framework.py 260.5 KB
Newer Older
G
gouzil 已提交
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
import collections
X
Xin Pan 已提交
16
from collections import defaultdict
H
huzhiqiang 已提交
17
from collections.abc import Iterable
Q
qiaolongfei 已提交
18
import contextlib
19
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
20
import os
F
fengjiayi 已提交
21
import re
22
import traceback
23
import copy
24
from types import MethodType, FunctionType
25

Y
Yu Yang 已提交
26
import numpy as np
27
import subprocess
S
sneaxiy 已提交
28
import multiprocessing
29
import sys
30
import logging
31
from .proto import framework_pb2
32 33

from . import core
34
from . import unique_name
35 36
import paddle.version as fluid_version
import warnings
37
import functools
38
from .variable_index import _getitem_impl_, _setitem_impl_
39
import threading
Y
Yu Yang 已提交
40

41
__all__ = [
42 43 44 45
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
46
    'name_scope',
J
jianghaicheng 已提交
47
    'ipu_shard_guard',
48
    'set_ipu_shard',
S
sneaxiy 已提交
49 50
    'cuda_places',
    'cpu_places',
51
    'xpu_places',
52
    'mlu_places',
S
sneaxiy 已提交
53
    'cuda_pinned_places',
J
Jiabin Yang 已提交
54
    '_non_static_mode',
L
lujun 已提交
55
    'in_dygraph_mode',
56
    'is_compiled_with_cinn',
C
chengduo 已提交
57
    'is_compiled_with_cuda',
58
    'is_compiled_with_rocm',
59
    'is_compiled_with_xpu',
60
    'is_compiled_with_npu',
61
    'Variable',
62
    'require_version',
63
    'device_guard',
G
guofei 已提交
64 65
    'set_flags',
    'get_flags',
66
]
Y
Yu Yang 已提交
67

Q
qiaolongfei 已提交
68 69 70 71
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
72 73
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
# use thread local to create thread save global variables.
class GlobalThreadLocal(threading.local):
    def __init__(self):
        """
        init the thread local data.
        TODO(xiongkun): how to access another thread local data ?
        """
        global _dygraph_tracer_
        self._in_declarative_mode_ = False
        self._functional_dygraph_context_manager = None
        self._dygraph_tracer_ = _dygraph_tracer_
        self._in_eager_mode_ = True

    def __str__(self):
        strings = []
        strings.append(
            "_in_declarative_mode_:" + str(self._in_declarative_mode_)
        )
        strings.append(
            "_functional_dygraph_context_manager:"
            + str(self._functional_dygraph_context_manager)
        )
        strings.append("_dygraph_tracer_:" + str(self._dygraph_tracer_))
        strings.append("_in_eager_mode_:" + str(self._in_eager_mode_))
        return "\n".join(strings)

    def __setattr__(self, name, val):
        if name == '_dygraph_tracer_':
            global _dygraph_tracer_
            _dygraph_tracer_ = val
        self.__dict__[name] = val


L
lujun 已提交
107
_dygraph_tracer_ = None
108 109
global_var = GlobalThreadLocal()

110
_global_expected_place_ = None
111
_current_device = None
112
global_prog_seed = 0
113
_current_pipeline_stage = None
114
_already_patch_eager_tensor = False
J
Jiabin Yang 已提交
115
_already_patch_varbase = False
116
_current_cuda_graph_mode = None
117
_global_flags_ = core.globals()
118 119 120 121 122 123
_enable_standalone_executor_ = os.environ.get(
    'FLAGS_USE_STANDALONE_EXECUTOR', None
)
_dy2st_enable_standalone_executor_ = os.environ.get(
    'FLAGS_DY2ST_USE_STANDALONE_EXECUTOR', 1
)
124 125 126
_cuda_graph_enable_standalone_executor_ = os.environ.get(
    'FLAGS_CUDA_GRAPH_USE_STANDALONE_EXECUTOR', 0
)
J
Jiabin Yang 已提交
127 128

# Some explanation of our execution system 2022.03
129
# For now we have 3 kinds of execution system, since we refactored dygraph mode to
J
Jiabin Yang 已提交
130
# build a fast execution system for dynamic mode. But we can't just remove all legacy
131
# code once we present the new system for some historical reason. That's why we have
J
Jiabin Yang 已提交
132
# these flags.
133
#
J
Jiabin Yang 已提交
134
# 1. _non_static_mode():
135
# _non_static_mode means  we are now running in legacy dygraph mode or dygraph mode.
J
Jiabin Yang 已提交
136 137 138
# 2. dygraph_mode():
# This flags inidicates we are now running in dygraph mode which called eager mode before.
# 3. _in_legacy_dygraph():
姜永久 已提交
139
# This flags has been deprecated
140
#
J
Jiabin Yang 已提交
141
# They have a relation ship as below:
姜永久 已提交
142
# Since _in_legacy_graph is deprecated, so dygraph_mode is _non_static_mode
143
#
J
Jiabin Yang 已提交
144 145 146 147 148 149
# Why we have to make different of _in_legacy_dygraph and dygraph_mode?
# In some performance issue, we find that python if statement cause server performance problem
# and we need our new dygraph mode becomes as fast as it could be. That's why we make these flags
# to make sure in most case, we find new dygraph mode first with only one if statement.


150 151 152 153 154
def _update_monkey_methods(is_eager):
    """
    Update monkey methods of VarBase or eager.Tensor while
    switching eager mode and legacy mode.
    """
155
    from paddle import _C_ops, _legacy_C_ops
156 157 158
    from .dygraph.varbase_patch_methods import monkey_patch_varbase
    from .dygraph import monkey_patch_math_varbase

159 160 161
    global _already_patch_eager_tensor
    global _already_patch_varbase

162
    assert isinstance(is_eager, bool)
163
    # switch into eager mode
164
    if is_eager:
165 166 167 168 169 170
        if not _already_patch_eager_tensor:
            monkey_patch_varbase()
            monkey_patch_math_varbase()

            _already_patch_eager_tensor = True
    # switch back into legacy mode
171
    else:
172 173 174 175 176
        if not _already_patch_varbase:
            monkey_patch_varbase()
            monkey_patch_math_varbase()

            _already_patch_varbase = True
177

178 179 180 181 182 183
    # switch Paddle.Tensor bind type
    _switch_tensor_bind_type(is_eager)


def _switch_tensor_bind_type(is_eager):
    import paddle
184

185 186 187 188 189
    if is_eager:
        paddle.Tensor = core.eager.Tensor
    else:
        paddle.Tensor = core.VarBase
    paddle.Tensor.__qualname__ = 'Tensor'
190 191


J
Jiabin Yang 已提交
192
def _enable_legacy_dygraph():
193
    global_var._in_eager_mode_ = False
194
    _update_monkey_methods(is_eager=False)
J
Jiabin Yang 已提交
195 196 197


def _disable_legacy_dygraph():
198
    global_var._in_eager_mode_ = True
199
    _update_monkey_methods(is_eager=True)
J
Jiabin Yang 已提交
200 201 202


def _in_eager_without_dygraph_check():
203
    return global_var._in_eager_mode_
J
Jiabin Yang 已提交
204 205


206 207 208 209 210 211 212 213
# FIXME(dev): We haven't fully verified eager mode on XPU/NPU et.al but
# only GPU/CPU. Remove this after we improve this feature.
_is_first_import_ = True


def _fallback_legacy_dygraph():
    global _is_first_import_
    need_fallback = False
C
Chen Weihang 已提交
214
    # Only enable eager on CPU/GPU/XPU
215 216 217 218 219
    is_not_support = (
        core.is_compiled_with_npu()
        or core.is_compiled_with_ipu()
        or core.is_compiled_with_mlu()
    )
220

221
    if global_var._in_eager_mode_ and is_not_support:
222 223 224 225
        # switch into legacy dygraph mode
        warnings.warn(
            "We will fallback into legacy dygraph on NPU/XPU/MLU/IPU/ROCM devices. Because we only support new eager dygraph mode on CPU/GPU currently. "
        )
226
        global_var._in_eager_mode_ = False
227 228 229 230 231 232 233 234 235 236 237 238 239 240
        if not _is_first_import_:
            _enable_legacy_dygraph()
        need_fallback = True

    need_fallback = False
    _is_first_import_ = False

    return need_fallback


# switch into legacy mode if need while import paddle
_fallback_legacy_dygraph()


J
Jiabin Yang 已提交
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
def in_dygraph_mode():
    """

    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .

    Returns:
        bool: Whether paddle runs in dynamic graph mode.

    Examples:
        .. code-block:: python

            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
262
            print(paddle.in_dynamic_mode())  # False, Now we are in static graph mode
J
Jiabin Yang 已提交
263 264 265 266 267

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode

    """
268 269 270
    return (
        global_var._dygraph_tracer_ is not None
    ) and global_var._in_eager_mode_
J
Jiabin Yang 已提交
271 272 273


def _non_static_mode():
274
    return global_var._dygraph_tracer_ is not None
275 276 277


@signature_safe_contextmanager
J
Jiabin Yang 已提交
278
def _test_eager_guard(place=None):
C
Chen Weihang 已提交
279 280
    # FIXME(dev): We haven't fully verified eager mode on NPU et.al but
    # only GPU/CPU/XPU. Remove this after we improve this feature.
281 282 283
    already_fallback = _fallback_legacy_dygraph()
    if not already_fallback:
        _disable_legacy_dygraph()
284
    try:
J
Jiabin Yang 已提交
285
        yield
286
    finally:
287
        pass
288 289


290 291
global_ipu_index = -1
global_ipu_stage = -1
J
jianghaicheng 已提交
292 293 294 295
ipu_index_attr_name = 'ipu_index'
ipu_stage_attr_name = 'ipu_stage'


L
Leo Chen 已提交
296 297 298 299 300 301 302 303 304 305 306
@signature_safe_contextmanager
def _enable_standalone_executor(enable=True):
    global _enable_standalone_executor_
    original_ = _enable_standalone_executor_
    _enable_standalone_executor_ = enable
    try:
        yield
    finally:
        _enable_standalone_executor_ = original_


J
jianghaicheng 已提交
307
@signature_safe_contextmanager
308
def ipu_shard_guard(index=-1, stage=-1):
J
jianghaicheng 已提交
309 310 311 312
    """
    Used to shard the graph on IPUs. Set each Op run on which IPU in the sharding and which stage in the pipelining.

    Args:
W
Weilong Wu 已提交
313
        index(int, optional): Specify which ipu the Tensor is computed on, (such as '0, 1, 2, 3').
314
            The default value is -1, which means the Op only run on IPU 0.
W
Weilong Wu 已提交
315
        stage(int, optional): Specify the computation order of the sharded model(such as '0, 1, 2, 3').
316
            The sharded model will be computed from small to large. The default value is -1,
J
jianghaicheng 已提交
317
            which means no pipelining computation order and run Ops in terms of graph.
318

G
gouzil 已提交
319 320 321 322 323 324 325
    Note:
        Only if the enable_manual_shard=True, the 'index' is able to be set not -1. Please refer
        to :ref:`api_paddle_static_IpuStrategy`.
        Only if the enable_pipelining=True, the 'stage' is able to be set not -1. Please refer
        to :ref:`api_paddle_static_IpuStrategy`.
        A index is allowed to match none stage or a stage. A stage is only allowed to match a new or
        duplicated index.
J
jianghaicheng 已提交
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
            with paddle.static.ipu_shard_guard(index=0, stage=0):
                b = a + 1
            with paddle.static.ipu_shard_guard(index=1, stage=1):
                c = b + 1
            with paddle.static.ipu_shard_guard(index=0, stage=2):
                d = c + 1
    """
    if not core.is_compiled_with_ipu():
        raise ValueError(
            "Can not use this function since PaddlePaddle is not compiled with IPU"
        )

    global global_ipu_index
    global global_ipu_stage
    prev_ipu_index = global_ipu_index
    prev_ipu_stage = global_ipu_stage
    global_ipu_index = index
    global_ipu_stage = stage
    try:
        yield
    finally:
        global_ipu_index = prev_ipu_index
        global_ipu_stage = prev_ipu_stage


360 361 362 363
def set_ipu_shard(call_func, index=-1, stage=-1):
    """
    Shard the ipu with the given call function. Set every ops in call function to the given ipu sharding.

G
gouzil 已提交
364 365 366 367 368
    Note:
        Only when enable_manual_shard=True to set the index to a value other than -1. please refer to :ref:`api_paddle_static_IpuStrategy` .
        Only when enable_pipelining=True to set stage to a value other than -1. please refer to :ref:`api_paddle_static_IpuStrategy` .
        An index supports a corresponding None stage or a stage, and a stage only supports a new index or a duplicate index.

369 370 371 372 373
    Args:
        call_func(Layer|function): Specify the call function to be wrapped.
        index(int, optional): Specify which ipu the Tensor is computed on, (such as ‘0, 1, 2, 3’).
            The default value is -1, which means the Op only run on IPU 0.
        stage(int, optional): Specify the computation order of the sharded model(such as ‘0, 1, 2, 3’).
374
            The sharded model will be computed from small to large. The default value is -1,
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
            which means no pipelining computation order and run Ops in terms of graph.

    Returns:
        The wrapped call function.

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='float32')
            relu = paddle.nn.ReLU()
            relu = paddle.static.set_ipu_shard(relu, index=1, stage=1)
            relu(a)
    """

    def decorate(func):
        def wrapper(*args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return func(*args, **kwargs)

        return wrapper

    from .dygraph.layers import Layer
401

402 403 404 405 406
    if not isinstance(call_func, Layer):
        if callable(call_func):
            return decorate(call_func)
        else:
            raise TypeError(
407 408
                "Unsupported type. Only accept paddle.nn.Layer or function."
            )
409 410 411 412 413 414 415 416 417 418 419 420

    # patch paddle.nn.Layer
    class BlockFn(type(call_func)):
        def __call__(self, *args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return super().__call__(*args, **kwargs)

    BlockFn.__name__ = type(call_func).__name__
    call_func.__class__ = BlockFn
    return call_func


421 422
def require_version(min_version, max_version=None):
    """
423 424 425
    Check if the installed version of PaddlePaddle is in [min_version, max_version],
    if the installed version is lower than ``min_version`` or higher than ``max_version``,
    an exception will be thrown, NO returns if the installed version is satisfied.
426

427 428 429 430
    Args:
        min_version (str): the minimum version required (like '1.4.0').
        max_version (str, optional): the max version required (like '1.6.0'), default is None,
            meaning any version equal or higher than ``min_version`` is acceptable.
431

432 433
    Returns:
        None.
434

435 436 437 438 439 440
    Raises:
        TypeError: if the type of ``min_version`` is not str.
        TypeError: if the type of ``max_version`` is not str or type(None).
        ValueError: if the value of ``min_version`` is not in version format.
        ValueError: if the value of ``max_version`` is not in version format or None.
        Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.
441

442 443
    Examples:
        .. code-block:: python
444

445
            import paddle.fluid as fluid
446

447 448
            # any version >= 0.1.0 is acceptable.
            fluid.require_version('0.1.0')
449

450 451 452
            # if 0.1.0 <= version <= 10.0.0, it is acceptable.
            fluid.require_version(min_version='0.1.0', max_version='10.0.0')
    """
453 454 455
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
456 457
            % (type(min_version))
        )
458 459 460 461

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
462 463
            % (type(max_version))
        )
464 465 466 467 468

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
469 470
            "like '1.5.2.0', but received %s" % min_version
        )
471 472 473 474 475 476

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
477 478
                "like '1.5.2.0', but received %s" % max_version
            )
479 480

    version_installed = [
481 482 483 484
        fluid_version.major,
        fluid_version.minor,
        fluid_version.patch,
        fluid_version.rc,
485 486 487 488
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
489
        for i in range(len(ver_a)):
490 491 492 493 494 495 496 497 498 499 500
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
501 502 503
                "please make sure the version is good with your code."
                % (min_version, max_version, fluid_version.full_version)
            )
504 505 506 507
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
508 509 510
                "please make sure the version is good with your code."
                % (min_version, fluid_version.full_version)
            )
511 512 513
        return

    min_version_split = min_version.split('.')
514 515 516
    min_version_to_check = (
        min_version_split + zero_version[len(min_version_split) :]
    )
517 518 519

    if max_version is not None:
        max_version_split = max_version.split('.')
520 521 522
        max_version_to_check = (
            max_version_split + zero_version[len(max_version_split) :]
        )
523

524 525 526 527
        if (
            version_cmp(version_installed, max_version_to_check) > 0
            or version_cmp(version_installed, min_version_to_check) < 0
        ):
528 529
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
530 531
                % (min_version, max_version, fluid_version.full_version)
            )
532 533 534 535 536
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
537 538
                % (min_version, fluid_version.full_version, min_version)
            )
539 540


541 542
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
543 544 545
        assert not _non_static_mode(), (
            "We don't support %s in dynamic graph mode" % func.__name__
        )
546 547 548 549 550 551 552
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
553 554 555 556
        assert _non_static_mode(), (
            "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode."
            % func.__name__
        )
557 558 559 560 561
        return func(*args, **kwargs)

    return __impl__


562 563 564
def _non_static_only_(func):
    def __impl__(*args, **kwargs):
        from .dygraph.base import in_declarative_mode
565 566 567 568 569

        assert _non_static_mode() or in_declarative_mode(), (
            "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode."
            % func.__name__
        )
570 571 572 573 574
        return func(*args, **kwargs)

    return __impl__


575 576
def _static_only_(func):
    def __impl__(*args, **kwargs):
577 578 579 580
        assert not _non_static_mode(), (
            "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode."
            % func.__name__
        )
581 582 583 584 585
        return func(*args, **kwargs)

    return __impl__


586 587 588 589 590
def _set_pipeline_stage(stage):
    global _current_pipeline_stage
    _current_pipeline_stage = stage


591 592 593 594 595 596
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
597
# same base class.
598 599 600
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
601 602
            "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n"
            "  1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n"
R
Ryan 已提交
603
            "  2. If you are using `@paddle.jit.to_static`, you can call `paddle.jit.enable_to_static(False)`. "
604
            "If you have to translate dynamic graph to static graph, please use other API to replace '%s'."
605 606
            % (func.__name__, func.__name__)
        )
607 608 609 610

    return __impl__


T
tangwei12 已提交
611 612
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
613 614 615 616 617 618 619 620 621
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
622 623
                DeprecationWarning,
            )
624 625 626 627 628 629 630
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


631 632
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
633
static_only = wrap_decorator(_static_only_)
634
fake_interface_only = wrap_decorator(_fake_interface_only_)
635
non_static_only = wrap_decorator(_non_static_only_)
636 637


L
lujun 已提交
638
def _dygraph_tracer():
639
    return global_var._dygraph_tracer_
640

W
Wu Yi 已提交
641

642 643 644 645
def _global_flags():
    return _global_flags_


M
minqiyang 已提交
646
def _current_expected_place():
647 648 649
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
650 651 652 653 654
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
655
                _global_expected_place_ = core.CUDAPlace(_cuda_ids()[0])
656 657 658 659 660
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
661 662 663 664 665 666
        elif core.is_compiled_with_xpu():
            try:
                device_count = core.get_xpu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
667
                _global_expected_place_ = core.XPUPlace(_xpu_ids()[0])
668 669 670 671 672
            else:
                warnings.warn(
                    "You are using XPU version Paddle, but your XPU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
673 674 675 676 677 678
        elif core.is_compiled_with_mlu():
            try:
                device_count = core.get_mlu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
679
                _global_expected_place_ = core.MLUPlace(_mlu_ids()[0])
680 681 682 683 684
            else:
                warnings.warn(
                    "You are using MLU version Paddle, but your MLU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
        elif core.is_compiled_with_custom_device("npu"):
            # TODO(duanyanhui): Optimize DeviceManager and Return all expected places when device registered in DeviceManager is greater than 1.
            try:
                device_count = core.get_custom_device_count("npu")
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.CustomPlace(
                    "npu", _custom_device_ids("npu")[0]
                )
            else:
                warnings.warn(
                    "You are using NPU version Paddle, but your NPU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
700 701 702 703 704 705 706
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
707 708
    if global_var._dygraph_tracer_ is not None:
        global_var._dygraph_tracer_._expected_place = place
709 710 711 712 713


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
J
Jiabin Yang 已提交
714
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
715 716


L
Leo Chen 已提交
717 718
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
719 720
    """
    convert VarBase tp numpy
T
tangwei12 已提交
721

722 723 724
    Args:
        var_base(VarBase) : the VarBase to convert
    Returns (np.ndarray): the np.ndarray contain the value of VarBase
L
Leo Chen 已提交
725 726 727 728 729 730 731 732 733
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
734
def _cpu_num():
735
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
736 737 738 739 740 741 742
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
743 744 745
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()
                )
            )
C
chengduo 已提交
746
        os.environ['CPU_NUM'] = str(1)
747
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
748 749 750 751 752 753 754 755
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
756
        device_ids = range(core.get_cuda_device_count())
C
chengduo 已提交
757
    return device_ids
S
sneaxiy 已提交
758 759


760 761 762 763 764
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
765
        device_ids = range(core.get_xpu_device_count())
766 767 768
    return device_ids


769 770 771 772 773
def _npu_ids():
    npus_env = os.getenv("FLAGS_selected_npus")
    if npus_env:
        device_ids = [int(s) for s in npus_env.split(",")]
    else:
774
        device_ids = range(core.get_npu_device_count())
775 776 777
    return device_ids


778 779 780 781 782 783 784 785 786
def _custom_device_ids(device_type):
    custom_devices_env = os.getenv("FLAGS_selected_" + device_type + "s")
    if custom_devices_env:
        device_ids = [int(s) for s in custom_devices_env.split(",")]
    else:
        device_ids = range(core.get_custom_device_count(device_type))
    return device_ids


787 788 789 790 791
def _mlu_ids():
    mlus_env = os.getenv("FLAGS_selected_mlus")
    if mlus_env:
        device_ids = [int(s) for s in mlus_env.split(",")]
    else:
792
        device_ids = range(core.get_mlu_device_count())
793 794 795
    return device_ids


796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
def is_compiled_with_npu():
    """
    Whether this whl package can be used to run the model on NPU.

    Returns (bool): support npu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_npu = fluid.is_compiled_with_npu()
    """
    return core.is_compiled_with_npu()


826 827 828 829 830 831 832
def disable_signal_handler():
    """
    Reset signal handler registered by Paddle.

    Paddle installs signal handlers at C++ level to log debug information upon failing.
    However, conflicts can happen if another python module is making use of such signal.
    Such being the case, one may disblae paddle signal handler via this interface.
833

834 835 836 837 838 839
    Known frameworks that require disabling signal handler includes:
    1. TVM
    2. ADLIK

    Make sure you called paddle.disable_signal_handler() before using above mentioned frameworks.

Z
Zman 已提交
840 841
    Returns:
        None
842 843 844 845 846 847 848 849 850 851

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_signal_handler()
    """
    core.disable_signal_handler()


852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
def is_compiled_with_cinn():
    """
    Whether this whl package can be used to run the model on CINN.

    Returns (bool): `True` if CINN is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
            support_cinn = paddle.device.is_compiled_with_cinn()
    """
    return core.is_compiled_with_cinn()


C
chengduo 已提交
867 868 869 870
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

871
    Returns (bool): `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
872 873 874 875

    Examples:
        .. code-block:: python

876
            import paddle
877
            support_gpu = paddle.device.is_compiled_with_cuda()
C
chengduo 已提交
878 879 880 881
    """
    return core.is_compiled_with_cuda()


882 883 884 885 886 887 888 889 890 891
def is_compiled_with_rocm():
    """
    Whether this whl package can be used to run the model on AMD or Hygon GPU(ROCm).

    Returns (bool): `True` if ROCm is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
892
            support_gpu = paddle.device.is_compiled_with_rocm()
893 894 895 896
    """
    return core.is_compiled_with_rocm()


S
sneaxiy 已提交
897
def cuda_places(device_ids=None):
L
lujun 已提交
898
    """
899
    Note:
900 901 902
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
903
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
904 905

    If :code:`device_ids` is None, environment variable of
906
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
907
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
908
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
909
    If :code:`FLAGS_selected_gpus` is not set, all visible
910
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
911 912

    If :code:`device_ids` is not None, it should be the device
913
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
914
    the returned list would be
C
Chen Weihang 已提交
915
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
916

917
    Parameters:
918
        device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
S
add doc  
sneaxiy 已提交
919 920

    Returns:
C
Chen Weihang 已提交
921
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
922 923

    Examples:
924

L
lujun 已提交
925 926
        .. code-block:: python

C
Chen Weihang 已提交
927 928
            import paddle
            import paddle.static as static
T
tangwei12 已提交
929

930
            # required: gpu
931

C
Chen Weihang 已提交
932 933 934
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
935 936

    """
937
    assert core.is_compiled_with_cuda(), "Not compiled with CUDA"
S
sneaxiy 已提交
938
    if device_ids is None:
C
chengduo 已提交
939
        device_ids = _cuda_ids()
S
sneaxiy 已提交
940 941 942 943 944
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


945 946 947 948
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
S
sunzhongkai588 已提交
949 950 951 952 953 954 955 956 957
        This function creates a list of :code:`paddle.XPUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_xpus` would be checked first. For example, if
        :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
        be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
        If :code:`FLAGS_selected_xpus` is not set, all visible
        xpu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
958
        the returned list would be
S
sunzhongkai588 已提交
959
        [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
960

961 962 963 964 965 966
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
S
sunzhongkai588 已提交
967

968 969
            # required: xpu

970 971
            import paddle
            import paddle.static as static
972

973 974 975
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
976
    assert core.is_compiled_with_xpu(), "Not compiled with XPU"
977 978 979 980 981 982 983
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


984 985
def npu_places(device_ids=None):
    """
986 987

    Note:
988
        For multi-card tasks, please use `FLAGS_selected_npus` environment variable to set the visible NPU device.
989

990 991 992 993 994 995 996 997 998
    This function creates a list of :code:`paddle.NPUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_npus` would be checked first. For example, if
    :code:`FLAGS_selected_npus=0,1,2`, the returned list would
    be [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
    If :code:`FLAGS_selected_npus` is not set, all visible
    npu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of NPUs. For example, if :code:`device_ids=[0,1,2]`,
999
    the returned list would be
1000
    [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
1001

1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
    Parameters:
        device_ids (list or tuple of int, optional): list of NPU device ids.
    Returns:
        list of paddle.NPUPlace: Created NPU place list.
    Examples:
        .. code-block:: python

            # required: npu

            import paddle
            import paddle.static as static
1013

1014 1015 1016
            paddle.enable_static()
            npu_places = static.npu_places()
    """
1017
    assert core.is_compiled_with_npu(), "Not compiled with NPU"
1018 1019 1020 1021 1022 1023 1024
    if device_ids is None:
        device_ids = _npu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.NPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
1025
def cpu_places(device_count=None):
L
lujun 已提交
1026
    """
C
Chen Weihang 已提交
1027
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
1028

S
add doc  
sneaxiy 已提交
1029
    If :code:`device_count` is None, the device count would
1030
    be determined by environment variable :code:`CPU_NUM`.
C
chengduo 已提交
1031 1032
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
1033 1034
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
1035

1036 1037
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
1038 1039

    Returns:
C
Chen Weihang 已提交
1040
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
1041 1042

    Examples:
1043

L
lujun 已提交
1044 1045
        .. code-block:: python

C
Chen Weihang 已提交
1046 1047
            import paddle
            import paddle.static as static
T
tangwei12 已提交
1048

C
Chen Weihang 已提交
1049 1050 1051
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
1052 1053
    """

S
sneaxiy 已提交
1054 1055 1056 1057 1058 1059
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
1060
    """
1061
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
1062 1063

    If :code:`device_count` is None, the device count would
1064
    be determined by environment variable :code:`CPU_NUM`.
1065 1066 1067 1068
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
1069

1070 1071
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
1072 1073

    Returns:
1074
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
1075 1076 1077 1078

    Examples:
        .. code-block:: python

1079
            import paddle.fluid as fluid
L
lujun 已提交
1080 1081 1082 1083 1084
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
1085
    assert core.is_compiled_with_cuda(), "Not compiled with CUDA"
S
sneaxiy 已提交
1086
    if device_count is None:
1087 1088
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
1089 1090


1091 1092
def mlu_places(device_ids=None):
    """
G
gouzil 已提交
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
    This function creates a list of :code:`paddle.device.MLUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_mlus` would be checked first. For example, if
    :code:`FLAGS_selected_mlus=0,1,2`, the returned list would
    be [paddle.device.MLUPlace(0), paddle.device.MLUPlace(1), paddle.device.MLUPlace(2)].
    If :code:`FLAGS_selected_mlus` is not set, all visible
    mlu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of MLUs. For example, if :code:`device_ids=[0,1,2]`,
    the returned list would be
    [paddle.device.MLUPlace(0), paddle.device.MLUPlace(1), paddle.device.MLUPlace(2)].

    Note:
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
        For multi-card tasks, please use `FLAGS_selected_mlus` environment variable to set the visible MLU device.

    Parameters:
        device_ids (list or tuple of int, optional): list of MLU device ids.

    Returns:
        list of paddle.device.MLUPlace: Created MLU place list.

    Examples:
        .. code-block:: python

            # required: mlu

            import paddle
            import paddle.static as static

            paddle.enable_static()
            mlu_places = static.mlu_places()
    """
1125
    assert core.is_compiled_with_mlu(), "Not compiled with MLU"
1126 1127 1128 1129 1130 1131 1132
    if device_ids is None:
        device_ids = _mlu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.MLUPlace(dev_id) for dev_id in device_ids]


1133
class NameScope:
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
1144 1145 1146
            new_child = NameScope(
                prefix + "_%d" % len(self._children[prefix]), self
            )
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
1160
@signature_safe_contextmanager
1161 1162
def name_scope(prefix=None):
    """
1163

1164
    Generate hierarchical name prefix for the operators in Static Graph.
1165

1166
    Note:
T
Tao Luo 已提交
1167 1168
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
1169
        Don't use it in dygraph, since it will cause memory leak.
1170 1171

    Args:
T
Tao Luo 已提交
1172
        prefix(str, optional): prefix. Default is none.
1173 1174

    Examples:
1175

1176
        .. code-block:: python
T
Tink_Y 已提交
1177

1178 1179 1180
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
1181
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
1182
             b = a + 1
1183
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
1184
                c = b * 1
1185
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
1186
                d = c / 1
1187 1188 1189
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
1190 1191
                g = f - 1

1192
          # Op are created in the default main program.
1193
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
1209 1210
    """
    # TODO(panyx0718): Only [0-9a-z].
1211
    # in dygraph we don't need namescope since it will cause mem leak
J
Jiabin Yang 已提交
1212
    if _non_static_mode():
L
Leo Chen 已提交
1213 1214
        yield
    else:
T
tianshuo78520a 已提交
1215
        assert prefix, "namescope prefix can not be empty."
1216 1217
        global _name_scope
        _name_scope = _name_scope.child(prefix)
1218 1219 1220 1221
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
1234 1235
def generate_control_dev_var_name():
    import random
1236

W
Wu Yi 已提交
1237
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
1238 1239 1240 1241


def grad_var_name(var_name):
    """
1242 1243
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
1244 1245 1246
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
1247

1248
def convert_np_dtype_to_dtype_(np_dtype):
1249
    """
1250
    Convert the data type in numpy to the data type in Paddle.
1251

1252
    Args:
1253 1254
        np_dtype (np.dtype|str): The data type in numpy or valid data type
            string.
1255

1256
    Returns:
1257
        core.VarDesc.VarType: The data type in Paddle.
1258 1259

    """
1260 1261
    # Convert the data type string to numpy data type.
    if isinstance(np_dtype, str) and np_dtype == "bfloat16":
1262 1263 1264
        dtype = np.uint16
    else:
        dtype = np.dtype(np_dtype)
1265

1266
    if dtype == np.float32:
1267
        return core.VarDesc.VarType.FP32
1268
    elif dtype == np.float64:
1269
        return core.VarDesc.VarType.FP64
1270
    elif dtype == np.float16:
1271
        return core.VarDesc.VarType.FP16
1272
    elif dtype == np.int32:
1273
        return core.VarDesc.VarType.INT32
1274
    elif dtype == np.int16:
1275
        return core.VarDesc.VarType.INT16
1276
    elif dtype == np.int64:
1277
        return core.VarDesc.VarType.INT64
1278
    elif dtype == np.bool_:
1279
        return core.VarDesc.VarType.BOOL
1280
    elif dtype == np.uint16:
1281 1282 1283
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
1284 1285
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
1286 1287
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
1288 1289 1290 1291
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
1292
    else:
M
minqiyang 已提交
1293
        raise ValueError("Not supported numpy dtype %s" % dtype)
1294 1295 1296


def dtype_is_floating(dtype):
1297 1298 1299
    """
    Check the data type is floating or not.
    Args:
1300
        dtype(np.dtype|core.VarDesc.VarType): data type.
1301 1302 1303 1304 1305
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
1306
    if not isinstance(dtype, core.VarDesc.VarType):
1307 1308
        dtype = convert_np_dtype_to_dtype_(dtype)

1309
    return dtype in [
1310 1311 1312
        core.VarDesc.VarType.FP16,
        core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64,
1313
    ]
1314 1315


Y
Yang Yang(Tony) 已提交
1316
def _debug_string_(proto, throw_on_error=True):
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
1328
    error_fields = list()
Y
Yang Yang(Tony) 已提交
1329
    if not proto.IsInitialized(error_fields) and throw_on_error:
1330 1331
        raise ValueError(
            "{0} are not initialized.\nThe message is {1}:\n".format(
1332 1333 1334
                error_fields, proto
            )
        )
Y
Yu Yang 已提交
1335 1336 1337
    return proto.__str__()


1338 1339 1340 1341 1342 1343
def _varbase_creator(
    type=core.VarDesc.VarType.LOD_TENSOR,
    name=None,
    shape=None,
    dtype=None,
    persistable=None,
1344
    **kwargs,
1345
):
1346 1347 1348 1349
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

1350
    if global_var._in_eager_mode_:
1351
        eager_tensor = core.eager.Tensor(
1352
            dtype if dtype else core.VarDesc.VarType.FP32,
1353 1354
            list(shape) if shape else [],
            name,
1355
            type if type else core.VarDesc.VarType.LOD_TENSOR,
1356 1357
            True if persistable else False,
        )
1358 1359
        eager_tensor.retain_grads()
        return eager_tensor
J
Jiabin Yang 已提交
1360
    else:
1361 1362 1363 1364 1365 1366 1367
        return core.VarBase(
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape) if shape else [],
            name,
            type if type else core.VarDesc.VarType.LOD_TENSOR,
            True if persistable else False,
        )
1368 1369


1370 1371 1372 1373 1374 1375 1376
def _all_is_type(vals, expected_type):
    """
    Return True if type of each element is expected_type.

    NOTE: BuiltIn all() will always return True if vals is empty.
    """
    assert isinstance(vals, (list, tuple))
1377 1378
    if not vals:
        return False
1379 1380 1381
    return all(isinstance(v, expected_type) for v in vals)


1382 1383 1384 1385 1386
class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1387
            return issubclass(t, core.eager.Tensor)
1388 1389 1390 1391 1392 1393 1394 1395 1396
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1397
            return issubclass(t, EagerParamBase)
1398 1399 1400 1401
        else:
            return issubclass(t, Parameter)


1402
class Variable(metaclass=VariableMetaClass):
1403
    """
J
Jiabin Yang 已提交
1404

U
ustiniankw 已提交
1405 1406 1407 1408
    Notes:
        The constructor of Variable should not be invoked directly.

        In Static Graph Mode: Please use ** `Block.create_var` ** to create a Static variable which has no data until being feed.
1409

U
ustiniankw 已提交
1410
        In Dygraph Mode: Please use ** :ref:`api_fluid_dygraph_to_variable` ** to create a dygraph variable with real data.
J
Jiabin Yang 已提交
1411 1412

    In Fluid, every input and output of an OP is a variable. In most
1413
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
1414 1415
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
1416

1417
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
1418
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
1419

T
tianshuo78520a 已提交
1420
    Most of a Variable's member variables can be set to be None. It mean
1421
    it is not available or will be specified later.
1422

1423
    Examples:
1424 1425
        In Static Graph Mode:

1426 1427
        .. code-block:: python

1428
            import paddle.fluid as fluid
1429
            cur_program = fluid.Program()
1430 1431 1432 1433
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
S
sunzhongkai588 已提交
1434

1435
        In Dygraph  Mode:
1436 1437 1438 1439 1440 1441 1442 1443 1444

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

1445 1446
    """

1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
    def __init__(
        self,
        block,
        type=core.VarDesc.VarType.LOD_TENSOR,
        name=None,
        shape=None,
        dtype=None,
        lod_level=None,
        capacity=None,
        persistable=None,
        error_clip=None,
        stop_gradient=False,
        is_data=False,
        need_check_feed=False,
        belong_to_optimizer=False,
1462
        **kwargs,
1463
    ):
Y
Yu Yang 已提交
1464 1465
        self.block = block
        if name is None:
Y
Yu Yang 已提交
1466
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
1467

Y
Yu Yang 已提交
1468
        if dtype is not None:
1469
            if not isinstance(dtype, core.VarDesc.VarType):
1470
                dtype = convert_np_dtype_to_dtype_(dtype)
1471

S
Steffy-zxf 已提交
1472 1473 1474 1475
        if dtype == core.VarDesc.VarType.STRINGS:
            type = core.VarDesc.VarType.STRINGS
            lod_level = None

1476 1477 1478
        if type == core.VarDesc.VarType.SPARSE_COO:
            lod_level = None

H
hong 已提交
1479 1480
        self.belong_to_optimizer = belong_to_optimizer

1481 1482 1483
        self.error_clip = error_clip

        is_new_var = False
1484
        self.desc = self.block.desc.find_var(name.encode())
1485

1486
        if self.desc is None:
1487
            self.desc = self.block.desc.var(name.encode())
1488
            is_new_var = True
1489

1490 1491 1492
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
1493 1494 1495 1496 1497
            raise ValueError(
                "Variable '{0}' has been created before. The "
                "previous type is {1}, the new type is {2}. They"
                " are not matched".format(self.name, self.desc.type(), type)
            )
1498

1499
        if shape is not None:
1500
            if is_new_var:
1501 1502 1503 1504 1505 1506
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
1507 1508
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
1509 1510
                        "matched.".format(self.name, old_shape, shape)
                    )
1511 1512 1513 1514 1515 1516
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
1517 1518 1519 1520 1521 1522
                    raise ValueError(
                        "Variable '{0}' has been created before. "
                        "The previous data type is {1}, the new "
                        "data type is {2}. They are not "
                        "matched.".format(self.name, old_dtype, dtype)
                    )
1523 1524 1525 1526 1527 1528

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
1529 1530 1531 1532 1533 1534
                    raise ValueError(
                        "Variable '{0}' has been created before. "
                        "The previous lod_level is {1}, the new "
                        "lod_level is {2}. They are not "
                        "matched".format(self.name, self.lod_level, lod_level)
                    )
1535 1536 1537 1538 1539 1540
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
1541 1542
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
1543
                        "persistable is {2}. They are not matched".format(
1544 1545 1546
                            self.name, self.persistable, persistable
                        )
                    )
1547

1548 1549
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1550

1551 1552 1553 1554 1555 1556 1557
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1558

1559 1560
        self.block.vars[name] = self
        self.op = None
1561
        self.stop_gradient = stop_gradient
1562
        self.is_data = is_data
Y
Yu Yang 已提交
1563

1564 1565
    def detach(self):
        """
U
ustiniankw 已提交
1566

1567
        Returns a new Variable, detached from the current graph.
1568 1569
        It will share data with origin Variable and without tensor copy.
        In addition, the detached Variable doesn't provide gradient propagation.
1570

1571
        Returns:
U
ustiniankw 已提交
1572
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable), The detached Variable.
1573 1574 1575 1576

        Examples:
            .. code-block:: python

1577
                import paddle
1578

1579 1580 1581 1582
                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
1583

1584 1585
                # create a detached Variable
                y = x.detach()
U
ustiniankw 已提交
1586

1587
        """
1588

1589 1590 1591 1592
        assert (
            self.type == core.VarDesc.VarType.SELECTED_ROWS
            or self.type == core.VarDesc.VarType.LOD_TENSOR
        ), "only support a variable with SELECTED_ROWS or LOD_TENSOR to be detached"
1593 1594 1595 1596 1597 1598

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key("detach_" + self.name),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
1599 1600
            stop_gradient=True,
        )
1601

1602 1603 1604
        self.block.append_op(
            type='share_data', inputs={'X': [self]}, outputs={'Out': [output]}
        )
1605
        return output
1606

1607
    @fake_interface_only
1608
    def numpy(self):
1609
        """
J
Jiabin Yang 已提交
1610
        **Notes**:
T
tianshuo78520a 已提交
1611
            **This API is ONLY available in Dygraph mode**
1612

J
Jiabin Yang 已提交
1613
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1614 1615 1616 1617 1618

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1619
            ndarray: dtype is same as current Variable
1620 1621 1622 1623 1624 1625

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1626
                from paddle.fluid.dygraph import Linear
1627 1628 1629 1630
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1631
                    linear = Linear(32, 64)
1632
                    data = to_variable(data)
1633
                    x = linear(data)
1634 1635 1636
                    print(x.numpy())

        """
1637
        pass
1638

1639
    @fake_interface_only
1640
    def backward(self, retain_graph=False):
1641
        """
J
Jiabin Yang 已提交
1642
        **Notes**:
T
tianshuo78520a 已提交
1643
            **This API is ONLY available in Dygraph mode**
1644

1645
        Run backward of current Graph which starts from current Tensor.
1646

J
Jiabin Yang 已提交
1647
        Args:
1648 1649 1650 1651
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1652

J
Jiabin Yang 已提交
1653 1654
        Returns:
            NoneType: None
1655 1656 1657 1658 1659

        Examples:
            .. code-block:: python

                import numpy as np
1660 1661
                import paddle
                paddle.disable_static()
1662 1663

                x = np.ones([2, 2], np.float32)
1664 1665 1666 1667 1668 1669 1670
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1671 1672
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1673
                loss.backward()
1674 1675

        """
1676
        pass
1677

1678
    @fake_interface_only
1679
    def gradient(self):
1680
        """
J
Jiabin Yang 已提交
1681
        **Notes**:
T
tianshuo78520a 已提交
1682
            **This API is ONLY available in Dygraph mode**
1683 1684 1685

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1686
        Returns:
1687
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1688 1689 1690 1691

        Examples:
            .. code-block:: python

1692
                import paddle
1693 1694 1695
                import paddle.fluid as fluid
                import numpy as np

1696
                # example1: return ndarray
1697 1698 1699 1700 1701 1702 1703 1704
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
1705
                    loss2 = paddle.sum(ret2)
1706
                    loss2.backward()
1707 1708
                    print(loss2.gradient())

1709 1710
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
1711 1712 1713 1714 1715
                    embedding = paddle.nn.Embedding(
                        20,
                        32,
                        weight_attr='emb.w',
                        sparse=True)
1716 1717 1718 1719 1720 1721 1722
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1723
        """
1724
        pass
1725

1726
    @fake_interface_only
1727
    def clear_gradient(self):
1728
        """
J
Jiabin Yang 已提交
1729
        **Notes**:
T
tianshuo78520a 已提交
1730
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1731 1732

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1733

J
Jiabin Yang 已提交
1734
        Clear  (set to ``0`` ) the Gradient of Current Variable
1735 1736 1737 1738 1739 1740

        Returns:  None

        Examples:
            .. code-block:: python

1741
                import paddle
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
1753
                    loss2 = paddle.sum(ret2)
1754
                    loss2.backward()
1755 1756 1757 1758 1759
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1760
        pass
X
Xin Pan 已提交
1761

1762 1763 1764 1765
    @fake_interface_only
    def register_hook(self, hook):
        pass

1766
    def __str__(self):
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1783 1784
                import paddle
                import paddle.static as static
1785

1786 1787 1788
                paddle.enable_static()

                cur_program = static.Program()
1789 1790 1791 1792 1793 1794
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1795 1796
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1797 1798 1799 1800
        if (
            self.type == core.VarDesc.VarType.SELECTED_ROWS
            or self.type == core.VarDesc.VarType.LOD_TENSOR
        ):
1801
            dtype_str = str(self.dtype).split('.')[1]
1802 1803 1804 1805 1806 1807 1808
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".format(
                name=self.name,
                type=type_str,
                shape=self.shape,
                dtype=dtype_str,
                stop_gradient=self.stop_gradient,
            )
1809
        else:
1810
            var_str = "{name} : {type})".format(name=self.name, type=type_str)
1811

1812
        if self.is_parameter:
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

1823 1824 1825 1826
        from paddle.distributed.auto_parallel.dist_context import (
            get_default_distributed_context,
        )

1827
        dist_context = get_default_distributed_context()
1828 1829
        dist_tensor = dist_context.get_dist_tensor_for_program(self)
        if dist_tensor is not None:
1830 1831 1832
            var_str += ", {name} = {value}".format(
                name="dist_attr", value=dist_tensor
            )
1833

1834
        return var_str
Y
Yang Yang(Tony) 已提交
1835

F
update  
fengjiayi 已提交
1836
    def to_string(self, throw_on_error, with_details=False):
1837 1838 1839
        """
        Get debug string.

J
Jiabin Yang 已提交
1840 1841 1842 1843 1844
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1845

1846 1847
        Returns:
            str: The debug string.
1848 1849 1850 1851 1852

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1853
                import paddle
1854

1855
                paddle.enable_static()
1856 1857 1858 1859 1860
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1861
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1862
                print("=============with detail===============")
1863
                print(new_variable.to_string(True, True))
1864
        """
1865
        assert isinstance(throw_on_error, bool) and isinstance(
1866 1867
            with_details, bool
        )
1868
        protostr = self.desc.serialize_to_string()
1869
        proto = framework_pb2.VarDesc.FromString(bytes(protostr))
F
update  
fengjiayi 已提交
1870 1871
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
1872
            additional_attr = ("error_clip",)
F
update  
fengjiayi 已提交
1873
            for attr_name in additional_attr:
1874
                res_str += "%s: %s\n" % (attr_name, getattr(self, attr_name))
1875

F
update  
fengjiayi 已提交
1876
        return res_str
1877 1878 1879

    __repr__ = __str__

1880 1881 1882
    def element_size(self):
        """
        Returns the size in bytes of an element in the Tensor.
1883

1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
        Examples:
          .. code-block:: python

            import paddle
            paddle.enable_static()

            x = paddle.static.data(name='x1', shape=[3, 2], dtype='bool')
            x.element_size() # 1

            x = paddle.static.data(name='x2', shape=[3, 2], dtype='int16')
            x.element_size() # 2

            x = paddle.static.data(name='x3', shape=[3, 2], dtype='float16')
            x.element_size() # 2

            x = paddle.static.data(name='x4', shape=[3, 2], dtype='float32')
            x.element_size() # 4

            x = paddle.static.data(name='x5', shape=[3, 2], dtype='float64')
            x.element_size() # 8
        """
        return self.desc.element_size()

1907
    @property
1908
    def stop_gradient(self):
J
Jiabin Yang 已提交
1909 1910 1911
        """
        Indicating if we stop gradient from current Variable

1912
        **Notes: This Property has default value as** ``True`` **in** Dygraph **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``
J
Jiabin Yang 已提交
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1924 1925
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1926 1927 1928
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1929 1930
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1931 1932 1933 1934
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1935
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1936 1937
                assert (out1.gradient() == 0).all()
        """
1938
        return self.desc.stop_gradient()
1939

1940 1941
    @stop_gradient.setter
    def stop_gradient(self, s):
1942
        self.desc.set_stop_gradient(s)
1943

1944 1945
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1946 1947 1948 1949 1950 1951 1952 1953
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

1954
            **2. In** Dygraph **mode, this property should not be changed**
J
Jiabin Yang 已提交
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1967
        return self.desc.persistable()
1968

Y
Yu Yang 已提交
1969 1970
    @persistable.setter
    def persistable(self, p):
1971
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1972

1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
    @property
    def is_parameter(self):
        """
        Indicating if current Variable is a Parameter

        Examples:
          .. code-block:: python

            import paddle
            new_parameter = paddle.static.create_parameter(name="X",
                                                shape=[10, 23, 48],
                                                dtype='float32')
            if new_parameter.is_parameter:
                print("Current var is a Parameter")
            else:
                print("Current var is not a Parameter")

            # Current var is a Parameter
        """
        return self.desc.is_parameter()

    @is_parameter.setter
    def is_parameter(self, p):
        self.desc.set_is_parameter(p)

Y
Yu Yang 已提交
1998 1999
    @property
    def name(self):
J
Jiabin Yang 已提交
2000 2001 2002
        """
        Indicating name of current Variable

2003
        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** Dygraph **mode. This is how we achieve Parameter sharing**
J
Jiabin Yang 已提交
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
2016
        return self.desc.name()
Y
Yu Yang 已提交
2017

2018 2019 2020 2021 2022 2023
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
S
sunzhongkai588 已提交
2024 2025
        gradient Variable from a naming convention but doesn't guarantee
        the gradient exists.**
T
tangwei12 已提交
2026

2027 2028 2029 2030 2031 2032
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
2033
          print(x.grad_name) # output is ``x@GRAD``
2034 2035 2036 2037

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
2038 2039
    @name.setter
    def name(self, new_name):
2040
        self.desc.set_name(new_name)
T
typhoonzero 已提交
2041

Y
Yu Yang 已提交
2042 2043
    @property
    def shape(self):
J
Jiabin Yang 已提交
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
2061
        # convert to tuple, make it as same as numpy API.
2062
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
2063 2064

    @property
F
fengjiayi 已提交
2065
    def dtype(self):
J
Jiabin Yang 已提交
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
2082
        return self.desc.dtype()
Y
Yu Yang 已提交
2083 2084 2085

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
2086 2087 2088 2089 2090 2091 2092 2093
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

2094
            **2. Don't support this property in** Dygraph **mode, it's value should be** ``0(int)``
J
Jiabin Yang 已提交
2095 2096 2097 2098

        Examples:
          .. code-block:: python

2099
            import paddle
J
Jiabin Yang 已提交
2100
            import paddle.fluid as fluid
2101 2102

            paddle.enable_static()
J
Jiabin Yang 已提交
2103 2104 2105 2106 2107 2108 2109
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
2110 2111
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")
2112 2113
        if self.type == core.VarDesc.VarType.STRINGS:
            return None
2114
        return self.desc.lod_level()
Y
Yu Yang 已提交
2115

Y
Yu Yang 已提交
2116 2117
    @property
    def type(self):
J
Jiabin Yang 已提交
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
2134
        return self.desc.type()
Y
Yu Yang 已提交
2135

2136 2137 2138
    @property
    def T(self):
        """
U
ustiniankw 已提交
2139

2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
        Permute current Variable with its dimensions reversed.

        If `n` is the dimensions of `x` , `x.T` is equivalent to `x.transpose([n-1, n-2, ..., 0])`.

        Examples:

            .. code-block:: python

                import paddle
                paddle.enable_static()

                x = paddle.ones(shape=[2, 3, 5])
                x_T = x.T

                exe = paddle.static.Executor()
                x_T_np = exe.run(paddle.static.default_main_program(), fetch_list=[x_T])[0]
                print(x_T_np.shape)
                # (5, 3, 2)
U
ustiniankw 已提交
2158

2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
        """
        if len(self.shape) == 1:
            return self
        perm = []
        for i in range(len(self.shape)):
            perm.insert(0, i)

        out = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=self.type,
            persistable=False,
2171 2172
            stop_gradient=False,
        )
2173 2174 2175 2176 2177
        input_shape = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
2178 2179 2180 2181 2182 2183 2184 2185 2186
            stop_gradient=False,
        )

        self.block.append_op(
            type='transpose2',
            inputs={'X': [self]},
            outputs={'Out': [out], 'XShape': [input_shape]},
            attrs={'axis': perm},
        )
2187 2188
        return out

2189 2190 2191
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
2192
        Variable. It remains in the current graph, that is, the cloned Variable
2193 2194 2195 2196
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
U
ustiniankw 已提交
2197
            Variable, The cloned Variable.
2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
2217 2218
            stop_gradient=self.stop_gradient,
        )
2219

2220 2221 2222
        self.block.append_op(
            type='assign', inputs={'X': [self]}, outputs={'Out': [output]}
        )
2223 2224
        return output

W
Wu Yi 已提交
2225
    def _set_error_clip(self, error_clip):
2226
        """
U
ustiniankw 已提交
2227

2228 2229 2230 2231 2232 2233 2234
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
U
ustiniankw 已提交
2235

2236
        """
2237 2238
        self.error_clip = error_clip

2239 2240
    def _set_info(self, key, value):
        """
U
ustiniankw 已提交
2241

2242 2243 2244 2245 2246 2247
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

2248
        Returns:
2249
            None
U
ustiniankw 已提交
2250

2251 2252 2253 2254 2255 2256 2257
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
U
ustiniankw 已提交
2258

2259 2260 2261 2262 2263
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

2264
        Returns:
2265
            object
U
ustiniankw 已提交
2266

2267 2268 2269 2270 2271
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

2272 2273
    def _slice_indices(self, slice, length):
        """
U
ustiniankw 已提交
2274

2275
        Reference implementation for the slice.indices method.
U
ustiniankw 已提交
2276

2277 2278 2279 2280 2281 2282 2283 2284
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
2285
            raise ValueError("slice step can not be zero")
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
2296 2297 2298
            start = (
                max(start + length, lower) if start < 0 else min(start, upper)
            )
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
2344 2345 2346
                if (index > 0 and index >= self.shape[index]) or (
                    index < 0 and (index + self.shape[index]) < 0
                ):
2347
                    raise IndexError("invalid index")
2348 2349 2350 2351 2352
                start = (
                    max(start + self.shape[index], 0)
                    if start < 0
                    else min(start, self.shape[index])
                )
2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
2366
    def _cloneVar(self, copy=False):
2367 2368
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
2369
                name=unique_name.generate_with_ignorable_key(self.name),
2370 2371
                dtype=self.dtype,
            )
2372 2373 2374 2375
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
2376
        new_var = self._cloneVar()
2377 2378 2379 2380 2381 2382
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes, 'starts': starts, 'ends': ends},
        )
2383 2384 2385
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
2386
        new_var = self._cloneVar()
2387 2388 2389 2390 2391 2392 2393 2394
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={
                'axis': axis,
            },
        )
2395 2396 2397 2398 2399
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
2400
                return self._cloneVar(True)
2401 2402 2403 2404 2405 2406 2407
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
2408 2409 2410
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1])
                        )
2411 2412 2413
                        start += step
                else:
                    while start > stop:
2414 2415 2416
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1])
                        )
2417 2418 2419 2420
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
2421
                return self._cloneVar(True)
2422
            index = int(item)
2423 2424 2425
            if (index > 0 and index >= self.shape[axis]) or (
                index < 0 and (index + self.shape[axis]) < 0
            ):
2426 2427 2428 2429 2430 2431
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
2432
        return _getitem_impl_(self, item)
2433

2434
    def __setitem__(self, item, value):
2435
        return _setitem_impl_(self, item, value)
2436

2437 2438
    def get_value(self, scope=None):
        """
2439
        Get the value of variable in given scope.
2440 2441

        Args:
2442
            scope(Scope, optional) : If `scope` is None, it will be set to global scope
2443 2444 2445 2446
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
U
ustiniankw 已提交
2447
            Tensor, the value in given scope.
2448 2449 2450 2451 2452

        Examples:
            .. code-block:: python

                import paddle
2453
                import paddle.static as static
2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
2478 2479
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file.
2480 2481
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
2482

2483 2484
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2485 2486 2487 2488
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".format(
                    type(scope)
                )
            )
2489 2490 2491 2492 2493

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
2494 2495 2496
            raise ValueError(
                "Can not find Variable '{}' in the Scope.".format(self.name)
            )
2497 2498 2499 2500 2501
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
U
ustiniankw 已提交
2502

2503
        Set the value to the tensor in given scope.
2504 2505 2506

        Args:
            value(Tensor/ndarray) : The value to be set.
2507
            scope(Scope, optional) : If `scope` is None, it will be set to global scope
2508 2509 2510 2511 2512
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
2513

2514 2515 2516 2517
        Examples:
            .. code-block:: python

                import paddle
2518
                import paddle.static as static
2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
U
ustiniankw 已提交
2542

2543 2544 2545
        '''

        # The 'framework' is a low-level module, and 'executor'
2546
        # can not be imported at the begainning of this file.
2547 2548 2549 2550 2551
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
2552 2553 2554 2555
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}.".format(
                    type(value)
                )
            )
2556 2557 2558

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2559 2560 2561 2562
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".format(
                    type(scope)
                )
            )
2563 2564 2565 2566 2567 2568

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
2569 2570 2571
            raise ValueError(
                "Can not find Variable '{}' in the Scope.".format(self.name)
            )
2572 2573 2574 2575 2576 2577 2578 2579 2580 2581

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
2582 2583 2584 2585
                    "{} expected a shape {}, but the received shape is {}.".format(
                        self.name, list(t.shape()), list(value_shape)
                    )
                )
2586 2587 2588 2589 2590 2591 2592 2593 2594 2595

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
2596 2597 2598 2599
        elif p.is_npu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.NPUPlace(p.npu_device_id())
2600 2601 2602 2603
        elif p.is_mlu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.MLUPlace(p.mlu_device_id())
2604 2605 2606 2607 2608 2609 2610
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

2611 2612
    def size(self):
        """
U
ustiniankw 已提交
2613

2614 2615 2616
        Returns the number of elements for current Variable, which is a int64 Variable with shape [1]

        Returns:
U
ustiniankw 已提交
2617
            Variable, the number of elements for current Variable
2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])

                # get the number of elements of the Variable
                y = x.size()
U
ustiniankw 已提交
2631

2632 2633 2634 2635
        """

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_size"),
2636 2637
            dtype=core.VarDesc.VarType.INT64,
        )
2638

2639 2640 2641
        self.block.append_op(
            type='size', inputs={'Input': [self]}, outputs={'Out': [output]}
        )
2642 2643
        return output

2644 2645
    def _set_attr(self, name, val):
        """
U
ustiniankw 已提交
2646

2647 2648 2649 2650 2651
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
U
ustiniankw 已提交
2652

2653 2654 2655 2656 2657
        """
        self._update_desc_attr(name, val)

    def _has_attr(self, name):
        """
U
ustiniankw 已提交
2658

2659 2660 2661 2662 2663 2664
        Whether this Variable has the attribute with the name `name` or not.

        Args:
            name(str): the attribute name.

        Returns:
U
ustiniankw 已提交
2665 2666
            bool, True if has this attribute.

2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
        """
        return self.desc.has_attr(name)

    def _remove_attr(self, name):
        self.desc.remove_attr(name)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self.desc._set_attr(name, val)

    @property
    def attr_names(self):
        """Get the names of all attributes defined."""
        return self.desc.attr_names()

2688
    def attr(self, name):
2689 2690 2691 2692 2693 2694 2695
        """
        Get the attribute by name.

        Args:
            name(str): the attribute name.

        Returns:
U
ustiniankw 已提交
2696
            int|str|list, The attribute value. The return value
2697 2698 2699 2700 2701
            can be any valid attribute type.
        """
        return self.desc.attr(name)

    @property
2702
    def dist_attr(self):
2703
        """
2704
        Get distributed attribute of this Variable.
2705
        """
2706
        return self.desc.dist_attr
2707

2708 2709
    @dist_attr.setter
    def dist_attr(self, dist_attr):
2710
        """
2711
        Set distributed attribute of this Variable.
2712
        """
2713
        self.desc.dist_attr = dist_attr
2714

Y
Yu Yang 已提交
2715

F
fengjiayi 已提交
2716 2717 2718
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
2719

2720 2721
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
2722 2723 2724 2725
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
2726
        op_proto = framework_pb2.OpProto.FromString(bytes(pbstr))
F
fengjiayi 已提交
2727 2728 2729 2730
        ret_values.append(op_proto)
    return ret_values


2731
class OpProtoHolder:
2732 2733 2734 2735
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
2736 2737 2738 2739 2740 2741 2742 2743
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
2744 2745
            self.__class__, '_instance'
        ), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
2746 2747 2748 2749 2750 2751
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
2752 2753 2754 2755 2756 2757 2758 2759
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
2760 2761
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
2762 2763
        return self.op_proto_map[type]

2764 2765
    def update_op_proto(self):
        op_protos = get_all_op_protos()
2766
        custom_op_names = []
2767 2768 2769
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
2770 2771 2772
                custom_op_names.append(proto.type)

        return custom_op_names
2773

2774 2775 2776 2777
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
2778
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
2779
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
2780
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
2781
            core.op_proto_and_checker_maker.kOpDeviceAttrName(),
2782 2783
        }

F
fengjiayi 已提交
2784

2785
class Operator:
2786
    """
2787 2788 2789 2790 2791 2792 2793
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
2794
        type(str): The type of operator. Default None.
2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
2815
        Block.append_op or Block._prepend_op instead.
2816 2817 2818 2819

    Examples:
        .. code-block:: python

2820
            import paddle.fluid as fluid
2821
            cur_program = fluid.Program()
2822 2823 2824 2825 2826
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
2827
    """
2828

2829
    OP_WITHOUT_KERNEL_SET = {
2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860
        'feed',
        'fetch',
        'recurrent',
        'go',
        'rnn_memory_helper_grad',
        'conditional_block',
        'while',
        'send',
        'recv',
        'listen_and_serv',
        'fl_listen_and_serv',
        'ncclInit',
        'select',
        'checkpoint_notify',
        'gen_bkcl_id',
        'c_gen_bkcl_id',
        'gen_nccl_id',
        'c_gen_nccl_id',
        'c_comm_init',
        'c_sync_calc_stream',
        'c_sync_comm_stream',
        'queue_generator',
        'dequeue',
        'enqueue',
        'heter_listen_and_serv',
        'c_wait_comm',
        'c_wait_compute',
        'c_gen_hccl_id',
        'c_comm_init_hccl',
        'copy_cross_scope',
        'c_gen_cncl_id',
2861
    }
2862

2863 2864 2865
    def __init__(
        self, block, desc, type=None, inputs=None, outputs=None, attrs=None
    ):
2866 2867 2868 2869 2870 2871 2872 2873 2874 2875
        # read attr type index from op proto to avoid unexpected type
        # conversions, e.g. narrowing conversion like double to float
        try:
            proto = OpProtoHolder.instance().get_op_proto(type)
            self._attr_types = {}
            for attr in proto.attrs:
                self._attr_types[attr.name] = attr.type
        except ValueError:
            pass

J
Jiabin Yang 已提交
2876
        if _non_static_mode():
2877 2878
            if type is None:
                raise ValueError(
2879 2880
                    "`type` to initialized an Operator can not be None."
                )
J
Jiabin Yang 已提交
2881
            self._type = type
M
minqiyang 已提交
2882
            self.attrs = attrs if attrs else {}
2883 2884 2885 2886 2887 2888 2889 2890 2891 2892
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

2893
            # attr for static graph mode cuda graph
2894 2895
            self._cuda_graph_attr = _current_cuda_graph_mode

2896 2897 2898
            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
2899
                op_attrs[
2900 2901
                    op_maker.kOpRoleAttrName()
                ] = self.block.program._op_role
2902 2903

            role_var_name = op_maker.kOpRoleVarAttrName()
2904 2905 2906 2907
            if (
                len(self.block.program._op_role_var) != 0
                and role_var_name not in op_attrs
            ):
2908
                op_attrs[role_var_name] = self.block.program._op_role_var
2909 2910 2911 2912 2913

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
2914 2915 2916 2917 2918
                # NOTE(Aurelius84): prog.clone() will lead that var.op is always None,
                # we add this to fix the problem.
                for arg in self.desc.output_arg_names():
                    if block.has_var(arg) and block.var(arg).op is None:
                        block.var(arg).op = self
2919 2920 2921
                return
            if type is None:
                raise ValueError(
2922 2923
                    "`type` to initialized an Operator can not be None."
                )
2924 2925
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2926 2927 2928
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
2929
                        '  File "{}", line {}, in {}'.format(
2930 2931 2932 2933 2934 2935
                            frame[0], frame[1], frame[2]
                        )
                    )
                    op_attrs[callstack_var_name].append(
                        '    {}'.format(frame[3])
                    )
2936 2937 2938 2939 2940 2941 2942

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2943 2944 2945 2946 2947 2948 2949 2950
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
2951 2952 2953
                    warnings.warn(
                        "The Op(%s) is not support to set device." % type
                    )
2954
                if 'force_cpu' in op_attrs:
2955
                    if (
2956 2957
                        type == 'less_than'
                        and op_attrs['force_cpu'] is not None
2958
                    ) or op_attrs['force_cpu'] != False:
2959 2960 2961
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
2962 2963
                            "used at the same time." % type
                        )
2964
            if _current_pipeline_stage is not None:
2965 2966 2967 2968 2969
                pipeline_attr_name = (
                    'pipeline_stage' + core.kAutoParallelSuffix()
                )
                self._update_desc_attr(
                    pipeline_attr_name, _current_pipeline_stage
2970
                )
2971

2972 2973 2974 2975 2976 2977 2978 2979 2980
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
2981 2982 2983
                    assert (
                        found or in_proto.dispensable
                    ), "Input {} not found".format(in_proto.name)
2984 2985
                    if found:
                        in_args = inputs[in_proto.name]
2986
                        if not isinstance(in_args, (list, tuple)):
2987 2988 2989 2990
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
2991 2992
                                % (in_proto.name, len(in_args))
                            )
2993
                        in_arg_names = []
2994
                        for index, arg in enumerate(in_args):
2995
                            if isinstance(arg, str):
2996
                                in_arg_names.append(arg)
2997
                            elif isinstance(arg, bytes):
2998
                                in_arg_names.append(arg.decode())
2999
                            elif isinstance(arg, (Variable, core.VarBase)):
3000
                                in_arg_names.append(arg.name)
3001
                            else:
3002
                                raise TypeError(
3003 3004
                                    f"The type of '%{in_proto.name}' in operator {type} should be "
                                    f"one of [str, bytes, Variable]. but received : {arg}"
3005
                                )
3006 3007 3008 3009 3010 3011 3012 3013 3014
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
3015
                        raise ValueError(
3016 3017 3018 3019 3020 3021
                            (
                                "Incorrect setting for output(s) of "
                                "operator \"%s\", should set: [%s]."
                            )
                            % (type, m.name)
                        )
3022 3023 3024 3025 3026 3027 3028 3029 3030
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
3031 3032
                            % (out_proto.name, len(out_args))
                        )
3033 3034
                    out_arg_names = []
                    for arg in out_args:
3035
                        if isinstance(arg, str):
3036 3037
                            out_arg_names.append(arg)
                        else:
3038
                            out_arg_names.append(arg.name)
3039
                        # TODO(minqiyang): could we remove variable's op in static graph mode?
J
Jiabin Yang 已提交
3040
                        if not _non_static_mode():
3041
                            if isinstance(arg, str):
3042 3043 3044
                                block.var(arg).op = self
                            else:
                                arg.op = self
3045 3046
                    self.desc.set_output(out_proto.name, out_arg_names)

3047
            extra_attrs_map = core.get_op_extra_attrs(type)
3048 3049 3050 3051 3052
            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
3053 3054 3055
                    if (attr_name not in op_attrs) or (
                        op_attrs[attr_name] is None
                    ):
3056 3057 3058
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)
3059
                for attr_name in extra_attrs_map.keys():
3060 3061 3062 3063 3064 3065
                    if (attr_name not in op_attrs) or (
                        op_attrs[attr_name] is None
                    ):
                        self._update_desc_attr(
                            attr_name, extra_attrs_map[attr_name]
                        )
3066 3067
                    else:
                        self._update_desc_attr(attr_name, op_attrs[attr_name])
3068

J
jianghaicheng 已提交
3069 3070
            # proto.attrs doesn't include ipu_index
            if core.is_compiled_with_ipu():
3071
                if global_ipu_index >= 0:
3072 3073 3074
                    self._update_desc_attr(
                        ipu_index_attr_name, global_ipu_index
                    )
3075
                if global_ipu_stage >= 0:
3076 3077 3078
                    self._update_desc_attr(
                        ipu_stage_attr_name, global_ipu_stage
                    )
J
jianghaicheng 已提交
3079

3080 3081 3082 3083 3084
            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
3085
    def _has_kernel(self, op_type):
3086 3087
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
3088
    def to_string(self, throw_on_error):
3089
        """
3090 3091
        Get debug string.

3092
        Args:
3093 3094
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
3095

3096 3097
        Returns:
            str: The debug string.
3098 3099

        """
3100
        protostr = self.desc.serialize_to_string()
3101
        proto = framework_pb2.OpDesc.FromString(bytes(protostr))
Y
Yang Yang(Tony) 已提交
3102 3103
        return _debug_string_(proto, throw_on_error)

3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3136
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3137 3138
            type(skip_op_callstack)
        )
3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

3165 3166 3167
            attr_type = self.desc.attr_type(name, True)
            if attr_type == core.AttrType.VAR:
                attr_var_name = self.desc.attr(name, True).name()
3168 3169 3170
                a = "{name} = Var['{value}']".format(
                    name=name, type=attr_type, value=attr_var_name
                )
3171 3172 3173 3174 3175 3176 3177 3178 3179 3180
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.VARS:
                attr_var_names = [
                    "'%s'" % var.name() for var in self.desc.attr(name, True)
                ]
                a = "{name} = Vars[{value}]".format(
3181 3182
                    name=name, type=attr_type, value=','.join(attr_var_names)
                )
3183 3184 3185 3186 3187
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

3188 3189
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
3190 3191
                    name=name, type=attr_type, value=self._block_attr_id(name)
                )
3192 3193 3194 3195 3196 3197 3198
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
3199 3200
                    name=name, type=attr_type, value=self._blocks_attr_ids(name)
                )
3201 3202 3203 3204 3205
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

3206
            # it is bytes of serialized protobuf
3207 3208 3209 3210 3211
            if (
                is_compiled_with_cinn()
                and self.type == 'cinn_launch'
                and name == 'compilation_key'
            ):
3212 3213
                key = self.desc.attr(name)
                v = core.get_serialize_comile_key(key)
3214 3215 3216 3217 3218 3219 3220 3221 3222
                prog = Program()
                prog = prog.parse_from_string(v)
                s = prog._to_readable_code()
                lines = s.split('\n')
                value = '\n'.join(['      ' + line for line in lines])
                value = '\n' + value
            else:
                value = self.desc.attr(name)

3223 3224 3225
            a = "{name} = {value}".format(
                name=name, type=attr_type, value=value
            )
3226

3227 3228 3229 3230
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

3231 3232 3233 3234
        from paddle.distributed.auto_parallel.dist_context import (
            get_default_distributed_context,
        )

3235
        dist_context = get_default_distributed_context()
3236 3237
        dist_op = dist_context.get_dist_op_for_program(self)
        if dist_op is not None:
3238 3239 3240
            attrs_str += ", {name} = {value}".format(
                name="dist_attr", value=dist_op
            )
3241

3242
        if outputs_str != "{}":
3243 3244 3245 3246 3247 3248
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".format(
                outputs=outputs_str,
                op_type=self.type,
                inputs=inputs_str,
                attrs=attrs_str,
            )
3249
        else:
3250 3251 3252
            op_str = "{op_type}(inputs={inputs}, {attrs})".format(
                op_type=self.type, inputs=inputs_str, attrs=attrs_str
            )
3253 3254
        return op_str

Y
Yang Yang(Tony) 已提交
3255
    def __str__(self):
3256
        return self._to_readable_code()
3257 3258 3259

    __repr__ = __str__

F
fengjiayi 已提交
3260 3261
    @property
    def type(self):
3262
        return self.desc.type()
F
fengjiayi 已提交
3263 3264

    def input(self, name):
3265
        r"""
U
ustiniankw 已提交
3266

3267
        Get the input arguments according to the input parameter name.
3268

3269 3270
        Args:
            name(str): The input parameter name.
3271

3272
        Returns:
U
ustiniankw 已提交
3273
            list, return the list of argument names that associated with \
3274
                the specific parameter name.
U
ustiniankw 已提交
3275

3276
        """
F
fengjiayi 已提交
3277 3278
        return self.desc.input(name)

W
Wu Yi 已提交
3279
    def _rename_input(self, old_name, new_name):
3280 3281 3282 3283 3284 3285 3286 3287 3288 3289
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
3290
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
3291

W
Wu Yi 已提交
3292
    def _rename_output(self, old_name, new_name):
3293 3294 3295 3296 3297 3298 3299 3300 3301 3302
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
3303
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
3304

F
fengjiayi 已提交
3305 3306 3307 3308
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
3309 3310 3311 3312 3313 3314 3315 3316
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
3317
    def output(self, name):
3318
        r"""
3319
        Get output arguments by the output parameter name.
3320

3321 3322
        Args:
            name(str): The output parameter name.
3323

3324 3325 3326
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
3327
        """
F
fengjiayi 已提交
3328 3329 3330 3331 3332 3333
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

3334 3335 3336 3337 3338 3339
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
3340 3341
            "Can't find op itself in it's block. It could be a bug of Paddle."
        )
3342

F
fengjiayi 已提交
3343
    def has_attr(self, name):
3344
        """
3345 3346
        Whether this Operator has the attribute with name or not.

3347
        Args:
3348
            name(str): the attribute name.
3349

3350 3351
        Returns:
            bool: True if has this attribute.
3352 3353

        """
F
fengjiayi 已提交
3354 3355 3356
        return self.desc.has_attr(name)

    def attr_type(self, name):
3357
        """
3358
        Get the type of attribute by attribute's name.
3359

3360 3361
        Args:
            name(str): the attribute name.
3362

3363 3364
        Returns:
            core.AttrType: the attribute type.
3365
        """
3366
        return self.desc.attr_type(name, True)
F
fengjiayi 已提交
3367

W
Wu Yi 已提交
3368
    def _set_attr(self, name, val):
3369 3370 3371 3372 3373 3374 3375 3376 3377 3378
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
3379 3380
        self._update_desc_attr(name, val)

3381 3382 3383
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
3395 3396 3397 3398 3399
        if isinstance(val, Variable):
            self.desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            self.desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
Q
Qiyang Min 已提交
3400
            self.desc.set_block_attr(name, val.desc)
3401
        elif isinstance(val, list) and val and _all_is_type(val, Block):
3402
            self.desc.set_blocks_attr(name, [v.desc for v in val])
3403 3404 3405
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
Q
Qiyang Min 已提交
3406 3407
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443
            self._update_desc_plain_attr(name, val)

    def _update_desc_plain_attr(self, name, val):
        desc = self.desc
        if not hasattr(self, "_attr_types") or (name not in self._attr_types):
            desc._set_attr(name, val)
            return

        type_index = self._attr_types[name]
        if type_index == core.AttrType.BOOL:
            desc._set_bool_attr(name, val)
        elif type_index == core.AttrType.INT:
            desc._set_int32_attr(name, val)
        elif type_index == core.AttrType.LONG:
            desc._set_int64_attr(name, val)
        elif type_index == core.AttrType.FLOAT:
            desc._set_float32_attr(name, val)
        # elif type_index == core.AttrType.FLOAT64:
        #     desc._set_float64_attr(name, val)
        elif type_index == core.AttrType.STRING:
            desc._set_str_attr(name, val)
        elif type_index == core.AttrType.BOOLS:
            desc._set_bools_attr(name, val)
        elif type_index == core.AttrType.INTS:
            desc._set_int32s_attr(name, val)
        elif type_index == core.AttrType.LONGS:
            desc._set_int64s_attr(name, val)
        elif type_index == core.AttrType.FLOATS:
            desc._set_float32s_attr(name, val)
        elif type_index == core.AttrType.FLOAT64S:
            desc._set_float64s_attr(name, val)
        elif type_index == core.AttrType.STRINGS:
            desc._set_strs_attr(name, val)
        else:
            # defaults to old methods
            desc._set_attr(name, val)
Y
yuyang18 已提交
3444

F
fengjiayi 已提交
3445 3446
    @property
    def attr_names(self):
3447
        return self.desc.attr_names(True)
F
fengjiayi 已提交
3448 3449

    def attr(self, name):
3450
        """
3451 3452
        Get the attribute by name.

3453
        Args:
3454
            name(str): the attribute name.
3455

3456 3457
        Returns:
            bool|int|str|float|list: The attribute value. The return value
3458 3459
            can be any valid attribute type.
        """
F
fengjiayi 已提交
3460
        return self.desc.attr(name)
Y
Yu Yang 已提交
3461

W
Wu Yi 已提交
3462
    def _block_attr_id(self, name):
3463
        """
G
gongweibao 已提交
3464
        Get the block attribute's id by name.
3465

3466 3467
        Args:
            name(str): the attribute name.
3468

3469 3470
        Returns:
            int: the block index.
3471
        """
W
Wu Yi 已提交
3472
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
3473

W
Wu Yi 已提交
3474
    def _block_attr(self, name):
G
gongweibao 已提交
3475 3476 3477 3478 3479 3480 3481 3482 3483 3484
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
3485
        id = self._block_attr_id(name)
3486
        assert id >= 0 and id < len(self.block.program.blocks)
G
gongweibao 已提交
3487 3488
        return self.block.program.blocks[id]

W
Wu Yi 已提交
3489
    def _blocks_attr(self, name):
G
gongweibao 已提交
3490 3491 3492 3493 3494 3495 3496 3497 3498 3499
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
3500
        for i in self._blocks_attr_ids(name):
3501
            assert i >= 0 and i < len(self.block.program.blocks)
G
gongweibao 已提交
3502 3503 3504 3505
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
3506
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
3507 3508 3509 3510 3511 3512 3513 3514 3515 3516
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
3517
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
3518

3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529
    def _var_attr(self, name):
        """
        Get the Variable attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            Variable: the Variable attribute.
        """
        attr_type = self.desc.attr_type(name, True)
3530 3531 3532 3533 3534
        assert (
            attr_type == core.AttrType.VAR
        ), "Required type attr({}) is Variable, but received {}".format(
            name, attr_type
        )
3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548
        attr_var_name = self.desc.attr(name, True).name()
        return self.block._var_recursive(attr_var_name)

    def _vars_attr(self, name):
        """
        Get the Variables attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            Variables: the Variables attribute.
        """
        attr_type = self.desc.attr_type(name, True)
3549 3550 3551 3552 3553
        assert (
            attr_type == core.AttrType.VARS
        ), "Required type attr({}) is list[Variable], but received {}".format(
            name, attr_type
        )
3554 3555 3556 3557 3558 3559
        attr_vars = [
            self.block._var_recursive(var.name())
            for var in self.desc.attr(name, True)
        ]
        return attr_vars

J
JiayiFeng 已提交
3560
    def all_attrs(self):
F
fengjiayi 已提交
3561
        """
3562 3563 3564
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
3565
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
3566 3567 3568 3569
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
3570
            attr_type = self.desc.attr_type(n, True)
G
gongweibao 已提交
3571
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
3572
                attr_map[n] = self._block_attr(n)
3573
            elif attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
3574
                attr_map[n] = self._blocks_attr(n)
3575 3576 3577 3578 3579 3580
            elif attr_type == core.AttrType.VAR:
                attr_map[n] = self._var_attr(n)
            elif attr_type == core.AttrType.VARS:
                attr_map[n] = self._vars_attr(n)
            else:
                attr_map[n] = self.attr(n)
G
gongweibao 已提交
3581

F
fengjiayi 已提交
3582 3583
        return attr_map

3584 3585 3586
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
3587 3588 3589 3590

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

3591 3592 3593
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
3594 3595 3596 3597 3598 3599 3600 3601

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
3602 3603
            return False

3604 3605 3606 3607 3608 3609
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

3610
    @property
3611
    def dist_attr(self):
3612
        """
3613
        Get distributed attribute of this Variable.
3614
        """
3615
        return self.desc.dist_attr
3616

3617 3618
    @dist_attr.setter
    def dist_attr(self, dist_attr):
3619
        """
3620
        Set distributed attribute of this Variable.
3621
        """
3622
        self.desc.dist_attr = dist_attr
3623

Y
Yu Yang 已提交
3624

3625
class Block:
3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
3640
        use `Program._create_block()` to create a block.
3641 3642 3643 3644

    Examples:
        .. code-block:: python

3645 3646 3647
            import paddle.fluid as fluid

            cur_program = fluid.Program()
3648 3649 3650 3651 3652 3653 3654 3655 3656
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
3657
    def __init__(self, program, idx):
Y
Yu Yang 已提交
3658
        self.desc = program.desc.block(idx)
3659
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
3660
        self.ops = list()  # operator list
Y
Yu Yang 已提交
3661
        self.program = program
3662
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
3663

3664
    def __str__(self):
3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3699
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3700 3701
            type(skip_op_callstack)
        )
3702 3703 3704 3705 3706 3707 3708
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
3709 3710
                op._to_readable_code(skip_op_callstack)
            )
3711 3712
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
3713

F
fengjiayi 已提交
3714 3715
    def to_string(self, throw_on_error, with_details=False):
        """
3716 3717
        Get debug string.

F
fengjiayi 已提交
3718 3719
        Args:
            throw_on_error(bool): raise exception when self is not initialized
3720
                when throw_on_error is True.
F
update  
fengjiayi 已提交
3721
            with_details(bool): more details about variables and parameters
3722 3723
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
3724

3725 3726
        Returns:
            str: The debug string.
F
fengjiayi 已提交
3727
        """
3728
        assert isinstance(throw_on_error, bool) and isinstance(
3729 3730
            with_details, bool
        )
F
fengjiayi 已提交
3731
        if with_details:
F
fengjiayi 已提交
3732
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
3733
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
3734 3735 3736
                self.idx,
                self.parent_idx,
            )
3737
            for var in list(self.vars.values()):
F
fengjiayi 已提交
3738
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
3739 3740
                    r"\n    \1", var.to_string(throw_on_error, with_details)
                )
F
fengjiayi 已提交
3741
            for op in self.ops:
F
fengjiayi 已提交
3742
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
3743 3744
                    r"\n    \1", op.to_string(throw_on_error)
                )
F
fengjiayi 已提交
3745 3746 3747
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
3748
            proto = framework_pb2.BlockDesc.FromString(bytes(protostr))
F
fengjiayi 已提交
3749 3750
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3751 3752 3753

    __repr__ = __str__

Y
Yu Yang 已提交
3754 3755
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
3756
        return self.desc.parent
Y
Yu Yang 已提交
3757

Y
Yu Yang 已提交
3758 3759 3760 3761
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
3762
    def _set_forward_block_idx(self, idx):
3763 3764 3765 3766 3767 3768 3769 3770 3771
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
3772
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
3773

3774 3775 3776 3777 3778 3779 3780 3781
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
3782 3783
    @property
    def idx(self):
Y
Yu Yang 已提交
3784
        return self.desc.id
Y
Yu Yang 已提交
3785

Q
Qiao Longfei 已提交
3786
    def var(self, name):
3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
3800
        if not isinstance(name, str):
M
minqiyang 已提交
3801
            raise TypeError(
3802 3803 3804
                "var require string as parameter, but get %s instead."
                % (type(name))
            )
Y
Yu Yang 已提交
3805 3806
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
3807
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
3808
        return v
Q
Qiao Longfei 已提交
3809

X
Xin Pan 已提交
3810
    def _find_var_recursive(self, name):
3811 3812 3813 3814 3815 3816 3817
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
3818
            Variable: the Variable with the giving name. Or None if not found.
3819
        """
Y
Yu Yang 已提交
3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
3844
        return None
Y
Yu Yang 已提交
3845

X
Xin Pan 已提交
3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
3865

Q
Qiao Longfei 已提交
3866
    def all_parameters(self):
3867
        return list(self.iter_parameters())
3868

3869
    def iter_parameters(self):
3870 3871 3872 3873 3874
        return (
            item[1]
            for item in self.vars.items()
            if isinstance(item[1], Parameter)
        )
Q
Qiao Longfei 已提交
3875

Y
Yu Yang 已提交
3876
    def create_var(self, *args, **kwargs):
J
Jiabin Yang 已提交
3877
        if _non_static_mode():
L
Leo Chen 已提交
3878 3879
            var = _varbase_creator(*args, **kwargs)
        else:
3880 3881 3882
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
3883
        return var
Y
Yu Yang 已提交
3884

Q
Qiao Longfei 已提交
3885 3886 3887
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
3888
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
3889 3890
        """
        Rename variable in vars and ops' inputs and outputs
3891 3892

        Args:
3893 3894
            name(str|bytes): the name that need to be renamed.
            new_name(str|bytes): the name that need to rename to.
3895 3896 3897 3898 3899 3900 3901 3902

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
3903
        """
3904 3905
        # Ensure the type of name and new_name is str
        name = name.decode() if isinstance(name, bytes) else name
3906 3907 3908
        new_name = (
            new_name.decode() if isinstance(new_name, bytes) else new_name
        )
M
minqiyang 已提交
3909

T
typhoonzero 已提交
3910
        if not self.has_var(name):
3911
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
3912 3913
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
3914
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
3915 3916 3917 3918 3919 3920
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
3921
            var_type = "Variable"
T
wip  
typhoonzero 已提交
3922 3923 3924 3925
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
3926
        orig_var_type = v.type
3927
        self.desc._rename_var(name.encode(), new_name.encode())
W
Wu Yi 已提交
3928
        # NOTE: v is destroyed by C++ after calling _rename_var.
3929
        d = self.desc.find_var(new_name.encode())
T
typhoonzero 已提交
3930
        if var_type == "Parameter":
L
Leo Chen 已提交
3931
            if in_dygraph_mode():
3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942
                var = EagerParamBase(
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip,
                )
3943
            else:
姜永久 已提交
3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955
                var = Parameter(
                    self,
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip,
                )
T
typhoonzero 已提交
3956
        elif var_type == "Variable":
3957 3958 3959 3960 3961 3962 3963
            var = Variable(
                self,
                type=orig_var_type,
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient,
            )
T
wip  
typhoonzero 已提交
3964

W
Wu Yi 已提交
3965
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
3966 3967 3968
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
3969
        self._sync_with_cpp()
3970
        return var
T
typhoonzero 已提交
3971

3972 3973 3974
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
3975
        self.desc._remove_var(name.encode())
3976 3977
        del self.vars[name]

Y
Yu Yang 已提交
3978 3979
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
3980
        param = None
L
Leo Chen 已提交
3981
        if in_dygraph_mode():
J
Jiabin Yang 已提交
3982
            param = EagerParamBase(*args, **kwargs)
L
Leo Chen 已提交
3983
        else:
姜永久 已提交
3984
            param = Parameter(global_block, *args, **kwargs)
3985

3986
        if 'initializer' in kwargs:
3987 3988 3989 3990 3991

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
3992
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
3993
                        # are treated as initialization ops that cause error.
3994
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
3995 3996
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
3997 3998 3999
                            "c_broadcast",
                            "c_sync_comm_stream",
                            "coalesce_tensor",
4000
                        ]:
4001
                            continue
4002 4003 4004 4005 4006 4007 4008
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
4009 4010 4011 4012 4013 4014
                raise RuntimeError(
                    "param "
                    + param.name
                    + " is inited by multiple init ops "
                    + str(init_ops)
                )
4015
            elif init_ops_len == 1:
4016
                # TODO already inited, do nothing, should log a warning
4017 4018 4019
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
4020
        return param
Y
Yu Yang 已提交
4021

Y
Yu Yang 已提交
4022
    def append_op(self, *args, **kwargs):
4023 4024 4025 4026 4027 4028
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
J
Jiabin Yang 已提交
4029
        if _non_static_mode():
4030
            attrs = kwargs.get("attrs", {})
Z
zyfncg 已提交
4031
            inplace_map = kwargs.get("inplace_map", None)
J
Jiabin Yang 已提交
4032
            type = kwargs.get("type", None)
4033 4034 4035
            warnings.warn(
                "Op `%s` is executed through `append_op` under the dynamic mode, "
                "the corresponding API implementation needs to be upgraded to "
4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046
                "using `_C_ops` method." % type,
                DeprecationWarning,
            )
            op = Operator(
                block=self,
                desc=None,
                type=type,
                inputs=None,
                outputs=None,
                attrs=attrs,
            )
4047

M
minqiyang 已提交
4048 4049
            # record ops in tracer rather than blocks
            #
4050
            # TODO(minqiyang): add op stop_gradient support in static graph mode too.
L
lujun 已提交
4051
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
4052

4053 4054 4055 4056 4057 4058 4059 4060
            _dygraph_tracer().trace_op(
                type,
                kwargs.get("inputs", {}),
                kwargs.get("outputs", {}),
                attrs if attrs else {},
                kwargs.get("stop_gradient", False),
                inplace_map,
            )
M
minqiyang 已提交
4061
        else:
4062 4063
            from paddle.fluid.dygraph.base import param_guard

4064
            op_desc = self.desc.append_op()
4065 4066 4067 4068 4069 4070
            # NOTE(Aurelius84): In case of @to_static, all VarBase(s) should
            # be converted into Variable(s) with same name and block location.
            # This is ONE and ONLY logic of type transformation of dy2static.
            inputs = kwargs.get("inputs", None)
            outputs = kwargs.get("outputs", None)
            with param_guard(inputs), param_guard(outputs):
4071 4072 4073 4074 4075 4076 4077 4078
                op = Operator(
                    block=self,
                    desc=op_desc,
                    type=kwargs.get("type", None),
                    inputs=inputs,
                    outputs=outputs,
                    attrs=kwargs.get("attrs", None),
                )
4079

M
minqiyang 已提交
4080
            self.ops.append(op)
M
minqiyang 已提交
4081

4082 4083
        return op

W
Wu Yi 已提交
4084
    def _insert_op(self, index, *args, **kwargs):
4085 4086 4087 4088 4089 4090 4091 4092 4093
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
4094
        self._sync_with_cpp()
F
fangshuixun007 已提交
4095
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
4096

4097 4098
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
4099
        Insert an Operator according to the giving arguments,
4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
4114 4115 4116 4117 4118 4119 4120 4121 4122
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
4123 4124
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
4125
        self.desc._remove_op(index, index + 1)
4126 4127
        del self.ops[index]

W
Wu Yi 已提交
4128
    def _slice_ops(self, start, end):
4129 4130 4131 4132 4133 4134 4135 4136 4137 4138
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
4139
        return self.ops[start:end]
Y
Yancey1989 已提交
4140

W
Wu Yi 已提交
4141
    def _prepend_op(self, *args, **kwargs):
J
Jiabin Yang 已提交
4142
        if _non_static_mode():
J
Jiabin Yang 已提交
4143 4144
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155
            op = Operator(
                self, None, type=type, inputs=None, outputs=None, attrs=attrs
            )

            _dygraph_tracer().trace_op(
                type,
                kwargs.get("inputs", {}),
                kwargs.get("outputs", {}),
                attrs if attrs else {},
                kwargs.get("stop_gradient", False),
            )
M
minqiyang 已提交
4156
        else:
4157
            op_desc = self.desc._prepend_op()
4158 4159 4160 4161 4162 4163 4164 4165
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None),
            )
M
minqiyang 已提交
4166
            self.ops.insert(0, op)
4167

Y
Yu Yang 已提交
4168 4169
        return op

W
Wu Yi 已提交
4170
    def _sync_with_cpp(self):
4171
        """
4172 4173
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
4174
        """
Q
Qiao Longfei 已提交
4175 4176 4177
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
4178 4179 4180 4181
                is_stop_gradient = False
                if var.has_stop_gradient():
                    is_stop_gradient = var.stop_gradient()
                if var.has_is_parameter() and var.is_parameter():
4182 4183 4184 4185 4186 4187 4188 4189
                    self.create_parameter(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        shape=var.shape(),
                        dtype=var.dtype(),
                        stop_gradient=is_stop_gradient,
                    )
4190
                else:
4191 4192 4193 4194 4195 4196
                    self.create_var(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        stop_gradient=is_stop_gradient,
                    )
Q
Qiao Longfei 已提交
4197

4198
        # sync variables removed from c++ end
4199
        for var in list(self.vars.keys()):
4200
            if not self.desc.find_var(var.encode()):
4201 4202
                self.vars.pop(var)

Q
Qiao Longfei 已提交
4203
        # sync operators from cpp
4204 4205 4206 4207
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
4224 4225 4226 4227 4228

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
4229
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
4230 4231 4232 4233 4234 4235 4236

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

4237 4238 4239 4240 4241
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
4242 4243 4244 4245 4246 4247
                self.ops
            ) and ops_in_cpp_index < len(ops_in_cpp):
                if (
                    self.ops[ops_in_python_index].desc
                    != ops_in_cpp[ops_in_cpp_index]
                ):
4248 4249 4250 4251 4252
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
4253 4254 4255 4256
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
4257
    def _copy_param_info_from(self, other):
4258
        """
4259 4260
        Copy the information of parameters from the other block.

4261
        Args:
4262 4263 4264 4265 4266
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
4267 4268 4269 4270 4271

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
4272
            raise TypeError(
4273 4274
                "_copy_param_info_from should be invoked with Block"
            )
4275
        for p in other.iter_parameters():
4276 4277 4278
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
4279 4280
                # if the Parameter is pruned, v may be None
                continue
4281
            assert isinstance(v, Variable)
4282
            new_p = None
L
Leo Chen 已提交
4283
            if in_dygraph_mode():
4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295
                new_p = EagerParamBase(
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name,
                )
4296
            else:
姜永久 已提交
4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311
                new_p = Parameter(
                    block=self,
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level
                    if v.type == core.VarDesc.VarType.LOD_TENSOR
                    else None,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name,
                )
4312 4313
            self.vars[new_p.name] = new_p

4314
    def _clone_variable(self, var, force_persistable=True):
4315 4316
        """
        Clone a variable into current block.
4317

4318 4319
        Args:
            var: the variable to be cloned.
4320 4321 4322
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
4323 4324

        Returns:
4325
            Variable: the new  variable cloned from 'var' in current block.
4326 4327
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
4328 4329 4330
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
4331 4332 4333
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type
            )
T
tangwei12 已提交
4334
        elif var.type == core.VarDesc.VarType.RAW:
4335 4336 4337
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type
            )
T
typhoonzero 已提交
4338 4339 4340 4341 4342 4343
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
4344
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4345
                is_data=var.is_data,
4346 4347
                need_check_feed=var.desc.need_check_feed(),
            )
T
update  
typhoonzero 已提交
4348 4349 4350 4351 4352 4353 4354
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
4355
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4356
                is_data=var.is_data,
4357 4358
                need_check_feed=var.desc.need_check_feed(),
            )
T
update  
typhoonzero 已提交
4359
        return ret_var
4360

Y
Yu Yang 已提交
4361

4362 4363 4364 4365
# NOTE(zjl): you should be careful that after you call this method,
# some Python Variable and all Python Operators should not be used
# again. Because all Python Variables and all Python Operators are
# re-constructed inside this method. The underlying VarDesc(OpDesc)
4366
# of some old Python Variables(all old Python Operators) may have
4367
# been destructed.
4368 4369 4370
def _apply_pass(
    main_program, startup_program, pass_name, pass_attrs={}, pass_attr_types={}
):
4371 4372 4373 4374
    assert isinstance(pass_attrs, dict), "pass_attrs must be dict"
    assert isinstance(pass_attr_types, dict), "pass_attr_types must be dict"
    tmp_main_program = core.ProgramDesc(main_program.desc)
    tmp_startup_program = core.ProgramDesc(startup_program.desc)
4375 4376 4377 4378 4379 4380 4381
    attrs = core.apply_pass(
        tmp_main_program,
        tmp_startup_program,
        pass_name,
        pass_attrs,
        pass_attr_types,
    )
4382 4383 4384 4385 4386
    main_program._rebuild_from_desc(tmp_main_program)
    startup_program._rebuild_from_desc(tmp_startup_program)
    return attrs


4387
class IrNode:
4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4399 4400 4401
        assert isinstance(
            node, core.Node
        ), 'node must be the instance of core.Node.'
4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

4483
    def remove_input_by_id(self, node_id):
4484 4485 4486 4487 4488 4489
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4490
        self.node.remove_input(node_id)
4491

4492
    def remove_input(self, node):
4493 4494 4495 4496
        """
        Remove a node from inputs.

        Args:
4497
            node(IrNode): the node being removed.
4498
        """
4499
        self.node.remove_input(node.node)
4500

4501
    def append_input(self, node):
4502 4503 4504 4505
        """
        Append a node in inputs.

        Args:
4506
            node(IrNode): the node being appended.
4507
        """
4508
        self.node.append_input(node.node)
4509 4510 4511 4512 4513 4514 4515 4516

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

4517
    def remove_output_by_id(self, node_id):
4518 4519 4520 4521 4522 4523
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4524
        self.node.remove_output(node_id)
4525

4526
    def remove_output(self, node):
4527 4528 4529 4530
        """
        Remove a node from outputs.

        Args:
4531
            node(IrNode): the node being removed.
4532
        """
4533
        self.node.remove_output(node.node)
4534

4535
    def append_output(self, node):
4536 4537 4538 4539
        """
        Append a node in outputs.

        Args:
4540
            node(IrNode): the node being appended.
4541
        """
4542
        self.node.append_output(node.node)
4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4577 4578 4579
        assert (
            isinstance(node, core.Node) and node.is_var()
        ), 'node must be the instance of core.Node and it must be a variable node.'
4580
        super().__init__(node)
4581 4582 4583 4584 4585 4586 4587 4588 4589
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
4590 4591 4592
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4593 4594 4595 4596 4597 4598 4599 4600 4601
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
4602 4603 4604
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4605 4606
        return self.node.var().persistable()

4607 4608 4609 4610 4611 4612 4613
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
4614 4615 4616
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4617 4618 4619 4620 4621 4622 4623 4624 4625
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
4626 4627 4628
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4629 4630 4631 4632 4633 4634 4635 4636 4637
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
4638 4639 4640
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4641 4642
        return self.node.var().shape()

4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4676 4677 4678
        assert (
            isinstance(node, core.Node) and node.is_op()
        ), 'node must be the instance of core.Node and it must be a operator node.'
4679
        super().__init__(node)
4680 4681 4682 4683 4684 4685 4686 4687 4688 4689
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
4690 4691 4692
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4693 4694
        self.node.op()._rename_input(old_input_name, new_input_name)

4695 4696 4697 4698 4699 4700 4701 4702
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
4703 4704 4705
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4706 4707
        self.node.op()._rename_output(old_output_name, new_output_name)

4708 4709 4710 4711 4712 4713 4714 4715 4716 4717
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
4718 4719 4720
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
4733 4734 4735
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4736 4737 4738 4739 4740 4741 4742 4743 4744
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
4745 4746 4747
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4748 4749
        return self.node.op().set_type(new_type)

4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
4764 4765 4766
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4767
        desc = self.node.op()
4768 4769 4770 4771 4772
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
4773
            desc.set_block_attr(name, val.desc)
4774
        elif isinstance(val, list) and val and _all_is_type(val, Block):
4775
            desc.set_blocks_attr(name, [v.desc for v in val])
4776 4777 4778
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
4779 4780 4781 4782
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

4783 4784 4785 4786 4787 4788 4789
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
4790 4791 4792
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4793 4794 4795 4796 4797 4798 4799 4800 4801
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
4802 4803 4804
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4805 4806
        return self.node.op().output_arg_names()

4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


4828
class IrGraph:
4829
    """
4830
    Python IrGraph. Beneath it is a core.Graph, which is used for
4831
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
4832 4833
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
4834 4835 4836 4837
    """

    def __init__(self, graph, for_test=False):
        """
4838 4839
        Construct an IrGraph using core.Graph.

4840 4841 4842 4843 4844
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
4845 4846
            graph, core.Graph
        ), 'graph must be the instance of core.Graph.'
4847 4848 4849
        self.graph = graph
        self._for_test = for_test

4850 4851 4852 4853
    def clone(self):
        """
        Create a new and duplicated IrGraph.

4854 4855 4856
        Warns:
            The method only clones the graph structure, not its attributes.

4857 4858 4859
        Returns:
            IrGraph: A new and duplicated graph.
        """
4860
        g = self.graph.clone()
4861 4862
        return IrGraph(g, self._for_test)

4863
    def is_test(self):
4864 4865 4866
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
4867 4868
        return self._for_test

W
WangZhen 已提交
4869
    def all_nodes(self):
4870 4871 4872
        """
        Return all nodes included in the graph as a set.
        """
4873
        return {IrNode(node) for node in self.graph.nodes()}
4874

4875
    def all_var_nodes(self):
4876 4877 4878
        """
        Return all variable nodes included in the graph as a set.
        """
4879
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
4880

4881
    def all_persistable_nodes(self):
4882 4883 4884
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
4885 4886
        persistable_nodes = set()
        for node in self.graph.nodes():
4887 4888 4889 4890 4891
            if (
                node.is_var()
                and node.var() is not None
                and node.var().persistable()
            ):
W
WangZhen 已提交
4892
                persistable_nodes.add(node)
4893
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
4894

4895
    def all_op_nodes(self):
4896 4897 4898
        """
        Return all operator nodes included in the graph as a set.
        """
4899
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
4900

4901 4902 4903 4904 4905 4906
    def all_sub_graphs(self, for_test=False):
        """
        Return all sub_graphs included in the main graph as a set.
        """

        return [
4907
            IrGraph(self.graph.get_sub_graph(i), for_test=for_test)
4908 4909 4910 4911 4912 4913 4914 4915 4916
            for i in range(self.graph.sub_graph_size())
        ]

    def get_sub_graph(self, i, for_test=False):
        """
        Return i-th sub_graph in the main graph.
        """
        return IrGraph(self.graph.get_sub_graph(i), for_test=for_test)

4917
    def create_persistable_node(self, name, var_type, shape, var_dtype):
4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
4929
            IrVarNode: the created persistable variable node.
4930
        """
4931 4932 4933 4934 4935
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
4936
        return IrVarNode(self.graph.create_var_node(var_desc))
4937 4938

    def create_var_node(self, name, var_type, shape, var_dtype):
4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
4950
            IrVarNode: the created variable node.
4951 4952
        """

4953 4954 4955 4956
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
4957
        return IrVarNode(self.graph.create_var_node(var_desc))
4958

4959 4960 4961 4962 4963 4964
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

4965
    def create_var_node_from_desc(self, var_desc):
4966 4967 4968 4969 4970 4971 4972 4973
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
4974
            IrVarNode: the created variable node.
4975
        """
4976
        return IrVarNode(self.graph.create_var_node(var_desc))
4977 4978

    def create_op_node(self, op_type, attrs, inputs, outputs):
4979 4980 4981 4982 4983 4984 4985
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
4986
            outputs(dict): the outputs of the operator node.
4987 4988

        Returns:
4989
            IrOpNode: the created operator node.
4990
        """
4991 4992
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
4993
        for attr, value in attrs.items():
4994
            self._update_desc_attr(op_desc, attr, value)
4995
        for input_name, var_nodes in inputs.items():
4996 4997
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
4998 4999 5000
            op_desc.set_input(
                input_name, [var_node.name() for var_node in var_nodes]
            )
5001
        for output_name, var_nodes in outputs.items():
5002 5003
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
5004 5005 5006
            op_desc.set_output(
                output_name, [var_node.name() for var_node in var_nodes]
            )
5007
        return IrOpNode(self.graph.create_op_node(op_desc))
5008 5009

    def create_op_node_from_desc(self, op_desc):
5010 5011 5012 5013 5014 5015 5016
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
5017
            IrOpNode: the created operator node.
5018
        """
5019
        return IrOpNode(self.graph.create_op_node(op_desc))
5020 5021

    def update_input_link(self, old_input_node, new_input_node, op_node):
5022 5023 5024 5025
        """
        Update the input's link of a operator node.

        Args:
5026 5027 5028
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
5029
        """
5030 5031 5032 5033 5034
        assert (
            old_input_node.node in self.graph.nodes()
            and new_input_node.node in self.graph.nodes()
            and op_node.node in self.graph.nodes()
        ), 'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
5035 5036 5037 5038
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
5039
        op_node.rename_input(old_input_node.name(), new_input_node.name())
5040

5041 5042 5043 5044 5045 5046 5047 5048 5049
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
5050 5051 5052 5053 5054
        assert (
            old_output_node.node in self.graph.nodes()
            and new_output_node.node in self.graph.nodes()
            and op_node.node in self.graph.nodes()
        ), 'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
5055 5056 5057 5058 5059 5060
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

5061
    def link_to(self, node_in, node_out):
5062 5063 5064 5065
        """
        Connect two nodes.

        Args:
5066 5067
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
5068
        """
5069
        assert node_in.node in self.graph.nodes(), (
5070 5071
            'node_in(%s) must be in the graph nodes.' % node_in.node.name()
        )
5072
        assert node_out.node in self.graph.nodes(), (
5073 5074
            'node_out(%s) must be in the graph nodes.' % node_out.node.name()
        )
5075 5076
        node_in.append_output(node_out)
        node_out.append_input(node_in)
5077 5078

    def safe_remove_nodes(self, remove_nodes):
5079 5080 5081 5082 5083 5084 5085
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
5086
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
5087 5088 5089 5090
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
5091 5092
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
5093

Z
Zhen Wang 已提交
5094 5095 5096 5097 5098 5099 5100 5101
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
5102
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
5103 5104 5105 5106
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
5107
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
5108 5109 5110
                        ]
                    else:
                        var_nodes[each_var_name].append(
5111 5112
                            self._find_node_by_name(node.outputs, each_var_name)
                        )
Z
Zhen Wang 已提交
5113 5114
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
5115
    def has_circle(self):
5116 5117 5118 5119 5120 5121
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
5122 5123 5124
        return core.has_circle(self.graph)

    def graph_num(self):
5125 5126 5127 5128 5129 5130
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
5131 5132 5133
        return core.graph_num(self.graph)

    def topology_sort(self):
5134 5135 5136
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
5137
        Notes: the `graph` can not contain a circle.
5138 5139

        Returns:
Z
Zhen Wang 已提交
5140
            list(IrNode): nodes in topology order.
5141
        """
5142
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
5143
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
5144 5145

    def build_adjacency_list(self):
5146 5147 5148 5149
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
5150
            dict{IrNode: set(IrNode)}: the adjacency list.
5151
        """
5152 5153
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
5154
        for k, v in adj_list.items():
5155 5156
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
5157

5158 5159 5160 5161 5162 5163 5164 5165
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
5166
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
5167 5168 5169 5170 5171
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

5172 5173
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
5174 5175 5176 5177
            exited_code = subprocess.call(
                'dot -Tpdf ' + dot_file_path + ' -o ' + pdf_save_path,
                shell=True,
            )
5178 5179
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
5180 5181 5182
                print(
                    'The {} is saved as the dot filetype.'.format(dot_file_path)
                )
5183

5184
        remove_ctr_vars = set()
5185
        if remove_ctr_var:
5186
            for node in self.all_var_nodes():
5187 5188 5189
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
5190 5191
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

5192 5193
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
5194 5195 5196 5197 5198 5199
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
5200 5201 5202 5203
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
5204 5205
        if not os.path.exists(save_path):
            os.makedirs(save_path)
5206 5207 5208 5209 5210 5211 5212
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
5213 5214 5215
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
5216
        WARN: When the graph includes backward operator nodes, the
5217 5218 5219 5220 5221 5222
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
5223
        convert_pass = core.get_pass('graph_to_program_pass')
5224 5225
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
5226 5227 5228 5229
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

5230 5231 5232 5233 5234 5235 5236 5237
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
5238
        assert target_node is not None, (
5239 5240
            "Cannot find the target node (%s)in the giving set." % node_name
        )
5241 5242
        return target_node

5243 5244 5245 5246
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
5247 5248 5249 5250 5251
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
5252
            desc.set_block_attr(name, val.desc)
5253
        elif isinstance(val, list) and val and _all_is_type(val, Block):
5254
            desc.set_blocks_attr(name, [v.desc for v in val])
5255 5256 5257
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
5258 5259 5260 5261 5262
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


5263
class Program:
D
dzhwinter 已提交
5264
    """
5265
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
5266
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
5267
    it will contain nested block.
5268

J
Jiabin Yang 已提交
5269 5270 5271
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
5272

J
Jiabin Yang 已提交
5273
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
5274
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
5275 5276 5277 5278 5279 5280 5281
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
5282
    **Notes**:
5283 5284 5285
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
5286 5287

    Returns:
J
Jiabin Yang 已提交
5288
        Program: An empty Program.
D
dzhwinter 已提交
5289 5290

    Examples:
5291 5292
        .. code-block:: python

5293 5294 5295 5296
            import paddle
            import paddle.static as static

            paddle.enable_static()
5297

5298 5299 5300 5301 5302
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
5303
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
5304 5305 5306

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
5307 5308 5309

    """

5310 5311
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
5312 5313
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
5314 5315
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
5316
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
5317
        self.__op_role_var = []
T
tangwei12 已提交
5318

5319 5320
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
5321
        self._is_distributed = False
5322
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
5323
        self._is_chief = False
5324 5325 5326
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
5327
        self._endpoints = []
5328 5329 5330
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
5331
        self._trainers_endpoints = []
5332
        # the distributed lookup table names
T
tangwei12 已提交
5333
        self._distributed_lookup_table = None
5334 5335 5336

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
5337 5338
        self._use_lamb = False

5339 5340 5341
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
5342

5343 5344 5345
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
5346
        self._program_config = None
5347

H
hutuxian 已提交
5348 5349 5350
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

5351 5352 5353
        # assigned if this program has been parsed by a heter pipeline parameter server optimizer
        self._heter_pipeline_opt = None

5354 5355 5356
        # appending gradients times
        self._appending_grad_times = 0

5357 5358
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
5359 5360
            "__auto_checkpoint_program__"
        )
5361

5362 5363
        # compiled program, i.e. Graph
        self._graph = None
5364 5365
        # to tag whether is startup_program
        self._is_start_up_program_ = False
5366

5367
    def _find_var_class_kwargs(self, new_desc):
5368 5369 5370 5371 5372 5373 5374 5375
        # NOTE: not all variables support shape/dtype/lod_level methods.
        # For example: RAW, STEP_SCOPES, etc.
        def get_var_desc_attr_or_none(var_desc, attr_name, allowed_types):
            if var_desc.type() in allowed_types:
                return getattr(var_desc, attr_name)()
            else:
                return None

5376 5377 5378 5379
        old_desc = self.desc
        all_new_vars = []
        block_num = new_desc.num_blocks()
        for idx in range(block_num):
5380
            if idx > (len(self.blocks) - 1):
5381
                self._create_block()
5382 5383 5384 5385 5386 5387 5388 5389 5390 5391
            new_block_desc = new_desc.block(idx)
            all_new_vars.append([])
            block_new_vars = all_new_vars[-1]
            for new_var_desc in new_block_desc.all_vars():
                if self.blocks[idx].has_var(new_var_desc.name()):
                    old_var = self.blocks[idx].var(new_var_desc.name())
                else:
                    old_var = None

                kwargs = {
5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432
                    'type': new_var_desc.type(),
                    'name': new_var_desc.name(),
                    'shape': get_var_desc_attr_or_none(
                        new_var_desc,
                        "shape",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.SELECTED_ROWS,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'dtype': get_var_desc_attr_or_none(
                        new_var_desc,
                        "dtype",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.SELECTED_ROWS,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'lod_level': get_var_desc_attr_or_none(
                        new_var_desc,
                        "lod_level",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'error_clip': old_var.error_clip
                    if old_var is not None
                    else None,
                    'stop_gradient': old_var.stop_gradient
                    if old_var is not None
                    else False,
                    'is_data': old_var.is_data
                    if old_var is not None
                    else False,
                    'need_check_feed': new_var_desc.need_check_feed(),
                    'belong_to_optimizer': old_var.belong_to_optimizer
                    if old_var is not None
                    else False,
5433 5434 5435
                }

                if isinstance(old_var, Parameter):
5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452
                    kwargs.update(
                        {
                            'trainable': old_var.trainable,
                            'optimize_attr': old_var.optimize_attr,
                            'regularizer': old_var.regularizer,
                            'do_model_average': old_var.do_model_average,
                            'need_clip': old_var.need_clip,
                            'is_distributed': old_var.is_distributed,
                            'is_parameter': old_var.is_parameter,
                        }
                    )
                    block_new_vars.append(
                        {
                            'class': Parameter,
                            'kwargs': copy.deepcopy(kwargs),
                        }
                    )
5453 5454
                else:
                    kwargs['persistable'] = new_var_desc.persistable()
5455 5456 5457 5458 5459 5460
                    block_new_vars.append(
                        {
                            'class': Variable,
                            'kwargs': copy.deepcopy(kwargs),
                        }
                    )
5461 5462 5463 5464 5465 5466 5467

        return all_new_vars

    def _rebuild_from_desc(self, desc):
        all_new_vars = self._find_var_class_kwargs(desc)
        block_num = desc.num_blocks()
        assert block_num == len(all_new_vars)
5468
        assert block_num == self.desc.num_blocks()
5469 5470

        # clear old blocks and desc
5471 5472 5473 5474 5475 5476 5477 5478 5479
        for idx in range(block_num):
            block = self.blocks[idx]
            block.vars.clear()
            block.ops.clear()

        for idx in range(block_num):
            block_desc = self.blocks[idx].desc
            new_block_desc = desc.block(idx)
            block_desc._move_from(new_block_desc)
5480

5481
        del desc
5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500

        # add new vars first
        for idx in range(block_num):
            block = self.blocks[idx]
            for new_var in all_new_vars[idx]:
                clazz = new_var['class']
                kwargs = new_var['kwargs']
                kwargs['block'] = block
                clazz(**kwargs)

        # then append op
        for idx in range(block_num):
            block = self.blocks[idx]
            block_desc = self.desc.block(idx)
            for op_idx in range(block_desc.op_size()):
                op_desc = block_desc.op(op_idx)
                op = Operator(block=block, desc=op_desc)
                block.ops.append(op)

5501 5502 5503 5504 5505 5506 5507 5508 5509 5510
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

5511 5512
                import paddle
                import paddle.static as static
5513

5514 5515 5516
                paddle.enable_static()

                prog = static.default_main_program()
5517 5518 5519 5520 5521
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
5522
                prog1 = static.default_main_program()
5523 5524 5525 5526 5527 5528 5529 5530
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
5531
    @property
5532
    def _op_role(self):
Y
yuyang18 已提交
5533 5534 5535 5536 5537 5538 5539 5540
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
5541
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
5542 5543 5544 5545
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
5546 5547
        return self._current_role

5548 5549
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
5550 5551 5552
        self._current_role = role

    @property
5553
    def _op_role_var(self):
Y
yuyang18 已提交
5554
        """
5555
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
5556

5557
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
5558 5559 5560

        Notes: This is a very low-level API. Users should not use it directly.
        """
5561
        return self.__op_role_var
Y
yuyang18 已提交
5562

5563
    @signature_safe_contextmanager
5564 5565 5566 5567 5568
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
5569 5570 5571 5572
        try:
            yield
        finally:
            self._current_role = tmp_role
5573

S
rename  
sneaxiy 已提交
5574
    @signature_safe_contextmanager
W
Wu Yi 已提交
5575
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
5576 5577 5578 5579 5580 5581 5582
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
5583
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
5584 5585 5586

        Examples:

5587
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
5588
            >>> p, g = backward(...)
W
Wu Yi 已提交
5589
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
5590 5591
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
5592
        tmp_role = self._current_role
5593
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
5594

Y
yuyang18 已提交
5595 5596
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
5597
        self.__op_role_var = [
5598 5599 5600
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
5601 5602 5603 5604 5605
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
5606

S
rename  
sneaxiy 已提交
5607
    @signature_safe_contextmanager
X
Xin Pan 已提交
5608
    def _lr_schedule_guard(self, is_with_opt=False):
5609 5610 5611 5612 5613 5614 5615
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
5616 5617 5618 5619
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
5620 5621 5622

        Examples:

5623
            >>> import paddle.fluid as fluid
5624 5625 5626 5627
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
5628 5629

        tmp_role = self._current_role
5630
        tmp_var = self.__op_role_var
5631

5632 5633
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
5634 5635
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
5636
        # TODO(typhoonzero): how to set target learning rate var
5637
        self.__op_role_var = []
5638 5639 5640 5641 5642
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
5643

5644
    def __str__(self):
Y
yuyang18 已提交
5645 5646 5647 5648 5649 5650 5651 5652 5653
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

5674 5675
            import paddle
            import paddle.static as static
5676

5677 5678 5679
            paddle.enable_static()

            cur_program = static.Program()
5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
5691
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
5692 5693
            type(skip_op_callstack)
        )
5694 5695 5696
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
5697
            program_str += '\n'
5698
        return program_str
Y
Yang Yang(Tony) 已提交
5699

F
fengjiayi 已提交
5700 5701 5702
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
5703

J
Jiabin Yang 已提交
5704 5705 5706
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
5707

J
Jiabin Yang 已提交
5708
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
5709

H
haowang101779990 已提交
5710
        Returns:
J
Jiabin Yang 已提交
5711
            str: The debug string describe current Program.
Y
yuyang18 已提交
5712 5713

        Raises:
J
Jiabin Yang 已提交
5714
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
5715

5716 5717 5718
        Examples:
            .. code-block:: python

5719 5720 5721 5722
                import paddle
                import paddle.static as static

                paddle.enable_static()
5723

5724 5725 5726
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
5727
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
5728
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
5729
                print("program string without detail: {}".format(prog_string))
5730
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
5731
        """
5732 5733 5734
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
5735 5736
            type(throw_on_error)
        )
5737 5738 5739
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
5740 5741
            type(with_details)
        )
5742

F
fengjiayi 已提交
5743 5744 5745 5746 5747 5748
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
5749
            proto = framework_pb2.ProgramDesc.FromString(bytes(protostr))
F
fengjiayi 已提交
5750 5751
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
5752

W
Wu Yi 已提交
5753
    def _get_desc(self):
Y
yuyang18 已提交
5754 5755 5756 5757 5758 5759 5760
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
5761 5762
        return self.desc

X
version  
Xin Pan 已提交
5763 5764 5765
    def _version(self):
        return self.desc._version()

5766
    def clone(self, for_test=False):
Y
yuyang18 已提交
5767
        """
5768
        .. note:::
5769 5770
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` .
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` .
5771
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
5772

5773
        Create a new Program with forward content of original one when ``for_test=True``.
5774
        Create a new Program as same as the original one when ``for_test=False``.
5775

5776
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
5777 5778 5779
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
5780

5781 5782
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
5783 5784
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
5785
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
5786

J
Jiabin Yang 已提交
5787
        For Example:
5788
          ::
L
Luo Tao 已提交
5789

5790 5791 5792 5793 5794 5795
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
5796
            pred = static.nn.fc(x=img, size=10, actvation='relu')
5797
            loss = paddle.mean(pred)
5798
            # Here we use clone before Momentum
5799 5800
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
5801
            optimizer.minimize(loss)
5802

J
Jiabin Yang 已提交
5803
        Args:
5804

5805 5806
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
5807

J
Jiabin Yang 已提交
5808
        Returns:
5809
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
5810

Y
yuyang18 已提交
5811 5812 5813

        Examples:

5814 5815 5816 5817 5818 5819 5820
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

5821 5822
            .. code-block:: python

5823
                import paddle
5824 5825

                def print_prog(prog):
5826
                    for name, value in sorted(prog.block(0).vars.items()):
5827 5828 5829 5830 5831
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
5832
                        for key, value in sorted(op.all_attrs().items()):
5833 5834 5835 5836
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


5837
            1. To clone a test program, the sample code is:
5838 5839
                .. code-block:: python

5840 5841 5842 5843 5844 5845
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5846 5847

                    def print_prog(prog):
5848
                        for name, value in sorted(prog.block(0).vars.items()):
5849 5850 5851 5852 5853
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
5854
                            for key, value in sorted(op.all_attrs().items()):
5855 5856 5857
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

5858 5859
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
5860 5861 5862

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
5863 5864 5865
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
5866
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
5867 5868
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
5869
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5870 5871
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
5872
                            test_program = train_program.clone(for_test=True)
5873
                    print_prog(test_program)
J
Jiabin Yang 已提交
5874 5875 5876 5877

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

5878
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
5879 5880 5881 5882
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

5883 5884 5885
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5886 5887 5888
                            sgd.minimize(avg_loss)


5889
            2. The clone method can be avoid if you create program for training and program for testing individually.
5890 5891
                .. code-block:: python

5892 5893 5894 5895 5896 5897
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5898 5899

                    def print_prog(prog):
5900
                        for name, value in sorted(prog.block(0).vars.items()):
5901 5902 5903 5904 5905
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
5906
                            for key, value in sorted(op.all_attrs().items()):
5907 5908
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
5909

5910
                    def network():
5911
                        img = static.data(name='image', shape=[None, 784])
5912
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
5913 5914
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
5915
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5916 5917
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
5918 5919
                        return avg_loss

5920 5921 5922 5923 5924
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
5925
                            avg_loss = network()
5926
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5927
                            sgd.minimize(avg_loss)
5928
                    # the test startup program is not used.
5929 5930
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
5931 5932
                            avg_loss = network()
                    print_prog(test_program_2)
5933

5934
            The two code snippets above will generate and print same programs.
5935
        """
5936

T
tangwei12 已提交
5937
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5938 5939 5940
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5941
        pruned_origin_block_id_map = None
5942
        if for_test:
5943 5944
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
5945 5946
                self.desc
            )
5947 5948
            forward_prog.blocks = [
                Block(forward_prog, i)
5949
                for i in range(forward_prog.desc.num_blocks())
5950 5951 5952
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
5953
        else:
5954
            p = Program()
G
gongweibao 已提交
5955 5956
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
5957
            p.desc = core.ProgramDesc(self.desc)
5958
            p.blocks = [Block(p, i) for i in range(self.desc.num_blocks())]
G
gongweibao 已提交
5959 5960

            p._current_role = self._current_role
5961
            p.__op_role_var = self.__op_role_var
5962
            p._appending_grad_times = self._appending_grad_times
5963 5964
            if hasattr(self, 'lr_sheduler'):
                p.lr_sheduler = self.lr_sheduler
G
gongweibao 已提交
5965

T
tangwei12 已提交
5966
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
5967
            # its desc.
W
Wu Yi 已提交
5968
            p._sync_with_cpp()
5969

W
Wu Yi 已提交
5970
        p._copy_param_info_from(self)
5971
        p._copy_data_info_from(self, pruned_origin_block_id_map)
5972
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
5973
        return p
5974

5975
    def _prune(self, targets):
Y
yuyang18 已提交
5976 5977 5978 5979 5980 5981 5982 5983
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
5984
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
5985 5986 5987 5988
                need to be pruned

        Returns:
            Program:  A new, pruned program.
5989
        """
5990
        return self._prune_with_input([], targets)
5991 5992

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
5993
        """
5994
        Prune operators and variables which are not needed to generate
5995 5996
        :code:`targets`. Prune operators and variables which are needed
        to generate feeded_var
5997 5998 5999 6000 6001 6002 6003

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
6004
            targets(list|Variable|Operator): A list of variables, operators, or variable names
6005 6006 6007 6008 6009 6010
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
6011
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
6012 6013 6014
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

6015 6016
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
6017 6018
        if not isinstance(targets, list):
            targets = [targets]
6019 6020

        for var in feeded_var_names:
6021
            if not isinstance(var, str):
6022 6023
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
6024 6025
                    "str, but received %s." % type(var)
                )
6026

6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042
        # find out all variables that can be generated or updated with given feed
        generatable_vars = set()

        for idx, op in enumerate(self.global_block().ops):
            runnable_op = True
            for name in op.input_arg_names:
                if not self.global_block().has_var(name):
                    continue
                if self.global_block().var(name).persistable:
                    continue
                if name not in generatable_vars.union(feeded_var_names):
                    runnable_op = False
                    break
            if runnable_op:
                generatable_vars = generatable_vars.union(op.output_arg_names)

6043 6044 6045 6046
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
6047
                    name = t.name
6048
                elif isinstance(t, str):
6049
                    name = str(t)
6050
                else:
6051 6052
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
6053 6054
                        "Variable or Operator, but received %s." % type(t)
                    )
6055 6056 6057 6058 6059 6060

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
6061 6062 6063
                    # however if the var is also updated by a runnable op, will shall keep it
                    if name not in generatable_vars:
                        continue
6064

6065 6066 6067 6068 6069 6070 6071 6072 6073
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
6074
                        # Skip optimize op except for optimize op in targets,
6075 6076 6077 6078 6079
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
6080

6081
                if target_op is not None:
6082 6083 6084
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
6085

6086
        res = Program()
6087
        res.desc, pruned_origin_block_id_map = core.prune(
6088 6089
            self.desc, set(feeded_var_names), targets_idx
        )
6090
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
W
Wu Yi 已提交
6091
        res._sync_with_cpp()
6092 6093 6094 6095 6096

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

6097 6098
        return res

X
Xin Pan 已提交
6099
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
6100
        """
F
fengjiayi 已提交
6101 6102 6103 6104 6105
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

6106
        3. change the :code:`is_test`
Y
yuyang18 已提交
6107 6108 6109
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

6110
        Args:
X
Xin Pan 已提交
6111 6112
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
6113

Y
yuyang18 已提交
6114 6115 6116 6117 6118 6119
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
6120
        res = Program()
6121
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
6122 6123 6124 6125

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
6126
        if prune_read_op:
6127
            while True:
6128 6129 6130 6131
                if (
                    read_op_idx >= root_block.op_size()
                    or root_block.op(read_op_idx).type() == 'read'
                ):
6132 6133 6134 6135 6136 6137
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
6138
                    root_block._remove_var(var.name().encode())
F
fengjiayi 已提交
6139 6140

        # change all `is_test` attributes to True
6141
        for i in range(res.desc.num_blocks()):
6142
            block = res.desc.block(i)
6143
            for j in range(block.op_size()):
6144 6145
                op = block.op(j)
                if op.has_attr('is_test'):
6146
                    op._set_bool_attr('is_test', True)
6147 6148 6149
                if op.type() == "batch_norm":
                    # Remove the output ReserveSpace of batch_norm if exists.
                    op.remove_output("ReserveSpace")
6150
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
W
Wu Yi 已提交
6151
        res._sync_with_cpp()
6152 6153
        return res

6154
    def _remove_training_info(self, clip_extra=True):
6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168
        """
        This method will create a new program and do following adjustments on it:
        1. Remove all variable's `is_parameter` attribute if exist.

        2. Remove all variable's `stop_gradient` attribute if exist.

        Notes: This API is a very low level API.

        Returns:
            Program: The new program.
        """
        res = Program()
        res.desc = core.ProgramDesc(self.desc)

6169
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
6170 6171
        res._sync_with_cpp()

6172 6173
        # Note: The op_role and op_role_var cann't be deleted currently,
        # and we will try to remove them in the future.
6174
        common_clipped_attrs_list = ['op_callstack', 'with_quant_attr']
6175

6176
        for i in range(res.desc.num_blocks()):
6177 6178 6179 6180
            block = res.desc.block(i)
            for var in block.all_vars():
                var.clear_is_parameter()
                var.clear_stop_gradient()
6181 6182
            if not clip_extra:
                continue
6183 6184 6185 6186
            for op_idx in range(0, block.op_size()):
                op = block.op(op_idx)
                if op.type() not in OpProtoHolder.instance().op_proto_map:
                    continue
6187 6188 6189

                extra_attrs_map = core.get_op_extra_attrs(op.type())

6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202
                proto = OpProtoHolder.instance().get_op_proto(op.type())
                remove_input_list = []
                for name in op.input_names():
                    find = False
                    for input_proto in proto.inputs:
                        if input_proto.name != name:
                            continue
                        if input_proto.extra:
                            remove_input_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_input_list.append(name)
6203 6204 6205
                # The extra input of op will be removed in the future
                # for name in remove_input_list:
                #     op.remove_input(name)
6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218

                remove_output_list = []
                for name in op.output_names():
                    find = False
                    for output_proto in proto.outputs:
                        if output_proto.name != name:
                            continue
                        if output_proto.extra:
                            remove_output_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_output_list.append(name)
6219
                # The extra output of op will be removed in the future
6220 6221
                for name in remove_output_list:
                    op.remove_output(name)
6222

6223 6224 6225 6226 6227 6228 6229
                op_quant_name = (
                    core.op_proto_and_checker_maker.kOpWithQuantAttrName()
                )
                quant = (
                    bool(op.attr(op_quant_name))
                    if op_quant_name in op.attr_names()
                    else False
6230 6231
                )
                quant_attrs = [
6232 6233 6234 6235 6236 6237 6238
                    op_quant_name,
                    "quantization_type",
                    "skip_quant",
                    "activation_bits",
                    "bit_length",
                    "quantize_weight_bits",
                    "weight_quant_scale",
6239
                ]
6240 6241
                for extra_attr_name in extra_attrs_map.keys():
                    op.remove_attr(extra_attr_name)
6242
                remove_attr_list = []
6243 6244 6245 6246 6247 6248
                for name in op.attr_names():
                    if quant:
                        if name in quant_attrs:
                            continue
                        if name.endswith("_threshold"):
                            continue
6249
                    if len(extra_attrs_map) > 0:
6250
                        if name in common_clipped_attrs_list:
6251
                            op.remove_attr(name)
6252
                        continue
6253 6254 6255 6256 6257 6258 6259 6260 6261 6262
                    find = False
                    for attr_proto in proto.attrs:
                        if attr_proto.name != name:
                            continue
                        find = True
                        break
                    if not find:
                        remove_attr_list.append(name)
                for name in remove_attr_list:
                    op.remove_attr(name)
6263 6264
        return res

6265 6266
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
6267
        """
6268
        .. note::
6269
            1. All information about parameters will be lost after serialization;
6270
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
6271

6272 6273
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
6274

J
Jiabin Yang 已提交
6275
        Args:
Y
yuyang18 已提交
6276

J
Jiabin Yang 已提交
6277
            binary_str_type (str): the binary prootbuf string.
6278

J
Jiabin Yang 已提交
6279 6280
        Returns:
            Program: A deserialized Program.
6281 6282 6283 6284

        Examples:
            .. code-block:: python

6285 6286 6287 6288
                import paddle
                import paddle.static as static

                paddle.enable_static()
6289

6290 6291 6292 6293
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
6294

6295
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
6296

6297
                    z = paddle.matmul(x=x, y=y)
6298

6299 6300
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
6301

6302
                    print(static.default_main_program())
6303
                    print(prog_restored)
Y
yuyang18 已提交
6304
        """
6305 6306
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
6307
        p.blocks = [Block(p, i) for i in range(p.desc.num_blocks())]
W
Wu Yi 已提交
6308
        p._sync_with_cpp()
6309
        return p
Y
Yu Yang 已提交
6310

6311
    @staticmethod
6312
    def _construct_from_desc(desc):
6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
6324
        p.blocks = [Block(p, i) for i in range(p.desc.num_blocks())]
6325 6326 6327
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
6328 6329
    @property
    def random_seed(self):
Y
yuyang18 已提交
6330
        """
J
Jiabin Yang 已提交
6331
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
6332 6333
        the random seed from random device.

6334
        .. note::
6335
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
6336 6337 6338

        Returns:
            int64: Random seed in current Program
6339

6340 6341 6342 6343

        Examples:
            .. code-block:: python

6344 6345 6346
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
6347

6348 6349 6350
                paddle.enable_static()

                prog = static.default_main_program()
6351
                random_seed = prog.random_seed
6352
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
6353 6354 6355
                print(random_seed)
                ## 0
                ## the default random seed is 0
6356

6357
                # Here we need to set random seed before we use paddle.nn.functional.dropout
6358
                prog.random_seed = 1
6359
                z_var = F.dropout(x_var, 0.7)
6360

6361
                print(prog.random_seed)
6362 6363
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
6364
        """
D
dzhwinter 已提交
6365 6366
        return self._seed

Q
qiaolongfei 已提交
6367 6368
    @property
    def num_blocks(self):
Y
yuyang18 已提交
6369
        """
6370 6371
        The number of :ref:`api_guide_Block_en`  in this Program.

6372
        .. note::
6373
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
6374 6375 6376

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
6377

6378 6379 6380 6381

        Examples:
            .. code-block:: python

6382 6383 6384 6385
                import paddle
                import paddle.static as static

                paddle.enable_static()
6386

6387
                prog = static.default_main_program()
6388 6389
                num_blocks = prog.num_blocks
                print(num_blocks)
6390

6391 6392
                # print result:
                # 1
Y
yuyang18 已提交
6393
        """
Q
qiaolongfei 已提交
6394 6395
        return self.desc.num_blocks()

D
dzhwinter 已提交
6396 6397 6398
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
6399 6400
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
6401 6402
                % type(seed)
            )
D
dzhwinter 已提交
6403 6404
        self._seed = seed

Y
Yu Yang 已提交
6405
    def __repr__(self):
6406
        return self.__str__()
6407

Y
Yu Yang 已提交
6408
    def global_block(self):
Y
yuyang18 已提交
6409
        """
6410 6411
        .. note::
            This API has no effect in Dygraph mode.
6412 6413 6414

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
6415 6416
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
6417

6418 6419 6420 6421

        Examples:
            .. code-block:: python

6422 6423 6424 6425
                import paddle
                import paddle.static as static

                paddle.enable_static()
6426

6427
                prog = static.default_main_program()
6428 6429
                gb_block = prog.global_block()
                print(gb_block)
6430

Y
yuyang18 已提交
6431
        """
Y
Yu Yang 已提交
6432 6433
        return self.blocks[0]

Q
Qiao Longfei 已提交
6434
    def block(self, index):
Y
yuyang18 已提交
6435
        """
6436 6437
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
6438

6439 6440
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
6441 6442
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
6443

J
Jiabin Yang 已提交
6444 6445
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
6446 6447 6448 6449

        Examples:
            .. code-block:: python

6450 6451 6452 6453
                import paddle
                import paddle.static as static

                paddle.enable_static()
6454

6455
                prog = static.default_main_program()
6456 6457
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
6458
        """
Q
Qiao Longfei 已提交
6459 6460
        return self.blocks[index]

Y
Yu Yang 已提交
6461
    def current_block(self):
Y
yuyang18 已提交
6462
        """
6463 6464
        .. note::
            This API has no effect in Dygraph mode.
6465

J
Jiabin Yang 已提交
6466 6467
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
6468

J
Jiabin Yang 已提交
6469 6470
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
6471

6472 6473 6474
        Examples:
            .. code-block:: python

6475 6476 6477 6478
                import paddle
                import paddle.static as static

                paddle.enable_static()
6479

6480
                prog = static.default_main_program()
6481 6482
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
6483
        """
Y
Yu Yang 已提交
6484 6485
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
6486
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
6487 6488 6489 6490 6491
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
6492

Y
yuyang18 已提交
6493 6494 6495 6496 6497
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
6498
        new_block_idx = len(self.blocks)
6499 6500 6501 6502 6503
        parent = (
            self.current_block()
            if parent_idx is None
            else self.block(parent_idx)
        )
F
update  
fengjiayi 已提交
6504
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
6505 6506 6507 6508
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
6509
    def _rollback(self):
Y
yuyang18 已提交
6510 6511 6512 6513 6514
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
6515 6516
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
6517
    def _sync_with_cpp(self):
Y
yuyang18 已提交
6518 6519 6520 6521 6522 6523 6524 6525 6526 6527
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
6528 6529 6530
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
6531
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
6532

W
Wu Yi 已提交
6533
    def _copy_param_info_from(self, other):
6534
        """
6535
        Copy the information of parameters from other program.
D
dzhwinter 已提交
6536

Y
yuyang18 已提交
6537 6538 6539
        Notes: This is a very low level API. Users should not invoke it
        directly.

6540 6541 6542 6543 6544 6545 6546
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6547 6548
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6549 6550
                % type(other)
            )
6551

W
Wu Yi 已提交
6552
        self.global_block()._copy_param_info_from(other.global_block())
6553

6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6565 6566
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6567 6568
                % type(other)
            )
6569 6570
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
6571
        self._parameters_on_pservers = other._parameters_on_pservers
6572
        self._endpoints = other._endpoints
6573
        self._ps_endpoint = other._ps_endpoint
6574 6575
        self._distributed_lookup_table = other._distributed_lookup_table

6576
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
6577 6578
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
6579

Y
yuyang18 已提交
6580 6581 6582
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
6583 6584
        Args:
            other(Program): Other program
6585
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
6586 6587
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is
            cloned from block 0 in other, etc. Default is None, which means default mapped,
6588
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
6589 6590 6591 6592 6593

        Returns:
            None
        """
        if not isinstance(other, Program):
6594 6595
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6596 6597
                % type(other)
            )
F
fengjiayi 已提交
6598

6599 6600
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
6601
                i: i for i in range(self.desc.num_blocks())
6602
            }
6603 6604 6605

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
6606 6607
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
6608
            for var in list(block.vars.values()):
6609 6610 6611 6612 6613 6614 6615
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
6616

6617
    def list_vars(self):
Y
yuyang18 已提交
6618
        """
6619
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
6620

J
Jiabin Yang 已提交
6621
        Returns:
6622
            iterable Tensors: The Generator will yield every Tensor in this program.
6623 6624 6625 6626

        Examples:
            .. code-block:: python

6627 6628
                import paddle
                import paddle.static as static
6629

6630 6631 6632 6633 6634
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
6635 6636
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
6637

6638 6639
                # var img : LOD_TENSOR.shape(-1, 1, 28, 28).dtype(float32).stop_gradient(True)
                # var label : LOD_TENSOR.shape(-1, 1).dtype(int64).stop_gradient(True)
Y
yuyang18 已提交
6640
        """
6641
        for each_block in self.blocks:
6642
            for each_var in list(each_block.vars.values()):
6643 6644
                yield each_var

6645 6646 6647 6648 6649 6650 6651 6652 6653 6654
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

6655 6656 6657 6658
                import paddle
                import paddle.static as static

                paddle.enable_static()
6659

6660 6661
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
6662
                hidden = static.nn.fc(x=data, size=10)
6663 6664
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
6665 6666 6667 6668 6669 6670 6671

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
6672 6673
                # persist trainable param fc_0.w_0 : LOD_TENSOR.shape(13, 10).dtype(float32).stop_gradient(False)
                # persist trainable param fc_0.b_0 : LOD_TENSOR.shape(10,).dtype(float32).stop_gradient(False)
6674 6675 6676 6677 6678 6679 6680 6681 6682 6683
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

6684 6685 6686 6687 6688 6689 6690 6691 6692
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
6693 6694 6695
            mode(str, optional): Source of the obtained parameters and buffers.
                    'opt' :  The return value only contains the variable in the optimizer.
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.
6696 6697
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
6698
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope
6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
6726
        # can not be imported at the begainning of this file.
6727 6728
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
6729

6730 6731
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
6732 6733 6734 6735
                "`scope` should be None or `paddle.static.Scope'` type, but received {}.".format(
                    type(scope)
                )
            )
6736 6737 6738 6739 6740

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
6741 6742
            raise TypeError(
                "Type of `mode` should be string, but received {}.".format(
6743 6744 6745
                    type(mode)
                )
            )
6746 6747 6748 6749 6750

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
6751 6752 6753 6754 6755
            if (
                var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH
                or var.desc.type() == core.VarDesc.VarType.FETCH_LIST
                or var.desc.type() == core.VarDesc.VarType.READER
            ):
6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):

            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
6774 6775 6776 6777
                    "`mode` string should be 'param', 'opt' or 'all', but received {}.".format(
                        mode
                    )
                )
6778 6779 6780 6781 6782 6783 6784 6785

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
6786 6787 6788 6789
                    "Can not find Variable '{}' in the scope. Make sure it is initialized".format(
                        var.name
                    )
                )
6790 6791 6792 6793 6794 6795
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
6796
        Set parameters and persistable buffers in state_dict to program.
6797
        An exception will throw if shape or dtype of the parameters is not match.
6798

6799 6800 6801 6802
        .. note::
            This function MUST called after run start_up_program

        Args:
6803
            state_dict(dict): the dict store parameters and persistable buffers.
6804 6805
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
6806
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope
6807 6808
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
6809

6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
6839 6840 6841
                    type(state_dict)
                )
            )
6842 6843

        vars_dict = {var.name: var for var in self.list_vars()}
6844 6845 6846
        condition = (
            True if 'StructuredToParameterName@@' in state_dict else False
        )
6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
6858 6859
                        ("Skip loading for '{}'. ".format(name) + str(err))
                    )
6860 6861
                except TypeError as err:
                    warnings.warn(
6862 6863
                        ("Skip loading for '{}'. ".format(name) + str(err))
                    )
6864
            else:
6865
                warnings.warn(
6866 6867 6868 6869 6870 6871
                    (
                        "Skip loading for '{0}'. Because '{0}' not in the program.".format(
                            name
                        )
                    )
                )
6872

Y
Yu Yang 已提交
6873

6874
class Parameter(Variable, metaclass=ParameterMetaClass):
6875
    """
6876
    Parameter is derived from Variable. A parameter is a persistable
6877
    Variable, and will be updated by optimizers after each iteration.
6878
    The training of a neural network is essentially the updating of
6879 6880
    its parameters.

6881
    Relative to a general Variable, a Parameter has several its own
6882 6883
    member variables:

6884 6885 6886 6887 6888 6889 6890 6891 6892 6893
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
6894
        need_clip (bool): Whether the parameter gradient need to be cliped
6895
            in optimizer. Default is True.
6896 6897
    """

6898 6899 6900 6901 6902 6903
    def __init__(
        self,
        block,
        shape,
        dtype,
        type=core.VarDesc.VarType.LOD_TENSOR,
6904
        **kwargs,
6905
    ):
6906 6907 6908 6909 6910
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
6911 6912
        for each in shape:
            if each < 0:
6913 6914
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
6915 6916 6917 6918 6919 6920 6921 6922 6923 6924
                    % list(shape)
                )

        Variable.__init__(
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
6925
            **kwargs,
6926
        )
Y
Yu Yang 已提交
6927 6928 6929 6930
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

6931 6932
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
6933
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
6934

6935 6936
        self.need_clip = kwargs.get('need_clip', True)

6937 6938
        self.is_distributed = False

6939 6940
        self.is_parameter = True

F
fengjiayi 已提交
6941
    def __str__(self):
6942
        return self._to_readable_code()
F
fengjiayi 已提交
6943

F
update  
fengjiayi 已提交
6944 6945 6946
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
6947

F
update  
fengjiayi 已提交
6948 6949 6950 6951 6952 6953 6954 6955
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

6956 6957 6958 6959
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
G
GGBond8488 已提交
6960
                import paddle
6961 6962

                prog = fluid.default_main_program()
G
GGBond8488 已提交
6963
                rlt = paddle.static.data("fake_data", shape=[-1,1,1], dtype='float32')
6964 6965
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
6966
        """
6967
        assert isinstance(throw_on_error, bool) and isinstance(
6968 6969
            with_details, bool
        )
F
update  
fengjiayi 已提交
6970 6971
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
6972 6973 6974 6975 6976 6977 6978
            additional_attr = (
                "trainable",
                "optimize_attr",
                "regularizer",
                "do_model_average",
                "need_clip",
            )
F
update  
fengjiayi 已提交
6979
            for attr_name in additional_attr:
6980
                res_str += "%s: %s\n" % (attr_name, getattr(self, attr_name))
F
update  
fengjiayi 已提交
6981 6982
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
6983 6984 6985 6986
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
6987

6988 6989
class ParamBase(core.VarBase):
    """
6990 6991
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode).
    A ParamBase is a persistable Tensor, and will be updated by optimizers
6992
    after each iteration.
6993 6994 6995
    The training of a neural network is essentially the updating of
    its ParamBase.

6996
    Relative to a general Tensor, a ParamBase has several its own
6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
7009
        need_clip (bool): Whether the parameter gradient need to be cliped
7010
            in optimizer. Default is True.
7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
7024 7025
                    % list(shape)
                )
7026 7027 7028 7029 7030 7031 7032

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

7033
        super().__init__(
7034 7035 7036 7037 7038 7039
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape) if shape else [],
            name,
            core.VarDesc.VarType.LOD_TENSOR,
            True,
        )
7040

7041 7042
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
7043 7044 7045 7046 7047 7048 7049

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

7050 7051
        self.need_clip = kwargs.get('need_clip', True)

7052
        self.is_distributed = kwargs.get('is_distributed', False)
7053
        # self.block = default_main_program().global_block()
7054

7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
7066 7067
                type(trainable),
            )
7068

7069
    def __str__(self):
7070
        """
7071
        Convert a ParamBase object to a readable string.
7072

7073
        Returns(str): A readable string.
7074 7075 7076 7077

        Examples:
            .. code-block:: python

7078
                import paddle
7079 7080 7081 7082 7083 7084 7085
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
7086
        """
7087
        return "Parameter containing:\n{tensor}".format(
7088
            tensor=super().__str__()
7089
        )
7090

7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101
    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)
T
tangwei12 已提交
7102

7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = ParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

7121 7122 7123 7124
    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = ParamBase(self.shape, self.dtype, **state)
        core.varbase_copy(self, new_param, device, blocking)
7125 7126 7127 7128 7129 7130
        return new_param

    __repr__ = __str__


if hasattr(core, "eager"):
7131
    _core_eager_eagertensor = core.eager.Tensor
7132 7133 7134 7135 7136 7137
else:
    _core_eager_eagertensor = object


class EagerParamBase(_core_eager_eagertensor):
    """
7138 7139
    EagerParamBase is derived from Tensor( Which is the concept in Eager-Dygraph Mode).
    A EagerParamBase is a persistable Tensor, and will be updated by optimizers
7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156
    after each iteration.
    The training of a neural network is essentially the updating of
    its EagerParamBase.

    Relative to a general Tensor, a EagerParamBase has several its own
    member variables:

    Args:
        trainable(bool): True if the EagerParamBase need to be updated after
            iterations.
        optimize_attr(map): EagerParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the EagerParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this EagerParamBase.
7157
        need_clip (bool): Whether the parameter gradient need to be cliped
7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171
            in optimizer. Default is True.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
7172 7173
                    % list(shape)
                )
7174 7175 7176 7177 7178 7179 7180

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_eager_param_base'))

7181 7182 7183
        if isinstance(shape, core.eager.Tensor):
            shape = shape.numpy()

7184
        super().__init__(
7185 7186 7187 7188 7189 7190
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape) if shape else [],
            name,
            core.VarDesc.VarType.LOD_TENSOR,
            True,
        )
7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204
        self.retain_grads()

        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.need_clip = kwargs.get('need_clip', True)

        self.is_distributed = kwargs.get('is_distributed', False)
7205 7206 7207
        # hook functions for lazy initialization
        self._init_func = None
        self._init_op_creator = None
7208 7209

    def set_init_func(self, obj):
7210
        self._init_func = obj
7211 7212 7213

    @dygraph_only
    def initialize(self):
7214 7215 7216
        assert (
            self._init_func is not None
        ), "Required self._init_func is not None, but received None."
7217
        self._init_func()
7218
        # clear function handle to release resource
7219
        self._init_func = None
7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231

    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
7232 7233
                type(trainable),
            )
7234

7235 7236 7237 7238
    def _create_init_op(self, block):
        """
        Call init_op_creator function to create initializer operation in block.
        """
7239 7240 7241
        assert (
            self._init_op_creator is not None
        ), "Required self._init_op_creator is not None, but received None."
7242 7243
        self._init_op_creator(block)

7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262
    def __str__(self):
        """
        Convert a EagerParamBase object to a readable string.

        Returns(str): A readable string.

        Examples:
            .. code-block:: python

                import paddle
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
        """
        return "Parameter containing:\n{tensor}".format(
7263
            tensor=super().__str__()
7264
        )
7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299

    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)

                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        core.eager.tensor_copy(self, new_param, device, blocking)
7300 7301
        return new_param

7302 7303 7304
    __repr__ = __str__


Y
Yu Yang 已提交
7305
# program is a global instance.
Y
Yu Yang 已提交
7306 7307
_main_program_ = Program()
_startup_program_ = Program()
7308
_startup_program_._is_start_up_program_ = True
7309

7310

7311
def default_startup_program():
Y
Yu Yang 已提交
7312
    """
Y
yuyang18 已提交
7313 7314
    Get default/global startup program.

7315
    The :code:`paddle.nn` function will append the initialization operators into startup program.
7316
    The :code:`startup_program` will initialize the parameters by the OPs.
T
tangwei12 已提交
7317

7318 7319
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
7320

7321 7322
    Returns:
        Program: current default startup program.
7323

7324
    Returns type:
7325 7326 7327 7328

    Examples:
        .. code-block:: python

7329
            import paddle
7330

7331
            paddle.enable_static()
7332 7333 7334 7335
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
7336
    """
Y
Yu Yang 已提交
7337
    return _startup_program_
7338

7339

7340
def default_main_program():
Y
Yu Yang 已提交
7341
    """
7342
    This API can be used to get ``default main program`` which store the
7343
    descriptions of Ops and tensors.
T
tangwei12 已提交
7344

7345 7346
    For example ``z = paddle.add(x, y)`` will create a new ``add``
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` .
Y
yuyang18 已提交
7347

7348
    The ``default main program`` is the default value for ``Program`` parameter in
7349
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
7350
    :code:`default_main_program` when the program is not specified.
7351

7352
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
7353

Y
Yu Yang 已提交
7354
    Returns:
7355
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
7356 7357 7358 7359

    Examples:
        ..  code-block:: python

7360
            import paddle
7361

7362
            paddle.enable_static()
7363
            # Sample Network:
7364 7365 7366
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
7367

7368 7369 7370
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
7371
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
7372
    """
Y
Yu Yang 已提交
7373
    return _main_program_
Y
Yu Yang 已提交
7374 7375 7376 7377 7378


def switch_main_program(program):
    """
    Switch the main program to a new program.
7379

Y
Yu Yang 已提交
7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
7394
    Switch the startup program to a new program
Y
Yu Yang 已提交
7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
7407
@signature_safe_contextmanager
Y
Yu Yang 已提交
7408 7409
def program_guard(main_program, startup_program=None):
    """
7410 7411
    :api_attr: Static Graph

7412 7413 7414
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
7415

G
guofei 已提交
7416
    Args:
7417
        main_program(Program): New main program inside ``with`` statement.
7418 7419
        startup_program(Program, optional): New startup program inside ``with``
            statement. :code:`None` means not changing startup program,
G
guofei 已提交
7420 7421 7422
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
7423
    Examples:
7424
       .. code-block:: python
T
tangwei12 已提交
7425

7426
          import paddle
Y
yuyang18 已提交
7427

7428 7429 7430 7431 7432
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
7433
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
7434 7435 7436

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
7437

Y
Yu Yang 已提交
7438
    Examples:
7439
       .. code-block:: python
Y
yuyang18 已提交
7440

7441
          import paddle
7442

7443 7444 7445 7446 7447
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
7448

Y
Yu Yang 已提交
7449
    """
7450
    from .data_feeder import check_type
7451 7452 7453 7454

    check_type(
        main_program, 'main_program', Program, 'paddle.static.program_guard'
    )
Y
Yu Yang 已提交
7455 7456
    main_program = switch_main_program(main_program)
    if startup_program is not None:
7457 7458 7459 7460 7461 7462
        check_type(
            startup_program,
            'startup_program',
            Program,
            'paddle.static.program_guard',
        )
7463 7464
        # Tag the program __is_start_up as True
        startup_program._is_start_up_program_ = True
Y
Yu Yang 已提交
7465
        startup_program = switch_startup_program(startup_program)
7466 7467 7468 7469 7470 7471
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
7472 7473


W
Wu Yi 已提交
7474
def _get_var(name, program=None):
X
xuwei06 已提交
7475
    """
Y
yuyang18 已提交
7476
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
7477

X
xuwei06 已提交
7478 7479 7480
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
7481
        If None, default_global_program() will be used.
X
xuwei06 已提交
7482 7483 7484 7485 7486 7487 7488

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
7489
    assert isinstance(program, Program)
X
xuwei06 已提交
7490 7491

    return program.global_block().var(name)
7492 7493


S
rename  
sneaxiy 已提交
7494
@signature_safe_contextmanager
L
lujun 已提交
7495
def _dygraph_guard(tracer):
7496 7497 7498 7499
    tmp_tracer = global_var._dygraph_tracer_
    global_var._dygraph_tracer_ = tracer
    if tracer is not None:
        core._switch_tracer(tracer)
M
minqiyang 已提交
7500

7501 7502 7503
    try:
        yield
    finally:
7504 7505 7506
        if tmp_tracer is not None:
            core._switch_tracer(tmp_tracer)
        global_var._dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
7507 7508


S
rename  
sneaxiy 已提交
7509
@signature_safe_contextmanager
L
lujun 已提交
7510
def _dygraph_place_guard(place):
7511 7512 7513
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
7514 7515
    _set_dygraph_tracer_expected_place(place)

7516 7517 7518
    try:
        yield
    finally:
7519
        _global_expected_place_ = tmp_place
J
Jiabin Yang 已提交
7520
        _set_dygraph_tracer_expected_place(_global_expected_place_)
7521 7522


7523 7524 7525 7526 7527 7528 7529 7530 7531 7532
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
7533

7534
    Note:
7535
        The API only supports static graph mode.
7536 7537 7538 7539

    A context manager that specifies the device on which the OP will be placed.

    Args:
7540
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
7541
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs.
7542 7543 7544 7545 7546 7547 7548
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
7549

7550
        .. code-block:: python
7551

7552
            # required: gpu
Z
Zhang Ting 已提交
7553
            import paddle
7554

Z
Zhang Ting 已提交
7555 7556 7557
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
7558
            if support_gpu:
Z
Zhang Ting 已提交
7559
                place = paddle.CUDAPlace(0)
7560 7561

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
7562 7563 7564
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
7565

Z
Zhang Ting 已提交
7566
            with paddle.static.device_guard("cpu"):
7567
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
7568 7569
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
7570
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
7571
                out = paddle.reshape(data1, shape=shape)
7572

Z
Zhang Ting 已提交
7573 7574
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
7575 7576 7577
            result = exe.run(fetch_list=[out])
    """

7578 7579 7580 7581 7582
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
7583
    if device not in ['cpu', 'gpu', 'npu', 'xpu', 'mlu', '', None]:
7584
        raise ValueError(
7585
            "The Attr(device) should be 'cpu' 'npu' 'xpu' 'mlu' or 'gpu', and it can also be empty string or None "
7586 7587
            "when there is no need to specify device. But received %s" % device
        )
7588 7589
    if index:
        device = ":".join([device, index])
7590
    pre_device = switch_device(device)
7591 7592 7593 7594
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
7595 7596


7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608
def _switch_cuda_graph_mode(cuda_graph_attr):
    global _current_cuda_graph_mode
    pre_mode = _current_cuda_graph_mode
    _current_cuda_graph_mode = cuda_graph_attr
    return pre_mode


@signature_safe_contextmanager
def _cuda_graph_guard(cuda_graph_attr=None):
    """

    Note:
7609
        The API only supports static graph mode.
7610

7611
    A context manager that specifies the cuda_graph_mode which indicating the cuda graph capture under static graph mode.
7612 7613 7614 7615 7616

    Args:
        cuda_graph_attr(str|None): The cuda graph attr with the format of:
                                   cuda_graph_capture_mode;memory_pool_id;cuda_graph_id
    """
7617 7618
    assert (
        not _non_static_mode()
7619
    ), "cuda_graph_guard only works under static graph mode"
7620 7621
    assert (
        core.is_compiled_with_cuda()
7622 7623 7624 7625 7626 7627 7628 7629
    ), "cuda_graph_guard context can be only used when Paddle is compiled with cuda"
    pre_mode = _switch_cuda_graph_mode(cuda_graph_attr)
    try:
        yield
    finally:
        _switch_cuda_graph_mode(pre_mode)


G
guofei 已提交
7630 7631 7632
def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.
7633
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7634 7635 7636 7637 7638 7639 7640

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

7641 7642
                import paddle
                paddle.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
G
guofei 已提交
7643 7644 7645 7646
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
7647 7648
        if _global_flags().is_public(key):
            _global_flags()[key] = value
G
guofei 已提交
7649 7650
        else:
            raise ValueError(
7651 7652
                "Flag %s cannot set its value through this function." % (key)
            )
G
guofei 已提交
7653 7654 7655 7656 7657


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.
7658
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7659 7660 7661 7662 7663 7664 7665 7666 7667 7668

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

7669
            import paddle
G
guofei 已提交
7670 7671

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
7672
            res = paddle.get_flags(flags)
G
guofei 已提交
7673 7674 7675 7676 7677 7678
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
7679
            if _global_flags().is_public(key):
7680
                value = _global_flags()[key]
G
guofei 已提交
7681 7682 7683 7684
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
7685 7686 7687
                    'Flag %s cannot get its value through this function.'
                    % (key)
                )
G
guofei 已提交
7688
    elif isinstance(flags, str):
7689
        if _global_flags().is_public(flags):
7690
            value = _global_flags()[flags]
G
guofei 已提交
7691 7692 7693 7694
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
7695 7696
                'Flag %s cannot get its value through this function.' % (flags)
            )
G
guofei 已提交
7697 7698 7699
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
7700 7701 7702 7703 7704 7705


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719
    if isinstance(
        place,
        (
            core.Place,
            core.XPUPlace,
            core.CPUPlace,
            core.CUDAPinnedPlace,
            core.CUDAPlace,
            core.NPUPlace,
            core.IPUPlace,
            core.MLUPlace,
            core.CustomPlace,
        ),
    ):
7720 7721 7722 7723
        return place

    if not isinstance(place, str):
        raise ValueError(
7724 7725
            "place only support string which is 'Place' and so on."
        )
7726 7727

    place = place.lower()
7728
    if place == "cpu":
7729
        return core.CPUPlace()
7730

7731
    if place == "device":
7732 7733
        return core.Place()

7734
    # GPU
7735 7736 7737 7738
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
7739 7740 7741
                "The device should not be {}, since PaddlePaddle is "
                "not compiled with CUDA".format(avaliable_gpu_place)
            )
7742 7743 7744 7745 7746 7747 7748 7749 7750
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
7751 7752

    # XPU
7753 7754 7755 7756
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
7757 7758 7759
                "The device should not be {}, since PaddlePaddle is "
                "not compiled with XPU".format(avaliable_xpu_place)
            )
7760 7761 7762 7763
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
7764 7765 7766 7767 7768 7769

    # NPU
    avaliable_npu_place = re.match(r'npu:\d+', place)
    if avaliable_npu_place:
        if not core.is_compiled_with_npu():
            raise ValueError(
7770 7771 7772
                "The device should not be {}, since PaddlePaddle is "
                "not compiled with NPU".format(avaliable_npu_place)
            )
7773 7774 7775 7776 7777
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.NPUPlace(device_id)

J
jianghaicheng 已提交
7778 7779 7780 7781 7782
    # IPU
    avaliable_ipu_place = re.match(r'ipu:\d+', place)
    if avaliable_ipu_place:
        if not core.is_compiled_with_ipu():
            raise ValueError(
7783 7784 7785
                "The device should not be {}, since PaddlePaddle is "
                "not compiled with IPU".format(avaliable_ipu_place)
            )
J
jianghaicheng 已提交
7786 7787 7788 7789 7790
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.IPUPlace(device_id)

7791 7792 7793 7794 7795
    # MLU
    avaliable_mlu_place = re.match(r'mlu:\d+', place)
    if avaliable_mlu_place:
        if not core.is_compiled_with_mlu():
            raise ValueError(
7796 7797 7798
                "The device should not be {}, since PaddlePaddle is "
                "not compiled with MLU".format(avaliable_mlu_place)
            )
7799 7800 7801 7802 7803
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.MLUPlace(device_id)

7804
    raise ValueError(
7805 7806 7807 7808
        "Paddle supports CPUPlace, CUDAPlace,CUDAPinnedPlace, XPUPlace, IPUPlace, MLUPlace and NPUPlace, but received {}.".format(
            place
        )
    )
7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821


def _get_paddle_place_list(places):

    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret