framework.py 198.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26
import copy
27

Y
Yu Yang 已提交
28
import numpy as np
29
import subprocess
S
sneaxiy 已提交
30
import multiprocessing
31
import sys
32
import logging
M
minqiyang 已提交
33
from .. import compat as cpt
34
from .proto import framework_pb2
35 36

from . import core
37
from . import unique_name
38 39
import paddle.version as fluid_version
import warnings
40
import functools
Y
Yu Yang 已提交
41

42
__all__ = [
43 44 45 46
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
47
    'name_scope',
S
sneaxiy 已提交
48 49
    'cuda_places',
    'cpu_places',
50
    'xpu_places',
S
sneaxiy 已提交
51
    'cuda_pinned_places',
L
lujun 已提交
52
    'in_dygraph_mode',
C
chengduo 已提交
53
    'is_compiled_with_cuda',
54
    'is_compiled_with_xpu',
55
    'Variable',
56
    'load_op_library',
57
    'require_version',
58
    'device_guard',
G
guofei 已提交
59 60
    'set_flags',
    'get_flags',
61
]
Y
Yu Yang 已提交
62

Q
qiaolongfei 已提交
63 64 65 66
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
67 68
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
69
_dygraph_tracer_ = None
70
_global_expected_place_ = None
71
_current_device = None
72 73
global_prog_seed = 0

74

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
    min_version_to_check = min_version_split + zero_version[len(
        min_version_split):]

    if max_version is not None:
        max_version_split = max_version.split('.')
        max_version_to_check = max_version_split + zero_version[len(
            max_version_split):]

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


L
lujun 已提交
182
def in_dygraph_mode():
L
lujun 已提交
183
    """
184

185 186 187 188 189 190 191
    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .
L
lujun 已提交
192 193

    Returns:
194
        bool: Whether paddle runs in dynamic graph mode.
L
lujun 已提交
195 196 197 198

    Examples:
        .. code-block:: python

199 200 201 202 203 204 205 206
            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode
L
lujun 已提交
207 208

    """
L
lujun 已提交
209
    return _dygraph_tracer_ is not None
210 211


212 213 214
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
215
        ), "We don't support %s in imperative mode" % func.__name__
216 217 218 219 220 221 222 223
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
        assert in_dygraph_mode(
224 225 226 227 228 229 230 231 232
        ), "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode." % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _static_only_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
233
        ), "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode." % func.__name__
234 235 236 237 238
        return func(*args, **kwargs)

    return __impl__


239 240 241 242 243 244
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
245
# same base class.
246 247 248 249 250 251 252 253 254
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
            "'%s' should be called by imperative Varible in imperative mode, please use fluid.dygraph.guard() as context to run it in imperative mode"
            % func.__name__)

    return __impl__


T
tangwei12 已提交
255 256
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
                DeprecationWarning)
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


274 275
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
276
static_only = wrap_decorator(_static_only_)
277
fake_interface_only = wrap_decorator(_fake_interface_only_)
278 279


L
lujun 已提交
280 281
def _dygraph_tracer():
    return _dygraph_tracer_
282

W
Wu Yi 已提交
283

M
minqiyang 已提交
284
def _current_expected_place():
285 286 287
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
288 289 290 291 292 293 294 295 296 297 298
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.CUDAPlace(0)
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
    global _dygraph_tracer_
    if _dygraph_tracer_ is not None:
        _dygraph_tracer_._expected_place = place


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
315 316


L
Leo Chen 已提交
317 318 319 320
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
    """	
    convert VarBase tp numpy	
T
tangwei12 已提交
321

L
Leo Chen 已提交
322 323 324 325 326 327 328 329 330 331 332 333
    Args:	
        var_base(VarBase) : the VarBase to convert	
    Returns (np.ndarray): the np.ndarray contain the value of VarBase	
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
334
def _cpu_num():
335
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
336 337 338 339 340 341 342 343
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
344
        os.environ['CPU_NUM'] = str(1)
345
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
346 347 348 349 350 351 352 353 354 355
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
356 357


358 359 360 361 362 363 364 365 366
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_xpu_device_count())
    return device_ids


367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


C
chengduo 已提交
382 383 384 385
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

386
    Returns (bool): `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
387 388 389 390

    Examples:
        .. code-block:: python

391 392
            import paddle
            support_gpu = paddle.is_compiled_with_cuda()
C
chengduo 已提交
393 394 395 396
    """
    return core.is_compiled_with_cuda()


S
sneaxiy 已提交
397
def cuda_places(device_ids=None):
L
lujun 已提交
398
    """
399 400 401 402
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
403
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
404 405

    If :code:`device_ids` is None, environment variable of
406
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
407
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
408
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
409
    If :code:`FLAGS_selected_gpus` is not set, all visible
410
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
411 412

    If :code:`device_ids` is not None, it should be the device
413
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
414
    the returned list would be 
C
Chen Weihang 已提交
415
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
416

417 418
    Parameters:
        device_ids (list or tuple of int, optional): list of GPU device ids.
S
add doc  
sneaxiy 已提交
419 420

    Returns:
C
Chen Weihang 已提交
421
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
422 423 424 425

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
426 427
            import paddle
            import paddle.static as static
T
tangwei12 已提交
428

C
Chen Weihang 已提交
429 430 431
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
432 433

    """
S
sneaxiy 已提交
434 435 436
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
437
        device_ids = _cuda_ids()
S
sneaxiy 已提交
438 439 440 441 442
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
    This function creates a list of :code:`paddle.XPUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_xpus` would be checked first. For example, if
    :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
    be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
    If :code:`FLAGS_selected_xpus` is not set, all visible
    xpu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
    the returned list would be 
    [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
    
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
465
        
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
            import paddle
            import paddle.static as static
            
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
    assert core.is_compiled_with_xpu(), \
        "Not compiled with XPU"
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
481
def cpu_places(device_count=None):
L
lujun 已提交
482
    """
C
Chen Weihang 已提交
483
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
484

S
add doc  
sneaxiy 已提交
485 486
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
487 488
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
489 490
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
491

492 493
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
494 495

    Returns:
C
Chen Weihang 已提交
496
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
497 498 499 500

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
501 502
            import paddle
            import paddle.static as static
T
tangwei12 已提交
503

C
Chen Weihang 已提交
504 505 506
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
507 508
    """

S
sneaxiy 已提交
509 510 511 512 513 514
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
515
    """
516
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
517 518 519

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
520 521 522 523
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
524

525 526
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
527 528

    Returns:
529
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
530 531 532 533

    Examples:
        .. code-block:: python

534
            import paddle.fluid as fluid
L
lujun 已提交
535 536 537 538 539
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
540 541 542
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
543 544
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
545 546


547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
573
@signature_safe_contextmanager
574 575
def name_scope(prefix=None):
    """
576 577
    :api_attr: Static Graph

578
    Generate hierarchical name prefix for the operators in Static Graph.
579

T
Tao Luo 已提交
580 581 582
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
583
        Don't use it in dygraph, since it will cause memory leak.
584 585

    Args:
T
Tao Luo 已提交
586
        prefix(str, optional): prefix. Default is none.
587 588 589

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
590

591 592 593
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
594
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
595
             b = a + 1
596
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
597
                c = b * 1
598
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
599
                d = c / 1
600 601 602
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
603 604 605
                g = f - 1

          # Op are created in the default main program.  
606
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
622 623
    """
    # TODO(panyx0718): Only [0-9a-z].
624
    # in dygraph we don't need namescope since it will cause mem leak
L
Leo Chen 已提交
625 626 627
    if in_dygraph_mode():
        yield
    else:
T
tianshuo78520a 已提交
628
        assert prefix, "namescope prefix can not be empty."
629 630
        global _name_scope
        _name_scope = _name_scope.child(prefix)
631 632 633 634
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
635 636 637 638 639 640 641 642 643 644 645 646


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
647 648 649
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
650 651 652 653


def grad_var_name(var_name):
    """
654 655
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
656 657 658
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
659

660
def convert_np_dtype_to_dtype_(np_dtype):
661 662
    """
    Convert the data type in numpy to the data type in Paddle
663

664
    Args:
665
        np_dtype(np.dtype): the data type in numpy.
666

667 668
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
669 670

    """
671 672
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
673
        return core.VarDesc.VarType.FP32
674
    elif dtype == np.float64:
675
        return core.VarDesc.VarType.FP64
676
    elif dtype == np.float16:
677
        return core.VarDesc.VarType.FP16
678
    elif dtype == np.int32:
679
        return core.VarDesc.VarType.INT32
680
    elif dtype == np.int16:
681
        return core.VarDesc.VarType.INT16
682
    elif dtype == np.int64:
683
        return core.VarDesc.VarType.INT64
684
    elif dtype == np.bool:
685
        return core.VarDesc.VarType.BOOL
686
    elif dtype == np.uint16:
687 688 689
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
690 691
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
692 693
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
694 695 696 697
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
698
    else:
M
minqiyang 已提交
699
        raise ValueError("Not supported numpy dtype %s" % dtype)
700 701 702


def dtype_is_floating(dtype):
703 704 705
    """
    Check the data type is floating or not.
    Args:
706
        dtype(np.dtype|core.VarDesc.VarType): data type.
707 708 709 710 711
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
712
    if not isinstance(dtype, core.VarDesc.VarType):
713 714
        dtype = convert_np_dtype_to_dtype_(dtype)

715 716 717 718
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
719 720


Y
Yang Yang(Tony) 已提交
721
def _debug_string_(proto, throw_on_error=True):
722 723 724 725 726 727 728 729 730 731 732
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
733
    error_fields = list()
Y
Yang Yang(Tony) 已提交
734
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
735 736
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
737 738 739
    return proto.__str__()


740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

    return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
                        list(shape) if shape else [], name, type
                        if type else core.VarDesc.VarType.LOD_TENSOR, True
                        if persistable else False)


class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, core.VarBase)
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, ParamBase)
        else:
            return issubclass(t, Parameter)


def _getitem_impl_(var, item):
    """
    Slice the variable.

    Args:
        item(int/slice/tuple) : the index.

    Returns:
        Sliced variable
    """

    if not isinstance(item, tuple):
        item = [item]

    decrease_axis = []
    slice_axis = []
    slice_start = []
    slice_end = []
    slice_step = []
    use_strided_slice = False
    reverse_axis = []
797
    target_block = default_main_program().current_block()
798 799 800 801 802 803 804 805 806 807 808

    def fill_constant(shape, value, force_cpu=False, out=None):
        var.block.append_op(
            type='fill_constant',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'shape': shape,
                'dtype': out.dtype,
                'value': float(value),
                'force_cpu': force_cpu
809
            })
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
        out.stop_gradient = True
        return out

    for dim, slice_item in enumerate(item):
        if isinstance(slice_item, slice):
            start = slice_item.start
            end = slice_item.stop
            step = slice_item.step

            if start is None and end is None and step is None:
                continue

            if step is None:
                step = 1

            if start is None and end is None:
                assert (step == -1)
                reverse_axis.append(dim)
                continue

            if start is None:
                start = 0

            if end is None:
                end = 10000000

            if step != 1:
                use_strided_slice = True

            slice_axis.append(dim)
            slice_start.append(start)
            slice_end.append(end)
            slice_step.append(step)
        else:
            decrease_axis.append(dim)
            slice_axis.append(dim)
            slice_start.append(slice_item)
            slice_step.append(1)
            if isinstance(slice_item, Variable):
849
                temp_1 = var.block.create_var(dtype=slice_item.dtype)
850
                fill_constant([1], 1, force_cpu=True, out=temp_1)
851
                temp_end = target_block.create_var(dtype=slice_item.dtype)
852
                target_block.append_op(
853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
                    type='elementwise_add',
                    inputs={'X': slice_item,
                            'Y': temp_1},
                    outputs={'Out': temp_end},
                    attrs={'axis': -1})
                slice_end.append(temp_end)
            else:
                slice_end.append(slice_item + 1
                                 if slice_item != -1 else 10000000)

    def contain_var(one_list):
        for ele in one_list:
            if isinstance(ele, Variable):
                return True
        return False

    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = var.block.create_var(dtype='int32')
                fill_constant([1], dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': [var]}
    attrs = {
        'axes': slice_axis,
        'starts': [],
        'ends': [],
        'decrease_axis': decrease_axis
    }
    if (use_strided_slice == True):
        attrs['strides'] = []
    infer_flags = list(1 for i in range(len(slice_axis)))
L
Leo Chen 已提交
892

893
    # starts
L
Leo Chen 已提交
894
    if contain_var(slice_start):
895 896 897 898 899 900 901 902
        inputs['StartsTensorList'] = get_new_list_tensor(slice_start)
        for i, dim in enumerate(slice_start):
            if isinstance(dim, Variable):
                attrs['starts'].append(-1)
                infer_flags[i] = -1
            else:
                attrs['starts'].append(dim)
    else:
L
Leo Chen 已提交
903 904 905 906
        attrs['starts'] = slice_start

    # ends
    if contain_var(slice_end):
907 908 909 910 911 912 913
        inputs['EndsTensorList'] = get_new_list_tensor(slice_end)
        for i, dim in enumerate(slice_end):
            if isinstance(dim, Variable):
                attrs['ends'].append(-1)
                infer_flags[i] = -1
            else:
                attrs['ends'].append(dim)
L
Leo Chen 已提交
914 915 916
    else:
        attrs['ends'] = slice_end

917 918
    # strides
    if use_strided_slice == True:
L
Leo Chen 已提交
919
        if contain_var(slice_step):
920 921 922 923 924 925 926
            inputs['StridesTensorList'] = get_new_list_tensor(slice_step)
            for i, dim in enumerate(slice_step):
                if isinstance(dim, Variable):
                    attrs['strides'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['strides'].append(dim)
L
Leo Chen 已提交
927 928
        else:
            attrs['strides'] = slice_step
929 930 931 932 933 934
    # infer_flags
    attrs['infer_flags'] = infer_flags

    out = var
    if use_strided_slice == False and len(slice_axis) > 0:
        # append slice_op here
935
        slice_out_var = target_block.create_var(
936 937 938
            name=unique_name.generate_with_ignorable_key(var.name + "_slice"),
            dtype=var.dtype)

939
        target_block.append_op(
940 941 942 943 944 945 946
            type="slice",
            inputs=inputs,
            outputs={'Out': [slice_out_var]},
            attrs=attrs)

        out = slice_out_var
    elif use_strided_slice == True and len(slice_axis) > 0:
947
        strided_slice_out_var = target_block.create_var(
948 949 950
            name=unique_name.generate_with_ignorable_key(var.name +
                                                         "_strided_slice"),
            dtype=var.dtype)
951
        target_block.append_op(
952 953 954 955 956 957 958 959
            type="strided_slice",
            inputs=inputs,
            outputs={'Out': [strided_slice_out_var]},
            attrs=attrs)

        out = strided_slice_out_var

    if len(reverse_axis) > 0:
960
        reverse_out_var = target_block.create_var(
961 962 963
            name=unique_name.generate_with_ignorable_key(var.name +
                                                         "_slice_reverse"),
            dtype=var.dtype)
964
        target_block.append_op(
965 966 967 968 969 970 971 972 973 974 975
            type="reverse",
            inputs={'X': out},
            outputs={'Out': [reverse_out_var]},
            attrs={'axis': reverse_axis})

        out = reverse_out_var

    return out


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
976
class Variable(object):
977
    """
J
Jiabin Yang 已提交
978
    **Notes**:
979
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
980

981 982
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
983 984 985
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
986
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
987 988
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
989

990
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
991
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
992

T
tianshuo78520a 已提交
993
    Most of a Variable's member variables can be set to be None. It mean
994
    it is not available or will be specified later.
995

996
    Examples:
997 998
        In Static Graph Mode:

999 1000
        .. code-block:: python

1001
            import paddle.fluid as fluid
1002
            cur_program = fluid.Program()
1003 1004 1005 1006
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
J
Jiabin Yang 已提交
1007
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
1008 1009 1010 1011 1012 1013 1014 1015 1016

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

1017 1018
    """

Y
Yu Yang 已提交
1019 1020
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1021
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
1022 1023 1024 1025
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
1026
                 capacity=None,
Q
QI JUN 已提交
1027
                 persistable=None,
F
fengjiayi 已提交
1028
                 error_clip=None,
Y
Yu Yang 已提交
1029
                 stop_gradient=False,
F
fengjiayi 已提交
1030
                 is_data=False,
H
Huihuang Zheng 已提交
1031
                 need_check_feed=False,
H
hong 已提交
1032
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
1033
                 **kwargs):
Y
Yu Yang 已提交
1034 1035
        self.block = block
        if name is None:
Y
Yu Yang 已提交
1036
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
1037

Y
Yu Yang 已提交
1038
        if dtype is not None:
1039
            if not isinstance(dtype, core.VarDesc.VarType):
1040
                dtype = convert_np_dtype_to_dtype_(dtype)
1041

H
hong 已提交
1042 1043
        self.belong_to_optimizer = belong_to_optimizer

1044 1045 1046 1047 1048
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
1049

1050 1051 1052
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
1053

1054 1055 1056 1057 1058 1059 1060
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
1061

1062
        if shape is not None:
1063
            if is_new_var:
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
1105

1106 1107
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1108

1109 1110 1111 1112 1113 1114 1115
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1116

1117 1118 1119 1120
        self.block.vars[name] = self
        self.op = None
        self._stop_gradient = stop_gradient
        self.is_data = is_data
Y
Yu Yang 已提交
1121

1122
    @fake_interface_only
1123 1124
    def detach(self):
        """
J
Jiabin Yang 已提交
1125
        **Notes**:
T
tianshuo78520a 已提交
1126
            **This API is ONLY available in Dygraph mode**
1127

1128
        Returns a new Variable, detached from the current graph.
1129

1130
        Returns:
J
Jiabin Yang 已提交
1131
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
1132

1133

1134 1135 1136 1137 1138
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1139
                from paddle.fluid.dygraph import Linear
1140 1141 1142 1143
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1144
                    linear = Linear(32, 64)
1145
                    data = to_variable(data)
1146
                    x = linear(data)
1147 1148 1149
                    y = x.detach()

        """
1150
        pass
1151

1152
    @fake_interface_only
1153
    def numpy(self):
1154
        """
J
Jiabin Yang 已提交
1155
        **Notes**:
T
tianshuo78520a 已提交
1156
            **This API is ONLY available in Dygraph mode**
1157

J
Jiabin Yang 已提交
1158
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1159 1160 1161 1162 1163

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1164
            ndarray: dtype is same as current Variable
1165 1166 1167 1168 1169 1170

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1171
                from paddle.fluid.dygraph import Linear
1172 1173 1174 1175
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1176
                    linear = Linear(32, 64)
1177
                    data = to_variable(data)
1178
                    x = linear(data)
1179 1180 1181
                    print(x.numpy())

        """
1182
        pass
1183

1184
    @fake_interface_only
1185 1186
    def set_value(self, value):
        """
J
Jiabin Yang 已提交
1187
        **Notes**:
T
tianshuo78520a 已提交
1188
            **This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1189

1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
        Set a new value for this Variable.

        Args:
            value (Variable|np.ndarray): the new value.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1200
                from paddle.fluid.dygraph import Linear
1201 1202
                import numpy as np

1203
                data = np.ones([3, 1024], dtype='float32')
1204
                with fluid.dygraph.guard():
1205
                    linear = fluid.dygraph.Linear(1024, 4)
1206
                    t = to_variable(data)
1207
                    linear(t)  # call with default weight
1208
                    custom_weight = np.random.randn(1024, 4).astype("float32")
1209 1210
                    linear.weight.set_value(custom_weight)  # change existing weight
                    out = linear(t)  # call with different weight
1211 1212

        """
1213
        pass
1214

1215
    @fake_interface_only
1216
    def backward(self, retain_graph=False):
1217
        """
J
Jiabin Yang 已提交
1218
        **Notes**:
T
tianshuo78520a 已提交
1219
            **This API is ONLY available in Dygraph mode**
1220

1221
        Run backward of current Graph which starts from current Tensor.
1222

J
Jiabin Yang 已提交
1223
        Args:
1224 1225 1226 1227
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1228

J
Jiabin Yang 已提交
1229 1230
        Returns:
            NoneType: None
1231 1232 1233 1234 1235

        Examples:
            .. code-block:: python

                import numpy as np
1236 1237
                import paddle
                paddle.disable_static()
1238 1239

                x = np.ones([2, 2], np.float32)
1240 1241 1242 1243 1244 1245 1246
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1247 1248
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1249
                loss.backward()
1250 1251

        """
1252
        pass
1253

1254
    @fake_interface_only
1255
    def gradient(self):
1256
        """
J
Jiabin Yang 已提交
1257
        **Notes**:
T
tianshuo78520a 已提交
1258
            **This API is ONLY available in Dygraph mode**
1259 1260 1261

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1262
        Returns:
1263
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1264 1265 1266 1267 1268 1269 1270

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1271
                # example1: return ndarray
1272 1273 1274 1275 1276 1277 1278 1279 1280
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1281
                    loss2.backward()
1282 1283
                    print(loss2.gradient())

1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1297
        """
1298
        pass
1299

1300
    @fake_interface_only
1301
    def clear_gradient(self):
1302
        """
J
Jiabin Yang 已提交
1303
        **Notes**:
T
tianshuo78520a 已提交
1304
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1305 1306

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1307

J
Jiabin Yang 已提交
1308
        Clear  (set to ``0`` ) the Gradient of Current Variable
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1327
                    loss2.backward()
1328 1329 1330 1331 1332
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1333
        pass
X
Xin Pan 已提交
1334

1335
    def __str__(self):
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1352 1353
                import paddle
                import paddle.static as static
1354

1355 1356 1357
                paddle.enable_static()

                cur_program = static.Program()
1358 1359 1360 1361 1362 1363
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1364 1365
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1366
        if self.type == core.VarDesc.VarType.SELECTED_ROWS or self.type == core.VarDesc.VarType.LOD_TENSOR:
1367 1368
            dtype_str = str(self.dtype).split('.')[1]
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".\
T
tangwei12 已提交
1369 1370
                format(name=self.name, type=type_str, shape=self.shape,
                       dtype=dtype_str, stop_gradient=self.stop_gradient)
1371
        else:
1372 1373
            var_str = "{name} : {type})".\
                format(name=self.name, type=type_str)
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386

        if type(self) == Parameter:
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

        return var_str
Y
Yang Yang(Tony) 已提交
1387

F
update  
fengjiayi 已提交
1388
    def to_string(self, throw_on_error, with_details=False):
1389 1390 1391
        """
        Get debug string.

J
Jiabin Yang 已提交
1392 1393 1394 1395 1396
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1397

1398 1399
        Returns:
            str: The debug string.
1400 1401 1402 1403 1404

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1405
                import paddle
1406

1407
                paddle.enable_static()
1408 1409 1410 1411 1412
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1413
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1414
                print("=============with detail===============")
1415
                print(new_variable.to_string(True, True))
1416
        """
F
update  
fengjiayi 已提交
1417 1418
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
1419
        protostr = self.desc.serialize_to_string()
1420
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1421 1422 1423 1424
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
1425 1426 1427
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1428
        return res_str
1429 1430 1431

    __repr__ = __str__

1432
    @property
1433
    def stop_gradient(self):
J
Jiabin Yang 已提交
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1449 1450
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1451 1452 1453
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1454 1455
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1456 1457 1458 1459
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1460
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1461 1462
                assert (out1.gradient() == 0).all()
        """
1463
        return self._stop_gradient
1464

1465 1466
    @stop_gradient.setter
    def stop_gradient(self, s):
1467
        self._stop_gradient = s
1468

1469 1470
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1492
        return self.desc.persistable()
1493

Y
Yu Yang 已提交
1494 1495
    @persistable.setter
    def persistable(self, p):
1496
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1497

Y
Yu Yang 已提交
1498 1499
    @property
    def name(self):
J
Jiabin Yang 已提交
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1516
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1517

1518 1519 1520 1521 1522 1523 1524 1525
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
          gradient Variable from a naming convention but doesn't guarantee
          the gradient exists.**
T
tangwei12 已提交
1526

1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1538 1539
    @name.setter
    def name(self, new_name):
1540
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1541

Y
Yu Yang 已提交
1542 1543
    @property
    def shape(self):
J
Jiabin Yang 已提交
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1561
        # convert to tuple, make it as same as numpy API.
1562
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1563 1564

    @property
F
fengjiayi 已提交
1565
    def dtype(self):
J
Jiabin Yang 已提交
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1582
        return self.desc.dtype()
Y
Yu Yang 已提交
1583 1584 1585

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1607 1608 1609
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")

1610
        return self.desc.lod_level()
Y
Yu Yang 已提交
1611

Y
Yu Yang 已提交
1612 1613
    @property
    def type(self):
J
Jiabin Yang 已提交
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
1630
        return self.desc.type()
Y
Yu Yang 已提交
1631

W
Wu Yi 已提交
1632
    def _set_error_clip(self, error_clip):
1633 1634 1635 1636 1637 1638 1639 1640 1641
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
1642 1643
        self.error_clip = error_clip

1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

        Returns: 
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

        Returns: 
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
1684
            raise ValueError("slice step can not be zero")
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
1760
    def _cloneVar(self, copy=False):
1761 1762
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
1763 1764
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
1765 1766 1767 1768
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
1769
        new_var = self._cloneVar()
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
1780
        new_var = self._cloneVar()
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
1791
                return self._cloneVar(True)
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
1810
                return self._cloneVar(True)
1811
            index = int(item)
1812
            if (index > 0 and index >= self.shape[axis]) \
1813 1814 1815 1816 1817 1818 1819
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
1820
        return _getitem_impl_(self, item)
1821

1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
    def __setitem__(self, item, value):
        inputs = {'Input': self}

        # 1. Parse item
        if not isinstance(item, tuple):
            item = [item]

        axes = []
        starts = []
        ends = []
        max_integer = sys.maxsize
        for dim, slice_item in enumerate(item):
            if isinstance(slice_item, slice):
                start = slice_item.start
                end = slice_item.stop
                step = slice_item.step

                if start is None and end is None and step is None:
                    continue

                start = 0 if start is None else start
                step = 1 if step is None else step

                # TODO: support cases when step != 1
                if step != 1:
                    raise ValueError(
                        "When assign a value to a paddle.Tensor, only support step is 1, "
                        "but received step is {}.".format(step))
                end = max_integer if end is None else end
            else:
                start = slice_item
                end = slice_item + 1 if slice_item != -1 else max_integer
            axes.append(dim)
            starts.append(start)
            ends.append(end)

        attrs = {'axes': axes, 'starts': starts, 'ends': ends}

        # 2. Parse value
        dtype = self.dtype
        attrs['dtype'] = dtype

        #  2.1 value is an integer of float
        if isinstance(value, (int, float)):
            value = np.array([value])

        #  2.2 value is a np.ndarray
        if isinstance(value, np.ndarray):
            shape = list(value.shape)
            if dtype == core.VarDesc.VarType.BOOL:
                value_name = "bool_values"
                values = [bool(v) for v in value.flat]
            elif dtype == core.VarDesc.VarType.FP32:
                value_name = "fp32_values"
                values = [float(v) for v in value.flat]
            elif dtype == core.VarDesc.VarType.INT32:
                value_name = "int32_values"
                values = [int(v) for v in value.flat]
            elif dtype == core.VarDesc.VarType.INT64:
                value_name = "int64_values"
                values = [int(v) for v in value.flat]
            else:
                from .data_feeder import convert_dtype
                raise TypeError(
                    "When assign a numpy.ndarray, integer or float to a paddle.Tensor, "
                    "the data type of the paddle.Tensor must be bool, float32, int32 or int64, but "
                    "received %s." % convert_dtype(dtype))
            attrs[value_name] = values
            attrs["shape"] = shape

        elif isinstance(value, Variable):
            inputs["ValueTensor"] = value
        else:
            raise TypeError(
                "Only support to assign an integer, float, numpy.ndarray or "
                "paddle.Tensor to a paddle.Tensor, but received {}".format(
                    type(value)))

        self.block.append_op(
            type="set_value", inputs=inputs, outputs={'Out': self}, attrs=attrs)
        return self

Y
Yu Yang 已提交
1904

F
fengjiayi 已提交
1905 1906 1907
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
1908

1909 1910
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
1911 1912 1913 1914
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
1915
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
1916 1917 1918 1919 1920
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
1921 1922 1923 1924
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
1925 1926 1927 1928 1929 1930 1931 1932 1933
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
1934
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
1935 1936 1937 1938 1939 1940
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
1941 1942 1943 1944 1945 1946 1947 1948
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
1949 1950
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
1951 1952
        return self.op_proto_map[type]

1953 1954 1955 1956 1957 1958
    def update_op_proto(self):
        op_protos = get_all_op_protos()
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto

1959 1960 1961 1962
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
1963
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
1964
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
1965 1966
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
1967 1968
        }

F
fengjiayi 已提交
1969

X
Xin Pan 已提交
1970
class Operator(object):
1971
    """
1972 1973 1974 1975 1976 1977 1978
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
1979
        type(str): The type of operator. Default None.
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
2000
        Block.append_op or Block._prepend_op instead.
2001 2002 2003 2004

    Examples:
        .. code-block:: python

2005
            import paddle.fluid as fluid
2006
            cur_program = fluid.Program()
2007 2008 2009 2010 2011
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
2012
    """
2013
    OP_WITHOUT_KERNEL_SET = {
2014 2015
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
2016 2017
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
        'gen_nccl_id', 'c_gen_nccl_id', 'c_comm_init', 'c_sync_calc_stream',
T
tangwei12 已提交
2018 2019
        'c_sync_comm_stream', 'queue_generator', 'dequeue', 'enqueue',
        'heter_listen_and_serv'
2020
    }
2021

Y
Yu Yang 已提交
2022 2023
    def __init__(self,
                 block,
Y
Yu Yang 已提交
2024
                 desc,
Y
Yu Yang 已提交
2025 2026 2027
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
2028
                 attrs=None):
L
lujun 已提交
2029
        if in_dygraph_mode():
2030 2031
            if type is None:
                raise ValueError(
2032
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
2033
            self._type = type
M
minqiyang 已提交
2034
            self.attrs = attrs if attrs else {}
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
2049
                )] = self.block.program._op_role
2050 2051 2052

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
2053 2054
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
2055 2056 2057 2058 2059 2060 2061 2062

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
2063
                    "`type` to initialized an Operator can not be None.")
2064 2065
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2066 2067 2068 2069 2070 2071 2072
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
                        '  File "{}", line {}, in {}'.format(frame[0], frame[1],
                                                             frame[2]))
                    op_attrs[callstack_var_name].append('    {}'.format(frame[
                        3]))
2073 2074 2075 2076 2077 2078 2079

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
                    if (type is 'less_than' and op_attrs['force_cpu'] != None
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)

2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
2111
                        if not isinstance(in_args, (list, tuple)):
2112 2113 2114 2115 2116 2117
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
2118
                        for index, arg in enumerate(in_args):
2119 2120 2121 2122
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
2123
                            elif isinstance(arg, (Variable, core.VarBase)):
2124
                                in_arg_names.append(cpt.to_text(arg.name))
2125
                            else:
2126 2127 2128 2129
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
2130 2131
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
2156 2157 2158 2159
                        if isinstance(arg, six.string_types):
                            out_arg_names.append(arg)
                        else:
                            out_arg_names.append(cpt.to_text(arg.name))
2160
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
2161
                        if not in_dygraph_mode():
2162 2163 2164 2165
                            if isinstance(arg, six.string_types):
                                block.var(arg).op = self
                            else:
                                arg.op = self
2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
2184
    def _has_kernel(self, op_type):
2185 2186
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
2187
    def to_string(self, throw_on_error):
2188
        """
2189 2190
        Get debug string.

2191
        Args:
2192 2193
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
2194

2195 2196
        Returns:
            str: The debug string.
2197 2198

        """
2199
        protostr = self.desc.serialize_to_string()
2200
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
2201 2202
        return _debug_string_(proto, throw_on_error)

2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

            attr_type = self.desc.attr_type(name)
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
                    name=name, type=attr_type, value=self._block_attr_id(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
                    name=name,
                    type=attr_type,
                    value=self._blocks_attr_ids(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            a = "{name} = {value}".format(
                name=name, type=attr_type, value=self.desc.attr(name))
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

        if outputs_str != "{}":
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".\
T
tangwei12 已提交
2290 2291
                format(outputs=outputs_str, op_type=self.type,
                       inputs=inputs_str, attrs=attrs_str)
2292 2293 2294 2295 2296
        else:
            op_str = "{op_type}(inputs={inputs}, {attrs})".\
                format(op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        return op_str

Y
Yang Yang(Tony) 已提交
2297
    def __str__(self):
2298
        return self._to_readable_code()
2299 2300 2301

    __repr__ = __str__

F
fengjiayi 已提交
2302 2303
    @property
    def type(self):
2304
        return self.desc.type()
F
fengjiayi 已提交
2305 2306

    def input(self, name):
2307
        r"""
2308
        Get the input arguments according to the input parameter name.
2309

2310 2311
        Args:
            name(str): The input parameter name.
2312

2313 2314 2315
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
2316
        """
F
fengjiayi 已提交
2317 2318
        return self.desc.input(name)

W
Wu Yi 已提交
2319
    def _rename_input(self, old_name, new_name):
2320 2321 2322 2323 2324 2325 2326 2327 2328 2329
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
2330
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
2331

W
Wu Yi 已提交
2332
    def _rename_output(self, old_name, new_name):
2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
2343
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
2344

F
fengjiayi 已提交
2345 2346 2347 2348
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
2349 2350 2351 2352 2353 2354 2355 2356
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
2357
    def output(self, name):
2358
        r"""
2359
        Get output arguments by the output parameter name.
2360

2361 2362
        Args:
            name(str): The output parameter name.
2363

2364 2365 2366
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
2367
        """
F
fengjiayi 已提交
2368 2369 2370 2371 2372 2373
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

2374 2375 2376 2377 2378 2379 2380 2381
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
2382
    def has_attr(self, name):
2383
        """
2384 2385
        Whether this Operator has the attribute with name or not.

2386
        Args:
2387
            name(str): the attribute name.
2388

2389 2390
        Returns:
            bool: True if has this attribute.
2391 2392

        """
F
fengjiayi 已提交
2393 2394 2395
        return self.desc.has_attr(name)

    def attr_type(self, name):
2396
        """
2397
        Get the type of attribute by attribute's name.
2398

2399 2400
        Args:
            name(str): the attribute name.
2401

2402 2403
        Returns:
            core.AttrType: the attribute type.
2404
        """
F
fengjiayi 已提交
2405 2406
        return self.desc.attr_type(name)

W
Wu Yi 已提交
2407
    def _set_attr(self, name, val):
2408 2409 2410 2411 2412 2413 2414 2415 2416 2417
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
2418 2419
        self._update_desc_attr(name, val)

2420 2421 2422
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
2434 2435
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
2436 2437
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
2438
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
2439 2440 2441 2442
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
2443
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
2444

F
fengjiayi 已提交
2445 2446 2447 2448 2449
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
2450
        """
2451 2452
        Get the attribute by name.

2453
        Args:
2454
            name(str): the attribute name.
2455

2456 2457
        Returns:
            bool|int|str|float|list: The attribute value. The return value
2458 2459
            can be any valid attribute type.
        """
F
fengjiayi 已提交
2460
        return self.desc.attr(name)
Y
Yu Yang 已提交
2461

W
Wu Yi 已提交
2462
    def _block_attr_id(self, name):
2463
        """
G
gongweibao 已提交
2464
        Get the block attribute's id by name.
2465

2466 2467
        Args:
            name(str): the attribute name.
2468

2469 2470
        Returns:
            int: the block index.
2471
        """
W
Wu Yi 已提交
2472
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
2473

W
Wu Yi 已提交
2474
    def _block_attr(self, name):
G
gongweibao 已提交
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
2485
        id = self._block_attr_id(name)
G
gongweibao 已提交
2486 2487 2488
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
2489
    def _blocks_attr(self, name):
G
gongweibao 已提交
2490 2491 2492 2493 2494 2495 2496 2497 2498 2499
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
2500
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
2501 2502 2503 2504 2505
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
2506
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
2507 2508 2509 2510 2511 2512 2513 2514 2515 2516
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
2517
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
2518

J
JiayiFeng 已提交
2519
    def all_attrs(self):
F
fengjiayi 已提交
2520
        """
2521 2522 2523
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
2524
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
2525 2526 2527 2528
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
2529 2530
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
2531
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
2532 2533 2534
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
2535
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
2536 2537 2538 2539
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
2540 2541
        return attr_map

2542 2543 2544
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
2545 2546 2547 2548

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

2549 2550 2551
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
2552 2553 2554 2555 2556 2557 2558 2559

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
2560 2561
            return False

2562 2563 2564 2565 2566 2567
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

Y
Yu Yang 已提交
2568

Y
Yu Yang 已提交
2569
class Block(object):
2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
2584
        use `Program._create_block()` to create a block.
2585 2586 2587 2588

    Examples:
        .. code-block:: python

2589 2590 2591
            import paddle.fluid as fluid

            cur_program = fluid.Program()
2592 2593 2594 2595 2596 2597 2598 2599 2600
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
2601
    def __init__(self, program, idx):
Y
Yu Yang 已提交
2602
        self.desc = program.desc.block(idx)
2603
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
2604
        self.ops = list()  # operator list
Y
Yu Yang 已提交
2605
        self.program = program
2606
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
2607

2608
    def __str__(self):
2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
                op._to_readable_code(skip_op_callstack))
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
2655

F
fengjiayi 已提交
2656 2657
    def to_string(self, throw_on_error, with_details=False):
        """
2658 2659
        Get debug string.

F
fengjiayi 已提交
2660 2661
        Args:
            throw_on_error(bool): raise exception when self is not initialized
2662
                when throw_on_error is True.
F
update  
fengjiayi 已提交
2663
            with_details(bool): more details about variables and parameters
2664 2665
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
2666

2667 2668
        Returns:
            str: The debug string.
F
fengjiayi 已提交
2669 2670 2671 2672
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
2673
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
2674 2675
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
2676
            for var in list(self.vars.values()):
F
fengjiayi 已提交
2677
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
2678
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
2679
            for op in self.ops:
F
fengjiayi 已提交
2680 2681
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
2682 2683 2684
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
2685 2686
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2687 2688
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2689 2690 2691

    __repr__ = __str__

Y
Yu Yang 已提交
2692 2693
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
2694
        return self.desc.parent
Y
Yu Yang 已提交
2695

Y
Yu Yang 已提交
2696 2697 2698 2699
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
2700
    def _set_forward_block_idx(self, idx):
2701 2702 2703 2704 2705 2706 2707 2708 2709
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
2710
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
2711

2712 2713 2714 2715 2716 2717 2718 2719
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
2720 2721
    @property
    def idx(self):
Y
Yu Yang 已提交
2722
        return self.desc.id
Y
Yu Yang 已提交
2723

Q
Qiao Longfei 已提交
2724
    def var(self, name):
2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
2738
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
2739 2740 2741
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
2742 2743
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
2744
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
2745
        return v
Q
Qiao Longfei 已提交
2746

X
Xin Pan 已提交
2747
    def _find_var_recursive(self, name):
2748 2749 2750 2751 2752 2753 2754
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
2755
            Variable: the Variable with the giving name. Or None if not found.
2756
        """
Y
Yu Yang 已提交
2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
2781
        return None
Y
Yu Yang 已提交
2782

X
Xin Pan 已提交
2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
2802

Q
Qiao Longfei 已提交
2803
    def all_parameters(self):
2804
        return list(self.iter_parameters())
2805

2806
    def iter_parameters(self):
M
minqiyang 已提交
2807
        return (item[1] for item in six.iteritems(self.vars)
2808
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
2809

Y
Yu Yang 已提交
2810
    def create_var(self, *args, **kwargs):
L
Leo Chen 已提交
2811 2812 2813
        if in_dygraph_mode():
            var = _varbase_creator(*args, **kwargs)
        else:
2814 2815 2816
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
2817
        return var
Y
Yu Yang 已提交
2818

Q
Qiao Longfei 已提交
2819 2820 2821
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
2822
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
2823 2824
        """
        Rename variable in vars and ops' inputs and outputs
2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
2837
        """
M
minqiyang 已提交
2838 2839
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
2840

T
typhoonzero 已提交
2841
        if not self.has_var(name):
2842
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
2843 2844
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
2845
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
2846 2847 2848 2849 2850 2851
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
2852
            var_type = "Variable"
T
wip  
typhoonzero 已提交
2853 2854 2855 2856
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
2857
        orig_var_type = v.type
M
minqiyang 已提交
2858
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
2859
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
2860
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
2861
        if var_type == "Parameter":
L
Leo Chen 已提交
2862 2863
            if in_dygraph_mode():
                var = ParamBase(
2864 2865 2866 2867 2868 2869 2870 2871 2872 2873
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
            else:
L
Leo Chen 已提交
2874 2875
                var = Parameter(
                    self,
2876 2877 2878 2879 2880 2881 2882 2883 2884
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
T
typhoonzero 已提交
2885
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
2886 2887
            var = Variable(
                self,
T
typhoonzero 已提交
2888
                type=orig_var_type,
T
wip  
typhoonzero 已提交
2889 2890 2891 2892
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
2893
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
2894 2895 2896
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
2897
        self._sync_with_cpp()
2898
        return var
T
typhoonzero 已提交
2899

2900 2901 2902
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
M
minqiyang 已提交
2903
        self.desc._remove_var(cpt.to_bytes(name))
2904 2905
        del self.vars[name]

Y
Yu Yang 已提交
2906 2907
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
2908
        param = None
L
Leo Chen 已提交
2909
        if in_dygraph_mode():
2910
            param = ParamBase(*args, **kwargs)
L
Leo Chen 已提交
2911 2912
        else:
            param = Parameter(global_block, *args, **kwargs)
2913 2914 2915 2916 2917 2918
            # NOTE: Why only set stop_gradient=False in static mode
            # Because in dygraph mode, the `stop_gradient` and `trainable`
            # are related, and `trainable` default vallue is `True` or
            # it is specified by users, there is no need to set
            # `stop_gradient` for ParamBase here.
            param.stop_gradient = False
2919
        if 'initializer' in kwargs:
2920 2921 2922 2923 2924

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
2925
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
2926
                        # are treated as initialization ops that cause error.
2927 2928 2929
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
                        if op.type in ["c_broadcast", "c_sync_comm_stream"]:
                            continue
2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
2941
                # TODO already inited, do nothing, should log a warning
2942 2943 2944
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
2945
        return param
Y
Yu Yang 已提交
2946

Y
Yu Yang 已提交
2947
    def append_op(self, *args, **kwargs):
2948 2949 2950 2951 2952 2953
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
2954
        if in_dygraph_mode():
2955
            attrs = kwargs.get("attrs", {})
J
Jiabin Yang 已提交
2956
            type = kwargs.get("type", None)
2957 2958 2959
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
2960
                type=type,
M
minqiyang 已提交
2961 2962
                inputs=None,
                outputs=None,
2963
                attrs=attrs)
2964

M
minqiyang 已提交
2965 2966 2967
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
2968
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
2969 2970

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2971
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2972 2973
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2974
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2975
        else:
2976 2977 2978 2979 2980 2981 2982 2983 2984
            op_desc = self.desc.append_op()
            op = Operator(
                block=self,
                desc=op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
2985
            self.ops.append(op)
M
minqiyang 已提交
2986

2987 2988
        return op

W
Wu Yi 已提交
2989
    def _insert_op(self, index, *args, **kwargs):
2990 2991 2992 2993 2994 2995 2996 2997 2998
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
2999 3000
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
3001 3002 3003 3004
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
        Insert an Operator according to the giving arguments, 
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
3022 3023 3024 3025 3026 3027 3028 3029 3030
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
3031 3032
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
3033
        self.desc._remove_op(index, index + 1)
3034 3035
        del self.ops[index]

W
Wu Yi 已提交
3036
    def _slice_ops(self, start, end):
3037 3038 3039 3040 3041 3042 3043 3044 3045 3046
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
3047
        return self.ops[start:end]
Y
Yancey1989 已提交
3048

W
Wu Yi 已提交
3049
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
3050
        if in_dygraph_mode():
J
Jiabin Yang 已提交
3051 3052
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
3053
            op = Operator(
J
Jiabin Yang 已提交
3054
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
3055

J
Jiabin Yang 已提交
3056
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
3057
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
3058 3059
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
3060
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
3061
        else:
3062 3063 3064 3065 3066 3067 3068 3069
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
3070
            self.ops.insert(0, op)
3071

Y
Yu Yang 已提交
3072 3073
        return op

W
Wu Yi 已提交
3074
    def _sync_with_cpp(self):
3075
        """
3076 3077
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
3078
        """
Q
Qiao Longfei 已提交
3079 3080 3081 3082 3083
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

3084
        # sync variables removed from c++ end
3085
        for var in list(self.vars.keys()):
M
minqiyang 已提交
3086
            if not self.desc.find_var(cpt.to_bytes(var)):
3087 3088
                self.vars.pop(var)

Q
Qiao Longfei 已提交
3089
        # sync operators from cpp
3090 3091 3092 3093
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
3110 3111 3112 3113 3114

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
3115
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
3116 3117 3118 3119 3120 3121 3122

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
3136 3137 3138 3139
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
3140
    def _copy_param_info_from(self, other):
3141
        """
3142 3143
        Copy the information of parameters from the other block.

3144
        Args:
3145 3146 3147 3148 3149
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
3150 3151 3152 3153 3154

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
3155 3156
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
3157
        for p in other.iter_parameters():
3158 3159 3160
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
3161 3162
                # if the Parameter is pruned, v may be None
                continue
3163
            assert isinstance(v, Variable)
3164
            new_p = None
L
Leo Chen 已提交
3165 3166
            if in_dygraph_mode():
                new_p = ParamBase(
3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
            else:
L
Leo Chen 已提交
3178 3179
                new_p = Parameter(
                    block=self,
3180 3181 3182
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
3183 3184
                    lod_level=v.lod_level
                    if v.type == core.VarDesc.VarType.LOD_TENSOR else None,
3185 3186 3187 3188 3189 3190
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
3191 3192
            self.vars[new_p.name] = new_p

3193
    def _clone_variable(self, var, force_persistable=True):
3194 3195
        """
        Clone a variable into current block.
3196

3197 3198
        Args:
            var: the variable to be cloned.
3199 3200 3201
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
3202 3203

        Returns:
3204
            Variable: the new  variable cloned from 'var' in current block.
3205 3206
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
3207 3208 3209 3210 3211
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
3212 3213
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
3214
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
3215 3216 3217 3218 3219 3220
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
3221
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3222 3223
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3224 3225 3226 3227 3228 3229 3230
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
3231
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3232 3233
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3234
        return ret_var
3235

Y
Yu Yang 已提交
3236

3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

3332
    def remove_input_by_id(self, node_id):
3333 3334 3335 3336 3337 3338
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3339
        self.node.remove_input(node_id)
3340

3341
    def remove_input(self, node):
3342 3343 3344 3345
        """
        Remove a node from inputs.

        Args:
3346
            node(IrNode): the node being removed.
3347
        """
3348
        self.node.remove_input(node.node)
3349

3350
    def append_input(self, node):
3351 3352 3353 3354
        """
        Append a node in inputs.

        Args:
3355
            node(IrNode): the node being appended.
3356
        """
3357
        self.node.append_input(node.node)
3358 3359 3360 3361 3362 3363 3364 3365

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

3366
    def remove_output_by_id(self, node_id):
3367 3368 3369 3370 3371 3372
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3373
        self.node.remove_output(node_id)
3374

3375
    def remove_output(self, node):
3376 3377 3378 3379
        """
        Remove a node from outputs.

        Args:
3380
            node(IrNode): the node being removed.
3381
        """
3382
        self.node.remove_output(node.node)
3383

3384
    def append_output(self, node):
3385 3386 3387 3388
        """
        Append a node in outputs.

        Args:
3389
            node(IrNode): the node being appended.
3390
        """
3391
        self.node.append_output(node.node)
3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3439
            "The node variable description can not be None."
3440 3441 3442 3443 3444 3445 3446 3447 3448 3449
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3450
            "The node variable description can not be None."
3451 3452
        return self.node.var().persistable()

3453 3454 3455 3456 3457 3458 3459 3460
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3461
            "The node variable description can not be None."
3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3472
            "The node variable description can not be None."
3473 3474 3475 3476 3477 3478 3479 3480 3481 3482
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3483
            "The node variable description can not be None."
3484 3485
        return self.node.var().shape()

3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3533
            "The node operator description can not be None."
3534 3535
        self.node.op()._rename_input(old_input_name, new_input_name)

3536 3537 3538 3539 3540 3541 3542 3543 3544
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3545
            "The node operator description can not be None."
3546 3547
        self.node.op()._rename_output(old_output_name, new_output_name)

3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3559
            "The node operator description can not be None."
3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3573
            "The node operator description can not be None."
3574 3575 3576 3577 3578 3579 3580 3581 3582 3583
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3584
            "The node operator description can not be None."
3585 3586
        return self.node.op().set_type(new_type)

3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3602
            "The node operator description can not be None."
3603 3604 3605 3606
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
3607
                all(isinstance(v, Block) for v in val):
3608 3609
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
3610
                isinstance(val, core.ProgramDesc):
3611 3612 3613 3614
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

3615 3616 3617 3618 3619 3620 3621 3622
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3623
            "The node operator description can not be None."
3624 3625 3626 3627 3628 3629 3630 3631 3632 3633
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3634
            "The node operator description can not be None."
3635 3636
        return self.node.op().output_arg_names()

3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


3658 3659
class IrGraph(object):
    """
3660
    Python IrGraph. Beneath it is a core.Graph, which is used for
3661
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
3662 3663
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
3664 3665 3666 3667
    """

    def __init__(self, graph, for_test=False):
        """
3668 3669
        Construct an IrGraph using core.Graph.

3670 3671 3672 3673 3674 3675 3676 3677 3678
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

3679 3680 3681 3682
    def clone(self):
        """
        Create a new and duplicated IrGraph.

3683 3684 3685
        Warns:
            The method only clones the graph structure, not its attributes.

3686 3687 3688
        Returns:
            IrGraph: A new and duplicated graph.
        """
3689
        g = self.graph.clone()
3690 3691
        return IrGraph(g, self._for_test)

3692
    def is_test(self):
3693 3694 3695
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
3696 3697
        return self._for_test

W
WangZhen 已提交
3698
    def all_nodes(self):
3699 3700 3701
        """
        Return all nodes included in the graph as a set.
        """
3702
        return {IrNode(node) for node in self.graph.nodes()}
3703

3704
    def all_var_nodes(self):
3705 3706 3707
        """
        Return all variable nodes included in the graph as a set.
        """
3708
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
3709

3710
    def all_persistable_nodes(self):
3711 3712 3713
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
3714 3715 3716 3717 3718
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
3719
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
3720

3721
    def all_op_nodes(self):
3722 3723 3724
        """
        Return all operator nodes included in the graph as a set.
        """
3725
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
3726

3727
    def create_persistable_node(self, name, var_type, shape, var_dtype):
3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
3739
            IrVarNode: the created persistable variable node.
3740
        """
3741 3742 3743 3744 3745
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
3746
        return IrVarNode(self.graph.create_var_node(var_desc))
3747 3748

    def create_var_node(self, name, var_type, shape, var_dtype):
3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
3760
            IrVarNode: the created variable node.
3761 3762
        """

3763 3764 3765 3766
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
3767
        return IrVarNode(self.graph.create_var_node(var_desc))
3768

3769 3770 3771 3772 3773 3774
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

3775
    def create_var_node_from_desc(self, var_desc):
3776 3777 3778 3779 3780 3781 3782 3783
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
3784
            IrVarNode: the created variable node.
3785
        """
3786
        return IrVarNode(self.graph.create_var_node(var_desc))
3787 3788

    def create_op_node(self, op_type, attrs, inputs, outputs):
3789 3790 3791 3792 3793 3794 3795
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
3796
            outputs(dict): the outputs of the operator node.
3797 3798

        Returns:
3799
            IrOpNode: the created operator node.
3800
        """
3801 3802
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
3803
        for attr, value in six.iteritems(attrs):
3804
            self._update_desc_attr(op_desc, attr, value)
3805
        for input_name, var_nodes in six.iteritems(inputs):
3806 3807 3808 3809
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
3810
        for output_name, var_nodes in six.iteritems(outputs):
3811 3812 3813 3814
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
3815
        return IrOpNode(self.graph.create_op_node(op_desc))
3816 3817

    def create_op_node_from_desc(self, op_desc):
3818 3819 3820 3821 3822 3823 3824
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
3825
            IrOpNode: the created operator node.
3826
        """
3827
        return IrOpNode(self.graph.create_op_node(op_desc))
3828 3829

    def update_input_link(self, old_input_node, new_input_node, op_node):
3830 3831 3832 3833
        """
        Update the input's link of a operator node.

        Args:
3834 3835 3836
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
3837
        """
3838
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
T
tangwei12 已提交
3839
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
3840
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
3841 3842 3843 3844
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
3845
        op_node.rename_input(old_input_node.name(), new_input_node.name())
3846

3847 3848 3849 3850 3851 3852 3853 3854 3855 3856
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
T
tangwei12 已提交
3857
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
3858
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
3859 3860 3861 3862 3863 3864
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

3865
    def link_to(self, node_in, node_out):
3866 3867 3868 3869
        """
        Connect two nodes.

        Args:
3870 3871
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
3872
        """
3873
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
3874
            'The two arguments(node_in&node_out) must be in the graph nodes.'
3875 3876
        node_in.append_output(node_out)
        node_out.append_input(node_in)
3877 3878

    def safe_remove_nodes(self, remove_nodes):
3879 3880 3881 3882 3883 3884 3885
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
3886
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
3887 3888 3889 3890
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
3891 3892
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
3893

Z
Zhen Wang 已提交
3894 3895 3896 3897 3898 3899 3900 3901
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3902
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
3903 3904 3905 3906
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3907
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
3908 3909 3910
                        ]
                    else:
                        var_nodes[each_var_name].append(
3911 3912
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
3913 3914
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
3915
    def has_circle(self):
3916 3917 3918 3919 3920 3921
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
3922 3923 3924
        return core.has_circle(self.graph)

    def graph_num(self):
3925 3926 3927 3928 3929 3930
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
3931 3932 3933
        return core.graph_num(self.graph)

    def topology_sort(self):
3934 3935 3936
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
3937
        Notes: the `graph` can not contain a circle.
3938 3939

        Returns:
Z
Zhen Wang 已提交
3940
            list(IrNode): nodes in topology order.
3941
        """
3942
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
3943
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
3944 3945

    def build_adjacency_list(self):
3946 3947 3948 3949
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
3950
            dict{IrNode: set(IrNode)}: the adjacency list.
3951
        """
3952 3953 3954 3955 3956
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
3957

3958 3959 3960 3961 3962 3963 3964 3965
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
3966
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
3967 3968 3969 3970 3971
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

3972 3973
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
T
tangwei12 已提交
3974 3975 3976
            exited_code = subprocess.call(
                'dot -Tpdf ' + dot_file_path + ' -o ' + pdf_save_path,
                shell=True)
3977 3978 3979 3980 3981
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

3982
        remove_ctr_vars = set()
3983
        if remove_ctr_var:
3984
            for node in self.all_var_nodes():
3985 3986 3987
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
3988 3989
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

3990 3991
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
3992 3993 3994 3995 3996 3997
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
3998 3999 4000 4001
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
4002 4003
        if not os.path.exists(save_path):
            os.makedirs(save_path)
4004 4005 4006 4007 4008 4009 4010
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
4011 4012 4013
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
4014
        WARN: When the graph includes backward operator nodes, the
4015 4016 4017 4018 4019 4020
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
4021
        convert_pass = core.get_pass('graph_to_program_pass')
4022 4023
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
4024 4025 4026 4027
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
4055
class Program(object):
D
dzhwinter 已提交
4056
    """
4057
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
4058
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
4059
    it will contain nested block.
4060

J
Jiabin Yang 已提交
4061 4062 4063
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
4064

J
Jiabin Yang 已提交
4065
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
4066
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
4067 4068 4069 4070 4071 4072 4073
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
4074
    **Notes**:
4075 4076 4077
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
4078 4079

    Returns:
J
Jiabin Yang 已提交
4080
        Program: An empty Program.
D
dzhwinter 已提交
4081 4082

    Examples:
4083 4084
        .. code-block:: python

4085 4086 4087 4088
            import paddle
            import paddle.static as static

            paddle.enable_static()
4089

4090 4091 4092 4093 4094
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
4095
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
4096 4097 4098

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
4099 4100 4101

    """

4102 4103
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
4104 4105
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
4106 4107
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
4108
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
4109
        self.__op_role_var = []
T
tangwei12 已提交
4110

4111 4112
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
4113
        self._is_distributed = False
4114
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
4115
        self._is_chief = False
4116 4117 4118
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
4119
        self._endpoints = []
4120 4121 4122
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
4123
        self._trainers_endpoints = []
4124
        # the distributed lookup table names
T
tangwei12 已提交
4125
        self._distributed_lookup_table = None
4126 4127 4128

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
4129 4130
        self._use_lamb = False

4131 4132 4133
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
4134

4135 4136 4137
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
4138
        self._program_config = None
4139

H
hutuxian 已提交
4140 4141 4142
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

4143 4144 4145
        # appending gradients times
        self._appending_grad_times = 0

4146 4147 4148 4149
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_program__")

4150 4151 4152
        # compiled program, i.e. Graph
        self._graph = None

4153 4154 4155 4156 4157 4158 4159 4160 4161 4162
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

4163 4164
                import paddle
                import paddle.static as static
4165

4166 4167 4168
                paddle.enable_static()

                prog = static.default_main_program()
4169 4170 4171 4172 4173
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
4174
                prog1 = static.default_main_program()
4175 4176 4177 4178 4179 4180 4181 4182
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
4183
    @property
4184
    def _op_role(self):
Y
yuyang18 已提交
4185 4186 4187 4188 4189 4190 4191 4192
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
4193
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
4194 4195 4196 4197
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
4198 4199
        return self._current_role

4200 4201
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
4202 4203 4204
        self._current_role = role

    @property
4205
    def _op_role_var(self):
Y
yuyang18 已提交
4206
        """
4207
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
4208

4209
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
4210 4211 4212

        Notes: This is a very low-level API. Users should not use it directly.
        """
4213
        return self.__op_role_var
Y
yuyang18 已提交
4214

4215
    @signature_safe_contextmanager
4216 4217 4218 4219 4220
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
4221 4222 4223 4224
        try:
            yield
        finally:
            self._current_role = tmp_role
4225

S
rename  
sneaxiy 已提交
4226
    @signature_safe_contextmanager
W
Wu Yi 已提交
4227
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
4228 4229 4230 4231 4232 4233 4234
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
4235
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
4236 4237 4238

        Examples:

4239
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
4240
            >>> p, g = backward(...)
W
Wu Yi 已提交
4241
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
4242 4243
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
4244
        tmp_role = self._current_role
4245
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
4246

Y
yuyang18 已提交
4247 4248
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
4249
        self.__op_role_var = [
4250 4251 4252
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
4253 4254 4255 4256 4257
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
4258

S
rename  
sneaxiy 已提交
4259
    @signature_safe_contextmanager
X
Xin Pan 已提交
4260
    def _lr_schedule_guard(self, is_with_opt=False):
4261 4262 4263 4264 4265 4266 4267
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
4268 4269 4270 4271
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
4272 4273 4274

        Examples:

4275
            >>> import paddle.fluid as fluid
4276 4277 4278 4279
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
4280 4281

        tmp_role = self._current_role
4282
        tmp_var = self.__op_role_var
4283

4284 4285
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
4286 4287
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
4288
        # TODO(typhoonzero): how to set target learning rate var
4289
        self.__op_role_var = []
4290 4291 4292 4293 4294
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
4295

4296
    def __str__(self):
Y
yuyang18 已提交
4297 4298 4299 4300 4301 4302 4303 4304 4305
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

4326 4327
            import paddle
            import paddle.static as static
4328

4329 4330 4331
            paddle.enable_static()

            cur_program = static.Program()
4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
4348
            program_str += '\n'
4349
        return program_str
Y
Yang Yang(Tony) 已提交
4350

F
fengjiayi 已提交
4351 4352 4353
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
4354

J
Jiabin Yang 已提交
4355 4356 4357
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
4358

J
Jiabin Yang 已提交
4359
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
4360

H
haowang101779990 已提交
4361
        Returns:
J
Jiabin Yang 已提交
4362
            str: The debug string describe current Program.
Y
yuyang18 已提交
4363 4364

        Raises:
J
Jiabin Yang 已提交
4365
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
4366

4367 4368 4369
        Examples:
            .. code-block:: python

4370 4371 4372 4373
                import paddle
                import paddle.static as static

                paddle.enable_static()
4374

4375 4376 4377
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
4378
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
4379
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
4380
                print("program string without detail: {}".format(prog_string))
4381
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
4382
        """
4383 4384 4385 4386 4387 4388 4389 4390 4391
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
            type(throw_on_error))
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
            type(with_details))

F
fengjiayi 已提交
4392 4393 4394 4395 4396 4397
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
4398 4399
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
4400 4401
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
4402

W
Wu Yi 已提交
4403
    def _get_desc(self):
Y
yuyang18 已提交
4404 4405 4406 4407 4408 4409 4410
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
4411 4412
        return self.desc

X
version  
Xin Pan 已提交
4413 4414 4415
    def _version(self):
        return self.desc._version()

4416
    def clone(self, for_test=False):
Y
yuyang18 已提交
4417
        """
4418 4419 4420 4421
        .. note:::
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` . 
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` . 
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
4422

4423
        Create a new Program with forward content of original one when ``for_test=True``.
4424
        Create a new Program as same as the original one when ``for_test=False``.
4425

4426
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
4427 4428 4429
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
4430

4431 4432
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
4433 4434
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
4435
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
4436

J
Jiabin Yang 已提交
4437
        For Example:
4438
          ::
L
Luo Tao 已提交
4439

4440 4441 4442 4443 4444 4445
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
4446
            pred = static.nn.fc(x=img, size=10, actvation='relu')
4447
            loss = paddle.mean(pred)
4448
            # Here we use clone before Momentum
4449 4450
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
4451
            optimizer.minimize(loss)
4452

J
Jiabin Yang 已提交
4453
        Args:
4454

4455 4456
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
4457

J
Jiabin Yang 已提交
4458
        Returns:
4459
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
4460

Y
yuyang18 已提交
4461 4462 4463

        Examples:

4464 4465 4466 4467 4468 4469 4470
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486
            .. code-block:: python

                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


4487
            1. To clone a test program, the sample code is:
4488 4489 4490
                .. code-block:: python

                    import six
4491 4492 4493 4494 4495 4496
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

4509 4510
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
4511 4512 4513

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
4514 4515 4516
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
4517
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
4518 4519
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
4520
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
4521 4522
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
4523
                            test_program = train_program.clone(for_test=True)
4524
                    print_prog(test_program)
J
Jiabin Yang 已提交
4525 4526 4527 4528

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

4529
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
4530 4531 4532 4533
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

4534 4535 4536
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
4537 4538 4539
                            sgd.minimize(avg_loss)


4540
            2. The clone method can be avoid if you create program for training and program for testing individually.
4541 4542 4543
                .. code-block:: python

                    import six
4544 4545 4546 4547 4548 4549
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
4561

4562
                    def network():
4563
                        img = static.data(name='image', shape=[None, 784])
4564
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
4565 4566
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
4567
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
4568 4569
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
4570 4571
                        return avg_loss

4572 4573 4574 4575 4576
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
4577
                            avg_loss = network()
4578
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
4579
                            sgd.minimize(avg_loss)
4580
                    # the test startup program is not used.
4581 4582
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
4583 4584
                            avg_loss = network()
                    print_prog(test_program_2)
4585

4586
            The two code snippets above will generate and print same programs.
4587
        """
4588

T
tangwei12 已提交
4589
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
4590 4591 4592
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4593
        pruned_origin_block_id_map = None
4594
        if for_test:
4595 4596 4597 4598 4599 4600 4601 4602 4603
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
4604
        else:
4605
            p = Program()
G
gongweibao 已提交
4606 4607
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
4608
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
4609 4610 4611
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
4612 4613

            p._current_role = self._current_role
4614
            p.__op_role_var = self.__op_role_var
4615
            p._appending_grad_times = self._appending_grad_times
4616 4617
            if hasattr(self, 'lr_sheduler'):
                p.lr_sheduler = self.lr_sheduler
G
gongweibao 已提交
4618

T
tangwei12 已提交
4619
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
4620
            # its desc.
W
Wu Yi 已提交
4621
            p._sync_with_cpp()
4622

W
Wu Yi 已提交
4623
        p._copy_param_info_from(self)
4624
        p._copy_data_info_from(self, pruned_origin_block_id_map)
4625
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
4626
        return p
4627

4628
    def _prune(self, targets):
Y
yuyang18 已提交
4629 4630 4631 4632 4633 4634 4635 4636
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
4637
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
4638 4639 4640 4641
                need to be pruned

        Returns:
            Program:  A new, pruned program.
4642
        """
4643
        return self._prune_with_input([], targets)
4644 4645

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
4646
        """
4647 4648 4649 4650 4651 4652 4653 4654 4655 4656
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
4657
            targets(list|Variable|Operator): A list of variables, operators, or variable names
4658 4659 4660 4661 4662 4663
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
4664
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
4665 4666 4667
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4668 4669
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
4670 4671
        if not isinstance(targets, list):
            targets = [targets]
4672 4673 4674

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
4675 4676 4677
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
                    "str, but received %s." % type(var))
4678

4679 4680 4681 4682
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
4683 4684 4685
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
4686
                else:
4687 4688 4689
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
                        "Variable or Operator, but received %s." % type(t))
4690 4691 4692 4693 4694 4695 4696 4697

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
                    continue

4698 4699 4700 4701 4702 4703 4704 4705 4706
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
4707
                        # Skip optimize op except for optimize op in targets,
4708 4709 4710 4711 4712 4713
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
                            break
4714 4715 4716 4717 4718 4719 4720 4721
                if target_op is None:
                    raise ValueError(
                        "The target variable used for pruning should have an "
                        "associated operator that generates it.")
                else:
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
4722

4723
        res = Program()
4724 4725 4726
        res.desc, pruned_origin_block_id_map = core.prune(self.desc,
                                                          set(feeded_var_names),
                                                          targets_idx)
M
minqiyang 已提交
4727 4728 4729
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4730
        res._sync_with_cpp()
4731 4732 4733 4734 4735

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

4736 4737
        return res

X
Xin Pan 已提交
4738
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
4739
        """
F
fengjiayi 已提交
4740 4741 4742 4743 4744
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

4745
        3. change the :code:`is_test`
Y
yuyang18 已提交
4746 4747 4748
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

4749
        Args:
X
Xin Pan 已提交
4750 4751
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
4752

Y
yuyang18 已提交
4753 4754 4755 4756 4757 4758
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
4759
        res = Program()
4760
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
4761 4762 4763 4764

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
4765
        if prune_read_op:
4766 4767 4768 4769 4770 4771 4772 4773 4774
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
4775
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
4776 4777

        # change all `is_test` attributes to True
M
minqiyang 已提交
4778
        for i in six.moves.range(res.desc.num_blocks()):
4779
            block = res.desc.block(i)
M
minqiyang 已提交
4780
            for j in six.moves.range(block.op_size()):
4781 4782
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
4783
                    op._set_attr('is_test', True)
M
minqiyang 已提交
4784 4785 4786
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4787
        res._sync_with_cpp()
4788 4789
        return res

4790 4791
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
4792
        """
4793 4794 4795
        .. note::
            1. All information about parameters will be lost after serialization; 
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
4796

4797 4798
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
4799

J
Jiabin Yang 已提交
4800
        Args:
Y
yuyang18 已提交
4801

J
Jiabin Yang 已提交
4802
            binary_str_type (str): the binary prootbuf string.
4803

J
Jiabin Yang 已提交
4804 4805
        Returns:
            Program: A deserialized Program.
4806 4807 4808 4809

        Examples:
            .. code-block:: python

4810 4811 4812 4813
                import paddle
                import paddle.static as static

                paddle.enable_static()
4814

4815 4816 4817 4818
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
4819

4820
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
4821

4822
                    z = paddle.matmul(x=x, y=y)
4823

4824 4825
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
4826

4827
                    print(static.default_main_program())
4828
                    print(prog_restored)
Y
yuyang18 已提交
4829
        """
4830 4831
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
4832
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
4833
        p._sync_with_cpp()
4834
        return p
Y
Yu Yang 已提交
4835

4836
    @staticmethod
4837
    def _construct_from_desc(desc):
4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
4853 4854
    @property
    def random_seed(self):
Y
yuyang18 已提交
4855
        """
J
Jiabin Yang 已提交
4856
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
4857 4858
        the random seed from random device.

4859 4860
        .. note:: 
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
4861 4862 4863

        Returns:
            int64: Random seed in current Program
4864

4865 4866 4867 4868

        Examples:
            .. code-block:: python

4869 4870 4871
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
4872

4873 4874 4875
                paddle.enable_static()

                prog = static.default_main_program()
4876
                random_seed = prog.random_seed
4877
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
4878 4879 4880
                print(random_seed)
                ## 0
                ## the default random seed is 0
4881

4882
                # Here we need to set random seed before we use paddle.nn.functional.dropout
4883
                prog.random_seed = 1
4884
                z_var = F.dropout(x_var, 0.7)
4885

4886
                print(prog.random_seed)
4887 4888
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
4889
        """
D
dzhwinter 已提交
4890 4891
        return self._seed

Q
qiaolongfei 已提交
4892 4893
    @property
    def num_blocks(self):
Y
yuyang18 已提交
4894
        """
4895 4896
        The number of :ref:`api_guide_Block_en`  in this Program.

4897 4898
        .. note:: 
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
4899 4900 4901

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
4902

4903 4904 4905 4906

        Examples:
            .. code-block:: python

4907 4908 4909 4910
                import paddle
                import paddle.static as static

                paddle.enable_static()
4911

4912
                prog = static.default_main_program()
4913 4914
                num_blocks = prog.num_blocks
                print(num_blocks)
4915

4916 4917
                # print result:
                # 1
Y
yuyang18 已提交
4918
        """
Q
qiaolongfei 已提交
4919 4920
        return self.desc.num_blocks()

D
dzhwinter 已提交
4921 4922 4923
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
4924 4925 4926
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
                % type(seed))
D
dzhwinter 已提交
4927 4928
        self._seed = seed

Y
Yu Yang 已提交
4929
    def __repr__(self):
4930
        return self.__str__()
4931

Y
Yu Yang 已提交
4932
    def global_block(self):
Y
yuyang18 已提交
4933
        """
4934 4935
        .. note::
            This API has no effect in Dygraph mode.
4936 4937 4938

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
4939 4940
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
4941

4942 4943 4944 4945

        Examples:
            .. code-block:: python

4946 4947 4948 4949
                import paddle
                import paddle.static as static

                paddle.enable_static()
4950

4951
                prog = static.default_main_program()
4952 4953
                gb_block = prog.global_block()
                print(gb_block)
4954

Y
yuyang18 已提交
4955
        """
Y
Yu Yang 已提交
4956 4957
        return self.blocks[0]

Q
Qiao Longfei 已提交
4958
    def block(self, index):
Y
yuyang18 已提交
4959
        """
4960 4961
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
4962

4963 4964
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
4965 4966
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
4967

J
Jiabin Yang 已提交
4968 4969
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
4970 4971 4972 4973

        Examples:
            .. code-block:: python

4974 4975 4976 4977
                import paddle
                import paddle.static as static

                paddle.enable_static()
4978

4979
                prog = static.default_main_program()
4980 4981
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
4982
        """
Q
Qiao Longfei 已提交
4983 4984
        return self.blocks[index]

Y
Yu Yang 已提交
4985
    def current_block(self):
Y
yuyang18 已提交
4986
        """
4987 4988
        .. note::
            This API has no effect in Dygraph mode.
4989

J
Jiabin Yang 已提交
4990 4991
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
4992

J
Jiabin Yang 已提交
4993 4994
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
4995

4996 4997 4998
        Examples:
            .. code-block:: python

4999 5000 5001 5002
                import paddle
                import paddle.static as static

                paddle.enable_static()
5003

5004
                prog = static.default_main_program()
5005 5006
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
5007
        """
Y
Yu Yang 已提交
5008 5009
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
5010
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
5011 5012 5013 5014 5015
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
5016

Y
yuyang18 已提交
5017 5018 5019 5020 5021
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
5022
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
5023 5024 5025
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
5026 5027 5028 5029
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
5030
    def _rollback(self):
Y
yuyang18 已提交
5031 5032 5033 5034 5035
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
5036 5037
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
5038
    def _sync_with_cpp(self):
Y
yuyang18 已提交
5039 5040 5041 5042 5043 5044 5045 5046 5047 5048
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
5049 5050 5051
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
5052
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
5053

W
Wu Yi 已提交
5054
    def _copy_param_info_from(self, other):
5055
        """
5056
        Copy the information of parameters from other program.
D
dzhwinter 已提交
5057

Y
yuyang18 已提交
5058 5059 5060
        Notes: This is a very low level API. Users should not invoke it
        directly.

5061 5062 5063 5064 5065 5066 5067
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
5068 5069 5070
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
5071

W
Wu Yi 已提交
5072
        self.global_block()._copy_param_info_from(other.global_block())
5073

5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
5085 5086 5087
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
5088 5089
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
5090
        self._parameters_on_pservers = other._parameters_on_pservers
5091
        self._endpoints = other._endpoints
5092
        self._ps_endpoint = other._ps_endpoint
5093 5094
        self._distributed_lookup_table = other._distributed_lookup_table

5095
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
5096 5097
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
5098

Y
yuyang18 已提交
5099 5100 5101
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
5102 5103
        Args:
            other(Program): Other program
5104 5105 5106 5107
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is 
            cloned from block 0 in other, etc. Default is None, which means default mapped, 
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
5108 5109 5110 5111 5112

        Returns:
            None
        """
        if not isinstance(other, Program):
5113 5114 5115
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
F
fengjiayi 已提交
5116

5117 5118 5119 5120 5121
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
5122 5123 5124

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
5125 5126
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
5127
            for var in list(block.vars.values()):
5128 5129 5130 5131 5132 5133 5134
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
5135

5136
    def list_vars(self):
Y
yuyang18 已提交
5137
        """
5138
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
5139

J
Jiabin Yang 已提交
5140
        Returns:
5141
            iterable Tensors: The Generator will yield every Tensor in this program.
5142 5143 5144 5145

        Examples:
            .. code-block:: python

5146 5147
                import paddle
                import paddle.static as static
5148

5149 5150 5151 5152 5153
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
5154 5155
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
5156

5157 5158
                # var img : paddle.VarType.LOD_TENSOR.shape(-1, 1, 28, 28).astype(VarType.FP32)
                # var label : paddle.VarType.LOD_TENSOR.shape(-1, 1).astype(VarType.INT64)
Y
yuyang18 已提交
5159
        """
5160
        for each_block in self.blocks:
5161
            for each_var in list(each_block.vars.values()):
5162 5163
                yield each_var

5164 5165 5166 5167 5168 5169 5170 5171 5172 5173
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

5174 5175 5176 5177
                import paddle
                import paddle.static as static

                paddle.enable_static()
5178

5179 5180
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
5181
                hidden = static.nn.fc(x=data, size=10)
5182 5183
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
5184 5185 5186 5187 5188 5189 5190

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
5191 5192
                # persist trainable param fc_0.w_0 : paddle.VarType.LOD_TENSOR.shape(13, 10).astype(VarType.FP32)
                # persist trainable param fc_0.b_0 : paddle.VarType.LOD_TENSOR.shape(10,).astype(VarType.FP32)
5193 5194 5195 5196 5197 5198 5199 5200 5201 5202
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

Y
Yu Yang 已提交
5203

5204
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
5205
class Parameter(Variable):
5206
    """
5207
    Parameter is derived from Variable. A parameter is a persistable
5208
    Variable, and will be updated by optimizers after each iteration.
5209
    The training of a neural network is essentially the updating of
5210 5211
    its parameters.

5212
    Relative to a general Variable, a Parameter has several its own
5213 5214
    member variables:

5215 5216 5217 5218 5219 5220 5221 5222 5223 5224
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
5225 5226
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
5227 5228
    """

5229 5230 5231 5232 5233 5234
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
5235 5236 5237 5238 5239
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
5240
        if len(shape) == 0:
5241 5242
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
5243 5244 5245

        for each in shape:
            if each < 0:
5246 5247 5248
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
5249 5250

        Variable.__init__(
5251 5252 5253 5254 5255 5256 5257
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
            **kwargs)
Y
Yu Yang 已提交
5258 5259 5260 5261
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

5262 5263
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
5264
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
5265

5266 5267
        self.need_clip = kwargs.get('need_clip', True)

5268 5269
        self.is_distributed = False

F
fengjiayi 已提交
5270
    def __str__(self):
5271
        return self._to_readable_code()
F
fengjiayi 已提交
5272

F
update  
fengjiayi 已提交
5273 5274 5275
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
5276

F
update  
fengjiayi 已提交
5277 5278 5279 5280 5281 5282 5283 5284
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

5285 5286 5287 5288 5289 5290 5291 5292 5293
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
5294 5295 5296 5297 5298 5299
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
5300
                               "do_model_average", "need_clip")
F
update  
fengjiayi 已提交
5301
            for attr_name in additional_attr:
5302 5303
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
5304 5305
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
5306 5307 5308 5309
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
5310

5311 5312
class ParamBase(core.VarBase):
    """
5313 5314 5315
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode). 
    A ParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
5316 5317 5318
    The training of a neural network is essentially the updating of
    its ParamBase.

5319
    Relative to a general Tensor, a ParamBase has several its own
5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
5332 5333
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

        super(ParamBase, self).__init__(dtype
                                        if dtype else core.VarDesc.VarType.FP32,
                                        list(shape) if shape else [], name,
                                        core.VarDesc.VarType.LOD_TENSOR, True)

5364 5365
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
5366 5367 5368 5369 5370 5371 5372

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

5373 5374
        self.need_clip = kwargs.get('need_clip', True)

5375
        self.is_distributed = False
5376
        # self.block = default_main_program().global_block()
5377

5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

5391
    def __str__(self):
5392
        """
5393
        Convert a ParamBase object to a readable string.
5394

5395
        Returns(str): A readable string.
5396 5397 5398 5399

        Examples:
            .. code-block:: python

5400
                import paddle
5401 5402 5403 5404 5405 5406 5407
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
5408
        """
5409 5410
        return "Parameter containing:\n{tensor}".format(
            tensor=super(ParamBase, self).__str__())
5411

5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422
    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)
T
tangwei12 已提交
5423

5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = ParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

5442 5443 5444
    __repr__ = __str__


Y
Yu Yang 已提交
5445
# program is a global instance.
Y
Yu Yang 已提交
5446 5447
_main_program_ = Program()
_startup_program_ = Program()
5448

5449

5450
def default_startup_program():
Y
Yu Yang 已提交
5451
    """
Y
yuyang18 已提交
5452 5453
    Get default/global startup program.

5454 5455
    The :code:`paddle.nn` function will append the initialization operators into startup program.
    The :code:`startup_program` will initialize the parameters by the OPs. 
T
tangwei12 已提交
5456

5457 5458
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
5459

5460 5461
    Returns:
        Program: current default startup program.
5462

5463
    Returns type: 
5464 5465 5466 5467

    Examples:
        .. code-block:: python

5468
            import paddle
5469

5470
            paddle.enable_static()
5471 5472 5473 5474
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
5475
    """
Y
Yu Yang 已提交
5476
    return _startup_program_
5477

5478

5479
def default_main_program():
Y
Yu Yang 已提交
5480
    """
5481
    This API can be used to get ``default main program`` which store the 
5482
    descriptions of Ops and tensors.
T
tangwei12 已提交
5483

5484
    For example ``z = paddle.add(x, y)`` will create a new ``add`` 
5485
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` . 
Y
yuyang18 已提交
5486

5487 5488
    The ``default main program`` is the default value for ``Program`` parameter in 
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
5489
    :code:`default_main_program` when the program is not specified.
5490

5491
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
5492

Y
Yu Yang 已提交
5493
    Returns:
5494
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
5495 5496 5497 5498

    Examples:
        ..  code-block:: python

5499
            import paddle
5500

5501
            paddle.enable_static()
5502
            # Sample Network:
5503 5504 5505
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
5506

5507 5508 5509
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
5510
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
5511
    """
Y
Yu Yang 已提交
5512
    return _main_program_
Y
Yu Yang 已提交
5513 5514 5515 5516 5517


def switch_main_program(program):
    """
    Switch the main program to a new program.
5518

Y
Yu Yang 已提交
5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
5533
    Switch the startup program to a new program
Y
Yu Yang 已提交
5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
5546
@signature_safe_contextmanager
Y
Yu Yang 已提交
5547 5548
def program_guard(main_program, startup_program=None):
    """
5549 5550
    :api_attr: Static Graph

5551 5552 5553
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
5554

G
guofei 已提交
5555
    Args:
5556 5557
        main_program(Program): New main program inside ``with`` statement.
        startup_program(Program, optional): New startup program inside ``with`` 
G
guofei 已提交
5558 5559 5560 5561
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
5562
    Examples:
5563
       .. code-block:: python
T
tangwei12 已提交
5564

5565
          import paddle
Y
yuyang18 已提交
5566

5567 5568 5569 5570 5571
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
5572
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
5573 5574 5575

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
5576

Y
Yu Yang 已提交
5577
    Examples:
5578
       .. code-block:: python
Y
yuyang18 已提交
5579

5580
          import paddle
5581

5582 5583 5584 5585 5586
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
5587

Y
Yu Yang 已提交
5588
    """
5589
    from .data_feeder import check_type
5590 5591
    check_type(main_program, 'main_program', Program,
               'paddle.static.program_guard')
Y
Yu Yang 已提交
5592 5593
    main_program = switch_main_program(main_program)
    if startup_program is not None:
5594
        check_type(startup_program, 'startup_program', Program,
5595
                   'paddle.static.program_guard')
Y
Yu Yang 已提交
5596
        startup_program = switch_startup_program(startup_program)
5597 5598 5599 5600 5601 5602
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
5603 5604


W
Wu Yi 已提交
5605
def _get_var(name, program=None):
X
xuwei06 已提交
5606
    """
Y
yuyang18 已提交
5607
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
5608

X
xuwei06 已提交
5609 5610 5611
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
5612
        If None, default_global_program() will be used.
X
xuwei06 已提交
5613 5614 5615 5616 5617 5618 5619

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
5620
    assert isinstance(program, Program)
X
xuwei06 已提交
5621 5622

    return program.global_block().var(name)
5623 5624


S
rename  
sneaxiy 已提交
5625
@signature_safe_contextmanager
L
lujun 已提交
5626 5627 5628 5629
def _dygraph_guard(tracer):
    global _dygraph_tracer_
    tmp_trace = _dygraph_tracer_
    _dygraph_tracer_ = tracer
5630
    core._switch_tracer(tracer)
M
minqiyang 已提交
5631

5632 5633 5634 5635 5636
    try:
        yield
    finally:
        core._switch_tracer(tmp_trace)
        _dygraph_tracer_ = tmp_trace
P
Paddle CI 已提交
5637 5638


S
rename  
sneaxiy 已提交
5639
@signature_safe_contextmanager
L
lujun 已提交
5640
def _dygraph_place_guard(place):
5641 5642 5643
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
M
minqiyang 已提交
5644

5645 5646 5647
    try:
        yield
    finally:
5648
        _global_expected_place_ = tmp_place
5649 5650 5651 5652


def load_op_library(lib_filename):
    """
5653
    :api_attr: Static Graph
T
tangwei12 已提交
5654

5655 5656 5657
    Load a dynamic library, including custom operators and kernels.
    When library is loaded, ops and kernels registered in the library
    will be available in PaddlePaddle main process.
T
tianshuo78520a 已提交
5658
    Please note, the type of custom operators can't have the same type
5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672
    with the existing operators in the framework.

    Args:
        lib_filename (str): name of dynamic library.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            #fluid.load_op_library('custom_op.so')

    """
    core.load_op_library(lib_filename)
    OpProtoHolder.instance().update_op_proto()
5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724


def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
    **Notes**:
        **The API only supports static mode.**

    A context manager that specifies the device on which the OP will be placed.

    Args:
        device(str|None): Specify the device to use in the context. It should be 'cpu' or 'gpu',
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            support_gpu = fluid.is_compiled_with_cuda()
            place = fluid.CPUPlace()
            if support_gpu:
                place = fluid.CUDAPlace(0)

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
            data1 = fluid.layers.fill_constant(shape=[1, 3, 8, 8], value=0.5, dtype='float32')
            data2 = fluid.layers.fill_constant(shape=[1, 3, 5, 5], value=0.5, dtype='float32')
            shape = fluid.layers.shape(data2)

            with fluid.device_guard("cpu"):
                # Ops created here will be placed on CPUPlace
                shape = fluid.layers.slice(shape, axes=[0], starts=[0], ends=[4])
            with fluid.device_guard('gpu'):
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
                out = fluid.layers.crop_tensor(data1, shape=shape)

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            result = exe.run(fetch_list=[out])
    """

5725 5726 5727 5728 5729
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
5730 5731 5732 5733
    if device not in ['cpu', 'gpu', '', None]:
        raise ValueError(
            "The Attr(device) should be 'cpu' or 'gpu', and it can also be empty string or None "
            "when there is no need to specify device. But received %s" % device)
5734 5735
    if index:
        device = ":".join([device, index])
5736
    pre_device = switch_device(device)
5737 5738 5739 5740
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807


def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                fluid.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
        if core.globals().is_public(key):
            core.globals()[key] = value
        else:
            raise ValueError(
                "Flag %s cannot set its value through this function." % (key))


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
            res = fluid.get_flags(flags)
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
            if (core.globals().is_public(key)):
                value = core.globals()[key]
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
                    'Flag %s cannot get its value through this function.' %
                    (key))
    elif isinstance(flags, str):
        if (core.globals().is_public(flags)):
            value = core.globals()[flags]
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
                'Flag %s cannot get its value through this function.' % (flags))
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value