Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
848cabfc
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
848cabfc
编写于
5月 20, 2021
作者:
L
liym27
提交者:
GitHub
5月 20, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Polish code for setitem and getitem (#32911)
上级
738bf20e
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
311 addition
and
289 deletion
+311
-289
python/paddle/fluid/framework.py
python/paddle/fluid/framework.py
+2
-289
python/paddle/fluid/tests/unittests/test_variable.py
python/paddle/fluid/tests/unittests/test_variable.py
+3
-0
python/paddle/fluid/variable_index.py
python/paddle/fluid/variable_index.py
+306
-0
未找到文件。
python/paddle/fluid/framework.py
浏览文件 @
848cabfc
...
...
@@ -39,6 +39,7 @@ from . import unique_name
import
paddle.version
as
fluid_version
import
warnings
import
functools
from
.variable_index
import
_getitem_impl_
,
_setitem_impl_
__all__
=
[
'Program'
,
...
...
@@ -778,141 +779,6 @@ class ParameterMetaClass(VariableMetaClass):
return
issubclass
(
t
,
Parameter
)
def
_getitem_impl_
(
var
,
item
):
"""
Slice the variable.
Args:
item(int/slice/tuple) : the index.
Returns:
Sliced variable
"""
if
not
isinstance
(
item
,
tuple
):
item
=
[
item
]
decrease_axes
=
[]
axes
=
[]
starts
=
[]
ends
=
[]
steps
=
[]
use_strided_slice
=
False
reverse_axis
=
[]
max_integer
=
2
**
31
-
1
for
dim
,
slice_item
in
enumerate
(
item
):
if
isinstance
(
slice_item
,
slice
):
start
=
slice_item
.
start
end
=
slice_item
.
stop
step
=
slice_item
.
step
if
start
is
None
and
end
is
None
and
step
is
None
:
continue
step
=
1
if
step
is
None
else
step
if
start
is
None
and
end
is
None
:
assert
(
step
==
-
1
)
reverse_axis
.
append
(
dim
)
continue
if
start
is
None
:
start
=
0
if
end
is
None
:
end
=
max_integer
else
:
decrease_axes
.
append
(
dim
)
start
=
slice_item
step
=
1
end
=
slice_item
+
1
if
slice_item
!=
-
1
else
max_integer
axes
.
append
(
dim
)
starts
.
append
(
start
)
ends
.
append
(
end
)
steps
.
append
(
step
)
use_strided_slice
=
True
if
step
!=
1
else
use_strided_slice
inputs
=
{
'Input'
:
[
var
]}
attrs
=
{
'axes'
:
axes
,
'starts'
:
[],
'ends'
:
[],
'decrease_axis'
:
decrease_axes
}
if
use_strided_slice
==
True
:
attrs
[
'strides'
]
=
[]
infer_flags
=
list
(
1
for
i
in
range
(
len
(
axes
)))
from
.layers
import
utils
def
deal_attrs
(
attr
,
attr_name
,
tensor_attr_name
,
inputs
,
infer_flags
):
if
utils
.
_contain_var
(
attr
):
inputs
[
tensor_attr_name
]
=
utils
.
_convert_to_tensor_list
(
attr
,
dtype
=
"int64"
)
for
i
,
dim
in
enumerate
(
attr
):
if
isinstance
(
dim
,
Variable
):
attrs
[
attr_name
].
append
(
-
1
)
infer_flags
[
i
]
=
-
1
else
:
attrs
[
attr_name
].
append
(
dim
)
else
:
attrs
[
attr_name
]
=
attr
deal_attrs
(
starts
,
"starts"
,
"StartsTensorList"
,
inputs
,
infer_flags
)
deal_attrs
(
ends
,
"ends"
,
"EndsTensorList"
,
inputs
,
infer_flags
)
deal_attrs
(
steps
,
"strides"
,
"StridesTensorList"
,
inputs
,
infer_flags
)
# infer_flags
attrs
[
'infer_flags'
]
=
infer_flags
out
=
var
target_block
=
default_main_program
().
current_block
()
if
use_strided_slice
==
False
and
len
(
axes
)
>
0
:
# append slice_op here
slice_out_var
=
target_block
.
create_var
(
name
=
unique_name
.
generate_with_ignorable_key
(
var
.
name
+
"_slice"
),
dtype
=
var
.
dtype
)
target_block
.
append_op
(
type
=
"slice"
,
inputs
=
inputs
,
outputs
=
{
'Out'
:
[
slice_out_var
]},
attrs
=
attrs
)
out
=
slice_out_var
elif
use_strided_slice
==
True
and
len
(
axes
)
>
0
:
strided_slice_out_var
=
target_block
.
create_var
(
name
=
unique_name
.
generate_with_ignorable_key
(
var
.
name
+
"_strided_slice"
),
dtype
=
var
.
dtype
)
target_block
.
append_op
(
type
=
"strided_slice"
,
inputs
=
inputs
,
outputs
=
{
'Out'
:
[
strided_slice_out_var
]},
attrs
=
attrs
)
out
=
strided_slice_out_var
if
len
(
reverse_axis
)
>
0
:
reverse_out_var
=
target_block
.
create_var
(
name
=
unique_name
.
generate_with_ignorable_key
(
var
.
name
+
"_slice_reverse"
),
dtype
=
var
.
dtype
)
target_block
.
append_op
(
type
=
"reverse"
,
inputs
=
{
'X'
:
out
},
outputs
=
{
'Out'
:
[
reverse_out_var
]},
attrs
=
{
'axis'
:
reverse_axis
})
out
=
reverse_out_var
return
out
@
six
.
add_metaclass
(
VariableMetaClass
)
class
Variable
(
object
):
"""
...
...
@@ -1768,160 +1634,7 @@ class Variable(object):
return
_getitem_impl_
(
self
,
item
)
def
__setitem__
(
self
,
item
,
value
):
inputs
=
{
'Input'
:
self
}
# 1. Parse item
if
not
isinstance
(
item
,
tuple
):
item
=
[
item
]
decrease_axes
=
[]
axes
=
[]
starts
=
[]
ends
=
[]
steps
=
[]
max_integer
=
sys
.
maxsize
def
replace_ellipsis
(
item
):
# Use slice(None) to replace Ellipsis.
# For var, var.shape = [3,4,5,6]
#
# var[..., 1:2] -> var[:, :, :, 1:2]
# var[0, ...] -> var[0]
# var[0, ..., 1:2] -> var[0, :, :, 1:2]
item
=
list
(
item
)
# Remove Variable to skip bug when counting Ellipsis
item_remove_var
=
[
ele
for
ele
in
item
if
not
isinstance
(
ele
,
Variable
)
]
ell_count
=
item_remove_var
.
count
(
Ellipsis
)
if
ell_count
==
0
:
return
item
elif
ell_count
>
1
:
raise
IndexError
(
"An index can only have a single ellipsis ('...')"
)
ell_idx
=
item
.
index
(
Ellipsis
)
if
ell_idx
==
len
(
item
)
-
1
:
return
item
[:
-
1
]
else
:
item
[
ell_idx
:
ell_idx
+
1
]
=
[
slice
(
None
)]
*
(
len
(
self
.
shape
)
-
len
(
item
)
+
1
)
return
item
item
=
replace_ellipsis
(
item
)
for
dim
,
slice_item
in
enumerate
(
item
):
if
isinstance
(
slice_item
,
slice
):
start
=
slice_item
.
start
end
=
slice_item
.
stop
step
=
slice_item
.
step
if
start
is
None
and
end
is
None
and
step
is
None
:
continue
step
=
1
if
step
is
None
else
step
# TODO: support cases when step < 1
if
not
isinstance
(
step
,
Variable
)
and
step
==
0
:
raise
ValueError
(
"When assign a value to a paddle.Tensor, step can not be 0, "
"but received step is {}."
.
format
(
step
))
if
isinstance
(
step
,
Variable
)
and
(
start
is
None
or
end
is
None
):
raise
ValueError
(
"When assign a value to a paddle.Tensor, it's not supported that "
"the start or end is None when the type of step is paddle.Tensor."
)
if
start
is
None
:
start
=
0
if
step
>
0
else
max_integer
if
end
is
None
:
end
=
max_integer
if
step
>
0
else
(
0
-
max_integer
)
else
:
decrease_axes
.
append
(
dim
)
start
=
slice_item
end
=
slice_item
+
1
if
slice_item
!=
-
1
else
max_integer
step
=
1
axes
.
append
(
dim
)
starts
.
append
(
start
)
ends
.
append
(
end
)
steps
.
append
(
step
)
attrs
=
{
'axes'
:
axes
,
'starts'
:
starts
,
'ends'
:
ends
,
'steps'
:
steps
,
'decrease_axes'
:
decrease_axes
}
from
.layers
import
utils
if
utils
.
_contain_var
(
starts
):
inputs
[
'StartsTensorList'
]
=
utils
.
_convert_to_tensor_list
(
starts
)
del
attrs
[
'starts'
]
if
utils
.
_contain_var
(
ends
):
inputs
[
'EndsTensorList'
]
=
utils
.
_convert_to_tensor_list
(
ends
)
del
attrs
[
'ends'
]
if
utils
.
_contain_var
(
steps
):
inputs
[
'StepsTensorList'
]
=
utils
.
_convert_to_tensor_list
(
steps
)
del
attrs
[
'steps'
]
# 2. Parse value
dtype
=
self
.
dtype
attrs
[
'dtype'
]
=
dtype
from
.data_feeder
import
convert_dtype
# 2.1 value is an integer of float
if
isinstance
(
value
,
(
int
,
float
)):
value
=
np
.
array
([
value
]).
astype
(
convert_dtype
(
dtype
))
# 2.2 value is a np.ndarray
if
isinstance
(
value
,
np
.
ndarray
):
shape
=
list
(
value
.
shape
)
if
dtype
==
core
.
VarDesc
.
VarType
.
BOOL
:
value_name
=
"bool_values"
values
=
[
bool
(
v
)
for
v
in
value
.
flat
]
elif
dtype
==
core
.
VarDesc
.
VarType
.
FP32
:
value_name
=
"fp32_values"
values
=
[
float
(
v
)
for
v
in
value
.
flat
]
elif
dtype
==
core
.
VarDesc
.
VarType
.
FP64
:
value_name
=
"fp64_values"
values
=
[
float
(
v
)
for
v
in
value
.
flat
]
elif
dtype
==
core
.
VarDesc
.
VarType
.
INT32
:
value_name
=
"int32_values"
values
=
[
int
(
v
)
for
v
in
value
.
flat
]
elif
dtype
==
core
.
VarDesc
.
VarType
.
INT64
:
value_name
=
"int64_values"
values
=
[
int
(
v
)
for
v
in
value
.
flat
]
else
:
raise
TypeError
(
"When assign a numpy.ndarray, integer or float to a paddle.Tensor, "
"the data type of the paddle.Tensor must be bool, float32, int32 or int64, but "
"received %s."
%
convert_dtype
(
dtype
))
attrs
[
value_name
]
=
values
attrs
[
"shape"
]
=
shape
elif
isinstance
(
value
,
Variable
):
inputs
[
"ValueTensor"
]
=
value
else
:
raise
TypeError
(
"Only support to assign an integer, float, numpy.ndarray or "
"paddle.Tensor to a paddle.Tensor, but received {}"
.
format
(
type
(
value
)))
cur_block
=
default_main_program
().
current_block
()
cur_block
.
append_op
(
type
=
"set_value"
,
inputs
=
inputs
,
outputs
=
{
'Out'
:
self
},
attrs
=
attrs
)
return
self
return
_setitem_impl_
(
self
,
item
,
value
)
def
get_value
(
self
,
scope
=
None
):
"""
...
...
python/paddle/fluid/tests/unittests/test_variable.py
浏览文件 @
848cabfc
...
...
@@ -15,12 +15,15 @@
from
__future__
import
print_function
import
unittest
import
paddle
from
paddle.fluid.framework
import
default_main_program
,
Program
,
convert_np_dtype_to_dtype_
,
in_dygraph_mode
import
paddle.fluid
as
fluid
import
paddle.fluid.layers
as
layers
import
paddle.fluid.core
as
core
import
numpy
as
np
paddle
.
enable_static
()
class
TestVariable
(
unittest
.
TestCase
):
def
test_np_dtype_convert
(
self
):
...
...
python/paddle/fluid/variable_index.py
0 → 100644
浏览文件 @
848cabfc
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
sys
import
numpy
as
np
from
.
import
unique_name
from
.
import
core
MAX_INTEGER
=
2
**
31
-
1
def
replace_ellipsis
(
var
,
item
):
from
.framework
import
Variable
# Use slice(None) to replace Ellipsis.
# For var, var.shape = [3,4,5,6]
#
# var[..., 1:2] -> var[:, :, :, 1:2]
# var[0, ...] -> var[0]
# var[0, ..., 1:2] -> var[0, :, :, 1:2]
item
=
list
(
item
)
# Remove Variable to skip bug when counting Ellipsis
item_remove_var
=
[
ele
for
ele
in
item
if
not
isinstance
(
ele
,
Variable
)]
ell_count
=
item_remove_var
.
count
(
Ellipsis
)
if
ell_count
==
0
:
return
item
elif
ell_count
>
1
:
raise
IndexError
(
"An index can only have a single ellipsis ('...')"
)
ell_idx
=
item
.
index
(
Ellipsis
)
if
ell_idx
==
len
(
item
)
-
1
:
return
item
[:
-
1
]
else
:
item
[
ell_idx
:
ell_idx
+
1
]
=
[
slice
(
None
)]
*
(
len
(
var
.
shape
)
-
len
(
item
)
+
1
)
return
item
def
is_integer_or_scalar_tensor
(
ele
):
from
.framework
import
Variable
if
isinstance
(
ele
,
int
):
return
True
elif
isinstance
(
ele
,
Variable
):
if
len
(
ele
.
shape
)
==
1
and
ele
.
shape
[
0
]
==
1
:
return
True
return
False
def
deal_attrs
(
attrs
,
attr
,
attr_name
,
tensor_attr_name
,
inputs
,
infer_flags
):
from
.framework
import
Variable
from
.layers
import
utils
if
utils
.
_contain_var
(
attr
):
inputs
[
tensor_attr_name
]
=
utils
.
_convert_to_tensor_list
(
attr
,
dtype
=
"int64"
)
for
i
,
dim
in
enumerate
(
attr
):
if
isinstance
(
dim
,
Variable
):
attrs
[
attr_name
].
append
(
-
1
)
infer_flags
[
i
]
=
-
1
else
:
attrs
[
attr_name
].
append
(
dim
)
else
:
attrs
[
attr_name
]
=
attr
def
_getitem_impl_
(
var
,
item
):
"""
Slice the variable.
Args:
item(int/slice/tuple) : the index.
Returns:
Sliced variable
"""
from
.framework
import
default_main_program
if
not
isinstance
(
item
,
tuple
):
item
=
(
item
,
)
decrease_axes
=
[]
axes
=
[]
starts
=
[]
ends
=
[]
steps
=
[]
reverse_axis
=
[]
use_strided_slice
=
False
for
dim
,
slice_item
in
enumerate
(
item
):
if
is_integer_or_scalar_tensor
(
slice_item
):
decrease_axes
.
append
(
dim
)
start
=
slice_item
step
=
1
end
=
slice_item
+
1
if
slice_item
!=
-
1
else
MAX_INTEGER
elif
isinstance
(
slice_item
,
slice
):
start
=
slice_item
.
start
end
=
slice_item
.
stop
step
=
slice_item
.
step
if
start
is
None
and
end
is
None
and
step
is
None
:
continue
step
=
1
if
step
is
None
else
step
if
start
is
None
and
end
is
None
:
assert
(
step
==
-
1
)
reverse_axis
.
append
(
dim
)
continue
start
=
0
if
start
is
None
else
start
end
=
MAX_INTEGER
if
end
is
None
else
end
else
:
raise
IndexError
(
"Valid index accept int or slice or ellipsis, but received {}."
.
format
(
slice_item
))
axes
.
append
(
dim
)
starts
.
append
(
start
)
ends
.
append
(
end
)
steps
.
append
(
step
)
use_strided_slice
=
True
if
step
!=
1
else
use_strided_slice
inputs
=
{
'Input'
:
[
var
]}
attrs
=
{
'axes'
:
axes
,
'starts'
:
[],
'ends'
:
[],
'decrease_axis'
:
decrease_axes
}
if
use_strided_slice
:
attrs
[
'strides'
]
=
[]
infer_flags
=
[
1
]
*
len
(
axes
)
deal_attrs
(
attrs
,
starts
,
"starts"
,
"StartsTensorList"
,
inputs
,
infer_flags
)
deal_attrs
(
attrs
,
ends
,
"ends"
,
"EndsTensorList"
,
inputs
,
infer_flags
)
deal_attrs
(
attrs
,
steps
,
"strides"
,
"StridesTensorList"
,
inputs
,
infer_flags
)
attrs
[
'infer_flags'
]
=
infer_flags
out
=
var
if
len
(
axes
)
>
0
:
target_block
=
default_main_program
().
current_block
()
op_type
=
"strided_slice"
if
use_strided_slice
else
"slice"
slice_out_var
=
target_block
.
create_var
(
name
=
unique_name
.
generate_with_ignorable_key
(
var
.
name
+
"_"
+
op_type
),
dtype
=
var
.
dtype
)
target_block
.
append_op
(
type
=
op_type
,
inputs
=
inputs
,
outputs
=
{
'Out'
:
[
slice_out_var
]},
attrs
=
attrs
)
out
=
slice_out_var
if
len
(
reverse_axis
)
>
0
:
from
.layers.tensor
import
reverse
out
=
reverse
(
out
,
axis
=
reverse_axis
)
return
out
def
_setitem_impl_
(
var
,
item
,
value
):
from
.framework
import
default_main_program
,
Variable
inputs
=
{
'Input'
:
var
}
# 1. Parse item
if
not
isinstance
(
item
,
tuple
):
item
=
(
item
,
)
decrease_axes
=
[]
axes
=
[]
starts
=
[]
ends
=
[]
steps
=
[]
item
=
replace_ellipsis
(
var
,
item
)
for
dim
,
slice_item
in
enumerate
(
item
):
if
is_integer_or_scalar_tensor
(
slice_item
):
decrease_axes
.
append
(
dim
)
start
=
slice_item
end
=
slice_item
+
1
if
slice_item
!=
-
1
else
MAX_INTEGER
step
=
1
elif
isinstance
(
slice_item
,
slice
):
start
=
slice_item
.
start
end
=
slice_item
.
stop
step
=
slice_item
.
step
if
start
is
None
and
end
is
None
and
step
is
None
:
continue
step
=
1
if
step
is
None
else
step
if
not
isinstance
(
step
,
Variable
)
and
step
==
0
:
raise
ValueError
(
"When assign a value to a paddle.Tensor, step can not be 0, "
"but received step is {}."
.
format
(
step
))
if
isinstance
(
step
,
Variable
)
and
(
start
is
None
or
end
is
None
):
raise
ValueError
(
"When assign a value to a paddle.Tensor, it's not supported that "
"the start or end is None when the type of step is paddle.Tensor."
)
if
start
is
None
:
start
=
0
if
step
>
0
else
MAX_INTEGER
if
end
is
None
:
end
=
MAX_INTEGER
if
step
>
0
else
(
0
-
MAX_INTEGER
)
else
:
raise
IndexError
(
"Valid index accept int or slice or ellipsis, but received {}."
.
format
(
slice_item
))
axes
.
append
(
dim
)
starts
.
append
(
start
)
ends
.
append
(
end
)
steps
.
append
(
step
)
attrs
=
{
'axes'
:
axes
,
'starts'
:
starts
,
'ends'
:
ends
,
'steps'
:
steps
,
'decrease_axes'
:
decrease_axes
}
from
.layers
import
utils
if
utils
.
_contain_var
(
starts
):
inputs
[
'StartsTensorList'
]
=
utils
.
_convert_to_tensor_list
(
starts
)
del
attrs
[
'starts'
]
if
utils
.
_contain_var
(
ends
):
inputs
[
'EndsTensorList'
]
=
utils
.
_convert_to_tensor_list
(
ends
)
del
attrs
[
'ends'
]
if
utils
.
_contain_var
(
steps
):
inputs
[
'StepsTensorList'
]
=
utils
.
_convert_to_tensor_list
(
steps
)
del
attrs
[
'steps'
]
# 2. Parse value
dtype
=
var
.
dtype
attrs
[
'dtype'
]
=
dtype
from
.data_feeder
import
convert_dtype
# 2.1 value is an integer of float
if
isinstance
(
value
,
(
int
,
float
)):
value
=
np
.
array
([
value
]).
astype
(
convert_dtype
(
dtype
))
# 2.2 value is a np.ndarray
if
isinstance
(
value
,
np
.
ndarray
):
shape
=
list
(
value
.
shape
)
if
dtype
==
core
.
VarDesc
.
VarType
.
BOOL
:
value_name
=
"bool_values"
values
=
[
bool
(
v
)
for
v
in
value
.
flat
]
elif
dtype
==
core
.
VarDesc
.
VarType
.
FP32
:
value_name
=
"fp32_values"
values
=
[
float
(
v
)
for
v
in
value
.
flat
]
elif
dtype
==
core
.
VarDesc
.
VarType
.
FP64
:
value_name
=
"fp64_values"
values
=
[
float
(
v
)
for
v
in
value
.
flat
]
elif
dtype
==
core
.
VarDesc
.
VarType
.
INT32
:
value_name
=
"int32_values"
values
=
[
int
(
v
)
for
v
in
value
.
flat
]
elif
dtype
==
core
.
VarDesc
.
VarType
.
INT64
:
value_name
=
"int64_values"
values
=
[
int
(
v
)
for
v
in
value
.
flat
]
else
:
raise
TypeError
(
"When assign a numpy.ndarray, integer or float to a paddle.Tensor, "
"the data type of the paddle.Tensor must be bool, float32, int32 or int64, but "
"received %s."
%
convert_dtype
(
dtype
))
attrs
[
value_name
]
=
values
attrs
[
"shape"
]
=
shape
elif
isinstance
(
value
,
Variable
):
inputs
[
"ValueTensor"
]
=
value
else
:
raise
TypeError
(
"Only support to assign an integer, float, numpy.ndarray or "
"paddle.Tensor to a paddle.Tensor, but received {}"
.
format
(
type
(
value
)))
cur_block
=
default_main_program
().
current_block
()
cur_block
.
append_op
(
type
=
"set_value"
,
inputs
=
inputs
,
outputs
=
{
'Out'
:
var
},
attrs
=
attrs
)
return
var
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录