU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
608 609 610 611 612 613
        elif core.is_compiled_with_mlu():
            try:
                device_count = core.get_mlu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
614
                _global_expected_place_ = core.MLUPlace(_mlu_ids()[0])
615 616 617 618 619
            else:
                warnings.warn(
                    "You are using MLU version Paddle, but your MLU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
    global _dygraph_tracer_
    if _dygraph_tracer_ is not None:
        _dygraph_tracer_._expected_place = place


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
J
Jiabin Yang 已提交
635
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
636 637


L
Leo Chen 已提交
638 639
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
640 641
    """
    convert VarBase tp numpy
T
tangwei12 已提交
642

643 644 645
    Args:
        var_base(VarBase) : the VarBase to convert
    Returns (np.ndarray): the np.ndarray contain the value of VarBase
L
Leo Chen 已提交
646 647 648 649 650 651 652 653 654
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
655
def _cpu_num():
656
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
657 658 659 660 661 662 663 664
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
665
        os.environ['CPU_NUM'] = str(1)
666
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
667 668 669 670 671 672 673 674 675 676
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
677 678


679 680 681 682 683 684 685 686 687
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_xpu_device_count())
    return device_ids


688 689 690 691 692 693 694 695 696
def _npu_ids():
    npus_env = os.getenv("FLAGS_selected_npus")
    if npus_env:
        device_ids = [int(s) for s in npus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_npu_device_count())
    return device_ids


697 698 699 700 701 702 703 704 705
def _mlu_ids():
    mlus_env = os.getenv("FLAGS_selected_mlus")
    if mlus_env:
        device_ids = [int(s) for s in mlus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_mlu_device_count())
    return device_ids


706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
def is_compiled_with_npu():
    """
    Whether this whl package can be used to run the model on NPU.

    Returns (bool): support npu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_npu = fluid.is_compiled_with_npu()
    """
    return core.is_compiled_with_npu()


736 737 738 739 740 741 742
def disable_signal_handler():
    """
    Reset signal handler registered by Paddle.

    Paddle installs signal handlers at C++ level to log debug information upon failing.
    However, conflicts can happen if another python module is making use of such signal.
    Such being the case, one may disblae paddle signal handler via this interface.
743

744 745 746 747 748 749
    Known frameworks that require disabling signal handler includes:
    1. TVM
    2. ADLIK

    Make sure you called paddle.disable_signal_handler() before using above mentioned frameworks.

750
    Returns: None
751 752 753 754 755 756 757 758 759 760

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_signal_handler()
    """
    core.disable_signal_handler()


761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
def is_compiled_with_cinn():
    """
    Whether this whl package can be used to run the model on CINN.

    Returns (bool): `True` if CINN is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
            support_cinn = paddle.device.is_compiled_with_cinn()
    """
    return core.is_compiled_with_cinn()


C
chengduo 已提交
776 777 778 779
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

780
    Returns (bool): `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
781 782 783 784

    Examples:
        .. code-block:: python

785
            import paddle
786
            support_gpu = paddle.device.is_compiled_with_cuda()
C
chengduo 已提交
787 788 789 790
    """
    return core.is_compiled_with_cuda()


791 792 793 794 795 796 797 798 799 800
def is_compiled_with_rocm():
    """
    Whether this whl package can be used to run the model on AMD or Hygon GPU(ROCm).

    Returns (bool): `True` if ROCm is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
801
            support_gpu = paddle.device.is_compiled_with_rocm()
802 803 804 805
    """
    return core.is_compiled_with_rocm()


S
sneaxiy 已提交
806
def cuda_places(device_ids=None):
L
lujun 已提交
807
    """
808
    Note:
809 810 811
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
812
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
813 814

    If :code:`device_ids` is None, environment variable of
815
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
816
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
817
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
818
    If :code:`FLAGS_selected_gpus` is not set, all visible
819
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
820 821

    If :code:`device_ids` is not None, it should be the device
822
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
823
    the returned list would be
C
Chen Weihang 已提交
824
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
825

826
    Parameters:
827
        device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
S
add doc  
sneaxiy 已提交
828 829

    Returns:
C
Chen Weihang 已提交
830
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
831 832

    Examples:
833

L
lujun 已提交
834 835
        .. code-block:: python

C
Chen Weihang 已提交
836 837
            import paddle
            import paddle.static as static
T
tangwei12 已提交
838

839
            # required: gpu
840

C
Chen Weihang 已提交
841 842 843
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
844 845

    """
S
sneaxiy 已提交
846 847 848
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
849
        device_ids = _cuda_ids()
S
sneaxiy 已提交
850 851 852 853 854
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


855 856 857 858
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
S
sunzhongkai588 已提交
859 860 861 862 863 864 865 866 867
        This function creates a list of :code:`paddle.XPUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_xpus` would be checked first. For example, if
        :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
        be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
        If :code:`FLAGS_selected_xpus` is not set, all visible
        xpu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
868
        the returned list would be
S
sunzhongkai588 已提交
869
        [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
870

871 872 873 874 875 876
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
S
sunzhongkai588 已提交
877

878 879
            # required: xpu

880 881
            import paddle
            import paddle.static as static
882

883 884 885 886 887 888 889 890 891 892 893 894
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
    assert core.is_compiled_with_xpu(), \
        "Not compiled with XPU"
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


895 896 897 898
def npu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_npus` environment variable to set the visible NPU device.
899

900 901 902 903 904 905 906 907 908
    This function creates a list of :code:`paddle.NPUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_npus` would be checked first. For example, if
    :code:`FLAGS_selected_npus=0,1,2`, the returned list would
    be [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
    If :code:`FLAGS_selected_npus` is not set, all visible
    npu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of NPUs. For example, if :code:`device_ids=[0,1,2]`,
909
    the returned list would be
910
    [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
911

912 913 914 915 916 917 918 919 920 921 922
    Parameters:
        device_ids (list or tuple of int, optional): list of NPU device ids.
    Returns:
        list of paddle.NPUPlace: Created NPU place list.
    Examples:
        .. code-block:: python

            # required: npu

            import paddle
            import paddle.static as static
923

924 925 926 927 928 929 930 931 932 933 934 935
            paddle.enable_static()
            npu_places = static.npu_places()
    """
    assert core.is_compiled_with_npu(), \
        "Not compiled with NPU"
    if device_ids is None:
        device_ids = _npu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.NPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
936
def cpu_places(device_count=None):
L
lujun 已提交
937
    """
C
Chen Weihang 已提交
938
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
939

S
add doc  
sneaxiy 已提交
940
    If :code:`device_count` is None, the device count would
941
    be determined by environment variable :code:`CPU_NUM`.
C
chengduo 已提交
942 943
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
944 945
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
946

947 948
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
949 950

    Returns:
C
Chen Weihang 已提交
951
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
952 953

    Examples:
954

L
lujun 已提交
955 956
        .. code-block:: python

C
Chen Weihang 已提交
957 958
            import paddle
            import paddle.static as static
T
tangwei12 已提交
959

C
Chen Weihang 已提交
960 961 962
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
963 964
    """

S
sneaxiy 已提交
965 966 967 968 969 970
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
971
    """
972
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
973 974

    If :code:`device_count` is None, the device count would
975
    be determined by environment variable :code:`CPU_NUM`.
976 977 978 979
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
980

981 982
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
983 984

    Returns:
985
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
986 987 988 989

    Examples:
        .. code-block:: python

990
            import paddle.fluid as fluid
L
lujun 已提交
991 992 993 994 995
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
996 997 998
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
999 1000
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
1001 1002


1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
def mlu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_mlus` environment variable to set the visible MLU device.
        This function creates a list of :code:`paddle.device.MLUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_mlus` would be checked first. For example, if
        :code:`FLAGS_selected_mlus=0,1,2`, the returned list would
        be [paddle.device.MLUPlace(0), paddle.device.MLUPlace(1), paddle.device.MLUPlace(2)].
        If :code:`FLAGS_selected_mlus` is not set, all visible
        mlu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of MLUs. For example, if :code:`device_ids=[0,1,2]`,
        the returned list would be
        [paddle.device.MLUPlace(0), paddle.device.MLUPlace(1), paddle.device.MLUPlace(2)].

    Parameters:
        device_ids (list or tuple of int, optional): list of MLU device ids.

    Returns:
        list of paddle.device.MLUPlace: Created MLU place list.

    Examples:
        .. code-block:: python

            # required: mlu

            import paddle
            import paddle.static as static

            paddle.enable_static()
            mlu_places = static.mlu_places()
    """
    assert core.is_compiled_with_mlu(), \
        "Not compiled with MLU"
    if device_ids is None:
        device_ids = _mlu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.MLUPlace(dev_id) for dev_id in device_ids]


1045
class NameScope(object):
1046

1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
1072
@signature_safe_contextmanager
1073 1074
def name_scope(prefix=None):
    """
1075

1076
    Generate hierarchical name prefix for the operators in Static Graph.
1077

1078
    Note:
T
Tao Luo 已提交
1079 1080
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
1081
        Don't use it in dygraph, since it will cause memory leak.
1082 1083

    Args:
T
Tao Luo 已提交
1084
        prefix(str, optional): prefix. Default is none.
1085 1086

    Examples:
1087

1088
        .. code-block:: python
T
Tink_Y 已提交
1089

1090 1091 1092
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
1093
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
1094
             b = a + 1
1095
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
1096
                c = b * 1
1097
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
1098
                d = c / 1
1099 1100 1101
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
1102 1103
                g = f - 1

1104
          # Op are created in the default main program.
1105
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
1121 1122
    """
    # TODO(panyx0718): Only [0-9a-z].
1123
    # in dygraph we don't need namescope since it will cause mem leak
J
Jiabin Yang 已提交
1124
    if _non_static_mode():
L
Leo Chen 已提交
1125 1126
        yield
    else:
T
tianshuo78520a 已提交
1127
        assert prefix, "namescope prefix can not be empty."
1128 1129
        global _name_scope
        _name_scope = _name_scope.child(prefix)
1130 1131 1132 1133
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
1146 1147 1148
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
1149 1150 1151 1152


def grad_var_name(var_name):
    """
1153 1154
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
1155 1156 1157
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
1158

1159
def convert_np_dtype_to_dtype_(np_dtype):
1160
    """
1161
    Convert the data type in numpy to the data type in Paddle.
1162

1163
    Args:
1164 1165
        np_dtype (np.dtype|str): The data type in numpy or valid data type
            string.
1166

1167
    Returns:
1168
        core.VarDesc.VarType: The data type in Paddle.
1169 1170

    """
1171 1172
    # Convert the data type string to numpy data type.
    if isinstance(np_dtype, str) and np_dtype == "bfloat16":
1173 1174 1175
        dtype = np.uint16
    else:
        dtype = np.dtype(np_dtype)
1176

1177
    if dtype == np.float32:
1178
        return core.VarDesc.VarType.FP32
1179
    elif dtype == np.float64:
1180
        return core.VarDesc.VarType.FP64
1181
    elif dtype == np.float16:
1182
        return core.VarDesc.VarType.FP16
1183
    elif dtype == np.int32:
1184
        return core.VarDesc.VarType.INT32
1185
    elif dtype == np.int16:
1186
        return core.VarDesc.VarType.INT16
1187
    elif dtype == np.int64:
1188
        return core.VarDesc.VarType.INT64
1189
    elif dtype == np.bool_:
1190
        return core.VarDesc.VarType.BOOL
1191
    elif dtype == np.uint16:
1192 1193 1194
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
1195 1196
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
1197 1198
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
1199 1200 1201 1202
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
1203
    else:
M
minqiyang 已提交
1204
        raise ValueError("Not supported numpy dtype %s" % dtype)
1205 1206 1207


def dtype_is_floating(dtype):
1208 1209 1210
    """
    Check the data type is floating or not.
    Args:
1211
        dtype(np.dtype|core.VarDesc.VarType): data type.
1212 1213 1214 1215 1216
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
1217
    if not isinstance(dtype, core.VarDesc.VarType):
1218 1219
        dtype = convert_np_dtype_to_dtype_(dtype)

1220 1221 1222 1223
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
1224 1225


Y
Yang Yang(Tony) 已提交
1226
def _debug_string_(proto, throw_on_error=True):
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
1238
    error_fields = list()
Y
Yang Yang(Tony) 已提交
1239
    if not proto.IsInitialized(error_fields) and throw_on_error:
1240 1241 1242
        raise ValueError(
            "{0} are not initialized.\nThe message is {1}:\n".format(
                error_fields, proto))
Y
Yu Yang 已提交
1243 1244 1245
    return proto.__str__()


1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

J
Jiabin Yang 已提交
1256
    if _in_eager_mode_:
1257
        eager_tensor = core.eager.Tensor(
1258
            dtype if dtype else core.VarDesc.VarType.FP32,
1259 1260 1261
            list(shape) if shape else [], name,
            type if type else core.VarDesc.VarType.LOD_TENSOR,
            True if persistable else False)
1262 1263
        eager_tensor.retain_grads()
        return eager_tensor
J
Jiabin Yang 已提交
1264 1265
    else:
        return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
1266 1267 1268
                            list(shape) if shape else [], name,
                            type if type else core.VarDesc.VarType.LOD_TENSOR,
                            True if persistable else False)
1269 1270


1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
def _all_is_type(vals, expected_type):
    """
    Return True if type of each element is expected_type.

    NOTE: BuiltIn all() will always return True if vals is empty.
    """
    assert isinstance(vals, (list, tuple))
    if not vals: return False
    return all(isinstance(v, expected_type) for v in vals)


1282
class VariableMetaClass(type):
1283

1284 1285 1286 1287
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1288
            return issubclass(t, core.eager.Tensor)
1289
        else:
J
Jiabin Yang 已提交
1290 1291
            if _in_legacy_dygraph():
                return issubclass(t, core.VarBase)
1292 1293 1294 1295
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
1296

1297 1298 1299 1300
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1301
            return issubclass(t, EagerParamBase)
1302
        else:
J
Jiabin Yang 已提交
1303 1304
            if _in_legacy_dygraph():
                return issubclass(t, ParamBase)
1305 1306 1307 1308
            return issubclass(t, Parameter)


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
1309
class Variable(object):
1310
    """
J
Jiabin Yang 已提交
1311
    **Notes**:
1312
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
1313

1314 1315
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
1316 1317 1318
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
1319
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
1320 1321
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
1322

1323
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
1324
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
1325

T
tianshuo78520a 已提交
1326
    Most of a Variable's member variables can be set to be None. It mean
1327
    it is not available or will be specified later.
1328

1329
    Examples:
1330 1331
        In Static Graph Mode:

1332 1333
        .. code-block:: python

1334
            import paddle.fluid as fluid
1335
            cur_program = fluid.Program()
1336 1337 1338 1339
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
S
sunzhongkai588 已提交
1340

J
Jiabin Yang 已提交
1341
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
1342 1343 1344 1345 1346 1347 1348 1349 1350

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

1351 1352
    """

Y
Yu Yang 已提交
1353 1354
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1355
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
1356 1357 1358 1359
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
1360
                 capacity=None,
Q
QI JUN 已提交
1361
                 persistable=None,
F
fengjiayi 已提交
1362
                 error_clip=None,
Y
Yu Yang 已提交
1363
                 stop_gradient=False,
F
fengjiayi 已提交
1364
                 is_data=False,
H
Huihuang Zheng 已提交
1365
                 need_check_feed=False,
H
hong 已提交
1366
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
1367
                 **kwargs):
Y
Yu Yang 已提交
1368 1369
        self.block = block
        if name is None:
Y
Yu Yang 已提交
1370
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
1371

Y
Yu Yang 已提交
1372
        if dtype is not None:
1373
            if not isinstance(dtype, core.VarDesc.VarType):
1374
                dtype = convert_np_dtype_to_dtype_(dtype)
1375

S
Steffy-zxf 已提交
1376 1377 1378 1379
        if dtype == core.VarDesc.VarType.STRINGS:
            type = core.VarDesc.VarType.STRINGS
            lod_level = None

1380 1381 1382
        if type == core.VarDesc.VarType.SPARSE_COO:
            lod_level = None

H
hong 已提交
1383 1384
        self.belong_to_optimizer = belong_to_optimizer

1385 1386 1387 1388 1389
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
1390

1391 1392 1393
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
1394

1395 1396 1397
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
L
Leo Chen 已提交
1398 1399
            raise ValueError("Variable '{0}' has been created before. The "
                             "previous type is {1}, the new type is {2}. They"
1400 1401
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
1402

1403
        if shape is not None:
1404
            if is_new_var:
1405 1406 1407 1408 1409 1410
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
1411 1412
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
1413 1414 1415 1416 1417 1418 1419
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
L
Leo Chen 已提交
1420 1421
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous data type is {1}, the new "
1422 1423 1424 1425 1426 1427 1428 1429 1430
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
L
Leo Chen 已提交
1431 1432
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous lod_level is {1}, the new "
1433 1434 1435 1436 1437 1438 1439 1440 1441
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
1442 1443
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
1444 1445
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
1446

1447 1448
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1449

1450 1451 1452 1453 1454 1455 1456
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1457

1458 1459
        self.block.vars[name] = self
        self.op = None
1460
        self.stop_gradient = stop_gradient
1461
        self.is_data = is_data
Y
Yu Yang 已提交
1462

1463 1464 1465
    def detach(self):
        """
        Returns a new Variable, detached from the current graph.
1466 1467
        It will share data with origin Variable and without tensor copy.
        In addition, the detached Variable doesn't provide gradient propagation.
1468

1469
        Returns:
J
Jiabin Yang 已提交
1470
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
1471 1472 1473 1474

        Examples:
            .. code-block:: python

1475
                import paddle
1476

1477 1478 1479 1480
                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
1481

1482 1483
                # create a detached Variable
                y = x.detach()
1484
        """
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496

        assert self.type == core.VarDesc.VarType.SELECTED_ROWS or \
            self.type == core.VarDesc.VarType.LOD_TENSOR, \
            "only support a variable with SELECTED_ROWS or LOD_TENSOR to be detached"

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key("detach_" + self.name),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=True)

1497 1498 1499
        self.block.append_op(type='share_data',
                             inputs={'X': [self]},
                             outputs={'Out': [output]})
1500
        return output
1501

1502
    @fake_interface_only
1503
    def numpy(self):
1504
        """
J
Jiabin Yang 已提交
1505
        **Notes**:
T
tianshuo78520a 已提交
1506
            **This API is ONLY available in Dygraph mode**
1507

J
Jiabin Yang 已提交
1508
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1509 1510 1511 1512 1513

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1514
            ndarray: dtype is same as current Variable
1515 1516 1517 1518 1519 1520

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1521
                from paddle.fluid.dygraph import Linear
1522 1523 1524 1525
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1526
                    linear = Linear(32, 64)
1527
                    data = to_variable(data)
1528
                    x = linear(data)
1529 1530 1531
                    print(x.numpy())

        """
1532
        pass
1533

1534
    @fake_interface_only
1535
    def backward(self, retain_graph=False):
1536
        """
J
Jiabin Yang 已提交
1537
        **Notes**:
T
tianshuo78520a 已提交
1538
            **This API is ONLY available in Dygraph mode**
1539

1540
        Run backward of current Graph which starts from current Tensor.
1541

J
Jiabin Yang 已提交
1542
        Args:
1543 1544 1545 1546
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1547

J
Jiabin Yang 已提交
1548 1549
        Returns:
            NoneType: None
1550 1551 1552 1553 1554

        Examples:
            .. code-block:: python

                import numpy as np
1555 1556
                import paddle
                paddle.disable_static()
1557 1558

                x = np.ones([2, 2], np.float32)
1559 1560 1561 1562 1563 1564 1565
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1566 1567
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1568
                loss.backward()
1569 1570

        """
1571
        pass
1572

1573
    @fake_interface_only
1574
    def gradient(self):
1575
        """
J
Jiabin Yang 已提交
1576
        **Notes**:
T
tianshuo78520a 已提交
1577
            **This API is ONLY available in Dygraph mode**
1578 1579 1580

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1581
        Returns:
1582
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1583 1584 1585 1586 1587 1588 1589

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1590
                # example1: return ndarray
1591 1592 1593 1594 1595 1596 1597 1598 1599
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1600
                    loss2.backward()
1601 1602
                    print(loss2.gradient())

1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1616
        """
1617
        pass
1618

1619
    @fake_interface_only
1620
    def clear_gradient(self):
1621
        """
J
Jiabin Yang 已提交
1622
        **Notes**:
T
tianshuo78520a 已提交
1623
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1624 1625

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1626

J
Jiabin Yang 已提交
1627
        Clear  (set to ``0`` ) the Gradient of Current Variable
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1646
                    loss2.backward()
1647 1648 1649 1650 1651
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1652
        pass
X
Xin Pan 已提交
1653

1654 1655 1656 1657
    @fake_interface_only
    def register_hook(self, hook):
        pass

1658
    def __str__(self):
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1675 1676
                import paddle
                import paddle.static as static
1677

1678 1679 1680
                paddle.enable_static()

                cur_program = static.Program()
1681 1682 1683 1684 1685 1686
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1687 1688
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1689
        if self.type == core.VarDesc.VarType.SELECTED_ROWS or self.type == core.VarDesc.VarType.LOD_TENSOR:
1690 1691
            dtype_str = str(self.dtype).split('.')[1]
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".\
T
tangwei12 已提交
1692 1693
                format(name=self.name, type=type_str, shape=self.shape,
                       dtype=dtype_str, stop_gradient=self.stop_gradient)
1694
        else:
1695 1696
            var_str = "{name} : {type})".\
                format(name=self.name, type=type_str)
1697

1698
        if self.is_parameter:
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

1709
        from paddle.distributed.auto_parallel.dist_context import get_default_distributed_context
1710
        dist_context = get_default_distributed_context()
1711 1712
        dist_tensor = dist_context.get_dist_tensor_for_program(self)
        if dist_tensor is not None:
1713 1714
            var_str += ", {name} = {value}".format(name="dist_attr",
                                                   value=dist_tensor)
1715

1716
        return var_str
Y
Yang Yang(Tony) 已提交
1717

F
update  
fengjiayi 已提交
1718
    def to_string(self, throw_on_error, with_details=False):
1719 1720 1721
        """
        Get debug string.

J
Jiabin Yang 已提交
1722 1723 1724 1725 1726
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1727

1728 1729
        Returns:
            str: The debug string.
1730 1731 1732 1733 1734

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1735
                import paddle
1736

1737
                paddle.enable_static()
1738 1739 1740 1741 1742
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1743
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1744
                print("=============with detail===============")
1745
                print(new_variable.to_string(True, True))
1746
        """
1747 1748
        assert isinstance(throw_on_error, bool) and isinstance(
            with_details, bool)
1749
        protostr = self.desc.serialize_to_string()
1750
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1751 1752
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
1753
            additional_attr = ("error_clip", )
F
update  
fengjiayi 已提交
1754
            for attr_name in additional_attr:
1755 1756 1757
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1758
        return res_str
1759 1760 1761

    __repr__ = __str__

1762 1763 1764
    def element_size(self):
        """
        Returns the size in bytes of an element in the Tensor.
1765

1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
        Examples:
          .. code-block:: python

            import paddle
            paddle.enable_static()

            x = paddle.static.data(name='x1', shape=[3, 2], dtype='bool')
            x.element_size() # 1

            x = paddle.static.data(name='x2', shape=[3, 2], dtype='int16')
            x.element_size() # 2

            x = paddle.static.data(name='x3', shape=[3, 2], dtype='float16')
            x.element_size() # 2

            x = paddle.static.data(name='x4', shape=[3, 2], dtype='float32')
            x.element_size() # 4

            x = paddle.static.data(name='x5', shape=[3, 2], dtype='float64')
            x.element_size() # 8
        """
        return self.desc.element_size()

1789
    @property
1790
    def stop_gradient(self):
J
Jiabin Yang 已提交
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1806 1807
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1808 1809 1810
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1811 1812
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1813 1814 1815 1816
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1817
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1818 1819
                assert (out1.gradient() == 0).all()
        """
1820
        return self.desc.stop_gradient()
1821

1822 1823
    @stop_gradient.setter
    def stop_gradient(self, s):
1824
        self.desc.set_stop_gradient(s)
1825

1826 1827
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1849
        return self.desc.persistable()
1850

Y
Yu Yang 已提交
1851 1852
    @persistable.setter
    def persistable(self, p):
1853
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1854

1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
    @property
    def is_parameter(self):
        """
        Indicating if current Variable is a Parameter

        Examples:
          .. code-block:: python

            import paddle
            new_parameter = paddle.static.create_parameter(name="X",
                                                shape=[10, 23, 48],
                                                dtype='float32')
            if new_parameter.is_parameter:
                print("Current var is a Parameter")
            else:
                print("Current var is not a Parameter")

            # Current var is a Parameter
        """
        return self.desc.is_parameter()

    @is_parameter.setter
    def is_parameter(self, p):
        self.desc.set_is_parameter(p)

Y
Yu Yang 已提交
1880 1881
    @property
    def name(self):
J
Jiabin Yang 已提交
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1898
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1899

1900 1901 1902 1903 1904 1905
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
S
sunzhongkai588 已提交
1906 1907
        gradient Variable from a naming convention but doesn't guarantee
        the gradient exists.**
T
tangwei12 已提交
1908

1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1920 1921
    @name.setter
    def name(self, new_name):
1922
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1923

Y
Yu Yang 已提交
1924 1925
    @property
    def shape(self):
J
Jiabin Yang 已提交
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1943
        # convert to tuple, make it as same as numpy API.
1944
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1945 1946

    @property
F
fengjiayi 已提交
1947
    def dtype(self):
J
Jiabin Yang 已提交
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1964
        return self.desc.dtype()
Y
Yu Yang 已提交
1965 1966 1967

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

1981
            import paddle
J
Jiabin Yang 已提交
1982
            import paddle.fluid as fluid
1983 1984

            paddle.enable_static()
J
Jiabin Yang 已提交
1985 1986 1987 1988 1989 1990 1991
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1992 1993
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")
1994 1995
        if self.type == core.VarDesc.VarType.STRINGS:
            return None
1996
        return self.desc.lod_level()
Y
Yu Yang 已提交
1997

Y
Yu Yang 已提交
1998 1999
    @property
    def type(self):
J
Jiabin Yang 已提交
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
2016
        return self.desc.type()
Y
Yu Yang 已提交
2017

2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
    @property
    def T(self):
        """
        Permute current Variable with its dimensions reversed.

        If `n` is the dimensions of `x` , `x.T` is equivalent to `x.transpose([n-1, n-2, ..., 0])`.

        Examples:

            .. code-block:: python

                import paddle
                paddle.enable_static()

                x = paddle.ones(shape=[2, 3, 5])
                x_T = x.T

                exe = paddle.static.Executor()
                x_T_np = exe.run(paddle.static.default_main_program(), fetch_list=[x_T])[0]
                print(x_T_np.shape)
                # (5, 3, 2)
        """
        if len(self.shape) == 1:
            return self
        perm = []
        for i in range(len(self.shape)):
            perm.insert(0, i)

        out = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=self.type,
            persistable=False,
            stop_gradient=False)
        input_shape = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=False)

2059 2060 2061 2062 2063 2064 2065
        self.block.append_op(type='transpose2',
                             inputs={'X': [self]},
                             outputs={
                                 'Out': [out],
                                 'XShape': [input_shape]
                             },
                             attrs={'axis': perm})
2066 2067
        return out

2068 2069 2070
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
2071
        Variable. It remains in the current graph, that is, the cloned Variable
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
            Variable: The cloned Variable.

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=self.stop_gradient)

2098 2099 2100
        self.block.append_op(type='assign',
                             inputs={'X': [self]},
                             outputs={'Out': [output]})
2101 2102
        return output

W
Wu Yi 已提交
2103
    def _set_error_clip(self, error_clip):
2104 2105 2106 2107 2108 2109 2110 2111 2112
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
2113 2114
        self.error_clip = error_clip

2115 2116 2117 2118 2119 2120 2121 2122
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

2123
        Returns:
2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

2137
        Returns:
2138 2139 2140 2141 2142 2143
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
2155
            raise ValueError("slice step can not be zero")
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
2166 2167
            start = max(start +
                        length, lower) if start < 0 else min(start, upper)
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
2231
    def _cloneVar(self, copy=False):
2232 2233
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
2234 2235
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
2236 2237 2238 2239
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
2240
        new_var = self._cloneVar()
2241 2242 2243 2244 2245 2246 2247 2248
        self.block.append_op(type="slice",
                             inputs={'Input': [self]},
                             outputs={'Out': [new_var]},
                             attrs={
                                 'axes': axes,
                                 'starts': starts,
                                 'ends': ends
                             })
2249 2250 2251
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
2252
        new_var = self._cloneVar()
2253 2254 2255 2256 2257 2258
        self.block.append_op(type="concat",
                             inputs={'X': inputs},
                             outputs={'Out': [new_var]},
                             attrs={
                                 'axis': axis,
                             })
2259 2260 2261 2262 2263
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
2264
                return self._cloneVar(True)
2265 2266 2267 2268 2269 2270 2271
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
2272 2273
                        vars.append(self._sliceVar([axis], [start],
                                                   [start + 1]))
2274 2275 2276
                        start += step
                else:
                    while start > stop:
2277 2278
                        vars.append(self._sliceVar([axis], [start],
                                                   [start + 1]))
2279 2280 2281 2282
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
2283
                return self._cloneVar(True)
2284
            index = int(item)
2285
            if (index > 0 and index >= self.shape[axis]) \
2286 2287 2288 2289 2290 2291 2292
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
2293
        return _getitem_impl_(self, item)
2294

2295
    def __setitem__(self, item, value):
2296
        return _setitem_impl_(self, item, value)
2297

2298 2299
    def get_value(self, scope=None):
        """
2300
        Get the value of variable in given scope.
2301 2302

        Args:
2303
            scope(Scope, optional) : If `scope` is None, it will be set to global scope
2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            Tensor: the value in given scope.

        Examples:
            .. code-block:: python

                import paddle
2314
                import paddle.static as static
2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
2339 2340
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file.
2341 2342 2343 2344
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2345 2346
                "`scope` should be None or `paddle.static.Scope` type, but received {}."
                .format(type(scope)))
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
2359
        Set the value to the tensor in given scope.
2360 2361 2362

        Args:
            value(Tensor/ndarray) : The value to be set.
2363
            scope(Scope, optional) : If `scope` is None, it will be set to global scope
2364 2365 2366 2367 2368
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
2369

2370 2371 2372 2373
        Examples:
            .. code-block:: python

                import paddle
2374
                import paddle.static as static
2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        '''

        # The 'framework' is a low-level module, and 'executor'
2401
        # can not be imported at the begainning of this file.
2402 2403 2404 2405 2406
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
2407 2408
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}."
                .format(type(value)))
2409 2410 2411

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2412 2413
                "`scope` should be None or `paddle.static.Scope` type, but received {}."
                .format(type(scope)))
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
                    "{} expected a shape {}, but the received shape is {}.".
                    format(self.name, list(t.shape()), list(value_shape)))

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
2444 2445 2446 2447
        elif p.is_npu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.NPUPlace(p.npu_device_id())
2448 2449 2450 2451
        elif p.is_mlu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.MLUPlace(p.mlu_device_id())
2452 2453 2454 2455 2456 2457 2458
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483
    def size(self):
        """
        Returns the number of elements for current Variable, which is a int64 Variable with shape [1]

        Returns:
            Variable: the number of elements for current Variable

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])

                # get the number of elements of the Variable
                y = x.size()
        """

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_size"),
            dtype=core.VarDesc.VarType.INT64)

2484 2485 2486
        self.block.append_op(type='size',
                             inputs={'Input': [self]},
                             outputs={'Out': [output]})
2487 2488
        return output

2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
    def _set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _has_attr(self, name):
        """
        Whether this Variable has the attribute with the name `name` or not.

        Args:
            name(str): the attribute name.

        Returns:
            bool: True if has this attribute.
        """
        return self.desc.has_attr(name)

    def _remove_attr(self, name):
        self.desc.remove_attr(name)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self.desc._set_attr(name, val)

    @property
    def attr_names(self):
        """Get the names of all attributes defined."""
        return self.desc.attr_names()

    def _get_attr(self, name):
        """
        Get the attribute by name.

        Args:
            name(str): the attribute name.

        Returns:
            int|str|list: The attribute value. The return value
            can be any valid attribute type.
        """
        return self.desc.attr(name)

    @property
2543
    def dist_attr(self):
2544
        """
2545
        Get distributed attribute of this Variable.
2546
        """
2547
        return self.desc.dist_attr
2548

2549 2550
    @dist_attr.setter
    def dist_attr(self, dist_attr):
2551
        """
2552
        Set distributed attribute of this Variable.
2553
        """
2554
        self.desc.dist_attr = dist_attr
2555

Y
Yu Yang 已提交
2556

F
fengjiayi 已提交
2557 2558 2559
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
2560

2561 2562
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
2563 2564 2565 2566
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
2567
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
2568 2569 2570 2571 2572
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
2573 2574 2575 2576
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
2577 2578 2579 2580 2581 2582 2583 2584 2585
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
2586
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
2587 2588 2589 2590 2591 2592
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
2593 2594 2595 2596 2597 2598 2599 2600
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
2601 2602
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
2603 2604
        return self.op_proto_map[type]

2605 2606
    def update_op_proto(self):
        op_protos = get_all_op_protos()
2607
        custom_op_names = []
2608 2609 2610
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
2611 2612 2613
                custom_op_names.append(proto.type)

        return custom_op_names
2614

2615 2616 2617 2618
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
2619
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
2620
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
2621 2622
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
2623 2624
        }

F
fengjiayi 已提交
2625

X
Xin Pan 已提交
2626
class Operator(object):
2627
    """
2628 2629 2630 2631 2632 2633 2634
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
2635
        type(str): The type of operator. Default None.
2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
2656
        Block.append_op or Block._prepend_op instead.
2657 2658 2659 2660

    Examples:
        .. code-block:: python

2661
            import paddle.fluid as fluid
2662
            cur_program = fluid.Program()
2663 2664 2665 2666 2667
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
2668
    """
2669
    OP_WITHOUT_KERNEL_SET = {
2670 2671
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
2672
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
2673 2674
        'gen_bkcl_id', 'c_gen_bkcl_id', 'gen_nccl_id', 'c_gen_nccl_id',
        'c_comm_init', 'c_sync_calc_stream', 'c_sync_comm_stream',
W
WangXi 已提交
2675
        'queue_generator', 'dequeue', 'enqueue', 'heter_listen_and_serv',
B
Baibaifan 已提交
2676
        'c_wait_comm', 'c_wait_compute', 'c_gen_hccl_id', 'c_comm_init_hccl',
2677
        'copy_cross_scope', 'c_gen_cncl_id'
2678
    }
2679

Y
Yu Yang 已提交
2680 2681
    def __init__(self,
                 block,
Y
Yu Yang 已提交
2682
                 desc,
Y
Yu Yang 已提交
2683 2684 2685
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
2686
                 attrs=None):
2687 2688 2689 2690 2691 2692 2693 2694 2695 2696
        # read attr type index from op proto to avoid unexpected type
        # conversions, e.g. narrowing conversion like double to float
        try:
            proto = OpProtoHolder.instance().get_op_proto(type)
            self._attr_types = {}
            for attr in proto.attrs:
                self._attr_types[attr.name] = attr.type
        except ValueError:
            pass

J
Jiabin Yang 已提交
2697
        if _non_static_mode():
2698 2699
            if type is None:
                raise ValueError(
2700
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
2701
            self._type = type
M
minqiyang 已提交
2702
            self.attrs = attrs if attrs else {}
2703 2704 2705 2706 2707 2708 2709 2710 2711 2712
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

2713 2714 2715
            # attr for static mode cuda graph
            self._cuda_graph_attr = _current_cuda_graph_mode

2716 2717 2718
            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
2719 2720
                op_attrs[
                    op_maker.kOpRoleAttrName()] = self.block.program._op_role
2721 2722

            role_var_name = op_maker.kOpRoleVarAttrName()
2723 2724
            if len(self.block.program._op_role_var
                   ) != 0 and role_var_name not in op_attrs:
2725
                op_attrs[role_var_name] = self.block.program._op_role_var
2726 2727 2728 2729 2730

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
2731 2732 2733 2734 2735
                # NOTE(Aurelius84): prog.clone() will lead that var.op is always None,
                # we add this to fix the problem.
                for arg in self.desc.output_arg_names():
                    if block.has_var(arg) and block.var(arg).op is None:
                        block.var(arg).op = self
2736 2737 2738
                return
            if type is None:
                raise ValueError(
2739
                    "`type` to initialized an Operator can not be None.")
2740 2741
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2742 2743 2744
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
2745 2746 2747 2748
                        '  File "{}", line {}, in {}'.format(
                            frame[0], frame[1], frame[2]))
                    op_attrs[callstack_var_name].append('    {}'.format(
                        frame[3]))
2749 2750 2751 2752 2753 2754 2755

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
2767
                    if (type == 'less_than' and op_attrs['force_cpu'] != None
2768 2769 2770 2771 2772
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)
2773 2774 2775 2776 2777
            if _current_pipeline_stage is not None:
                pipeline_attr_name = 'pipeline_stage' + core.kAutoParallelSuffix(
                )
                self._update_desc_attr(pipeline_attr_name,
                                       _current_pipeline_stage)
2778

2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
2792
                        if not isinstance(in_args, (list, tuple)):
2793 2794 2795 2796 2797 2798
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
2799
                        for index, arg in enumerate(in_args):
2800 2801 2802 2803
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
2804
                            elif isinstance(arg, (Variable, core.VarBase)):
2805
                                in_arg_names.append(cpt.to_text(arg.name))
2806
                            else:
2807 2808 2809 2810
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
2811 2812
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
2813 2814 2815 2816 2817 2818 2819 2820 2821
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
2822 2823 2824 2825
                        raise ValueError(
                            ("Incorrect setting for output(s) of "
                             "operator \"%s\", should set: [%s].") %
                            (type, m.name))
2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
2838 2839 2840 2841
                        if isinstance(arg, six.string_types):
                            out_arg_names.append(arg)
                        else:
                            out_arg_names.append(cpt.to_text(arg.name))
2842
                        # TODO(minqiyang): could we remove variable's op in static mode?
J
Jiabin Yang 已提交
2843
                        if not _non_static_mode():
2844 2845 2846 2847
                            if isinstance(arg, six.string_types):
                                block.var(arg).op = self
                            else:
                                arg.op = self
2848 2849
                    self.desc.set_output(out_proto.name, out_arg_names)

2850
            extra_attrs_map = core.get_op_extra_attrs(type)
2851 2852 2853 2854 2855
            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
2856 2857
                    if (attr_name
                            not in op_attrs) or (op_attrs[attr_name] is None):
2858 2859 2860
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)
2861 2862 2863 2864 2865 2866 2867
                for attr_name in extra_attrs_map.keys():
                    if (attr_name
                            not in op_attrs) or (op_attrs[attr_name] is None):
                        self._update_desc_attr(attr_name,
                                               extra_attrs_map[attr_name])
                    else:
                        self._update_desc_attr(attr_name, op_attrs[attr_name])
2868

J
jianghaicheng 已提交
2869 2870
            # proto.attrs doesn't include ipu_index
            if core.is_compiled_with_ipu():
2871
                if global_ipu_index >= 0:
J
jianghaicheng 已提交
2872 2873
                    self._update_desc_attr(ipu_index_attr_name,
                                           global_ipu_index)
2874
                if global_ipu_stage >= 0:
J
jianghaicheng 已提交
2875 2876 2877
                    self._update_desc_attr(ipu_stage_attr_name,
                                           global_ipu_stage)

2878 2879 2880 2881 2882
            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
2883
    def _has_kernel(self, op_type):
2884 2885
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
2886
    def to_string(self, throw_on_error):
2887
        """
2888 2889
        Get debug string.

2890
        Args:
2891 2892
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
2893

2894 2895
        Returns:
            str: The debug string.
2896 2897

        """
2898
        protostr = self.desc.serialize_to_string()
2899
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
2900 2901
        return _debug_string_(proto, throw_on_error)

2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
2934
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961
            type(skip_op_callstack))
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
            attr_type = self.desc.attr_type(name, True)
            if attr_type == core.AttrType.VAR:
                attr_var_name = self.desc.attr(name, True).name()
                a = "{name} = Var['{value}']".format(name=name,
                                                     type=attr_type,
                                                     value=attr_var_name)
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.VARS:
                attr_var_names = [
                    "'%s'" % var.name() for var in self.desc.attr(name, True)
                ]
                a = "{name} = Vars[{value}]".format(
                    name=name, type=attr_type, value=','.join(attr_var_names))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
                    name=name, type=attr_type, value=self._block_attr_id(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
                    name=name,
                    type=attr_type,
                    value=self._blocks_attr_ids(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

3002
            # it is bytes of serialized protobuf
3003 3004 3005 3006
            if is_compiled_with_cinn(
            ) and self.type == 'cinn_launch' and name == 'compilation_key':
                key = self.desc.attr(name)
                v = core.get_serialize_comile_key(key)
3007 3008 3009 3010 3011 3012 3013 3014 3015
                prog = Program()
                prog = prog.parse_from_string(v)
                s = prog._to_readable_code()
                lines = s.split('\n')
                value = '\n'.join(['      ' + line for line in lines])
                value = '\n' + value
            else:
                value = self.desc.attr(name)

3016 3017 3018
            a = "{name} = {value}".format(name=name,
                                          type=attr_type,
                                          value=value)
3019

3020 3021 3022 3023
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

3024
        from paddle.distributed.auto_parallel.dist_context import get_default_distributed_context
3025
        dist_context = get_default_distributed_context()
3026 3027
        dist_op = dist_context.get_dist_op_for_program(self)
        if dist_op is not None:
3028 3029
            attrs_str += ", {name} = {value}".format(name="dist_attr",
                                                     value=dist_op)
3030

3031 3032
        if outputs_str != "{}":
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".\
T
tangwei12 已提交
3033 3034
                format(outputs=outputs_str, op_type=self.type,
                       inputs=inputs_str, attrs=attrs_str)
3035 3036 3037 3038 3039
        else:
            op_str = "{op_type}(inputs={inputs}, {attrs})".\
                format(op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        return op_str

Y
Yang Yang(Tony) 已提交
3040
    def __str__(self):
3041
        return self._to_readable_code()
3042 3043 3044

    __repr__ = __str__

F
fengjiayi 已提交
3045 3046
    @property
    def type(self):
3047
        return self.desc.type()
F
fengjiayi 已提交
3048 3049

    def input(self, name):
3050
        r"""
3051
        Get the input arguments according to the input parameter name.
3052

3053 3054
        Args:
            name(str): The input parameter name.
3055

3056 3057 3058
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
3059
        """
F
fengjiayi 已提交
3060 3061
        return self.desc.input(name)

W
Wu Yi 已提交
3062
    def _rename_input(self, old_name, new_name):
3063 3064 3065 3066 3067 3068 3069 3070 3071 3072
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
3073
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
3074

W
Wu Yi 已提交
3075
    def _rename_output(self, old_name, new_name):
3076 3077 3078 3079 3080 3081 3082 3083 3084 3085
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
3086
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
3087

F
fengjiayi 已提交
3088 3089 3090 3091
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
3092 3093 3094 3095 3096 3097 3098 3099
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
3100
    def output(self, name):
3101
        r"""
3102
        Get output arguments by the output parameter name.
3103

3104 3105
        Args:
            name(str): The output parameter name.
3106

3107 3108 3109
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
3110
        """
F
fengjiayi 已提交
3111 3112 3113 3114 3115 3116
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

3117 3118 3119 3120 3121 3122 3123 3124
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
3125
    def has_attr(self, name):
3126
        """
3127 3128
        Whether this Operator has the attribute with name or not.

3129
        Args:
3130
            name(str): the attribute name.
3131

3132 3133
        Returns:
            bool: True if has this attribute.
3134 3135

        """
F
fengjiayi 已提交
3136 3137 3138
        return self.desc.has_attr(name)

    def attr_type(self, name):
3139
        """
3140
        Get the type of attribute by attribute's name.
3141

3142 3143
        Args:
            name(str): the attribute name.
3144

3145 3146
        Returns:
            core.AttrType: the attribute type.
3147
        """
3148
        return self.desc.attr_type(name, True)
F
fengjiayi 已提交
3149

W
Wu Yi 已提交
3150
    def _set_attr(self, name, val):
3151 3152 3153 3154 3155 3156 3157 3158 3159 3160
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
3161 3162
        self._update_desc_attr(name, val)

3163 3164 3165
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
3177 3178 3179 3180 3181
        if isinstance(val, Variable):
            self.desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            self.desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
Q
Qiyang Min 已提交
3182
            self.desc.set_block_attr(name, val.desc)
3183
        elif isinstance(val, list) and val and _all_is_type(val, Block):
3184
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
3185 3186 3187 3188
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224
            self._update_desc_plain_attr(name, val)

    def _update_desc_plain_attr(self, name, val):
        desc = self.desc
        if not hasattr(self, "_attr_types") or (name not in self._attr_types):
            desc._set_attr(name, val)
            return

        type_index = self._attr_types[name]
        if type_index == core.AttrType.BOOL:
            desc._set_bool_attr(name, val)
        elif type_index == core.AttrType.INT:
            desc._set_int32_attr(name, val)
        elif type_index == core.AttrType.LONG:
            desc._set_int64_attr(name, val)
        elif type_index == core.AttrType.FLOAT:
            desc._set_float32_attr(name, val)
        # elif type_index == core.AttrType.FLOAT64:
        #     desc._set_float64_attr(name, val)
        elif type_index == core.AttrType.STRING:
            desc._set_str_attr(name, val)
        elif type_index == core.AttrType.BOOLS:
            desc._set_bools_attr(name, val)
        elif type_index == core.AttrType.INTS:
            desc._set_int32s_attr(name, val)
        elif type_index == core.AttrType.LONGS:
            desc._set_int64s_attr(name, val)
        elif type_index == core.AttrType.FLOATS:
            desc._set_float32s_attr(name, val)
        elif type_index == core.AttrType.FLOAT64S:
            desc._set_float64s_attr(name, val)
        elif type_index == core.AttrType.STRINGS:
            desc._set_strs_attr(name, val)
        else:
            # defaults to old methods
            desc._set_attr(name, val)
Y
yuyang18 已提交
3225

F
fengjiayi 已提交
3226 3227
    @property
    def attr_names(self):
3228
        return self.desc.attr_names(True)
F
fengjiayi 已提交
3229 3230

    def attr(self, name):
3231
        """
3232 3233
        Get the attribute by name.

3234
        Args:
3235
            name(str): the attribute name.
3236

3237 3238
        Returns:
            bool|int|str|float|list: The attribute value. The return value
3239 3240
            can be any valid attribute type.
        """
F
fengjiayi 已提交
3241
        return self.desc.attr(name)
Y
Yu Yang 已提交
3242

W
Wu Yi 已提交
3243
    def _block_attr_id(self, name):
3244
        """
G
gongweibao 已提交
3245
        Get the block attribute's id by name.
3246

3247 3248
        Args:
            name(str): the attribute name.
3249

3250 3251
        Returns:
            int: the block index.
3252
        """
W
Wu Yi 已提交
3253
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
3254

W
Wu Yi 已提交
3255
    def _block_attr(self, name):
G
gongweibao 已提交
3256 3257 3258 3259 3260 3261 3262 3263 3264 3265
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
3266
        id = self._block_attr_id(name)
G
gongweibao 已提交
3267 3268 3269
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
3270
    def _blocks_attr(self, name):
G
gongweibao 已提交
3271 3272 3273 3274 3275 3276 3277 3278 3279 3280
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
3281
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
3282 3283 3284 3285 3286
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
3287
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
3288 3289 3290 3291 3292 3293 3294 3295 3296 3297
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
3298
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
3299

3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334
    def _var_attr(self, name):
        """
        Get the Variable attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            Variable: the Variable attribute.
        """
        attr_type = self.desc.attr_type(name, True)
        assert attr_type == core.AttrType.VAR, "Required type attr({}) is Variable, but received {}".format(
            name, attr_type)
        attr_var_name = self.desc.attr(name, True).name()
        return self.block._var_recursive(attr_var_name)

    def _vars_attr(self, name):
        """
        Get the Variables attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            Variables: the Variables attribute.
        """
        attr_type = self.desc.attr_type(name, True)
        assert attr_type == core.AttrType.VARS, "Required type attr({}) is list[Variable], but received {}".format(
            name, attr_type)
        attr_vars = [
            self.block._var_recursive(var.name())
            for var in self.desc.attr(name, True)
        ]
        return attr_vars

J
JiayiFeng 已提交
3335
    def all_attrs(self):
F
fengjiayi 已提交
3336
        """
3337 3338 3339
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
3340
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
3341 3342 3343 3344
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
3345
            attr_type = self.desc.attr_type(n, True)
G
gongweibao 已提交
3346
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
3347
                attr_map[n] = self._block_attr(n)
3348
            elif attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
3349
                attr_map[n] = self._blocks_attr(n)
3350 3351 3352 3353 3354 3355
            elif attr_type == core.AttrType.VAR:
                attr_map[n] = self._var_attr(n)
            elif attr_type == core.AttrType.VARS:
                attr_map[n] = self._vars_attr(n)
            else:
                attr_map[n] = self.attr(n)
G
gongweibao 已提交
3356

F
fengjiayi 已提交
3357 3358
        return attr_map

3359 3360 3361
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
3362 3363 3364 3365

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

3366 3367 3368
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
3369 3370 3371 3372 3373 3374 3375 3376

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
3377 3378
            return False

3379 3380 3381 3382 3383 3384
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

3385
    @property
3386
    def dist_attr(self):
3387
        """
3388
        Get distributed attribute of this Variable.
3389
        """
3390
        return self.desc.dist_attr
3391

3392 3393
    @dist_attr.setter
    def dist_attr(self, dist_attr):
3394
        """
3395
        Set distributed attribute of this Variable.
3396
        """
3397
        self.desc.dist_attr = dist_attr
3398

Y
Yu Yang 已提交
3399

Y
Yu Yang 已提交
3400
class Block(object):
3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
3415
        use `Program._create_block()` to create a block.
3416 3417 3418 3419

    Examples:
        .. code-block:: python

3420 3421 3422
            import paddle.fluid as fluid

            cur_program = fluid.Program()
3423 3424 3425 3426 3427 3428 3429 3430 3431
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
3432
    def __init__(self, program, idx):
Y
Yu Yang 已提交
3433
        self.desc = program.desc.block(idx)
3434
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
3435
        self.ops = list()  # operator list
Y
Yu Yang 已提交
3436
        self.program = program
3437
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
3438

3439
    def __str__(self):
3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3474
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485
            type(skip_op_callstack))
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
                op._to_readable_code(skip_op_callstack))
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
3486

F
fengjiayi 已提交
3487 3488
    def to_string(self, throw_on_error, with_details=False):
        """
3489 3490
        Get debug string.

F
fengjiayi 已提交
3491 3492
        Args:
            throw_on_error(bool): raise exception when self is not initialized
3493
                when throw_on_error is True.
F
update  
fengjiayi 已提交
3494
            with_details(bool): more details about variables and parameters
3495 3496
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
3497

3498 3499
        Returns:
            str: The debug string.
F
fengjiayi 已提交
3500
        """
3501 3502
        assert isinstance(throw_on_error, bool) and isinstance(
            with_details, bool)
F
fengjiayi 已提交
3503
        if with_details:
F
fengjiayi 已提交
3504
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
3505 3506
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
3507
            for var in list(self.vars.values()):
F
fengjiayi 已提交
3508
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
3509
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
3510
            for op in self.ops:
F
fengjiayi 已提交
3511 3512
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
3513 3514 3515
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
3516 3517
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
3518 3519
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3520 3521 3522

    __repr__ = __str__

Y
Yu Yang 已提交
3523 3524
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
3525
        return self.desc.parent
Y
Yu Yang 已提交
3526

Y
Yu Yang 已提交
3527 3528 3529 3530
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
3531
    def _set_forward_block_idx(self, idx):
3532 3533 3534 3535 3536 3537 3538 3539 3540
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
3541
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
3542

3543 3544 3545 3546 3547 3548 3549 3550
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
3551 3552
    @property
    def idx(self):
Y
Yu Yang 已提交
3553
        return self.desc.id
Y
Yu Yang 已提交
3554

Q
Qiao Longfei 已提交
3555
    def var(self, name):
3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
3569
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
3570 3571 3572
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
3573 3574
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
3575
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
3576
        return v
Q
Qiao Longfei 已提交
3577

X
Xin Pan 已提交
3578
    def _find_var_recursive(self, name):
3579 3580 3581 3582 3583 3584 3585
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
3586
            Variable: the Variable with the giving name. Or None if not found.
3587
        """
Y
Yu Yang 已提交
3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
3612
        return None
Y
Yu Yang 已提交
3613

X
Xin Pan 已提交
3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
3633

Q
Qiao Longfei 已提交
3634
    def all_parameters(self):
3635
        return list(self.iter_parameters())
3636

3637
    def iter_parameters(self):
M
minqiyang 已提交
3638
        return (item[1] for item in six.iteritems(self.vars)
3639
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
3640

Y
Yu Yang 已提交
3641
    def create_var(self, *args, **kwargs):
J
Jiabin Yang 已提交
3642
        if _non_static_mode():
L
Leo Chen 已提交
3643 3644
            var = _varbase_creator(*args, **kwargs)
        else:
3645 3646 3647
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
3648
        return var
Y
Yu Yang 已提交
3649

Q
Qiao Longfei 已提交
3650 3651 3652
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
3653
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
3654 3655
        """
        Rename variable in vars and ops' inputs and outputs
3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
3668
        """
M
minqiyang 已提交
3669 3670
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
3671

T
typhoonzero 已提交
3672
        if not self.has_var(name):
3673
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
3674 3675
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
3676
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
3677 3678 3679 3680 3681 3682
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
3683
            var_type = "Variable"
T
wip  
typhoonzero 已提交
3684 3685 3686 3687
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
3688
        orig_var_type = v.type
M
minqiyang 已提交
3689
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
3690
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
3691
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
3692
        if var_type == "Parameter":
L
Leo Chen 已提交
3693
            if in_dygraph_mode():
3694 3695 3696 3697 3698 3699 3700 3701 3702
                var = EagerParamBase(d.shape(),
                                     d.dtype(),
                                     type=orig_var_type,
                                     name=new_name,
                                     stop_gradient=stop_gradient,
                                     trainable=trainable,
                                     optimize_attr=optimize_attr,
                                     regularizer=regularizer,
                                     error_clip=error_clip)
3703
            else:
J
Jiabin Yang 已提交
3704
                if _in_legacy_dygraph():
3705 3706 3707 3708 3709 3710 3711 3712 3713
                    var = ParamBase(d.shape(),
                                    d.dtype(),
                                    type=orig_var_type,
                                    name=new_name,
                                    stop_gradient=stop_gradient,
                                    trainable=trainable,
                                    optimize_attr=optimize_attr,
                                    regularizer=regularizer,
                                    error_clip=error_clip)
J
Jiabin Yang 已提交
3714
                else:
3715 3716 3717 3718 3719 3720 3721 3722 3723 3724
                    var = Parameter(self,
                                    d.shape(),
                                    d.dtype(),
                                    type=orig_var_type,
                                    name=new_name,
                                    stop_gradient=stop_gradient,
                                    trainable=trainable,
                                    optimize_attr=optimize_attr,
                                    regularizer=regularizer,
                                    error_clip=error_clip)
T
typhoonzero 已提交
3725
        elif var_type == "Variable":
3726 3727 3728 3729 3730
            var = Variable(self,
                           type=orig_var_type,
                           name=new_name,
                           error_clip=error_clip,
                           stop_gradient=stop_gradient)
T
wip  
typhoonzero 已提交
3731

W
Wu Yi 已提交
3732
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
3733 3734 3735
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
3736
        self._sync_with_cpp()
3737
        return var
T
typhoonzero 已提交
3738

3739 3740 3741
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
M
minqiyang 已提交
3742
        self.desc._remove_var(cpt.to_bytes(name))
3743 3744
        del self.vars[name]

Y
Yu Yang 已提交
3745 3746
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
3747
        param = None
L
Leo Chen 已提交
3748
        if in_dygraph_mode():
J
Jiabin Yang 已提交
3749
            param = EagerParamBase(*args, **kwargs)
L
Leo Chen 已提交
3750
        else:
J
Jiabin Yang 已提交
3751 3752 3753 3754
            if _in_legacy_dygraph():
                param = ParamBase(*args, **kwargs)
            else:
                param = Parameter(global_block, *args, **kwargs)
3755

3756
        if 'initializer' in kwargs:
3757 3758 3759 3760 3761

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
3762
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
3763
                        # are treated as initialization ops that cause error.
3764
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
3765 3766 3767 3768 3769
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
                                "c_broadcast", "c_sync_comm_stream",
                                "coalesce_tensor"
                        ]:
3770
                            continue
3771 3772 3773 3774 3775 3776 3777 3778
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
3779 3780
                                   " is inited by multiple init ops " +
                                   str(init_ops))
3781
            elif init_ops_len == 1:
3782
                # TODO already inited, do nothing, should log a warning
3783 3784 3785
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
3786
        return param
Y
Yu Yang 已提交
3787

Y
Yu Yang 已提交
3788
    def append_op(self, *args, **kwargs):
3789 3790 3791 3792 3793 3794
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
J
Jiabin Yang 已提交
3795
        if _non_static_mode():
3796
            attrs = kwargs.get("attrs", {})
Z
zyfncg 已提交
3797
            inplace_map = kwargs.get("inplace_map", None)
J
Jiabin Yang 已提交
3798
            type = kwargs.get("type", None)
3799 3800 3801 3802
            warnings.warn(
                "Op `%s` is executed through `append_op` under the dynamic mode, "
                "the corresponding API implementation needs to be upgraded to "
                "using `_C_ops` method." % type, DeprecationWarning)
3803 3804 3805 3806 3807 3808
            op = Operator(block=self,
                          desc=None,
                          type=type,
                          inputs=None,
                          outputs=None,
                          attrs=attrs)
3809

M
minqiyang 已提交
3810 3811 3812
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
3813
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
3814

3815 3816 3817
            _dygraph_tracer().trace_op(type, kwargs.get("inputs", {}),
                                       kwargs.get("outputs",
                                                  {}), attrs if attrs else {},
Z
zyfncg 已提交
3818 3819
                                       kwargs.get("stop_gradient", False),
                                       inplace_map)
M
minqiyang 已提交
3820
        else:
3821 3822
            from paddle.fluid.dygraph.base import param_guard

3823
            op_desc = self.desc.append_op()
3824 3825 3826 3827 3828 3829
            # NOTE(Aurelius84): In case of @to_static, all VarBase(s) should
            # be converted into Variable(s) with same name and block location.
            # This is ONE and ONLY logic of type transformation of dy2static.
            inputs = kwargs.get("inputs", None)
            outputs = kwargs.get("outputs", None)
            with param_guard(inputs), param_guard(outputs):
3830 3831 3832 3833 3834 3835
                op = Operator(block=self,
                              desc=op_desc,
                              type=kwargs.get("type", None),
                              inputs=inputs,
                              outputs=outputs,
                              attrs=kwargs.get("attrs", None))
3836

M
minqiyang 已提交
3837
            self.ops.append(op)
M
minqiyang 已提交
3838

3839 3840
        return op

W
Wu Yi 已提交
3841
    def _insert_op(self, index, *args, **kwargs):
3842 3843 3844 3845 3846 3847 3848 3849 3850
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
3851
        self._sync_with_cpp()
F
fangshuixun007 已提交
3852
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
3853

3854 3855
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
3856
        Insert an Operator according to the giving arguments,
3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
3871 3872 3873 3874 3875 3876 3877 3878 3879
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
3880 3881
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
3882
        self.desc._remove_op(index, index + 1)
3883 3884
        del self.ops[index]

W
Wu Yi 已提交
3885
    def _slice_ops(self, start, end):
3886 3887 3888 3889 3890 3891 3892 3893 3894 3895
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
3896
        return self.ops[start:end]
Y
Yancey1989 已提交
3897

W
Wu Yi 已提交
3898
    def _prepend_op(self, *args, **kwargs):
J
Jiabin Yang 已提交
3899
        if _non_static_mode():
J
Jiabin Yang 已提交
3900 3901
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
3902 3903 3904 3905 3906 3907 3908 3909 3910 3911
            op = Operator(self,
                          None,
                          type=type,
                          inputs=None,
                          outputs=None,
                          attrs=attrs)

            _dygraph_tracer().trace_op(type, kwargs.get("inputs", {}),
                                       kwargs.get("outputs", {}),
                                       attrs if attrs else {},
M
minqiyang 已提交
3912
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
3913
        else:
3914
            op_desc = self.desc._prepend_op()
3915 3916 3917 3918 3919 3920
            op = Operator(self,
                          op_desc,
                          type=kwargs.get("type", None),
                          inputs=kwargs.get("inputs", None),
                          outputs=kwargs.get("outputs", None),
                          attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
3921
            self.ops.insert(0, op)
3922

Y
Yu Yang 已提交
3923 3924
        return op

W
Wu Yi 已提交
3925
    def _sync_with_cpp(self):
3926
        """
3927 3928
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
3929
        """
Q
Qiao Longfei 已提交
3930 3931 3932
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
3933 3934 3935 3936
                is_stop_gradient = False
                if var.has_stop_gradient():
                    is_stop_gradient = var.stop_gradient()
                if var.has_is_parameter() and var.is_parameter():
3937 3938 3939 3940 3941 3942
                    self.create_parameter(name=var.name(),
                                          desc=var,
                                          type=var.type(),
                                          shape=var.shape(),
                                          dtype=var.dtype(),
                                          stop_gradient=is_stop_gradient)
3943
                else:
3944 3945 3946 3947
                    self.create_var(name=var.name(),
                                    desc=var,
                                    type=var.type(),
                                    stop_gradient=is_stop_gradient)
Q
Qiao Longfei 已提交
3948

3949
        # sync variables removed from c++ end
3950
        for var in list(self.vars.keys()):
M
minqiyang 已提交
3951
            if not self.desc.find_var(cpt.to_bytes(var)):
3952 3953
                self.vars.pop(var)

Q
Qiao Longfei 已提交
3954
        # sync operators from cpp
3955 3956 3957 3958
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
3975 3976 3977 3978 3979

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
3980
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
3981 3982 3983 3984 3985 3986 3987

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
4001 4002 4003 4004
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
4005
    def _copy_param_info_from(self, other):
4006
        """
4007 4008
        Copy the information of parameters from the other block.

4009
        Args:
4010 4011 4012 4013 4014
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
4015 4016 4017 4018 4019

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
4020 4021
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
4022
        for p in other.iter_parameters():
4023 4024 4025
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
4026 4027
                # if the Parameter is pruned, v may be None
                continue
4028
            assert isinstance(v, Variable)
4029
            new_p = None
L
Leo Chen 已提交
4030
            if in_dygraph_mode():
4031 4032 4033 4034 4035 4036 4037 4038 4039 4040
                new_p = EagerParamBase(shape=v.shape,
                                       dtype=v.dtype,
                                       type=v.type,
                                       lod_level=v.lod_level,
                                       stop_gradient=p.stop_gradient,
                                       trainable=p.trainable,
                                       optimize_attr=p.optimize_attr,
                                       regularizer=p.regularizer,
                                       error_clip=p.error_clip,
                                       name=v.name)
4041
            else:
J
Jiabin Yang 已提交
4042
                if _in_legacy_dygraph():
4043 4044 4045 4046 4047 4048 4049 4050 4051 4052
                    new_p = ParamBase(shape=v.shape,
                                      dtype=v.dtype,
                                      type=v.type,
                                      lod_level=v.lod_level,
                                      stop_gradient=p.stop_gradient,
                                      trainable=p.trainable,
                                      optimize_attr=p.optimize_attr,
                                      regularizer=p.regularizer,
                                      error_clip=p.error_clip,
                                      name=v.name)
J
Jiabin Yang 已提交
4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066
                else:
                    new_p = Parameter(
                        block=self,
                        shape=v.shape,
                        dtype=v.dtype,
                        type=v.type,
                        lod_level=v.lod_level
                        if v.type == core.VarDesc.VarType.LOD_TENSOR else None,
                        stop_gradient=p.stop_gradient,
                        trainable=p.trainable,
                        optimize_attr=p.optimize_attr,
                        regularizer=p.regularizer,
                        error_clip=p.error_clip,
                        name=v.name)
4067 4068
            self.vars[new_p.name] = new_p

4069
    def _clone_variable(self, var, force_persistable=True):
4070 4071
        """
        Clone a variable into current block.
4072

4073 4074
        Args:
            var: the variable to be cloned.
4075 4076 4077
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
4078 4079

        Returns:
4080
            Variable: the new  variable cloned from 'var' in current block.
4081 4082
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
4083 4084 4085
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
4086 4087 4088
            ret_var = self.create_var(name=var.name,
                                      persistable=var.persistable,
                                      type=var.type)
T
tangwei12 已提交
4089
        elif var.type == core.VarDesc.VarType.RAW:
4090 4091 4092
            ret_var = self.create_var(name=var.name,
                                      persistable=var.persistable,
                                      type=var.type)
T
typhoonzero 已提交
4093 4094 4095 4096 4097 4098
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
4099
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4100 4101
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
4102 4103 4104 4105 4106 4107 4108
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
4109
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4110 4111
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
4112
        return ret_var
4113

Y
Yu Yang 已提交
4114

4115 4116 4117 4118
# NOTE(zjl): you should be careful that after you call this method,
# some Python Variable and all Python Operators should not be used
# again. Because all Python Variables and all Python Operators are
# re-constructed inside this method. The underlying VarDesc(OpDesc)
4119
# of some old Python Variables(all old Python Operators) may have
4120
# been destructed.
4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136
def _apply_pass(main_program,
                startup_program,
                pass_name,
                pass_attrs={},
                pass_attr_types={}):
    assert isinstance(pass_attrs, dict), "pass_attrs must be dict"
    assert isinstance(pass_attr_types, dict), "pass_attr_types must be dict"
    tmp_main_program = core.ProgramDesc(main_program.desc)
    tmp_startup_program = core.ProgramDesc(startup_program.desc)
    attrs = core.apply_pass(tmp_main_program, tmp_startup_program, pass_name,
                            pass_attrs, pass_attr_types)
    main_program._rebuild_from_desc(tmp_main_program)
    startup_program._rebuild_from_desc(tmp_startup_program)
    return attrs


4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

4232
    def remove_input_by_id(self, node_id):
4233 4234 4235 4236 4237 4238
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4239
        self.node.remove_input(node_id)
4240

4241
    def remove_input(self, node):
4242 4243 4244 4245
        """
        Remove a node from inputs.

        Args:
4246
            node(IrNode): the node being removed.
4247
        """
4248
        self.node.remove_input(node.node)
4249

4250
    def append_input(self, node):
4251 4252 4253 4254
        """
        Append a node in inputs.

        Args:
4255
            node(IrNode): the node being appended.
4256
        """
4257
        self.node.append_input(node.node)
4258 4259 4260 4261 4262 4263 4264 4265

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

4266
    def remove_output_by_id(self, node_id):
4267 4268 4269 4270 4271 4272
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4273
        self.node.remove_output(node_id)
4274

4275
    def remove_output(self, node):
4276 4277 4278 4279
        """
        Remove a node from outputs.

        Args:
4280
            node(IrNode): the node being removed.
4281
        """
4282
        self.node.remove_output(node.node)
4283

4284
    def append_output(self, node):
4285 4286 4287 4288
        """
        Append a node in outputs.

        Args:
4289
            node(IrNode): the node being appended.
4290
        """
4291
        self.node.append_output(node.node)
4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4339
            "The node variable description can not be None."
4340 4341 4342 4343 4344 4345 4346 4347 4348 4349
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4350
            "The node variable description can not be None."
4351 4352
        return self.node.var().persistable()

4353 4354 4355 4356 4357 4358 4359 4360
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4361
            "The node variable description can not be None."
4362 4363 4364 4365 4366 4367 4368 4369 4370 4371
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4372
            "The node variable description can not be None."
4373 4374 4375 4376 4377 4378 4379 4380 4381 4382
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4383
            "The node variable description can not be None."
4384 4385
        return self.node.var().shape()

4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4433
            "The node operator description can not be None."
4434 4435
        self.node.op()._rename_input(old_input_name, new_input_name)

4436 4437 4438 4439 4440 4441 4442 4443 4444
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4445
            "The node operator description can not be None."
4446 4447
        self.node.op()._rename_output(old_output_name, new_output_name)

4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4459
            "The node operator description can not be None."
4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4473
            "The node operator description can not be None."
4474 4475 4476 4477 4478 4479 4480 4481 4482 4483
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4484
            "The node operator description can not be None."
4485 4486
        return self.node.op().set_type(new_type)

4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4502
            "The node operator description can not be None."
4503
        desc = self.node.op()
4504 4505 4506 4507 4508
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
4509
            desc.set_block_attr(name, val.desc)
4510
        elif isinstance(val, list) and val and _all_is_type(val, Block):
4511 4512
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
4513
                isinstance(val, core.ProgramDesc):
4514 4515 4516 4517
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

4518 4519 4520 4521 4522 4523 4524 4525
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4526
            "The node operator description can not be None."
4527 4528 4529 4530 4531 4532 4533 4534 4535 4536
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4537
            "The node operator description can not be None."
4538 4539
        return self.node.op().output_arg_names()

4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


4561 4562
class IrGraph(object):
    """
4563
    Python IrGraph. Beneath it is a core.Graph, which is used for
4564
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
4565 4566
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
4567 4568 4569 4570
    """

    def __init__(self, graph, for_test=False):
        """
4571 4572
        Construct an IrGraph using core.Graph.

4573 4574 4575 4576 4577 4578 4579 4580 4581
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

4582 4583 4584 4585
    def clone(self):
        """
        Create a new and duplicated IrGraph.

4586 4587 4588
        Warns:
            The method only clones the graph structure, not its attributes.

4589 4590 4591
        Returns:
            IrGraph: A new and duplicated graph.
        """
4592
        g = self.graph.clone()
4593 4594
        return IrGraph(g, self._for_test)

4595
    def is_test(self):
4596 4597 4598
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
4599 4600
        return self._for_test

W
WangZhen 已提交
4601
    def all_nodes(self):
4602 4603 4604
        """
        Return all nodes included in the graph as a set.
        """
4605
        return {IrNode(node) for node in self.graph.nodes()}
4606

4607
    def all_var_nodes(self):
4608 4609 4610
        """
        Return all variable nodes included in the graph as a set.
        """
4611
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
4612

4613
    def all_persistable_nodes(self):
4614 4615 4616
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
4617 4618 4619 4620 4621
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
4622
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
4623

4624
    def all_op_nodes(self):
4625 4626 4627
        """
        Return all operator nodes included in the graph as a set.
        """
4628
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
4629

4630 4631 4632 4633 4634 4635
    def all_sub_graphs(self, for_test=False):
        """
        Return all sub_graphs included in the main graph as a set.
        """

        return [
4636
            IrGraph(self.graph.get_sub_graph(i), for_test=for_test)
4637 4638 4639 4640 4641 4642 4643 4644 4645
            for i in range(self.graph.sub_graph_size())
        ]

    def get_sub_graph(self, i, for_test=False):
        """
        Return i-th sub_graph in the main graph.
        """
        return IrGraph(self.graph.get_sub_graph(i), for_test=for_test)

4646
    def create_persistable_node(self, name, var_type, shape, var_dtype):
4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
4658
            IrVarNode: the created persistable variable node.
4659
        """
4660 4661 4662 4663 4664
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
4665
        return IrVarNode(self.graph.create_var_node(var_desc))
4666 4667

    def create_var_node(self, name, var_type, shape, var_dtype):
4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
4679
            IrVarNode: the created variable node.
4680 4681
        """

4682 4683 4684 4685
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
4686
        return IrVarNode(self.graph.create_var_node(var_desc))
4687

4688 4689 4690 4691 4692 4693
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

4694
    def create_var_node_from_desc(self, var_desc):
4695 4696 4697 4698 4699 4700 4701 4702
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
4703
            IrVarNode: the created variable node.
4704
        """
4705
        return IrVarNode(self.graph.create_var_node(var_desc))
4706 4707

    def create_op_node(self, op_type, attrs, inputs, outputs):
4708 4709 4710 4711 4712 4713 4714
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
4715
            outputs(dict): the outputs of the operator node.
4716 4717

        Returns:
4718
            IrOpNode: the created operator node.
4719
        """
4720 4721
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
4722
        for attr, value in six.iteritems(attrs):
4723
            self._update_desc_attr(op_desc, attr, value)
4724
        for input_name, var_nodes in six.iteritems(inputs):
4725 4726 4727 4728
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
4729
        for output_name, var_nodes in six.iteritems(outputs):
4730 4731 4732 4733
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
4734
        return IrOpNode(self.graph.create_op_node(op_desc))
4735 4736

    def create_op_node_from_desc(self, op_desc):
4737 4738 4739 4740 4741 4742 4743
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
4744
            IrOpNode: the created operator node.
4745
        """
4746
        return IrOpNode(self.graph.create_op_node(op_desc))
4747 4748

    def update_input_link(self, old_input_node, new_input_node, op_node):
4749 4750 4751 4752
        """
        Update the input's link of a operator node.

        Args:
4753 4754 4755
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
4756
        """
4757
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
T
tangwei12 已提交
4758
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
4759
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
4760 4761 4762 4763
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
4764
        op_node.rename_input(old_input_node.name(), new_input_node.name())
4765

4766 4767 4768 4769 4770 4771 4772 4773 4774 4775
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
T
tangwei12 已提交
4776
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
4777
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
4778 4779 4780 4781 4782 4783
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

4784
    def link_to(self, node_in, node_out):
4785 4786 4787 4788
        """
        Connect two nodes.

        Args:
4789 4790
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
4791
        """
4792 4793 4794 4795
        assert node_in.node in self.graph.nodes(), (
            'node_in(%s) must be in the graph nodes.' % node_in.node.name())
        assert node_out.node in self.graph.nodes(), (
            'node_out(%s) must be in the graph nodes.' % node_out.node.name())
4796 4797
        node_in.append_output(node_out)
        node_out.append_input(node_in)
4798 4799

    def safe_remove_nodes(self, remove_nodes):
4800 4801 4802 4803 4804 4805 4806
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
4807
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
4808 4809 4810 4811
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
4812 4813
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
4814

Z
Zhen Wang 已提交
4815 4816 4817 4818 4819 4820 4821 4822
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4823
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
4824 4825 4826 4827
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4828
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
4829 4830 4831
                        ]
                    else:
                        var_nodes[each_var_name].append(
4832 4833
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
4834 4835
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
4836
    def has_circle(self):
4837 4838 4839 4840 4841 4842
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
4843 4844 4845
        return core.has_circle(self.graph)

    def graph_num(self):
4846 4847 4848 4849 4850 4851
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
4852 4853 4854
        return core.graph_num(self.graph)

    def topology_sort(self):
4855 4856 4857
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
4858
        Notes: the `graph` can not contain a circle.
4859 4860

        Returns:
Z
Zhen Wang 已提交
4861
            list(IrNode): nodes in topology order.
4862
        """
4863
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
4864
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
4865 4866

    def build_adjacency_list(self):
4867 4868 4869 4870
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
4871
            dict{IrNode: set(IrNode)}: the adjacency list.
4872
        """
4873 4874 4875 4876 4877
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
4878

4879 4880 4881 4882 4883 4884 4885 4886
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
4887
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
4888 4889 4890 4891 4892
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

4893 4894
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
4895 4896 4897
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path +
                                          ' -o ' + pdf_save_path,
                                          shell=True)
4898 4899 4900 4901 4902
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

4903
        remove_ctr_vars = set()
4904
        if remove_ctr_var:
4905
            for node in self.all_var_nodes():
4906 4907 4908
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
4909 4910
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

4911 4912
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
4913 4914 4915 4916 4917 4918
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
4919 4920 4921 4922
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
4923 4924
        if not os.path.exists(save_path):
            os.makedirs(save_path)
4925 4926 4927 4928 4929 4930 4931
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
4932 4933 4934
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
4935
        WARN: When the graph includes backward operator nodes, the
4936 4937 4938 4939 4940 4941
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
4942
        convert_pass = core.get_pass('graph_to_program_pass')
4943 4944
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
4945 4946 4947 4948
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

4949 4950 4951 4952 4953 4954 4955 4956
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
4957 4958
        assert target_node is not None, (
            "Cannot find the target node (%s)in the giving set." % node_name)
4959 4960
        return target_node

4961 4962 4963 4964
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
4965 4966 4967 4968 4969
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
4970
            desc.set_block_attr(name, val.desc)
4971
        elif isinstance(val, list) and val and _all_is_type(val, Block):
4972 4973 4974 4975 4976 4977 4978 4979
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
4980
class Program(object):
D
dzhwinter 已提交
4981
    """
4982
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
4983
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
4984
    it will contain nested block.
4985

J
Jiabin Yang 已提交
4986 4987 4988
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
4989

J
Jiabin Yang 已提交
4990
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
4991
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
4992 4993 4994 4995 4996 4997 4998
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
4999
    **Notes**:
5000 5001 5002
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
5003 5004

    Returns:
J
Jiabin Yang 已提交
5005
        Program: An empty Program.
D
dzhwinter 已提交
5006 5007

    Examples:
5008 5009
        .. code-block:: python

5010 5011 5012 5013
            import paddle
            import paddle.static as static

            paddle.enable_static()
5014

5015 5016 5017 5018 5019
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
5020
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
5021 5022 5023

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
5024 5025 5026

    """

5027 5028
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
5029 5030
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
5031 5032
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
5033
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
5034
        self.__op_role_var = []
T
tangwei12 已提交
5035

5036 5037
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
5038
        self._is_distributed = False
5039
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
5040
        self._is_chief = False
5041 5042 5043
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
5044
        self._endpoints = []
5045 5046 5047
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
5048
        self._trainers_endpoints = []
5049
        # the distributed lookup table names
T
tangwei12 已提交
5050
        self._distributed_lookup_table = None
5051 5052 5053

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
5054 5055
        self._use_lamb = False

5056 5057 5058
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
5059

5060 5061 5062
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
5063
        self._program_config = None
5064

H
hutuxian 已提交
5065 5066 5067
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

5068 5069 5070
        # assigned if this program has been parsed by a heter pipeline parameter server optimizer
        self._heter_pipeline_opt = None

5071 5072 5073
        # appending gradients times
        self._appending_grad_times = 0

5074 5075 5076 5077
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_program__")

5078 5079
        # compiled program, i.e. Graph
        self._graph = None
5080 5081
        # to tag whether is startup_program
        self._is_start_up_program_ = False
5082

5083
    def _find_var_class_kwargs(self, new_desc):
5084 5085 5086 5087 5088 5089 5090 5091
        # NOTE: not all variables support shape/dtype/lod_level methods.
        # For example: RAW, STEP_SCOPES, etc.
        def get_var_desc_attr_or_none(var_desc, attr_name, allowed_types):
            if var_desc.type() in allowed_types:
                return getattr(var_desc, attr_name)()
            else:
                return None

5092 5093 5094 5095
        old_desc = self.desc
        all_new_vars = []
        block_num = new_desc.num_blocks()
        for idx in range(block_num):
5096 5097
            if (idx > (len(self.blocks) - 1)):
                self._create_block()
5098 5099 5100 5101 5102 5103 5104 5105 5106 5107
            new_block_desc = new_desc.block(idx)
            all_new_vars.append([])
            block_new_vars = all_new_vars[-1]
            for new_var_desc in new_block_desc.all_vars():
                if self.blocks[idx].has_var(new_var_desc.name()):
                    old_var = self.blocks[idx].var(new_var_desc.name())
                else:
                    old_var = None

                kwargs = {
5108 5109 5110 5111 5112 5113
                    'type':
                    new_var_desc.type(),
                    'name':
                    new_var_desc.name(),
                    'shape':
                    get_var_desc_attr_or_none(new_var_desc, "shape", [
5114 5115 5116 5117
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.SELECTED_ROWS,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
5118 5119
                    'dtype':
                    get_var_desc_attr_or_none(new_var_desc, "dtype", [
5120 5121 5122 5123 5124 5125 5126 5127 5128
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.SELECTED_ROWS,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
                    'lod_level':
                    get_var_desc_attr_or_none(new_var_desc, "lod_level", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
5129 5130 5131 5132 5133 5134 5135 5136 5137 5138
                    'error_clip':
                    old_var.error_clip if old_var is not None else None,
                    'stop_gradient':
                    old_var.stop_gradient if old_var is not None else False,
                    'is_data':
                    old_var.is_data if old_var is not None else False,
                    'need_check_feed':
                    new_var_desc.need_check_feed(),
                    'belong_to_optimizer':
                    old_var.belong_to_optimizer
5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168
                    if old_var is not None else False,
                }

                if isinstance(old_var, Parameter):
                    kwargs.update({
                        'trainable': old_var.trainable,
                        'optimize_attr': old_var.optimize_attr,
                        'regularizer': old_var.regularizer,
                        'do_model_average': old_var.do_model_average,
                        'need_clip': old_var.need_clip,
                        'is_distributed': old_var.is_distributed,
                        'is_parameter': old_var.is_parameter,
                    })
                    block_new_vars.append({
                        'class': Parameter,
                        'kwargs': copy.deepcopy(kwargs),
                    })
                else:
                    kwargs['persistable'] = new_var_desc.persistable()
                    block_new_vars.append({
                        'class': Variable,
                        'kwargs': copy.deepcopy(kwargs),
                    })

        return all_new_vars

    def _rebuild_from_desc(self, desc):
        all_new_vars = self._find_var_class_kwargs(desc)
        block_num = desc.num_blocks()
        assert block_num == len(all_new_vars)
5169
        assert block_num == self.desc.num_blocks()
5170 5171

        # clear old blocks and desc
5172 5173 5174 5175 5176 5177 5178 5179 5180
        for idx in range(block_num):
            block = self.blocks[idx]
            block.vars.clear()
            block.ops.clear()

        for idx in range(block_num):
            block_desc = self.blocks[idx].desc
            new_block_desc = desc.block(idx)
            block_desc._move_from(new_block_desc)
5181

5182
        del desc
5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201

        # add new vars first
        for idx in range(block_num):
            block = self.blocks[idx]
            for new_var in all_new_vars[idx]:
                clazz = new_var['class']
                kwargs = new_var['kwargs']
                kwargs['block'] = block
                clazz(**kwargs)

        # then append op
        for idx in range(block_num):
            block = self.blocks[idx]
            block_desc = self.desc.block(idx)
            for op_idx in range(block_desc.op_size()):
                op_desc = block_desc.op(op_idx)
                op = Operator(block=block, desc=op_desc)
                block.ops.append(op)

5202 5203 5204 5205 5206 5207 5208 5209 5210 5211
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

5212 5213
                import paddle
                import paddle.static as static
5214

5215 5216 5217
                paddle.enable_static()

                prog = static.default_main_program()
5218 5219 5220 5221 5222
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
5223
                prog1 = static.default_main_program()
5224 5225 5226 5227 5228 5229 5230 5231
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
5232
    @property
5233
    def _op_role(self):
Y
yuyang18 已提交
5234 5235 5236 5237 5238 5239 5240 5241
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
5242
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
5243 5244 5245 5246
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
5247 5248
        return self._current_role

5249 5250
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
5251 5252 5253
        self._current_role = role

    @property
5254
    def _op_role_var(self):
Y
yuyang18 已提交
5255
        """
5256
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
5257

5258
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
5259 5260 5261

        Notes: This is a very low-level API. Users should not use it directly.
        """
5262
        return self.__op_role_var
Y
yuyang18 已提交
5263

5264
    @signature_safe_contextmanager
5265 5266 5267 5268 5269
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
5270 5271 5272 5273
        try:
            yield
        finally:
            self._current_role = tmp_role
5274

S
rename  
sneaxiy 已提交
5275
    @signature_safe_contextmanager
W
Wu Yi 已提交
5276
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
5277 5278 5279 5280 5281 5282 5283
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
5284
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
5285 5286 5287

        Examples:

5288
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
5289
            >>> p, g = backward(...)
W
Wu Yi 已提交
5290
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
5291 5292
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
5293
        tmp_role = self._current_role
5294
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
5295

Y
yuyang18 已提交
5296 5297
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
5298
        self.__op_role_var = [
5299 5300 5301
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
5302 5303 5304 5305 5306
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
5307

S
rename  
sneaxiy 已提交
5308
    @signature_safe_contextmanager
X
Xin Pan 已提交
5309
    def _lr_schedule_guard(self, is_with_opt=False):
5310 5311 5312 5313 5314 5315 5316
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
5317 5318 5319 5320
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
5321 5322 5323

        Examples:

5324
            >>> import paddle.fluid as fluid
5325 5326 5327 5328
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
5329 5330

        tmp_role = self._current_role
5331
        tmp_var = self.__op_role_var
5332

5333 5334
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
5335 5336
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
5337
        # TODO(typhoonzero): how to set target learning rate var
5338
        self.__op_role_var = []
5339 5340 5341 5342 5343
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
5344

5345
    def __str__(self):
Y
yuyang18 已提交
5346 5347 5348 5349 5350 5351 5352 5353 5354
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

5375 5376
            import paddle
            import paddle.static as static
5377

5378 5379 5380
            paddle.enable_static()

            cur_program = static.Program()
5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
5392
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
5393 5394 5395 5396
            type(skip_op_callstack))
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
5397
            program_str += '\n'
5398
        return program_str
Y
Yang Yang(Tony) 已提交
5399

F
fengjiayi 已提交
5400 5401 5402
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
5403

J
Jiabin Yang 已提交
5404 5405 5406
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
5407

J
Jiabin Yang 已提交
5408
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
5409

H
haowang101779990 已提交
5410
        Returns:
J
Jiabin Yang 已提交
5411
            str: The debug string describe current Program.
Y
yuyang18 已提交
5412 5413

        Raises:
J
Jiabin Yang 已提交
5414
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
5415

5416 5417 5418
        Examples:
            .. code-block:: python

5419 5420 5421 5422
                import paddle
                import paddle.static as static

                paddle.enable_static()
5423

5424 5425 5426
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
5427
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
5428
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
5429
                print("program string without detail: {}".format(prog_string))
5430
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
5431
        """
5432 5433 5434 5435 5436 5437 5438 5439 5440
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
            type(throw_on_error))
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
            type(with_details))

F
fengjiayi 已提交
5441 5442 5443 5444 5445 5446
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
5447 5448
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
5449 5450
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
5451

W
Wu Yi 已提交
5452
    def _get_desc(self):
Y
yuyang18 已提交
5453 5454 5455 5456 5457 5458 5459
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
5460 5461
        return self.desc

X
version  
Xin Pan 已提交
5462 5463 5464
    def _version(self):
        return self.desc._version()

5465
    def clone(self, for_test=False):
Y
yuyang18 已提交
5466
        """
5467
        .. note:::
5468 5469
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` .
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` .
5470
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
5471

5472
        Create a new Program with forward content of original one when ``for_test=True``.
5473
        Create a new Program as same as the original one when ``for_test=False``.
5474

5475
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
5476 5477 5478
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
5479

5480 5481
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
5482 5483
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
5484
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
5485

J
Jiabin Yang 已提交
5486
        For Example:
5487
          ::
L
Luo Tao 已提交
5488

5489 5490 5491 5492 5493 5494
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
5495
            pred = static.nn.fc(x=img, size=10, actvation='relu')
5496
            loss = paddle.mean(pred)
5497
            # Here we use clone before Momentum
5498 5499
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
5500
            optimizer.minimize(loss)
5501

J
Jiabin Yang 已提交
5502
        Args:
5503

5504 5505
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
5506

J
Jiabin Yang 已提交
5507
        Returns:
5508
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
5509

Y
yuyang18 已提交
5510 5511 5512

        Examples:

5513 5514 5515 5516 5517 5518 5519
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535
            .. code-block:: python

                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


5536
            1. To clone a test program, the sample code is:
5537 5538 5539
                .. code-block:: python

                    import six
5540 5541 5542 5543 5544 5545
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

5558 5559
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
5560 5561 5562

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
5563 5564 5565
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
5566
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
5567 5568
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
5569
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5570 5571
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
5572
                            test_program = train_program.clone(for_test=True)
5573
                    print_prog(test_program)
J
Jiabin Yang 已提交
5574 5575 5576 5577

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

5578
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
5579 5580 5581 5582
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

5583 5584 5585
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5586 5587 5588
                            sgd.minimize(avg_loss)


5589
            2. The clone method can be avoid if you create program for training and program for testing individually.
5590 5591 5592
                .. code-block:: python

                    import six
5593 5594 5595 5596 5597 5598
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
5610

5611
                    def network():
5612
                        img = static.data(name='image', shape=[None, 784])
5613
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
5614 5615
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
5616
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5617 5618
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
5619 5620
                        return avg_loss

5621 5622 5623 5624 5625
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
5626
                            avg_loss = network()
5627
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5628
                            sgd.minimize(avg_loss)
5629
                    # the test startup program is not used.
5630 5631
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
5632 5633
                            avg_loss = network()
                    print_prog(test_program_2)
5634

5635
            The two code snippets above will generate and print same programs.
5636
        """
5637

T
tangwei12 已提交
5638
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5639 5640 5641
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5642
        pruned_origin_block_id_map = None
5643
        if for_test:
5644 5645 5646 5647 5648 5649 5650 5651 5652
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
5653
        else:
5654
            p = Program()
G
gongweibao 已提交
5655 5656
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
5657
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
5658 5659 5660
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
5661 5662

            p._current_role = self._current_role
5663
            p.__op_role_var = self.__op_role_var
5664
            p._appending_grad_times = self._appending_grad_times
5665 5666
            if hasattr(self, 'lr_sheduler'):
                p.lr_sheduler = self.lr_sheduler
G
gongweibao 已提交
5667

T
tangwei12 已提交
5668
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
5669
            # its desc.
W
Wu Yi 已提交
5670
            p._sync_with_cpp()
5671

W
Wu Yi 已提交
5672
        p._copy_param_info_from(self)
5673
        p._copy_data_info_from(self, pruned_origin_block_id_map)
5674
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
5675
        return p
5676

5677
    def _prune(self, targets):
Y
yuyang18 已提交
5678 5679 5680 5681 5682 5683 5684 5685
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
5686
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
5687 5688 5689 5690
                need to be pruned

        Returns:
            Program:  A new, pruned program.
5691
        """
5692
        return self._prune_with_input([], targets)
5693 5694

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
5695
        """
5696
        Prune operators and variables which are not needed to generate
5697 5698
        :code:`targets`. Prune operators and variables which are needed
        to generate feeded_var
5699 5700 5701 5702 5703 5704 5705

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
5706
            targets(list|Variable|Operator): A list of variables, operators, or variable names
5707 5708 5709 5710 5711 5712
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
5713
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5714 5715 5716
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5717 5718
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
5719 5720
        if not isinstance(targets, list):
            targets = [targets]
5721 5722 5723

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
5724 5725 5726
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
                    "str, but received %s." % type(var))
5727

5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743
        # find out all variables that can be generated or updated with given feed
        generatable_vars = set()

        for idx, op in enumerate(self.global_block().ops):
            runnable_op = True
            for name in op.input_arg_names:
                if not self.global_block().has_var(name):
                    continue
                if self.global_block().var(name).persistable:
                    continue
                if name not in generatable_vars.union(feeded_var_names):
                    runnable_op = False
                    break
            if runnable_op:
                generatable_vars = generatable_vars.union(op.output_arg_names)

5744 5745 5746 5747
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
5748 5749 5750
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
5751
                else:
5752 5753 5754
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
                        "Variable or Operator, but received %s." % type(t))
5755 5756 5757 5758 5759 5760

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
5761 5762 5763
                    # however if the var is also updated by a runnable op, will shall keep it
                    if name not in generatable_vars:
                        continue
5764

5765 5766 5767 5768 5769 5770 5771 5772 5773
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
5774
                        # Skip optimize op except for optimize op in targets,
5775 5776 5777 5778 5779
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
5780

5781
                if target_op is not None:
5782 5783 5784
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
5785

5786
        res = Program()
5787 5788
        res.desc, pruned_origin_block_id_map = core.prune(
            self.desc, set(feeded_var_names), targets_idx)
M
minqiyang 已提交
5789 5790 5791
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
5792
        res._sync_with_cpp()
5793 5794 5795 5796 5797

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

5798 5799
        return res

X
Xin Pan 已提交
5800
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
5801
        """
F
fengjiayi 已提交
5802 5803 5804 5805 5806
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

5807
        3. change the :code:`is_test`
Y
yuyang18 已提交
5808 5809 5810
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

5811
        Args:
X
Xin Pan 已提交
5812 5813
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
5814

Y
yuyang18 已提交
5815 5816 5817 5818 5819 5820
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
5821
        res = Program()
5822
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
5823 5824 5825 5826

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
5827
        if prune_read_op:
5828 5829 5830 5831 5832 5833 5834 5835 5836
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
5837
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
5838 5839

        # change all `is_test` attributes to True
M
minqiyang 已提交
5840
        for i in six.moves.range(res.desc.num_blocks()):
5841
            block = res.desc.block(i)
M
minqiyang 已提交
5842
            for j in six.moves.range(block.op_size()):
5843 5844
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
5845
                    op._set_attr('is_test', True)
5846 5847 5848
                if op.type() == "batch_norm":
                    # Remove the output ReserveSpace of batch_norm if exists.
                    op.remove_output("ReserveSpace")
M
minqiyang 已提交
5849 5850 5851
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
5852
        res._sync_with_cpp()
5853 5854
        return res

5855
    def _remove_training_info(self, clip_extra=True):
5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874
        """
        This method will create a new program and do following adjustments on it:
        1. Remove all variable's `is_parameter` attribute if exist.

        2. Remove all variable's `stop_gradient` attribute if exist.

        Notes: This API is a very low level API.

        Returns:
            Program: The new program.
        """
        res = Program()
        res.desc = core.ProgramDesc(self.desc)

        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
        res._sync_with_cpp()

5875 5876
        # Note: The op_role and op_role_var cann't be deleted currently,
        # and we will try to remove them in the future.
5877
        common_clipped_attrs_list = ['op_callstack', 'with_quant_attr']
5878

5879 5880 5881 5882 5883
        for i in six.moves.range(res.desc.num_blocks()):
            block = res.desc.block(i)
            for var in block.all_vars():
                var.clear_is_parameter()
                var.clear_stop_gradient()
5884 5885
            if not clip_extra:
                continue
5886 5887 5888 5889
            for op_idx in range(0, block.op_size()):
                op = block.op(op_idx)
                if op.type() not in OpProtoHolder.instance().op_proto_map:
                    continue
5890 5891 5892

                extra_attrs_map = core.get_op_extra_attrs(op.type())

5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905
                proto = OpProtoHolder.instance().get_op_proto(op.type())
                remove_input_list = []
                for name in op.input_names():
                    find = False
                    for input_proto in proto.inputs:
                        if input_proto.name != name:
                            continue
                        if input_proto.extra:
                            remove_input_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_input_list.append(name)
5906 5907 5908
                # The extra input of op will be removed in the future
                # for name in remove_input_list:
                #     op.remove_input(name)
5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921

                remove_output_list = []
                for name in op.output_names():
                    find = False
                    for output_proto in proto.outputs:
                        if output_proto.name != name:
                            continue
                        if output_proto.extra:
                            remove_output_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_output_list.append(name)
5922 5923 5924
                # The extra output of op will be removed in the future
                # for name in remove_output_list:
                #     op.remove_output(name)
5925 5926 5927 5928 5929 5930 5931 5932 5933 5934

                op_quant_name = core.op_proto_and_checker_maker.kOpWithQuantAttrName(
                )
                quant = bool(op.attr(op_quant_name)
                             ) if op_quant_name in op.attr_names() else False
                quant_attrs = [
                    op_quant_name, "quantization_type", "skip_quant",
                    "activation_bits", "bit_length", "quantize_weight_bits",
                    "weight_quant_scale"
                ]
5935
                remove_attr_list = []
5936 5937 5938 5939 5940 5941
                for name in op.attr_names():
                    if quant:
                        if name in quant_attrs:
                            continue
                        if name.endswith("_threshold"):
                            continue
5942 5943 5944
                    if len(extra_attrs_map) > 0:
                        if name in extra_attrs_map or name in common_clipped_attrs_list:
                            op.remove_attr(name)
5945
                        continue
5946 5947 5948 5949 5950 5951 5952 5953 5954 5955
                    find = False
                    for attr_proto in proto.attrs:
                        if attr_proto.name != name:
                            continue
                        find = True
                        break
                    if not find:
                        remove_attr_list.append(name)
                for name in remove_attr_list:
                    op.remove_attr(name)
5956 5957
        return res

5958 5959
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
5960
        """
5961
        .. note::
5962
            1. All information about parameters will be lost after serialization;
5963
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
5964

5965 5966
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
5967

J
Jiabin Yang 已提交
5968
        Args:
Y
yuyang18 已提交
5969

J
Jiabin Yang 已提交
5970
            binary_str_type (str): the binary prootbuf string.
5971

J
Jiabin Yang 已提交
5972 5973
        Returns:
            Program: A deserialized Program.
5974 5975 5976 5977

        Examples:
            .. code-block:: python

5978 5979 5980 5981
                import paddle
                import paddle.static as static

                paddle.enable_static()
5982

5983 5984 5985 5986
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
5987

5988
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
5989

5990
                    z = paddle.matmul(x=x, y=y)
5991

5992 5993
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
5994

5995
                    print(static.default_main_program())
5996
                    print(prog_restored)
Y
yuyang18 已提交
5997
        """
5998 5999
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
6000
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
6001
        p._sync_with_cpp()
6002
        return p
Y
Yu Yang 已提交
6003

6004
    @staticmethod
6005
    def _construct_from_desc(desc):
6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
6021 6022
    @property
    def random_seed(self):
Y
yuyang18 已提交
6023
        """
J
Jiabin Yang 已提交
6024
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
6025 6026
        the random seed from random device.

6027
        .. note::
6028
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
6029 6030 6031

        Returns:
            int64: Random seed in current Program
6032

6033 6034 6035 6036

        Examples:
            .. code-block:: python

6037 6038 6039
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
6040

6041 6042 6043
                paddle.enable_static()

                prog = static.default_main_program()
6044
                random_seed = prog.random_seed
6045
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
6046 6047 6048
                print(random_seed)
                ## 0
                ## the default random seed is 0
6049

6050
                # Here we need to set random seed before we use paddle.nn.functional.dropout
6051
                prog.random_seed = 1
6052
                z_var = F.dropout(x_var, 0.7)
6053

6054
                print(prog.random_seed)
6055 6056
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
6057
        """
D
dzhwinter 已提交
6058 6059
        return self._seed

Q
qiaolongfei 已提交
6060 6061
    @property
    def num_blocks(self):
Y
yuyang18 已提交
6062
        """
6063 6064
        The number of :ref:`api_guide_Block_en`  in this Program.

6065
        .. note::
6066
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
6067 6068 6069

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
6070

6071 6072 6073 6074

        Examples:
            .. code-block:: python

6075 6076 6077 6078
                import paddle
                import paddle.static as static

                paddle.enable_static()
6079

6080
                prog = static.default_main_program()
6081 6082
                num_blocks = prog.num_blocks
                print(num_blocks)
6083

6084 6085
                # print result:
                # 1
Y
yuyang18 已提交
6086
        """
Q
qiaolongfei 已提交
6087 6088
        return self.desc.num_blocks()

D
dzhwinter 已提交
6089 6090 6091
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
6092 6093 6094
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
                % type(seed))
D
dzhwinter 已提交
6095 6096
        self._seed = seed

Y
Yu Yang 已提交
6097
    def __repr__(self):
6098
        return self.__str__()
6099

Y
Yu Yang 已提交
6100
    def global_block(self):
Y
yuyang18 已提交
6101
        """
6102 6103
        .. note::
            This API has no effect in Dygraph mode.
6104 6105 6106

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
6107 6108
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
6109

6110 6111 6112 6113

        Examples:
            .. code-block:: python

6114 6115 6116 6117
                import paddle
                import paddle.static as static

                paddle.enable_static()
6118

6119
                prog = static.default_main_program()
6120 6121
                gb_block = prog.global_block()
                print(gb_block)
6122

Y
yuyang18 已提交
6123
        """
Y
Yu Yang 已提交
6124 6125
        return self.blocks[0]

Q
Qiao Longfei 已提交
6126
    def block(self, index):
Y
yuyang18 已提交
6127
        """
6128 6129
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
6130

6131 6132
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
6133 6134
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
6135

J
Jiabin Yang 已提交
6136 6137
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
6138 6139 6140 6141

        Examples:
            .. code-block:: python

6142 6143 6144 6145
                import paddle
                import paddle.static as static

                paddle.enable_static()
6146

6147
                prog = static.default_main_program()
6148 6149
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
6150
        """
Q
Qiao Longfei 已提交
6151 6152
        return self.blocks[index]

Y
Yu Yang 已提交
6153
    def current_block(self):
Y
yuyang18 已提交
6154
        """
6155 6156
        .. note::
            This API has no effect in Dygraph mode.
6157

J
Jiabin Yang 已提交
6158 6159
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
6160

J
Jiabin Yang 已提交
6161 6162
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
6163

6164 6165 6166
        Examples:
            .. code-block:: python

6167 6168 6169 6170
                import paddle
                import paddle.static as static

                paddle.enable_static()
6171

6172
                prog = static.default_main_program()
6173 6174
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
6175
        """
Y
Yu Yang 已提交
6176 6177
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
6178
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
6179 6180 6181 6182 6183
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
6184

Y
yuyang18 已提交
6185 6186 6187 6188 6189
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
6190
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
6191 6192 6193
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
6194 6195 6196 6197
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
6198
    def _rollback(self):
Y
yuyang18 已提交
6199 6200 6201 6202 6203
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
6204 6205
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
6206
    def _sync_with_cpp(self):
Y
yuyang18 已提交
6207 6208 6209 6210 6211 6212 6213 6214 6215 6216
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
6217 6218 6219
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
6220
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
6221

W
Wu Yi 已提交
6222
    def _copy_param_info_from(self, other):
6223
        """
6224
        Copy the information of parameters from other program.
D
dzhwinter 已提交
6225

Y
yuyang18 已提交
6226 6227 6228
        Notes: This is a very low level API. Users should not invoke it
        directly.

6229 6230 6231 6232 6233 6234 6235
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6236 6237 6238
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
6239

W
Wu Yi 已提交
6240
        self.global_block()._copy_param_info_from(other.global_block())
6241

6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6253 6254 6255
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
6256 6257
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
6258
        self._parameters_on_pservers = other._parameters_on_pservers
6259
        self._endpoints = other._endpoints
6260
        self._ps_endpoint = other._ps_endpoint
6261 6262
        self._distributed_lookup_table = other._distributed_lookup_table

6263
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
6264 6265
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
6266

Y
yuyang18 已提交
6267 6268 6269
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
6270 6271
        Args:
            other(Program): Other program
6272
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
6273 6274
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is
            cloned from block 0 in other, etc. Default is None, which means default mapped,
6275
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
6276 6277 6278 6279 6280

        Returns:
            None
        """
        if not isinstance(other, Program):
6281 6282 6283
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
F
fengjiayi 已提交
6284

6285 6286 6287 6288 6289
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
6290 6291 6292

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
6293 6294
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
6295
            for var in list(block.vars.values()):
6296 6297 6298 6299 6300 6301 6302
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
6303

6304
    def list_vars(self):
Y
yuyang18 已提交
6305
        """
6306
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
6307

J
Jiabin Yang 已提交
6308
        Returns:
6309
            iterable Tensors: The Generator will yield every Tensor in this program.
6310 6311 6312 6313

        Examples:
            .. code-block:: python

6314 6315
                import paddle
                import paddle.static as static
6316

6317 6318 6319 6320 6321
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
6322 6323
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
6324

6325 6326
                # var img : LOD_TENSOR.shape(-1, 1, 28, 28).dtype(float32).stop_gradient(True)
                # var label : LOD_TENSOR.shape(-1, 1).dtype(int64).stop_gradient(True)
Y
yuyang18 已提交
6327
        """
6328
        for each_block in self.blocks:
6329
            for each_var in list(each_block.vars.values()):
6330 6331
                yield each_var

6332 6333 6334 6335 6336 6337 6338 6339 6340 6341
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

6342 6343 6344 6345
                import paddle
                import paddle.static as static

                paddle.enable_static()
6346

6347 6348
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
6349
                hidden = static.nn.fc(x=data, size=10)
6350 6351
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
6352 6353 6354 6355 6356 6357 6358

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
6359 6360
                # persist trainable param fc_0.w_0 : LOD_TENSOR.shape(13, 10).dtype(float32).stop_gradient(False)
                # persist trainable param fc_0.b_0 : LOD_TENSOR.shape(10,).dtype(float32).stop_gradient(False)
6361 6362 6363 6364 6365 6366 6367 6368 6369 6370
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

6371 6372 6373 6374 6375 6376 6377 6378 6379
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
6380 6381 6382
            mode(str, optional): Source of the obtained parameters and buffers.
                    'opt' :  The return value only contains the variable in the optimizer.
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.
6383 6384
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
6385
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope
6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
6413
        # can not be imported at the begainning of this file.
6414 6415 6416 6417
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
6418 6419
                "`scope` should be None or `paddle.static.Scope'` type, but received {}."
                .format(type(scope)))
6420 6421 6422 6423 6424

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
6425 6426 6427
            raise TypeError(
                "Type of `mode` should be string, but received {}.".format(
                    type(mode)))
6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):

            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
6454 6455
                    "`mode` string should be 'param', 'opt' or 'all', but received {}."
                    .format(mode))
6456 6457 6458 6459 6460 6461 6462 6463

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
6464 6465
                    "Can not find Variable '{}' in the scope. Make sure it is initialized"
                    .format(var.name))
6466 6467 6468 6469 6470 6471
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
6472
        Set parameters and persistable buffers in state_dict to program.
6473
        An exception will throw if shape or dtype of the parameters is not match.
6474

6475 6476 6477 6478
        .. note::
            This function MUST called after run start_up_program

        Args:
6479
            state_dict(dict): the dict store parameters and persistable buffers.
6480 6481
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
6482
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope
6483 6484
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
6485

6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
                    type(state_dict)))

        vars_dict = {var.name: var for var in self.list_vars()}
        condition = True if 'StructuredToParameterName@@' in state_dict else False
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
                except TypeError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
            else:
6535 6536 6537
                warnings.warn(
                    ("Skip loading for '{0}'. Because '{0}' not in the program."
                     .format(name)))
6538

Y
Yu Yang 已提交
6539

6540
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
6541
class Parameter(Variable):
6542
    """
6543
    Parameter is derived from Variable. A parameter is a persistable
6544
    Variable, and will be updated by optimizers after each iteration.
6545
    The training of a neural network is essentially the updating of
6546 6547
    its parameters.

6548
    Relative to a general Variable, a Parameter has several its own
6549 6550
    member variables:

6551 6552 6553 6554 6555 6556 6557 6558 6559 6560
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
6561
        need_clip (bool): Whether the parameter gradient need to be cliped
6562
            in optimizer. Default is True.
6563 6564
    """

6565 6566 6567 6568 6569 6570
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
6571 6572 6573 6574 6575
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
6576
        if len(shape) == 0:
6577 6578
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
6579 6580 6581

        for each in shape:
            if each < 0:
6582 6583 6584
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
6585

6586 6587 6588 6589 6590 6591 6592
        Variable.__init__(self,
                          block,
                          persistable=True,
                          shape=shape,
                          dtype=dtype,
                          type=type,
                          **kwargs)
Y
Yu Yang 已提交
6593 6594 6595 6596
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

6597 6598
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
6599
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
6600

6601 6602
        self.need_clip = kwargs.get('need_clip', True)

6603 6604
        self.is_distributed = False

6605 6606
        self.is_parameter = True

F
fengjiayi 已提交
6607
    def __str__(self):
6608
        return self._to_readable_code()
F
fengjiayi 已提交
6609

F
update  
fengjiayi 已提交
6610 6611 6612
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
6613

F
update  
fengjiayi 已提交
6614 6615 6616 6617 6618 6619 6620 6621
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

6622 6623 6624 6625 6626 6627 6628 6629 6630
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
6631
        """
6632 6633
        assert isinstance(throw_on_error, bool) and isinstance(
            with_details, bool)
F
update  
fengjiayi 已提交
6634 6635 6636
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
6637
                               "do_model_average", "need_clip")
F
update  
fengjiayi 已提交
6638
            for attr_name in additional_attr:
6639 6640
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
6641 6642
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
6643 6644 6645 6646
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
6647

6648 6649
class ParamBase(core.VarBase):
    """
6650 6651
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode).
    A ParamBase is a persistable Tensor, and will be updated by optimizers
6652
    after each iteration.
6653 6654 6655
    The training of a neural network is essentially the updating of
    its ParamBase.

6656
    Relative to a general Tensor, a ParamBase has several its own
6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
6669
        need_clip (bool): Whether the parameter gradient need to be cliped
6670
            in optimizer. Default is True.
6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

6696 6697 6698 6699
        super(ParamBase,
              self).__init__(dtype if dtype else core.VarDesc.VarType.FP32,
                             list(shape) if shape else [], name,
                             core.VarDesc.VarType.LOD_TENSOR, True)
6700

6701 6702
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
6703 6704 6705 6706 6707 6708 6709

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

6710 6711
        self.need_clip = kwargs.get('need_clip', True)

6712
        self.is_distributed = kwargs.get('is_distributed', False)
6713
        # self.block = default_main_program().global_block()
6714

6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

6728
    def __str__(self):
6729
        """
6730
        Convert a ParamBase object to a readable string.
6731

6732
        Returns(str): A readable string.
6733 6734 6735 6736

        Examples:
            .. code-block:: python

6737
                import paddle
6738 6739 6740 6741 6742 6743 6744
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
6745
        """
6746 6747
        return "Parameter containing:\n{tensor}".format(
            tensor=super(ParamBase, self).__str__())
6748

6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759
    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)
T
tangwei12 已提交
6760

6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = ParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

6779 6780 6781 6782
    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = ParamBase(self.shape, self.dtype, **state)
        core.varbase_copy(self, new_param, device, blocking)
6783 6784 6785 6786 6787 6788
        return new_param

    __repr__ = __str__


if hasattr(core, "eager"):
6789
    _core_eager_eagertensor = core.eager.Tensor
6790 6791 6792 6793 6794 6795
else:
    _core_eager_eagertensor = object


class EagerParamBase(_core_eager_eagertensor):
    """
6796 6797
    EagerParamBase is derived from Tensor( Which is the concept in Eager-Dygraph Mode).
    A EagerParamBase is a persistable Tensor, and will be updated by optimizers
6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814
    after each iteration.
    The training of a neural network is essentially the updating of
    its EagerParamBase.

    Relative to a general Tensor, a EagerParamBase has several its own
    member variables:

    Args:
        trainable(bool): True if the EagerParamBase need to be updated after
            iterations.
        optimize_attr(map): EagerParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the EagerParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this EagerParamBase.
6815
        need_clip (bool): Whether the parameter gradient need to be cliped
6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841
            in optimizer. Default is True.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_eager_param_base'))

6842 6843 6844
        if isinstance(shape, core.eager.Tensor):
            shape = shape.numpy()

6845 6846 6847 6848
        super(EagerParamBase,
              self).__init__(dtype if dtype else core.VarDesc.VarType.FP32,
                             list(shape) if shape else [], name,
                             core.VarDesc.VarType.LOD_TENSOR, True)
6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862
        self.retain_grads()

        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.need_clip = kwargs.get('need_clip', True)

        self.is_distributed = kwargs.get('is_distributed', False)
6863 6864 6865
        # hook functions for lazy initialization
        self._init_func = None
        self._init_op_creator = None
6866 6867

    def set_init_func(self, obj):
6868
        self._init_func = obj
6869 6870 6871

    @dygraph_only
    def initialize(self):
6872 6873
        assert self._init_func is not None, "Required self._init_func is not None, but received None."
        self._init_func()
6874
        # clear function handle to release resource
6875
        self._init_func = None
6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889

    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

6890 6891 6892 6893 6894 6895 6896
    def _create_init_op(self, block):
        """
        Call init_op_creator function to create initializer operation in block.
        """
        assert self._init_op_creator is not None, "Required self._init_op_creator is not None, but received None."
        self._init_op_creator(block)

6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951
    def __str__(self):
        """
        Convert a EagerParamBase object to a readable string.

        Returns(str): A readable string.

        Examples:
            .. code-block:: python

                import paddle
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
        """
        return "Parameter containing:\n{tensor}".format(
            tensor=super(EagerParamBase, self).__str__())

    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)

                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        core.eager.tensor_copy(self, new_param, device, blocking)
6952 6953
        return new_param

6954 6955 6956
    __repr__ = __str__


Y
Yu Yang 已提交
6957
# program is a global instance.
Y
Yu Yang 已提交
6958 6959
_main_program_ = Program()
_startup_program_ = Program()
6960
_startup_program_._is_start_up_program_ = True
6961

6962

6963
def default_startup_program():
Y
Yu Yang 已提交
6964
    """
Y
yuyang18 已提交
6965 6966
    Get default/global startup program.

6967
    The :code:`paddle.nn` function will append the initialization operators into startup program.
6968
    The :code:`startup_program` will initialize the parameters by the OPs.
T
tangwei12 已提交
6969

6970 6971
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
6972

6973 6974
    Returns:
        Program: current default startup program.
6975

6976
    Returns type:
6977 6978 6979 6980

    Examples:
        .. code-block:: python

6981
            import paddle
6982

6983
            paddle.enable_static()
6984 6985 6986 6987
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
6988
    """
Y
Yu Yang 已提交
6989
    return _startup_program_
6990

6991

6992
def default_main_program():
Y
Yu Yang 已提交
6993
    """
6994
    This API can be used to get ``default main program`` which store the
6995
    descriptions of Ops and tensors.
T
tangwei12 已提交
6996

6997 6998
    For example ``z = paddle.add(x, y)`` will create a new ``add``
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` .
Y
yuyang18 已提交
6999

7000
    The ``default main program`` is the default value for ``Program`` parameter in
7001
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
7002
    :code:`default_main_program` when the program is not specified.
7003

7004
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
7005

Y
Yu Yang 已提交
7006
    Returns:
7007
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
7008 7009 7010 7011

    Examples:
        ..  code-block:: python

7012
            import paddle
7013

7014
            paddle.enable_static()
7015
            # Sample Network:
7016 7017 7018
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
7019

7020 7021 7022
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
7023
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
7024
    """
Y
Yu Yang 已提交
7025
    return _main_program_
Y
Yu Yang 已提交
7026 7027 7028 7029 7030


def switch_main_program(program):
    """
    Switch the main program to a new program.
7031

Y
Yu Yang 已提交
7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
7046
    Switch the startup program to a new program
Y
Yu Yang 已提交
7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
7059
@signature_safe_contextmanager
Y
Yu Yang 已提交
7060 7061
def program_guard(main_program, startup_program=None):
    """
7062 7063
    :api_attr: Static Graph

7064 7065 7066
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
7067

G
guofei 已提交
7068
    Args:
7069
        main_program(Program): New main program inside ``with`` statement.
7070 7071
        startup_program(Program, optional): New startup program inside ``with``
            statement. :code:`None` means not changing startup program,
G
guofei 已提交
7072 7073 7074
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
7075
    Examples:
7076
       .. code-block:: python
T
tangwei12 已提交
7077

7078
          import paddle
Y
yuyang18 已提交
7079

7080 7081 7082 7083 7084
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
7085
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
7086 7087 7088

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
7089

Y
Yu Yang 已提交
7090
    Examples:
7091
       .. code-block:: python
Y
yuyang18 已提交
7092

7093
          import paddle
7094

7095 7096 7097 7098 7099
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
7100

Y
Yu Yang 已提交
7101
    """
7102
    from .data_feeder import check_type
7103 7104
    check_type(main_program, 'main_program', Program,
               'paddle.static.program_guard')
Y
Yu Yang 已提交
7105 7106
    main_program = switch_main_program(main_program)
    if startup_program is not None:
7107
        check_type(startup_program, 'startup_program', Program,
7108
                   'paddle.static.program_guard')
7109 7110
        # Tag the program __is_start_up as True
        startup_program._is_start_up_program_ = True
Y
Yu Yang 已提交
7111
        startup_program = switch_startup_program(startup_program)
7112 7113 7114 7115 7116 7117
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
7118 7119


W
Wu Yi 已提交
7120
def _get_var(name, program=None):
X
xuwei06 已提交
7121
    """
Y
yuyang18 已提交
7122
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
7123

X
xuwei06 已提交
7124 7125 7126
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
7127
        If None, default_global_program() will be used.
X
xuwei06 已提交
7128 7129 7130 7131 7132 7133 7134

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
7135
    assert isinstance(program, Program)
X
xuwei06 已提交
7136 7137

    return program.global_block().var(name)
7138 7139


S
rename  
sneaxiy 已提交
7140
@signature_safe_contextmanager
L
lujun 已提交
7141 7142
def _dygraph_guard(tracer):
    global _dygraph_tracer_
7143
    tmp_tracer = _dygraph_tracer_
L
lujun 已提交
7144
    _dygraph_tracer_ = tracer
7145
    core._switch_tracer(tracer)
M
minqiyang 已提交
7146

7147 7148 7149
    try:
        yield
    finally:
7150 7151
        core._switch_tracer(tmp_tracer)
        _dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
7152 7153


S
rename  
sneaxiy 已提交
7154
@signature_safe_contextmanager
L
lujun 已提交
7155
def _dygraph_place_guard(place):
7156 7157 7158
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
7159 7160
    _set_dygraph_tracer_expected_place(place)

7161 7162 7163
    try:
        yield
    finally:
7164
        _global_expected_place_ = tmp_place
J
Jiabin Yang 已提交
7165
        _set_dygraph_tracer_expected_place(_global_expected_place_)
7166 7167


7168 7169 7170 7171 7172 7173 7174 7175 7176 7177
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
7178

7179 7180
    Note:
        The API only supports static mode.
7181 7182 7183 7184

    A context manager that specifies the device on which the OP will be placed.

    Args:
7185
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
7186
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs.
7187 7188 7189 7190 7191 7192 7193
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
7194

7195
        .. code-block:: python
7196

7197
            # required: gpu
Z
Zhang Ting 已提交
7198
            import paddle
7199

Z
Zhang Ting 已提交
7200 7201 7202
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
7203
            if support_gpu:
Z
Zhang Ting 已提交
7204
                place = paddle.CUDAPlace(0)
7205 7206

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
7207 7208 7209
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
7210

Z
Zhang Ting 已提交
7211
            with paddle.static.device_guard("cpu"):
7212
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
7213 7214
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
7215
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
7216
                out = paddle.reshape(data1, shape=shape)
7217

Z
Zhang Ting 已提交
7218 7219
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
7220 7221 7222
            result = exe.run(fetch_list=[out])
    """

7223 7224 7225 7226 7227
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
7228
    if device not in ['cpu', 'gpu', 'npu', 'xpu', 'mlu', '', None]:
7229
        raise ValueError(
7230
            "The Attr(device) should be 'cpu' 'npu' 'xpu' 'mlu' or 'gpu', and it can also be empty string or None "
7231
            "when there is no need to specify device. But received %s" % device)
7232 7233
    if index:
        device = ":".join([device, index])
7234
    pre_device = switch_device(device)
7235 7236 7237 7238
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
7239 7240


7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271
def _switch_cuda_graph_mode(cuda_graph_attr):
    global _current_cuda_graph_mode
    pre_mode = _current_cuda_graph_mode
    _current_cuda_graph_mode = cuda_graph_attr
    return pre_mode


@signature_safe_contextmanager
def _cuda_graph_guard(cuda_graph_attr=None):
    """

    Note:
        The API only supports static mode.

    A context manager that specifies the cuda_graph_mode which indicating the cuda graph capture under static mode.

    Args:
        cuda_graph_attr(str|None): The cuda graph attr with the format of:
                                   cuda_graph_capture_mode;memory_pool_id;cuda_graph_id
    """
    assert not _non_static_mode(
    ), "cuda_graph_guard only works under static mode"
    assert core.is_compiled_with_cuda(
    ), "cuda_graph_guard context can be only used when Paddle is compiled with cuda"
    pre_mode = _switch_cuda_graph_mode(cuda_graph_attr)
    try:
        yield
    finally:
        _switch_cuda_graph_mode(pre_mode)


G
guofei 已提交
7272 7273 7274
def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.
7275
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7276 7277 7278 7279 7280 7281 7282

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

7283 7284
                import paddle
                paddle.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
G
guofei 已提交
7285 7286 7287 7288
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
7289 7290
        if _global_flags().is_public(key):
            _global_flags()[key] = value
G
guofei 已提交
7291 7292 7293 7294 7295 7296 7297 7298
        else:
            raise ValueError(
                "Flag %s cannot set its value through this function." % (key))


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.
7299
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7300 7301 7302 7303 7304 7305 7306 7307 7308 7309

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

7310
            import paddle
G
guofei 已提交
7311 7312

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
7313
            res = paddle.get_flags(flags)
G
guofei 已提交
7314 7315 7316 7317 7318 7319
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
7320 7321
            if (_global_flags().is_public(key)):
                value = _global_flags()[key]
G
guofei 已提交
7322 7323 7324 7325 7326 7327 7328
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
                    'Flag %s cannot get its value through this function.' %
                    (key))
    elif isinstance(flags, str):
7329 7330
        if (_global_flags().is_public(flags)):
            value = _global_flags()[flags]
G
guofei 已提交
7331 7332 7333 7334 7335 7336 7337 7338
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
                'Flag %s cannot get its value through this function.' % (flags))
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
7339 7340 7341 7342 7343 7344 7345


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
    if isinstance(place, (core.Place, core.XPUPlace, core.CPUPlace,
7346
                          core.CUDAPinnedPlace, core.CUDAPlace, core.NPUPlace,
7347
                          core.IPUPlace, core.MLUPlace, core.CustomPlace)):
7348 7349 7350 7351 7352 7353 7354 7355 7356
        return place

    if not isinstance(place, str):
        raise ValueError(
            "place only support string which is 'Place' and so on.")

    place = place.lower()
    if (place == "cpu"):
        return core.CPUPlace()
7357

7358 7359 7360
    if (place == "device"):
        return core.Place()

7361
    # GPU
7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with CUDA".format(avaliable_gpu_place))
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
7377 7378

    # XPU
7379 7380 7381 7382 7383 7384 7385 7386 7387 7388
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with XPU".format(avaliable_xpu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401

    # NPU
    avaliable_npu_place = re.match(r'npu:\d+', place)
    if avaliable_npu_place:
        if not core.is_compiled_with_npu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with NPU".format(avaliable_npu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.NPUPlace(device_id)

J
jianghaicheng 已提交
7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413
    # IPU
    avaliable_ipu_place = re.match(r'ipu:\d+', place)
    if avaliable_ipu_place:
        if not core.is_compiled_with_ipu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with IPU".format(avaliable_ipu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.IPUPlace(device_id)

7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425
    # MLU
    avaliable_mlu_place = re.match(r'mlu:\d+', place)
    if avaliable_mlu_place:
        if not core.is_compiled_with_mlu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with MLU".format(avaliable_mlu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.MLUPlace(device_id)

7426
    raise ValueError(
7427 7428
        "Paddle supports CPUPlace, CUDAPlace,CUDAPinnedPlace, XPUPlace, IPUPlace, MLUPlace and NPUPlace, but received {}."
        .format(place))
7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441


def _get_paddle_place_list(places):

    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret