framework.py 260.3 KB
Newer Older
G
gouzil 已提交
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
import collections
X
Xin Pan 已提交
16
from collections import defaultdict
H
huzhiqiang 已提交
17
from collections.abc import Iterable
Q
qiaolongfei 已提交
18
import contextlib
19
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
20
import os
F
fengjiayi 已提交
21
import re
22
import traceback
23
import copy
24
from types import MethodType, FunctionType
25

Y
Yu Yang 已提交
26
import numpy as np
27
import subprocess
S
sneaxiy 已提交
28
import multiprocessing
29
import sys
30
import logging
31
from .proto import framework_pb2
32 33

from . import core
34
from . import unique_name
35 36
import paddle.version as fluid_version
import warnings
37
import functools
38
from .variable_index import _getitem_impl_, _setitem_impl_
Y
Yu Yang 已提交
39

40
__all__ = [
41 42 43 44
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
45
    'name_scope',
J
jianghaicheng 已提交
46
    'ipu_shard_guard',
47
    'set_ipu_shard',
S
sneaxiy 已提交
48 49
    'cuda_places',
    'cpu_places',
50
    'xpu_places',
51
    'mlu_places',
S
sneaxiy 已提交
52
    'cuda_pinned_places',
J
Jiabin Yang 已提交
53
    '_non_static_mode',
L
lujun 已提交
54
    'in_dygraph_mode',
55
    'is_compiled_with_cinn',
C
chengduo 已提交
56
    'is_compiled_with_cuda',
57
    'is_compiled_with_rocm',
58
    'is_compiled_with_xpu',
59
    'is_compiled_with_npu',
60
    'Variable',
61
    'require_version',
62
    'device_guard',
G
guofei 已提交
63 64
    'set_flags',
    'get_flags',
65
]
Y
Yu Yang 已提交
66

Q
qiaolongfei 已提交
67 68 69 70
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
71 72
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
73
_dygraph_tracer_ = None
74
_in_eager_mode_ = os.environ.get('FLAGS_enable_eager_mode', '1') == '1'
75
_global_expected_place_ = None
76
_current_device = None
77
global_prog_seed = 0
78
_current_pipeline_stage = None
79
_already_patch_eager_tensor = False
J
Jiabin Yang 已提交
80
_already_patch_varbase = False
81
_current_cuda_graph_mode = None
82
_global_flags_ = core.globals()
83 84 85 86 87 88
_enable_standalone_executor_ = os.environ.get(
    'FLAGS_USE_STANDALONE_EXECUTOR', None
)
_dy2st_enable_standalone_executor_ = os.environ.get(
    'FLAGS_DY2ST_USE_STANDALONE_EXECUTOR', 1
)
J
Jiabin Yang 已提交
89 90

# Some explanation of our execution system 2022.03
91
# For now we have 3 kinds of execution system, since we refactored dygraph mode to
J
Jiabin Yang 已提交
92
# build a fast execution system for dynamic mode. But we can't just remove all legacy
93
# code once we present the new system for some historical reason. That's why we have
J
Jiabin Yang 已提交
94
# these flags.
95
#
J
Jiabin Yang 已提交
96
# 1. _non_static_mode():
97
# _non_static_mode means  we are now running in legacy dygraph mode or dygraph mode.
J
Jiabin Yang 已提交
98 99 100 101
# 2. dygraph_mode():
# This flags inidicates we are now running in dygraph mode which called eager mode before.
# 3. _in_legacy_dygraph():
# This flags inidicates we are now running in legacy dygraph mode
102
#
J
Jiabin Yang 已提交
103
# They have a relation ship as below:
104
# Both dygraph_mode and _in_legacy_dygraph are _non_static_mode, but if you are running in
J
Jiabin Yang 已提交
105
# dygraph mode means you are not in _in_legacy_dygraph.
106
#
J
Jiabin Yang 已提交
107 108 109 110 111 112
# Why we have to make different of _in_legacy_dygraph and dygraph_mode?
# In some performance issue, we find that python if statement cause server performance problem
# and we need our new dygraph mode becomes as fast as it could be. That's why we make these flags
# to make sure in most case, we find new dygraph mode first with only one if statement.


113 114 115 116 117
def _update_monkey_methods(is_eager):
    """
    Update monkey methods of VarBase or eager.Tensor while
    switching eager mode and legacy mode.
    """
118
    from paddle import _C_ops, _legacy_C_ops
119 120 121
    from .dygraph.varbase_patch_methods import monkey_patch_varbase
    from .dygraph import monkey_patch_math_varbase

122 123 124
    global _already_patch_eager_tensor
    global _already_patch_varbase

125
    assert isinstance(is_eager, bool)
126
    # switch into eager mode
127
    if is_eager:
128
        _legacy_C_ops.switch_to_eager_ops()
129 130 131 132 133 134
        if not _already_patch_eager_tensor:
            monkey_patch_varbase()
            monkey_patch_math_varbase()

            _already_patch_eager_tensor = True
    # switch back into legacy mode
135
    else:
136
        _legacy_C_ops.switch_to_core_ops()
137 138 139 140 141
        if not _already_patch_varbase:
            monkey_patch_varbase()
            monkey_patch_math_varbase()

            _already_patch_varbase = True
142

143 144 145 146 147 148
    # switch Paddle.Tensor bind type
    _switch_tensor_bind_type(is_eager)


def _switch_tensor_bind_type(is_eager):
    import paddle
149

150 151 152 153 154
    if is_eager:
        paddle.Tensor = core.eager.Tensor
    else:
        paddle.Tensor = core.VarBase
    paddle.Tensor.__qualname__ = 'Tensor'
155 156


J
Jiabin Yang 已提交
157 158 159
def _enable_legacy_dygraph():
    global _in_eager_mode_
    _in_eager_mode_ = False
160
    _update_monkey_methods(is_eager=False)
J
Jiabin Yang 已提交
161 162 163 164 165


def _disable_legacy_dygraph():
    global _in_eager_mode_
    _in_eager_mode_ = True
166
    _update_monkey_methods(is_eager=True)
J
Jiabin Yang 已提交
167 168 169 170 171 172 173


def _in_eager_without_dygraph_check():
    global _in_eager_mode_
    return _in_eager_mode_


174 175 176 177 178 179 180 181 182
# FIXME(dev): We haven't fully verified eager mode on XPU/NPU et.al but
# only GPU/CPU. Remove this after we improve this feature.
_is_first_import_ = True


def _fallback_legacy_dygraph():
    global _in_eager_mode_
    global _is_first_import_
    need_fallback = False
C
Chen Weihang 已提交
183
    # Only enable eager on CPU/GPU/XPU
184 185 186 187 188
    is_not_support = (
        core.is_compiled_with_npu()
        or core.is_compiled_with_ipu()
        or core.is_compiled_with_mlu()
    )
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209

    if _in_eager_mode_ and is_not_support:
        # switch into legacy dygraph mode
        warnings.warn(
            "We will fallback into legacy dygraph on NPU/XPU/MLU/IPU/ROCM devices. Because we only support new eager dygraph mode on CPU/GPU currently. "
        )
        _in_eager_mode_ = False
        if not _is_first_import_:
            _enable_legacy_dygraph()
        need_fallback = True

    need_fallback = False
    _is_first_import_ = False

    return need_fallback


# switch into legacy mode if need while import paddle
_fallback_legacy_dygraph()


J
Jiabin Yang 已提交
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
def in_dygraph_mode():
    """

    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .

    Returns:
        bool: Whether paddle runs in dynamic graph mode.

    Examples:
        .. code-block:: python

            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode

    """
    return (_dygraph_tracer_ is not None) and _in_eager_mode_


def _in_legacy_dygraph():
    return (not _in_eager_mode_) and (_dygraph_tracer_ is not None)


def _non_static_mode():
    return _dygraph_tracer_ is not None
246 247 248


@signature_safe_contextmanager
J
Jiabin Yang 已提交
249
def _test_eager_guard(place=None):
C
Chen Weihang 已提交
250 251
    # FIXME(dev): We haven't fully verified eager mode on NPU et.al but
    # only GPU/CPU/XPU. Remove this after we improve this feature.
252 253 254
    already_fallback = _fallback_legacy_dygraph()
    if not already_fallback:
        _disable_legacy_dygraph()
255
    try:
J
Jiabin Yang 已提交
256
        yield
257
    finally:
258 259
        if not already_fallback:
            _enable_legacy_dygraph()
260 261


262 263
global_ipu_index = -1
global_ipu_stage = -1
J
jianghaicheng 已提交
264 265 266 267
ipu_index_attr_name = 'ipu_index'
ipu_stage_attr_name = 'ipu_stage'


L
Leo Chen 已提交
268 269 270 271 272 273 274 275 276 277 278
@signature_safe_contextmanager
def _enable_standalone_executor(enable=True):
    global _enable_standalone_executor_
    original_ = _enable_standalone_executor_
    _enable_standalone_executor_ = enable
    try:
        yield
    finally:
        _enable_standalone_executor_ = original_


J
jianghaicheng 已提交
279
@signature_safe_contextmanager
280
def ipu_shard_guard(index=-1, stage=-1):
J
jianghaicheng 已提交
281 282 283 284
    """
    Used to shard the graph on IPUs. Set each Op run on which IPU in the sharding and which stage in the pipelining.

    Args:
W
Weilong Wu 已提交
285
        index(int, optional): Specify which ipu the Tensor is computed on, (such as '0, 1, 2, 3').
286
            The default value is -1, which means the Op only run on IPU 0.
W
Weilong Wu 已提交
287
        stage(int, optional): Specify the computation order of the sharded model(such as '0, 1, 2, 3').
288
            The sharded model will be computed from small to large. The default value is -1,
J
jianghaicheng 已提交
289
            which means no pipelining computation order and run Ops in terms of graph.
290

G
gouzil 已提交
291 292 293 294 295 296 297
    Note:
        Only if the enable_manual_shard=True, the 'index' is able to be set not -1. Please refer
        to :ref:`api_paddle_static_IpuStrategy`.
        Only if the enable_pipelining=True, the 'stage' is able to be set not -1. Please refer
        to :ref:`api_paddle_static_IpuStrategy`.
        A index is allowed to match none stage or a stage. A stage is only allowed to match a new or
        duplicated index.
J
jianghaicheng 已提交
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
            with paddle.static.ipu_shard_guard(index=0, stage=0):
                b = a + 1
            with paddle.static.ipu_shard_guard(index=1, stage=1):
                c = b + 1
            with paddle.static.ipu_shard_guard(index=0, stage=2):
                d = c + 1
    """
    if not core.is_compiled_with_ipu():
        raise ValueError(
            "Can not use this function since PaddlePaddle is not compiled with IPU"
        )

    global global_ipu_index
    global global_ipu_stage
    prev_ipu_index = global_ipu_index
    prev_ipu_stage = global_ipu_stage
    global_ipu_index = index
    global_ipu_stage = stage
    try:
        yield
    finally:
        global_ipu_index = prev_ipu_index
        global_ipu_stage = prev_ipu_stage


332 333 334 335
def set_ipu_shard(call_func, index=-1, stage=-1):
    """
    Shard the ipu with the given call function. Set every ops in call function to the given ipu sharding.

G
gouzil 已提交
336 337 338 339 340
    Note:
        Only when enable_manual_shard=True to set the index to a value other than -1. please refer to :ref:`api_paddle_static_IpuStrategy` .
        Only when enable_pipelining=True to set stage to a value other than -1. please refer to :ref:`api_paddle_static_IpuStrategy` .
        An index supports a corresponding None stage or a stage, and a stage only supports a new index or a duplicate index.

341 342 343 344 345
    Args:
        call_func(Layer|function): Specify the call function to be wrapped.
        index(int, optional): Specify which ipu the Tensor is computed on, (such as ‘0, 1, 2, 3’).
            The default value is -1, which means the Op only run on IPU 0.
        stage(int, optional): Specify the computation order of the sharded model(such as ‘0, 1, 2, 3’).
346
            The sharded model will be computed from small to large. The default value is -1,
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
            which means no pipelining computation order and run Ops in terms of graph.

    Returns:
        The wrapped call function.

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='float32')
            relu = paddle.nn.ReLU()
            relu = paddle.static.set_ipu_shard(relu, index=1, stage=1)
            relu(a)
    """

    def decorate(func):
        def wrapper(*args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return func(*args, **kwargs)

        return wrapper

    from .dygraph.layers import Layer
373

374 375 376 377 378
    if not isinstance(call_func, Layer):
        if callable(call_func):
            return decorate(call_func)
        else:
            raise TypeError(
379 380
                "Unsupported type. Only accept paddle.nn.Layer or function."
            )
381 382 383 384 385 386 387 388 389 390 391 392

    # patch paddle.nn.Layer
    class BlockFn(type(call_func)):
        def __call__(self, *args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return super().__call__(*args, **kwargs)

    BlockFn.__name__ = type(call_func).__name__
    call_func.__class__ = BlockFn
    return call_func


393 394
def require_version(min_version, max_version=None):
    """
395 396 397
    Check if the installed version of PaddlePaddle is in [min_version, max_version],
    if the installed version is lower than ``min_version`` or higher than ``max_version``,
    an exception will be thrown, NO returns if the installed version is satisfied.
398

399 400 401 402
    Args:
        min_version (str): the minimum version required (like '1.4.0').
        max_version (str, optional): the max version required (like '1.6.0'), default is None,
            meaning any version equal or higher than ``min_version`` is acceptable.
403

404 405
    Returns:
        None.
406

407 408 409 410 411 412
    Raises:
        TypeError: if the type of ``min_version`` is not str.
        TypeError: if the type of ``max_version`` is not str or type(None).
        ValueError: if the value of ``min_version`` is not in version format.
        ValueError: if the value of ``max_version`` is not in version format or None.
        Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.
413

414 415
    Examples:
        .. code-block:: python
416

417
            import paddle.fluid as fluid
418

419 420
            # any version >= 0.1.0 is acceptable.
            fluid.require_version('0.1.0')
421

422 423 424
            # if 0.1.0 <= version <= 10.0.0, it is acceptable.
            fluid.require_version(min_version='0.1.0', max_version='10.0.0')
    """
425 426 427
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
428 429
            % (type(min_version))
        )
430 431 432 433

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
434 435
            % (type(max_version))
        )
436 437 438 439 440

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
441 442
            "like '1.5.2.0', but received %s" % min_version
        )
443 444 445 446 447 448

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
449 450
                "like '1.5.2.0', but received %s" % max_version
            )
451 452

    version_installed = [
453 454 455 456
        fluid_version.major,
        fluid_version.minor,
        fluid_version.patch,
        fluid_version.rc,
457 458 459 460
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
461
        for i in range(len(ver_a)):
462 463 464 465 466 467 468 469 470 471 472
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
473 474 475
                "please make sure the version is good with your code."
                % (min_version, max_version, fluid_version.full_version)
            )
476 477 478 479
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
480 481 482
                "please make sure the version is good with your code."
                % (min_version, fluid_version.full_version)
            )
483 484 485
        return

    min_version_split = min_version.split('.')
486 487 488
    min_version_to_check = (
        min_version_split + zero_version[len(min_version_split) :]
    )
489 490 491

    if max_version is not None:
        max_version_split = max_version.split('.')
492 493 494
        max_version_to_check = (
            max_version_split + zero_version[len(max_version_split) :]
        )
495

496 497 498 499
        if (
            version_cmp(version_installed, max_version_to_check) > 0
            or version_cmp(version_installed, min_version_to_check) < 0
        ):
500 501
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
502 503
                % (min_version, max_version, fluid_version.full_version)
            )
504 505 506 507 508
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
509 510
                % (min_version, fluid_version.full_version, min_version)
            )
511 512


513 514
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
515 516 517
        assert not _non_static_mode(), (
            "We don't support %s in dynamic graph mode" % func.__name__
        )
518 519 520 521 522 523 524
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
525 526 527 528
        assert _non_static_mode(), (
            "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode."
            % func.__name__
        )
529 530 531 532 533
        return func(*args, **kwargs)

    return __impl__


534 535 536
def _non_static_only_(func):
    def __impl__(*args, **kwargs):
        from .dygraph.base import in_declarative_mode
537 538 539 540 541

        assert _non_static_mode() or in_declarative_mode(), (
            "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode."
            % func.__name__
        )
542 543 544 545 546
        return func(*args, **kwargs)

    return __impl__


547 548
def _static_only_(func):
    def __impl__(*args, **kwargs):
549 550 551 552
        assert not _non_static_mode(), (
            "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode."
            % func.__name__
        )
553 554 555 556 557
        return func(*args, **kwargs)

    return __impl__


558 559 560 561 562
def _set_pipeline_stage(stage):
    global _current_pipeline_stage
    _current_pipeline_stage = stage


563 564 565 566 567 568
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
569
# same base class.
570 571 572
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
573 574 575 576
            "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n"
            "  1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n"
            "  2. If you are using `@paddle.jit.to_static`, you can turn off ProgramTranslator by calling `paddle.jit.ProgramTranslator().enable(False)`. "
            "If you have to translate dynamic graph to static graph, please use other API to replace '%s'."
577 578
            % (func.__name__, func.__name__)
        )
579 580 581 582

    return __impl__


T
tangwei12 已提交
583 584
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
585 586 587 588 589 590 591 592 593
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
594 595
                DeprecationWarning,
            )
596 597 598 599 600 601 602
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


603 604
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
605
static_only = wrap_decorator(_static_only_)
606
fake_interface_only = wrap_decorator(_fake_interface_only_)
607
non_static_only = wrap_decorator(_non_static_only_)
608 609


L
lujun 已提交
610 611
def _dygraph_tracer():
    return _dygraph_tracer_
612

W
Wu Yi 已提交
613

614 615 616 617
def _global_flags():
    return _global_flags_


M
minqiyang 已提交
618
def _current_expected_place():
619 620 621
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
622 623 624 625 626
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
627
                _global_expected_place_ = core.CUDAPlace(_cuda_ids()[0])
628 629 630 631 632
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
633 634 635 636 637 638
        elif core.is_compiled_with_xpu():
            try:
                device_count = core.get_xpu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
639
                _global_expected_place_ = core.XPUPlace(_xpu_ids()[0])
640 641 642 643 644
            else:
                warnings.warn(
                    "You are using XPU version Paddle, but your XPU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
645 646 647 648 649 650
        elif core.is_compiled_with_mlu():
            try:
                device_count = core.get_mlu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
651
                _global_expected_place_ = core.MLUPlace(_mlu_ids()[0])
652 653 654 655 656
            else:
                warnings.warn(
                    "You are using MLU version Paddle, but your MLU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
    global _dygraph_tracer_
    if _dygraph_tracer_ is not None:
        _dygraph_tracer_._expected_place = place


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
J
Jiabin Yang 已提交
672
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
673 674


L
Leo Chen 已提交
675 676
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
677 678
    """
    convert VarBase tp numpy
T
tangwei12 已提交
679

680 681 682
    Args:
        var_base(VarBase) : the VarBase to convert
    Returns (np.ndarray): the np.ndarray contain the value of VarBase
L
Leo Chen 已提交
683 684 685 686 687 688 689 690 691
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
692
def _cpu_num():
693
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
694 695 696 697 698 699 700
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
701 702 703
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()
                )
            )
C
chengduo 已提交
704
        os.environ['CPU_NUM'] = str(1)
705
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
706 707 708 709 710 711 712 713
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
714
        device_ids = range(core.get_cuda_device_count())
C
chengduo 已提交
715
    return device_ids
S
sneaxiy 已提交
716 717


718 719 720 721 722
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
723
        device_ids = range(core.get_xpu_device_count())
724 725 726
    return device_ids


727 728 729 730 731
def _npu_ids():
    npus_env = os.getenv("FLAGS_selected_npus")
    if npus_env:
        device_ids = [int(s) for s in npus_env.split(",")]
    else:
732
        device_ids = range(core.get_npu_device_count())
733 734 735
    return device_ids


736 737 738 739 740
def _mlu_ids():
    mlus_env = os.getenv("FLAGS_selected_mlus")
    if mlus_env:
        device_ids = [int(s) for s in mlus_env.split(",")]
    else:
741
        device_ids = range(core.get_mlu_device_count())
742 743 744
    return device_ids


745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
def is_compiled_with_npu():
    """
    Whether this whl package can be used to run the model on NPU.

    Returns (bool): support npu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_npu = fluid.is_compiled_with_npu()
    """
    return core.is_compiled_with_npu()


775 776 777 778 779 780 781
def disable_signal_handler():
    """
    Reset signal handler registered by Paddle.

    Paddle installs signal handlers at C++ level to log debug information upon failing.
    However, conflicts can happen if another python module is making use of such signal.
    Such being the case, one may disblae paddle signal handler via this interface.
782

783 784 785 786 787 788
    Known frameworks that require disabling signal handler includes:
    1. TVM
    2. ADLIK

    Make sure you called paddle.disable_signal_handler() before using above mentioned frameworks.

789
    Returns: None
790 791 792 793 794 795 796 797 798 799

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_signal_handler()
    """
    core.disable_signal_handler()


800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
def is_compiled_with_cinn():
    """
    Whether this whl package can be used to run the model on CINN.

    Returns (bool): `True` if CINN is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
            support_cinn = paddle.device.is_compiled_with_cinn()
    """
    return core.is_compiled_with_cinn()


C
chengduo 已提交
815 816 817 818
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

819
    Returns (bool): `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
820 821 822 823

    Examples:
        .. code-block:: python

824
            import paddle
825
            support_gpu = paddle.device.is_compiled_with_cuda()
C
chengduo 已提交
826 827 828 829
    """
    return core.is_compiled_with_cuda()


830 831 832 833 834 835 836 837 838 839
def is_compiled_with_rocm():
    """
    Whether this whl package can be used to run the model on AMD or Hygon GPU(ROCm).

    Returns (bool): `True` if ROCm is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
840
            support_gpu = paddle.device.is_compiled_with_rocm()
841 842 843 844
    """
    return core.is_compiled_with_rocm()


S
sneaxiy 已提交
845
def cuda_places(device_ids=None):
L
lujun 已提交
846
    """
847
    Note:
848 849 850
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
851
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
852 853

    If :code:`device_ids` is None, environment variable of
854
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
855
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
856
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
857
    If :code:`FLAGS_selected_gpus` is not set, all visible
858
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
859 860

    If :code:`device_ids` is not None, it should be the device
861
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
862
    the returned list would be
C
Chen Weihang 已提交
863
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
864

865
    Parameters:
866
        device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
S
add doc  
sneaxiy 已提交
867 868

    Returns:
C
Chen Weihang 已提交
869
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
870 871

    Examples:
872

L
lujun 已提交
873 874
        .. code-block:: python

C
Chen Weihang 已提交
875 876
            import paddle
            import paddle.static as static
T
tangwei12 已提交
877

878
            # required: gpu
879

C
Chen Weihang 已提交
880 881 882
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
883 884

    """
885
    assert core.is_compiled_with_cuda(), "Not compiled with CUDA"
S
sneaxiy 已提交
886
    if device_ids is None:
C
chengduo 已提交
887
        device_ids = _cuda_ids()
S
sneaxiy 已提交
888 889 890 891 892
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


893 894 895 896
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
S
sunzhongkai588 已提交
897 898 899 900 901 902 903 904 905
        This function creates a list of :code:`paddle.XPUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_xpus` would be checked first. For example, if
        :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
        be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
        If :code:`FLAGS_selected_xpus` is not set, all visible
        xpu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
906
        the returned list would be
S
sunzhongkai588 已提交
907
        [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
908

909 910 911 912 913 914
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
S
sunzhongkai588 已提交
915

916 917
            # required: xpu

918 919
            import paddle
            import paddle.static as static
920

921 922 923
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
924
    assert core.is_compiled_with_xpu(), "Not compiled with XPU"
925 926 927 928 929 930 931
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


932 933 934 935
def npu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_npus` environment variable to set the visible NPU device.
936

937 938 939 940 941 942 943 944 945
    This function creates a list of :code:`paddle.NPUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_npus` would be checked first. For example, if
    :code:`FLAGS_selected_npus=0,1,2`, the returned list would
    be [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
    If :code:`FLAGS_selected_npus` is not set, all visible
    npu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of NPUs. For example, if :code:`device_ids=[0,1,2]`,
946
    the returned list would be
947
    [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
948

949 950 951 952 953 954 955 956 957 958 959
    Parameters:
        device_ids (list or tuple of int, optional): list of NPU device ids.
    Returns:
        list of paddle.NPUPlace: Created NPU place list.
    Examples:
        .. code-block:: python

            # required: npu

            import paddle
            import paddle.static as static
960

961 962 963
            paddle.enable_static()
            npu_places = static.npu_places()
    """
964
    assert core.is_compiled_with_npu(), "Not compiled with NPU"
965 966 967 968 969 970 971
    if device_ids is None:
        device_ids = _npu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.NPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
972
def cpu_places(device_count=None):
L
lujun 已提交
973
    """
C
Chen Weihang 已提交
974
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
975

S
add doc  
sneaxiy 已提交
976
    If :code:`device_count` is None, the device count would
977
    be determined by environment variable :code:`CPU_NUM`.
C
chengduo 已提交
978 979
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
980 981
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
982

983 984
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
985 986

    Returns:
C
Chen Weihang 已提交
987
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
988 989

    Examples:
990

L
lujun 已提交
991 992
        .. code-block:: python

C
Chen Weihang 已提交
993 994
            import paddle
            import paddle.static as static
T
tangwei12 已提交
995

C
Chen Weihang 已提交
996 997 998
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
999 1000
    """

S
sneaxiy 已提交
1001 1002 1003 1004 1005 1006
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
1007
    """
1008
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
1009 1010

    If :code:`device_count` is None, the device count would
1011
    be determined by environment variable :code:`CPU_NUM`.
1012 1013 1014 1015
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
1016

1017 1018
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
1019 1020

    Returns:
1021
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
1022 1023 1024 1025

    Examples:
        .. code-block:: python

1026
            import paddle.fluid as fluid
L
lujun 已提交
1027 1028 1029 1030 1031
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
1032
    assert core.is_compiled_with_cuda(), "Not compiled with CUDA"
S
sneaxiy 已提交
1033
    if device_count is None:
1034 1035
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
1036 1037


1038 1039
def mlu_places(device_ids=None):
    """
G
gouzil 已提交
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
    This function creates a list of :code:`paddle.device.MLUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_mlus` would be checked first. For example, if
    :code:`FLAGS_selected_mlus=0,1,2`, the returned list would
    be [paddle.device.MLUPlace(0), paddle.device.MLUPlace(1), paddle.device.MLUPlace(2)].
    If :code:`FLAGS_selected_mlus` is not set, all visible
    mlu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of MLUs. For example, if :code:`device_ids=[0,1,2]`,
    the returned list would be
    [paddle.device.MLUPlace(0), paddle.device.MLUPlace(1), paddle.device.MLUPlace(2)].

    Note:
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
        For multi-card tasks, please use `FLAGS_selected_mlus` environment variable to set the visible MLU device.

    Parameters:
        device_ids (list or tuple of int, optional): list of MLU device ids.

    Returns:
        list of paddle.device.MLUPlace: Created MLU place list.

    Examples:
        .. code-block:: python

            # required: mlu

            import paddle
            import paddle.static as static

            paddle.enable_static()
            mlu_places = static.mlu_places()
    """
1072
    assert core.is_compiled_with_mlu(), "Not compiled with MLU"
1073 1074 1075 1076 1077 1078 1079
    if device_ids is None:
        device_ids = _mlu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.MLUPlace(dev_id) for dev_id in device_ids]


1080
class NameScope:
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
1091 1092 1093
            new_child = NameScope(
                prefix + "_%d" % len(self._children[prefix]), self
            )
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
1107
@signature_safe_contextmanager
1108 1109
def name_scope(prefix=None):
    """
1110

1111
    Generate hierarchical name prefix for the operators in Static Graph.
1112

1113
    Note:
T
Tao Luo 已提交
1114 1115
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
1116
        Don't use it in dygraph, since it will cause memory leak.
1117 1118

    Args:
T
Tao Luo 已提交
1119
        prefix(str, optional): prefix. Default is none.
1120 1121

    Examples:
1122

1123
        .. code-block:: python
T
Tink_Y 已提交
1124

1125 1126 1127
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
1128
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
1129
             b = a + 1
1130
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
1131
                c = b * 1
1132
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
1133
                d = c / 1
1134 1135 1136
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
1137 1138
                g = f - 1

1139
          # Op are created in the default main program.
1140
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
1156 1157
    """
    # TODO(panyx0718): Only [0-9a-z].
1158
    # in dygraph we don't need namescope since it will cause mem leak
J
Jiabin Yang 已提交
1159
    if _non_static_mode():
L
Leo Chen 已提交
1160 1161
        yield
    else:
T
tianshuo78520a 已提交
1162
        assert prefix, "namescope prefix can not be empty."
1163 1164
        global _name_scope
        _name_scope = _name_scope.child(prefix)
1165 1166 1167 1168
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
1181 1182
def generate_control_dev_var_name():
    import random
1183

W
Wu Yi 已提交
1184
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
1185 1186 1187 1188


def grad_var_name(var_name):
    """
1189 1190
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
1191 1192 1193
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
1194

1195
def convert_np_dtype_to_dtype_(np_dtype):
1196
    """
1197
    Convert the data type in numpy to the data type in Paddle.
1198

1199
    Args:
1200 1201
        np_dtype (np.dtype|str): The data type in numpy or valid data type
            string.
1202

1203
    Returns:
1204
        core.VarDesc.VarType: The data type in Paddle.
1205 1206

    """
1207 1208
    # Convert the data type string to numpy data type.
    if isinstance(np_dtype, str) and np_dtype == "bfloat16":
1209 1210 1211
        dtype = np.uint16
    else:
        dtype = np.dtype(np_dtype)
1212

1213
    if dtype == np.float32:
1214
        return core.VarDesc.VarType.FP32
1215
    elif dtype == np.float64:
1216
        return core.VarDesc.VarType.FP64
1217
    elif dtype == np.float16:
1218
        return core.VarDesc.VarType.FP16
1219
    elif dtype == np.int32:
1220
        return core.VarDesc.VarType.INT32
1221
    elif dtype == np.int16:
1222
        return core.VarDesc.VarType.INT16
1223
    elif dtype == np.int64:
1224
        return core.VarDesc.VarType.INT64
1225
    elif dtype == np.bool_:
1226
        return core.VarDesc.VarType.BOOL
1227
    elif dtype == np.uint16:
1228 1229 1230
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
1231 1232
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
1233 1234
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
1235 1236 1237 1238
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
1239
    else:
M
minqiyang 已提交
1240
        raise ValueError("Not supported numpy dtype %s" % dtype)
1241 1242 1243


def dtype_is_floating(dtype):
1244 1245 1246
    """
    Check the data type is floating or not.
    Args:
1247
        dtype(np.dtype|core.VarDesc.VarType): data type.
1248 1249 1250 1251 1252
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
1253
    if not isinstance(dtype, core.VarDesc.VarType):
1254 1255
        dtype = convert_np_dtype_to_dtype_(dtype)

1256
    return dtype in [
1257 1258 1259
        core.VarDesc.VarType.FP16,
        core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64,
1260
    ]
1261 1262


Y
Yang Yang(Tony) 已提交
1263
def _debug_string_(proto, throw_on_error=True):
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
1275
    error_fields = list()
Y
Yang Yang(Tony) 已提交
1276
    if not proto.IsInitialized(error_fields) and throw_on_error:
1277 1278
        raise ValueError(
            "{0} are not initialized.\nThe message is {1}:\n".format(
1279 1280 1281
                error_fields, proto
            )
        )
Y
Yu Yang 已提交
1282 1283 1284
    return proto.__str__()


1285 1286 1287 1288 1289 1290 1291 1292
def _varbase_creator(
    type=core.VarDesc.VarType.LOD_TENSOR,
    name=None,
    shape=None,
    dtype=None,
    persistable=None,
    **kwargs
):
1293 1294 1295 1296
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

J
Jiabin Yang 已提交
1297
    if _in_eager_mode_:
1298
        eager_tensor = core.eager.Tensor(
1299
            dtype if dtype else core.VarDesc.VarType.FP32,
1300 1301
            list(shape) if shape else [],
            name,
1302
            type if type else core.VarDesc.VarType.LOD_TENSOR,
1303 1304
            True if persistable else False,
        )
1305 1306
        eager_tensor.retain_grads()
        return eager_tensor
J
Jiabin Yang 已提交
1307
    else:
1308 1309 1310 1311 1312 1313 1314
        return core.VarBase(
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape) if shape else [],
            name,
            type if type else core.VarDesc.VarType.LOD_TENSOR,
            True if persistable else False,
        )
1315 1316


1317 1318 1319 1320 1321 1322 1323
def _all_is_type(vals, expected_type):
    """
    Return True if type of each element is expected_type.

    NOTE: BuiltIn all() will always return True if vals is empty.
    """
    assert isinstance(vals, (list, tuple))
1324 1325
    if not vals:
        return False
1326 1327 1328
    return all(isinstance(v, expected_type) for v in vals)


1329 1330 1331 1332 1333
class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1334
            return issubclass(t, core.eager.Tensor)
1335
        else:
J
Jiabin Yang 已提交
1336 1337
            if _in_legacy_dygraph():
                return issubclass(t, core.VarBase)
1338 1339 1340 1341 1342 1343 1344 1345
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1346
            return issubclass(t, EagerParamBase)
1347
        else:
J
Jiabin Yang 已提交
1348 1349
            if _in_legacy_dygraph():
                return issubclass(t, ParamBase)
1350 1351 1352
            return issubclass(t, Parameter)


1353
class Variable(metaclass=VariableMetaClass):
1354
    """
J
Jiabin Yang 已提交
1355

U
ustiniankw 已提交
1356 1357 1358 1359
    Notes:
        The constructor of Variable should not be invoked directly.

        In Static Graph Mode: Please use ** `Block.create_var` ** to create a Static variable which has no data until being feed.
1360

U
ustiniankw 已提交
1361
        In Dygraph Mode: Please use ** :ref:`api_fluid_dygraph_to_variable` ** to create a dygraph variable with real data.
J
Jiabin Yang 已提交
1362 1363

    In Fluid, every input and output of an OP is a variable. In most
1364
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
1365 1366
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
1367

1368
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
1369
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
1370

T
tianshuo78520a 已提交
1371
    Most of a Variable's member variables can be set to be None. It mean
1372
    it is not available or will be specified later.
1373

1374
    Examples:
1375 1376
        In Static Graph Mode:

1377 1378
        .. code-block:: python

1379
            import paddle.fluid as fluid
1380
            cur_program = fluid.Program()
1381 1382 1383 1384
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
S
sunzhongkai588 已提交
1385

J
Jiabin Yang 已提交
1386
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
1387 1388 1389 1390 1391 1392 1393 1394 1395

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

1396 1397
    """

1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
    def __init__(
        self,
        block,
        type=core.VarDesc.VarType.LOD_TENSOR,
        name=None,
        shape=None,
        dtype=None,
        lod_level=None,
        capacity=None,
        persistable=None,
        error_clip=None,
        stop_gradient=False,
        is_data=False,
        need_check_feed=False,
        belong_to_optimizer=False,
        **kwargs
    ):
Y
Yu Yang 已提交
1415 1416
        self.block = block
        if name is None:
Y
Yu Yang 已提交
1417
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
1418

Y
Yu Yang 已提交
1419
        if dtype is not None:
1420
            if not isinstance(dtype, core.VarDesc.VarType):
1421
                dtype = convert_np_dtype_to_dtype_(dtype)
1422

S
Steffy-zxf 已提交
1423 1424 1425 1426
        if dtype == core.VarDesc.VarType.STRINGS:
            type = core.VarDesc.VarType.STRINGS
            lod_level = None

1427 1428 1429
        if type == core.VarDesc.VarType.SPARSE_COO:
            lod_level = None

H
hong 已提交
1430 1431
        self.belong_to_optimizer = belong_to_optimizer

1432 1433 1434
        self.error_clip = error_clip

        is_new_var = False
1435
        self.desc = self.block.desc.find_var(name.encode())
1436

1437
        if self.desc is None:
1438
            self.desc = self.block.desc.var(name.encode())
1439
            is_new_var = True
1440

1441 1442 1443
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
1444 1445 1446 1447 1448
            raise ValueError(
                "Variable '{0}' has been created before. The "
                "previous type is {1}, the new type is {2}. They"
                " are not matched".format(self.name, self.desc.type(), type)
            )
1449

1450
        if shape is not None:
1451
            if is_new_var:
1452 1453 1454 1455 1456 1457
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
1458 1459
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
1460 1461
                        "matched.".format(self.name, old_shape, shape)
                    )
1462 1463 1464 1465 1466 1467
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
1468 1469 1470 1471 1472 1473
                    raise ValueError(
                        "Variable '{0}' has been created before. "
                        "The previous data type is {1}, the new "
                        "data type is {2}. They are not "
                        "matched.".format(self.name, old_dtype, dtype)
                    )
1474 1475 1476 1477 1478 1479

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
1480 1481 1482 1483 1484 1485
                    raise ValueError(
                        "Variable '{0}' has been created before. "
                        "The previous lod_level is {1}, the new "
                        "lod_level is {2}. They are not "
                        "matched".format(self.name, self.lod_level, lod_level)
                    )
1486 1487 1488 1489 1490 1491
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
1492 1493
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
1494
                        "persistable is {2}. They are not matched".format(
1495 1496 1497
                            self.name, self.persistable, persistable
                        )
                    )
1498

1499 1500
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1501

1502 1503 1504 1505 1506 1507 1508
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1509

1510 1511
        self.block.vars[name] = self
        self.op = None
1512
        self.stop_gradient = stop_gradient
1513
        self.is_data = is_data
Y
Yu Yang 已提交
1514

1515 1516
    def detach(self):
        """
U
ustiniankw 已提交
1517

1518
        Returns a new Variable, detached from the current graph.
1519 1520
        It will share data with origin Variable and without tensor copy.
        In addition, the detached Variable doesn't provide gradient propagation.
1521

1522
        Returns:
U
ustiniankw 已提交
1523
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable), The detached Variable.
1524 1525 1526 1527

        Examples:
            .. code-block:: python

1528
                import paddle
1529

1530 1531 1532 1533
                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
1534

1535 1536
                # create a detached Variable
                y = x.detach()
U
ustiniankw 已提交
1537

1538
        """
1539

1540 1541 1542 1543
        assert (
            self.type == core.VarDesc.VarType.SELECTED_ROWS
            or self.type == core.VarDesc.VarType.LOD_TENSOR
        ), "only support a variable with SELECTED_ROWS or LOD_TENSOR to be detached"
1544 1545 1546 1547 1548 1549

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key("detach_" + self.name),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
1550 1551
            stop_gradient=True,
        )
1552

1553 1554 1555
        self.block.append_op(
            type='share_data', inputs={'X': [self]}, outputs={'Out': [output]}
        )
1556
        return output
1557

1558
    @fake_interface_only
1559
    def numpy(self):
1560
        """
J
Jiabin Yang 已提交
1561
        **Notes**:
T
tianshuo78520a 已提交
1562
            **This API is ONLY available in Dygraph mode**
1563

J
Jiabin Yang 已提交
1564
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1565 1566 1567 1568 1569

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1570
            ndarray: dtype is same as current Variable
1571 1572 1573 1574 1575 1576

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1577
                from paddle.fluid.dygraph import Linear
1578 1579 1580 1581
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1582
                    linear = Linear(32, 64)
1583
                    data = to_variable(data)
1584
                    x = linear(data)
1585 1586 1587
                    print(x.numpy())

        """
1588
        pass
1589

1590
    @fake_interface_only
1591
    def backward(self, retain_graph=False):
1592
        """
J
Jiabin Yang 已提交
1593
        **Notes**:
T
tianshuo78520a 已提交
1594
            **This API is ONLY available in Dygraph mode**
1595

1596
        Run backward of current Graph which starts from current Tensor.
1597

J
Jiabin Yang 已提交
1598
        Args:
1599 1600 1601 1602
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1603

J
Jiabin Yang 已提交
1604 1605
        Returns:
            NoneType: None
1606 1607 1608 1609 1610

        Examples:
            .. code-block:: python

                import numpy as np
1611 1612
                import paddle
                paddle.disable_static()
1613 1614

                x = np.ones([2, 2], np.float32)
1615 1616 1617 1618 1619 1620 1621
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1622 1623
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1624
                loss.backward()
1625 1626

        """
1627
        pass
1628

1629
    @fake_interface_only
1630
    def gradient(self):
1631
        """
J
Jiabin Yang 已提交
1632
        **Notes**:
T
tianshuo78520a 已提交
1633
            **This API is ONLY available in Dygraph mode**
1634 1635 1636

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1637
        Returns:
1638
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1639 1640 1641 1642

        Examples:
            .. code-block:: python

1643
                import paddle
1644 1645 1646
                import paddle.fluid as fluid
                import numpy as np

1647
                # example1: return ndarray
1648 1649 1650 1651 1652 1653 1654 1655
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
1656
                    loss2 = paddle.sum(ret2)
1657
                    loss2.backward()
1658 1659
                    print(loss2.gradient())

1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1673
        """
1674
        pass
1675

1676
    @fake_interface_only
1677
    def clear_gradient(self):
1678
        """
J
Jiabin Yang 已提交
1679
        **Notes**:
T
tianshuo78520a 已提交
1680
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1681 1682

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1683

J
Jiabin Yang 已提交
1684
        Clear  (set to ``0`` ) the Gradient of Current Variable
1685 1686 1687 1688 1689 1690

        Returns:  None

        Examples:
            .. code-block:: python

1691
                import paddle
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
1703
                    loss2 = paddle.sum(ret2)
1704
                    loss2.backward()
1705 1706 1707 1708 1709
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1710
        pass
X
Xin Pan 已提交
1711

1712 1713 1714 1715
    @fake_interface_only
    def register_hook(self, hook):
        pass

1716
    def __str__(self):
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1733 1734
                import paddle
                import paddle.static as static
1735

1736 1737 1738
                paddle.enable_static()

                cur_program = static.Program()
1739 1740 1741 1742 1743 1744
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1745 1746
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1747 1748 1749 1750
        if (
            self.type == core.VarDesc.VarType.SELECTED_ROWS
            or self.type == core.VarDesc.VarType.LOD_TENSOR
        ):
1751
            dtype_str = str(self.dtype).split('.')[1]
1752 1753 1754 1755 1756 1757 1758
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".format(
                name=self.name,
                type=type_str,
                shape=self.shape,
                dtype=dtype_str,
                stop_gradient=self.stop_gradient,
            )
1759
        else:
1760
            var_str = "{name} : {type})".format(name=self.name, type=type_str)
1761

1762
        if self.is_parameter:
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

1773 1774 1775 1776
        from paddle.distributed.auto_parallel.dist_context import (
            get_default_distributed_context,
        )

1777
        dist_context = get_default_distributed_context()
1778 1779
        dist_tensor = dist_context.get_dist_tensor_for_program(self)
        if dist_tensor is not None:
1780 1781 1782
            var_str += ", {name} = {value}".format(
                name="dist_attr", value=dist_tensor
            )
1783

1784
        return var_str
Y
Yang Yang(Tony) 已提交
1785

F
update  
fengjiayi 已提交
1786
    def to_string(self, throw_on_error, with_details=False):
1787 1788 1789
        """
        Get debug string.

J
Jiabin Yang 已提交
1790 1791 1792 1793 1794
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1795

1796 1797
        Returns:
            str: The debug string.
1798 1799 1800 1801 1802

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1803
                import paddle
1804

1805
                paddle.enable_static()
1806 1807 1808 1809 1810
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1811
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1812
                print("=============with detail===============")
1813
                print(new_variable.to_string(True, True))
1814
        """
1815
        assert isinstance(throw_on_error, bool) and isinstance(
1816 1817
            with_details, bool
        )
1818
        protostr = self.desc.serialize_to_string()
1819
        proto = framework_pb2.VarDesc.FromString(bytes(protostr))
F
update  
fengjiayi 已提交
1820 1821
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
1822
            additional_attr = ("error_clip",)
F
update  
fengjiayi 已提交
1823
            for attr_name in additional_attr:
1824
                res_str += "%s: %s\n" % (attr_name, getattr(self, attr_name))
1825

F
update  
fengjiayi 已提交
1826
        return res_str
1827 1828 1829

    __repr__ = __str__

1830 1831 1832
    def element_size(self):
        """
        Returns the size in bytes of an element in the Tensor.
1833

1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
        Examples:
          .. code-block:: python

            import paddle
            paddle.enable_static()

            x = paddle.static.data(name='x1', shape=[3, 2], dtype='bool')
            x.element_size() # 1

            x = paddle.static.data(name='x2', shape=[3, 2], dtype='int16')
            x.element_size() # 2

            x = paddle.static.data(name='x3', shape=[3, 2], dtype='float16')
            x.element_size() # 2

            x = paddle.static.data(name='x4', shape=[3, 2], dtype='float32')
            x.element_size() # 4

            x = paddle.static.data(name='x5', shape=[3, 2], dtype='float64')
            x.element_size() # 8
        """
        return self.desc.element_size()

1857
    @property
1858
    def stop_gradient(self):
J
Jiabin Yang 已提交
1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1874 1875
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1876 1877 1878
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1879 1880
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1881 1882 1883 1884
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1885
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1886 1887
                assert (out1.gradient() == 0).all()
        """
1888
        return self.desc.stop_gradient()
1889

1890 1891
    @stop_gradient.setter
    def stop_gradient(self, s):
1892
        self.desc.set_stop_gradient(s)
1893

1894 1895
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1917
        return self.desc.persistable()
1918

Y
Yu Yang 已提交
1919 1920
    @persistable.setter
    def persistable(self, p):
1921
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1922

1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
    @property
    def is_parameter(self):
        """
        Indicating if current Variable is a Parameter

        Examples:
          .. code-block:: python

            import paddle
            new_parameter = paddle.static.create_parameter(name="X",
                                                shape=[10, 23, 48],
                                                dtype='float32')
            if new_parameter.is_parameter:
                print("Current var is a Parameter")
            else:
                print("Current var is not a Parameter")

            # Current var is a Parameter
        """
        return self.desc.is_parameter()

    @is_parameter.setter
    def is_parameter(self, p):
        self.desc.set_is_parameter(p)

Y
Yu Yang 已提交
1948 1949
    @property
    def name(self):
J
Jiabin Yang 已提交
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1966
        return self.desc.name()
Y
Yu Yang 已提交
1967

1968 1969 1970 1971 1972 1973
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
S
sunzhongkai588 已提交
1974 1975
        gradient Variable from a naming convention but doesn't guarantee
        the gradient exists.**
T
tangwei12 已提交
1976

1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1988 1989
    @name.setter
    def name(self, new_name):
1990
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1991

Y
Yu Yang 已提交
1992 1993
    @property
    def shape(self):
J
Jiabin Yang 已提交
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
2011
        # convert to tuple, make it as same as numpy API.
2012
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
2013 2014

    @property
F
fengjiayi 已提交
2015
    def dtype(self):
J
Jiabin Yang 已提交
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
2032
        return self.desc.dtype()
Y
Yu Yang 已提交
2033 2034 2035

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

2049
            import paddle
J
Jiabin Yang 已提交
2050
            import paddle.fluid as fluid
2051 2052

            paddle.enable_static()
J
Jiabin Yang 已提交
2053 2054 2055 2056 2057 2058 2059
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
2060 2061
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")
2062 2063
        if self.type == core.VarDesc.VarType.STRINGS:
            return None
2064
        return self.desc.lod_level()
Y
Yu Yang 已提交
2065

Y
Yu Yang 已提交
2066 2067
    @property
    def type(self):
J
Jiabin Yang 已提交
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
2084
        return self.desc.type()
Y
Yu Yang 已提交
2085

2086 2087 2088
    @property
    def T(self):
        """
U
ustiniankw 已提交
2089

2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
        Permute current Variable with its dimensions reversed.

        If `n` is the dimensions of `x` , `x.T` is equivalent to `x.transpose([n-1, n-2, ..., 0])`.

        Examples:

            .. code-block:: python

                import paddle
                paddle.enable_static()

                x = paddle.ones(shape=[2, 3, 5])
                x_T = x.T

                exe = paddle.static.Executor()
                x_T_np = exe.run(paddle.static.default_main_program(), fetch_list=[x_T])[0]
                print(x_T_np.shape)
                # (5, 3, 2)
U
ustiniankw 已提交
2108

2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
        """
        if len(self.shape) == 1:
            return self
        perm = []
        for i in range(len(self.shape)):
            perm.insert(0, i)

        out = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=self.type,
            persistable=False,
2121 2122
            stop_gradient=False,
        )
2123 2124 2125 2126 2127
        input_shape = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
2128 2129 2130 2131 2132 2133 2134 2135 2136
            stop_gradient=False,
        )

        self.block.append_op(
            type='transpose2',
            inputs={'X': [self]},
            outputs={'Out': [out], 'XShape': [input_shape]},
            attrs={'axis': perm},
        )
2137 2138
        return out

2139 2140 2141
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
2142
        Variable. It remains in the current graph, that is, the cloned Variable
2143 2144 2145 2146
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
U
ustiniankw 已提交
2147
            Variable, The cloned Variable.
2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
2167 2168
            stop_gradient=self.stop_gradient,
        )
2169

2170 2171 2172
        self.block.append_op(
            type='assign', inputs={'X': [self]}, outputs={'Out': [output]}
        )
2173 2174
        return output

W
Wu Yi 已提交
2175
    def _set_error_clip(self, error_clip):
2176
        """
U
ustiniankw 已提交
2177

2178 2179 2180 2181 2182 2183 2184
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
U
ustiniankw 已提交
2185

2186
        """
2187 2188
        self.error_clip = error_clip

2189 2190
    def _set_info(self, key, value):
        """
U
ustiniankw 已提交
2191

2192 2193 2194 2195 2196 2197
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

2198
        Returns:
2199
            None
U
ustiniankw 已提交
2200

2201 2202 2203 2204 2205 2206 2207
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
U
ustiniankw 已提交
2208

2209 2210 2211 2212 2213
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

2214
        Returns:
2215
            object
U
ustiniankw 已提交
2216

2217 2218 2219 2220 2221
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

2222 2223
    def _slice_indices(self, slice, length):
        """
U
ustiniankw 已提交
2224

2225
        Reference implementation for the slice.indices method.
U
ustiniankw 已提交
2226

2227 2228 2229 2230 2231 2232 2233 2234
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
2235
            raise ValueError("slice step can not be zero")
2236 2237 2238 2239 2240 2241 2242 2243 2244 2245

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
2246 2247 2248
            start = (
                max(start + length, lower) if start < 0 else min(start, upper)
            )
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
2294 2295 2296
                if (index > 0 and index >= self.shape[index]) or (
                    index < 0 and (index + self.shape[index]) < 0
                ):
2297
                    raise IndexError("invalid index")
2298 2299 2300 2301 2302
                start = (
                    max(start + self.shape[index], 0)
                    if start < 0
                    else min(start, self.shape[index])
                )
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
2316
    def _cloneVar(self, copy=False):
2317 2318
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
2319
                name=unique_name.generate_with_ignorable_key(self.name),
2320 2321
                dtype=self.dtype,
            )
2322 2323 2324 2325
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
2326
        new_var = self._cloneVar()
2327 2328 2329 2330 2331 2332
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes, 'starts': starts, 'ends': ends},
        )
2333 2334 2335
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
2336
        new_var = self._cloneVar()
2337 2338 2339 2340 2341 2342 2343 2344
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={
                'axis': axis,
            },
        )
2345 2346 2347 2348 2349
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
2350
                return self._cloneVar(True)
2351 2352 2353 2354 2355 2356 2357
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
2358 2359 2360
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1])
                        )
2361 2362 2363
                        start += step
                else:
                    while start > stop:
2364 2365 2366
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1])
                        )
2367 2368 2369 2370
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
2371
                return self._cloneVar(True)
2372
            index = int(item)
2373 2374 2375
            if (index > 0 and index >= self.shape[axis]) or (
                index < 0 and (index + self.shape[axis]) < 0
            ):
2376 2377 2378 2379 2380 2381
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
2382
        return _getitem_impl_(self, item)
2383

2384
    def __setitem__(self, item, value):
2385
        return _setitem_impl_(self, item, value)
2386

2387 2388
    def get_value(self, scope=None):
        """
2389
        Get the value of variable in given scope.
2390 2391

        Args:
2392
            scope(Scope, optional) : If `scope` is None, it will be set to global scope
2393 2394 2395 2396
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
U
ustiniankw 已提交
2397
            Tensor, the value in given scope.
2398 2399 2400 2401 2402

        Examples:
            .. code-block:: python

                import paddle
2403
                import paddle.static as static
2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
2428 2429
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file.
2430 2431
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
2432

2433 2434
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2435 2436 2437 2438
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".format(
                    type(scope)
                )
            )
2439 2440 2441 2442 2443

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
2444 2445 2446
            raise ValueError(
                "Can not find Variable '{}' in the Scope.".format(self.name)
            )
2447 2448 2449 2450 2451
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
U
ustiniankw 已提交
2452

2453
        Set the value to the tensor in given scope.
2454 2455 2456

        Args:
            value(Tensor/ndarray) : The value to be set.
2457
            scope(Scope, optional) : If `scope` is None, it will be set to global scope
2458 2459 2460 2461 2462
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
2463

2464 2465 2466 2467
        Examples:
            .. code-block:: python

                import paddle
2468
                import paddle.static as static
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
U
ustiniankw 已提交
2492

2493 2494 2495
        '''

        # The 'framework' is a low-level module, and 'executor'
2496
        # can not be imported at the begainning of this file.
2497 2498 2499 2500 2501
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
2502 2503 2504 2505
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}.".format(
                    type(value)
                )
            )
2506 2507 2508

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2509 2510 2511 2512
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".format(
                    type(scope)
                )
            )
2513 2514 2515 2516 2517 2518

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
2519 2520 2521
            raise ValueError(
                "Can not find Variable '{}' in the Scope.".format(self.name)
            )
2522 2523 2524 2525 2526 2527 2528 2529 2530 2531

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
2532 2533 2534 2535
                    "{} expected a shape {}, but the received shape is {}.".format(
                        self.name, list(t.shape()), list(value_shape)
                    )
                )
2536 2537 2538 2539 2540 2541 2542 2543 2544 2545

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
2546 2547 2548 2549
        elif p.is_npu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.NPUPlace(p.npu_device_id())
2550 2551 2552 2553
        elif p.is_mlu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.MLUPlace(p.mlu_device_id())
2554 2555 2556 2557 2558 2559 2560
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

2561 2562
    def size(self):
        """
U
ustiniankw 已提交
2563

2564 2565 2566
        Returns the number of elements for current Variable, which is a int64 Variable with shape [1]

        Returns:
U
ustiniankw 已提交
2567
            Variable, the number of elements for current Variable
2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])

                # get the number of elements of the Variable
                y = x.size()
U
ustiniankw 已提交
2581

2582 2583 2584 2585
        """

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_size"),
2586 2587
            dtype=core.VarDesc.VarType.INT64,
        )
2588

2589 2590 2591
        self.block.append_op(
            type='size', inputs={'Input': [self]}, outputs={'Out': [output]}
        )
2592 2593
        return output

2594 2595
    def _set_attr(self, name, val):
        """
U
ustiniankw 已提交
2596

2597 2598 2599 2600 2601
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
U
ustiniankw 已提交
2602

2603 2604 2605 2606 2607
        """
        self._update_desc_attr(name, val)

    def _has_attr(self, name):
        """
U
ustiniankw 已提交
2608

2609 2610 2611 2612 2613 2614
        Whether this Variable has the attribute with the name `name` or not.

        Args:
            name(str): the attribute name.

        Returns:
U
ustiniankw 已提交
2615 2616
            bool, True if has this attribute.

2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
        """
        return self.desc.has_attr(name)

    def _remove_attr(self, name):
        self.desc.remove_attr(name)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self.desc._set_attr(name, val)

    @property
    def attr_names(self):
        """Get the names of all attributes defined."""
        return self.desc.attr_names()

2638
    def attr(self, name):
2639 2640 2641 2642 2643 2644 2645
        """
        Get the attribute by name.

        Args:
            name(str): the attribute name.

        Returns:
U
ustiniankw 已提交
2646
            int|str|list, The attribute value. The return value
2647 2648 2649 2650 2651
            can be any valid attribute type.
        """
        return self.desc.attr(name)

    @property
2652
    def dist_attr(self):
2653
        """
2654
        Get distributed attribute of this Variable.
2655
        """
2656
        return self.desc.dist_attr
2657

2658 2659
    @dist_attr.setter
    def dist_attr(self, dist_attr):
2660
        """
2661
        Set distributed attribute of this Variable.
2662
        """
2663
        self.desc.dist_attr = dist_attr
2664

Y
Yu Yang 已提交
2665

F
fengjiayi 已提交
2666 2667 2668
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
2669

2670 2671
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
2672 2673 2674 2675
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
2676
        op_proto = framework_pb2.OpProto.FromString(bytes(pbstr))
F
fengjiayi 已提交
2677 2678 2679 2680
        ret_values.append(op_proto)
    return ret_values


2681
class OpProtoHolder:
2682 2683 2684 2685
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
2686 2687 2688 2689 2690 2691 2692 2693
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
2694 2695
            self.__class__, '_instance'
        ), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
2696 2697 2698 2699 2700 2701
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
2702 2703 2704 2705 2706 2707 2708 2709
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
2710 2711
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
2712 2713
        return self.op_proto_map[type]

2714 2715
    def update_op_proto(self):
        op_protos = get_all_op_protos()
2716
        custom_op_names = []
2717 2718 2719
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
2720 2721 2722
                custom_op_names.append(proto.type)

        return custom_op_names
2723

2724 2725 2726 2727
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
2728
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
2729
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
2730
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
2731
            core.op_proto_and_checker_maker.kOpDeviceAttrName(),
2732 2733
        }

F
fengjiayi 已提交
2734

2735
class Operator:
2736
    """
2737 2738 2739 2740 2741 2742 2743
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
2744
        type(str): The type of operator. Default None.
2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
2765
        Block.append_op or Block._prepend_op instead.
2766 2767 2768 2769

    Examples:
        .. code-block:: python

2770
            import paddle.fluid as fluid
2771
            cur_program = fluid.Program()
2772 2773 2774 2775 2776
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
2777
    """
2778

2779
    OP_WITHOUT_KERNEL_SET = {
2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810
        'feed',
        'fetch',
        'recurrent',
        'go',
        'rnn_memory_helper_grad',
        'conditional_block',
        'while',
        'send',
        'recv',
        'listen_and_serv',
        'fl_listen_and_serv',
        'ncclInit',
        'select',
        'checkpoint_notify',
        'gen_bkcl_id',
        'c_gen_bkcl_id',
        'gen_nccl_id',
        'c_gen_nccl_id',
        'c_comm_init',
        'c_sync_calc_stream',
        'c_sync_comm_stream',
        'queue_generator',
        'dequeue',
        'enqueue',
        'heter_listen_and_serv',
        'c_wait_comm',
        'c_wait_compute',
        'c_gen_hccl_id',
        'c_comm_init_hccl',
        'copy_cross_scope',
        'c_gen_cncl_id',
2811
    }
2812

2813 2814 2815
    def __init__(
        self, block, desc, type=None, inputs=None, outputs=None, attrs=None
    ):
2816 2817 2818 2819 2820 2821 2822 2823 2824 2825
        # read attr type index from op proto to avoid unexpected type
        # conversions, e.g. narrowing conversion like double to float
        try:
            proto = OpProtoHolder.instance().get_op_proto(type)
            self._attr_types = {}
            for attr in proto.attrs:
                self._attr_types[attr.name] = attr.type
        except ValueError:
            pass

J
Jiabin Yang 已提交
2826
        if _non_static_mode():
2827 2828
            if type is None:
                raise ValueError(
2829 2830
                    "`type` to initialized an Operator can not be None."
                )
J
Jiabin Yang 已提交
2831
            self._type = type
M
minqiyang 已提交
2832
            self.attrs = attrs if attrs else {}
2833 2834 2835 2836 2837 2838 2839 2840 2841 2842
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

2843 2844 2845
            # attr for static mode cuda graph
            self._cuda_graph_attr = _current_cuda_graph_mode

2846 2847 2848
            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
2849
                op_attrs[
2850 2851
                    op_maker.kOpRoleAttrName()
                ] = self.block.program._op_role
2852 2853

            role_var_name = op_maker.kOpRoleVarAttrName()
2854 2855 2856 2857
            if (
                len(self.block.program._op_role_var) != 0
                and role_var_name not in op_attrs
            ):
2858
                op_attrs[role_var_name] = self.block.program._op_role_var
2859 2860 2861 2862 2863

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
2864 2865 2866 2867 2868
                # NOTE(Aurelius84): prog.clone() will lead that var.op is always None,
                # we add this to fix the problem.
                for arg in self.desc.output_arg_names():
                    if block.has_var(arg) and block.var(arg).op is None:
                        block.var(arg).op = self
2869 2870 2871
                return
            if type is None:
                raise ValueError(
2872 2873
                    "`type` to initialized an Operator can not be None."
                )
2874 2875
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2876 2877 2878
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
2879
                        '  File "{}", line {}, in {}'.format(
2880 2881 2882 2883 2884 2885
                            frame[0], frame[1], frame[2]
                        )
                    )
                    op_attrs[callstack_var_name].append(
                        '    {}'.format(frame[3])
                    )
2886 2887 2888 2889 2890 2891 2892

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2893 2894 2895 2896 2897 2898 2899 2900
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
2901 2902 2903
                    warnings.warn(
                        "The Op(%s) is not support to set device." % type
                    )
2904
                if 'force_cpu' in op_attrs:
2905
                    if (
2906 2907
                        type == 'less_than'
                        and op_attrs['force_cpu'] is not None
2908
                    ) or op_attrs['force_cpu'] != False:
2909 2910 2911
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
2912 2913
                            "used at the same time." % type
                        )
2914
            if _current_pipeline_stage is not None:
2915 2916 2917 2918 2919
                pipeline_attr_name = (
                    'pipeline_stage' + core.kAutoParallelSuffix()
                )
                self._update_desc_attr(
                    pipeline_attr_name, _current_pipeline_stage
2920
                )
2921

2922 2923 2924 2925 2926 2927 2928 2929 2930
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
2931 2932 2933
                    assert (
                        found or in_proto.dispensable
                    ), "Input {} not found".format(in_proto.name)
2934 2935
                    if found:
                        in_args = inputs[in_proto.name]
2936
                        if not isinstance(in_args, (list, tuple)):
2937 2938 2939 2940
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
2941 2942
                                % (in_proto.name, len(in_args))
                            )
2943
                        in_arg_names = []
2944
                        for index, arg in enumerate(in_args):
2945
                            if isinstance(arg, str):
2946
                                in_arg_names.append(arg)
2947
                            elif isinstance(arg, bytes):
2948
                                in_arg_names.append(arg.decode())
2949
                            elif isinstance(arg, (Variable, core.VarBase)):
2950
                                in_arg_names.append(arg.name)
2951
                            else:
2952 2953 2954 2955
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
2956 2957 2958
                                    "but received : %s"
                                    % (in_proto.name, type, arg)
                                )
2959 2960 2961 2962 2963 2964 2965 2966 2967
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
2968
                        raise ValueError(
2969 2970 2971 2972 2973 2974
                            (
                                "Incorrect setting for output(s) of "
                                "operator \"%s\", should set: [%s]."
                            )
                            % (type, m.name)
                        )
2975 2976 2977 2978 2979 2980 2981 2982 2983
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
2984 2985
                            % (out_proto.name, len(out_args))
                        )
2986 2987
                    out_arg_names = []
                    for arg in out_args:
2988
                        if isinstance(arg, str):
2989 2990
                            out_arg_names.append(arg)
                        else:
2991
                            out_arg_names.append(arg.name)
2992
                        # TODO(minqiyang): could we remove variable's op in static mode?
J
Jiabin Yang 已提交
2993
                        if not _non_static_mode():
2994
                            if isinstance(arg, str):
2995 2996 2997
                                block.var(arg).op = self
                            else:
                                arg.op = self
2998 2999
                    self.desc.set_output(out_proto.name, out_arg_names)

3000
            extra_attrs_map = core.get_op_extra_attrs(type)
3001 3002 3003 3004 3005
            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
3006 3007 3008
                    if (attr_name not in op_attrs) or (
                        op_attrs[attr_name] is None
                    ):
3009 3010 3011
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)
3012
                for attr_name in extra_attrs_map.keys():
3013 3014 3015 3016 3017 3018
                    if (attr_name not in op_attrs) or (
                        op_attrs[attr_name] is None
                    ):
                        self._update_desc_attr(
                            attr_name, extra_attrs_map[attr_name]
                        )
3019 3020
                    else:
                        self._update_desc_attr(attr_name, op_attrs[attr_name])
3021

J
jianghaicheng 已提交
3022 3023
            # proto.attrs doesn't include ipu_index
            if core.is_compiled_with_ipu():
3024
                if global_ipu_index >= 0:
3025 3026 3027
                    self._update_desc_attr(
                        ipu_index_attr_name, global_ipu_index
                    )
3028
                if global_ipu_stage >= 0:
3029 3030 3031
                    self._update_desc_attr(
                        ipu_stage_attr_name, global_ipu_stage
                    )
J
jianghaicheng 已提交
3032

3033 3034 3035 3036 3037
            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
3038
    def _has_kernel(self, op_type):
3039 3040
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
3041
    def to_string(self, throw_on_error):
3042
        """
3043 3044
        Get debug string.

3045
        Args:
3046 3047
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
3048

3049 3050
        Returns:
            str: The debug string.
3051 3052

        """
3053
        protostr = self.desc.serialize_to_string()
3054
        proto = framework_pb2.OpDesc.FromString(bytes(protostr))
Y
Yang Yang(Tony) 已提交
3055 3056
        return _debug_string_(proto, throw_on_error)

3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3089
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3090 3091
            type(skip_op_callstack)
        )
3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

3118 3119 3120
            attr_type = self.desc.attr_type(name, True)
            if attr_type == core.AttrType.VAR:
                attr_var_name = self.desc.attr(name, True).name()
3121 3122 3123
                a = "{name} = Var['{value}']".format(
                    name=name, type=attr_type, value=attr_var_name
                )
3124 3125 3126 3127 3128 3129 3130 3131 3132 3133
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.VARS:
                attr_var_names = [
                    "'%s'" % var.name() for var in self.desc.attr(name, True)
                ]
                a = "{name} = Vars[{value}]".format(
3134 3135
                    name=name, type=attr_type, value=','.join(attr_var_names)
                )
3136 3137 3138 3139 3140
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

3141 3142
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
3143 3144
                    name=name, type=attr_type, value=self._block_attr_id(name)
                )
3145 3146 3147 3148 3149 3150 3151
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
3152 3153
                    name=name, type=attr_type, value=self._blocks_attr_ids(name)
                )
3154 3155 3156 3157 3158
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

3159
            # it is bytes of serialized protobuf
3160 3161 3162 3163 3164
            if (
                is_compiled_with_cinn()
                and self.type == 'cinn_launch'
                and name == 'compilation_key'
            ):
3165 3166
                key = self.desc.attr(name)
                v = core.get_serialize_comile_key(key)
3167 3168 3169 3170 3171 3172 3173 3174 3175
                prog = Program()
                prog = prog.parse_from_string(v)
                s = prog._to_readable_code()
                lines = s.split('\n')
                value = '\n'.join(['      ' + line for line in lines])
                value = '\n' + value
            else:
                value = self.desc.attr(name)

3176 3177 3178
            a = "{name} = {value}".format(
                name=name, type=attr_type, value=value
            )
3179

3180 3181 3182 3183
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

3184 3185 3186 3187
        from paddle.distributed.auto_parallel.dist_context import (
            get_default_distributed_context,
        )

3188
        dist_context = get_default_distributed_context()
3189 3190
        dist_op = dist_context.get_dist_op_for_program(self)
        if dist_op is not None:
3191 3192 3193
            attrs_str += ", {name} = {value}".format(
                name="dist_attr", value=dist_op
            )
3194

3195
        if outputs_str != "{}":
3196 3197 3198 3199 3200 3201
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".format(
                outputs=outputs_str,
                op_type=self.type,
                inputs=inputs_str,
                attrs=attrs_str,
            )
3202
        else:
3203 3204 3205
            op_str = "{op_type}(inputs={inputs}, {attrs})".format(
                op_type=self.type, inputs=inputs_str, attrs=attrs_str
            )
3206 3207
        return op_str

Y
Yang Yang(Tony) 已提交
3208
    def __str__(self):
3209
        return self._to_readable_code()
3210 3211 3212

    __repr__ = __str__

F
fengjiayi 已提交
3213 3214
    @property
    def type(self):
3215
        return self.desc.type()
F
fengjiayi 已提交
3216 3217

    def input(self, name):
3218
        r"""
U
ustiniankw 已提交
3219

3220
        Get the input arguments according to the input parameter name.
3221

3222 3223
        Args:
            name(str): The input parameter name.
3224

3225
        Returns:
U
ustiniankw 已提交
3226
            list, return the list of argument names that associated with \
3227
                the specific parameter name.
U
ustiniankw 已提交
3228

3229
        """
F
fengjiayi 已提交
3230 3231
        return self.desc.input(name)

W
Wu Yi 已提交
3232
    def _rename_input(self, old_name, new_name):
3233 3234 3235 3236 3237 3238 3239 3240 3241 3242
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
3243
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
3244

W
Wu Yi 已提交
3245
    def _rename_output(self, old_name, new_name):
3246 3247 3248 3249 3250 3251 3252 3253 3254 3255
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
3256
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
3257

F
fengjiayi 已提交
3258 3259 3260 3261
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
3262 3263 3264 3265 3266 3267 3268 3269
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
3270
    def output(self, name):
3271
        r"""
3272
        Get output arguments by the output parameter name.
3273

3274 3275
        Args:
            name(str): The output parameter name.
3276

3277 3278 3279
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
3280
        """
F
fengjiayi 已提交
3281 3282 3283 3284 3285 3286
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

3287 3288 3289 3290 3291 3292
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
3293 3294
            "Can't find op itself in it's block. It could be a bug of Paddle."
        )
3295

F
fengjiayi 已提交
3296
    def has_attr(self, name):
3297
        """
3298 3299
        Whether this Operator has the attribute with name or not.

3300
        Args:
3301
            name(str): the attribute name.
3302

3303 3304
        Returns:
            bool: True if has this attribute.
3305 3306

        """
F
fengjiayi 已提交
3307 3308 3309
        return self.desc.has_attr(name)

    def attr_type(self, name):
3310
        """
3311
        Get the type of attribute by attribute's name.
3312

3313 3314
        Args:
            name(str): the attribute name.
3315

3316 3317
        Returns:
            core.AttrType: the attribute type.
3318
        """
3319
        return self.desc.attr_type(name, True)
F
fengjiayi 已提交
3320

W
Wu Yi 已提交
3321
    def _set_attr(self, name, val):
3322 3323 3324 3325 3326 3327 3328 3329 3330 3331
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
3332 3333
        self._update_desc_attr(name, val)

3334 3335 3336
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
3348 3349 3350 3351 3352
        if isinstance(val, Variable):
            self.desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            self.desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
Q
Qiyang Min 已提交
3353
            self.desc.set_block_attr(name, val.desc)
3354
        elif isinstance(val, list) and val and _all_is_type(val, Block):
3355
            self.desc.set_blocks_attr(name, [v.desc for v in val])
3356 3357 3358
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
Q
Qiyang Min 已提交
3359 3360
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396
            self._update_desc_plain_attr(name, val)

    def _update_desc_plain_attr(self, name, val):
        desc = self.desc
        if not hasattr(self, "_attr_types") or (name not in self._attr_types):
            desc._set_attr(name, val)
            return

        type_index = self._attr_types[name]
        if type_index == core.AttrType.BOOL:
            desc._set_bool_attr(name, val)
        elif type_index == core.AttrType.INT:
            desc._set_int32_attr(name, val)
        elif type_index == core.AttrType.LONG:
            desc._set_int64_attr(name, val)
        elif type_index == core.AttrType.FLOAT:
            desc._set_float32_attr(name, val)
        # elif type_index == core.AttrType.FLOAT64:
        #     desc._set_float64_attr(name, val)
        elif type_index == core.AttrType.STRING:
            desc._set_str_attr(name, val)
        elif type_index == core.AttrType.BOOLS:
            desc._set_bools_attr(name, val)
        elif type_index == core.AttrType.INTS:
            desc._set_int32s_attr(name, val)
        elif type_index == core.AttrType.LONGS:
            desc._set_int64s_attr(name, val)
        elif type_index == core.AttrType.FLOATS:
            desc._set_float32s_attr(name, val)
        elif type_index == core.AttrType.FLOAT64S:
            desc._set_float64s_attr(name, val)
        elif type_index == core.AttrType.STRINGS:
            desc._set_strs_attr(name, val)
        else:
            # defaults to old methods
            desc._set_attr(name, val)
Y
yuyang18 已提交
3397

F
fengjiayi 已提交
3398 3399
    @property
    def attr_names(self):
3400
        return self.desc.attr_names(True)
F
fengjiayi 已提交
3401 3402

    def attr(self, name):
3403
        """
3404 3405
        Get the attribute by name.

3406
        Args:
3407
            name(str): the attribute name.
3408

3409 3410
        Returns:
            bool|int|str|float|list: The attribute value. The return value
3411 3412
            can be any valid attribute type.
        """
F
fengjiayi 已提交
3413
        return self.desc.attr(name)
Y
Yu Yang 已提交
3414

W
Wu Yi 已提交
3415
    def _block_attr_id(self, name):
3416
        """
G
gongweibao 已提交
3417
        Get the block attribute's id by name.
3418

3419 3420
        Args:
            name(str): the attribute name.
3421

3422 3423
        Returns:
            int: the block index.
3424
        """
W
Wu Yi 已提交
3425
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
3426

W
Wu Yi 已提交
3427
    def _block_attr(self, name):
G
gongweibao 已提交
3428 3429 3430 3431 3432 3433 3434 3435 3436 3437
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
3438
        id = self._block_attr_id(name)
3439
        assert id >= 0 and id < len(self.block.program.blocks)
G
gongweibao 已提交
3440 3441
        return self.block.program.blocks[id]

W
Wu Yi 已提交
3442
    def _blocks_attr(self, name):
G
gongweibao 已提交
3443 3444 3445 3446 3447 3448 3449 3450 3451 3452
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
3453
        for i in self._blocks_attr_ids(name):
3454
            assert i >= 0 and i < len(self.block.program.blocks)
G
gongweibao 已提交
3455 3456 3457 3458
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
3459
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
3460 3461 3462 3463 3464 3465 3466 3467 3468 3469
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
3470
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
3471

3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482
    def _var_attr(self, name):
        """
        Get the Variable attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            Variable: the Variable attribute.
        """
        attr_type = self.desc.attr_type(name, True)
3483 3484 3485 3486 3487
        assert (
            attr_type == core.AttrType.VAR
        ), "Required type attr({}) is Variable, but received {}".format(
            name, attr_type
        )
3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501
        attr_var_name = self.desc.attr(name, True).name()
        return self.block._var_recursive(attr_var_name)

    def _vars_attr(self, name):
        """
        Get the Variables attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            Variables: the Variables attribute.
        """
        attr_type = self.desc.attr_type(name, True)
3502 3503 3504 3505 3506
        assert (
            attr_type == core.AttrType.VARS
        ), "Required type attr({}) is list[Variable], but received {}".format(
            name, attr_type
        )
3507 3508 3509 3510 3511 3512
        attr_vars = [
            self.block._var_recursive(var.name())
            for var in self.desc.attr(name, True)
        ]
        return attr_vars

J
JiayiFeng 已提交
3513
    def all_attrs(self):
F
fengjiayi 已提交
3514
        """
3515 3516 3517
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
3518
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
3519 3520 3521 3522
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
3523
            attr_type = self.desc.attr_type(n, True)
G
gongweibao 已提交
3524
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
3525
                attr_map[n] = self._block_attr(n)
3526
            elif attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
3527
                attr_map[n] = self._blocks_attr(n)
3528 3529 3530 3531 3532 3533
            elif attr_type == core.AttrType.VAR:
                attr_map[n] = self._var_attr(n)
            elif attr_type == core.AttrType.VARS:
                attr_map[n] = self._vars_attr(n)
            else:
                attr_map[n] = self.attr(n)
G
gongweibao 已提交
3534

F
fengjiayi 已提交
3535 3536
        return attr_map

3537 3538 3539
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
3540 3541 3542 3543

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

3544 3545 3546
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
3547 3548 3549 3550 3551 3552 3553 3554

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
3555 3556
            return False

3557 3558 3559 3560 3561 3562
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

3563
    @property
3564
    def dist_attr(self):
3565
        """
3566
        Get distributed attribute of this Variable.
3567
        """
3568
        return self.desc.dist_attr
3569

3570 3571
    @dist_attr.setter
    def dist_attr(self, dist_attr):
3572
        """
3573
        Set distributed attribute of this Variable.
3574
        """
3575
        self.desc.dist_attr = dist_attr
3576

Y
Yu Yang 已提交
3577

3578
class Block:
3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
3593
        use `Program._create_block()` to create a block.
3594 3595 3596 3597

    Examples:
        .. code-block:: python

3598 3599 3600
            import paddle.fluid as fluid

            cur_program = fluid.Program()
3601 3602 3603 3604 3605 3606 3607 3608 3609
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
3610
    def __init__(self, program, idx):
Y
Yu Yang 已提交
3611
        self.desc = program.desc.block(idx)
3612
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
3613
        self.ops = list()  # operator list
Y
Yu Yang 已提交
3614
        self.program = program
3615
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
3616

3617
    def __str__(self):
3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3652
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3653 3654
            type(skip_op_callstack)
        )
3655 3656 3657 3658 3659 3660 3661
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
3662 3663
                op._to_readable_code(skip_op_callstack)
            )
3664 3665
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
3666

F
fengjiayi 已提交
3667 3668
    def to_string(self, throw_on_error, with_details=False):
        """
3669 3670
        Get debug string.

F
fengjiayi 已提交
3671 3672
        Args:
            throw_on_error(bool): raise exception when self is not initialized
3673
                when throw_on_error is True.
F
update  
fengjiayi 已提交
3674
            with_details(bool): more details about variables and parameters
3675 3676
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
3677

3678 3679
        Returns:
            str: The debug string.
F
fengjiayi 已提交
3680
        """
3681
        assert isinstance(throw_on_error, bool) and isinstance(
3682 3683
            with_details, bool
        )
F
fengjiayi 已提交
3684
        if with_details:
F
fengjiayi 已提交
3685
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
3686
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
3687 3688 3689
                self.idx,
                self.parent_idx,
            )
3690
            for var in list(self.vars.values()):
F
fengjiayi 已提交
3691
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
3692 3693
                    r"\n    \1", var.to_string(throw_on_error, with_details)
                )
F
fengjiayi 已提交
3694
            for op in self.ops:
F
fengjiayi 已提交
3695
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
3696 3697
                    r"\n    \1", op.to_string(throw_on_error)
                )
F
fengjiayi 已提交
3698 3699 3700
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
3701
            proto = framework_pb2.BlockDesc.FromString(bytes(protostr))
F
fengjiayi 已提交
3702 3703
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3704 3705 3706

    __repr__ = __str__

Y
Yu Yang 已提交
3707 3708
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
3709
        return self.desc.parent
Y
Yu Yang 已提交
3710

Y
Yu Yang 已提交
3711 3712 3713 3714
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
3715
    def _set_forward_block_idx(self, idx):
3716 3717 3718 3719 3720 3721 3722 3723 3724
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
3725
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
3726

3727 3728 3729 3730 3731 3732 3733 3734
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
3735 3736
    @property
    def idx(self):
Y
Yu Yang 已提交
3737
        return self.desc.id
Y
Yu Yang 已提交
3738

Q
Qiao Longfei 已提交
3739
    def var(self, name):
3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
3753
        if not isinstance(name, str):
M
minqiyang 已提交
3754
            raise TypeError(
3755 3756 3757
                "var require string as parameter, but get %s instead."
                % (type(name))
            )
Y
Yu Yang 已提交
3758 3759
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
3760
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
3761
        return v
Q
Qiao Longfei 已提交
3762

X
Xin Pan 已提交
3763
    def _find_var_recursive(self, name):
3764 3765 3766 3767 3768 3769 3770
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
3771
            Variable: the Variable with the giving name. Or None if not found.
3772
        """
Y
Yu Yang 已提交
3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
3797
        return None
Y
Yu Yang 已提交
3798

X
Xin Pan 已提交
3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
3818

Q
Qiao Longfei 已提交
3819
    def all_parameters(self):
3820
        return list(self.iter_parameters())
3821

3822
    def iter_parameters(self):
3823 3824 3825 3826 3827
        return (
            item[1]
            for item in self.vars.items()
            if isinstance(item[1], Parameter)
        )
Q
Qiao Longfei 已提交
3828

Y
Yu Yang 已提交
3829
    def create_var(self, *args, **kwargs):
J
Jiabin Yang 已提交
3830
        if _non_static_mode():
L
Leo Chen 已提交
3831 3832
            var = _varbase_creator(*args, **kwargs)
        else:
3833 3834 3835
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
3836
        return var
Y
Yu Yang 已提交
3837

Q
Qiao Longfei 已提交
3838 3839 3840
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
3841
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
3842 3843
        """
        Rename variable in vars and ops' inputs and outputs
3844 3845

        Args:
3846 3847
            name(str|bytes): the name that need to be renamed.
            new_name(str|bytes): the name that need to rename to.
3848 3849 3850 3851 3852 3853 3854 3855

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
3856
        """
3857 3858
        # Ensure the type of name and new_name is str
        name = name.decode() if isinstance(name, bytes) else name
3859 3860 3861
        new_name = (
            new_name.decode() if isinstance(new_name, bytes) else new_name
        )
M
minqiyang 已提交
3862

T
typhoonzero 已提交
3863
        if not self.has_var(name):
3864
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
3865 3866
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
3867
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
3868 3869 3870 3871 3872 3873
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
3874
            var_type = "Variable"
T
wip  
typhoonzero 已提交
3875 3876 3877 3878
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
3879
        orig_var_type = v.type
3880
        self.desc._rename_var(name.encode(), new_name.encode())
W
Wu Yi 已提交
3881
        # NOTE: v is destroyed by C++ after calling _rename_var.
3882
        d = self.desc.find_var(new_name.encode())
T
typhoonzero 已提交
3883
        if var_type == "Parameter":
L
Leo Chen 已提交
3884
            if in_dygraph_mode():
3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895
                var = EagerParamBase(
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip,
                )
3896
            else:
J
Jiabin Yang 已提交
3897
                if _in_legacy_dygraph():
3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908
                    var = ParamBase(
                        d.shape(),
                        d.dtype(),
                        type=orig_var_type,
                        name=new_name,
                        stop_gradient=stop_gradient,
                        trainable=trainable,
                        optimize_attr=optimize_attr,
                        regularizer=regularizer,
                        error_clip=error_clip,
                    )
J
Jiabin Yang 已提交
3909
                else:
3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921
                    var = Parameter(
                        self,
                        d.shape(),
                        d.dtype(),
                        type=orig_var_type,
                        name=new_name,
                        stop_gradient=stop_gradient,
                        trainable=trainable,
                        optimize_attr=optimize_attr,
                        regularizer=regularizer,
                        error_clip=error_clip,
                    )
T
typhoonzero 已提交
3922
        elif var_type == "Variable":
3923 3924 3925 3926 3927 3928 3929
            var = Variable(
                self,
                type=orig_var_type,
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient,
            )
T
wip  
typhoonzero 已提交
3930

W
Wu Yi 已提交
3931
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
3932 3933 3934
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
3935
        self._sync_with_cpp()
3936
        return var
T
typhoonzero 已提交
3937

3938 3939 3940
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
3941
        self.desc._remove_var(name.encode())
3942 3943
        del self.vars[name]

Y
Yu Yang 已提交
3944 3945
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
3946
        param = None
L
Leo Chen 已提交
3947
        if in_dygraph_mode():
J
Jiabin Yang 已提交
3948
            param = EagerParamBase(*args, **kwargs)
L
Leo Chen 已提交
3949
        else:
J
Jiabin Yang 已提交
3950 3951 3952 3953
            if _in_legacy_dygraph():
                param = ParamBase(*args, **kwargs)
            else:
                param = Parameter(global_block, *args, **kwargs)
3954

3955
        if 'initializer' in kwargs:
3956 3957 3958 3959 3960

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
3961
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
3962
                        # are treated as initialization ops that cause error.
3963
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
3964 3965
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
3966 3967 3968
                            "c_broadcast",
                            "c_sync_comm_stream",
                            "coalesce_tensor",
3969
                        ]:
3970
                            continue
3971 3972 3973 3974 3975 3976 3977
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
3978 3979 3980 3981 3982 3983
                raise RuntimeError(
                    "param "
                    + param.name
                    + " is inited by multiple init ops "
                    + str(init_ops)
                )
3984
            elif init_ops_len == 1:
3985
                # TODO already inited, do nothing, should log a warning
3986 3987 3988
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
3989
        return param
Y
Yu Yang 已提交
3990

Y
Yu Yang 已提交
3991
    def append_op(self, *args, **kwargs):
3992 3993 3994 3995 3996 3997
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
J
Jiabin Yang 已提交
3998
        if _non_static_mode():
3999
            attrs = kwargs.get("attrs", {})
Z
zyfncg 已提交
4000
            inplace_map = kwargs.get("inplace_map", None)
J
Jiabin Yang 已提交
4001
            type = kwargs.get("type", None)
4002 4003 4004
            warnings.warn(
                "Op `%s` is executed through `append_op` under the dynamic mode, "
                "the corresponding API implementation needs to be upgraded to "
4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
                "using `_C_ops` method." % type,
                DeprecationWarning,
            )
            op = Operator(
                block=self,
                desc=None,
                type=type,
                inputs=None,
                outputs=None,
                attrs=attrs,
            )
4016

M
minqiyang 已提交
4017 4018 4019
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
4020
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
4021

4022 4023 4024 4025 4026 4027 4028 4029
            _dygraph_tracer().trace_op(
                type,
                kwargs.get("inputs", {}),
                kwargs.get("outputs", {}),
                attrs if attrs else {},
                kwargs.get("stop_gradient", False),
                inplace_map,
            )
M
minqiyang 已提交
4030
        else:
4031 4032
            from paddle.fluid.dygraph.base import param_guard

4033
            op_desc = self.desc.append_op()
4034 4035 4036 4037 4038 4039
            # NOTE(Aurelius84): In case of @to_static, all VarBase(s) should
            # be converted into Variable(s) with same name and block location.
            # This is ONE and ONLY logic of type transformation of dy2static.
            inputs = kwargs.get("inputs", None)
            outputs = kwargs.get("outputs", None)
            with param_guard(inputs), param_guard(outputs):
4040 4041 4042 4043 4044 4045 4046 4047
                op = Operator(
                    block=self,
                    desc=op_desc,
                    type=kwargs.get("type", None),
                    inputs=inputs,
                    outputs=outputs,
                    attrs=kwargs.get("attrs", None),
                )
4048

M
minqiyang 已提交
4049
            self.ops.append(op)
M
minqiyang 已提交
4050

4051 4052
        return op

W
Wu Yi 已提交
4053
    def _insert_op(self, index, *args, **kwargs):
4054 4055 4056 4057 4058 4059 4060 4061 4062
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
4063
        self._sync_with_cpp()
F
fangshuixun007 已提交
4064
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
4065

4066 4067
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
4068
        Insert an Operator according to the giving arguments,
4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
4083 4084 4085 4086 4087 4088 4089 4090 4091
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
4092 4093
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
4094
        self.desc._remove_op(index, index + 1)
4095 4096
        del self.ops[index]

W
Wu Yi 已提交
4097
    def _slice_ops(self, start, end):
4098 4099 4100 4101 4102 4103 4104 4105 4106 4107
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
4108
        return self.ops[start:end]
Y
Yancey1989 已提交
4109

W
Wu Yi 已提交
4110
    def _prepend_op(self, *args, **kwargs):
J
Jiabin Yang 已提交
4111
        if _non_static_mode():
J
Jiabin Yang 已提交
4112 4113
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124
            op = Operator(
                self, None, type=type, inputs=None, outputs=None, attrs=attrs
            )

            _dygraph_tracer().trace_op(
                type,
                kwargs.get("inputs", {}),
                kwargs.get("outputs", {}),
                attrs if attrs else {},
                kwargs.get("stop_gradient", False),
            )
M
minqiyang 已提交
4125
        else:
4126
            op_desc = self.desc._prepend_op()
4127 4128 4129 4130 4131 4132 4133 4134
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None),
            )
M
minqiyang 已提交
4135
            self.ops.insert(0, op)
4136

Y
Yu Yang 已提交
4137 4138
        return op

W
Wu Yi 已提交
4139
    def _sync_with_cpp(self):
4140
        """
4141 4142
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
4143
        """
Q
Qiao Longfei 已提交
4144 4145 4146
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
4147 4148 4149 4150
                is_stop_gradient = False
                if var.has_stop_gradient():
                    is_stop_gradient = var.stop_gradient()
                if var.has_is_parameter() and var.is_parameter():
4151 4152 4153 4154 4155 4156 4157 4158
                    self.create_parameter(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        shape=var.shape(),
                        dtype=var.dtype(),
                        stop_gradient=is_stop_gradient,
                    )
4159
                else:
4160 4161 4162 4163 4164 4165
                    self.create_var(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        stop_gradient=is_stop_gradient,
                    )
Q
Qiao Longfei 已提交
4166

4167
        # sync variables removed from c++ end
4168
        for var in list(self.vars.keys()):
4169
            if not self.desc.find_var(var.encode()):
4170 4171
                self.vars.pop(var)

Q
Qiao Longfei 已提交
4172
        # sync operators from cpp
4173 4174 4175 4176
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
4193 4194 4195 4196 4197

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
4198
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
4199 4200 4201 4202 4203 4204 4205

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

4206 4207 4208 4209 4210
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
4211 4212 4213 4214 4215 4216
                self.ops
            ) and ops_in_cpp_index < len(ops_in_cpp):
                if (
                    self.ops[ops_in_python_index].desc
                    != ops_in_cpp[ops_in_cpp_index]
                ):
4217 4218 4219 4220 4221
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
4222 4223 4224 4225
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
4226
    def _copy_param_info_from(self, other):
4227
        """
4228 4229
        Copy the information of parameters from the other block.

4230
        Args:
4231 4232 4233 4234 4235
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
4236 4237 4238 4239 4240

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
4241
            raise TypeError(
4242 4243
                "_copy_param_info_from should be invoked with Block"
            )
4244
        for p in other.iter_parameters():
4245 4246 4247
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
4248 4249
                # if the Parameter is pruned, v may be None
                continue
4250
            assert isinstance(v, Variable)
4251
            new_p = None
L
Leo Chen 已提交
4252
            if in_dygraph_mode():
4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264
                new_p = EagerParamBase(
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name,
                )
4265
            else:
J
Jiabin Yang 已提交
4266
                if _in_legacy_dygraph():
4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278
                    new_p = ParamBase(
                        shape=v.shape,
                        dtype=v.dtype,
                        type=v.type,
                        lod_level=v.lod_level,
                        stop_gradient=p.stop_gradient,
                        trainable=p.trainable,
                        optimize_attr=p.optimize_attr,
                        regularizer=p.regularizer,
                        error_clip=p.error_clip,
                        name=v.name,
                    )
J
Jiabin Yang 已提交
4279 4280 4281 4282 4283 4284 4285
                else:
                    new_p = Parameter(
                        block=self,
                        shape=v.shape,
                        dtype=v.dtype,
                        type=v.type,
                        lod_level=v.lod_level
4286 4287
                        if v.type == core.VarDesc.VarType.LOD_TENSOR
                        else None,
J
Jiabin Yang 已提交
4288 4289 4290 4291 4292
                        stop_gradient=p.stop_gradient,
                        trainable=p.trainable,
                        optimize_attr=p.optimize_attr,
                        regularizer=p.regularizer,
                        error_clip=p.error_clip,
4293 4294
                        name=v.name,
                    )
4295 4296
            self.vars[new_p.name] = new_p

4297
    def _clone_variable(self, var, force_persistable=True):
4298 4299
        """
        Clone a variable into current block.
4300

4301 4302
        Args:
            var: the variable to be cloned.
4303 4304 4305
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
4306 4307

        Returns:
4308
            Variable: the new  variable cloned from 'var' in current block.
4309 4310
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
4311 4312 4313
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
4314 4315 4316
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type
            )
T
tangwei12 已提交
4317
        elif var.type == core.VarDesc.VarType.RAW:
4318 4319 4320
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type
            )
T
typhoonzero 已提交
4321 4322 4323 4324 4325 4326
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
4327
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4328
                is_data=var.is_data,
4329 4330
                need_check_feed=var.desc.need_check_feed(),
            )
T
update  
typhoonzero 已提交
4331 4332 4333 4334 4335 4336 4337
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
4338
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4339
                is_data=var.is_data,
4340 4341
                need_check_feed=var.desc.need_check_feed(),
            )
T
update  
typhoonzero 已提交
4342
        return ret_var
4343

Y
Yu Yang 已提交
4344

4345 4346 4347 4348
# NOTE(zjl): you should be careful that after you call this method,
# some Python Variable and all Python Operators should not be used
# again. Because all Python Variables and all Python Operators are
# re-constructed inside this method. The underlying VarDesc(OpDesc)
4349
# of some old Python Variables(all old Python Operators) may have
4350
# been destructed.
4351 4352 4353
def _apply_pass(
    main_program, startup_program, pass_name, pass_attrs={}, pass_attr_types={}
):
4354 4355 4356 4357
    assert isinstance(pass_attrs, dict), "pass_attrs must be dict"
    assert isinstance(pass_attr_types, dict), "pass_attr_types must be dict"
    tmp_main_program = core.ProgramDesc(main_program.desc)
    tmp_startup_program = core.ProgramDesc(startup_program.desc)
4358 4359 4360 4361 4362 4363 4364
    attrs = core.apply_pass(
        tmp_main_program,
        tmp_startup_program,
        pass_name,
        pass_attrs,
        pass_attr_types,
    )
4365 4366 4367 4368 4369
    main_program._rebuild_from_desc(tmp_main_program)
    startup_program._rebuild_from_desc(tmp_startup_program)
    return attrs


4370
class IrNode:
4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4382 4383 4384
        assert isinstance(
            node, core.Node
        ), 'node must be the instance of core.Node.'
4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

4466
    def remove_input_by_id(self, node_id):
4467 4468 4469 4470 4471 4472
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4473
        self.node.remove_input(node_id)
4474

4475
    def remove_input(self, node):
4476 4477 4478 4479
        """
        Remove a node from inputs.

        Args:
4480
            node(IrNode): the node being removed.
4481
        """
4482
        self.node.remove_input(node.node)
4483

4484
    def append_input(self, node):
4485 4486 4487 4488
        """
        Append a node in inputs.

        Args:
4489
            node(IrNode): the node being appended.
4490
        """
4491
        self.node.append_input(node.node)
4492 4493 4494 4495 4496 4497 4498 4499

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

4500
    def remove_output_by_id(self, node_id):
4501 4502 4503 4504 4505 4506
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4507
        self.node.remove_output(node_id)
4508

4509
    def remove_output(self, node):
4510 4511 4512 4513
        """
        Remove a node from outputs.

        Args:
4514
            node(IrNode): the node being removed.
4515
        """
4516
        self.node.remove_output(node.node)
4517

4518
    def append_output(self, node):
4519 4520 4521 4522
        """
        Append a node in outputs.

        Args:
4523
            node(IrNode): the node being appended.
4524
        """
4525
        self.node.append_output(node.node)
4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4560 4561 4562
        assert (
            isinstance(node, core.Node) and node.is_var()
        ), 'node must be the instance of core.Node and it must be a variable node.'
4563
        super().__init__(node)
4564 4565 4566 4567 4568 4569 4570 4571 4572
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
4573 4574 4575
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4576 4577 4578 4579 4580 4581 4582 4583 4584
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
4585 4586 4587
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4588 4589
        return self.node.var().persistable()

4590 4591 4592 4593 4594 4595 4596
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
4597 4598 4599
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4600 4601 4602 4603 4604 4605 4606 4607 4608
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
4609 4610 4611
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4612 4613 4614 4615 4616 4617 4618 4619 4620
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
4621 4622 4623
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4624 4625
        return self.node.var().shape()

4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4659 4660 4661
        assert (
            isinstance(node, core.Node) and node.is_op()
        ), 'node must be the instance of core.Node and it must be a operator node.'
4662
        super().__init__(node)
4663 4664 4665 4666 4667 4668 4669 4670 4671 4672
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
4673 4674 4675
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4676 4677
        self.node.op()._rename_input(old_input_name, new_input_name)

4678 4679 4680 4681 4682 4683 4684 4685
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
4686 4687 4688
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4689 4690
        self.node.op()._rename_output(old_output_name, new_output_name)

4691 4692 4693 4694 4695 4696 4697 4698 4699 4700
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
4701 4702 4703
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
4716 4717 4718
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4719 4720 4721 4722 4723 4724 4725 4726 4727
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
4728 4729 4730
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4731 4732
        return self.node.op().set_type(new_type)

4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
4747 4748 4749
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4750
        desc = self.node.op()
4751 4752 4753 4754 4755
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
4756
            desc.set_block_attr(name, val.desc)
4757
        elif isinstance(val, list) and val and _all_is_type(val, Block):
4758
            desc.set_blocks_attr(name, [v.desc for v in val])
4759 4760 4761
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
4762 4763 4764 4765
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

4766 4767 4768 4769 4770 4771 4772
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
4773 4774 4775
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4776 4777 4778 4779 4780 4781 4782 4783 4784
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
4785 4786 4787
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4788 4789
        return self.node.op().output_arg_names()

4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


4811
class IrGraph:
4812
    """
4813
    Python IrGraph. Beneath it is a core.Graph, which is used for
4814
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
4815 4816
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
4817 4818 4819 4820
    """

    def __init__(self, graph, for_test=False):
        """
4821 4822
        Construct an IrGraph using core.Graph.

4823 4824 4825 4826 4827
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
4828 4829
            graph, core.Graph
        ), 'graph must be the instance of core.Graph.'
4830 4831 4832
        self.graph = graph
        self._for_test = for_test

4833 4834 4835 4836
    def clone(self):
        """
        Create a new and duplicated IrGraph.

4837 4838 4839
        Warns:
            The method only clones the graph structure, not its attributes.

4840 4841 4842
        Returns:
            IrGraph: A new and duplicated graph.
        """
4843
        g = self.graph.clone()
4844 4845
        return IrGraph(g, self._for_test)

4846
    def is_test(self):
4847 4848 4849
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
4850 4851
        return self._for_test

W
WangZhen 已提交
4852
    def all_nodes(self):
4853 4854 4855
        """
        Return all nodes included in the graph as a set.
        """
4856
        return {IrNode(node) for node in self.graph.nodes()}
4857

4858
    def all_var_nodes(self):
4859 4860 4861
        """
        Return all variable nodes included in the graph as a set.
        """
4862
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
4863

4864
    def all_persistable_nodes(self):
4865 4866 4867
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
4868 4869
        persistable_nodes = set()
        for node in self.graph.nodes():
4870 4871 4872 4873 4874
            if (
                node.is_var()
                and node.var() is not None
                and node.var().persistable()
            ):
W
WangZhen 已提交
4875
                persistable_nodes.add(node)
4876
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
4877

4878
    def all_op_nodes(self):
4879 4880 4881
        """
        Return all operator nodes included in the graph as a set.
        """
4882
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
4883

4884 4885 4886 4887 4888 4889
    def all_sub_graphs(self, for_test=False):
        """
        Return all sub_graphs included in the main graph as a set.
        """

        return [
4890
            IrGraph(self.graph.get_sub_graph(i), for_test=for_test)
4891 4892 4893 4894 4895 4896 4897 4898 4899
            for i in range(self.graph.sub_graph_size())
        ]

    def get_sub_graph(self, i, for_test=False):
        """
        Return i-th sub_graph in the main graph.
        """
        return IrGraph(self.graph.get_sub_graph(i), for_test=for_test)

4900
    def create_persistable_node(self, name, var_type, shape, var_dtype):
4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
4912
            IrVarNode: the created persistable variable node.
4913
        """
4914 4915 4916 4917 4918
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
4919
        return IrVarNode(self.graph.create_var_node(var_desc))
4920 4921

    def create_var_node(self, name, var_type, shape, var_dtype):
4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
4933
            IrVarNode: the created variable node.
4934 4935
        """

4936 4937 4938 4939
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
4940
        return IrVarNode(self.graph.create_var_node(var_desc))
4941

4942 4943 4944 4945 4946 4947
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

4948
    def create_var_node_from_desc(self, var_desc):
4949 4950 4951 4952 4953 4954 4955 4956
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
4957
            IrVarNode: the created variable node.
4958
        """
4959
        return IrVarNode(self.graph.create_var_node(var_desc))
4960 4961

    def create_op_node(self, op_type, attrs, inputs, outputs):
4962 4963 4964 4965 4966 4967 4968
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
4969
            outputs(dict): the outputs of the operator node.
4970 4971

        Returns:
4972
            IrOpNode: the created operator node.
4973
        """
4974 4975
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
4976
        for attr, value in attrs.items():
4977
            self._update_desc_attr(op_desc, attr, value)
4978
        for input_name, var_nodes in inputs.items():
4979 4980
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
4981 4982 4983
            op_desc.set_input(
                input_name, [var_node.name() for var_node in var_nodes]
            )
4984
        for output_name, var_nodes in outputs.items():
4985 4986
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
4987 4988 4989
            op_desc.set_output(
                output_name, [var_node.name() for var_node in var_nodes]
            )
4990
        return IrOpNode(self.graph.create_op_node(op_desc))
4991 4992

    def create_op_node_from_desc(self, op_desc):
4993 4994 4995 4996 4997 4998 4999
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
5000
            IrOpNode: the created operator node.
5001
        """
5002
        return IrOpNode(self.graph.create_op_node(op_desc))
5003 5004

    def update_input_link(self, old_input_node, new_input_node, op_node):
5005 5006 5007 5008
        """
        Update the input's link of a operator node.

        Args:
5009 5010 5011
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
5012
        """
5013 5014 5015 5016 5017
        assert (
            old_input_node.node in self.graph.nodes()
            and new_input_node.node in self.graph.nodes()
            and op_node.node in self.graph.nodes()
        ), 'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
5018 5019 5020 5021
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
5022
        op_node.rename_input(old_input_node.name(), new_input_node.name())
5023

5024 5025 5026 5027 5028 5029 5030 5031 5032
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
5033 5034 5035 5036 5037
        assert (
            old_output_node.node in self.graph.nodes()
            and new_output_node.node in self.graph.nodes()
            and op_node.node in self.graph.nodes()
        ), 'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
5038 5039 5040 5041 5042 5043
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

5044
    def link_to(self, node_in, node_out):
5045 5046 5047 5048
        """
        Connect two nodes.

        Args:
5049 5050
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
5051
        """
5052
        assert node_in.node in self.graph.nodes(), (
5053 5054
            'node_in(%s) must be in the graph nodes.' % node_in.node.name()
        )
5055
        assert node_out.node in self.graph.nodes(), (
5056 5057
            'node_out(%s) must be in the graph nodes.' % node_out.node.name()
        )
5058 5059
        node_in.append_output(node_out)
        node_out.append_input(node_in)
5060 5061

    def safe_remove_nodes(self, remove_nodes):
5062 5063 5064 5065 5066 5067 5068
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
5069
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
5070 5071 5072 5073
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
5074 5075
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
5076

Z
Zhen Wang 已提交
5077 5078 5079 5080 5081 5082 5083 5084
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
5085
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
5086 5087 5088 5089
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
5090
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
5091 5092 5093
                        ]
                    else:
                        var_nodes[each_var_name].append(
5094 5095
                            self._find_node_by_name(node.outputs, each_var_name)
                        )
Z
Zhen Wang 已提交
5096 5097
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
5098
    def has_circle(self):
5099 5100 5101 5102 5103 5104
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
5105 5106 5107
        return core.has_circle(self.graph)

    def graph_num(self):
5108 5109 5110 5111 5112 5113
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
5114 5115 5116
        return core.graph_num(self.graph)

    def topology_sort(self):
5117 5118 5119
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
5120
        Notes: the `graph` can not contain a circle.
5121 5122

        Returns:
Z
Zhen Wang 已提交
5123
            list(IrNode): nodes in topology order.
5124
        """
5125
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
5126
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
5127 5128

    def build_adjacency_list(self):
5129 5130 5131 5132
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
5133
            dict{IrNode: set(IrNode)}: the adjacency list.
5134
        """
5135 5136
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
5137
        for k, v in adj_list.items():
5138 5139
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
5140

5141 5142 5143 5144 5145 5146 5147 5148
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
5149
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
5150 5151 5152 5153 5154
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

5155 5156
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
5157 5158 5159 5160
            exited_code = subprocess.call(
                'dot -Tpdf ' + dot_file_path + ' -o ' + pdf_save_path,
                shell=True,
            )
5161 5162
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
5163 5164 5165
                print(
                    'The {} is saved as the dot filetype.'.format(dot_file_path)
                )
5166

5167
        remove_ctr_vars = set()
5168
        if remove_ctr_var:
5169
            for node in self.all_var_nodes():
5170 5171 5172
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
5173 5174
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

5175 5176
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
5177 5178 5179 5180 5181 5182
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
5183 5184 5185 5186
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
5187 5188
        if not os.path.exists(save_path):
            os.makedirs(save_path)
5189 5190 5191 5192 5193 5194 5195
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
5196 5197 5198
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
5199
        WARN: When the graph includes backward operator nodes, the
5200 5201 5202 5203 5204 5205
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
5206
        convert_pass = core.get_pass('graph_to_program_pass')
5207 5208
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
5209 5210 5211 5212
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

5213 5214 5215 5216 5217 5218 5219 5220
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
5221
        assert target_node is not None, (
5222 5223
            "Cannot find the target node (%s)in the giving set." % node_name
        )
5224 5225
        return target_node

5226 5227 5228 5229
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
5230 5231 5232 5233 5234
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
5235
            desc.set_block_attr(name, val.desc)
5236
        elif isinstance(val, list) and val and _all_is_type(val, Block):
5237
            desc.set_blocks_attr(name, [v.desc for v in val])
5238 5239 5240
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
5241 5242 5243 5244 5245
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


5246
class Program:
D
dzhwinter 已提交
5247
    """
5248
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
5249
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
5250
    it will contain nested block.
5251

J
Jiabin Yang 已提交
5252 5253 5254
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
5255

J
Jiabin Yang 已提交
5256
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
5257
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
5258 5259 5260 5261 5262 5263 5264
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
5265
    **Notes**:
5266 5267 5268
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
5269 5270

    Returns:
J
Jiabin Yang 已提交
5271
        Program: An empty Program.
D
dzhwinter 已提交
5272 5273

    Examples:
5274 5275
        .. code-block:: python

5276 5277 5278 5279
            import paddle
            import paddle.static as static

            paddle.enable_static()
5280

5281 5282 5283 5284 5285
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
5286
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
5287 5288 5289

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
5290 5291 5292

    """

5293 5294
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
5295 5296
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
5297 5298
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
5299
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
5300
        self.__op_role_var = []
T
tangwei12 已提交
5301

5302 5303
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
5304
        self._is_distributed = False
5305
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
5306
        self._is_chief = False
5307 5308 5309
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
5310
        self._endpoints = []
5311 5312 5313
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
5314
        self._trainers_endpoints = []
5315
        # the distributed lookup table names
T
tangwei12 已提交
5316
        self._distributed_lookup_table = None
5317 5318 5319

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
5320 5321
        self._use_lamb = False

5322 5323 5324
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
5325

5326 5327 5328
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
5329
        self._program_config = None
5330

H
hutuxian 已提交
5331 5332 5333
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

5334 5335 5336
        # assigned if this program has been parsed by a heter pipeline parameter server optimizer
        self._heter_pipeline_opt = None

5337 5338 5339
        # appending gradients times
        self._appending_grad_times = 0

5340 5341
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
5342 5343
            "__auto_checkpoint_program__"
        )
5344

5345 5346
        # compiled program, i.e. Graph
        self._graph = None
5347 5348
        # to tag whether is startup_program
        self._is_start_up_program_ = False
5349

5350
    def _find_var_class_kwargs(self, new_desc):
5351 5352 5353 5354 5355 5356 5357 5358
        # NOTE: not all variables support shape/dtype/lod_level methods.
        # For example: RAW, STEP_SCOPES, etc.
        def get_var_desc_attr_or_none(var_desc, attr_name, allowed_types):
            if var_desc.type() in allowed_types:
                return getattr(var_desc, attr_name)()
            else:
                return None

5359 5360 5361 5362
        old_desc = self.desc
        all_new_vars = []
        block_num = new_desc.num_blocks()
        for idx in range(block_num):
5363
            if idx > (len(self.blocks) - 1):
5364
                self._create_block()
5365 5366 5367 5368 5369 5370 5371 5372 5373 5374
            new_block_desc = new_desc.block(idx)
            all_new_vars.append([])
            block_new_vars = all_new_vars[-1]
            for new_var_desc in new_block_desc.all_vars():
                if self.blocks[idx].has_var(new_var_desc.name()):
                    old_var = self.blocks[idx].var(new_var_desc.name())
                else:
                    old_var = None

                kwargs = {
5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415
                    'type': new_var_desc.type(),
                    'name': new_var_desc.name(),
                    'shape': get_var_desc_attr_or_none(
                        new_var_desc,
                        "shape",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.SELECTED_ROWS,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'dtype': get_var_desc_attr_or_none(
                        new_var_desc,
                        "dtype",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.SELECTED_ROWS,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'lod_level': get_var_desc_attr_or_none(
                        new_var_desc,
                        "lod_level",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'error_clip': old_var.error_clip
                    if old_var is not None
                    else None,
                    'stop_gradient': old_var.stop_gradient
                    if old_var is not None
                    else False,
                    'is_data': old_var.is_data
                    if old_var is not None
                    else False,
                    'need_check_feed': new_var_desc.need_check_feed(),
                    'belong_to_optimizer': old_var.belong_to_optimizer
                    if old_var is not None
                    else False,
5416 5417 5418
                }

                if isinstance(old_var, Parameter):
5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435
                    kwargs.update(
                        {
                            'trainable': old_var.trainable,
                            'optimize_attr': old_var.optimize_attr,
                            'regularizer': old_var.regularizer,
                            'do_model_average': old_var.do_model_average,
                            'need_clip': old_var.need_clip,
                            'is_distributed': old_var.is_distributed,
                            'is_parameter': old_var.is_parameter,
                        }
                    )
                    block_new_vars.append(
                        {
                            'class': Parameter,
                            'kwargs': copy.deepcopy(kwargs),
                        }
                    )
5436 5437
                else:
                    kwargs['persistable'] = new_var_desc.persistable()
5438 5439 5440 5441 5442 5443
                    block_new_vars.append(
                        {
                            'class': Variable,
                            'kwargs': copy.deepcopy(kwargs),
                        }
                    )
5444 5445 5446 5447 5448 5449 5450

        return all_new_vars

    def _rebuild_from_desc(self, desc):
        all_new_vars = self._find_var_class_kwargs(desc)
        block_num = desc.num_blocks()
        assert block_num == len(all_new_vars)
5451
        assert block_num == self.desc.num_blocks()
5452 5453

        # clear old blocks and desc
5454 5455 5456 5457 5458 5459 5460 5461 5462
        for idx in range(block_num):
            block = self.blocks[idx]
            block.vars.clear()
            block.ops.clear()

        for idx in range(block_num):
            block_desc = self.blocks[idx].desc
            new_block_desc = desc.block(idx)
            block_desc._move_from(new_block_desc)
5463

5464
        del desc
5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483

        # add new vars first
        for idx in range(block_num):
            block = self.blocks[idx]
            for new_var in all_new_vars[idx]:
                clazz = new_var['class']
                kwargs = new_var['kwargs']
                kwargs['block'] = block
                clazz(**kwargs)

        # then append op
        for idx in range(block_num):
            block = self.blocks[idx]
            block_desc = self.desc.block(idx)
            for op_idx in range(block_desc.op_size()):
                op_desc = block_desc.op(op_idx)
                op = Operator(block=block, desc=op_desc)
                block.ops.append(op)

5484 5485 5486 5487 5488 5489 5490 5491 5492 5493
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

5494 5495
                import paddle
                import paddle.static as static
5496

5497 5498 5499
                paddle.enable_static()

                prog = static.default_main_program()
5500 5501 5502 5503 5504
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
5505
                prog1 = static.default_main_program()
5506 5507 5508 5509 5510 5511 5512 5513
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
5514
    @property
5515
    def _op_role(self):
Y
yuyang18 已提交
5516 5517 5518 5519 5520 5521 5522 5523
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
5524
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
5525 5526 5527 5528
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
5529 5530
        return self._current_role

5531 5532
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
5533 5534 5535
        self._current_role = role

    @property
5536
    def _op_role_var(self):
Y
yuyang18 已提交
5537
        """
5538
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
5539

5540
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
5541 5542 5543

        Notes: This is a very low-level API. Users should not use it directly.
        """
5544
        return self.__op_role_var
Y
yuyang18 已提交
5545

5546
    @signature_safe_contextmanager
5547 5548 5549 5550 5551
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
5552 5553 5554 5555
        try:
            yield
        finally:
            self._current_role = tmp_role
5556

S
rename  
sneaxiy 已提交
5557
    @signature_safe_contextmanager
W
Wu Yi 已提交
5558
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
5559 5560 5561 5562 5563 5564 5565
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
5566
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
5567 5568 5569

        Examples:

5570
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
5571
            >>> p, g = backward(...)
W
Wu Yi 已提交
5572
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
5573 5574
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
5575
        tmp_role = self._current_role
5576
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
5577

Y
yuyang18 已提交
5578 5579
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
5580
        self.__op_role_var = [
5581 5582 5583
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
5584 5585 5586 5587 5588
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
5589

S
rename  
sneaxiy 已提交
5590
    @signature_safe_contextmanager
X
Xin Pan 已提交
5591
    def _lr_schedule_guard(self, is_with_opt=False):
5592 5593 5594 5595 5596 5597 5598
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
5599 5600 5601 5602
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
5603 5604 5605

        Examples:

5606
            >>> import paddle.fluid as fluid
5607 5608 5609 5610
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
5611 5612

        tmp_role = self._current_role
5613
        tmp_var = self.__op_role_var
5614

5615 5616
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
5617 5618
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
5619
        # TODO(typhoonzero): how to set target learning rate var
5620
        self.__op_role_var = []
5621 5622 5623 5624 5625
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
5626

5627
    def __str__(self):
Y
yuyang18 已提交
5628 5629 5630 5631 5632 5633 5634 5635 5636
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

5657 5658
            import paddle
            import paddle.static as static
5659

5660 5661 5662
            paddle.enable_static()

            cur_program = static.Program()
5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
5674
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
5675 5676
            type(skip_op_callstack)
        )
5677 5678 5679
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
5680
            program_str += '\n'
5681
        return program_str
Y
Yang Yang(Tony) 已提交
5682

F
fengjiayi 已提交
5683 5684 5685
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
5686

J
Jiabin Yang 已提交
5687 5688 5689
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
5690

J
Jiabin Yang 已提交
5691
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
5692

H
haowang101779990 已提交
5693
        Returns:
J
Jiabin Yang 已提交
5694
            str: The debug string describe current Program.
Y
yuyang18 已提交
5695 5696

        Raises:
J
Jiabin Yang 已提交
5697
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
5698

5699 5700 5701
        Examples:
            .. code-block:: python

5702 5703 5704 5705
                import paddle
                import paddle.static as static

                paddle.enable_static()
5706

5707 5708 5709
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
5710
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
5711
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
5712
                print("program string without detail: {}".format(prog_string))
5713
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
5714
        """
5715 5716 5717
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
5718 5719
            type(throw_on_error)
        )
5720 5721 5722
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
5723 5724
            type(with_details)
        )
5725

F
fengjiayi 已提交
5726 5727 5728 5729 5730 5731
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
5732
            proto = framework_pb2.ProgramDesc.FromString(bytes(protostr))
F
fengjiayi 已提交
5733 5734
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
5735

W
Wu Yi 已提交
5736
    def _get_desc(self):
Y
yuyang18 已提交
5737 5738 5739 5740 5741 5742 5743
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
5744 5745
        return self.desc

X
version  
Xin Pan 已提交
5746 5747 5748
    def _version(self):
        return self.desc._version()

5749
    def clone(self, for_test=False):
Y
yuyang18 已提交
5750
        """
5751
        .. note:::
5752 5753
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` .
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` .
5754
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
5755

5756
        Create a new Program with forward content of original one when ``for_test=True``.
5757
        Create a new Program as same as the original one when ``for_test=False``.
5758

5759
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
5760 5761 5762
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
5763

5764 5765
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
5766 5767
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
5768
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
5769

J
Jiabin Yang 已提交
5770
        For Example:
5771
          ::
L
Luo Tao 已提交
5772

5773 5774 5775 5776 5777 5778
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
5779
            pred = static.nn.fc(x=img, size=10, actvation='relu')
5780
            loss = paddle.mean(pred)
5781
            # Here we use clone before Momentum
5782 5783
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
5784
            optimizer.minimize(loss)
5785

J
Jiabin Yang 已提交
5786
        Args:
5787

5788 5789
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
5790

J
Jiabin Yang 已提交
5791
        Returns:
5792
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
5793

Y
yuyang18 已提交
5794 5795 5796

        Examples:

5797 5798 5799 5800 5801 5802 5803
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

5804 5805
            .. code-block:: python

5806
                import paddle
5807 5808

                def print_prog(prog):
5809
                    for name, value in sorted(prog.block(0).vars.items()):
5810 5811 5812 5813 5814
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
5815
                        for key, value in sorted(op.all_attrs().items()):
5816 5817 5818 5819
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


5820
            1. To clone a test program, the sample code is:
5821 5822
                .. code-block:: python

5823 5824 5825 5826 5827 5828
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5829 5830

                    def print_prog(prog):
5831
                        for name, value in sorted(prog.block(0).vars.items()):
5832 5833 5834 5835 5836
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
5837
                            for key, value in sorted(op.all_attrs().items()):
5838 5839 5840
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

5841 5842
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
5843 5844 5845

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
5846 5847 5848
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
5849
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
5850 5851
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
5852
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5853 5854
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
5855
                            test_program = train_program.clone(for_test=True)
5856
                    print_prog(test_program)
J
Jiabin Yang 已提交
5857 5858 5859 5860

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

5861
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
5862 5863 5864 5865
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

5866 5867 5868
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5869 5870 5871
                            sgd.minimize(avg_loss)


5872
            2. The clone method can be avoid if you create program for training and program for testing individually.
5873 5874
                .. code-block:: python

5875 5876 5877 5878 5879 5880
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5881 5882

                    def print_prog(prog):
5883
                        for name, value in sorted(prog.block(0).vars.items()):
5884 5885 5886 5887 5888
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
5889
                            for key, value in sorted(op.all_attrs().items()):
5890 5891
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
5892

5893
                    def network():
5894
                        img = static.data(name='image', shape=[None, 784])
5895
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
5896 5897
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
5898
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5899 5900
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
5901 5902
                        return avg_loss

5903 5904 5905 5906 5907
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
5908
                            avg_loss = network()
5909
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5910
                            sgd.minimize(avg_loss)
5911
                    # the test startup program is not used.
5912 5913
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
5914 5915
                            avg_loss = network()
                    print_prog(test_program_2)
5916

5917
            The two code snippets above will generate and print same programs.
5918
        """
5919

T
tangwei12 已提交
5920
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5921 5922 5923
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5924
        pruned_origin_block_id_map = None
5925
        if for_test:
5926 5927
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
5928 5929
                self.desc
            )
5930 5931
            forward_prog.blocks = [
                Block(forward_prog, i)
5932
                for i in range(forward_prog.desc.num_blocks())
5933 5934 5935
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
5936
        else:
5937
            p = Program()
G
gongweibao 已提交
5938 5939
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
5940
            p.desc = core.ProgramDesc(self.desc)
5941
            p.blocks = [Block(p, i) for i in range(self.desc.num_blocks())]
G
gongweibao 已提交
5942 5943

            p._current_role = self._current_role
5944
            p.__op_role_var = self.__op_role_var
5945
            p._appending_grad_times = self._appending_grad_times
5946 5947
            if hasattr(self, 'lr_sheduler'):
                p.lr_sheduler = self.lr_sheduler
G
gongweibao 已提交
5948

T
tangwei12 已提交
5949
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
5950
            # its desc.
W
Wu Yi 已提交
5951
            p._sync_with_cpp()
5952

W
Wu Yi 已提交
5953
        p._copy_param_info_from(self)
5954
        p._copy_data_info_from(self, pruned_origin_block_id_map)
5955
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
5956
        return p
5957

5958
    def _prune(self, targets):
Y
yuyang18 已提交
5959 5960 5961 5962 5963 5964 5965 5966
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
5967
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
5968 5969 5970 5971
                need to be pruned

        Returns:
            Program:  A new, pruned program.
5972
        """
5973
        return self._prune_with_input([], targets)
5974 5975

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
5976
        """
5977
        Prune operators and variables which are not needed to generate
5978 5979
        :code:`targets`. Prune operators and variables which are needed
        to generate feeded_var
5980 5981 5982 5983 5984 5985 5986

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
5987
            targets(list|Variable|Operator): A list of variables, operators, or variable names
5988 5989 5990 5991 5992 5993
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
5994
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5995 5996 5997
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5998 5999
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
6000 6001
        if not isinstance(targets, list):
            targets = [targets]
6002 6003

        for var in feeded_var_names:
6004
            if not isinstance(var, str):
6005 6006
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
6007 6008
                    "str, but received %s." % type(var)
                )
6009

6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025
        # find out all variables that can be generated or updated with given feed
        generatable_vars = set()

        for idx, op in enumerate(self.global_block().ops):
            runnable_op = True
            for name in op.input_arg_names:
                if not self.global_block().has_var(name):
                    continue
                if self.global_block().var(name).persistable:
                    continue
                if name not in generatable_vars.union(feeded_var_names):
                    runnable_op = False
                    break
            if runnable_op:
                generatable_vars = generatable_vars.union(op.output_arg_names)

6026 6027 6028 6029
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
6030
                    name = t.name
6031
                elif isinstance(t, str):
6032
                    name = str(t)
6033
                else:
6034 6035
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
6036 6037
                        "Variable or Operator, but received %s." % type(t)
                    )
6038 6039 6040 6041 6042 6043

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
6044 6045 6046
                    # however if the var is also updated by a runnable op, will shall keep it
                    if name not in generatable_vars:
                        continue
6047

6048 6049 6050 6051 6052 6053 6054 6055 6056
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
6057
                        # Skip optimize op except for optimize op in targets,
6058 6059 6060 6061 6062
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
6063

6064
                if target_op is not None:
6065 6066 6067
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
6068

6069
        res = Program()
6070
        res.desc, pruned_origin_block_id_map = core.prune(
6071 6072
            self.desc, set(feeded_var_names), targets_idx
        )
6073
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
W
Wu Yi 已提交
6074
        res._sync_with_cpp()
6075 6076 6077 6078 6079

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

6080 6081
        return res

X
Xin Pan 已提交
6082
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
6083
        """
F
fengjiayi 已提交
6084 6085 6086 6087 6088
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

6089
        3. change the :code:`is_test`
Y
yuyang18 已提交
6090 6091 6092
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

6093
        Args:
X
Xin Pan 已提交
6094 6095
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
6096

Y
yuyang18 已提交
6097 6098 6099 6100 6101 6102
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
6103
        res = Program()
6104
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
6105 6106 6107 6108

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
6109
        if prune_read_op:
6110
            while True:
6111 6112 6113 6114
                if (
                    read_op_idx >= root_block.op_size()
                    or root_block.op(read_op_idx).type() == 'read'
                ):
6115 6116 6117 6118 6119 6120
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
6121
                    root_block._remove_var(var.name().encode())
F
fengjiayi 已提交
6122 6123

        # change all `is_test` attributes to True
6124
        for i in range(res.desc.num_blocks()):
6125
            block = res.desc.block(i)
6126
            for j in range(block.op_size()):
6127 6128
                op = block.op(j)
                if op.has_attr('is_test'):
6129
                    op._set_bool_attr('is_test', True)
6130 6131 6132
                if op.type() == "batch_norm":
                    # Remove the output ReserveSpace of batch_norm if exists.
                    op.remove_output("ReserveSpace")
6133
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
W
Wu Yi 已提交
6134
        res._sync_with_cpp()
6135 6136
        return res

6137
    def _remove_training_info(self, clip_extra=True):
6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151
        """
        This method will create a new program and do following adjustments on it:
        1. Remove all variable's `is_parameter` attribute if exist.

        2. Remove all variable's `stop_gradient` attribute if exist.

        Notes: This API is a very low level API.

        Returns:
            Program: The new program.
        """
        res = Program()
        res.desc = core.ProgramDesc(self.desc)

6152
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
6153 6154
        res._sync_with_cpp()

6155 6156
        # Note: The op_role and op_role_var cann't be deleted currently,
        # and we will try to remove them in the future.
6157
        common_clipped_attrs_list = ['op_callstack', 'with_quant_attr']
6158

6159
        for i in range(res.desc.num_blocks()):
6160 6161 6162 6163
            block = res.desc.block(i)
            for var in block.all_vars():
                var.clear_is_parameter()
                var.clear_stop_gradient()
6164 6165
            if not clip_extra:
                continue
6166 6167 6168 6169
            for op_idx in range(0, block.op_size()):
                op = block.op(op_idx)
                if op.type() not in OpProtoHolder.instance().op_proto_map:
                    continue
6170 6171 6172

                extra_attrs_map = core.get_op_extra_attrs(op.type())

6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185
                proto = OpProtoHolder.instance().get_op_proto(op.type())
                remove_input_list = []
                for name in op.input_names():
                    find = False
                    for input_proto in proto.inputs:
                        if input_proto.name != name:
                            continue
                        if input_proto.extra:
                            remove_input_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_input_list.append(name)
6186 6187 6188
                # The extra input of op will be removed in the future
                # for name in remove_input_list:
                #     op.remove_input(name)
6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201

                remove_output_list = []
                for name in op.output_names():
                    find = False
                    for output_proto in proto.outputs:
                        if output_proto.name != name:
                            continue
                        if output_proto.extra:
                            remove_output_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_output_list.append(name)
6202
                # The extra output of op will be removed in the future
6203 6204
                for name in remove_output_list:
                    op.remove_output(name)
6205

6206 6207 6208 6209 6210 6211 6212
                op_quant_name = (
                    core.op_proto_and_checker_maker.kOpWithQuantAttrName()
                )
                quant = (
                    bool(op.attr(op_quant_name))
                    if op_quant_name in op.attr_names()
                    else False
6213 6214
                )
                quant_attrs = [
6215 6216 6217 6218 6219 6220 6221
                    op_quant_name,
                    "quantization_type",
                    "skip_quant",
                    "activation_bits",
                    "bit_length",
                    "quantize_weight_bits",
                    "weight_quant_scale",
6222
                ]
6223 6224
                for extra_attr_name in extra_attrs_map.keys():
                    op.remove_attr(extra_attr_name)
6225
                remove_attr_list = []
6226 6227 6228 6229 6230 6231
                for name in op.attr_names():
                    if quant:
                        if name in quant_attrs:
                            continue
                        if name.endswith("_threshold"):
                            continue
6232
                    if len(extra_attrs_map) > 0:
6233
                        if name in common_clipped_attrs_list:
6234
                            op.remove_attr(name)
6235
                        continue
6236 6237 6238 6239 6240 6241 6242 6243 6244 6245
                    find = False
                    for attr_proto in proto.attrs:
                        if attr_proto.name != name:
                            continue
                        find = True
                        break
                    if not find:
                        remove_attr_list.append(name)
                for name in remove_attr_list:
                    op.remove_attr(name)
6246 6247
        return res

6248 6249
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
6250
        """
6251
        .. note::
6252
            1. All information about parameters will be lost after serialization;
6253
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
6254

6255 6256
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
6257

J
Jiabin Yang 已提交
6258
        Args:
Y
yuyang18 已提交
6259

J
Jiabin Yang 已提交
6260
            binary_str_type (str): the binary prootbuf string.
6261

J
Jiabin Yang 已提交
6262 6263
        Returns:
            Program: A deserialized Program.
6264 6265 6266 6267

        Examples:
            .. code-block:: python

6268 6269 6270 6271
                import paddle
                import paddle.static as static

                paddle.enable_static()
6272

6273 6274 6275 6276
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
6277

6278
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
6279

6280
                    z = paddle.matmul(x=x, y=y)
6281

6282 6283
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
6284

6285
                    print(static.default_main_program())
6286
                    print(prog_restored)
Y
yuyang18 已提交
6287
        """
6288 6289
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
6290
        p.blocks = [Block(p, i) for i in range(p.desc.num_blocks())]
W
Wu Yi 已提交
6291
        p._sync_with_cpp()
6292
        return p
Y
Yu Yang 已提交
6293

6294
    @staticmethod
6295
    def _construct_from_desc(desc):
6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
6307
        p.blocks = [Block(p, i) for i in range(p.desc.num_blocks())]
6308 6309 6310
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
6311 6312
    @property
    def random_seed(self):
Y
yuyang18 已提交
6313
        """
J
Jiabin Yang 已提交
6314
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
6315 6316
        the random seed from random device.

6317
        .. note::
6318
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
6319 6320 6321

        Returns:
            int64: Random seed in current Program
6322

6323 6324 6325 6326

        Examples:
            .. code-block:: python

6327 6328 6329
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
6330

6331 6332 6333
                paddle.enable_static()

                prog = static.default_main_program()
6334
                random_seed = prog.random_seed
6335
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
6336 6337 6338
                print(random_seed)
                ## 0
                ## the default random seed is 0
6339

6340
                # Here we need to set random seed before we use paddle.nn.functional.dropout
6341
                prog.random_seed = 1
6342
                z_var = F.dropout(x_var, 0.7)
6343

6344
                print(prog.random_seed)
6345 6346
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
6347
        """
D
dzhwinter 已提交
6348 6349
        return self._seed

Q
qiaolongfei 已提交
6350 6351
    @property
    def num_blocks(self):
Y
yuyang18 已提交
6352
        """
6353 6354
        The number of :ref:`api_guide_Block_en`  in this Program.

6355
        .. note::
6356
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
6357 6358 6359

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
6360

6361 6362 6363 6364

        Examples:
            .. code-block:: python

6365 6366 6367 6368
                import paddle
                import paddle.static as static

                paddle.enable_static()
6369

6370
                prog = static.default_main_program()
6371 6372
                num_blocks = prog.num_blocks
                print(num_blocks)
6373

6374 6375
                # print result:
                # 1
Y
yuyang18 已提交
6376
        """
Q
qiaolongfei 已提交
6377 6378
        return self.desc.num_blocks()

D
dzhwinter 已提交
6379 6380 6381
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
6382 6383
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
6384 6385
                % type(seed)
            )
D
dzhwinter 已提交
6386 6387
        self._seed = seed

Y
Yu Yang 已提交
6388
    def __repr__(self):
6389
        return self.__str__()
6390

Y
Yu Yang 已提交
6391
    def global_block(self):
Y
yuyang18 已提交
6392
        """
6393 6394
        .. note::
            This API has no effect in Dygraph mode.
6395 6396 6397

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
6398 6399
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
6400

6401 6402 6403 6404

        Examples:
            .. code-block:: python

6405 6406 6407 6408
                import paddle
                import paddle.static as static

                paddle.enable_static()
6409

6410
                prog = static.default_main_program()
6411 6412
                gb_block = prog.global_block()
                print(gb_block)
6413

Y
yuyang18 已提交
6414
        """
Y
Yu Yang 已提交
6415 6416
        return self.blocks[0]

Q
Qiao Longfei 已提交
6417
    def block(self, index):
Y
yuyang18 已提交
6418
        """
6419 6420
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
6421

6422 6423
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
6424 6425
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
6426

J
Jiabin Yang 已提交
6427 6428
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
6429 6430 6431 6432

        Examples:
            .. code-block:: python

6433 6434 6435 6436
                import paddle
                import paddle.static as static

                paddle.enable_static()
6437

6438
                prog = static.default_main_program()
6439 6440
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
6441
        """
Q
Qiao Longfei 已提交
6442 6443
        return self.blocks[index]

Y
Yu Yang 已提交
6444
    def current_block(self):
Y
yuyang18 已提交
6445
        """
6446 6447
        .. note::
            This API has no effect in Dygraph mode.
6448

J
Jiabin Yang 已提交
6449 6450
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
6451

J
Jiabin Yang 已提交
6452 6453
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
6454

6455 6456 6457
        Examples:
            .. code-block:: python

6458 6459 6460 6461
                import paddle
                import paddle.static as static

                paddle.enable_static()
6462

6463
                prog = static.default_main_program()
6464 6465
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
6466
        """
Y
Yu Yang 已提交
6467 6468
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
6469
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
6470 6471 6472 6473 6474
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
6475

Y
yuyang18 已提交
6476 6477 6478 6479 6480
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
6481
        new_block_idx = len(self.blocks)
6482 6483 6484 6485 6486
        parent = (
            self.current_block()
            if parent_idx is None
            else self.block(parent_idx)
        )
F
update  
fengjiayi 已提交
6487
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
6488 6489 6490 6491
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
6492
    def _rollback(self):
Y
yuyang18 已提交
6493 6494 6495 6496 6497
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
6498 6499
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
6500
    def _sync_with_cpp(self):
Y
yuyang18 已提交
6501 6502 6503 6504 6505 6506 6507 6508 6509 6510
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
6511 6512 6513
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
6514
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
6515

W
Wu Yi 已提交
6516
    def _copy_param_info_from(self, other):
6517
        """
6518
        Copy the information of parameters from other program.
D
dzhwinter 已提交
6519

Y
yuyang18 已提交
6520 6521 6522
        Notes: This is a very low level API. Users should not invoke it
        directly.

6523 6524 6525 6526 6527 6528 6529
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6530 6531
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6532 6533
                % type(other)
            )
6534

W
Wu Yi 已提交
6535
        self.global_block()._copy_param_info_from(other.global_block())
6536

6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6548 6549
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6550 6551
                % type(other)
            )
6552 6553
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
6554
        self._parameters_on_pservers = other._parameters_on_pservers
6555
        self._endpoints = other._endpoints
6556
        self._ps_endpoint = other._ps_endpoint
6557 6558
        self._distributed_lookup_table = other._distributed_lookup_table

6559
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
6560 6561
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
6562

Y
yuyang18 已提交
6563 6564 6565
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
6566 6567
        Args:
            other(Program): Other program
6568
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
6569 6570
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is
            cloned from block 0 in other, etc. Default is None, which means default mapped,
6571
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
6572 6573 6574 6575 6576

        Returns:
            None
        """
        if not isinstance(other, Program):
6577 6578
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6579 6580
                % type(other)
            )
F
fengjiayi 已提交
6581

6582 6583
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
6584
                i: i for i in range(self.desc.num_blocks())
6585
            }
6586 6587 6588

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
6589 6590
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
6591
            for var in list(block.vars.values()):
6592 6593 6594 6595 6596 6597 6598
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
6599

6600
    def list_vars(self):
Y
yuyang18 已提交
6601
        """
6602
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
6603

J
Jiabin Yang 已提交
6604
        Returns:
6605
            iterable Tensors: The Generator will yield every Tensor in this program.
6606 6607 6608 6609

        Examples:
            .. code-block:: python

6610 6611
                import paddle
                import paddle.static as static
6612

6613 6614 6615 6616 6617
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
6618 6619
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
6620

6621 6622
                # var img : LOD_TENSOR.shape(-1, 1, 28, 28).dtype(float32).stop_gradient(True)
                # var label : LOD_TENSOR.shape(-1, 1).dtype(int64).stop_gradient(True)
Y
yuyang18 已提交
6623
        """
6624
        for each_block in self.blocks:
6625
            for each_var in list(each_block.vars.values()):
6626 6627
                yield each_var

6628 6629 6630 6631 6632 6633 6634 6635 6636 6637
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

6638 6639 6640 6641
                import paddle
                import paddle.static as static

                paddle.enable_static()
6642

6643 6644
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
6645
                hidden = static.nn.fc(x=data, size=10)
6646 6647
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
6648 6649 6650 6651 6652 6653 6654

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
6655 6656
                # persist trainable param fc_0.w_0 : LOD_TENSOR.shape(13, 10).dtype(float32).stop_gradient(False)
                # persist trainable param fc_0.b_0 : LOD_TENSOR.shape(10,).dtype(float32).stop_gradient(False)
6657 6658 6659 6660 6661 6662 6663 6664 6665 6666
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

6667 6668 6669 6670 6671 6672 6673 6674 6675
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
6676 6677 6678
            mode(str, optional): Source of the obtained parameters and buffers.
                    'opt' :  The return value only contains the variable in the optimizer.
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.
6679 6680
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
6681
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope
6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
6709
        # can not be imported at the begainning of this file.
6710 6711
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
6712

6713 6714
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
6715 6716 6717 6718
                "`scope` should be None or `paddle.static.Scope'` type, but received {}.".format(
                    type(scope)
                )
            )
6719 6720 6721 6722 6723

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
6724 6725
            raise TypeError(
                "Type of `mode` should be string, but received {}.".format(
6726 6727 6728
                    type(mode)
                )
            )
6729 6730 6731 6732 6733

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
6734 6735 6736 6737 6738
            if (
                var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH
                or var.desc.type() == core.VarDesc.VarType.FETCH_LIST
                or var.desc.type() == core.VarDesc.VarType.READER
            ):
6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):

            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
6757 6758 6759 6760
                    "`mode` string should be 'param', 'opt' or 'all', but received {}.".format(
                        mode
                    )
                )
6761 6762 6763 6764 6765 6766 6767 6768

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
6769 6770 6771 6772
                    "Can not find Variable '{}' in the scope. Make sure it is initialized".format(
                        var.name
                    )
                )
6773 6774 6775 6776 6777 6778
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
6779
        Set parameters and persistable buffers in state_dict to program.
6780
        An exception will throw if shape or dtype of the parameters is not match.
6781

6782 6783 6784 6785
        .. note::
            This function MUST called after run start_up_program

        Args:
6786
            state_dict(dict): the dict store parameters and persistable buffers.
6787 6788
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
6789
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope
6790 6791
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
6792

6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
6822 6823 6824
                    type(state_dict)
                )
            )
6825 6826

        vars_dict = {var.name: var for var in self.list_vars()}
6827 6828 6829
        condition = (
            True if 'StructuredToParameterName@@' in state_dict else False
        )
6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
6841 6842
                        ("Skip loading for '{}'. ".format(name) + str(err))
                    )
6843 6844
                except TypeError as err:
                    warnings.warn(
6845 6846
                        ("Skip loading for '{}'. ".format(name) + str(err))
                    )
6847
            else:
6848
                warnings.warn(
6849 6850 6851 6852 6853 6854
                    (
                        "Skip loading for '{0}'. Because '{0}' not in the program.".format(
                            name
                        )
                    )
                )
6855

Y
Yu Yang 已提交
6856

6857
class Parameter(Variable, metaclass=ParameterMetaClass):
6858
    """
6859
    Parameter is derived from Variable. A parameter is a persistable
6860
    Variable, and will be updated by optimizers after each iteration.
6861
    The training of a neural network is essentially the updating of
6862 6863
    its parameters.

6864
    Relative to a general Variable, a Parameter has several its own
6865 6866
    member variables:

6867 6868 6869 6870 6871 6872 6873 6874 6875 6876
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
6877
        need_clip (bool): Whether the parameter gradient need to be cliped
6878
            in optimizer. Default is True.
6879 6880
    """

6881 6882 6883 6884 6885 6886 6887 6888
    def __init__(
        self,
        block,
        shape,
        dtype,
        type=core.VarDesc.VarType.LOD_TENSOR,
        **kwargs
    ):
6889 6890 6891 6892 6893
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
6894 6895
        for each in shape:
            if each < 0:
6896 6897
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909
                    % list(shape)
                )

        Variable.__init__(
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
            **kwargs
        )
Y
Yu Yang 已提交
6910 6911 6912 6913
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

6914 6915
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
6916
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
6917

6918 6919
        self.need_clip = kwargs.get('need_clip', True)

6920 6921
        self.is_distributed = False

6922 6923
        self.is_parameter = True

F
fengjiayi 已提交
6924
    def __str__(self):
6925
        return self._to_readable_code()
F
fengjiayi 已提交
6926

F
update  
fengjiayi 已提交
6927 6928 6929
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
6930

F
update  
fengjiayi 已提交
6931 6932 6933 6934 6935 6936 6937 6938
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

6939 6940 6941 6942 6943 6944 6945 6946 6947
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
6948
        """
6949
        assert isinstance(throw_on_error, bool) and isinstance(
6950 6951
            with_details, bool
        )
F
update  
fengjiayi 已提交
6952 6953
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
6954 6955 6956 6957 6958 6959 6960
            additional_attr = (
                "trainable",
                "optimize_attr",
                "regularizer",
                "do_model_average",
                "need_clip",
            )
F
update  
fengjiayi 已提交
6961
            for attr_name in additional_attr:
6962
                res_str += "%s: %s\n" % (attr_name, getattr(self, attr_name))
F
update  
fengjiayi 已提交
6963 6964
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
6965 6966 6967 6968
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
6969

6970 6971
class ParamBase(core.VarBase):
    """
6972 6973
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode).
    A ParamBase is a persistable Tensor, and will be updated by optimizers
6974
    after each iteration.
6975 6976 6977
    The training of a neural network is essentially the updating of
    its ParamBase.

6978
    Relative to a general Tensor, a ParamBase has several its own
6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
6991
        need_clip (bool): Whether the parameter gradient need to be cliped
6992
            in optimizer. Default is True.
6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
7006 7007
                    % list(shape)
                )
7008 7009 7010 7011 7012 7013 7014

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

7015
        super().__init__(
7016 7017 7018 7019 7020 7021
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape) if shape else [],
            name,
            core.VarDesc.VarType.LOD_TENSOR,
            True,
        )
7022

7023 7024
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
7025 7026 7027 7028 7029 7030 7031

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

7032 7033
        self.need_clip = kwargs.get('need_clip', True)

7034
        self.is_distributed = kwargs.get('is_distributed', False)
7035
        # self.block = default_main_program().global_block()
7036

7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
7048 7049
                type(trainable),
            )
7050

7051
    def __str__(self):
7052
        """
7053
        Convert a ParamBase object to a readable string.
7054

7055
        Returns(str): A readable string.
7056 7057 7058 7059

        Examples:
            .. code-block:: python

7060
                import paddle
7061 7062 7063 7064 7065 7066 7067
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
7068
        """
7069
        return "Parameter containing:\n{tensor}".format(
7070
            tensor=super().__str__()
7071
        )
7072

7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083
    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)
T
tangwei12 已提交
7084

7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = ParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

7103 7104 7105 7106
    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = ParamBase(self.shape, self.dtype, **state)
        core.varbase_copy(self, new_param, device, blocking)
7107 7108 7109 7110 7111 7112
        return new_param

    __repr__ = __str__


if hasattr(core, "eager"):
7113
    _core_eager_eagertensor = core.eager.Tensor
7114 7115 7116 7117 7118 7119
else:
    _core_eager_eagertensor = object


class EagerParamBase(_core_eager_eagertensor):
    """
7120 7121
    EagerParamBase is derived from Tensor( Which is the concept in Eager-Dygraph Mode).
    A EagerParamBase is a persistable Tensor, and will be updated by optimizers
7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138
    after each iteration.
    The training of a neural network is essentially the updating of
    its EagerParamBase.

    Relative to a general Tensor, a EagerParamBase has several its own
    member variables:

    Args:
        trainable(bool): True if the EagerParamBase need to be updated after
            iterations.
        optimize_attr(map): EagerParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the EagerParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this EagerParamBase.
7139
        need_clip (bool): Whether the parameter gradient need to be cliped
7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153
            in optimizer. Default is True.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
7154 7155
                    % list(shape)
                )
7156 7157 7158 7159 7160 7161 7162

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_eager_param_base'))

7163 7164 7165
        if isinstance(shape, core.eager.Tensor):
            shape = shape.numpy()

7166
        super().__init__(
7167 7168 7169 7170 7171 7172
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape) if shape else [],
            name,
            core.VarDesc.VarType.LOD_TENSOR,
            True,
        )
7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186
        self.retain_grads()

        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.need_clip = kwargs.get('need_clip', True)

        self.is_distributed = kwargs.get('is_distributed', False)
7187 7188 7189
        # hook functions for lazy initialization
        self._init_func = None
        self._init_op_creator = None
7190 7191

    def set_init_func(self, obj):
7192
        self._init_func = obj
7193 7194 7195

    @dygraph_only
    def initialize(self):
7196 7197 7198
        assert (
            self._init_func is not None
        ), "Required self._init_func is not None, but received None."
7199
        self._init_func()
7200
        # clear function handle to release resource
7201
        self._init_func = None
7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213

    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
7214 7215
                type(trainable),
            )
7216

7217 7218 7219 7220
    def _create_init_op(self, block):
        """
        Call init_op_creator function to create initializer operation in block.
        """
7221 7222 7223
        assert (
            self._init_op_creator is not None
        ), "Required self._init_op_creator is not None, but received None."
7224 7225
        self._init_op_creator(block)

7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244
    def __str__(self):
        """
        Convert a EagerParamBase object to a readable string.

        Returns(str): A readable string.

        Examples:
            .. code-block:: python

                import paddle
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
        """
        return "Parameter containing:\n{tensor}".format(
7245
            tensor=super().__str__()
7246
        )
7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281

    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)

                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        core.eager.tensor_copy(self, new_param, device, blocking)
7282 7283
        return new_param

7284 7285 7286
    __repr__ = __str__


Y
Yu Yang 已提交
7287
# program is a global instance.
Y
Yu Yang 已提交
7288 7289
_main_program_ = Program()
_startup_program_ = Program()
7290
_startup_program_._is_start_up_program_ = True
7291

7292

7293
def default_startup_program():
Y
Yu Yang 已提交
7294
    """
Y
yuyang18 已提交
7295 7296
    Get default/global startup program.

7297
    The :code:`paddle.nn` function will append the initialization operators into startup program.
7298
    The :code:`startup_program` will initialize the parameters by the OPs.
T
tangwei12 已提交
7299

7300 7301
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
7302

7303 7304
    Returns:
        Program: current default startup program.
7305

7306
    Returns type:
7307 7308 7309 7310

    Examples:
        .. code-block:: python

7311
            import paddle
7312

7313
            paddle.enable_static()
7314 7315 7316 7317
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
7318
    """
Y
Yu Yang 已提交
7319
    return _startup_program_
7320

7321

7322
def default_main_program():
Y
Yu Yang 已提交
7323
    """
7324
    This API can be used to get ``default main program`` which store the
7325
    descriptions of Ops and tensors.
T
tangwei12 已提交
7326

7327 7328
    For example ``z = paddle.add(x, y)`` will create a new ``add``
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` .
Y
yuyang18 已提交
7329

7330
    The ``default main program`` is the default value for ``Program`` parameter in
7331
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
7332
    :code:`default_main_program` when the program is not specified.
7333

7334
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
7335

Y
Yu Yang 已提交
7336
    Returns:
7337
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
7338 7339 7340 7341

    Examples:
        ..  code-block:: python

7342
            import paddle
7343

7344
            paddle.enable_static()
7345
            # Sample Network:
7346 7347 7348
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
7349

7350 7351 7352
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
7353
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
7354
    """
Y
Yu Yang 已提交
7355
    return _main_program_
Y
Yu Yang 已提交
7356 7357 7358 7359 7360


def switch_main_program(program):
    """
    Switch the main program to a new program.
7361

Y
Yu Yang 已提交
7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
7376
    Switch the startup program to a new program
Y
Yu Yang 已提交
7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
7389
@signature_safe_contextmanager
Y
Yu Yang 已提交
7390 7391
def program_guard(main_program, startup_program=None):
    """
7392 7393
    :api_attr: Static Graph

7394 7395 7396
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
7397

G
guofei 已提交
7398
    Args:
7399
        main_program(Program): New main program inside ``with`` statement.
7400 7401
        startup_program(Program, optional): New startup program inside ``with``
            statement. :code:`None` means not changing startup program,
G
guofei 已提交
7402 7403 7404
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
7405
    Examples:
7406
       .. code-block:: python
T
tangwei12 已提交
7407

7408
          import paddle
Y
yuyang18 已提交
7409

7410 7411 7412 7413 7414
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
7415
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
7416 7417 7418

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
7419

Y
Yu Yang 已提交
7420
    Examples:
7421
       .. code-block:: python
Y
yuyang18 已提交
7422

7423
          import paddle
7424

7425 7426 7427 7428 7429
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
7430

Y
Yu Yang 已提交
7431
    """
7432
    from .data_feeder import check_type
7433 7434 7435 7436

    check_type(
        main_program, 'main_program', Program, 'paddle.static.program_guard'
    )
Y
Yu Yang 已提交
7437 7438
    main_program = switch_main_program(main_program)
    if startup_program is not None:
7439 7440 7441 7442 7443 7444
        check_type(
            startup_program,
            'startup_program',
            Program,
            'paddle.static.program_guard',
        )
7445 7446
        # Tag the program __is_start_up as True
        startup_program._is_start_up_program_ = True
Y
Yu Yang 已提交
7447
        startup_program = switch_startup_program(startup_program)
7448 7449 7450 7451 7452 7453
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
7454 7455


W
Wu Yi 已提交
7456
def _get_var(name, program=None):
X
xuwei06 已提交
7457
    """
Y
yuyang18 已提交
7458
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
7459

X
xuwei06 已提交
7460 7461 7462
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
7463
        If None, default_global_program() will be used.
X
xuwei06 已提交
7464 7465 7466 7467 7468 7469 7470

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
7471
    assert isinstance(program, Program)
X
xuwei06 已提交
7472 7473

    return program.global_block().var(name)
7474 7475


S
rename  
sneaxiy 已提交
7476
@signature_safe_contextmanager
L
lujun 已提交
7477 7478
def _dygraph_guard(tracer):
    global _dygraph_tracer_
7479
    tmp_tracer = _dygraph_tracer_
L
lujun 已提交
7480
    _dygraph_tracer_ = tracer
7481
    core._switch_tracer(tracer)
M
minqiyang 已提交
7482

7483 7484 7485
    try:
        yield
    finally:
7486 7487
        core._switch_tracer(tmp_tracer)
        _dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
7488 7489


S
rename  
sneaxiy 已提交
7490
@signature_safe_contextmanager
L
lujun 已提交
7491
def _dygraph_place_guard(place):
7492 7493 7494
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
7495 7496
    _set_dygraph_tracer_expected_place(place)

7497 7498 7499
    try:
        yield
    finally:
7500
        _global_expected_place_ = tmp_place
J
Jiabin Yang 已提交
7501
        _set_dygraph_tracer_expected_place(_global_expected_place_)
7502 7503


7504 7505 7506 7507 7508 7509 7510 7511 7512 7513
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
7514

7515 7516
    Note:
        The API only supports static mode.
7517 7518 7519 7520

    A context manager that specifies the device on which the OP will be placed.

    Args:
7521
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
7522
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs.
7523 7524 7525 7526 7527 7528 7529
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
7530

7531
        .. code-block:: python
7532

7533
            # required: gpu
Z
Zhang Ting 已提交
7534
            import paddle
7535

Z
Zhang Ting 已提交
7536 7537 7538
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
7539
            if support_gpu:
Z
Zhang Ting 已提交
7540
                place = paddle.CUDAPlace(0)
7541 7542

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
7543 7544 7545
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
7546

Z
Zhang Ting 已提交
7547
            with paddle.static.device_guard("cpu"):
7548
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
7549 7550
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
7551
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
7552
                out = paddle.reshape(data1, shape=shape)
7553

Z
Zhang Ting 已提交
7554 7555
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
7556 7557 7558
            result = exe.run(fetch_list=[out])
    """

7559 7560 7561 7562 7563
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
7564
    if device not in ['cpu', 'gpu', 'npu', 'xpu', 'mlu', '', None]:
7565
        raise ValueError(
7566
            "The Attr(device) should be 'cpu' 'npu' 'xpu' 'mlu' or 'gpu', and it can also be empty string or None "
7567 7568
            "when there is no need to specify device. But received %s" % device
        )
7569 7570
    if index:
        device = ":".join([device, index])
7571
    pre_device = switch_device(device)
7572 7573 7574 7575
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
7576 7577


7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597
def _switch_cuda_graph_mode(cuda_graph_attr):
    global _current_cuda_graph_mode
    pre_mode = _current_cuda_graph_mode
    _current_cuda_graph_mode = cuda_graph_attr
    return pre_mode


@signature_safe_contextmanager
def _cuda_graph_guard(cuda_graph_attr=None):
    """

    Note:
        The API only supports static mode.

    A context manager that specifies the cuda_graph_mode which indicating the cuda graph capture under static mode.

    Args:
        cuda_graph_attr(str|None): The cuda graph attr with the format of:
                                   cuda_graph_capture_mode;memory_pool_id;cuda_graph_id
    """
7598 7599
    assert (
        not _non_static_mode()
7600
    ), "cuda_graph_guard only works under static mode"
7601 7602
    assert (
        core.is_compiled_with_cuda()
7603 7604 7605 7606 7607 7608 7609 7610
    ), "cuda_graph_guard context can be only used when Paddle is compiled with cuda"
    pre_mode = _switch_cuda_graph_mode(cuda_graph_attr)
    try:
        yield
    finally:
        _switch_cuda_graph_mode(pre_mode)


G
guofei 已提交
7611 7612 7613
def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.
7614
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7615 7616 7617 7618 7619 7620 7621

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

7622 7623
                import paddle
                paddle.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
G
guofei 已提交
7624 7625 7626 7627
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
7628 7629
        if _global_flags().is_public(key):
            _global_flags()[key] = value
G
guofei 已提交
7630 7631
        else:
            raise ValueError(
7632 7633
                "Flag %s cannot set its value through this function." % (key)
            )
G
guofei 已提交
7634 7635 7636 7637 7638


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.
7639
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7640 7641 7642 7643 7644 7645 7646 7647 7648 7649

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

7650
            import paddle
G
guofei 已提交
7651 7652

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
7653
            res = paddle.get_flags(flags)
G
guofei 已提交
7654 7655 7656 7657 7658 7659
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
7660
            if _global_flags().is_public(key):
7661
                value = _global_flags()[key]
G
guofei 已提交
7662 7663 7664 7665
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
7666 7667 7668
                    'Flag %s cannot get its value through this function.'
                    % (key)
                )
G
guofei 已提交
7669
    elif isinstance(flags, str):
7670
        if _global_flags().is_public(flags):
7671
            value = _global_flags()[flags]
G
guofei 已提交
7672 7673 7674 7675
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
7676 7677
                'Flag %s cannot get its value through this function.' % (flags)
            )
G
guofei 已提交
7678 7679 7680
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
7681 7682 7683 7684 7685 7686


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700
    if isinstance(
        place,
        (
            core.Place,
            core.XPUPlace,
            core.CPUPlace,
            core.CUDAPinnedPlace,
            core.CUDAPlace,
            core.NPUPlace,
            core.IPUPlace,
            core.MLUPlace,
            core.CustomPlace,
        ),
    ):
7701 7702 7703 7704
        return place

    if not isinstance(place, str):
        raise ValueError(
7705 7706
            "place only support string which is 'Place' and so on."
        )
7707 7708

    place = place.lower()
7709
    if place == "cpu":
7710
        return core.CPUPlace()
7711

7712
    if place == "device":
7713 7714
        return core.Place()

7715
    # GPU
7716 7717 7718 7719
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
7720 7721 7722
                "The device should not be {}, since PaddlePaddle is "
                "not compiled with CUDA".format(avaliable_gpu_place)
            )
7723 7724 7725 7726 7727 7728 7729 7730 7731
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
7732 7733

    # XPU
7734 7735 7736 7737
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
7738 7739 7740
                "The device should not be {}, since PaddlePaddle is "
                "not compiled with XPU".format(avaliable_xpu_place)
            )
7741 7742 7743 7744
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
7745 7746 7747 7748 7749 7750

    # NPU
    avaliable_npu_place = re.match(r'npu:\d+', place)
    if avaliable_npu_place:
        if not core.is_compiled_with_npu():
            raise ValueError(
7751 7752 7753
                "The device should not be {}, since PaddlePaddle is "
                "not compiled with NPU".format(avaliable_npu_place)
            )
7754 7755 7756 7757 7758
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.NPUPlace(device_id)

J
jianghaicheng 已提交
7759 7760 7761 7762 7763
    # IPU
    avaliable_ipu_place = re.match(r'ipu:\d+', place)
    if avaliable_ipu_place:
        if not core.is_compiled_with_ipu():
            raise ValueError(
7764 7765 7766
                "The device should not be {}, since PaddlePaddle is "
                "not compiled with IPU".format(avaliable_ipu_place)
            )
J
jianghaicheng 已提交
7767 7768 7769 7770 7771
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.IPUPlace(device_id)

7772 7773 7774 7775 7776
    # MLU
    avaliable_mlu_place = re.match(r'mlu:\d+', place)
    if avaliable_mlu_place:
        if not core.is_compiled_with_mlu():
            raise ValueError(
7777 7778 7779
                "The device should not be {}, since PaddlePaddle is "
                "not compiled with MLU".format(avaliable_mlu_place)
            )
7780 7781 7782 7783 7784
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.MLUPlace(device_id)

7785
    raise ValueError(
7786 7787 7788 7789
        "Paddle supports CPUPlace, CUDAPlace,CUDAPinnedPlace, XPUPlace, IPUPlace, MLUPlace and NPUPlace, but received {}.".format(
            place
        )
    )
7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802


def _get_paddle_place_list(places):

    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret