sched.c 236.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
58
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
59
#include <linux/seq_file.h>
60
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
61 62
#include <linux/syscalls.h>
#include <linux/times.h>
63
#include <linux/tsacct_kern.h>
64
#include <linux/kprobes.h>
65
#include <linux/delayacct.h>
66
#include <linux/reciprocal_div.h>
67
#include <linux/unistd.h>
J
Jens Axboe 已提交
68
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
69
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
70
#include <linux/tick.h>
71
#include <linux/bootmem.h>
P
Peter Zijlstra 已提交
72 73
#include <linux/debugfs.h>
#include <linux/ctype.h>
74
#include <linux/ftrace.h>
75
#include <trace/sched.h>
L
Linus Torvalds 已提交
76

77
#include <asm/tlb.h>
78
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
79

80 81
#include "sched_cpupri.h"

L
Linus Torvalds 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
101
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
102
 */
103
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
104

I
Ingo Molnar 已提交
105 106 107
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
108 109 110
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
111
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
112 113 114
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
115

116 117 118 119 120
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

121 122 123 124 125 126
DEFINE_TRACE(sched_wait_task);
DEFINE_TRACE(sched_wakeup);
DEFINE_TRACE(sched_wakeup_new);
DEFINE_TRACE(sched_switch);
DEFINE_TRACE(sched_migrate_task);

127
#ifdef CONFIG_SMP
128 129 130

static void double_rq_lock(struct rq *rq1, struct rq *rq2);

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

151 152
static inline int rt_policy(int policy)
{
153
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
154 155 156 157 158 159 160 161 162
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
163
/*
I
Ingo Molnar 已提交
164
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
165
 */
I
Ingo Molnar 已提交
166 167 168 169 170
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

171
struct rt_bandwidth {
I
Ingo Molnar 已提交
172 173 174 175 176
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
210 211
	spin_lock_init(&rt_b->rt_runtime_lock);

212 213 214 215 216
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

217 218 219
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
220 221 222 223 224 225
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

226
	if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
227 228 229 230 231 232 233 234 235 236 237 238
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
239 240
		hrtimer_start_expires(&rt_b->rt_period_timer,
				HRTIMER_MODE_ABS);
241 242 243 244 245 246 247 248 249 250 251
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

252 253 254 255 256 257
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

258
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
259

260 261
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
262 263
struct cfs_rq;

P
Peter Zijlstra 已提交
264 265
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
266
/* task group related information */
267
struct task_group {
268
#ifdef CONFIG_CGROUP_SCHED
269 270
	struct cgroup_subsys_state css;
#endif
271

272 273 274 275
#ifdef CONFIG_USER_SCHED
	uid_t uid;
#endif

276
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
277 278 279 280 281
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
282 283 284 285 286 287
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

288
	struct rt_bandwidth rt_bandwidth;
289
#endif
290

291
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
292
	struct list_head list;
P
Peter Zijlstra 已提交
293 294 295 296

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
297 298
};

D
Dhaval Giani 已提交
299
#ifdef CONFIG_USER_SCHED
300

301 302 303 304 305 306
/* Helper function to pass uid information to create_sched_user() */
void set_tg_uid(struct user_struct *user)
{
	user->tg->uid = user->uid;
}

307 308 309 310 311 312 313
/*
 * Root task group.
 * 	Every UID task group (including init_task_group aka UID-0) will
 * 	be a child to this group.
 */
struct task_group root_task_group;

314
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
315 316 317 318
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
319
#endif /* CONFIG_FAIR_GROUP_SCHED */
320 321 322 323

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
324
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
325
#else /* !CONFIG_USER_SCHED */
326
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
327
#endif /* CONFIG_USER_SCHED */
P
Peter Zijlstra 已提交
328

329
/* task_group_lock serializes add/remove of task groups and also changes to
330 331
 * a task group's cpu shares.
 */
332
static DEFINE_SPINLOCK(task_group_lock);
333

334 335 336
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
337
#else /* !CONFIG_USER_SCHED */
338
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
339
#endif /* CONFIG_USER_SCHED */
340

341
/*
342 343 344 345
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
346 347 348
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
349
#define MIN_SHARES	2
350
#define MAX_SHARES	(1UL << 18)
351

352 353 354
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
355
/* Default task group.
I
Ingo Molnar 已提交
356
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
357
 */
358
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
359 360

/* return group to which a task belongs */
361
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
362
{
363
	struct task_group *tg;
364

365
#ifdef CONFIG_USER_SCHED
366 367 368
	rcu_read_lock();
	tg = __task_cred(p)->user->tg;
	rcu_read_unlock();
369
#elif defined(CONFIG_CGROUP_SCHED)
370 371
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
372
#else
I
Ingo Molnar 已提交
373
	tg = &init_task_group;
374
#endif
375
	return tg;
S
Srivatsa Vaddagiri 已提交
376 377 378
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
379
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
380
{
381
#ifdef CONFIG_FAIR_GROUP_SCHED
382 383
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
384
#endif
P
Peter Zijlstra 已提交
385

386
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
387 388
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
389
#endif
S
Srivatsa Vaddagiri 已提交
390 391 392 393
}

#else

P
Peter Zijlstra 已提交
394
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
395 396 397 398
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
399

400
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
401

I
Ingo Molnar 已提交
402 403 404 405 406 407
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
408
	u64 min_vruntime;
I
Ingo Molnar 已提交
409 410 411

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
412 413 414 415 416 417

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
418 419
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
420
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
421

P
Peter Zijlstra 已提交
422
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
423

424
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
425 426
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
427 428
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
429 430 431 432 433 434
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
435 436
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
437 438 439

#ifdef CONFIG_SMP
	/*
440
	 * the part of load.weight contributed by tasks
441
	 */
442
	unsigned long task_weight;
443

444 445 446 447 448 449 450
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
451

452 453 454 455
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
456 457 458 459 460

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
461
#endif
I
Ingo Molnar 已提交
462 463
#endif
};
L
Linus Torvalds 已提交
464

I
Ingo Molnar 已提交
465 466 467
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
468
	unsigned long rt_nr_running;
469
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
470 471
	int highest_prio; /* highest queued rt task prio */
#endif
P
Peter Zijlstra 已提交
472
#ifdef CONFIG_SMP
473
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
474
	int overloaded;
P
Peter Zijlstra 已提交
475
#endif
P
Peter Zijlstra 已提交
476
	int rt_throttled;
P
Peter Zijlstra 已提交
477
	u64 rt_time;
P
Peter Zijlstra 已提交
478
	u64 rt_runtime;
I
Ingo Molnar 已提交
479
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
480
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
481

482
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
483 484
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
485 486 487 488 489
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
490 491
};

G
Gregory Haskins 已提交
492 493 494 495
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
496 497
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
498 499 500 501 502 503
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
504 505
	cpumask_var_t span;
	cpumask_var_t online;
506

I
Ingo Molnar 已提交
507
	/*
508 509 510
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
511
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
512
	atomic_t rto_count;
513 514 515
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
516 517 518 519 520 521 522 523
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	/*
	 * Preferred wake up cpu nominated by sched_mc balance that will be
	 * used when most cpus are idle in the system indicating overall very
	 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
	 */
	unsigned int sched_mc_preferred_wakeup_cpu;
#endif
G
Gregory Haskins 已提交
524 525
};

526 527 528 529
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
530 531 532 533
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
534 535 536 537 538 539 540
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
541
struct rq {
542 543
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
544 545 546 547 548 549

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
550 551
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
552
	unsigned char idle_at_tick;
553
#ifdef CONFIG_NO_HZ
554
	unsigned long last_tick_seen;
555 556
	unsigned char in_nohz_recently;
#endif
557 558
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
559 560 561 562
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
563 564
	struct rt_rq rt;

I
Ingo Molnar 已提交
565
#ifdef CONFIG_FAIR_GROUP_SCHED
566 567
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
568 569
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
570
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
571 572 573 574 575 576 577 578 579 580
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

581
	struct task_struct *curr, *idle;
582
	unsigned long next_balance;
L
Linus Torvalds 已提交
583
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
584

585
	u64 clock;
I
Ingo Molnar 已提交
586

L
Linus Torvalds 已提交
587 588 589
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
590
	struct root_domain *rd;
L
Linus Torvalds 已提交
591 592 593 594 595
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
596 597
	/* cpu of this runqueue: */
	int cpu;
598
	int online;
L
Linus Torvalds 已提交
599

600
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
601

602
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
603 604 605
	struct list_head migration_queue;
#endif

P
Peter Zijlstra 已提交
606
#ifdef CONFIG_SCHED_HRTICK
607 608 609 610
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
611 612 613
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
614 615 616
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
617 618
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
619 620

	/* sys_sched_yield() stats */
621 622 623 624
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
625 626

	/* schedule() stats */
627 628 629
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
630 631

	/* try_to_wake_up() stats */
632 633
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
634 635

	/* BKL stats */
636
	unsigned int bkl_count;
L
Linus Torvalds 已提交
637 638 639
#endif
};

640
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
641

642
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
I
Ingo Molnar 已提交
643
{
644
	rq->curr->sched_class->check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
645 646
}

647 648 649 650 651 652 653 654 655
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
656 657
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
658
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
659 660 661 662
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
663 664
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
665 666 667 668 669 670

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

671 672 673 674 675
static inline void update_rq_clock(struct rq *rq)
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
676 677 678 679 680 681 682 683 684
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
/**
 * runqueue_is_locked
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
int runqueue_is_locked(void)
{
	int cpu = get_cpu();
	struct rq *rq = cpu_rq(cpu);
	int ret;

	ret = spin_is_locked(&rq->lock);
	put_cpu();
	return ret;
}

I
Ingo Molnar 已提交
703 704 705
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
706 707 708 709

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
710
enum {
P
Peter Zijlstra 已提交
711
#include "sched_features.h"
I
Ingo Molnar 已提交
712 713
};

P
Peter Zijlstra 已提交
714 715 716 717 718
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
719
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
720 721 722 723 724 725 726 727 728
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

729
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
730 731 732 733 734 735
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
736
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
737 738 739 740
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
741 742 743
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
744
	}
L
Li Zefan 已提交
745
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
746

L
Li Zefan 已提交
747
	return 0;
P
Peter Zijlstra 已提交
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
767
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

L
Li Zefan 已提交
792 793 794 795 796
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

P
Peter Zijlstra 已提交
797
static struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
798 799 800 801 802
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
803 804 805 806 807 808 809 810 811 812 813 814 815 816
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
817

818 819 820 821 822 823
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
824 825
/*
 * ratelimit for updating the group shares.
826
 * default: 0.25ms
P
Peter Zijlstra 已提交
827
 */
828
unsigned int sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
829

830 831 832 833 834 835 836
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

P
Peter Zijlstra 已提交
837
/*
P
Peter Zijlstra 已提交
838
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
839 840
 * default: 1s
 */
P
Peter Zijlstra 已提交
841
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
842

843 844
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
845 846 847 848 849
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
850

851 852 853 854 855 856 857
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
858
	if (sysctl_sched_rt_runtime < 0)
859 860 861 862
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
863

L
Linus Torvalds 已提交
864
#ifndef prepare_arch_switch
865 866 867 868 869 870
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

871 872 873 874 875
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

876
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
877
static inline int task_running(struct rq *rq, struct task_struct *p)
878
{
879
	return task_current(rq, p);
880 881
}

882
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
883 884 885
{
}

886
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
887
{
888 889 890 891
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
892 893 894 895 896 897 898
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

899 900 901 902
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
903
static inline int task_running(struct rq *rq, struct task_struct *p)
904 905 906 907
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
908
	return task_current(rq, p);
909 910 911
#endif
}

912
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

929
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
930 931 932 933 934 935 936 937 938 939 940 941
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
942
#endif
943 944
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
945

946 947 948 949
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
950
static inline struct rq *__task_rq_lock(struct task_struct *p)
951 952
	__acquires(rq->lock)
{
953 954 955 956 957
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
958 959 960 961
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
962 963
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
964
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
965 966
 * explicitly disabling preemption.
 */
967
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
968 969
	__acquires(rq->lock)
{
970
	struct rq *rq;
L
Linus Torvalds 已提交
971

972 973 974 975 976 977
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
978 979 980 981
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

982 983 984 985 986 987 988 989
void task_rq_unlock_wait(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	smp_mb(); /* spin-unlock-wait is not a full memory barrier */
	spin_unlock_wait(&rq->lock);
}

A
Alexey Dobriyan 已提交
990
static void __task_rq_unlock(struct rq *rq)
991 992 993 994 995
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

996
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
997 998 999 1000 1001 1002
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
1003
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
1004
 */
A
Alexey Dobriyan 已提交
1005
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
1006 1007
	__acquires(rq->lock)
{
1008
	struct rq *rq;
L
Linus Torvalds 已提交
1009 1010 1011 1012 1013 1014 1015 1016

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1038
	if (!cpu_active(cpu_of(rq)))
1039
		return 0;
P
Peter Zijlstra 已提交
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1060
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1061 1062 1063 1064 1065 1066
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1067
#ifdef CONFIG_SMP
1068 1069 1070 1071
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1072
{
1073
	struct rq *rq = arg;
1074

1075 1076 1077 1078
	spin_lock(&rq->lock);
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
	spin_unlock(&rq->lock);
1079 1080
}

1081 1082 1083 1084 1085 1086
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1087
{
1088 1089
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1090

1091
	hrtimer_set_expires(timer, time);
1092 1093 1094 1095 1096 1097 1098

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
		rq->hrtick_csd_pending = 1;
	}
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1113
		hrtick_clear(cpu_rq(cpu));
1114 1115 1116 1117 1118 1119
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1120
static __init void init_hrtick(void)
1121 1122 1123
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
}
1134

A
Andrew Morton 已提交
1135
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1136 1137
{
}
1138
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1139

1140
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1141
{
1142 1143
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1144

1145 1146 1147 1148
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1149

1150 1151
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1152
}
A
Andrew Morton 已提交
1153
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1154 1155 1156 1157 1158 1159 1160 1161
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1162 1163 1164
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1165
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1166

I
Ingo Molnar 已提交
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1180
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1181 1182 1183 1184 1185
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

1186
	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
I
Ingo Molnar 已提交
1187 1188
		return;

1189
	set_tsk_thread_flag(p, TIF_NEED_RESCHED);
I
Ingo Molnar 已提交
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
	set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1252
#endif /* CONFIG_NO_HZ */
1253

1254
#else /* !CONFIG_SMP */
1255
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1256 1257
{
	assert_spin_locked(&task_rq(p)->lock);
1258
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1259
}
1260
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1261

1262 1263 1264 1265 1266 1267 1268 1269
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1270 1271 1272
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1273
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1274

1275 1276 1277
/*
 * delta *= weight / lw
 */
1278
static unsigned long
1279 1280 1281 1282 1283
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1284 1285 1286 1287 1288 1289 1290
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1291 1292 1293 1294 1295

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1296
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1297
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1298 1299
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1300
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1301

1302
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1303 1304
}

1305
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1306 1307
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1308
	lw->inv_weight = 0;
1309 1310
}

1311
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1312 1313
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1314
	lw->inv_weight = 0;
1315 1316
}

1317 1318 1319 1320
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1321
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1322 1323 1324 1325
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1326 1327
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1328 1329 1330 1331 1332 1333 1334 1335 1336

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1337 1338 1339
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1340 1341
 */
static const int prio_to_weight[40] = {
1342 1343 1344 1345 1346 1347 1348 1349
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1350 1351
};

1352 1353 1354 1355 1356 1357 1358
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1359
static const u32 prio_to_wmult[40] = {
1360 1361 1362 1363 1364 1365 1366 1367
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1368
};
1369

I
Ingo Molnar 已提交
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1395

1396 1397 1398 1399 1400 1401 1402 1403
/* Time spent by the tasks of the cpu accounting group executing in ... */
enum cpuacct_stat_index {
	CPUACCT_STAT_USER,	/* ... user mode */
	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */

	CPUACCT_STAT_NSTATS,
};

1404 1405
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1406 1407
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val);
1408 1409
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1410 1411
static inline void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val) {}
1412 1413
#endif

1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1424
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1425
typedef int (*tg_visitor)(struct task_group *, void *);
1426 1427 1428 1429 1430

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1431
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1432 1433
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1434
	int ret;
1435 1436 1437 1438

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1439 1440 1441
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1442 1443 1444 1445 1446 1447 1448
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1449 1450 1451
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1452 1453 1454 1455 1456

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1457
out_unlock:
1458
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1459 1460

	return ret;
1461 1462
}

P
Peter Zijlstra 已提交
1463 1464 1465
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1466
}
P
Peter Zijlstra 已提交
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
#endif

#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1477
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1478

1479 1480
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1481 1482
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1483 1484 1485 1486 1487

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1488 1489 1490 1491 1492 1493 1494

static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
static void
1495 1496
update_group_shares_cpu(struct task_group *tg, int cpu,
			unsigned long sd_shares, unsigned long sd_rq_weight)
1497
{
1498 1499 1500
	unsigned long shares;
	unsigned long rq_weight;

1501
	if (!tg->se[cpu])
1502 1503
		return;

1504
	rq_weight = tg->cfs_rq[cpu]->rq_weight;
1505

1506 1507 1508 1509 1510 1511
	/*
	 *           \Sum shares * rq_weight
	 * shares =  -----------------------
	 *               \Sum rq_weight
	 *
	 */
1512
	shares = (sd_shares * rq_weight) / sd_rq_weight;
1513
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1514

1515 1516 1517 1518
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1519

1520
		spin_lock_irqsave(&rq->lock, flags);
1521
		tg->cfs_rq[cpu]->shares = shares;
1522

1523 1524 1525
		__set_se_shares(tg->se[cpu], shares);
		spin_unlock_irqrestore(&rq->lock, flags);
	}
1526
}
1527 1528

/*
1529 1530 1531
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1532
 */
P
Peter Zijlstra 已提交
1533
static int tg_shares_up(struct task_group *tg, void *data)
1534
{
1535
	unsigned long weight, rq_weight = 0;
1536
	unsigned long shares = 0;
P
Peter Zijlstra 已提交
1537
	struct sched_domain *sd = data;
1538
	int i;
1539

1540
	for_each_cpu(i, sched_domain_span(sd)) {
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
		/*
		 * If there are currently no tasks on the cpu pretend there
		 * is one of average load so that when a new task gets to
		 * run here it will not get delayed by group starvation.
		 */
		weight = tg->cfs_rq[i]->load.weight;
		if (!weight)
			weight = NICE_0_LOAD;

		tg->cfs_rq[i]->rq_weight = weight;
		rq_weight += weight;
1552
		shares += tg->cfs_rq[i]->shares;
1553 1554
	}

1555 1556 1557 1558 1559
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1560

1561
	for_each_cpu(i, sched_domain_span(sd))
1562
		update_group_shares_cpu(tg, i, shares, rq_weight);
P
Peter Zijlstra 已提交
1563 1564

	return 0;
1565 1566 1567
}

/*
1568 1569 1570
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1571
 */
P
Peter Zijlstra 已提交
1572
static int tg_load_down(struct task_group *tg, void *data)
1573
{
1574
	unsigned long load;
P
Peter Zijlstra 已提交
1575
	long cpu = (long)data;
1576

1577 1578 1579 1580 1581 1582 1583
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1584

1585
	tg->cfs_rq[cpu]->h_load = load;
1586

P
Peter Zijlstra 已提交
1587
	return 0;
1588 1589
}

1590
static void update_shares(struct sched_domain *sd)
1591
{
P
Peter Zijlstra 已提交
1592 1593 1594 1595 1596
	u64 now = cpu_clock(raw_smp_processor_id());
	s64 elapsed = now - sd->last_update;

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1597
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1598
	}
1599 1600
}

1601 1602 1603 1604 1605 1606 1607
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
	spin_unlock(&rq->lock);
	update_shares(sd);
	spin_lock(&rq->lock);
}

P
Peter Zijlstra 已提交
1608
static void update_h_load(long cpu)
1609
{
P
Peter Zijlstra 已提交
1610
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1611 1612 1613 1614
}

#else

1615
static inline void update_shares(struct sched_domain *sd)
1616 1617 1618
{
}

1619 1620 1621 1622
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
}

1623 1624
#endif

1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
	if (unlikely(!spin_trylock(&busiest->lock))) {
		if (busiest < this_rq) {
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
			ret = 1;
		} else
			spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
	}
	return ret;
}

static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
	spin_unlock(&busiest->lock);
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1658 1659
#endif

V
Vegard Nossum 已提交
1660
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1661 1662
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1663
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1664 1665 1666
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1667
#endif
1668

I
Ingo Molnar 已提交
1669 1670
#include "sched_stats.h"
#include "sched_idletask.c"
1671 1672
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1673 1674 1675 1676 1677
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1678 1679
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1680

1681
static void inc_nr_running(struct rq *rq)
1682 1683 1684 1685
{
	rq->nr_running++;
}

1686
static void dec_nr_running(struct rq *rq)
1687 1688 1689 1690
{
	rq->nr_running--;
}

1691 1692 1693
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1694 1695 1696 1697
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1698

I
Ingo Molnar 已提交
1699 1700 1701 1702 1703 1704 1705 1706
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1707

I
Ingo Molnar 已提交
1708 1709
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1710 1711
}

1712 1713 1714 1715 1716 1717
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1718
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1719
{
I
Ingo Molnar 已提交
1720
	sched_info_queued(p);
1721
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1722
	p->se.on_rq = 1;
1723 1724
}

1725
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1726
{
1727 1728 1729 1730 1731 1732
	if (sleep && p->se.last_wakeup) {
		update_avg(&p->se.avg_overlap,
			   p->se.sum_exec_runtime - p->se.last_wakeup);
		p->se.last_wakeup = 0;
	}

1733
	sched_info_dequeued(p);
1734
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1735
	p->se.on_rq = 0;
1736 1737
}

1738
/*
I
Ingo Molnar 已提交
1739
 * __normal_prio - return the priority that is based on the static prio
1740 1741 1742
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1743
	return p->static_prio;
1744 1745
}

1746 1747 1748 1749 1750 1751 1752
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1753
static inline int normal_prio(struct task_struct *p)
1754 1755 1756
{
	int prio;

1757
	if (task_has_rt_policy(p))
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1771
static int effective_prio(struct task_struct *p)
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1784
/*
I
Ingo Molnar 已提交
1785
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1786
 */
I
Ingo Molnar 已提交
1787
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1788
{
1789
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1790
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1791

1792
	enqueue_task(rq, p, wakeup);
1793
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1794 1795 1796 1797 1798
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1799
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1800
{
1801
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1802 1803
		rq->nr_uninterruptible++;

1804
	dequeue_task(rq, p, sleep);
1805
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1806 1807 1808 1809 1810 1811
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1812
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1813 1814 1815 1816
{
	return cpu_curr(task_cpu(p)) == p;
}

I
Ingo Molnar 已提交
1817 1818
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1819
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1820
#ifdef CONFIG_SMP
1821 1822 1823 1824 1825 1826
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1827 1828
	task_thread_info(p)->cpu = cpu;
#endif
1829 1830
}

1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1843
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1844

1845 1846 1847 1848 1849 1850
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

1851 1852 1853
/*
 * Is this task likely cache-hot:
 */
1854
static int
1855 1856 1857 1858
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

1859 1860 1861
	/*
	 * Buddy candidates are cache hot:
	 */
P
Peter Zijlstra 已提交
1862 1863 1864
	if (sched_feat(CACHE_HOT_BUDDY) &&
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
1865 1866
		return 1;

1867 1868 1869
	if (p->sched_class != &fair_sched_class)
		return 0;

1870 1871 1872 1873 1874
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1875 1876 1877 1878 1879 1880
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1881
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1882
{
I
Ingo Molnar 已提交
1883 1884
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1885 1886
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1887
	u64 clock_offset;
I
Ingo Molnar 已提交
1888 1889

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1890

1891 1892
	trace_sched_migrate_task(p, task_cpu(p), new_cpu);

I
Ingo Molnar 已提交
1893 1894 1895
#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1896 1897 1898 1899
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1900 1901 1902 1903 1904
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1905
#endif
1906 1907
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1908 1909

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1910 1911
}

1912
struct migration_req {
L
Linus Torvalds 已提交
1913 1914
	struct list_head list;

1915
	struct task_struct *task;
L
Linus Torvalds 已提交
1916 1917 1918
	int dest_cpu;

	struct completion done;
1919
};
L
Linus Torvalds 已提交
1920 1921 1922 1923 1924

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1925
static int
1926
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1927
{
1928
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1929 1930 1931 1932 1933

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1934
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1935 1936 1937 1938 1939 1940 1941 1942
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1943

L
Linus Torvalds 已提交
1944 1945 1946 1947 1948 1949
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1950 1951 1952 1953 1954 1955 1956
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1957 1958 1959 1960 1961 1962
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1963
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1964 1965
{
	unsigned long flags;
I
Ingo Molnar 已提交
1966
	int running, on_rq;
R
Roland McGrath 已提交
1967
	unsigned long ncsw;
1968
	struct rq *rq;
L
Linus Torvalds 已提交
1969

1970 1971 1972 1973 1974 1975 1976 1977
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1978

1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1990 1991 1992
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1993
			cpu_relax();
R
Roland McGrath 已提交
1994
		}
1995

1996 1997 1998 1999 2000 2001
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2002
		trace_sched_wait_task(rq, p);
2003 2004
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
2005
		ncsw = 0;
2006
		if (!match_state || p->state == match_state)
2007
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2008
		task_rq_unlock(rq, &flags);
2009

R
Roland McGrath 已提交
2010 2011 2012 2013 2014 2015
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2026

2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2040

2041 2042 2043 2044 2045 2046 2047
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2048 2049

	return ncsw;
L
Linus Torvalds 已提交
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2065
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
2077 2078
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2079 2080 2081 2082
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
2083
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
2084
{
2085
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2086
	unsigned long total = weighted_cpuload(cpu);
2087

2088
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2089
		return total;
2090

I
Ingo Molnar 已提交
2091
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
2092 2093 2094
}

/*
2095 2096
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2097
 */
A
Alexey Dobriyan 已提交
2098
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
2099
{
2100
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2101
	unsigned long total = weighted_cpuload(cpu);
2102

2103
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2104
		return total;
2105

I
Ingo Molnar 已提交
2106
	return max(rq->cpu_load[type-1], total);
2107 2108
}

N
Nick Piggin 已提交
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

2126
		/* Skip over this group if it has no CPUs allowed */
2127 2128
		if (!cpumask_intersects(sched_group_cpus(group),
					&p->cpus_allowed))
2129
			continue;
2130

2131 2132
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
N
Nick Piggin 已提交
2133 2134 2135 2136

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

2137
		for_each_cpu(i, sched_group_cpus(group)) {
N
Nick Piggin 已提交
2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
2148 2149
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
2150 2151 2152 2153 2154 2155 2156 2157

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
2158
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
2159 2160 2161 2162 2163 2164 2165

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
2166
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
2167
 */
I
Ingo Molnar 已提交
2168
static int
2169
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
2170 2171 2172 2173 2174
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

2175
	/* Traverse only the allowed CPUs */
2176
	for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2177
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
2178 2179 2180 2181 2182 2183 2184 2185 2186 2187

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
2203

2204
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
2205 2206 2207
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
2208 2209
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
2210 2211
		if (tmp->flags & flag)
			sd = tmp;
2212
	}
N
Nick Piggin 已提交
2213

2214 2215 2216
	if (sd)
		update_shares(sd);

N
Nick Piggin 已提交
2217 2218
	while (sd) {
		struct sched_group *group;
2219 2220 2221 2222 2223 2224
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2225 2226

		group = find_idlest_group(sd, t, cpu);
2227 2228 2229 2230
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2231

2232
		new_cpu = find_idlest_cpu(group, t, cpu);
2233 2234 2235 2236 2237
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2238

2239
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
2240
		cpu = new_cpu;
2241
		weight = cpumask_weight(sched_domain_span(sd));
N
Nick Piggin 已提交
2242 2243
		sd = NULL;
		for_each_domain(cpu, tmp) {
2244
			if (weight <= cpumask_weight(sched_domain_span(tmp)))
N
Nick Piggin 已提交
2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
2271
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
2272
{
2273
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2274 2275
	unsigned long flags;
	long old_state;
2276
	struct rq *rq;
L
Linus Torvalds 已提交
2277

2278 2279 2280
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

2281 2282 2283 2284 2285 2286 2287 2288 2289
	if (!sync) {
		if (current->se.avg_overlap < sysctl_sched_migration_cost &&
			  p->se.avg_overlap < sysctl_sched_migration_cost)
			sync = 1;
	} else {
		if (current->se.avg_overlap >= sysctl_sched_migration_cost ||
			  p->se.avg_overlap >= sysctl_sched_migration_cost)
			sync = 0;
	}
P
Peter Zijlstra 已提交
2290

P
Peter Zijlstra 已提交
2291 2292 2293 2294 2295 2296 2297 2298
#ifdef CONFIG_SMP
	if (sched_feat(LB_WAKEUP_UPDATE)) {
		struct sched_domain *sd;

		this_cpu = raw_smp_processor_id();
		cpu = task_cpu(p);

		for_each_domain(this_cpu, sd) {
2299
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
2300 2301 2302 2303 2304 2305 2306
				update_shares(sd);
				break;
			}
		}
	}
#endif

2307
	smp_wmb();
L
Linus Torvalds 已提交
2308
	rq = task_rq_lock(p, &flags);
2309
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2310 2311 2312 2313
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
2314
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2315 2316 2317
		goto out_running;

	cpu = task_cpu(p);
2318
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2319 2320 2321 2322 2323 2324
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2325 2326 2327
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2328 2329 2330 2331 2332 2333
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2334
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2335 2336 2337 2338 2339 2340
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2341 2342 2343 2344 2345 2346 2347
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2348
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2349 2350 2351 2352 2353
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2354
#endif /* CONFIG_SCHEDSTATS */
2355

L
Linus Torvalds 已提交
2356 2357
out_activate:
#endif /* CONFIG_SMP */
2358 2359 2360 2361 2362 2363 2364 2365 2366
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2367
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2368 2369 2370
	success = 1;

out_running:
2371
	trace_sched_wakeup(rq, p, success);
2372
	check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
2373

L
Linus Torvalds 已提交
2374
	p->state = TASK_RUNNING;
2375 2376 2377 2378
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2379
out:
2380 2381
	current->se.last_wakeup = current->se.sum_exec_runtime;

L
Linus Torvalds 已提交
2382 2383 2384 2385 2386
	task_rq_unlock(rq, &flags);

	return success;
}

2387
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2388
{
2389
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2390 2391 2392
}
EXPORT_SYMBOL(wake_up_process);

2393
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2394 2395 2396 2397 2398 2399 2400
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2401 2402 2403 2404 2405 2406 2407
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2408
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
2409 2410
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
I
Ingo Molnar 已提交
2411 2412 2413

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
2414 2415 2416 2417 2418 2419
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
2420
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
2421
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
2422
#endif
N
Nick Piggin 已提交
2423

P
Peter Zijlstra 已提交
2424
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2425
	p->se.on_rq = 0;
2426
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2427

2428 2429 2430 2431
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2432 2433 2434 2435 2436 2437 2438
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2453
	set_task_cpu(p, cpu);
2454 2455 2456 2457 2458

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
2459 2460
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2461

2462
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2463
	if (likely(sched_info_on()))
2464
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2465
#endif
2466
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2467 2468
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2469
#ifdef CONFIG_PREEMPT
2470
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2471
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2472
#endif
N
Nick Piggin 已提交
2473
	put_cpu();
L
Linus Torvalds 已提交
2474 2475 2476 2477 2478 2479 2480 2481 2482
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2483
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2484 2485
{
	unsigned long flags;
I
Ingo Molnar 已提交
2486
	struct rq *rq;
L
Linus Torvalds 已提交
2487 2488

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2489
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2490
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2491 2492 2493

	p->prio = effective_prio(p);

2494
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2495
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2496 2497
	} else {
		/*
I
Ingo Molnar 已提交
2498 2499
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2500
		 */
2501
		p->sched_class->task_new(rq, p);
2502
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2503
	}
2504
	trace_sched_wakeup_new(rq, p, 1);
2505
	check_preempt_curr(rq, p, 0);
2506 2507 2508 2509
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2510
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2511 2512
}

2513 2514 2515
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
2516 2517
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
2518 2519 2520 2521 2522 2523 2524 2525 2526
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2527
 * @notifier: notifier struct to unregister
2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2557
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2569
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2570

2571 2572 2573
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2574
 * @prev: the current task that is being switched out
2575 2576 2577 2578 2579 2580 2581 2582 2583
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2584 2585 2586
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2587
{
2588
	fire_sched_out_preempt_notifiers(prev, next);
2589 2590 2591 2592
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2593 2594
/**
 * finish_task_switch - clean up after a task-switch
2595
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2596 2597
 * @prev: the thread we just switched away from.
 *
2598 2599 2600 2601
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2602 2603
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2604
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2605 2606 2607
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2608
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2609 2610 2611
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2612
	long prev_state;
L
Linus Torvalds 已提交
2613 2614 2615 2616 2617

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2618
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2619 2620
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2621
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2622 2623 2624 2625 2626
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2627
	prev_state = prev->state;
2628 2629
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
2630 2631 2632 2633
#ifdef CONFIG_SMP
	if (current->sched_class->post_schedule)
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2634

2635
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2636 2637
	if (mm)
		mmdrop(mm);
2638
	if (unlikely(prev_state == TASK_DEAD)) {
2639 2640 2641
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2642
		 */
2643
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2644
		put_task_struct(prev);
2645
	}
L
Linus Torvalds 已提交
2646 2647 2648 2649 2650 2651
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2652
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2653 2654
	__releases(rq->lock)
{
2655 2656
	struct rq *rq = this_rq();

2657 2658 2659 2660 2661
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2662
	if (current->set_child_tid)
2663
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2664 2665 2666 2667 2668 2669
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2670
static inline void
2671
context_switch(struct rq *rq, struct task_struct *prev,
2672
	       struct task_struct *next)
L
Linus Torvalds 已提交
2673
{
I
Ingo Molnar 已提交
2674
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2675

2676
	prepare_task_switch(rq, prev, next);
2677
	trace_sched_switch(rq, prev, next);
I
Ingo Molnar 已提交
2678 2679
	mm = next->mm;
	oldmm = prev->active_mm;
2680 2681 2682 2683 2684 2685 2686
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2687
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2688 2689 2690 2691 2692 2693
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2694
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2695 2696 2697
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2698 2699 2700 2701 2702 2703 2704
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2705
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2706
#endif
L
Linus Torvalds 已提交
2707 2708 2709 2710

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2711 2712 2713 2714 2715 2716 2717
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2741
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2756 2757
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2758

2759
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2760 2761 2762 2763 2764 2765 2766 2767 2768
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2769
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2770 2771 2772 2773 2774
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2790
/*
I
Ingo Molnar 已提交
2791 2792
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2793
 */
I
Ingo Molnar 已提交
2794
static void update_cpu_load(struct rq *this_rq)
2795
{
2796
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2809 2810 2811 2812 2813 2814 2815
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2816 2817
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2818 2819
}

I
Ingo Molnar 已提交
2820 2821
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2822 2823 2824 2825 2826 2827
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2828
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2829 2830 2831
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2832
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2833 2834 2835 2836
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2837
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2838
			spin_lock(&rq1->lock);
2839
			spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2840 2841
		} else {
			spin_lock(&rq2->lock);
2842
			spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2843 2844
		}
	}
2845 2846
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2847 2848 2849 2850 2851 2852 2853 2854
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2855
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
2869
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
2870 2871
 * the cpu_allowed mask is restored.
 */
2872
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2873
{
2874
	struct migration_req req;
L
Linus Torvalds 已提交
2875
	unsigned long flags;
2876
	struct rq *rq;
L
Linus Torvalds 已提交
2877 2878

	rq = task_rq_lock(p, &flags);
2879
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
2880
	    || unlikely(!cpu_active(dest_cpu)))
L
Linus Torvalds 已提交
2881 2882 2883 2884 2885 2886
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2887

L
Linus Torvalds 已提交
2888 2889 2890 2891 2892
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2893

L
Linus Torvalds 已提交
2894 2895 2896 2897 2898 2899 2900
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2901 2902
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2903 2904 2905 2906
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2907
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2908
	put_cpu();
N
Nick Piggin 已提交
2909 2910
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2911 2912 2913 2914 2915 2916
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2917 2918
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2919
{
2920
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2921
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2922
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2923 2924 2925 2926
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
2927
	check_preempt_curr(this_rq, p, 0);
L
Linus Torvalds 已提交
2928 2929 2930 2931 2932
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2933
static
2934
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2935
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2936
		     int *all_pinned)
L
Linus Torvalds 已提交
2937 2938 2939 2940 2941 2942 2943
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2944
	if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
2945
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2946
		return 0;
2947
	}
2948 2949
	*all_pinned = 0;

2950 2951
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
2952
		return 0;
2953
	}
L
Linus Torvalds 已提交
2954

2955 2956 2957 2958 2959 2960
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

2961 2962
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
2963
#ifdef CONFIG_SCHEDSTATS
2964
		if (task_hot(p, rq->clock, sd)) {
2965
			schedstat_inc(sd, lb_hot_gained[idle]);
2966 2967
			schedstat_inc(p, se.nr_forced_migrations);
		}
2968 2969 2970 2971
#endif
		return 1;
	}

2972 2973
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
2974
		return 0;
2975
	}
L
Linus Torvalds 已提交
2976 2977 2978
	return 1;
}

2979 2980 2981 2982 2983
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2984
{
2985
	int loops = 0, pulled = 0, pinned = 0;
I
Ingo Molnar 已提交
2986 2987
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2988

2989
	if (max_load_move == 0)
L
Linus Torvalds 已提交
2990 2991
		goto out;

2992 2993
	pinned = 1;

L
Linus Torvalds 已提交
2994
	/*
I
Ingo Molnar 已提交
2995
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2996
	 */
I
Ingo Molnar 已提交
2997 2998
	p = iterator->start(iterator->arg);
next:
2999
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
3000
		goto out;
3001 3002

	if ((p->se.load.weight >> 1) > rem_load_move ||
I
Ingo Molnar 已提交
3003 3004 3005
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3006 3007
	}

I
Ingo Molnar 已提交
3008
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
3009
	pulled++;
I
Ingo Molnar 已提交
3010
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
3011

3012
	/*
3013
	 * We only want to steal up to the prescribed amount of weighted load.
3014
	 */
3015
	if (rem_load_move > 0) {
3016 3017
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
3018 3019
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3020 3021 3022
	}
out:
	/*
3023
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
3024 3025 3026 3027
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
3028 3029 3030

	if (all_pinned)
		*all_pinned = pinned;
3031 3032

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
3033 3034
}

I
Ingo Molnar 已提交
3035
/*
P
Peter Williams 已提交
3036 3037 3038
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
3039 3040 3041 3042
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
3043
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
3044 3045 3046
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3047
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3048
	unsigned long total_load_moved = 0;
3049
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3050 3051

	do {
P
Peter Williams 已提交
3052 3053
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3054
				max_load_move - total_load_moved,
3055
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3056
		class = class->next;
3057 3058 3059 3060

		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
			break;

P
Peter Williams 已提交
3061
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3062

P
Peter Williams 已提交
3063 3064 3065
	return total_load_moved > 0;
}

3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3092 3093 3094 3095 3096 3097 3098 3099 3100 3101
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3102
	const struct sched_class *class;
P
Peter Williams 已提交
3103 3104

	for (class = sched_class_highest; class; class = class->next)
3105
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3106 3107 3108
			return 1;

	return 0;
I
Ingo Molnar 已提交
3109 3110
}

L
Linus Torvalds 已提交
3111 3112
/*
 * find_busiest_group finds and returns the busiest CPU group within the
3113 3114
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
3115 3116 3117
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
3118
		   unsigned long *imbalance, enum cpu_idle_type idle,
3119
		   int *sd_idle, const struct cpumask *cpus, int *balance)
L
Linus Torvalds 已提交
3120 3121 3122
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3123
	unsigned long max_pull;
3124 3125
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
3126
	int load_idx, group_imb = 0;
3127 3128 3129 3130 3131 3132
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
3133 3134

	max_load = this_load = total_load = total_pwr = 0;
3135 3136
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
3137

I
Ingo Molnar 已提交
3138
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
3139
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
3140
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
3141 3142 3143
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
3144 3145

	do {
3146
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
3147 3148
		int local_group;
		int i;
3149
		int __group_imb = 0;
3150
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
3151
		unsigned long sum_nr_running, sum_weighted_load;
3152 3153
		unsigned long sum_avg_load_per_task;
		unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
3154

3155 3156
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
L
Linus Torvalds 已提交
3157

3158
		if (local_group)
3159
			balance_cpu = cpumask_first(sched_group_cpus(group));
3160

L
Linus Torvalds 已提交
3161
		/* Tally up the load of all CPUs in the group */
3162
		sum_weighted_load = sum_nr_running = avg_load = 0;
3163 3164
		sum_avg_load_per_task = avg_load_per_task = 0;

3165 3166
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
3167

3168 3169
		for_each_cpu_and(i, sched_group_cpus(group), cpus) {
			struct rq *rq = cpu_rq(i);
3170

3171
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
3172 3173
				*sd_idle = 0;

L
Linus Torvalds 已提交
3174
			/* Bias balancing toward cpus of our domain */
3175 3176 3177 3178 3179 3180
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
3181
				load = target_load(i, load_idx);
3182
			} else {
N
Nick Piggin 已提交
3183
				load = source_load(i, load_idx);
3184 3185 3186 3187 3188
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
3189 3190

			avg_load += load;
3191
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
3192
			sum_weighted_load += weighted_cpuload(i);
3193 3194

			sum_avg_load_per_task += cpu_avg_load_per_task(i);
L
Linus Torvalds 已提交
3195 3196
		}

3197 3198 3199
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
3200 3201
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
3202
		 */
3203 3204
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
3205 3206 3207 3208
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
3209
		total_load += avg_load;
3210
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
3211 3212

		/* Adjust by relative CPU power of the group */
3213 3214
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3215

3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229

		/*
		 * Consider the group unbalanced when the imbalance is larger
		 * than the average weight of two tasks.
		 *
		 * APZ: with cgroup the avg task weight can vary wildly and
		 *      might not be a suitable number - should we keep a
		 *      normalized nr_running number somewhere that negates
		 *      the hierarchy?
		 */
		avg_load_per_task = sg_div_cpu_power(group,
				sum_avg_load_per_task * SCHED_LOAD_SCALE);

		if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3230 3231
			__group_imb = 1;

3232
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3233

L
Linus Torvalds 已提交
3234 3235 3236
		if (local_group) {
			this_load = avg_load;
			this = group;
3237 3238 3239
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
3240
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
3241 3242
			max_load = avg_load;
			busiest = group;
3243 3244
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
3245
			group_imb = __group_imb;
L
Linus Torvalds 已提交
3246
		}
3247 3248 3249 3250 3251 3252

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
3253 3254 3255
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
3256 3257 3258 3259 3260 3261 3262 3263 3264

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
3265
		/*
3266 3267
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
3268 3269
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
3270
		    || !sum_nr_running)
I
Ingo Molnar 已提交
3271
			goto group_next;
3272

I
Ingo Molnar 已提交
3273
		/*
3274
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
3275 3276 3277 3278 3279
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
3280
		     cpumask_first(sched_group_cpus(group)) >
3281
		     cpumask_first(sched_group_cpus(group_min)))) {
I
Ingo Molnar 已提交
3282 3283
			group_min = group;
			min_nr_running = sum_nr_running;
3284 3285
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
3286
		}
3287

I
Ingo Molnar 已提交
3288
		/*
3289
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
3290 3291 3292 3293 3294 3295
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
3296
			     cpumask_first(sched_group_cpus(group)) <
3297
			     cpumask_first(sched_group_cpus(group_leader)))) {
I
Ingo Molnar 已提交
3298 3299 3300
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
3301
		}
3302 3303
group_next:
#endif
L
Linus Torvalds 已提交
3304 3305 3306
		group = group->next;
	} while (group != sd->groups);

3307
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
3308 3309 3310 3311 3312 3313 3314 3315
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

3316
	busiest_load_per_task /= busiest_nr_running;
3317 3318 3319
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
3320 3321 3322 3323 3324 3325 3326 3327
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
3328
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
3329 3330
	 * appear as very large values with unsigned longs.
	 */
3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
3343 3344

	/* Don't want to pull so many tasks that a group would go idle */
3345
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3346

L
Linus Torvalds 已提交
3347
	/* How much load to actually move to equalise the imbalance */
3348 3349
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
3350 3351
			/ SCHED_LOAD_SCALE;

3352 3353 3354 3355 3356 3357
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3358
	if (*imbalance < busiest_load_per_task) {
3359
		unsigned long tmp, pwr_now, pwr_move;
3360 3361 3362 3363 3364 3365 3366 3367 3368 3369
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
3370
			this_load_per_task = cpu_avg_load_per_task(this_cpu);
L
Linus Torvalds 已提交
3371

3372
		if (max_load - this_load + busiest_load_per_task >=
I
Ingo Molnar 已提交
3373
					busiest_load_per_task * imbn) {
3374
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3375 3376 3377 3378 3379 3380 3381 3382 3383
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

3384 3385 3386 3387
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
3388 3389 3390
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
3391 3392
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3393
		if (max_load > tmp)
3394
			pwr_move += busiest->__cpu_power *
3395
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
3396 3397

		/* Amount of load we'd add */
3398
		if (max_load * busiest->__cpu_power <
3399
				busiest_load_per_task * SCHED_LOAD_SCALE)
3400 3401
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
3402
		else
3403 3404 3405 3406
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
3407 3408 3409
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
3410 3411
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3412 3413 3414 3415 3416
	}

	return busiest;

out_balanced:
3417
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
3418
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3419
		goto ret;
L
Linus Torvalds 已提交
3420

3421 3422
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
3423 3424
		if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
			cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
I
Ingo Molnar 已提交
3425
				cpumask_first(sched_group_cpus(group_leader));
3426
		}
3427 3428 3429
		return group_min;
	}
#endif
3430
ret:
L
Linus Torvalds 已提交
3431 3432 3433 3434 3435 3436 3437
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
3438
static struct rq *
I
Ingo Molnar 已提交
3439
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3440
		   unsigned long imbalance, const struct cpumask *cpus)
L
Linus Torvalds 已提交
3441
{
3442
	struct rq *busiest = NULL, *rq;
3443
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
3444 3445
	int i;

3446
	for_each_cpu(i, sched_group_cpus(group)) {
I
Ingo Molnar 已提交
3447
		unsigned long wl;
3448

3449
		if (!cpumask_test_cpu(i, cpus))
3450 3451
			continue;

3452
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
3453
		wl = weighted_cpuload(i);
3454

I
Ingo Molnar 已提交
3455
		if (rq->nr_running == 1 && wl > imbalance)
3456
			continue;
L
Linus Torvalds 已提交
3457

I
Ingo Molnar 已提交
3458 3459
		if (wl > max_load) {
			max_load = wl;
3460
			busiest = rq;
L
Linus Torvalds 已提交
3461 3462 3463 3464 3465 3466
		}
	}

	return busiest;
}

3467 3468 3469 3470 3471 3472
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
3473 3474 3475 3476
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
3477
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
3478
			struct sched_domain *sd, enum cpu_idle_type idle,
3479
			int *balance, struct cpumask *cpus)
L
Linus Torvalds 已提交
3480
{
P
Peter Williams 已提交
3481
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
3482 3483
	struct sched_group *group;
	unsigned long imbalance;
3484
	struct rq *busiest;
3485
	unsigned long flags;
N
Nick Piggin 已提交
3486

3487
	cpumask_setall(cpus);
3488

3489 3490 3491
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
3492
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
3493
	 * portraying it as CPU_NOT_IDLE.
3494
	 */
I
Ingo Molnar 已提交
3495
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3496
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3497
		sd_idle = 1;
L
Linus Torvalds 已提交
3498

3499
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
3500

3501
redo:
3502
	update_shares(sd);
3503
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3504
				   cpus, balance);
3505

3506
	if (*balance == 0)
3507 3508
		goto out_balanced;

L
Linus Torvalds 已提交
3509 3510 3511 3512 3513
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

3514
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
3515 3516 3517 3518 3519
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
3520
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
3521 3522 3523

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
3524
	ld_moved = 0;
L
Linus Torvalds 已提交
3525 3526 3527 3528
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
3529
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
3530 3531
		 * correctly treated as an imbalance.
		 */
3532
		local_irq_save(flags);
N
Nick Piggin 已提交
3533
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
3534
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3535
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
3536
		double_rq_unlock(this_rq, busiest);
3537
		local_irq_restore(flags);
3538

3539 3540 3541
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
3542
		if (ld_moved && this_cpu != smp_processor_id())
3543 3544
			resched_cpu(this_cpu);

3545
		/* All tasks on this runqueue were pinned by CPU affinity */
3546
		if (unlikely(all_pinned)) {
3547 3548
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
3549
				goto redo;
3550
			goto out_balanced;
3551
		}
L
Linus Torvalds 已提交
3552
	}
3553

P
Peter Williams 已提交
3554
	if (!ld_moved) {
L
Linus Torvalds 已提交
3555 3556 3557 3558 3559
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

3560
			spin_lock_irqsave(&busiest->lock, flags);
3561 3562 3563 3564

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
3565 3566
			if (!cpumask_test_cpu(this_cpu,
					      &busiest->curr->cpus_allowed)) {
3567
				spin_unlock_irqrestore(&busiest->lock, flags);
3568 3569 3570 3571
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
3572 3573 3574
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
3575
				active_balance = 1;
L
Linus Torvalds 已提交
3576
			}
3577
			spin_unlock_irqrestore(&busiest->lock, flags);
3578
			if (active_balance)
L
Linus Torvalds 已提交
3579 3580 3581 3582 3583 3584
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
3585
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
3586
		}
3587
	} else
L
Linus Torvalds 已提交
3588 3589
		sd->nr_balance_failed = 0;

3590
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
3591 3592
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
3593 3594 3595 3596 3597 3598 3599 3600 3601
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
3602 3603
	}

P
Peter Williams 已提交
3604
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3605
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3606 3607 3608
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
3609 3610 3611 3612

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

3613
	sd->nr_balance_failed = 0;
3614 3615

out_one_pinned:
L
Linus Torvalds 已提交
3616
	/* tune up the balancing interval */
3617 3618
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
3619 3620
		sd->balance_interval *= 2;

3621
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3622
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3623 3624 3625 3626
		ld_moved = -1;
	else
		ld_moved = 0;
out:
3627 3628
	if (ld_moved)
		update_shares(sd);
3629
	return ld_moved;
L
Linus Torvalds 已提交
3630 3631 3632 3633 3634 3635
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
3636
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
3637 3638
 * this_rq is locked.
 */
3639
static int
3640
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3641
			struct cpumask *cpus)
L
Linus Torvalds 已提交
3642 3643
{
	struct sched_group *group;
3644
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
3645
	unsigned long imbalance;
P
Peter Williams 已提交
3646
	int ld_moved = 0;
N
Nick Piggin 已提交
3647
	int sd_idle = 0;
3648
	int all_pinned = 0;
3649

3650
	cpumask_setall(cpus);
N
Nick Piggin 已提交
3651

3652 3653 3654 3655
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
3656
	 * portraying it as CPU_NOT_IDLE.
3657 3658 3659
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3660
		sd_idle = 1;
L
Linus Torvalds 已提交
3661

3662
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3663
redo:
3664
	update_shares_locked(this_rq, sd);
I
Ingo Molnar 已提交
3665
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3666
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
3667
	if (!group) {
I
Ingo Molnar 已提交
3668
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3669
		goto out_balanced;
L
Linus Torvalds 已提交
3670 3671
	}

3672
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
3673
	if (!busiest) {
I
Ingo Molnar 已提交
3674
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3675
		goto out_balanced;
L
Linus Torvalds 已提交
3676 3677
	}

N
Nick Piggin 已提交
3678 3679
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
3680
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3681

P
Peter Williams 已提交
3682
	ld_moved = 0;
3683 3684 3685
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
3686 3687
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
3688
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3689 3690
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
3691
		double_unlock_balance(this_rq, busiest);
3692

3693
		if (unlikely(all_pinned)) {
3694 3695
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
3696 3697
				goto redo;
		}
3698 3699
	}

P
Peter Williams 已提交
3700
	if (!ld_moved) {
3701
		int active_balance = 0;
3702

I
Ingo Molnar 已提交
3703
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3704 3705
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3706
			return -1;
3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742

		if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
			return -1;

		if (sd->nr_balance_failed++ < 2)
			return -1;

		/*
		 * The only task running in a non-idle cpu can be moved to this
		 * cpu in an attempt to completely freeup the other CPU
		 * package. The same method used to move task in load_balance()
		 * have been extended for load_balance_newidle() to speedup
		 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
		 *
		 * The package power saving logic comes from
		 * find_busiest_group().  If there are no imbalance, then
		 * f_b_g() will return NULL.  However when sched_mc={1,2} then
		 * f_b_g() will select a group from which a running task may be
		 * pulled to this cpu in order to make the other package idle.
		 * If there is no opportunity to make a package idle and if
		 * there are no imbalance, then f_b_g() will return NULL and no
		 * action will be taken in load_balance_newidle().
		 *
		 * Under normal task pull operation due to imbalance, there
		 * will be more than one task in the source run queue and
		 * move_tasks() will succeed.  ld_moved will be true and this
		 * active balance code will not be triggered.
		 */

		/* Lock busiest in correct order while this_rq is held */
		double_lock_balance(this_rq, busiest);

		/*
		 * don't kick the migration_thread, if the curr
		 * task on busiest cpu can't be moved to this_cpu
		 */
3743
		if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755
			double_unlock_balance(this_rq, busiest);
			all_pinned = 1;
			return ld_moved;
		}

		if (!busiest->active_balance) {
			busiest->active_balance = 1;
			busiest->push_cpu = this_cpu;
			active_balance = 1;
		}

		double_unlock_balance(this_rq, busiest);
3756 3757 3758 3759
		/*
		 * Should not call ttwu while holding a rq->lock
		 */
		spin_unlock(&this_rq->lock);
3760 3761
		if (active_balance)
			wake_up_process(busiest->migration_thread);
3762
		spin_lock(&this_rq->lock);
3763

N
Nick Piggin 已提交
3764
	} else
3765
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
3766

3767
	update_shares_locked(this_rq, sd);
P
Peter Williams 已提交
3768
	return ld_moved;
3769 3770

out_balanced:
I
Ingo Molnar 已提交
3771
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3772
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3773
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3774
		return -1;
3775
	sd->nr_balance_failed = 0;
3776

3777
	return 0;
L
Linus Torvalds 已提交
3778 3779 3780 3781 3782 3783
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
3784
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
3785 3786
{
	struct sched_domain *sd;
3787
	int pulled_task = 0;
I
Ingo Molnar 已提交
3788
	unsigned long next_balance = jiffies + HZ;
3789 3790 3791 3792
	cpumask_var_t tmpmask;

	if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
		return;
L
Linus Torvalds 已提交
3793 3794

	for_each_domain(this_cpu, sd) {
3795 3796 3797 3798 3799 3800
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
3801
			/* If we've pulled tasks over stop searching: */
3802
			pulled_task = load_balance_newidle(this_cpu, this_rq,
3803
							   sd, tmpmask);
3804 3805 3806 3807 3808 3809

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
3810
	}
I
Ingo Molnar 已提交
3811
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3812 3813 3814 3815 3816
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
3817
	}
3818
	free_cpumask_var(tmpmask);
L
Linus Torvalds 已提交
3819 3820 3821 3822 3823 3824 3825 3826 3827 3828
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
3829
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
3830
{
3831
	int target_cpu = busiest_rq->push_cpu;
3832 3833
	struct sched_domain *sd;
	struct rq *target_rq;
3834

3835
	/* Is there any task to move? */
3836 3837 3838 3839
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
3840 3841

	/*
3842
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
3843
	 * we need to fix it. Originally reported by
3844
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
3845
	 */
3846
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
3847

3848 3849
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
3850 3851
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
3852 3853

	/* Search for an sd spanning us and the target CPU. */
3854
	for_each_domain(target_cpu, sd) {
3855
		if ((sd->flags & SD_LOAD_BALANCE) &&
3856
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3857
				break;
3858
	}
3859

3860
	if (likely(sd)) {
3861
		schedstat_inc(sd, alb_count);
3862

P
Peter Williams 已提交
3863 3864
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
3865 3866 3867 3868
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3869
	double_unlock_balance(busiest_rq, target_rq);
L
Linus Torvalds 已提交
3870 3871
}

3872 3873 3874
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
3875
	cpumask_var_t cpu_mask;
3876 3877 3878 3879
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
};

3880
/*
3881 3882 3883 3884 3885 3886 3887 3888 3889 3890
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3891
 *
3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
3905
		cpumask_set_cpu(cpu, nohz.cpu_mask);
3906 3907 3908 3909 3910
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
3911
		if (!cpu_active(cpu) &&
3912 3913 3914 3915 3916 3917 3918
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
3919
		if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
3932
		if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
3933 3934
			return 0;

3935
		cpumask_clear_cpu(cpu, nohz.cpu_mask);
3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3948 3949 3950 3951 3952
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3953
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3954
{
3955 3956
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3957 3958
	unsigned long interval;
	struct sched_domain *sd;
3959
	/* Earliest time when we have to do rebalance again */
3960
	unsigned long next_balance = jiffies + 60*HZ;
3961
	int update_next_balance = 0;
3962
	int need_serialize;
3963 3964 3965 3966 3967
	cpumask_var_t tmp;

	/* Fails alloc?  Rebalancing probably not a priority right now. */
	if (!alloc_cpumask_var(&tmp, GFP_ATOMIC))
		return;
L
Linus Torvalds 已提交
3968

3969
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3970 3971 3972 3973
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3974
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3975 3976 3977 3978 3979 3980
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3981 3982 3983
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

3984
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
3985

3986
		if (need_serialize) {
3987 3988 3989 3990
			if (!spin_trylock(&balancing))
				goto out;
		}

3991
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3992
			if (load_balance(cpu, rq, sd, idle, &balance, tmp)) {
3993 3994
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3995 3996 3997
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3998
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3999
			}
4000
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
4001
		}
4002
		if (need_serialize)
4003 4004
			spin_unlock(&balancing);
out:
4005
		if (time_after(next_balance, sd->last_balance + interval)) {
4006
			next_balance = sd->last_balance + interval;
4007 4008
			update_next_balance = 1;
		}
4009 4010 4011 4012 4013 4014 4015 4016

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
4017
	}
4018 4019 4020 4021 4022 4023 4024 4025

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
4026 4027

	free_cpumask_var(tmp);
4028 4029 4030 4031 4032 4033 4034 4035 4036
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
4037 4038 4039 4040
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
4041

I
Ingo Molnar 已提交
4042
	rebalance_domains(this_cpu, idle);
4043 4044 4045 4046 4047 4048 4049

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
4050 4051
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
4052 4053 4054
		struct rq *rq;
		int balance_cpu;

4055 4056 4057 4058
		for_each_cpu(balance_cpu, nohz.cpu_mask) {
			if (balance_cpu == this_cpu)
				continue;

4059 4060 4061 4062 4063 4064 4065 4066
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

4067
			rebalance_domains(balance_cpu, CPU_IDLE);
4068 4069

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
4070 4071
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
4084
static inline void trigger_load_balance(struct rq *rq, int cpu)
4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
4096
			cpumask_clear_cpu(cpu, nohz.cpu_mask);
4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
4109
			int ilb = cpumask_first(nohz.cpu_mask);
4110

4111
			if (ilb < nr_cpu_ids)
4112 4113 4114 4115 4116 4117 4118 4119 4120
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4121
	    cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4122 4123 4124 4125 4126 4127 4128 4129 4130
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4131
	    cpumask_test_cpu(cpu, nohz.cpu_mask))
4132 4133 4134 4135
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4136
}
I
Ingo Molnar 已提交
4137 4138 4139

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4140 4141 4142
/*
 * on UP we do not need to balance between CPUs:
 */
4143
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4144 4145
{
}
I
Ingo Molnar 已提交
4146

L
Linus Torvalds 已提交
4147 4148 4149 4150 4151 4152 4153
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4154
 * Return any ns on the sched_clock that have not yet been accounted in
4155
 * @p in case that task is currently running.
4156 4157
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
4158
 */
4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
		ns = rq->clock - p->se.exec_start;
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

4173
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
4174 4175
{
	unsigned long flags;
4176
	struct rq *rq;
4177
	u64 ns = 0;
4178

4179
	rq = task_rq_lock(p, &flags);
4180 4181
	ns = do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);
4182

4183 4184
	return ns;
}
4185

4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);

	return ns;
}
4203

4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222
/*
 * Return sum_exec_runtime for the thread group.
 * In case the task is currently running, return the sum plus current's
 * pending runtime that have not been accounted yet.
 *
 * Note that the thread group might have other running tasks as well,
 * so the return value not includes other pending runtime that other
 * running tasks might have.
 */
unsigned long long thread_group_sched_runtime(struct task_struct *p)
{
	struct task_cputime totals;
	unsigned long flags;
	struct rq *rq;
	u64 ns;

	rq = task_rq_lock(p, &flags);
	thread_group_cputime(p, &totals);
	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
4223
	task_rq_unlock(rq, &flags);
4224

L
Linus Torvalds 已提交
4225 4226 4227 4228 4229 4230 4231
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
4232
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
4233
 */
4234 4235
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
4236 4237 4238 4239
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

4240
	/* Add user time to process. */
L
Linus Torvalds 已提交
4241
	p->utime = cputime_add(p->utime, cputime);
4242
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4243
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
4244 4245 4246 4247 4248 4249 4250

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
4251 4252

	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
4253 4254
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
4255 4256
}

4257 4258 4259 4260
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
4261
 * @cputime_scaled: cputime scaled by cpu frequency
4262
 */
4263 4264
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
4265 4266 4267 4268 4269 4270
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

4271
	/* Add guest time to process. */
4272
	p->utime = cputime_add(p->utime, cputime);
4273
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4274
	account_group_user_time(p, cputime);
4275 4276
	p->gtime = cputime_add(p->gtime, cputime);

4277
	/* Add guest time to cpustat. */
4278 4279 4280 4281
	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

L
Linus Torvalds 已提交
4282 4283 4284 4285 4286
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
4287
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
4288 4289
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
4290
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
4291 4292 4293 4294
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

4295
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4296
		account_guest_time(p, cputime, cputime_scaled);
4297 4298
		return;
	}
4299

4300
	/* Add system time to process. */
L
Linus Torvalds 已提交
4301
	p->stime = cputime_add(p->stime, cputime);
4302
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
4303
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
4304 4305 4306 4307 4308 4309 4310 4311

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else
4312 4313
		cpustat->system = cputime64_add(cpustat->system, tmp);

4314 4315
	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);

L
Linus Torvalds 已提交
4316 4317 4318 4319
	/* Account for system time used */
	acct_update_integrals(p);
}

4320
/*
L
Linus Torvalds 已提交
4321 4322
 * Account for involuntary wait time.
 * @steal: the cpu time spent in involuntary wait
4323
 */
4324
void account_steal_time(cputime_t cputime)
4325
{
4326 4327 4328 4329
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
4330 4331
}

L
Linus Torvalds 已提交
4332
/*
4333 4334
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
4335
 */
4336
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
4337 4338
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4339
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
4340
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4341

4342 4343 4344 4345
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
4346 4347
}

4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
	cputime_t one_jiffy = jiffies_to_cputime(1);
	cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
	struct rq *rq = this_rq();

	if (user_tick)
		account_user_time(p, one_jiffy, one_jiffy_scaled);
	else if (p != rq->idle)
		account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
				    one_jiffy_scaled);
	else
		account_idle_time(one_jiffy);
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
4387 4388
}

4389 4390
#endif

4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
cputime_t task_utime(struct task_struct *p)
{
	return p->utime;
}

cputime_t task_stime(struct task_struct *p)
{
	return p->stime;
}
#else
cputime_t task_utime(struct task_struct *p)
{
	clock_t utime = cputime_to_clock_t(p->utime),
		total = utime + cputime_to_clock_t(p->stime);
	u64 temp;

	/*
	 * Use CFS's precise accounting:
	 */
	temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);

	if (total) {
		temp *= utime;
		do_div(temp, total);
	}
	utime = (clock_t)temp;

	p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
	return p->prev_utime;
}

cputime_t task_stime(struct task_struct *p)
{
	clock_t stime;

	/*
	 * Use CFS's precise accounting. (we subtract utime from
	 * the total, to make sure the total observed by userspace
	 * grows monotonically - apps rely on that):
	 */
	stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
			cputime_to_clock_t(task_utime(p));

	if (stime >= 0)
		p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));

	return p->prev_stime;
}
#endif

inline cputime_t task_gtime(struct task_struct *p)
{
	return p->gtime;
}

4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
4461
	struct task_struct *curr = rq->curr;
4462 4463

	sched_clock_tick();
I
Ingo Molnar 已提交
4464 4465

	spin_lock(&rq->lock);
4466
	update_rq_clock(rq);
4467
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
4468
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
4469
	spin_unlock(&rq->lock);
4470

4471
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
4472 4473
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
4474
#endif
L
Linus Torvalds 已提交
4475 4476
}

4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

static inline unsigned long get_parent_ip(unsigned long addr)
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
4489

4490
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
4491
{
4492
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4493 4494 4495
	/*
	 * Underflow?
	 */
4496 4497
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
4498
#endif
L
Linus Torvalds 已提交
4499
	preempt_count() += val;
4500
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4501 4502 4503
	/*
	 * Spinlock count overflowing soon?
	 */
4504 4505
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
4506 4507 4508
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4509 4510 4511
}
EXPORT_SYMBOL(add_preempt_count);

4512
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
4513
{
4514
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4515 4516 4517
	/*
	 * Underflow?
	 */
4518
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4519
		return;
L
Linus Torvalds 已提交
4520 4521 4522
	/*
	 * Is the spinlock portion underflowing?
	 */
4523 4524 4525
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
4526
#endif
4527

4528 4529
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4530 4531 4532 4533 4534 4535 4536
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
4537
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
4538
 */
I
Ingo Molnar 已提交
4539
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
4540
{
4541 4542 4543 4544 4545
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
4546
	debug_show_held_locks(prev);
4547
	print_modules();
I
Ingo Molnar 已提交
4548 4549
	if (irqs_disabled())
		print_irqtrace_events(prev);
4550 4551 4552 4553 4554

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
4555
}
L
Linus Torvalds 已提交
4556

I
Ingo Molnar 已提交
4557 4558 4559 4560 4561
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
4562
	/*
I
Ingo Molnar 已提交
4563
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
4564 4565 4566
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
4567
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
4568 4569
		__schedule_bug(prev);

L
Linus Torvalds 已提交
4570 4571
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

4572
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
4573 4574
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
4575 4576
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
4577 4578
	}
#endif
I
Ingo Molnar 已提交
4579 4580 4581 4582 4583 4584
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
4585
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
4586
{
4587
	const struct sched_class *class;
I
Ingo Molnar 已提交
4588
	struct task_struct *p;
L
Linus Torvalds 已提交
4589 4590

	/*
I
Ingo Molnar 已提交
4591 4592
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
4593
	 */
I
Ingo Molnar 已提交
4594
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
4595
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
4596 4597
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
4598 4599
	}

I
Ingo Molnar 已提交
4600 4601
	class = sched_class_highest;
	for ( ; ; ) {
4602
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
4603 4604 4605 4606 4607 4608 4609 4610 4611
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
4612

I
Ingo Molnar 已提交
4613 4614 4615
/*
 * schedule() is the main scheduler function.
 */
P
Peter Zijlstra 已提交
4616
asmlinkage void __sched __schedule(void)
I
Ingo Molnar 已提交
4617 4618
{
	struct task_struct *prev, *next;
4619
	unsigned long *switch_count;
I
Ingo Molnar 已提交
4620
	struct rq *rq;
4621
	int cpu;
I
Ingo Molnar 已提交
4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632

	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
4633

4634
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
4635
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
4636

4637
	spin_lock_irq(&rq->lock);
4638
	update_rq_clock(rq);
4639
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
4640 4641

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4642
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
4643
			prev->state = TASK_RUNNING;
4644
		else
4645
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
4646
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
4647 4648
	}

4649 4650 4651 4652
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
4653

I
Ingo Molnar 已提交
4654
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
4655 4656
		idle_balance(cpu, rq);

4657
	prev->sched_class->put_prev_task(rq, prev);
4658
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
4659 4660

	if (likely(prev != next)) {
4661 4662
		sched_info_switch(prev, next);

L
Linus Torvalds 已提交
4663 4664 4665 4666
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
4667
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
4668 4669 4670 4671 4672 4673
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4674 4675 4676
	} else
		spin_unlock_irq(&rq->lock);

P
Peter Zijlstra 已提交
4677
	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
4678
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
4679
}
P
Peter Zijlstra 已提交
4680

P
Peter Zijlstra 已提交
4681 4682 4683 4684 4685
asmlinkage void __sched schedule(void)
{
need_resched:
	preempt_disable();
	__schedule();
L
Linus Torvalds 已提交
4686 4687 4688 4689 4690 4691
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752
#ifdef CONFIG_SMP
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
{
	unsigned int cpu;
	struct rq *rq;

	if (!sched_feat(OWNER_SPIN))
		return 0;

#ifdef CONFIG_DEBUG_PAGEALLOC
	/*
	 * Need to access the cpu field knowing that
	 * DEBUG_PAGEALLOC could have unmapped it if
	 * the mutex owner just released it and exited.
	 */
	if (probe_kernel_address(&owner->cpu, cpu))
		goto out;
#else
	cpu = owner->cpu;
#endif

	/*
	 * Even if the access succeeded (likely case),
	 * the cpu field may no longer be valid.
	 */
	if (cpu >= nr_cpumask_bits)
		goto out;

	/*
	 * We need to validate that we can do a
	 * get_cpu() and that we have the percpu area.
	 */
	if (!cpu_online(cpu))
		goto out;

	rq = cpu_rq(cpu);

	for (;;) {
		/*
		 * Owner changed, break to re-assess state.
		 */
		if (lock->owner != owner)
			break;

		/*
		 * Is that owner really running on that cpu?
		 */
		if (task_thread_info(rq->curr) != owner || need_resched())
			return 0;

		cpu_relax();
	}
out:
	return 1;
}
#endif

L
Linus Torvalds 已提交
4753 4754
#ifdef CONFIG_PREEMPT
/*
4755
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
4756
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
4757 4758 4759 4760 4761
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
4762

L
Linus Torvalds 已提交
4763 4764
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
4765
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
4766
	 */
N
Nick Piggin 已提交
4767
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
4768 4769
		return;

4770 4771 4772 4773
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4774

4775 4776 4777 4778 4779 4780
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4781 4782 4783 4784
}
EXPORT_SYMBOL(preempt_schedule);

/*
4785
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
4786 4787 4788 4789 4790 4791 4792
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
4793

4794
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4795 4796
	BUG_ON(ti->preempt_count || !irqs_disabled());

4797 4798 4799 4800 4801 4802
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4803

4804 4805 4806 4807 4808 4809
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4810 4811 4812 4813
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
4814 4815
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
4816
{
4817
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
4818 4819 4820 4821
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4822 4823
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4824 4825 4826
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4827
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4828 4829
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
4830 4831
void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, int sync, void *key)
L
Linus Torvalds 已提交
4832
{
4833
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4834

4835
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4836 4837
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
4838
		if (curr->func(curr, mode, sync, key) &&
4839
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4840 4841 4842 4843 4844 4845 4846 4847 4848
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4849
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
4850
 */
4851
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4852
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4865
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4866 4867 4868 4869 4870
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
4871
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
4883
void
I
Ingo Molnar 已提交
4884
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4901 4902 4903 4904 4905 4906 4907 4908 4909
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
 */
4910
void complete(struct completion *x)
L
Linus Torvalds 已提交
4911 4912 4913 4914 4915
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4916
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4917 4918 4919 4920
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4921 4922 4923 4924 4925 4926
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
 */
4927
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4928 4929 4930 4931 4932
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4933
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4934 4935 4936 4937
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4938 4939
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4940 4941 4942 4943 4944 4945 4946
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
4947
			if (signal_pending_state(state, current)) {
4948 4949
				timeout = -ERESTARTSYS;
				break;
4950 4951
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4952 4953 4954
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
4955
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
4956
		__remove_wait_queue(&x->wait, &wait);
4957 4958
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
4959 4960
	}
	x->done--;
4961
	return timeout ?: 1;
L
Linus Torvalds 已提交
4962 4963
}

4964 4965
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4966 4967 4968 4969
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4970
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4971
	spin_unlock_irq(&x->wait.lock);
4972 4973
	return timeout;
}
L
Linus Torvalds 已提交
4974

4975 4976 4977 4978 4979 4980 4981 4982 4983 4984
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
4985
void __sched wait_for_completion(struct completion *x)
4986 4987
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4988
}
4989
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4990

4991 4992 4993 4994 4995 4996 4997 4998 4999
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
5000
unsigned long __sched
5001
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
5002
{
5003
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5004
}
5005
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
5006

5007 5008 5009 5010 5011 5012 5013
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
5014
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
5015
{
5016 5017 5018 5019
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
5020
}
5021
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
5022

5023 5024 5025 5026 5027 5028 5029 5030
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
5031
unsigned long __sched
5032 5033
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
5034
{
5035
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
5036
}
5037
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
5038

5039 5040 5041 5042 5043 5044 5045
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
5046 5047 5048 5049 5050 5051 5052 5053 5054
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	else
		x->done--;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(completion_done);

5101 5102
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
5103
{
I
Ingo Molnar 已提交
5104 5105 5106 5107
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
5108

5109
	__set_current_state(state);
L
Linus Torvalds 已提交
5110

5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
5125 5126 5127
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
5128
long __sched
I
Ingo Molnar 已提交
5129
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
5130
{
5131
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5132 5133 5134
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
5135
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
5136
{
5137
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
5138 5139 5140
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
5141
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
5142
{
5143
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5144 5145 5146
}
EXPORT_SYMBOL(sleep_on_timeout);

5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
5159
void rt_mutex_setprio(struct task_struct *p, int prio)
5160 5161
{
	unsigned long flags;
5162
	int oldprio, on_rq, running;
5163
	struct rq *rq;
5164
	const struct sched_class *prev_class = p->sched_class;
5165 5166 5167 5168

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5169
	update_rq_clock(rq);
5170

5171
	oldprio = p->prio;
I
Ingo Molnar 已提交
5172
	on_rq = p->se.on_rq;
5173
	running = task_current(rq, p);
5174
	if (on_rq)
5175
		dequeue_task(rq, p, 0);
5176 5177
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
5178 5179 5180 5181 5182 5183

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

5184 5185
	p->prio = prio;

5186 5187
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5188
	if (on_rq) {
5189
		enqueue_task(rq, p, 0);
5190 5191

		check_class_changed(rq, p, prev_class, oldprio, running);
5192 5193 5194 5195 5196 5197
	}
	task_rq_unlock(rq, &flags);
}

#endif

5198
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
5199
{
I
Ingo Molnar 已提交
5200
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
5201
	unsigned long flags;
5202
	struct rq *rq;
L
Linus Torvalds 已提交
5203 5204 5205 5206 5207 5208 5209 5210

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5211
	update_rq_clock(rq);
L
Linus Torvalds 已提交
5212 5213 5214 5215
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
5216
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
5217
	 */
5218
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
5219 5220 5221
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
5222
	on_rq = p->se.on_rq;
5223
	if (on_rq)
5224
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
5225 5226

	p->static_prio = NICE_TO_PRIO(nice);
5227
	set_load_weight(p);
5228 5229 5230
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
5231

I
Ingo Molnar 已提交
5232
	if (on_rq) {
5233
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
5234
		/*
5235 5236
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
5237
		 */
5238
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
5239 5240 5241 5242 5243 5244 5245
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
5246 5247 5248 5249 5250
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
5251
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
5252
{
5253 5254
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
5255

M
Matt Mackall 已提交
5256 5257 5258 5259
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
5260 5261 5262 5263 5264 5265 5266 5267 5268
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
5269
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
5270
{
5271
	long nice, retval;
L
Linus Torvalds 已提交
5272 5273 5274 5275 5276 5277

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
5278 5279
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
5280 5281 5282 5283 5284 5285 5286 5287 5288
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
5289 5290 5291
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
5310
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
5311 5312 5313 5314 5315 5316 5317 5318
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
5319
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
5320 5321 5322
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
5323
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
5338
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
5339 5340 5341 5342 5343 5344 5345 5346
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
5347
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
5348
{
5349
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
5350 5351 5352
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
5353 5354
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
5355
{
I
Ingo Molnar 已提交
5356
	BUG_ON(p->se.on_rq);
5357

L
Linus Torvalds 已提交
5358
	p->policy = policy;
I
Ingo Molnar 已提交
5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
5371
	p->rt_priority = prio;
5372 5373 5374
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
5375
	set_load_weight(p);
L
Linus Torvalds 已提交
5376 5377
}

5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
	match = (cred->euid == pcred->euid ||
		 cred->euid == pcred->uid);
	rcu_read_unlock();
	return match;
}

5394 5395
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
5396
{
5397
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
5398
	unsigned long flags;
5399
	const struct sched_class *prev_class = p->sched_class;
5400
	struct rq *rq;
L
Linus Torvalds 已提交
5401

5402 5403
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
5404 5405 5406 5407 5408
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
5409 5410
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
5411
		return -EINVAL;
L
Linus Torvalds 已提交
5412 5413
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
5414 5415
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
5416 5417
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
5418
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5419
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
5420
		return -EINVAL;
5421
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
5422 5423
		return -EINVAL;

5424 5425 5426
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
5427
	if (user && !capable(CAP_SYS_NICE)) {
5428
		if (rt_policy(policy)) {
5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
5445 5446 5447 5448 5449 5450
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
5451

5452
		/* can't change other user's priorities */
5453
		if (!check_same_owner(p))
5454 5455
			return -EPERM;
	}
L
Linus Torvalds 已提交
5456

5457
	if (user) {
5458
#ifdef CONFIG_RT_GROUP_SCHED
5459 5460 5461 5462
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
5463 5464
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
5465
			return -EPERM;
5466 5467
#endif

5468 5469 5470 5471 5472
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

5473 5474 5475 5476 5477
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5478 5479 5480 5481
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
5482
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
5483 5484 5485
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
5486 5487
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5488 5489
		goto recheck;
	}
I
Ingo Molnar 已提交
5490
	update_rq_clock(rq);
I
Ingo Molnar 已提交
5491
	on_rq = p->se.on_rq;
5492
	running = task_current(rq, p);
5493
	if (on_rq)
5494
		deactivate_task(rq, p, 0);
5495 5496
	if (running)
		p->sched_class->put_prev_task(rq, p);
5497

L
Linus Torvalds 已提交
5498
	oldprio = p->prio;
I
Ingo Molnar 已提交
5499
	__setscheduler(rq, p, policy, param->sched_priority);
5500

5501 5502
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5503 5504
	if (on_rq) {
		activate_task(rq, p, 0);
5505 5506

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
5507
	}
5508 5509 5510
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

5511 5512
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
5513 5514
	return 0;
}
5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
5529 5530
EXPORT_SYMBOL_GPL(sched_setscheduler);

5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
5548 5549
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5550 5551 5552
{
	struct sched_param lparam;
	struct task_struct *p;
5553
	int retval;
L
Linus Torvalds 已提交
5554 5555 5556 5557 5558

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
5559 5560 5561

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
5562
	p = find_process_by_pid(pid);
5563 5564 5565
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
5566

L
Linus Torvalds 已提交
5567 5568 5569 5570 5571 5572 5573 5574 5575
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
5576 5577
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
5578
{
5579 5580 5581 5582
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
5583 5584 5585 5586 5587 5588 5589 5590
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
5591
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
5592 5593 5594 5595 5596 5597 5598 5599
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
5600
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
5601
{
5602
	struct task_struct *p;
5603
	int retval;
L
Linus Torvalds 已提交
5604 5605

	if (pid < 0)
5606
		return -EINVAL;
L
Linus Torvalds 已提交
5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
5625
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
5626 5627
{
	struct sched_param lp;
5628
	struct task_struct *p;
5629
	int retval;
L
Linus Torvalds 已提交
5630 5631

	if (!param || pid < 0)
5632
		return -EINVAL;
L
Linus Torvalds 已提交
5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5659
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
5660
{
5661
	cpumask_var_t cpus_allowed, new_mask;
5662 5663
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
5664

5665
	get_online_cpus();
L
Linus Torvalds 已提交
5666 5667 5668 5669 5670
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
5671
		put_online_cpus();
L
Linus Torvalds 已提交
5672 5673 5674 5675 5676
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
5677
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
5678 5679 5680 5681 5682
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

5683 5684 5685 5686 5687 5688 5689 5690
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
5691
	retval = -EPERM;
5692
	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
L
Linus Torvalds 已提交
5693 5694
		goto out_unlock;

5695 5696 5697 5698
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

5699 5700
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Paul Menage 已提交
5701
 again:
5702
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
5703

P
Paul Menage 已提交
5704
	if (!retval) {
5705 5706
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
5707 5708 5709 5710 5711
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
5712
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
5713 5714 5715
			goto again;
		}
	}
L
Linus Torvalds 已提交
5716
out_unlock:
5717 5718 5719 5720
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
5721
	put_task_struct(p);
5722
	put_online_cpus();
L
Linus Torvalds 已提交
5723 5724 5725 5726
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5727
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
5728
{
5729 5730 5731 5732 5733
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
5734 5735 5736 5737 5738 5739 5740 5741 5742
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
5743 5744
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
5745
{
5746
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
5747 5748
	int retval;

5749 5750
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
5751

5752 5753 5754 5755 5756
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
5757 5758
}

5759
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
5760
{
5761
	struct task_struct *p;
L
Linus Torvalds 已提交
5762 5763
	int retval;

5764
	get_online_cpus();
L
Linus Torvalds 已提交
5765 5766 5767 5768 5769 5770 5771
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

5772 5773 5774 5775
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5776
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
L
Linus Torvalds 已提交
5777 5778 5779

out_unlock:
	read_unlock(&tasklist_lock);
5780
	put_online_cpus();
L
Linus Torvalds 已提交
5781

5782
	return retval;
L
Linus Torvalds 已提交
5783 5784 5785 5786 5787 5788 5789 5790
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
5791 5792
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
5793 5794
{
	int ret;
5795
	cpumask_var_t mask;
L
Linus Torvalds 已提交
5796

5797
	if (len < cpumask_size())
L
Linus Torvalds 已提交
5798 5799
		return -EINVAL;

5800 5801
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
5802

5803 5804 5805 5806 5807 5808 5809 5810
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
		if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
			ret = -EFAULT;
		else
			ret = cpumask_size();
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
5811

5812
	return ret;
L
Linus Torvalds 已提交
5813 5814 5815 5816 5817
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5818 5819
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5820
 */
5821
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
5822
{
5823
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5824

5825
	schedstat_inc(rq, yld_count);
5826
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5827 5828 5829 5830 5831 5832

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5833
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
5834 5835 5836 5837 5838 5839 5840 5841
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
5842
static void __cond_resched(void)
L
Linus Torvalds 已提交
5843
{
5844 5845 5846
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
5847 5848 5849 5850 5851
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
5852 5853 5854 5855 5856 5857 5858
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

5859
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5860
{
5861 5862
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
5863 5864 5865 5866 5867
		__cond_resched();
		return 1;
	}
	return 0;
}
5868
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
5869 5870 5871 5872 5873

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5874
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5875 5876 5877
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
5878
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5879
{
N
Nick Piggin 已提交
5880
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
5881 5882
	int ret = 0;

N
Nick Piggin 已提交
5883
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5884
		spin_unlock(lock);
N
Nick Piggin 已提交
5885 5886 5887 5888
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5889
		ret = 1;
L
Linus Torvalds 已提交
5890 5891
		spin_lock(lock);
	}
J
Jan Kara 已提交
5892
	return ret;
L
Linus Torvalds 已提交
5893 5894 5895 5896 5897 5898 5899
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

5900
	if (need_resched() && system_state == SYSTEM_RUNNING) {
5901
		local_bh_enable();
L
Linus Torvalds 已提交
5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
5913
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5914 5915 5916 5917 5918 5919 5920 5921 5922 5923
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5924
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5925 5926 5927 5928 5929 5930 5931
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
5932
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5933

5934
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5935 5936 5937
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
5938
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5939 5940 5941 5942 5943
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5944
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5945 5946
	long ret;

5947
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5948 5949 5950
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
5951
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5952 5953 5954 5955 5956 5957 5958 5959 5960 5961
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
5962
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
5963 5964 5965 5966 5967 5968 5969 5970 5971
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5972
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5973
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
5987
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
5988 5989 5990 5991 5992 5993 5994 5995 5996
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5997
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5998
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
6012
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6013
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
6014
{
6015
	struct task_struct *p;
D
Dmitry Adamushko 已提交
6016
	unsigned int time_slice;
6017
	int retval;
L
Linus Torvalds 已提交
6018 6019 6020
	struct timespec t;

	if (pid < 0)
6021
		return -EINVAL;
L
Linus Torvalds 已提交
6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

6033 6034 6035 6036 6037 6038
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
6039
		time_slice = DEF_TIMESLICE;
6040
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
6041 6042 6043 6044 6045
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
6046 6047
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
6048 6049
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
6050
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
6051
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
6052 6053
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
6054

L
Linus Torvalds 已提交
6055 6056 6057 6058 6059
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

6060
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6061

6062
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
6063 6064
{
	unsigned long free = 0;
6065
	unsigned state;
L
Linus Torvalds 已提交
6066 6067

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
6068
	printk(KERN_INFO "%-13.13s %c", p->comm,
6069
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6070
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
6071
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
6072
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
6073
	else
I
Ingo Molnar 已提交
6074
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6075 6076
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
6077
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
6078
	else
I
Ingo Molnar 已提交
6079
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6080 6081 6082
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
6083
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
6084 6085
		while (!*n)
			n++;
6086
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
6087 6088
	}
#endif
6089
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
6090
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
6091

6092
	show_stack(p, NULL);
L
Linus Torvalds 已提交
6093 6094
}

I
Ingo Molnar 已提交
6095
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
6096
{
6097
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6098

6099 6100 6101
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
6102
#else
6103 6104
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
6105 6106 6107 6108 6109 6110 6111 6112
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
6113
		if (!state_filter || (p->state & state_filter))
6114
			sched_show_task(p);
L
Linus Torvalds 已提交
6115 6116
	} while_each_thread(g, p);

6117 6118
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
6119 6120 6121
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
6122
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
6123 6124 6125 6126 6127
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
6128 6129
}

I
Ingo Molnar 已提交
6130 6131
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
6132
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
6133 6134
}

6135 6136 6137 6138 6139 6140 6141 6142
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
6143
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
6144
{
6145
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
6146 6147
	unsigned long flags;

6148 6149
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6150 6151 6152
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

6153
	idle->prio = idle->normal_prio = MAX_PRIO;
6154
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
I
Ingo Molnar 已提交
6155
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
6156 6157

	rq->curr = rq->idle = idle;
6158 6159 6160
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
6161 6162 6163
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
6164 6165 6166
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
6167
	task_thread_info(idle)->preempt_count = 0;
6168
#endif
I
Ingo Molnar 已提交
6169 6170 6171 6172
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
6173
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
6174 6175 6176 6177 6178 6179 6180
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
6181
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
6182
 */
6183
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
6184

I
Ingo Molnar 已提交
6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
6208 6209

	sysctl_sched_shares_ratelimit *= factor;
I
Ingo Molnar 已提交
6210 6211
}

L
Linus Torvalds 已提交
6212 6213 6214 6215
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
6216
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
6235
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
6236 6237
 * call is not atomic; no spinlocks may be held.
 */
6238
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
6239
{
6240
	struct migration_req req;
L
Linus Torvalds 已提交
6241
	unsigned long flags;
6242
	struct rq *rq;
6243
	int ret = 0;
L
Linus Torvalds 已提交
6244 6245

	rq = task_rq_lock(p, &flags);
6246
	if (!cpumask_intersects(new_mask, cpu_online_mask)) {
L
Linus Torvalds 已提交
6247 6248 6249 6250
		ret = -EINVAL;
		goto out;
	}

6251
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
6252
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
6253 6254 6255 6256
		ret = -EINVAL;
		goto out;
	}

6257
	if (p->sched_class->set_cpus_allowed)
6258
		p->sched_class->set_cpus_allowed(p, new_mask);
6259
	else {
6260 6261
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6262 6263
	}

L
Linus Torvalds 已提交
6264
	/* Can the task run on the task's current CPU? If so, we're done */
6265
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
6266 6267
		goto out;

R
Rusty Russell 已提交
6268
	if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
L
Linus Torvalds 已提交
6269 6270 6271 6272 6273 6274 6275 6276 6277
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
6278

L
Linus Torvalds 已提交
6279 6280
	return ret;
}
6281
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
6282 6283

/*
I
Ingo Molnar 已提交
6284
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
6285 6286 6287 6288 6289 6290
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
6291 6292
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
6293
 */
6294
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
6295
{
6296
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
6297
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
6298

6299
	if (unlikely(!cpu_active(dest_cpu)))
6300
		return ret;
L
Linus Torvalds 已提交
6301 6302 6303 6304 6305 6306 6307

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
6308
		goto done;
L
Linus Torvalds 已提交
6309
	/* Affinity changed (again). */
6310
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
6311
		goto fail;
L
Linus Torvalds 已提交
6312

I
Ingo Molnar 已提交
6313
	on_rq = p->se.on_rq;
6314
	if (on_rq)
6315
		deactivate_task(rq_src, p, 0);
6316

L
Linus Torvalds 已提交
6317
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
6318 6319
	if (on_rq) {
		activate_task(rq_dest, p, 0);
6320
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
6321
	}
L
Linus Torvalds 已提交
6322
done:
6323
	ret = 1;
L
Linus Torvalds 已提交
6324
fail:
L
Linus Torvalds 已提交
6325
	double_rq_unlock(rq_src, rq_dest);
6326
	return ret;
L
Linus Torvalds 已提交
6327 6328 6329 6330 6331 6332 6333
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
6334
static int migration_thread(void *data)
L
Linus Torvalds 已提交
6335 6336
{
	int cpu = (long)data;
6337
	struct rq *rq;
L
Linus Torvalds 已提交
6338 6339 6340 6341 6342 6343

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
6344
		struct migration_req *req;
L
Linus Torvalds 已提交
6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
6367
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
6368 6369
		list_del_init(head->next);

N
Nick Piggin 已提交
6370 6371 6372
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

6402
/*
6403
 * Figure out where task on dead CPU should go, use force if necessary.
6404
 */
6405
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6406
{
6407
	int dest_cpu;
6408
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424

again:
	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			goto move;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
	if (dest_cpu < nr_cpu_ids)
		goto move;

	/* No more Mr. Nice Guy. */
	if (dest_cpu >= nr_cpu_ids) {
		cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
		dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
L
Linus Torvalds 已提交
6425

6426 6427 6428 6429 6430 6431 6432 6433 6434
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
			       task_pid_nr(p), p->comm, dead_cpu);
6435
		}
6436 6437 6438 6439 6440 6441
	}

move:
	/* It can have affinity changed while we were choosing. */
	if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
		goto again;
L
Linus Torvalds 已提交
6442 6443 6444 6445 6446 6447 6448 6449 6450
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
6451
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
6452
{
R
Rusty Russell 已提交
6453
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
6467
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
6468

6469
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
6470

6471 6472
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
6473 6474
			continue;

6475 6476 6477
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
6478

6479
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
6480 6481
}

I
Ingo Molnar 已提交
6482 6483
/*
 * Schedules idle task to be the next runnable task on current CPU.
6484 6485
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
6486 6487 6488
 */
void sched_idle_next(void)
{
6489
	int this_cpu = smp_processor_id();
6490
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
6491 6492 6493 6494
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
6495
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
6496

6497 6498 6499
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
6500 6501 6502
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6503
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6504

6505 6506
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
6507 6508 6509 6510

	spin_unlock_irqrestore(&rq->lock, flags);
}

6511 6512
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

6526
/* called under rq->lock with disabled interrupts */
6527
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6528
{
6529
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
6530 6531

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
6532
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
6533 6534

	/* Cannot have done final schedule yet: would have vanished. */
6535
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
6536

6537
	get_task_struct(p);
L
Linus Torvalds 已提交
6538 6539 6540

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
6541
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
6542 6543
	 * fine.
	 */
6544
	spin_unlock_irq(&rq->lock);
6545
	move_task_off_dead_cpu(dead_cpu, p);
6546
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
6547

6548
	put_task_struct(p);
L
Linus Torvalds 已提交
6549 6550 6551 6552 6553
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
6554
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
6555
	struct task_struct *next;
6556

I
Ingo Molnar 已提交
6557 6558 6559
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
6560
		update_rq_clock(rq);
6561
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
6562 6563
		if (!next)
			break;
D
Dmitry Adamushko 已提交
6564
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
6565
		migrate_dead(dead_cpu, next);
6566

L
Linus Torvalds 已提交
6567 6568 6569 6570
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

6571 6572 6573
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
6574 6575
	{
		.procname	= "sched_domain",
6576
		.mode		= 0555,
6577
	},
I
Ingo Molnar 已提交
6578
	{0, },
6579 6580 6581
};

static struct ctl_table sd_ctl_root[] = {
6582
	{
6583
		.ctl_name	= CTL_KERN,
6584
		.procname	= "kernel",
6585
		.mode		= 0555,
6586 6587
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
6588
	{0, },
6589 6590 6591 6592 6593
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
6594
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6595 6596 6597 6598

	return entry;
}

6599 6600
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
6601
	struct ctl_table *entry;
6602

6603 6604 6605
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
6606
	 * will always be set. In the lowest directory the names are
6607 6608 6609
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
6610 6611
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
6612 6613 6614
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
6615 6616 6617 6618 6619

	kfree(*tablep);
	*tablep = NULL;
}

6620
static void
6621
set_table_entry(struct ctl_table *entry,
6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
6635
	struct ctl_table *table = sd_alloc_ctl_entry(13);
6636

6637 6638 6639
	if (table == NULL)
		return NULL;

6640
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
6641
		sizeof(long), 0644, proc_doulongvec_minmax);
6642
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
6643
		sizeof(long), 0644, proc_doulongvec_minmax);
6644
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6645
		sizeof(int), 0644, proc_dointvec_minmax);
6646
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6647
		sizeof(int), 0644, proc_dointvec_minmax);
6648
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6649
		sizeof(int), 0644, proc_dointvec_minmax);
6650
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6651
		sizeof(int), 0644, proc_dointvec_minmax);
6652
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6653
		sizeof(int), 0644, proc_dointvec_minmax);
6654
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6655
		sizeof(int), 0644, proc_dointvec_minmax);
6656
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6657
		sizeof(int), 0644, proc_dointvec_minmax);
6658
	set_table_entry(&table[9], "cache_nice_tries",
6659 6660
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
6661
	set_table_entry(&table[10], "flags", &sd->flags,
6662
		sizeof(int), 0644, proc_dointvec_minmax);
6663 6664 6665
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
6666 6667 6668 6669

	return table;
}

6670
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6671 6672 6673 6674 6675 6676 6677 6678 6679
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
6680 6681
	if (table == NULL)
		return NULL;
6682 6683 6684 6685 6686

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6687
		entry->mode = 0555;
6688 6689 6690 6691 6692 6693 6694 6695
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
6696
static void register_sched_domain_sysctl(void)
6697 6698 6699 6700 6701
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

6702 6703 6704
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

6705 6706 6707
	if (entry == NULL)
		return;

6708
	for_each_online_cpu(i) {
6709 6710
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6711
		entry->mode = 0555;
6712
		entry->child = sd_alloc_ctl_cpu_table(i);
6713
		entry++;
6714
	}
6715 6716

	WARN_ON(sd_sysctl_header);
6717 6718
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
6719

6720
/* may be called multiple times per register */
6721 6722
static void unregister_sched_domain_sysctl(void)
{
6723 6724
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
6725
	sd_sysctl_header = NULL;
6726 6727
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
6728
}
6729
#else
6730 6731 6732 6733
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
6734 6735 6736 6737
{
}
#endif

6738 6739 6740 6741 6742
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

6743
		cpumask_set_cpu(rq->cpu, rq->rd->online);
6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

6763
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
6764 6765 6766 6767
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
6768 6769 6770 6771
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
6772 6773
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
6774 6775
{
	struct task_struct *p;
6776
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
6777
	unsigned long flags;
6778
	struct rq *rq;
L
Linus Torvalds 已提交
6779 6780

	switch (action) {
6781

L
Linus Torvalds 已提交
6782
	case CPU_UP_PREPARE:
6783
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
6784
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
6785 6786 6787 6788 6789
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6790
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
6791 6792 6793
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
6794

L
Linus Torvalds 已提交
6795
	case CPU_ONLINE:
6796
	case CPU_ONLINE_FROZEN:
6797
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
6798
		wake_up_process(cpu_rq(cpu)->migration_thread);
6799 6800 6801 6802 6803

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
6804
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6805 6806

			set_rq_online(rq);
6807 6808
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
6809
		break;
6810

L
Linus Torvalds 已提交
6811 6812
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
6813
	case CPU_UP_CANCELED_FROZEN:
6814 6815
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
6816
		/* Unbind it from offline cpu so it can run. Fall thru. */
6817
		kthread_bind(cpu_rq(cpu)->migration_thread,
R
Rusty Russell 已提交
6818
			     cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
6819 6820 6821
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
6822

L
Linus Torvalds 已提交
6823
	case CPU_DEAD:
6824
	case CPU_DEAD_FROZEN:
6825
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
6826 6827 6828 6829 6830
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
6831
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
6832
		update_rq_clock(rq);
6833
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
6834
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
6835 6836
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
6837
		migrate_dead_tasks(cpu);
6838
		spin_unlock_irq(&rq->lock);
6839
		cpuset_unlock();
L
Linus Torvalds 已提交
6840 6841 6842
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
6843 6844 6845 6846 6847
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
6848 6849
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
6850 6851
			struct migration_req *req;

L
Linus Torvalds 已提交
6852
			req = list_entry(rq->migration_queue.next,
6853
					 struct migration_req, list);
L
Linus Torvalds 已提交
6854
			list_del_init(&req->list);
B
Brian King 已提交
6855
			spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
6856
			complete(&req->done);
B
Brian King 已提交
6857
			spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
6858 6859 6860
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
6861

6862 6863
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
6864 6865 6866 6867
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
6868
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6869
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6870 6871 6872
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
6873 6874 6875 6876 6877 6878 6879 6880
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
6881
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
6882 6883 6884 6885
	.notifier_call = migration_call,
	.priority = 10
};

6886
static int __init migration_init(void)
L
Linus Torvalds 已提交
6887 6888
{
	void *cpu = (void *)(long)smp_processor_id();
6889
	int err;
6890 6891

	/* Start one for the boot CPU: */
6892 6893
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6894 6895
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
6896 6897

	return err;
L
Linus Torvalds 已提交
6898
}
6899
early_initcall(migration_init);
L
Linus Torvalds 已提交
6900 6901 6902
#endif

#ifdef CONFIG_SMP
6903

6904
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6905

6906
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6907
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
6908
{
I
Ingo Molnar 已提交
6909
	struct sched_group *group = sd->groups;
6910
	char str[256];
L
Linus Torvalds 已提交
6911

R
Rusty Russell 已提交
6912
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6913
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
6914 6915 6916 6917 6918 6919 6920 6921 6922

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
6923 6924
	}

6925
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
6926

6927
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
I
Ingo Molnar 已提交
6928 6929 6930
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
6931
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
6932 6933 6934
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
6935

I
Ingo Molnar 已提交
6936
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6937
	do {
I
Ingo Molnar 已提交
6938 6939 6940
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6941 6942 6943
			break;
		}

I
Ingo Molnar 已提交
6944 6945 6946 6947 6948 6949
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
6950

6951
		if (!cpumask_weight(sched_group_cpus(group))) {
I
Ingo Molnar 已提交
6952 6953 6954 6955
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
6956

6957
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
6958 6959 6960 6961
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
6962

6963
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
6964

R
Rusty Russell 已提交
6965
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6966 6967
		printk(KERN_CONT " %s (__cpu_power = %d)", str,
						group->__cpu_power);
L
Linus Torvalds 已提交
6968

I
Ingo Molnar 已提交
6969 6970 6971
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6972

6973
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
I
Ingo Molnar 已提交
6974
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6975

6976 6977
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
I
Ingo Molnar 已提交
6978 6979 6980 6981
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
6982

I
Ingo Molnar 已提交
6983 6984
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6985
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
6986
	int level = 0;
L
Linus Torvalds 已提交
6987

I
Ingo Molnar 已提交
6988 6989 6990 6991
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6992

I
Ingo Molnar 已提交
6993 6994
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6995
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6996 6997 6998 6999
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
7000
	for (;;) {
7001
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
7002
			break;
L
Linus Torvalds 已提交
7003 7004
		level++;
		sd = sd->parent;
7005
		if (!sd)
I
Ingo Molnar 已提交
7006 7007
			break;
	}
7008
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
7009
}
7010
#else /* !CONFIG_SCHED_DEBUG */
7011
# define sched_domain_debug(sd, cpu) do { } while (0)
7012
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
7013

7014
static int sd_degenerate(struct sched_domain *sd)
7015
{
7016
	if (cpumask_weight(sched_domain_span(sd)) == 1)
7017 7018 7019 7020 7021 7022
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
7023 7024 7025
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

7039 7040
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7041 7042 7043 7044 7045 7046
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

7047
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
7059 7060 7061
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
7062 7063
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
7064 7065 7066 7067 7068 7069 7070
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

7071 7072
static void free_rootdomain(struct root_domain *rd)
{
7073 7074
	cpupri_cleanup(&rd->cpupri);

7075 7076 7077 7078 7079 7080
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
7081 7082 7083 7084 7085 7086 7087 7088 7089
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
		struct root_domain *old_rd = rq->rd;

7090
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
7091
			set_rq_offline(rq);
G
Gregory Haskins 已提交
7092

7093
		cpumask_clear_cpu(rq->cpu, old_rd->span);
7094

G
Gregory Haskins 已提交
7095
		if (atomic_dec_and_test(&old_rd->refcount))
7096
			free_rootdomain(old_rd);
G
Gregory Haskins 已提交
7097 7098 7099 7100 7101
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

7102 7103
	cpumask_set_cpu(rq->cpu, rd->span);
	if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
7104
		set_rq_online(rq);
G
Gregory Haskins 已提交
7105 7106 7107 7108

	spin_unlock_irqrestore(&rq->lock, flags);
}

L
Li Zefan 已提交
7109
static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
G
Gregory Haskins 已提交
7110 7111 7112
{
	memset(rd, 0, sizeof(*rd));

7113 7114 7115 7116
	if (bootmem) {
		alloc_bootmem_cpumask_var(&def_root_domain.span);
		alloc_bootmem_cpumask_var(&def_root_domain.online);
		alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
7117
		cpupri_init(&rd->cpupri, true);
7118 7119 7120 7121
		return 0;
	}

	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
7122
		goto out;
7123 7124 7125 7126
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
		goto free_span;
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
		goto free_online;
7127

7128 7129
	if (cpupri_init(&rd->cpupri, false) != 0)
		goto free_rto_mask;
7130
	return 0;
7131

7132 7133
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
7134 7135 7136 7137
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
7138
out:
7139
	return -ENOMEM;
G
Gregory Haskins 已提交
7140 7141 7142 7143
}

static void init_defrootdomain(void)
{
7144 7145
	init_rootdomain(&def_root_domain, true);

G
Gregory Haskins 已提交
7146 7147 7148
	atomic_set(&def_root_domain.refcount, 1);
}

7149
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
7150 7151 7152 7153 7154 7155 7156
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

7157 7158 7159 7160
	if (init_rootdomain(rd, false) != 0) {
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
7161 7162 7163 7164

	return rd;
}

L
Linus Torvalds 已提交
7165
/*
I
Ingo Molnar 已提交
7166
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
7167 7168
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
7169 7170
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
7171
{
7172
	struct rq *rq = cpu_rq(cpu);
7173 7174 7175
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
7176
	for (tmp = sd; tmp; ) {
7177 7178 7179
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
7180

7181
		if (sd_parent_degenerate(tmp, parent)) {
7182
			tmp->parent = parent->parent;
7183 7184
			if (parent->parent)
				parent->parent->child = tmp;
7185 7186
		} else
			tmp = tmp->parent;
7187 7188
	}

7189
	if (sd && sd_degenerate(sd)) {
7190
		sd = sd->parent;
7191 7192 7193
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
7194 7195 7196

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
7197
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
7198
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
7199 7200 7201
}

/* cpus with isolated domains */
7202
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
7203 7204 7205 7206

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
7207
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
7208 7209 7210
	return 1;
}

I
Ingo Molnar 已提交
7211
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
7212 7213

/*
7214 7215
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
7216 7217
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
7218 7219 7220 7221 7222
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
7223
static void
7224 7225 7226
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7227
					struct sched_group **sg,
7228 7229
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
7230 7231 7232 7233
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

7234
	cpumask_clear(covered);
7235

7236
	for_each_cpu(i, span) {
7237
		struct sched_group *sg;
7238
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
7239 7240
		int j;

7241
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
7242 7243
			continue;

7244
		cpumask_clear(sched_group_cpus(sg));
7245
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
7246

7247
		for_each_cpu(j, span) {
7248
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
7249 7250
				continue;

7251
			cpumask_set_cpu(j, covered);
7252
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
7253 7254 7255 7256 7257 7258 7259 7260 7261 7262
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

7263
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
7264

7265
#ifdef CONFIG_NUMA
7266

7267 7268 7269 7270 7271
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
7272
 * Find the next node to include in a given scheduling domain. Simply
7273 7274 7275 7276
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
7277
static int find_next_best_node(int node, nodemask_t *used_nodes)
7278 7279 7280 7281 7282
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

7283
	for (i = 0; i < nr_node_ids; i++) {
7284
		/* Start at @node */
7285
		n = (node + i) % nr_node_ids;
7286 7287 7288 7289 7290

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
7291
		if (node_isset(n, *used_nodes))
7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

7303
	node_set(best_node, *used_nodes);
7304 7305 7306 7307 7308 7309
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
7310
 * @span: resulting cpumask
7311
 *
I
Ingo Molnar 已提交
7312
 * Given a node, construct a good cpumask for its sched_domain to span. It
7313 7314 7315
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
7316
static void sched_domain_node_span(int node, struct cpumask *span)
7317
{
7318
	nodemask_t used_nodes;
7319
	int i;
7320

7321
	cpumask_clear(span);
7322
	nodes_clear(used_nodes);
7323

7324
	cpumask_or(span, span, cpumask_of_node(node));
7325
	node_set(node, used_nodes);
7326 7327

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7328
		int next_node = find_next_best_node(node, &used_nodes);
7329

7330
		cpumask_or(span, span, cpumask_of_node(next_node));
7331 7332
	}
}
7333
#endif /* CONFIG_NUMA */
7334

7335
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7336

7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
 * for nr_cpu_ids < CONFIG_NR_CPUS.
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

7352
/*
7353
 * SMT sched-domains:
7354
 */
L
Linus Torvalds 已提交
7355
#ifdef CONFIG_SCHED_SMT
7356 7357
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
7358

I
Ingo Molnar 已提交
7359
static int
7360 7361
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
7362
{
7363
	if (sg)
7364
		*sg = &per_cpu(sched_group_cpus, cpu).sg;
L
Linus Torvalds 已提交
7365 7366
	return cpu;
}
7367
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
7368

7369 7370 7371
/*
 * multi-core sched-domains:
 */
7372
#ifdef CONFIG_SCHED_MC
7373 7374
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
7375
#endif /* CONFIG_SCHED_MC */
7376 7377

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
7378
static int
7379 7380
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
7381
{
7382
	int group;
7383

7384 7385
	cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
	group = cpumask_first(mask);
7386
	if (sg)
7387
		*sg = &per_cpu(sched_group_core, group).sg;
7388
	return group;
7389 7390
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
7391
static int
7392 7393
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *unused)
7394
{
7395
	if (sg)
7396
		*sg = &per_cpu(sched_group_core, cpu).sg;
7397 7398 7399 7400
	return cpu;
}
#endif

7401 7402
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
7403

I
Ingo Molnar 已提交
7404
static int
7405 7406
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
7407
{
7408
	int group;
7409
#ifdef CONFIG_SCHED_MC
7410
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
7411
	group = cpumask_first(mask);
7412
#elif defined(CONFIG_SCHED_SMT)
7413 7414
	cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
7415
#else
7416
	group = cpu;
L
Linus Torvalds 已提交
7417
#endif
7418
	if (sg)
7419
		*sg = &per_cpu(sched_group_phys, group).sg;
7420
	return group;
L
Linus Torvalds 已提交
7421 7422 7423 7424
}

#ifdef CONFIG_NUMA
/*
7425 7426 7427
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
7428
 */
7429
static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
7430
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
7431

7432
static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
7433
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
7434

7435 7436 7437
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
7438
{
7439 7440
	int group;

7441
	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
7442
	group = cpumask_first(nodemask);
7443 7444

	if (sg)
7445
		*sg = &per_cpu(sched_group_allnodes, group).sg;
7446
	return group;
L
Linus Torvalds 已提交
7447
}
7448

7449 7450 7451 7452 7453 7454 7455
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
7456
	do {
7457
		for_each_cpu(j, sched_group_cpus(sg)) {
7458
			struct sched_domain *sd;
7459

7460
			sd = &per_cpu(phys_domains, j).sd;
7461
			if (j != cpumask_first(sched_group_cpus(sd->groups))) {
7462 7463 7464 7465 7466 7467
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
7468

7469 7470 7471 7472
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
7473
}
7474
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
7475

7476
#ifdef CONFIG_NUMA
7477
/* Free memory allocated for various sched_group structures */
7478 7479
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
7480
{
7481
	int cpu, i;
7482

7483
	for_each_cpu(cpu, cpu_map) {
7484 7485 7486 7487 7488 7489
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

7490
		for (i = 0; i < nr_node_ids; i++) {
7491 7492
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

7493
			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7494
			if (cpumask_empty(nodemask))
7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
7511
#else /* !CONFIG_NUMA */
7512 7513
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
7514 7515
{
}
7516
#endif /* CONFIG_NUMA */
7517

7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

7539
	if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
7540 7541 7542 7543
		return;

	child = sd->child;

7544 7545
	sd->groups->__cpu_power = 0;

7546 7547 7548 7549 7550 7551 7552 7553 7554 7555
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7556
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7557 7558 7559 7560 7561 7562 7563 7564
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
7565
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
7566 7567 7568 7569
		group = group->next;
	} while (group != child->groups);
}

7570 7571 7572 7573 7574
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

7575 7576 7577 7578 7579 7580
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

7581
#define	SD_INIT(sd, type)	sd_init_##type(sd)
7582

7583 7584 7585 7586 7587
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
7588
	sd->level = SD_LV_##type;				\
7589
	SD_INIT_NAME(sd, type);					\
7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

7604 7605 7606 7607
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
7608 7609 7610 7611 7612 7613
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
		sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
	} else {
		/* turn on idle balance on this domain */
		sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
	}
}

L
Linus Torvalds 已提交
7639
/*
7640 7641
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
7642
 */
7643
static int __build_sched_domains(const struct cpumask *cpu_map,
7644
				 struct sched_domain_attr *attr)
L
Linus Torvalds 已提交
7645
{
7646
	int i, err = -ENOMEM;
G
Gregory Haskins 已提交
7647
	struct root_domain *rd;
7648 7649
	cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
		tmpmask;
7650
#ifdef CONFIG_NUMA
7651
	cpumask_var_t domainspan, covered, notcovered;
7652
	struct sched_group **sched_group_nodes = NULL;
7653
	int sd_allnodes = 0;
7654

7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674
	if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
		goto out;
	if (!alloc_cpumask_var(&covered, GFP_KERNEL))
		goto free_domainspan;
	if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
		goto free_covered;
#endif

	if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
		goto free_notcovered;
	if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
		goto free_nodemask;
	if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
		goto free_this_sibling_map;
	if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
		goto free_this_core_map;
	if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
		goto free_send_covered;

#ifdef CONFIG_NUMA
7675 7676 7677
	/*
	 * Allocate the per-node list of sched groups
	 */
7678
	sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
7679
				    GFP_KERNEL);
7680 7681
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
7682
		goto free_tmpmask;
7683 7684
	}
#endif
L
Linus Torvalds 已提交
7685

7686
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
7687 7688
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
7689
		goto free_sched_groups;
G
Gregory Haskins 已提交
7690 7691
	}

7692
#ifdef CONFIG_NUMA
7693
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
7694 7695
#endif

L
Linus Torvalds 已提交
7696
	/*
7697
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
7698
	 */
7699
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
7700 7701
		struct sched_domain *sd = NULL, *p;

7702
		cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
L
Linus Torvalds 已提交
7703 7704

#ifdef CONFIG_NUMA
7705 7706
		if (cpumask_weight(cpu_map) >
				SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
7707
			sd = &per_cpu(allnodes_domains, i).sd;
7708
			SD_INIT(sd, ALLNODES);
7709
			set_domain_attribute(sd, attr);
7710
			cpumask_copy(sched_domain_span(sd), cpu_map);
7711
			cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7712
			p = sd;
7713
			sd_allnodes = 1;
7714 7715 7716
		} else
			p = NULL;

7717
		sd = &per_cpu(node_domains, i).sd;
7718
		SD_INIT(sd, NODE);
7719
		set_domain_attribute(sd, attr);
7720
		sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7721
		sd->parent = p;
7722 7723
		if (p)
			p->child = sd;
7724 7725
		cpumask_and(sched_domain_span(sd),
			    sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
7726 7727 7728
#endif

		p = sd;
7729
		sd = &per_cpu(phys_domains, i).sd;
7730
		SD_INIT(sd, CPU);
7731
		set_domain_attribute(sd, attr);
7732
		cpumask_copy(sched_domain_span(sd), nodemask);
L
Linus Torvalds 已提交
7733
		sd->parent = p;
7734 7735
		if (p)
			p->child = sd;
7736
		cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7737

7738 7739
#ifdef CONFIG_SCHED_MC
		p = sd;
7740
		sd = &per_cpu(core_domains, i).sd;
7741
		SD_INIT(sd, MC);
7742
		set_domain_attribute(sd, attr);
7743 7744
		cpumask_and(sched_domain_span(sd), cpu_map,
						   cpu_coregroup_mask(i));
7745
		sd->parent = p;
7746
		p->child = sd;
7747
		cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7748 7749
#endif

L
Linus Torvalds 已提交
7750 7751
#ifdef CONFIG_SCHED_SMT
		p = sd;
7752
		sd = &per_cpu(cpu_domains, i).sd;
7753
		SD_INIT(sd, SIBLING);
7754
		set_domain_attribute(sd, attr);
7755 7756
		cpumask_and(sched_domain_span(sd),
			    &per_cpu(cpu_sibling_map, i), cpu_map);
L
Linus Torvalds 已提交
7757
		sd->parent = p;
7758
		p->child = sd;
7759
		cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7760 7761 7762 7763 7764
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
7765
	for_each_cpu(i, cpu_map) {
7766 7767 7768
		cpumask_and(this_sibling_map,
			    &per_cpu(cpu_sibling_map, i), cpu_map);
		if (i != cpumask_first(this_sibling_map))
L
Linus Torvalds 已提交
7769 7770
			continue;

I
Ingo Molnar 已提交
7771
		init_sched_build_groups(this_sibling_map, cpu_map,
7772 7773
					&cpu_to_cpu_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7774 7775 7776
	}
#endif

7777 7778
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
7779
	for_each_cpu(i, cpu_map) {
7780
		cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
7781
		if (i != cpumask_first(this_core_map))
7782
			continue;
7783

I
Ingo Molnar 已提交
7784
		init_sched_build_groups(this_core_map, cpu_map,
7785 7786
					&cpu_to_core_group,
					send_covered, tmpmask);
7787 7788 7789
	}
#endif

L
Linus Torvalds 已提交
7790
	/* Set up physical groups */
7791
	for (i = 0; i < nr_node_ids; i++) {
7792
		cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7793
		if (cpumask_empty(nodemask))
L
Linus Torvalds 已提交
7794 7795
			continue;

7796 7797 7798
		init_sched_build_groups(nodemask, cpu_map,
					&cpu_to_phys_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7799 7800 7801 7802
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
7803 7804 7805 7806 7807
	if (sd_allnodes) {
		init_sched_build_groups(cpu_map, cpu_map,
					&cpu_to_allnodes_group,
					send_covered, tmpmask);
	}
7808

7809
	for (i = 0; i < nr_node_ids; i++) {
7810 7811 7812 7813
		/* Set up node groups */
		struct sched_group *sg, *prev;
		int j;

7814
		cpumask_clear(covered);
7815
		cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7816
		if (cpumask_empty(nodemask)) {
7817
			sched_group_nodes[i] = NULL;
7818
			continue;
7819
		}
7820

7821
		sched_domain_node_span(i, domainspan);
7822
		cpumask_and(domainspan, domainspan, cpu_map);
7823

7824 7825
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, i);
7826 7827 7828 7829 7830
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
7831
		sched_group_nodes[i] = sg;
7832
		for_each_cpu(j, nodemask) {
7833
			struct sched_domain *sd;
I
Ingo Molnar 已提交
7834

7835
			sd = &per_cpu(node_domains, j).sd;
7836 7837
			sd->groups = sg;
		}
7838
		sg->__cpu_power = 0;
7839
		cpumask_copy(sched_group_cpus(sg), nodemask);
7840
		sg->next = sg;
7841
		cpumask_or(covered, covered, nodemask);
7842 7843
		prev = sg;

7844 7845
		for (j = 0; j < nr_node_ids; j++) {
			int n = (i + j) % nr_node_ids;
7846

7847 7848 7849 7850
			cpumask_complement(notcovered, covered);
			cpumask_and(tmpmask, notcovered, cpu_map);
			cpumask_and(tmpmask, tmpmask, domainspan);
			if (cpumask_empty(tmpmask))
7851 7852
				break;

7853
			cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
7854
			if (cpumask_empty(tmpmask))
7855 7856
				continue;

7857 7858
			sg = kmalloc_node(sizeof(struct sched_group) +
					  cpumask_size(),
7859
					  GFP_KERNEL, i);
7860 7861 7862
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
7863
				goto error;
7864
			}
7865
			sg->__cpu_power = 0;
7866
			cpumask_copy(sched_group_cpus(sg), tmpmask);
7867
			sg->next = prev->next;
7868
			cpumask_or(covered, covered, tmpmask);
7869 7870 7871 7872
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
7873 7874 7875
#endif

	/* Calculate CPU power for physical packages and nodes */
7876
#ifdef CONFIG_SCHED_SMT
7877
	for_each_cpu(i, cpu_map) {
7878
		struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
I
Ingo Molnar 已提交
7879

7880
		init_sched_groups_power(i, sd);
7881
	}
L
Linus Torvalds 已提交
7882
#endif
7883
#ifdef CONFIG_SCHED_MC
7884
	for_each_cpu(i, cpu_map) {
7885
		struct sched_domain *sd = &per_cpu(core_domains, i).sd;
I
Ingo Molnar 已提交
7886

7887
		init_sched_groups_power(i, sd);
7888 7889
	}
#endif
7890

7891
	for_each_cpu(i, cpu_map) {
7892
		struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
I
Ingo Molnar 已提交
7893

7894
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7895 7896
	}

7897
#ifdef CONFIG_NUMA
7898
	for (i = 0; i < nr_node_ids; i++)
7899
		init_numa_sched_groups_power(sched_group_nodes[i]);
7900

7901 7902
	if (sd_allnodes) {
		struct sched_group *sg;
7903

7904
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7905
								tmpmask);
7906 7907
		init_numa_sched_groups_power(sg);
	}
7908 7909
#endif

L
Linus Torvalds 已提交
7910
	/* Attach the domains */
7911
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
7912 7913
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
7914
		sd = &per_cpu(cpu_domains, i).sd;
7915
#elif defined(CONFIG_SCHED_MC)
7916
		sd = &per_cpu(core_domains, i).sd;
L
Linus Torvalds 已提交
7917
#else
7918
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
7919
#endif
G
Gregory Haskins 已提交
7920
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
7921
	}
7922

7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950
	err = 0;

free_tmpmask:
	free_cpumask_var(tmpmask);
free_send_covered:
	free_cpumask_var(send_covered);
free_this_core_map:
	free_cpumask_var(this_core_map);
free_this_sibling_map:
	free_cpumask_var(this_sibling_map);
free_nodemask:
	free_cpumask_var(nodemask);
free_notcovered:
#ifdef CONFIG_NUMA
	free_cpumask_var(notcovered);
free_covered:
	free_cpumask_var(covered);
free_domainspan:
	free_cpumask_var(domainspan);
out:
#endif
	return err;

free_sched_groups:
#ifdef CONFIG_NUMA
	kfree(sched_group_nodes);
#endif
	goto free_tmpmask;
7951

7952
#ifdef CONFIG_NUMA
7953
error:
7954
	free_sched_groups(cpu_map, tmpmask);
7955
	free_rootdomain(rd);
7956
	goto free_tmpmask;
7957
#endif
L
Linus Torvalds 已提交
7958
}
P
Paul Jackson 已提交
7959

7960
static int build_sched_domains(const struct cpumask *cpu_map)
7961 7962 7963 7964
{
	return __build_sched_domains(cpu_map, NULL);
}

7965
static struct cpumask *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
7966
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7967 7968
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7969 7970 7971

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
7972 7973
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
7974
 */
7975
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
7976

7977 7978 7979 7980 7981 7982
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
7983
{
7984
	return 0;
7985 7986
}

7987
/*
I
Ingo Molnar 已提交
7988
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7989 7990
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7991
 */
7992
static int arch_init_sched_domains(const struct cpumask *cpu_map)
7993
{
7994 7995
	int err;

7996
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7997
	ndoms_cur = 1;
7998
	doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
P
Paul Jackson 已提交
7999
	if (!doms_cur)
8000
		doms_cur = fallback_doms;
8001
	cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
8002
	dattr_cur = NULL;
8003
	err = build_sched_domains(doms_cur);
8004
	register_sched_domain_sysctl();
8005 8006

	return err;
8007 8008
}

8009 8010
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
8011
{
8012
	free_sched_groups(cpu_map, tmpmask);
8013
}
L
Linus Torvalds 已提交
8014

8015 8016 8017 8018
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
8019
static void detach_destroy_domains(const struct cpumask *cpu_map)
8020
{
8021 8022
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
8023 8024
	int i;

8025
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
8026
		cpu_attach_domain(NULL, &def_root_domain, i);
8027
	synchronize_sched();
8028
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
8029 8030
}

8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
8047 8048
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
8049
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
8050 8051 8052
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
8053
 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
I
Ingo Molnar 已提交
8054 8055 8056
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
8057 8058 8059
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
8060 8061
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
8062 8063 8064 8065
 * failed the kmalloc call, then it can pass in doms_new == NULL &&
 * ndoms_new == 1, and partition_sched_domains() will fallback to
 * the single partition 'fallback_doms', it also forces the domains
 * to be rebuilt.
P
Paul Jackson 已提交
8066
 *
8067
 * If doms_new == NULL it will be replaced with cpu_online_mask.
8068 8069
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
8070
 *
P
Paul Jackson 已提交
8071 8072
 * Call with hotplug lock held
 */
8073 8074
/* FIXME: Change to struct cpumask *doms_new[] */
void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8075
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
8076
{
8077
	int i, j, n;
8078
	int new_topology;
P
Paul Jackson 已提交
8079

8080
	mutex_lock(&sched_domains_mutex);
8081

8082 8083 8084
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

8085 8086 8087
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

8088
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
8089 8090 8091

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
8092
		for (j = 0; j < n && !new_topology; j++) {
8093
			if (cpumask_equal(&doms_cur[i], &doms_new[j])
8094
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
8095 8096 8097 8098 8099 8100 8101 8102
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

8103 8104
	if (doms_new == NULL) {
		ndoms_cur = 0;
8105
		doms_new = fallback_doms;
8106
		cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
8107
		WARN_ON_ONCE(dattr_new);
8108 8109
	}

P
Paul Jackson 已提交
8110 8111
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
8112
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
8113
			if (cpumask_equal(&doms_new[i], &doms_cur[j])
8114
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
8115 8116 8117
				goto match2;
		}
		/* no match - add a new doms_new */
8118 8119
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
8120 8121 8122 8123 8124
match2:
		;
	}

	/* Remember the new sched domains */
8125
	if (doms_cur != fallback_doms)
P
Paul Jackson 已提交
8126
		kfree(doms_cur);
8127
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
8128
	doms_cur = doms_new;
8129
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
8130
	ndoms_cur = ndoms_new;
8131 8132

	register_sched_domain_sysctl();
8133

8134
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
8135 8136
}

8137
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
8138
static void arch_reinit_sched_domains(void)
8139
{
8140
	get_online_cpus();
8141 8142 8143 8144

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

8145
	rebuild_sched_domains();
8146
	put_online_cpus();
8147 8148 8149 8150
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
8151
	unsigned int level = 0;
8152

8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
8164 8165 8166
		return -EINVAL;

	if (smt)
8167
		sched_smt_power_savings = level;
8168
	else
8169
		sched_mc_power_savings = level;
8170

8171
	arch_reinit_sched_domains();
8172

8173
	return count;
8174 8175 8176
}

#ifdef CONFIG_SCHED_MC
8177 8178
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
					   char *page)
8179 8180 8181
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
8182
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
8183
					    const char *buf, size_t count)
8184 8185 8186
{
	return sched_power_savings_store(buf, count, 0);
}
8187 8188 8189
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
8190 8191 8192
#endif

#ifdef CONFIG_SCHED_SMT
8193 8194
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
					    char *page)
8195 8196 8197
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
8198
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
8199
					     const char *buf, size_t count)
8200 8201 8202
{
	return sched_power_savings_store(buf, count, 1);
}
8203 8204
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
8205 8206 8207
		   sched_smt_power_savings_store);
#endif

8208
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
8224
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
8225

8226
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
8227
/*
8228 8229
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
8230 8231 8232
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
8233 8234 8235 8236 8237 8238
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
8239
		partition_sched_domains(1, NULL, NULL);
8240 8241 8242 8243 8244 8245 8246 8247 8248 8249
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
8250
{
P
Peter Zijlstra 已提交
8251 8252
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
8253 8254
	switch (action) {
	case CPU_DOWN_PREPARE:
8255
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
8256
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
8257 8258 8259
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
8260
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
8261
	case CPU_ONLINE:
8262
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
8263
		enable_runtime(cpu_rq(cpu));
8264 8265
		return NOTIFY_OK;

L
Linus Torvalds 已提交
8266 8267 8268 8269 8270 8271 8272
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
8273 8274 8275
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
8276

8277 8278 8279 8280 8281
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
8282
	get_online_cpus();
8283
	mutex_lock(&sched_domains_mutex);
8284 8285 8286 8287
	arch_init_sched_domains(cpu_online_mask);
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
8288
	mutex_unlock(&sched_domains_mutex);
8289
	put_online_cpus();
8290 8291

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
8292 8293
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
8294 8295 8296 8297 8298
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

8299
	init_hrtick();
8300 8301

	/* Move init over to a non-isolated CPU */
8302
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
8303
		BUG();
I
Ingo Molnar 已提交
8304
	sched_init_granularity();
8305
	free_cpumask_var(non_isolated_cpus);
8306 8307

	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
8308
	init_sched_rt_class();
L
Linus Torvalds 已提交
8309 8310 8311 8312
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
8313
	sched_init_granularity();
L
Linus Torvalds 已提交
8314 8315 8316 8317 8318 8319 8320 8321 8322 8323
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
8324
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
8325 8326
{
	cfs_rq->tasks_timeline = RB_ROOT;
8327
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
8328 8329 8330
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
8331
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
8332 8333
}

P
Peter Zijlstra 已提交
8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

8347
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8348 8349
	rt_rq->highest_prio = MAX_RT_PRIO;
#endif
P
Peter Zijlstra 已提交
8350 8351 8352 8353 8354 8355 8356
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
8357 8358
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8359

8360
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8361
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
8362 8363
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
8364 8365
}

P
Peter Zijlstra 已提交
8366
#ifdef CONFIG_FAIR_GROUP_SCHED
8367 8368 8369
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
8370
{
8371
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
8372 8373 8374 8375 8376 8377 8378
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
8379 8380 8381 8382
	/* se could be NULL for init_task_group */
	if (!se)
		return;

8383 8384 8385 8386 8387
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
8388 8389
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
8390
	se->load.inv_weight = 0;
8391
	se->parent = parent;
P
Peter Zijlstra 已提交
8392
}
8393
#endif
P
Peter Zijlstra 已提交
8394

8395
#ifdef CONFIG_RT_GROUP_SCHED
8396 8397 8398
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
8399
{
8400 8401
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
8402 8403 8404 8405
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
8406
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8407 8408 8409 8410
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
8411 8412 8413
	if (!rt_se)
		return;

8414 8415 8416 8417 8418
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
8419
	rt_se->my_q = rt_rq;
8420
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
8421 8422 8423 8424
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
8425 8426
void __init sched_init(void)
{
I
Ingo Molnar 已提交
8427
	int i, j;
8428 8429 8430 8431 8432 8433 8434
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8435 8436 8437
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
8438 8439 8440 8441 8442 8443
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
8444
		ptr = (unsigned long)alloc_bootmem(alloc_size);
8445 8446 8447 8448 8449 8450 8451

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8452 8453 8454 8455 8456 8457 8458

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8459 8460
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
8461 8462 8463 8464 8465
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
8466 8467 8468 8469 8470 8471 8472 8473
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8474 8475
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
8476
	}
I
Ingo Molnar 已提交
8477

G
Gregory Haskins 已提交
8478 8479 8480 8481
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

8482 8483 8484 8485 8486 8487
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
8488 8489 8490
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
8491 8492
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
8493

8494
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
8495
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
8496 8497 8498 8499 8500 8501
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
8502 8503
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
8504

8505
	for_each_possible_cpu(i) {
8506
		struct rq *rq;
L
Linus Torvalds 已提交
8507 8508 8509

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
8510
		rq->nr_running = 0;
I
Ingo Molnar 已提交
8511
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
8512
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
8513
#ifdef CONFIG_FAIR_GROUP_SCHED
8514
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
8515
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
		 * 	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
8536
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8537
#elif defined CONFIG_USER_SCHED
8538 8539
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
		 * (init_cfs_rq) and having one entity represent this group of
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
8551
		init_tg_cfs_entry(&init_task_group,
P
Peter Zijlstra 已提交
8552
				&per_cpu(init_cfs_rq, i),
8553 8554
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
8555

8556
#endif
D
Dhaval Giani 已提交
8557 8558 8559
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8560
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8561
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
8562
#ifdef CONFIG_CGROUP_SCHED
8563
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8564
#elif defined CONFIG_USER_SCHED
8565
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8566
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
8567
				&per_cpu(init_rt_rq, i),
8568 8569
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
8570
#endif
I
Ingo Molnar 已提交
8571
#endif
L
Linus Torvalds 已提交
8572

I
Ingo Molnar 已提交
8573 8574
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
8575
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
8576
		rq->sd = NULL;
G
Gregory Haskins 已提交
8577
		rq->rd = NULL;
L
Linus Torvalds 已提交
8578
		rq->active_balance = 0;
I
Ingo Molnar 已提交
8579
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
8580
		rq->push_cpu = 0;
8581
		rq->cpu = i;
8582
		rq->online = 0;
L
Linus Torvalds 已提交
8583 8584
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
8585
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
8586
#endif
P
Peter Zijlstra 已提交
8587
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
8588 8589 8590
		atomic_set(&rq->nr_iowait, 0);
	}

8591
	set_load_weight(&init_task);
8592

8593 8594 8595 8596
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

8597
#ifdef CONFIG_SMP
8598
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8599 8600
#endif

8601 8602 8603 8604
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
8618 8619 8620 8621
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
8622

8623 8624
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
	alloc_bootmem_cpumask_var(&nohz_cpu_mask);
8625
#ifdef CONFIG_SMP
8626 8627 8628
#ifdef CONFIG_NO_HZ
	alloc_bootmem_cpumask_var(&nohz.cpu_mask);
#endif
8629
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
8630
#endif /* SMP */
8631

8632
	scheduler_running = 1;
L
Linus Torvalds 已提交
8633 8634 8635 8636 8637
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
8638
#ifdef in_atomic
L
Linus Torvalds 已提交
8639 8640
	static unsigned long prev_jiffy;	/* ratelimiting */

I
Ingo Molnar 已提交
8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659
	if ((!in_atomic() && !irqs_disabled()) ||
		    system_state != SYSTEM_RUNNING || oops_in_progress)
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
8660 8661 8662 8663 8664 8665
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
8666 8667 8668
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
8669

8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
8681 8682
void normalize_rt_tasks(void)
{
8683
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
8684
	unsigned long flags;
8685
	struct rq *rq;
L
Linus Torvalds 已提交
8686

8687
	read_lock_irqsave(&tasklist_lock, flags);
8688
	do_each_thread(g, p) {
8689 8690 8691 8692 8693 8694
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
8695 8696
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
8697 8698 8699
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
8700
#endif
I
Ingo Molnar 已提交
8701 8702 8703 8704 8705 8706 8707 8708

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
8709
			continue;
I
Ingo Molnar 已提交
8710
		}
L
Linus Torvalds 已提交
8711

8712
		spin_lock(&p->pi_lock);
8713
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
8714

8715
		normalize_task(rq, p);
8716

8717
		__task_rq_unlock(rq);
8718
		spin_unlock(&p->pi_lock);
8719 8720
	} while_each_thread(g, p);

8721
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
8722 8723 8724
}

#endif /* CONFIG_MAGIC_SYSRQ */
8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8743
struct task_struct *curr_task(int cpu)
8744 8745 8746 8747 8748 8749 8750 8751 8752 8753
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
8754 8755
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
8756 8757 8758 8759 8760 8761 8762
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8763
void set_curr_task(int cpu, struct task_struct *p)
8764 8765 8766 8767 8768
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
8769

8770 8771
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

8786 8787
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
8788 8789
{
	struct cfs_rq *cfs_rq;
8790
	struct sched_entity *se;
8791
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
8792 8793
	int i;

8794
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8795 8796
	if (!tg->cfs_rq)
		goto err;
8797
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8798 8799
	if (!tg->se)
		goto err;
8800 8801

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8802 8803

	for_each_possible_cpu(i) {
8804
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
8805

8806 8807
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8808 8809 8810
		if (!cfs_rq)
			goto err;

8811 8812
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8813 8814 8815
		if (!se)
			goto err;

8816
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
8835
#else /* !CONFG_FAIR_GROUP_SCHED */
8836 8837 8838 8839
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8840 8841
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8853
#endif /* CONFIG_FAIR_GROUP_SCHED */
8854 8855

#ifdef CONFIG_RT_GROUP_SCHED
8856 8857 8858 8859
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8860 8861
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8873 8874
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8875 8876
{
	struct rt_rq *rt_rq;
8877
	struct sched_rt_entity *rt_se;
8878 8879 8880
	struct rq *rq;
	int i;

8881
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8882 8883
	if (!tg->rt_rq)
		goto err;
8884
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8885 8886 8887
	if (!tg->rt_se)
		goto err;

8888 8889
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8890 8891 8892 8893

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

8894 8895
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8896 8897
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8898

8899 8900
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8901 8902
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
8903

8904
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
8905 8906
	}

8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
8923
#else /* !CONFIG_RT_GROUP_SCHED */
8924 8925 8926 8927
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8928 8929
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
8941
#endif /* CONFIG_RT_GROUP_SCHED */
8942

8943
#ifdef CONFIG_GROUP_SCHED
8944 8945 8946 8947 8948 8949 8950 8951
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8952
struct task_group *sched_create_group(struct task_group *parent)
8953 8954 8955 8956 8957 8958 8959 8960 8961
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8962
	if (!alloc_fair_sched_group(tg, parent))
8963 8964
		goto err;

8965
	if (!alloc_rt_sched_group(tg, parent))
8966 8967
		goto err;

8968
	spin_lock_irqsave(&task_group_lock, flags);
8969
	for_each_possible_cpu(i) {
8970 8971
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
8972
	}
P
Peter Zijlstra 已提交
8973
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8974 8975 8976 8977 8978

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
8979
	list_add_rcu(&tg->siblings, &parent->children);
8980
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8981

8982
	return tg;
S
Srivatsa Vaddagiri 已提交
8983 8984

err:
P
Peter Zijlstra 已提交
8985
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8986 8987 8988
	return ERR_PTR(-ENOMEM);
}

8989
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8990
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8991 8992
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8993
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8994 8995
}

8996
/* Destroy runqueue etc associated with a task group */
8997
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8998
{
8999
	unsigned long flags;
9000
	int i;
S
Srivatsa Vaddagiri 已提交
9001

9002
	spin_lock_irqsave(&task_group_lock, flags);
9003
	for_each_possible_cpu(i) {
9004 9005
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
9006
	}
P
Peter Zijlstra 已提交
9007
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
9008
	list_del_rcu(&tg->siblings);
9009
	spin_unlock_irqrestore(&task_group_lock, flags);
9010 9011

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
9012
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
9013 9014
}

9015
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
9016 9017 9018
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
9019 9020
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
9021 9022 9023 9024 9025 9026 9027 9028 9029
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

9030
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
9031 9032
	on_rq = tsk->se.on_rq;

9033
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9034
		dequeue_task(rq, tsk, 0);
9035 9036
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
9037

P
Peter Zijlstra 已提交
9038
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
9039

P
Peter Zijlstra 已提交
9040 9041 9042 9043 9044
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

9045 9046 9047
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
9048
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
9049 9050 9051

	task_rq_unlock(rq, &flags);
}
9052
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
9053

9054
#ifdef CONFIG_FAIR_GROUP_SCHED
9055
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
9056 9057 9058 9059 9060
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
9061
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9062 9063 9064
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
9065
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
9066

9067
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9068
		enqueue_entity(cfs_rq, se, 0);
9069
}
9070

9071 9072 9073 9074 9075 9076 9077 9078 9079
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
9080 9081
}

9082 9083
static DEFINE_MUTEX(shares_mutex);

9084
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
9085 9086
{
	int i;
9087
	unsigned long flags;
9088

9089 9090 9091 9092 9093 9094
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

9095 9096
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
9097 9098
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
9099

9100
	mutex_lock(&shares_mutex);
9101
	if (tg->shares == shares)
9102
		goto done;
S
Srivatsa Vaddagiri 已提交
9103

9104
	spin_lock_irqsave(&task_group_lock, flags);
9105 9106
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
9107
	list_del_rcu(&tg->siblings);
9108
	spin_unlock_irqrestore(&task_group_lock, flags);
9109 9110 9111 9112 9113 9114 9115 9116

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
9117
	tg->shares = shares;
9118 9119 9120 9121 9122
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
9123
		set_se_shares(tg->se[i], shares);
9124
	}
S
Srivatsa Vaddagiri 已提交
9125

9126 9127 9128 9129
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
9130
	spin_lock_irqsave(&task_group_lock, flags);
9131 9132
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
9133
	list_add_rcu(&tg->siblings, &tg->parent->children);
9134
	spin_unlock_irqrestore(&task_group_lock, flags);
9135
done:
9136
	mutex_unlock(&shares_mutex);
9137
	return 0;
S
Srivatsa Vaddagiri 已提交
9138 9139
}

9140 9141 9142 9143
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
9144
#endif
9145

9146
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9147
/*
P
Peter Zijlstra 已提交
9148
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
9149
 */
P
Peter Zijlstra 已提交
9150 9151 9152 9153 9154
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
9155
		return 1ULL << 20;
P
Peter Zijlstra 已提交
9156

P
Peter Zijlstra 已提交
9157
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
9158 9159
}

P
Peter Zijlstra 已提交
9160 9161
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
9162
{
P
Peter Zijlstra 已提交
9163
	struct task_struct *g, *p;
9164

P
Peter Zijlstra 已提交
9165 9166 9167 9168
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
9169

P
Peter Zijlstra 已提交
9170 9171
	return 0;
}
9172

P
Peter Zijlstra 已提交
9173 9174 9175 9176 9177
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
9178

P
Peter Zijlstra 已提交
9179 9180 9181 9182 9183 9184
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
9185

P
Peter Zijlstra 已提交
9186 9187
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
9188

P
Peter Zijlstra 已提交
9189 9190 9191
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
9192 9193
	}

9194 9195 9196 9197 9198 9199 9200
#ifdef CONFIG_USER_SCHED
	if (tg == &root_task_group) {
		period = global_rt_period();
		runtime = global_rt_runtime();
	}
#endif

9201 9202 9203 9204 9205
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
9206

9207 9208 9209
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
9210 9211
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
9212

P
Peter Zijlstra 已提交
9213
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
9214

9215 9216 9217 9218 9219
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
9220

9221 9222 9223
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
9224 9225 9226
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
9227

P
Peter Zijlstra 已提交
9228 9229 9230 9231
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
9232

P
Peter Zijlstra 已提交
9233
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
9234
	}
P
Peter Zijlstra 已提交
9235

P
Peter Zijlstra 已提交
9236 9237 9238 9239
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
9240 9241
}

P
Peter Zijlstra 已提交
9242
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
9243
{
P
Peter Zijlstra 已提交
9244 9245 9246 9247 9248 9249 9250
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
9251 9252
}

9253 9254
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
9255
{
P
Peter Zijlstra 已提交
9256
	int i, err = 0;
P
Peter Zijlstra 已提交
9257 9258

	mutex_lock(&rt_constraints_mutex);
9259
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
9260 9261
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
9262
		goto unlock;
P
Peter Zijlstra 已提交
9263 9264

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9265 9266
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
9267 9268 9269 9270 9271 9272 9273 9274 9275

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
9276
 unlock:
9277
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
9278 9279 9280
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
9281 9282
}

9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
9295 9296 9297 9298
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

9299
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
9300 9301
		return -1;

9302
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
9303 9304 9305
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
9306 9307 9308 9309 9310 9311 9312 9313

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

9314 9315 9316
	if (rt_period == 0)
		return -EINVAL;

9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
9331
	u64 runtime, period;
9332 9333
	int ret = 0;

9334 9335 9336
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

9337 9338 9339 9340 9341 9342 9343 9344
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
9345

9346
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
9347
	read_lock(&tasklist_lock);
9348
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
9349
	read_unlock(&tasklist_lock);
9350 9351 9352 9353
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
9354
#else /* !CONFIG_RT_GROUP_SCHED */
9355 9356
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
9357 9358 9359
	unsigned long flags;
	int i;

9360 9361 9362
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

P
Peter Zijlstra 已提交
9363 9364 9365 9366 9367 9368 9369 9370 9371 9372
	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

9373 9374
	return 0;
}
9375
#endif /* CONFIG_RT_GROUP_SCHED */
9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
9406

9407
#ifdef CONFIG_CGROUP_SCHED
9408 9409

/* return corresponding task_group object of a cgroup */
9410
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9411
{
9412 9413
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
9414 9415 9416
}

static struct cgroup_subsys_state *
9417
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9418
{
9419
	struct task_group *tg, *parent;
9420

9421
	if (!cgrp->parent) {
9422 9423 9424 9425
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

9426 9427
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
9428 9429 9430 9431 9432 9433
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
9434 9435
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9436
{
9437
	struct task_group *tg = cgroup_tg(cgrp);
9438 9439 9440 9441

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
9442 9443 9444
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
9445
{
9446 9447
#ifdef CONFIG_RT_GROUP_SCHED
	/* Don't accept realtime tasks when there is no way for them to run */
9448
	if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
9449 9450
		return -EINVAL;
#else
9451 9452 9453
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
9454
#endif
9455 9456 9457 9458 9459

	return 0;
}

static void
9460
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9461 9462 9463 9464 9465
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

9466
#ifdef CONFIG_FAIR_GROUP_SCHED
9467
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9468
				u64 shareval)
9469
{
9470
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9471 9472
}

9473
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9474
{
9475
	struct task_group *tg = cgroup_tg(cgrp);
9476 9477 9478

	return (u64) tg->shares;
}
9479
#endif /* CONFIG_FAIR_GROUP_SCHED */
9480

9481
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
9482
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9483
				s64 val)
P
Peter Zijlstra 已提交
9484
{
9485
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
9486 9487
}

9488
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
9489
{
9490
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
9491
}
9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
9503
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
9504

9505
static struct cftype cpu_files[] = {
9506
#ifdef CONFIG_FAIR_GROUP_SCHED
9507 9508
	{
		.name = "shares",
9509 9510
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
9511
	},
9512 9513
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9514
	{
P
Peter Zijlstra 已提交
9515
		.name = "rt_runtime_us",
9516 9517
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
9518
	},
9519 9520
	{
		.name = "rt_period_us",
9521 9522
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
9523
	},
9524
#endif
9525 9526 9527 9528
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
9529
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9530 9531 9532
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
9533 9534 9535 9536 9537 9538 9539
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
9540 9541 9542
	.early_init	= 1,
};

9543
#endif	/* CONFIG_CGROUP_SCHED */
9544 9545 9546 9547 9548 9549 9550 9551 9552 9553

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

9554
/* track cpu usage of a group of tasks and its child groups */
9555 9556 9557 9558
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
9559
	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
9560
	struct cpuacct *parent;
9561 9562 9563 9564 9565
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
9566
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9567
{
9568
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
9581
	struct cgroup_subsys *ss, struct cgroup *cgrp)
9582 9583
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9584
	int i;
9585 9586

	if (!ca)
9587
		goto out;
9588 9589

	ca->cpuusage = alloc_percpu(u64);
9590 9591 9592 9593 9594 9595
	if (!ca->cpuusage)
		goto out_free_ca;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		if (percpu_counter_init(&ca->cpustat[i], 0))
			goto out_free_counters;
9596

9597 9598 9599
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

9600
	return &ca->css;
9601 9602 9603 9604 9605 9606 9607 9608 9609

out_free_counters:
	while (--i >= 0)
		percpu_counter_destroy(&ca->cpustat[i]);
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
9610 9611 9612
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
9613
static void
9614
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9615
{
9616
	struct cpuacct *ca = cgroup_ca(cgrp);
9617
	int i;
9618

9619 9620
	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		percpu_counter_destroy(&ca->cpustat[i]);
9621 9622 9623 9624
	free_percpu(ca->cpuusage);
	kfree(ca);
}

9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
	u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	data = *cpuusage;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
	u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	*cpuusage = val;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	*cpuusage = val;
#endif
}

9660
/* return total cpu usage (in nanoseconds) of a group */
9661
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9662
{
9663
	struct cpuacct *ca = cgroup_ca(cgrp);
9664 9665 9666
	u64 totalcpuusage = 0;
	int i;

9667 9668
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
9669 9670 9671 9672

	return totalcpuusage;
}

9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

9685 9686
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
9687 9688 9689 9690 9691

out:
	return err;
}

9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int i;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
		s64 val = percpu_counter_read(&ca->cpustat[i]);
		val = cputime64_to_clock_t(val);
		cb->fill(cb, cpuacct_stat_desc[i], val);
	}
	return 0;
}

9726 9727 9728
static struct cftype files[] = {
	{
		.name = "usage",
9729 9730
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
9731
	},
9732 9733 9734 9735
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
9736 9737 9738 9739
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
9740 9741
};

9742
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9743
{
9744
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9745 9746 9747 9748 9749 9750 9751 9752 9753 9754
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
9755
	int cpu;
9756 9757 9758 9759

	if (!cpuacct_subsys.active)
		return;

9760
	cpu = task_cpu(tsk);
9761 9762 9763

	rcu_read_lock();

9764 9765
	ca = task_ca(tsk);

9766 9767
	for (; ca; ca = ca->parent) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9768 9769
		*cpuusage += cputime;
	}
9770 9771

	rcu_read_unlock();
9772 9773
}

9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794
/*
 * Charge the system/user time to the task's accounting group.
 */
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val)
{
	struct cpuacct *ca;

	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(tsk);

	do {
		percpu_counter_add(&ca->cpustat[idx], val);
		ca = ca->parent;
	} while (ca);
	rcu_read_unlock();
}

9795 9796 9797 9798 9799 9800 9801 9802
struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */