sched.c 173.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
#include <asm/uaccess.h>
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
30
#include <linux/capability.h>
L
Linus Torvalds 已提交
31 32
#include <linux/completion.h>
#include <linux/kernel_stat.h>
33
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
37
#include <linux/freezer.h>
38
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
#include <linux/syscalls.h>
#include <linux/times.h>
52
#include <linux/tsacct_kern.h>
53
#include <linux/kprobes.h>
54
#include <linux/delayacct.h>
L
Linus Torvalds 已提交
55 56 57 58
#include <asm/tlb.h>

#include <asm/unistd.h>

59 60 61 62 63 64 65 66 67 68
/*
 * Scheduler clock - returns current time in nanosec units.
 * This is default implementation.
 * Architectures and sub-architectures can override this.
 */
unsigned long long __attribute__((weak)) sched_clock(void)
{
	return (unsigned long long)jiffies * (1000000000 / HZ);
}

L
Linus Torvalds 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
 * Some helpers for converting nanosecond timing to jiffy resolution
 */
#define NS_TO_JIFFIES(TIME)	((TIME) / (1000000000 / HZ))
#define JIFFIES_TO_NS(TIME)	((TIME) * (1000000000 / HZ))

/*
 * These are the 'tuning knobs' of the scheduler:
 *
 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
 * Timeslices get refilled after they expire.
 */
#define MIN_TIMESLICE		max(5 * HZ / 1000, 1)
#define DEF_TIMESLICE		(100 * HZ / 1000)
#define ON_RUNQUEUE_WEIGHT	 30
#define CHILD_PENALTY		 95
#define PARENT_PENALTY		100
#define EXIT_WEIGHT		  3
#define PRIO_BONUS_RATIO	 25
#define MAX_BONUS		(MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
#define INTERACTIVE_DELTA	  2
#define MAX_SLEEP_AVG		(DEF_TIMESLICE * MAX_BONUS)
#define STARVATION_LIMIT	(MAX_SLEEP_AVG)
#define NS_MAX_SLEEP_AVG	(JIFFIES_TO_NS(MAX_SLEEP_AVG))

/*
 * If a task is 'interactive' then we reinsert it in the active
 * array after it has expired its current timeslice. (it will not
 * continue to run immediately, it will still roundrobin with
 * other interactive tasks.)
 *
 * This part scales the interactivity limit depending on niceness.
 *
 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
 * Here are a few examples of different nice levels:
 *
 *  TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
 *  TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
 *  TASK_INTERACTIVE(  0): [1,1,1,1,0,0,0,0,0,0,0]
 *  TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
 *  TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
 *
 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
 *  priority range a task can explore, a value of '1' means the
 *  task is rated interactive.)
 *
 * Ie. nice +19 tasks can never get 'interactive' enough to be
 * reinserted into the active array. And only heavily CPU-hog nice -20
 * tasks will be expired. Default nice 0 tasks are somewhere between,
 * it takes some effort for them to get interactive, but it's not
 * too hard.
 */

#define CURRENT_BONUS(p) \
	(NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
		MAX_SLEEP_AVG)

#define GRANULARITY	(10 * HZ / 1000 ? : 1)

#ifdef CONFIG_SMP
#define TIMESLICE_GRANULARITY(p)	(GRANULARITY * \
		(1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
			num_online_cpus())
#else
#define TIMESLICE_GRANULARITY(p)	(GRANULARITY * \
		(1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
#endif

#define SCALE(v1,v1_max,v2_max) \
	(v1) * (v2_max) / (v1_max)

#define DELTA(p) \
160 161
	(SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
		INTERACTIVE_DELTA)
L
Linus Torvalds 已提交
162 163 164 165 166 167 168 169 170 171 172 173

#define TASK_INTERACTIVE(p) \
	((p)->prio <= (p)->static_prio - DELTA(p))

#define INTERACTIVE_SLEEP(p) \
	(JIFFIES_TO_NS(MAX_SLEEP_AVG * \
		(MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))

#define TASK_PREEMPTS_CURR(p, rq) \
	((p)->prio < (rq)->curr->prio)

#define SCALE_PRIO(x, prio) \
174
	max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
L
Linus Torvalds 已提交
175

176
static unsigned int static_prio_timeslice(int static_prio)
L
Linus Torvalds 已提交
177
{
178 179
	if (static_prio < NICE_TO_PRIO(0))
		return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
L
Linus Torvalds 已提交
180
	else
181
		return SCALE_PRIO(DEF_TIMESLICE, static_prio);
L
Linus Torvalds 已提交
182
}
183

184 185 186 187 188 189 190 191 192
/*
 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
 * to time slice values: [800ms ... 100ms ... 5ms]
 *
 * The higher a thread's priority, the bigger timeslices
 * it gets during one round of execution. But even the lowest
 * priority thread gets MIN_TIMESLICE worth of execution time.
 */

193
static inline unsigned int task_timeslice(struct task_struct *p)
194 195 196 197
{
	return static_prio_timeslice(p->static_prio);
}

L
Linus Torvalds 已提交
198 199 200 201 202 203
/*
 * These are the runqueue data structures:
 */

struct prio_array {
	unsigned int nr_active;
204
	DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */
L
Linus Torvalds 已提交
205 206 207 208 209 210 211 212 213 214
	struct list_head queue[MAX_PRIO];
};

/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
215
struct rq {
L
Linus Torvalds 已提交
216 217 218 219 220 221 222
	spinlock_t lock;

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
223
	unsigned long raw_weighted_load;
L
Linus Torvalds 已提交
224
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
225
	unsigned long cpu_load[3];
L
Linus Torvalds 已提交
226 227 228 229 230 231 232 233 234 235 236 237
#endif
	unsigned long long nr_switches;

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

	unsigned long expired_timestamp;
238 239
	/* Cached timestamp set by update_cpu_clock() */
	unsigned long long most_recent_timestamp;
240
	struct task_struct *curr, *idle;
241
	unsigned long next_balance;
L
Linus Torvalds 已提交
242
	struct mm_struct *prev_mm;
243
	struct prio_array *active, *expired, arrays[2];
L
Linus Torvalds 已提交
244 245 246 247 248 249 250 251 252
	int best_expired_prio;
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
253
	int cpu;		/* cpu of this runqueue */
L
Linus Torvalds 已提交
254

255
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
	struct list_head migration_queue;
#endif

#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
	unsigned long yld_exp_empty;
	unsigned long yld_act_empty;
	unsigned long yld_both_empty;
	unsigned long yld_cnt;

	/* schedule() stats */
	unsigned long sched_switch;
	unsigned long sched_cnt;
	unsigned long sched_goidle;

	/* try_to_wake_up() stats */
	unsigned long ttwu_cnt;
	unsigned long ttwu_local;
#endif
278
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
279 280
};

281
static DEFINE_PER_CPU(struct rq, runqueues);
L
Linus Torvalds 已提交
282

283 284 285 286 287 288 289 290 291
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
292 293
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
294
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
295 296 297 298
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
299 300
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
301 302 303 304 305 306 307

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

#ifndef prepare_arch_switch
308 309 310 311 312 313 314
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

#ifndef __ARCH_WANT_UNLOCKED_CTXSW
315
static inline int task_running(struct rq *rq, struct task_struct *p)
316 317 318 319
{
	return rq->curr == p;
}

320
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
321 322 323
{
}

324
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
325
{
326 327 328 329
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
330 331 332 333 334 335 336
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

337 338 339 340
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
341
static inline int task_running(struct rq *rq, struct task_struct *p)
342 343 344 345 346 347 348 349
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
	return rq->curr == p;
#endif
}

350
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

367
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
368 369 370 371 372 373 374 375 376 377 378 379
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
380
#endif
381 382
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
383

384 385 386 387
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
388
static inline struct rq *__task_rq_lock(struct task_struct *p)
389 390
	__acquires(rq->lock)
{
391
	struct rq *rq;
392 393 394 395 396 397 398 399 400 401 402

repeat_lock_task:
	rq = task_rq(p);
	spin_lock(&rq->lock);
	if (unlikely(rq != task_rq(p))) {
		spin_unlock(&rq->lock);
		goto repeat_lock_task;
	}
	return rq;
}

L
Linus Torvalds 已提交
403 404 405 406 407
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
 * interrupts.  Note the ordering: we can safely lookup the task_rq without
 * explicitly disabling preemption.
 */
408
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
409 410
	__acquires(rq->lock)
{
411
	struct rq *rq;
L
Linus Torvalds 已提交
412 413 414 415 416 417 418 419 420 421 422 423

repeat_lock_task:
	local_irq_save(*flags);
	rq = task_rq(p);
	spin_lock(&rq->lock);
	if (unlikely(rq != task_rq(p))) {
		spin_unlock_irqrestore(&rq->lock, *flags);
		goto repeat_lock_task;
	}
	return rq;
}

424
static inline void __task_rq_unlock(struct rq *rq)
425 426 427 428 429
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

430
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
431 432 433 434 435 436 437 438 439 440
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

#ifdef CONFIG_SCHEDSTATS
/*
 * bump this up when changing the output format or the meaning of an existing
 * format, so that tools can adapt (or abort)
 */
441
#define SCHEDSTAT_VERSION 14
L
Linus Torvalds 已提交
442 443 444 445 446 447 448 449

static int show_schedstat(struct seq_file *seq, void *v)
{
	int cpu;

	seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
	seq_printf(seq, "timestamp %lu\n", jiffies);
	for_each_online_cpu(cpu) {
450
		struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
#ifdef CONFIG_SMP
		struct sched_domain *sd;
		int dcnt = 0;
#endif

		/* runqueue-specific stats */
		seq_printf(seq,
		    "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
		    cpu, rq->yld_both_empty,
		    rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
		    rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
		    rq->ttwu_cnt, rq->ttwu_local,
		    rq->rq_sched_info.cpu_time,
		    rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);

		seq_printf(seq, "\n");

#ifdef CONFIG_SMP
		/* domain-specific stats */
N
Nick Piggin 已提交
470
		preempt_disable();
L
Linus Torvalds 已提交
471 472 473 474 475 476 477 478
		for_each_domain(cpu, sd) {
			enum idle_type itype;
			char mask_str[NR_CPUS];

			cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
			seq_printf(seq, "domain%d %s", dcnt++, mask_str);
			for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
					itype++) {
479 480
				seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu "
						"%lu",
L
Linus Torvalds 已提交
481 482 483 484 485 486 487
				    sd->lb_cnt[itype],
				    sd->lb_balanced[itype],
				    sd->lb_failed[itype],
				    sd->lb_imbalance[itype],
				    sd->lb_gained[itype],
				    sd->lb_hot_gained[itype],
				    sd->lb_nobusyq[itype],
488
				    sd->lb_nobusyg[itype]);
L
Linus Torvalds 已提交
489
			}
490 491
			seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu"
			    " %lu %lu %lu\n",
L
Linus Torvalds 已提交
492
			    sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
493 494
			    sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
			    sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
495 496
			    sd->ttwu_wake_remote, sd->ttwu_move_affine,
			    sd->ttwu_move_balance);
L
Linus Torvalds 已提交
497
		}
N
Nick Piggin 已提交
498
		preempt_enable();
L
Linus Torvalds 已提交
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
#endif
	}
	return 0;
}

static int schedstat_open(struct inode *inode, struct file *file)
{
	unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
	char *buf = kmalloc(size, GFP_KERNEL);
	struct seq_file *m;
	int res;

	if (!buf)
		return -ENOMEM;
	res = single_open(file, show_schedstat, NULL);
	if (!res) {
		m = file->private_data;
		m->buf = buf;
		m->size = size;
	} else
		kfree(buf);
	return res;
}

523
const struct file_operations proc_schedstat_operations = {
L
Linus Torvalds 已提交
524 525 526 527 528 529
	.open    = schedstat_open,
	.read    = seq_read,
	.llseek  = seq_lseek,
	.release = single_release,
};

530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
/*
 * Expects runqueue lock to be held for atomicity of update
 */
static inline void
rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
{
	if (rq) {
		rq->rq_sched_info.run_delay += delta_jiffies;
		rq->rq_sched_info.pcnt++;
	}
}

/*
 * Expects runqueue lock to be held for atomicity of update
 */
static inline void
rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
{
	if (rq)
		rq->rq_sched_info.cpu_time += delta_jiffies;
}
L
Linus Torvalds 已提交
551 552 553
# define schedstat_inc(rq, field)	do { (rq)->field++; } while (0)
# define schedstat_add(rq, field, amt)	do { (rq)->field += (amt); } while (0)
#else /* !CONFIG_SCHEDSTATS */
554 555 556 557 558 559
static inline void
rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
{}
static inline void
rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
{}
L
Linus Torvalds 已提交
560 561 562 563 564
# define schedstat_inc(rq, field)	do { } while (0)
# define schedstat_add(rq, field, amt)	do { } while (0)
#endif

/*
565
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
566
 */
567
static inline struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
568 569
	__acquires(rq->lock)
{
570
	struct rq *rq;
L
Linus Torvalds 已提交
571 572 573 574 575 576 577 578

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

579
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
L
Linus Torvalds 已提交
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
/*
 * Called when a process is dequeued from the active array and given
 * the cpu.  We should note that with the exception of interactive
 * tasks, the expired queue will become the active queue after the active
 * queue is empty, without explicitly dequeuing and requeuing tasks in the
 * expired queue.  (Interactive tasks may be requeued directly to the
 * active queue, thus delaying tasks in the expired queue from running;
 * see scheduler_tick()).
 *
 * This function is only called from sched_info_arrive(), rather than
 * dequeue_task(). Even though a task may be queued and dequeued multiple
 * times as it is shuffled about, we're really interested in knowing how
 * long it was from the *first* time it was queued to the time that it
 * finally hit a cpu.
 */
595
static inline void sched_info_dequeued(struct task_struct *t)
L
Linus Torvalds 已提交
596 597 598 599 600 601 602 603 604
{
	t->sched_info.last_queued = 0;
}

/*
 * Called when a task finally hits the cpu.  We can now calculate how
 * long it was waiting to run.  We also note when it began so that we
 * can keep stats on how long its timeslice is.
 */
605
static void sched_info_arrive(struct task_struct *t)
L
Linus Torvalds 已提交
606
{
607
	unsigned long now = jiffies, delta_jiffies = 0;
L
Linus Torvalds 已提交
608 609

	if (t->sched_info.last_queued)
610
		delta_jiffies = now - t->sched_info.last_queued;
L
Linus Torvalds 已提交
611
	sched_info_dequeued(t);
612
	t->sched_info.run_delay += delta_jiffies;
L
Linus Torvalds 已提交
613 614 615
	t->sched_info.last_arrival = now;
	t->sched_info.pcnt++;

616
	rq_sched_info_arrive(task_rq(t), delta_jiffies);
L
Linus Torvalds 已提交
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
}

/*
 * Called when a process is queued into either the active or expired
 * array.  The time is noted and later used to determine how long we
 * had to wait for us to reach the cpu.  Since the expired queue will
 * become the active queue after active queue is empty, without dequeuing
 * and requeuing any tasks, we are interested in queuing to either. It
 * is unusual but not impossible for tasks to be dequeued and immediately
 * requeued in the same or another array: this can happen in sched_yield(),
 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
 * to runqueue.
 *
 * This function is only called from enqueue_task(), but also only updates
 * the timestamp if it is already not set.  It's assumed that
 * sched_info_dequeued() will clear that stamp when appropriate.
 */
634
static inline void sched_info_queued(struct task_struct *t)
L
Linus Torvalds 已提交
635
{
636 637 638
	if (unlikely(sched_info_on()))
		if (!t->sched_info.last_queued)
			t->sched_info.last_queued = jiffies;
L
Linus Torvalds 已提交
639 640 641 642 643 644
}

/*
 * Called when a process ceases being the active-running process, either
 * voluntarily or involuntarily.  Now we can calculate how long we ran.
 */
645
static inline void sched_info_depart(struct task_struct *t)
L
Linus Torvalds 已提交
646
{
647
	unsigned long delta_jiffies = jiffies - t->sched_info.last_arrival;
L
Linus Torvalds 已提交
648

649 650
	t->sched_info.cpu_time += delta_jiffies;
	rq_sched_info_depart(task_rq(t), delta_jiffies);
L
Linus Torvalds 已提交
651 652 653 654 655 656 657
}

/*
 * Called when tasks are switched involuntarily due, typically, to expiring
 * their time slice.  (This may also be called when switching to or from
 * the idle task.)  We are only called when prev != next.
 */
658
static inline void
659
__sched_info_switch(struct task_struct *prev, struct task_struct *next)
L
Linus Torvalds 已提交
660
{
661
	struct rq *rq = task_rq(prev);
L
Linus Torvalds 已提交
662 663 664 665 666 667 668 669 670 671 672 673

	/*
	 * prev now departs the cpu.  It's not interesting to record
	 * stats about how efficient we were at scheduling the idle
	 * process, however.
	 */
	if (prev != rq->idle)
		sched_info_depart(prev);

	if (next != rq->idle)
		sched_info_arrive(next);
}
674 675 676 677 678 679
static inline void
sched_info_switch(struct task_struct *prev, struct task_struct *next)
{
	if (unlikely(sched_info_on()))
		__sched_info_switch(prev, next);
}
L
Linus Torvalds 已提交
680 681 682
#else
#define sched_info_queued(t)		do { } while (0)
#define sched_info_switch(t, next)	do { } while (0)
683
#endif /* CONFIG_SCHEDSTATS || CONFIG_TASK_DELAY_ACCT */
L
Linus Torvalds 已提交
684 685 686 687

/*
 * Adding/removing a task to/from a priority array:
 */
688
static void dequeue_task(struct task_struct *p, struct prio_array *array)
L
Linus Torvalds 已提交
689 690 691 692 693 694 695
{
	array->nr_active--;
	list_del(&p->run_list);
	if (list_empty(array->queue + p->prio))
		__clear_bit(p->prio, array->bitmap);
}

696
static void enqueue_task(struct task_struct *p, struct prio_array *array)
L
Linus Torvalds 已提交
697 698 699 700 701 702 703 704 705 706 707 708
{
	sched_info_queued(p);
	list_add_tail(&p->run_list, array->queue + p->prio);
	__set_bit(p->prio, array->bitmap);
	array->nr_active++;
	p->array = array;
}

/*
 * Put task to the end of the run list without the overhead of dequeue
 * followed by enqueue.
 */
709
static void requeue_task(struct task_struct *p, struct prio_array *array)
L
Linus Torvalds 已提交
710 711 712 713
{
	list_move_tail(&p->run_list, array->queue + p->prio);
}

714 715
static inline void
enqueue_task_head(struct task_struct *p, struct prio_array *array)
L
Linus Torvalds 已提交
716 717 718 719 720 721 722 723
{
	list_add(&p->run_list, array->queue + p->prio);
	__set_bit(p->prio, array->bitmap);
	array->nr_active++;
	p->array = array;
}

/*
724
 * __normal_prio - return the priority that is based on the static
L
Linus Torvalds 已提交
725 726 727 728 729 730 731 732 733 734 735 736
 * priority but is modified by bonuses/penalties.
 *
 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
 * into the -5 ... 0 ... +5 bonus/penalty range.
 *
 * We use 25% of the full 0...39 priority range so that:
 *
 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
 *
 * Both properties are important to certain workloads.
 */
737

738
static inline int __normal_prio(struct task_struct *p)
L
Linus Torvalds 已提交
739 740 741 742 743 744 745 746 747 748 749 750 751
{
	int bonus, prio;

	bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;

	prio = p->static_prio - bonus;
	if (prio < MAX_RT_PRIO)
		prio = MAX_RT_PRIO;
	if (prio > MAX_PRIO-1)
		prio = MAX_PRIO-1;
	return prio;
}

752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
 * scheduling class and "nice" value.  For SCHED_NORMAL tasks this is just a
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

/*
 * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
 * If static_prio_timeslice() is ever changed to break this assumption then
 * this code will need modification
 */
#define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
#define LOAD_WEIGHT(lp) \
	(((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
#define PRIO_TO_LOAD_WEIGHT(prio) \
	LOAD_WEIGHT(static_prio_timeslice(prio))
#define RTPRIO_TO_LOAD_WEIGHT(rp) \
	(PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + LOAD_WEIGHT(rp))

774
static void set_load_weight(struct task_struct *p)
775
{
776
	if (has_rt_policy(p)) {
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
#ifdef CONFIG_SMP
		if (p == task_rq(p)->migration_thread)
			/*
			 * The migration thread does the actual balancing.
			 * Giving its load any weight will skew balancing
			 * adversely.
			 */
			p->load_weight = 0;
		else
#endif
			p->load_weight = RTPRIO_TO_LOAD_WEIGHT(p->rt_priority);
	} else
		p->load_weight = PRIO_TO_LOAD_WEIGHT(p->static_prio);
}

792
static inline void
793
inc_raw_weighted_load(struct rq *rq, const struct task_struct *p)
794 795 796 797
{
	rq->raw_weighted_load += p->load_weight;
}

798
static inline void
799
dec_raw_weighted_load(struct rq *rq, const struct task_struct *p)
800 801 802 803
{
	rq->raw_weighted_load -= p->load_weight;
}

804
static inline void inc_nr_running(struct task_struct *p, struct rq *rq)
805 806 807 808 809
{
	rq->nr_running++;
	inc_raw_weighted_load(rq, p);
}

810
static inline void dec_nr_running(struct task_struct *p, struct rq *rq)
811 812 813 814 815
{
	rq->nr_running--;
	dec_raw_weighted_load(rq, p);
}

816 817 818 819 820 821 822
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
823
static inline int normal_prio(struct task_struct *p)
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
{
	int prio;

	if (has_rt_policy(p))
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
841
static int effective_prio(struct task_struct *p)
842 843 844 845 846 847 848 849 850 851 852 853
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
854 855 856
/*
 * __activate_task - move a task to the runqueue.
 */
857
static void __activate_task(struct task_struct *p, struct rq *rq)
L
Linus Torvalds 已提交
858
{
859
	struct prio_array *target = rq->active;
860

861
	if (batch_task(p))
862 863
		target = rq->expired;
	enqueue_task(p, target);
864
	inc_nr_running(p, rq);
L
Linus Torvalds 已提交
865 866 867 868 869
}

/*
 * __activate_idle_task - move idle task to the _front_ of runqueue.
 */
870
static inline void __activate_idle_task(struct task_struct *p, struct rq *rq)
L
Linus Torvalds 已提交
871 872
{
	enqueue_task_head(p, rq->active);
873
	inc_nr_running(p, rq);
L
Linus Torvalds 已提交
874 875
}

876 877 878 879
/*
 * Recalculate p->normal_prio and p->prio after having slept,
 * updating the sleep-average too:
 */
880
static int recalc_task_prio(struct task_struct *p, unsigned long long now)
L
Linus Torvalds 已提交
881 882
{
	/* Caller must always ensure 'now >= p->timestamp' */
883
	unsigned long sleep_time = now - p->timestamp;
L
Linus Torvalds 已提交
884

885
	if (batch_task(p))
886
		sleep_time = 0;
L
Linus Torvalds 已提交
887 888 889

	if (likely(sleep_time > 0)) {
		/*
890 891 892
		 * This ceiling is set to the lowest priority that would allow
		 * a task to be reinserted into the active array on timeslice
		 * completion.
L
Linus Torvalds 已提交
893
		 */
894
		unsigned long ceiling = INTERACTIVE_SLEEP(p);
895

896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
		if (p->mm && sleep_time > ceiling && p->sleep_avg < ceiling) {
			/*
			 * Prevents user tasks from achieving best priority
			 * with one single large enough sleep.
			 */
			p->sleep_avg = ceiling;
			/*
			 * Using INTERACTIVE_SLEEP() as a ceiling places a
			 * nice(0) task 1ms sleep away from promotion, and
			 * gives it 700ms to round-robin with no chance of
			 * being demoted.  This is more than generous, so
			 * mark this sleep as non-interactive to prevent the
			 * on-runqueue bonus logic from intervening should
			 * this task not receive cpu immediately.
			 */
			p->sleep_type = SLEEP_NONINTERACTIVE;
L
Linus Torvalds 已提交
912 913 914 915 916 917
		} else {
			/*
			 * Tasks waking from uninterruptible sleep are
			 * limited in their sleep_avg rise as they
			 * are likely to be waiting on I/O
			 */
918
			if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
919
				if (p->sleep_avg >= ceiling)
L
Linus Torvalds 已提交
920 921
					sleep_time = 0;
				else if (p->sleep_avg + sleep_time >=
922 923 924
					 ceiling) {
						p->sleep_avg = ceiling;
						sleep_time = 0;
L
Linus Torvalds 已提交
925 926 927 928 929 930 931 932 933 934 935 936 937 938
				}
			}

			/*
			 * This code gives a bonus to interactive tasks.
			 *
			 * The boost works by updating the 'average sleep time'
			 * value here, based on ->timestamp. The more time a
			 * task spends sleeping, the higher the average gets -
			 * and the higher the priority boost gets as well.
			 */
			p->sleep_avg += sleep_time;

		}
939 940
		if (p->sleep_avg > NS_MAX_SLEEP_AVG)
			p->sleep_avg = NS_MAX_SLEEP_AVG;
L
Linus Torvalds 已提交
941 942
	}

943
	return effective_prio(p);
L
Linus Torvalds 已提交
944 945 946 947 948 949 950 951
}

/*
 * activate_task - move a task to the runqueue and do priority recalculation
 *
 * Update all the scheduling statistics stuff. (sleep average
 * calculation, priority modifiers, etc.)
 */
952
static void activate_task(struct task_struct *p, struct rq *rq, int local)
L
Linus Torvalds 已提交
953 954 955
{
	unsigned long long now;

956 957 958
	if (rt_task(p))
		goto out;

L
Linus Torvalds 已提交
959 960 961 962
	now = sched_clock();
#ifdef CONFIG_SMP
	if (!local) {
		/* Compensate for drifting sched_clock */
963
		struct rq *this_rq = this_rq();
964 965
		now = (now - this_rq->most_recent_timestamp)
			+ rq->most_recent_timestamp;
L
Linus Torvalds 已提交
966 967 968
	}
#endif

I
Ingo Molnar 已提交
969 970 971 972 973 974 975 976 977 978 979
	/*
	 * Sleep time is in units of nanosecs, so shift by 20 to get a
	 * milliseconds-range estimation of the amount of time that the task
	 * spent sleeping:
	 */
	if (unlikely(prof_on == SLEEP_PROFILING)) {
		if (p->state == TASK_UNINTERRUPTIBLE)
			profile_hits(SLEEP_PROFILING, (void *)get_wchan(p),
				     (now - p->timestamp) >> 20);
	}

980
	p->prio = recalc_task_prio(p, now);
L
Linus Torvalds 已提交
981 982 983 984 985

	/*
	 * This checks to make sure it's not an uninterruptible task
	 * that is now waking up.
	 */
986
	if (p->sleep_type == SLEEP_NORMAL) {
L
Linus Torvalds 已提交
987 988 989 990 991 992 993 994
		/*
		 * Tasks which were woken up by interrupts (ie. hw events)
		 * are most likely of interactive nature. So we give them
		 * the credit of extending their sleep time to the period
		 * of time they spend on the runqueue, waiting for execution
		 * on a CPU, first time around:
		 */
		if (in_interrupt())
995
			p->sleep_type = SLEEP_INTERRUPTED;
L
Linus Torvalds 已提交
996 997 998 999 1000
		else {
			/*
			 * Normal first-time wakeups get a credit too for
			 * on-runqueue time, but it will be weighted down:
			 */
1001
			p->sleep_type = SLEEP_INTERACTIVE;
L
Linus Torvalds 已提交
1002 1003 1004
		}
	}
	p->timestamp = now;
1005
out:
L
Linus Torvalds 已提交
1006 1007 1008 1009 1010 1011
	__activate_task(p, rq);
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1012
static void deactivate_task(struct task_struct *p, struct rq *rq)
L
Linus Torvalds 已提交
1013
{
1014
	dec_nr_running(p, rq);
L
Linus Torvalds 已提交
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
	dequeue_task(p, p->array);
	p->array = NULL;
}

/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP
1027 1028 1029 1030 1031

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1032
static void resched_task(struct task_struct *p)
L
Linus Torvalds 已提交
1033
{
1034
	int cpu;
L
Linus Torvalds 已提交
1035 1036 1037

	assert_spin_locked(&task_rq(p)->lock);

1038 1039 1040 1041
	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
		return;

	set_tsk_thread_flag(p, TIF_NEED_RESCHED);
L
Linus Torvalds 已提交
1042

1043 1044 1045 1046
	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

1047
	/* NEED_RESCHED must be visible before we test polling */
1048
	smp_mb();
1049
	if (!tsk_is_polling(p))
1050
		smp_send_reschedule(cpu);
L
Linus Torvalds 已提交
1051 1052
}
#else
1053
static inline void resched_task(struct task_struct *p)
L
Linus Torvalds 已提交
1054
{
1055
	assert_spin_locked(&task_rq(p)->lock);
L
Linus Torvalds 已提交
1056 1057 1058 1059 1060 1061 1062 1063
	set_tsk_need_resched(p);
}
#endif

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1064
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1065 1066 1067 1068
{
	return cpu_curr(task_cpu(p)) == p;
}

1069 1070 1071 1072 1073 1074
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->raw_weighted_load;
}

L
Linus Torvalds 已提交
1075
#ifdef CONFIG_SMP
1076
struct migration_req {
L
Linus Torvalds 已提交
1077 1078
	struct list_head list;

1079
	struct task_struct *task;
L
Linus Torvalds 已提交
1080 1081 1082
	int dest_cpu;

	struct completion done;
1083
};
L
Linus Torvalds 已提交
1084 1085 1086 1087 1088

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1089
static int
1090
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1091
{
1092
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
	if (!p->array && !task_running(rq, p)) {
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1107

L
Linus Torvalds 已提交
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1120
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1121 1122
{
	unsigned long flags;
1123
	struct rq *rq;
L
Linus Torvalds 已提交
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
	int preempted;

repeat:
	rq = task_rq_lock(p, &flags);
	/* Must be off runqueue entirely, not preempted. */
	if (unlikely(p->array || task_running(rq, p))) {
		/* If it's preempted, we yield.  It could be a while. */
		preempted = !task_running(rq, p);
		task_rq_unlock(rq, &flags);
		cpu_relax();
		if (preempted)
			yield();
		goto repeat;
	}
	task_rq_unlock(rq, &flags);
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1154
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1166 1167
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1168 1169 1170 1171
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
N
Nick Piggin 已提交
1172
static inline unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1173
{
1174
	struct rq *rq = cpu_rq(cpu);
1175

1176
	if (type == 0)
1177
		return rq->raw_weighted_load;
1178

1179
	return min(rq->cpu_load[type-1], rq->raw_weighted_load);
L
Linus Torvalds 已提交
1180 1181 1182
}

/*
1183 1184
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1185
 */
N
Nick Piggin 已提交
1186
static inline unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
1187
{
1188
	struct rq *rq = cpu_rq(cpu);
1189

N
Nick Piggin 已提交
1190
	if (type == 0)
1191
		return rq->raw_weighted_load;
1192

1193 1194 1195 1196 1197 1198 1199 1200
	return max(rq->cpu_load[type-1], rq->raw_weighted_load);
}

/*
 * Return the average load per task on the cpu's run queue
 */
static inline unsigned long cpu_avg_load_per_task(int cpu)
{
1201
	struct rq *rq = cpu_rq(cpu);
1202 1203
	unsigned long n = rq->nr_running;

1204
	return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
1205 1206
}

N
Nick Piggin 已提交
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

1224 1225 1226 1227
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
			goto nextgroup;

N
Nick Piggin 已提交
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
		avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
1253
nextgroup:
N
Nick Piggin 已提交
1254 1255 1256 1257 1258 1259 1260 1261 1262
		group = group->next;
	} while (group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
1263
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
1264
 */
I
Ingo Molnar 已提交
1265 1266
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
1267
{
1268
	cpumask_t tmp;
N
Nick Piggin 已提交
1269 1270 1271 1272
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

1273 1274 1275 1276
	/* Traverse only the allowed CPUs */
	cpus_and(tmp, group->cpumask, p->cpus_allowed);

	for_each_cpu_mask(i, tmp) {
1277
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
1303

1304
	for_each_domain(cpu, tmp) {
1305 1306 1307 1308 1309
 		/*
 	 	 * If power savings logic is enabled for a domain, stop there.
 	 	 */
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
1310 1311
		if (tmp->flags & flag)
			sd = tmp;
1312
	}
N
Nick Piggin 已提交
1313 1314 1315 1316

	while (sd) {
		cpumask_t span;
		struct sched_group *group;
1317 1318 1319 1320 1321 1322
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1323 1324 1325

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
1326 1327 1328 1329
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1330

1331
		new_cpu = find_idlest_cpu(group, t, cpu);
1332 1333 1334 1335 1336
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1337

1338
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364

/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1365
static int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
{
	cpumask_t tmp;
	struct sched_domain *sd;
	int i;

	if (idle_cpu(cpu))
		return cpu;

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_IDLE) {
N
Nick Piggin 已提交
1376
			cpus_and(tmp, sd->span, p->cpus_allowed);
L
Linus Torvalds 已提交
1377 1378 1379 1380 1381
			for_each_cpu_mask(i, tmp) {
				if (idle_cpu(i))
					return i;
			}
		}
N
Nick Piggin 已提交
1382 1383
		else
			break;
L
Linus Torvalds 已提交
1384 1385 1386 1387
	}
	return cpu;
}
#else
1388
static inline int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
{
	return cpu;
}
#endif

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
1408
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
1409 1410 1411 1412
{
	int cpu, this_cpu, success = 0;
	unsigned long flags;
	long old_state;
1413
	struct rq *rq;
L
Linus Torvalds 已提交
1414
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
1415
	struct sched_domain *sd, *this_sd = NULL;
1416
	unsigned long load, this_load;
L
Linus Torvalds 已提交
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
	int new_cpu;
#endif

	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

	if (p->array)
		goto out_running;

	cpu = task_cpu(p);
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

N
Nick Piggin 已提交
1435 1436
	new_cpu = cpu;

L
Linus Torvalds 已提交
1437 1438 1439
	schedstat_inc(rq, ttwu_cnt);
	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
N
Nick Piggin 已提交
1440 1441 1442 1443 1444 1445 1446 1447
		goto out_set_cpu;
	}

	for_each_domain(this_cpu, sd) {
		if (cpu_isset(cpu, sd->span)) {
			schedstat_inc(sd, ttwu_wake_remote);
			this_sd = sd;
			break;
L
Linus Torvalds 已提交
1448 1449 1450
		}
	}

N
Nick Piggin 已提交
1451
	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
L
Linus Torvalds 已提交
1452 1453 1454
		goto out_set_cpu;

	/*
N
Nick Piggin 已提交
1455
	 * Check for affine wakeup and passive balancing possibilities.
L
Linus Torvalds 已提交
1456
	 */
N
Nick Piggin 已提交
1457 1458 1459
	if (this_sd) {
		int idx = this_sd->wake_idx;
		unsigned int imbalance;
L
Linus Torvalds 已提交
1460

1461 1462
		imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

N
Nick Piggin 已提交
1463 1464
		load = source_load(cpu, idx);
		this_load = target_load(this_cpu, idx);
L
Linus Torvalds 已提交
1465

N
Nick Piggin 已提交
1466 1467
		new_cpu = this_cpu; /* Wake to this CPU if we can */

1468 1469
		if (this_sd->flags & SD_WAKE_AFFINE) {
			unsigned long tl = this_load;
1470 1471 1472
			unsigned long tl_per_task;

			tl_per_task = cpu_avg_load_per_task(this_cpu);
1473

L
Linus Torvalds 已提交
1474
			/*
1475 1476 1477
			 * If sync wakeup then subtract the (maximum possible)
			 * effect of the currently running task from the load
			 * of the current CPU:
L
Linus Torvalds 已提交
1478
			 */
1479
			if (sync)
1480
				tl -= current->load_weight;
1481 1482

			if ((tl <= load &&
1483 1484
				tl + target_load(cpu, idx) <= tl_per_task) ||
				100*(tl + p->load_weight) <= imbalance*load) {
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
				/*
				 * This domain has SD_WAKE_AFFINE and
				 * p is cache cold in this domain, and
				 * there is no bad imbalance.
				 */
				schedstat_inc(this_sd, ttwu_move_affine);
				goto out_set_cpu;
			}
		}

		/*
		 * Start passive balancing when half the imbalance_pct
		 * limit is reached.
		 */
		if (this_sd->flags & SD_WAKE_BALANCE) {
			if (imbalance*this_load <= 100*load) {
				schedstat_inc(this_sd, ttwu_move_balance);
				goto out_set_cpu;
			}
L
Linus Torvalds 已提交
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
		}
	}

	new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
out_set_cpu:
	new_cpu = wake_idle(new_cpu, p);
	if (new_cpu != cpu) {
		set_task_cpu(p, new_cpu);
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
		if (p->array)
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

out_activate:
#endif /* CONFIG_SMP */
	if (old_state == TASK_UNINTERRUPTIBLE) {
		rq->nr_uninterruptible--;
		/*
		 * Tasks on involuntary sleep don't earn
		 * sleep_avg beyond just interactive state.
		 */
1533
		p->sleep_type = SLEEP_NONINTERACTIVE;
1534
	} else
L
Linus Torvalds 已提交
1535

I
Ingo Molnar 已提交
1536 1537
	/*
	 * Tasks that have marked their sleep as noninteractive get
1538 1539
	 * woken up with their sleep average not weighted in an
	 * interactive way.
I
Ingo Molnar 已提交
1540
	 */
1541 1542 1543 1544 1545
		if (old_state & TASK_NONINTERACTIVE)
			p->sleep_type = SLEEP_NONINTERACTIVE;


	activate_task(p, rq, cpu == this_cpu);
L
Linus Torvalds 已提交
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
	/*
	 * Sync wakeups (i.e. those types of wakeups where the waker
	 * has indicated that it will leave the CPU in short order)
	 * don't trigger a preemption, if the woken up task will run on
	 * this cpu. (in this case the 'I will reschedule' promise of
	 * the waker guarantees that the freshly woken up task is going
	 * to be considered on this CPU.)
	 */
	if (!sync || cpu != this_cpu) {
		if (TASK_PREEMPTS_CURR(p, rq))
			resched_task(rq->curr);
	}
	success = 1;

out_running:
	p->state = TASK_RUNNING;
out:
	task_rq_unlock(rq, &flags);

	return success;
}

1568
int fastcall wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1569 1570 1571 1572 1573 1574
{
	return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
				 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
}
EXPORT_SYMBOL(wake_up_process);

1575
int fastcall wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1576 1577 1578 1579
{
	return try_to_wake_up(p, state, 0);
}

1580
static void task_running_tick(struct rq *rq, struct task_struct *p);
L
Linus Torvalds 已提交
1581 1582 1583 1584
/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
 */
1585
void fastcall sched_fork(struct task_struct *p, int clone_flags)
L
Linus Torvalds 已提交
1586
{
N
Nick Piggin 已提交
1587 1588 1589 1590 1591 1592 1593
	int cpu = get_cpu();

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
	set_task_cpu(p, cpu);

L
Linus Torvalds 已提交
1594 1595 1596 1597 1598 1599 1600
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
1601 1602 1603 1604 1605 1606

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;

L
Linus Torvalds 已提交
1607 1608
	INIT_LIST_HEAD(&p->run_list);
	p->array = NULL;
1609 1610 1611
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
	if (unlikely(sched_info_on()))
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1612
#endif
1613
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1614 1615
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
1616
#ifdef CONFIG_PREEMPT
1617
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1618
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
#endif
	/*
	 * Share the timeslice between parent and child, thus the
	 * total amount of pending timeslices in the system doesn't change,
	 * resulting in more scheduling fairness.
	 */
	local_irq_disable();
	p->time_slice = (current->time_slice + 1) >> 1;
	/*
	 * The remainder of the first timeslice might be recovered by
	 * the parent if the child exits early enough.
	 */
	p->first_time_slice = 1;
	current->time_slice >>= 1;
	p->timestamp = sched_clock();
	if (unlikely(!current->time_slice)) {
		/*
		 * This case is rare, it happens when the parent has only
		 * a single jiffy left from its timeslice. Taking the
		 * runqueue lock is not a problem.
		 */
		current->time_slice = 1;
1641
		task_running_tick(cpu_rq(cpu), current);
N
Nick Piggin 已提交
1642 1643 1644
	}
	local_irq_enable();
	put_cpu();
L
Linus Torvalds 已提交
1645 1646 1647 1648 1649 1650 1651 1652 1653
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1654
void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
1655
{
1656
	struct rq *rq, *this_rq;
L
Linus Torvalds 已提交
1657 1658 1659 1660
	unsigned long flags;
	int this_cpu, cpu;

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
1661
	BUG_ON(p->state != TASK_RUNNING);
L
Linus Torvalds 已提交
1662
	this_cpu = smp_processor_id();
N
Nick Piggin 已提交
1663
	cpu = task_cpu(p);
L
Linus Torvalds 已提交
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686

	/*
	 * We decrease the sleep average of forking parents
	 * and children as well, to keep max-interactive tasks
	 * from forking tasks that are max-interactive. The parent
	 * (current) is done further down, under its lock.
	 */
	p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
		CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);

	p->prio = effective_prio(p);

	if (likely(cpu == this_cpu)) {
		if (!(clone_flags & CLONE_VM)) {
			/*
			 * The VM isn't cloned, so we're in a good position to
			 * do child-runs-first in anticipation of an exec. This
			 * usually avoids a lot of COW overhead.
			 */
			if (unlikely(!current->array))
				__activate_task(p, rq);
			else {
				p->prio = current->prio;
1687
				p->normal_prio = current->normal_prio;
L
Linus Torvalds 已提交
1688 1689 1690
				list_add_tail(&p->run_list, &current->run_list);
				p->array = current->array;
				p->array->nr_active++;
1691
				inc_nr_running(p, rq);
L
Linus Torvalds 已提交
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
			}
			set_need_resched();
		} else
			/* Run child last */
			__activate_task(p, rq);
		/*
		 * We skip the following code due to cpu == this_cpu
	 	 *
		 *   task_rq_unlock(rq, &flags);
		 *   this_rq = task_rq_lock(current, &flags);
		 */
		this_rq = rq;
	} else {
		this_rq = cpu_rq(this_cpu);

		/*
		 * Not the local CPU - must adjust timestamp. This should
		 * get optimised away in the !CONFIG_SMP case.
		 */
1711 1712
		p->timestamp = (p->timestamp - this_rq->most_recent_timestamp)
					+ rq->most_recent_timestamp;
L
Linus Torvalds 已提交
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
		__activate_task(p, rq);
		if (TASK_PREEMPTS_CURR(p, rq))
			resched_task(rq->curr);

		/*
		 * Parent and child are on different CPUs, now get the
		 * parent runqueue to update the parent's ->sleep_avg:
		 */
		task_rq_unlock(rq, &flags);
		this_rq = task_rq_lock(current, &flags);
	}
	current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
		PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
	task_rq_unlock(this_rq, &flags);
}

/*
 * Potentially available exiting-child timeslices are
 * retrieved here - this way the parent does not get
 * penalized for creating too many threads.
 *
 * (this cannot be used to 'generate' timeslices
 * artificially, because any timeslice recovered here
 * was given away by the parent in the first place.)
 */
1738
void fastcall sched_exit(struct task_struct *p)
L
Linus Torvalds 已提交
1739 1740
{
	unsigned long flags;
1741
	struct rq *rq;
L
Linus Torvalds 已提交
1742 1743 1744 1745 1746 1747

	/*
	 * If the child was a (relative-) CPU hog then decrease
	 * the sleep_avg of the parent as well.
	 */
	rq = task_rq_lock(p->parent, &flags);
1748
	if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
L
Linus Torvalds 已提交
1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
		p->parent->time_slice += p->time_slice;
		if (unlikely(p->parent->time_slice > task_timeslice(p)))
			p->parent->time_slice = task_timeslice(p);
	}
	if (p->sleep_avg < p->parent->sleep_avg)
		p->parent->sleep_avg = p->parent->sleep_avg /
		(EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
		(EXIT_WEIGHT + 1);
	task_rq_unlock(rq, &flags);
}

1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1772
static inline void prepare_task_switch(struct rq *rq, struct task_struct *next)
1773 1774 1775 1776 1777
{
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1778 1779
/**
 * finish_task_switch - clean up after a task-switch
1780
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1781 1782
 * @prev: the thread we just switched away from.
 *
1783 1784 1785 1786
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1787 1788 1789 1790 1791 1792
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
 * so, we finish that here outside of the runqueue lock.  (Doing it
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
1793
static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1794 1795 1796
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1797
	long prev_state;
L
Linus Torvalds 已提交
1798 1799 1800 1801 1802

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1803
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1804 1805
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1806
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1807 1808 1809 1810 1811
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1812
	prev_state = prev->state;
1813 1814
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
L
Linus Torvalds 已提交
1815 1816
	if (mm)
		mmdrop(mm);
1817
	if (unlikely(prev_state == TASK_DEAD)) {
1818 1819 1820 1821 1822
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
	 	 */
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1823
		put_task_struct(prev);
1824
	}
L
Linus Torvalds 已提交
1825 1826 1827 1828 1829 1830
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1831
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1832 1833
	__releases(rq->lock)
{
1834 1835
	struct rq *rq = this_rq();

1836 1837 1838 1839 1840
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1841 1842 1843 1844 1845 1846 1847 1848
	if (current->set_child_tid)
		put_user(current->pid, current->set_child_tid);
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
1849
static inline struct task_struct *
1850
context_switch(struct rq *rq, struct task_struct *prev,
1851
	       struct task_struct *next)
L
Linus Torvalds 已提交
1852 1853 1854 1855
{
	struct mm_struct *mm = next->mm;
	struct mm_struct *oldmm = prev->active_mm;

1856 1857 1858 1859 1860 1861 1862
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

N
Nick Piggin 已提交
1863
	if (!mm) {
L
Linus Torvalds 已提交
1864 1865 1866 1867 1868 1869
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

N
Nick Piggin 已提交
1870
	if (!prev->mm) {
L
Linus Torvalds 已提交
1871 1872 1873 1874
		prev->active_mm = NULL;
		WARN_ON(rq->prev_mm);
		rq->prev_mm = oldmm;
	}
1875 1876 1877 1878 1879 1880 1881
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1882
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1883
#endif
L
Linus Torvalds 已提交
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

	return prev;
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

1912
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
1927 1928
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
1929

1930
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1931 1932 1933 1934 1935 1936 1937 1938 1939
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

1940
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1941 1942 1943 1944 1945
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

L
Linus Torvalds 已提交
1961 1962
#ifdef CONFIG_SMP

1963 1964 1965 1966 1967 1968 1969 1970 1971
/*
 * Is this task likely cache-hot:
 */
static inline int
task_hot(struct task_struct *p, unsigned long long now, struct sched_domain *sd)
{
	return (long long)(now - p->last_ran) < (long long)sd->cache_hot_time;
}

L
Linus Torvalds 已提交
1972 1973 1974 1975 1976 1977
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
1978
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
1979 1980 1981
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
1982
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
1983 1984 1985 1986
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
1987
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2003
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
2017
static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2018 2019 2020 2021
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
2022 2023 2024 2025 2026
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2027
	if (unlikely(!spin_trylock(&busiest->lock))) {
2028
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
		} else
			spin_lock(&busiest->lock);
	}
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
 * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
 * the cpu_allowed mask is restored.
 */
2043
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2044
{
2045
	struct migration_req req;
L
Linus Torvalds 已提交
2046
	unsigned long flags;
2047
	struct rq *rq;
L
Linus Torvalds 已提交
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2058

L
Linus Torvalds 已提交
2059 2060 2061 2062 2063
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2064

L
Linus Torvalds 已提交
2065 2066 2067 2068 2069 2070 2071
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2072 2073
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2074 2075 2076 2077
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2078
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2079
	put_cpu();
N
Nick Piggin 已提交
2080 2081
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2082 2083 2084 2085 2086 2087
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
2088 2089 2090
static void pull_task(struct rq *src_rq, struct prio_array *src_array,
		      struct task_struct *p, struct rq *this_rq,
		      struct prio_array *this_array, int this_cpu)
L
Linus Torvalds 已提交
2091 2092
{
	dequeue_task(p, src_array);
2093
	dec_nr_running(p, src_rq);
L
Linus Torvalds 已提交
2094
	set_task_cpu(p, this_cpu);
2095
	inc_nr_running(p, this_rq);
L
Linus Torvalds 已提交
2096
	enqueue_task(p, this_array);
2097 2098
	p->timestamp = (p->timestamp - src_rq->most_recent_timestamp)
				+ this_rq->most_recent_timestamp;
L
Linus Torvalds 已提交
2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
	if (TASK_PREEMPTS_CURR(p, this_rq))
		resched_task(this_rq->curr);
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2110
static
2111
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2112 2113
		     struct sched_domain *sd, enum idle_type idle,
		     int *all_pinned)
L
Linus Torvalds 已提交
2114 2115 2116 2117 2118 2119 2120 2121 2122
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
	if (!cpu_isset(this_cpu, p->cpus_allowed))
		return 0;
2123 2124 2125 2126
	*all_pinned = 0;

	if (task_running(rq, p))
		return 0;
L
Linus Torvalds 已提交
2127 2128 2129

	/*
	 * Aggressive migration if:
2130
	 * 1) task is cache cold, or
L
Linus Torvalds 已提交
2131 2132 2133
	 * 2) too many balance attempts have failed.
	 */

2134 2135 2136 2137 2138
	if (sd->nr_balance_failed > sd->cache_nice_tries) {
#ifdef CONFIG_SCHEDSTATS
		if (task_hot(p, rq->most_recent_timestamp, sd))
			schedstat_inc(sd, lb_hot_gained[idle]);
#endif
L
Linus Torvalds 已提交
2139
		return 1;
2140
	}
L
Linus Torvalds 已提交
2141

2142
	if (task_hot(p, rq->most_recent_timestamp, sd))
2143
		return 0;
L
Linus Torvalds 已提交
2144 2145 2146
	return 1;
}

2147
#define rq_best_prio(rq) min((rq)->curr->prio, (rq)->best_expired_prio)
2148

L
Linus Torvalds 已提交
2149
/*
2150 2151 2152
 * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
 * load from busiest to this_rq, as part of a balancing operation within
 * "domain". Returns the number of tasks moved.
L
Linus Torvalds 已提交
2153 2154 2155
 *
 * Called with both runqueues locked.
 */
2156
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2157 2158 2159
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum idle_type idle,
		      int *all_pinned)
L
Linus Torvalds 已提交
2160
{
2161 2162
	int idx, pulled = 0, pinned = 0, this_best_prio, best_prio,
	    best_prio_seen, skip_for_load;
2163
	struct prio_array *array, *dst_array;
L
Linus Torvalds 已提交
2164
	struct list_head *head, *curr;
2165
	struct task_struct *tmp;
2166
	long rem_load_move;
L
Linus Torvalds 已提交
2167

2168
	if (max_nr_move == 0 || max_load_move == 0)
L
Linus Torvalds 已提交
2169 2170
		goto out;

2171
	rem_load_move = max_load_move;
2172
	pinned = 1;
2173
	this_best_prio = rq_best_prio(this_rq);
2174
	best_prio = rq_best_prio(busiest);
2175 2176 2177
	/*
	 * Enable handling of the case where there is more than one task
	 * with the best priority.   If the current running task is one
2178
	 * of those with prio==best_prio we know it won't be moved
2179 2180 2181
	 * and therefore it's safe to override the skip (based on load) of
	 * any task we find with that prio.
	 */
2182
	best_prio_seen = best_prio == busiest->curr->prio;
2183

L
Linus Torvalds 已提交
2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
	/*
	 * We first consider expired tasks. Those will likely not be
	 * executed in the near future, and they are most likely to
	 * be cache-cold, thus switching CPUs has the least effect
	 * on them.
	 */
	if (busiest->expired->nr_active) {
		array = busiest->expired;
		dst_array = this_rq->expired;
	} else {
		array = busiest->active;
		dst_array = this_rq->active;
	}

new_array:
	/* Start searching at priority 0: */
	idx = 0;
skip_bitmap:
	if (!idx)
		idx = sched_find_first_bit(array->bitmap);
	else
		idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
	if (idx >= MAX_PRIO) {
		if (array == busiest->expired && busiest->active->nr_active) {
			array = busiest->active;
			dst_array = this_rq->active;
			goto new_array;
		}
		goto out;
	}

	head = array->queue + idx;
	curr = head->prev;
skip_queue:
2218
	tmp = list_entry(curr, struct task_struct, run_list);
L
Linus Torvalds 已提交
2219 2220 2221

	curr = curr->prev;

2222 2223 2224 2225 2226
	/*
	 * To help distribute high priority tasks accross CPUs we don't
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
2227 2228
	skip_for_load = tmp->load_weight > rem_load_move;
	if (skip_for_load && idx < this_best_prio)
2229
		skip_for_load = !best_prio_seen && idx == best_prio;
2230
	if (skip_for_load ||
2231
	    !can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
2232 2233

		best_prio_seen |= idx == best_prio;
L
Linus Torvalds 已提交
2234 2235 2236 2237 2238 2239 2240 2241
		if (curr != head)
			goto skip_queue;
		idx++;
		goto skip_bitmap;
	}

	pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
	pulled++;
2242
	rem_load_move -= tmp->load_weight;
L
Linus Torvalds 已提交
2243

2244 2245 2246 2247 2248
	/*
	 * We only want to steal up to the prescribed number of tasks
	 * and the prescribed amount of weighted load.
	 */
	if (pulled < max_nr_move && rem_load_move > 0) {
2249 2250
		if (idx < this_best_prio)
			this_best_prio = idx;
L
Linus Torvalds 已提交
2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262
		if (curr != head)
			goto skip_queue;
		idx++;
		goto skip_bitmap;
	}
out:
	/*
	 * Right now, this is the only place pull_task() is called,
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2263 2264 2265

	if (all_pinned)
		*all_pinned = pinned;
L
Linus Torvalds 已提交
2266 2267 2268 2269 2270
	return pulled;
}

/*
 * find_busiest_group finds and returns the busiest CPU group within the
2271 2272
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
2273 2274 2275
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
2276
		   unsigned long *imbalance, enum idle_type idle, int *sd_idle,
2277
		   cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
2278 2279 2280
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2281
	unsigned long max_pull;
2282 2283
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
N
Nick Piggin 已提交
2284
	int load_idx;
2285 2286 2287 2288 2289 2290
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
2291 2292

	max_load = this_load = total_load = total_pwr = 0;
2293 2294
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
N
Nick Piggin 已提交
2295 2296 2297 2298 2299 2300
	if (idle == NOT_IDLE)
		load_idx = sd->busy_idx;
	else if (idle == NEWLY_IDLE)
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
2301 2302

	do {
2303
		unsigned long load, group_capacity;
L
Linus Torvalds 已提交
2304 2305
		int local_group;
		int i;
2306
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
2307
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
2308 2309 2310

		local_group = cpu_isset(this_cpu, group->cpumask);

2311 2312 2313
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
2314
		/* Tally up the load of all CPUs in the group */
2315
		sum_weighted_load = sum_nr_running = avg_load = 0;
L
Linus Torvalds 已提交
2316 2317

		for_each_cpu_mask(i, group->cpumask) {
2318 2319 2320 2321 2322 2323
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
2324

N
Nick Piggin 已提交
2325 2326 2327
			if (*sd_idle && !idle_cpu(i))
				*sd_idle = 0;

L
Linus Torvalds 已提交
2328
			/* Bias balancing toward cpus of our domain */
2329 2330 2331 2332 2333 2334
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
2335
				load = target_load(i, load_idx);
2336
			} else
N
Nick Piggin 已提交
2337
				load = source_load(i, load_idx);
L
Linus Torvalds 已提交
2338 2339

			avg_load += load;
2340 2341
			sum_nr_running += rq->nr_running;
			sum_weighted_load += rq->raw_weighted_load;
L
Linus Torvalds 已提交
2342 2343
		}

2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
		 * domains.
		 */
		if (local_group && balance_cpu != this_cpu && balance) {
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
2354 2355 2356 2357 2358 2359
		total_load += avg_load;
		total_pwr += group->cpu_power;

		/* Adjust by relative CPU power of the group */
		avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;

2360 2361
		group_capacity = group->cpu_power / SCHED_LOAD_SCALE;

L
Linus Torvalds 已提交
2362 2363 2364
		if (local_group) {
			this_load = avg_load;
			this = group;
2365 2366 2367
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
2368
			   sum_nr_running > group_capacity) {
L
Linus Torvalds 已提交
2369 2370
			max_load = avg_load;
			busiest = group;
2371 2372
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
L
Linus Torvalds 已提交
2373
		}
2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
 		if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
 			goto group_next;

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

 		/*
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
 		 */
 		if (!power_savings_balance || sum_nr_running >= group_capacity
		    || !sum_nr_running)
 			goto group_next;

 		/*
		 * Calculate the group which has the least non-idle load.
 		 * This is the group from where we need to pick up the load
 		 * for saving power
 		 */
 		if ((sum_nr_running < min_nr_running) ||
 		    (sum_nr_running == min_nr_running &&
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
 			group_min = group;
 			min_nr_running = sum_nr_running;
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
 		}

 		/*
		 * Calculate the group which is almost near its
 		 * capacity but still has some space to pick up some load
 		 * from other group and save more power
 		 */
2419
 		if (sum_nr_running <= group_capacity - 1) {
2420 2421 2422 2423 2424 2425 2426
 			if (sum_nr_running > leader_nr_running ||
 			    (sum_nr_running == leader_nr_running &&
 			     first_cpu(group->cpumask) >
 			      first_cpu(group_leader->cpumask))) {
 				group_leader = group;
 				leader_nr_running = sum_nr_running;
 			}
2427
		}
2428 2429
group_next:
#endif
L
Linus Torvalds 已提交
2430 2431 2432
		group = group->next;
	} while (group != sd->groups);

2433
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
2434 2435 2436 2437 2438 2439 2440 2441
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

2442
	busiest_load_per_task /= busiest_nr_running;
L
Linus Torvalds 已提交
2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
	 * by pulling tasks to us.  Be careful of negative numbers as they'll
	 * appear as very large values with unsigned longs.
	 */
2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
2466 2467

	/* Don't want to pull so many tasks that a group would go idle */
2468
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2469

L
Linus Torvalds 已提交
2470
	/* How much load to actually move to equalise the imbalance */
2471
	*imbalance = min(max_pull * busiest->cpu_power,
L
Linus Torvalds 已提交
2472 2473 2474
				(avg_load - this_load) * this->cpu_power)
			/ SCHED_LOAD_SCALE;

2475 2476 2477 2478 2479 2480 2481
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
	if (*imbalance < busiest_load_per_task) {
2482
		unsigned long tmp, pwr_now, pwr_move;
2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
2494

2495 2496
		if (max_load - this_load >= busiest_load_per_task * imbn) {
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2497 2498 2499 2500 2501 2502 2503 2504 2505
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

2506 2507 2508 2509
		pwr_now += busiest->cpu_power *
			min(busiest_load_per_task, max_load);
		pwr_now += this->cpu_power *
			min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
2510 2511 2512
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
2513 2514
		tmp = busiest_load_per_task * SCHED_LOAD_SCALE /
			busiest->cpu_power;
L
Linus Torvalds 已提交
2515
		if (max_load > tmp)
2516 2517
			pwr_move += busiest->cpu_power *
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
2518 2519

		/* Amount of load we'd add */
2520 2521 2522
		if (max_load * busiest->cpu_power <
				busiest_load_per_task * SCHED_LOAD_SCALE)
			tmp = max_load * busiest->cpu_power / this->cpu_power;
L
Linus Torvalds 已提交
2523
		else
2524 2525 2526 2527
			tmp = busiest_load_per_task * SCHED_LOAD_SCALE /
				this->cpu_power;
		pwr_move += this->cpu_power *
			min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
2528 2529 2530 2531 2532 2533
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
		if (pwr_move <= pwr_now)
			goto out_balanced;

2534
		*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2535 2536 2537 2538 2539
	}

	return busiest;

out_balanced:
2540 2541 2542
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
		goto ret;
L
Linus Torvalds 已提交
2543

2544 2545 2546 2547 2548
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
2549
ret:
L
Linus Torvalds 已提交
2550 2551 2552 2553 2554 2555 2556
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
2557
static struct rq *
2558
find_busiest_queue(struct sched_group *group, enum idle_type idle,
2559
		   unsigned long imbalance, cpumask_t *cpus)
L
Linus Torvalds 已提交
2560
{
2561
	struct rq *busiest = NULL, *rq;
2562
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
2563 2564 2565
	int i;

	for_each_cpu_mask(i, group->cpumask) {
2566 2567 2568 2569

		if (!cpu_isset(i, *cpus))
			continue;

2570
		rq = cpu_rq(i);
2571

2572
		if (rq->nr_running == 1 && rq->raw_weighted_load > imbalance)
2573
			continue;
L
Linus Torvalds 已提交
2574

2575 2576 2577
		if (rq->raw_weighted_load > max_load) {
			max_load = rq->raw_weighted_load;
			busiest = rq;
L
Linus Torvalds 已提交
2578 2579 2580 2581 2582 2583
		}
	}

	return busiest;
}

2584 2585 2586 2587 2588 2589
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

2590 2591 2592 2593 2594
static inline unsigned long minus_1_or_zero(unsigned long n)
{
	return n > 0 ? n - 1 : 0;
}

L
Linus Torvalds 已提交
2595 2596 2597 2598
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
2599
static int load_balance(int this_cpu, struct rq *this_rq,
2600 2601
			struct sched_domain *sd, enum idle_type idle,
			int *balance)
L
Linus Torvalds 已提交
2602
{
2603
	int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
2604 2605
	struct sched_group *group;
	unsigned long imbalance;
2606
	struct rq *busiest;
2607
	cpumask_t cpus = CPU_MASK_ALL;
2608
	unsigned long flags;
N
Nick Piggin 已提交
2609

2610 2611 2612 2613 2614 2615
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
	 * portraying it as NOT_IDLE.
	 */
2616
	if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2617
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2618
		sd_idle = 1;
L
Linus Torvalds 已提交
2619 2620 2621

	schedstat_inc(sd, lb_cnt[idle]);

2622 2623
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2624 2625
				   &cpus, balance);

2626
	if (*balance == 0)
2627 2628
		goto out_balanced;

L
Linus Torvalds 已提交
2629 2630 2631 2632 2633
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

2634
	busiest = find_busiest_queue(group, idle, imbalance, &cpus);
L
Linus Torvalds 已提交
2635 2636 2637 2638 2639
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
2640
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651

	schedstat_add(sd, lb_imbalance[idle], imbalance);

	nr_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. nr_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
2652
		local_irq_save(flags);
N
Nick Piggin 已提交
2653
		double_rq_lock(this_rq, busiest);
L
Linus Torvalds 已提交
2654
		nr_moved = move_tasks(this_rq, this_cpu, busiest,
2655 2656
				      minus_1_or_zero(busiest->nr_running),
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
2657
		double_rq_unlock(this_rq, busiest);
2658
		local_irq_restore(flags);
2659 2660

		/* All tasks on this runqueue were pinned by CPU affinity */
2661 2662 2663 2664
		if (unlikely(all_pinned)) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
2665
			goto out_balanced;
2666
		}
L
Linus Torvalds 已提交
2667
	}
2668

L
Linus Torvalds 已提交
2669 2670 2671 2672 2673 2674
	if (!nr_moved) {
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

2675
			spin_lock_irqsave(&busiest->lock, flags);
2676 2677 2678 2679 2680

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2681
				spin_unlock_irqrestore(&busiest->lock, flags);
2682 2683 2684 2685
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
2686 2687 2688
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
2689
				active_balance = 1;
L
Linus Torvalds 已提交
2690
			}
2691
			spin_unlock_irqrestore(&busiest->lock, flags);
2692
			if (active_balance)
L
Linus Torvalds 已提交
2693 2694 2695 2696 2697 2698
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
2699
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
2700
		}
2701
	} else
L
Linus Torvalds 已提交
2702 2703
		sd->nr_balance_failed = 0;

2704
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
2705 2706
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
2707 2708 2709 2710 2711 2712 2713 2714 2715
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
2716 2717
	}

2718
	if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2719
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2720
		return -1;
L
Linus Torvalds 已提交
2721 2722 2723 2724 2725
	return nr_moved;

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

2726
	sd->nr_balance_failed = 0;
2727 2728

out_one_pinned:
L
Linus Torvalds 已提交
2729
	/* tune up the balancing interval */
2730 2731
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
2732 2733
		sd->balance_interval *= 2;

2734
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2735
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2736
		return -1;
L
Linus Torvalds 已提交
2737 2738 2739 2740 2741 2742 2743 2744 2745 2746
	return 0;
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
 * this_rq is locked.
 */
2747
static int
2748
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
2749 2750
{
	struct sched_group *group;
2751
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
2752 2753
	unsigned long imbalance;
	int nr_moved = 0;
N
Nick Piggin 已提交
2754
	int sd_idle = 0;
2755
	cpumask_t cpus = CPU_MASK_ALL;
N
Nick Piggin 已提交
2756

2757 2758 2759 2760 2761 2762 2763 2764
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
	 * portraying it as NOT_IDLE.
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2765
		sd_idle = 1;
L
Linus Torvalds 已提交
2766 2767

	schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2768 2769
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE,
2770
				   &sd_idle, &cpus, NULL);
L
Linus Torvalds 已提交
2771 2772
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
2773
		goto out_balanced;
L
Linus Torvalds 已提交
2774 2775
	}

2776 2777
	busiest = find_busiest_queue(group, NEWLY_IDLE, imbalance,
				&cpus);
N
Nick Piggin 已提交
2778
	if (!busiest) {
L
Linus Torvalds 已提交
2779
		schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
2780
		goto out_balanced;
L
Linus Torvalds 已提交
2781 2782
	}

N
Nick Piggin 已提交
2783 2784
	BUG_ON(busiest == this_rq);

L
Linus Torvalds 已提交
2785
	schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2786 2787 2788 2789 2790 2791

	nr_moved = 0;
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
		nr_moved = move_tasks(this_rq, this_cpu, busiest,
2792
					minus_1_or_zero(busiest->nr_running),
2793
					imbalance, sd, NEWLY_IDLE, NULL);
2794
		spin_unlock(&busiest->lock);
2795 2796 2797 2798 2799 2800

		if (!nr_moved) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
		}
2801 2802
	}

N
Nick Piggin 已提交
2803
	if (!nr_moved) {
L
Linus Torvalds 已提交
2804
		schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
2805 2806
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2807 2808
			return -1;
	} else
2809
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
2810 2811

	return nr_moved;
2812 2813 2814

out_balanced:
	schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2815
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2816
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2817
		return -1;
2818
	sd->nr_balance_failed = 0;
2819

2820
	return 0;
L
Linus Torvalds 已提交
2821 2822 2823 2824 2825 2826
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
2827
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
2828 2829
{
	struct sched_domain *sd;
2830 2831
	int pulled_task = 0;
	unsigned long next_balance = jiffies + 60 *  HZ;
L
Linus Torvalds 已提交
2832 2833 2834

	for_each_domain(this_cpu, sd) {
		if (sd->flags & SD_BALANCE_NEWIDLE) {
2835
			/* If we've pulled tasks over stop searching: */
2836 2837 2838 2839 2840 2841 2842
			pulled_task = load_balance_newidle(this_cpu,
							this_rq, sd);
			if (time_after(next_balance,
				  sd->last_balance + sd->balance_interval))
				next_balance = sd->last_balance
						+ sd->balance_interval;
			if (pulled_task)
L
Linus Torvalds 已提交
2843 2844 2845
				break;
		}
	}
2846 2847 2848 2849 2850 2851
	if (!pulled_task)
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
L
Linus Torvalds 已提交
2852 2853 2854 2855 2856 2857 2858 2859 2860 2861
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
2862
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
2863
{
2864
	int target_cpu = busiest_rq->push_cpu;
2865 2866
	struct sched_domain *sd;
	struct rq *target_rq;
2867

2868
	/* Is there any task to move? */
2869 2870 2871 2872
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
2873 2874

	/*
2875 2876 2877
	 * This condition is "impossible", if it occurs
	 * we need to fix it.  Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
2878
	 */
2879
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
2880

2881 2882 2883 2884
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);

	/* Search for an sd spanning us and the target CPU. */
2885
	for_each_domain(target_cpu, sd) {
2886
		if ((sd->flags & SD_LOAD_BALANCE) &&
2887
		    cpu_isset(busiest_cpu, sd->span))
2888
				break;
2889
	}
2890

2891 2892
	if (likely(sd)) {
		schedstat_inc(sd, alb_cnt);
2893

2894 2895 2896 2897 2898 2899 2900
		if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
			       RTPRIO_TO_LOAD_WEIGHT(100), sd, SCHED_IDLE,
			       NULL))
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
2901
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
2902 2903
}

2904
static void update_load(struct rq *this_rq)
L
Linus Torvalds 已提交
2905
{
2906
	unsigned long this_load;
2907
	unsigned int i, scale;
L
Linus Torvalds 已提交
2908

2909
	this_load = this_rq->raw_weighted_load;
2910 2911

	/* Update our load: */
2912
	for (i = 0, scale = 1; i < 3; i++, scale += scale) {
2913 2914
		unsigned long old_load, new_load;

2915 2916
		/* scale is effectively 1 << i now, and >> i divides by scale */

N
Nick Piggin 已提交
2917
		old_load = this_rq->cpu_load[i];
2918
		new_load = this_load;
N
Nick Piggin 已提交
2919 2920 2921 2922 2923 2924 2925
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
2926
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
N
Nick Piggin 已提交
2927
	}
2928 2929 2930
}

/*
2931
 * run_rebalance_domains is triggered when needed from the scheduler tick.
2932 2933 2934 2935 2936 2937
 *
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
2938
static DEFINE_SPINLOCK(balancing);
2939

2940
static void run_rebalance_domains(struct softirq_action *h)
2941
{
2942
	int this_cpu = smp_processor_id(), balance = 1;
2943
	struct rq *this_rq = cpu_rq(this_cpu);
2944 2945
	unsigned long interval;
	struct sched_domain *sd;
2946 2947 2948 2949 2950 2951
	/*
	 * We are idle if there are no processes running. This
	 * is valid even if we are the idle process (SMT).
	 */
	enum idle_type idle = !this_rq->nr_running ?
				SCHED_IDLE : NOT_IDLE;
2952 2953
	/* Earliest time when we have to call run_rebalance_domains again */
	unsigned long next_balance = jiffies + 60*HZ;
L
Linus Torvalds 已提交
2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967

	for_each_domain(this_cpu, sd) {
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
		if (idle != SCHED_IDLE)
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;

2968 2969 2970 2971 2972
		if (sd->flags & SD_SERIALIZE) {
			if (!spin_trylock(&balancing))
				goto out;
		}

2973
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
2974
			if (load_balance(this_cpu, this_rq, sd, idle, &balance)) {
2975 2976
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
2977 2978 2979
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
L
Linus Torvalds 已提交
2980 2981
				idle = NOT_IDLE;
			}
2982
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
2983
		}
2984 2985 2986
		if (sd->flags & SD_SERIALIZE)
			spin_unlock(&balancing);
out:
2987 2988
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
2989 2990 2991 2992 2993 2994 2995 2996

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
2997
	}
2998
	this_rq->next_balance = next_balance;
L
Linus Torvalds 已提交
2999 3000 3001 3002 3003
}
#else
/*
 * on UP we do not need to balance between CPUs:
 */
3004
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016
{
}
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
 * This is called on clock ticks and on context switches.
 * Bank in p->sched_time the ns elapsed since the last tick or switch.
 */
3017
static inline void
3018
update_cpu_clock(struct task_struct *p, struct rq *rq, unsigned long long now)
L
Linus Torvalds 已提交
3019
{
3020 3021
	p->sched_time += now - p->last_ran;
	p->last_ran = rq->most_recent_timestamp = now;
L
Linus Torvalds 已提交
3022 3023 3024 3025 3026 3027
}

/*
 * Return current->sched_time plus any more ns on the sched_clock
 * that have not yet been banked.
 */
3028
unsigned long long current_sched_time(const struct task_struct *p)
L
Linus Torvalds 已提交
3029 3030 3031
{
	unsigned long long ns;
	unsigned long flags;
3032

L
Linus Torvalds 已提交
3033
	local_irq_save(flags);
3034
	ns = p->sched_time + sched_clock() - p->last_ran;
L
Linus Torvalds 已提交
3035
	local_irq_restore(flags);
3036

L
Linus Torvalds 已提交
3037 3038 3039
	return ns;
}

3040 3041 3042 3043 3044 3045 3046 3047 3048 3049
/*
 * We place interactive tasks back into the active array, if possible.
 *
 * To guarantee that this does not starve expired tasks we ignore the
 * interactivity of a task if the first expired task had to wait more
 * than a 'reasonable' amount of time. This deadline timeout is
 * load-dependent, as the frequency of array switched decreases with
 * increasing number of running tasks. We also ignore the interactivity
 * if a better static_prio task has expired:
 */
3050
static inline int expired_starving(struct rq *rq)
3051 3052 3053 3054 3055 3056 3057 3058 3059
{
	if (rq->curr->static_prio > rq->best_expired_prio)
		return 1;
	if (!STARVATION_LIMIT || !rq->expired_timestamp)
		return 0;
	if (jiffies - rq->expired_timestamp > STARVATION_LIMIT * rq->nr_running)
		return 1;
	return 0;
}
3060

L
Linus Torvalds 已提交
3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091
/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3092
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121
	cputime64_t tmp;

	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else if (p != rq->idle)
		cpustat->system = cputime64_add(cpustat->system, tmp);
	else if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
3122
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
	} else
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

3134
static void task_running_tick(struct rq *rq, struct task_struct *p)
L
Linus Torvalds 已提交
3135 3136
{
	if (p->array != rq->active) {
3137
		/* Task has expired but was not scheduled yet */
L
Linus Torvalds 已提交
3138
		set_tsk_need_resched(p);
3139
		return;
L
Linus Torvalds 已提交
3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172
	}
	spin_lock(&rq->lock);
	/*
	 * The task was running during this tick - update the
	 * time slice counter. Note: we do not update a thread's
	 * priority until it either goes to sleep or uses up its
	 * timeslice. This makes it possible for interactive tasks
	 * to use up their timeslices at their highest priority levels.
	 */
	if (rt_task(p)) {
		/*
		 * RR tasks need a special form of timeslice management.
		 * FIFO tasks have no timeslices.
		 */
		if ((p->policy == SCHED_RR) && !--p->time_slice) {
			p->time_slice = task_timeslice(p);
			p->first_time_slice = 0;
			set_tsk_need_resched(p);

			/* put it at the end of the queue: */
			requeue_task(p, rq->active);
		}
		goto out_unlock;
	}
	if (!--p->time_slice) {
		dequeue_task(p, rq->active);
		set_tsk_need_resched(p);
		p->prio = effective_prio(p);
		p->time_slice = task_timeslice(p);
		p->first_time_slice = 0;

		if (!rq->expired_timestamp)
			rq->expired_timestamp = jiffies;
3173
		if (!TASK_INTERACTIVE(p) || expired_starving(rq)) {
L
Linus Torvalds 已提交
3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206
			enqueue_task(p, rq->expired);
			if (p->static_prio < rq->best_expired_prio)
				rq->best_expired_prio = p->static_prio;
		} else
			enqueue_task(p, rq->active);
	} else {
		/*
		 * Prevent a too long timeslice allowing a task to monopolize
		 * the CPU. We do this by splitting up the timeslice into
		 * smaller pieces.
		 *
		 * Note: this does not mean the task's timeslices expire or
		 * get lost in any way, they just might be preempted by
		 * another task of equal priority. (one with higher
		 * priority would have preempted this task already.) We
		 * requeue this task to the end of the list on this priority
		 * level, which is in essence a round-robin of tasks with
		 * equal priority.
		 *
		 * This only applies to tasks in the interactive
		 * delta range with at least TIMESLICE_GRANULARITY to requeue.
		 */
		if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
			p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
			(p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
			(p->array == rq->active)) {

			requeue_task(p, rq->active);
			set_tsk_need_resched(p);
		}
	}
out_unlock:
	spin_unlock(&rq->lock);
3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224
}

/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	unsigned long long now = sched_clock();
	struct task_struct *p = current;
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);

	update_cpu_clock(p, rq, now);

C
Con Kolivas 已提交
3225
	if (p != rq->idle)
3226
		task_running_tick(rq, p);
3227
#ifdef CONFIG_SMP
3228
	update_load(rq);
3229 3230
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
3231
#endif
L
Linus Torvalds 已提交
3232 3233 3234 3235 3236 3237 3238 3239 3240
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

void fastcall add_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3241 3242
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
3243 3244 3245 3246
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
3247 3248
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
3249 3250 3251 3252 3253 3254 3255 3256
}
EXPORT_SYMBOL(add_preempt_count);

void fastcall sub_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3257 3258
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
3259 3260 3261
	/*
	 * Is the spinlock portion underflowing?
	 */
3262 3263 3264 3265
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
3266 3267 3268 3269 3270 3271
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

3272 3273 3274 3275 3276 3277
static inline int interactive_sleep(enum sleep_type sleep_type)
{
	return (sleep_type == SLEEP_INTERACTIVE ||
		sleep_type == SLEEP_INTERRUPTED);
}

L
Linus Torvalds 已提交
3278 3279 3280 3281 3282
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
3283
	struct task_struct *prev, *next;
3284
	struct prio_array *array;
L
Linus Torvalds 已提交
3285 3286 3287
	struct list_head *queue;
	unsigned long long now;
	unsigned long run_time;
3288
	int cpu, idx, new_prio;
3289
	long *switch_count;
3290
	struct rq *rq;
L
Linus Torvalds 已提交
3291 3292 3293 3294 3295 3296

	/*
	 * Test if we are atomic.  Since do_exit() needs to call into
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
3297 3298 3299 3300
	if (unlikely(in_atomic() && !current->exit_state)) {
		printk(KERN_ERR "BUG: scheduling while atomic: "
			"%s/0x%08x/%d\n",
			current->comm, preempt_count(), current->pid);
3301
		debug_show_held_locks(current);
3302 3303
		if (irqs_disabled())
			print_irqtrace_events(current);
3304
		dump_stack();
L
Linus Torvalds 已提交
3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325
	}
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

need_resched:
	preempt_disable();
	prev = current;
	release_kernel_lock(prev);
need_resched_nonpreemptible:
	rq = this_rq();

	/*
	 * The idle thread is not allowed to schedule!
	 * Remove this check after it has been exercised a bit.
	 */
	if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
		printk(KERN_ERR "bad: scheduling from the idle thread!\n");
		dump_stack();
	}

	schedstat_inc(rq, sched_cnt);
	now = sched_clock();
3326
	if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
L
Linus Torvalds 已提交
3327
		run_time = now - prev->timestamp;
3328
		if (unlikely((long long)(now - prev->timestamp) < 0))
L
Linus Torvalds 已提交
3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378
			run_time = 0;
	} else
		run_time = NS_MAX_SLEEP_AVG;

	/*
	 * Tasks charged proportionately less run_time at high sleep_avg to
	 * delay them losing their interactive status
	 */
	run_time /= (CURRENT_BONUS(prev) ? : 1);

	spin_lock_irq(&rq->lock);

	switch_count = &prev->nivcsw;
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		switch_count = &prev->nvcsw;
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
				unlikely(signal_pending(prev))))
			prev->state = TASK_RUNNING;
		else {
			if (prev->state == TASK_UNINTERRUPTIBLE)
				rq->nr_uninterruptible++;
			deactivate_task(prev, rq);
		}
	}

	cpu = smp_processor_id();
	if (unlikely(!rq->nr_running)) {
		idle_balance(cpu, rq);
		if (!rq->nr_running) {
			next = rq->idle;
			rq->expired_timestamp = 0;
			goto switch_tasks;
		}
	}

	array = rq->active;
	if (unlikely(!array->nr_active)) {
		/*
		 * Switch the active and expired arrays.
		 */
		schedstat_inc(rq, sched_switch);
		rq->active = rq->expired;
		rq->expired = array;
		array = rq->active;
		rq->expired_timestamp = 0;
		rq->best_expired_prio = MAX_PRIO;
	}

	idx = sched_find_first_bit(array->bitmap);
	queue = array->queue + idx;
3379
	next = list_entry(queue->next, struct task_struct, run_list);
L
Linus Torvalds 已提交
3380

3381
	if (!rt_task(next) && interactive_sleep(next->sleep_type)) {
L
Linus Torvalds 已提交
3382
		unsigned long long delta = now - next->timestamp;
3383
		if (unlikely((long long)(now - next->timestamp) < 0))
L
Linus Torvalds 已提交
3384 3385
			delta = 0;

3386
		if (next->sleep_type == SLEEP_INTERACTIVE)
L
Linus Torvalds 已提交
3387 3388 3389
			delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;

		array = next->array;
3390 3391 3392 3393 3394 3395
		new_prio = recalc_task_prio(next, next->timestamp + delta);

		if (unlikely(next->prio != new_prio)) {
			dequeue_task(next, array);
			next->prio = new_prio;
			enqueue_task(next, array);
3396
		}
L
Linus Torvalds 已提交
3397
	}
3398
	next->sleep_type = SLEEP_NORMAL;
L
Linus Torvalds 已提交
3399 3400 3401 3402
switch_tasks:
	if (next == rq->idle)
		schedstat_inc(rq, sched_goidle);
	prefetch(next);
3403
	prefetch_stack(next);
L
Linus Torvalds 已提交
3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415
	clear_tsk_need_resched(prev);
	rcu_qsctr_inc(task_cpu(prev));

	update_cpu_clock(prev, rq, now);

	prev->sleep_avg -= run_time;
	if ((long)prev->sleep_avg <= 0)
		prev->sleep_avg = 0;
	prev->timestamp = prev->last_ran = now;

	sched_info_switch(prev, next);
	if (likely(prev != next)) {
3416
		next->timestamp = next->last_ran = now;
L
Linus Torvalds 已提交
3417 3418 3419 3420
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

3421
		prepare_task_switch(rq, next);
L
Linus Torvalds 已提交
3422 3423
		prev = context_switch(rq, prev, next);
		barrier();
3424 3425 3426 3427 3428 3429
		/*
		 * this_rq must be evaluated again because prev may have moved
		 * CPUs since it called schedule(), thus the 'rq' on its stack
		 * frame will be invalid.
		 */
		finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443
	} else
		spin_unlock_irq(&rq->lock);

	prev = current;
	if (unlikely(reacquire_kernel_lock(prev) < 0))
		goto need_resched_nonpreemptible;
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
3444
 * this is the entry point to schedule() from in-kernel preemption
L
Linus Torvalds 已提交
3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458
 * off of preempt_enable.  Kernel preemptions off return from interrupt
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
	 * we do not want to preempt the current task.  Just return..
	 */
N
Nick Piggin 已提交
3459
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486
		return;

need_resched:
	add_preempt_count(PREEMPT_ACTIVE);
	/*
	 * We keep the big kernel semaphore locked, but we
	 * clear ->lock_depth so that schedule() doesnt
	 * auto-release the semaphore:
	 */
#ifdef CONFIG_PREEMPT_BKL
	saved_lock_depth = task->lock_depth;
	task->lock_depth = -1;
#endif
	schedule();
#ifdef CONFIG_PREEMPT_BKL
	task->lock_depth = saved_lock_depth;
#endif
	sub_preempt_count(PREEMPT_ACTIVE);

	/* we could miss a preemption opportunity between schedule and now */
	barrier();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(preempt_schedule);

/*
3487
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
3499
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528
	BUG_ON(ti->preempt_count || !irqs_disabled());

need_resched:
	add_preempt_count(PREEMPT_ACTIVE);
	/*
	 * We keep the big kernel semaphore locked, but we
	 * clear ->lock_depth so that schedule() doesnt
	 * auto-release the semaphore:
	 */
#ifdef CONFIG_PREEMPT_BKL
	saved_lock_depth = task->lock_depth;
	task->lock_depth = -1;
#endif
	local_irq_enable();
	schedule();
	local_irq_disable();
#ifdef CONFIG_PREEMPT_BKL
	task->lock_depth = saved_lock_depth;
#endif
	sub_preempt_count(PREEMPT_ACTIVE);

	/* we could miss a preemption opportunity between schedule and now */
	barrier();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
3529 3530
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
3531
{
3532
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550
}
EXPORT_SYMBOL(default_wake_function);

/*
 * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
 * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
	struct list_head *tmp, *next;

	list_for_each_safe(tmp, next, &q->task_list) {
3551 3552 3553
		wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
3554
		if (curr->func(curr, mode, sync, key) &&
3555
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3556 3557 3558 3559 3560 3561 3562 3563 3564
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3565
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
3566 3567
 */
void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3568
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
3587
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
I
Ingo Molnar 已提交
3599 3600
void fastcall
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

void fastcall complete(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 1, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

void fastcall complete_all(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 0, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

void fastcall __sched wait_for_completion(struct completion *x)
{
	might_sleep();
3644

L
Linus Torvalds 已提交
3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790
	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			__set_current_state(TASK_UNINTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			schedule();
			spin_lock_irq(&x->wait.lock);
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	spin_unlock_irq(&x->wait.lock);
}
EXPORT_SYMBOL(wait_for_completion);

unsigned long fastcall __sched
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			__set_current_state(TASK_UNINTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);
	return timeout;
}
EXPORT_SYMBOL(wait_for_completion_timeout);

int fastcall __sched wait_for_completion_interruptible(struct completion *x)
{
	int ret = 0;

	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			if (signal_pending(current)) {
				ret = -ERESTARTSYS;
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
			__set_current_state(TASK_INTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			schedule();
			spin_lock_irq(&x->wait.lock);
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);

	return ret;
}
EXPORT_SYMBOL(wait_for_completion_interruptible);

unsigned long fastcall __sched
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			if (signal_pending(current)) {
				timeout = -ERESTARTSYS;
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
			__set_current_state(TASK_INTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);
	return timeout;
}
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);


#define	SLEEP_ON_VAR					\
	unsigned long flags;				\
	wait_queue_t wait;				\
	init_waitqueue_entry(&wait, current);

#define SLEEP_ON_HEAD					\
	spin_lock_irqsave(&q->lock,flags);		\
	__add_wait_queue(q, &wait);			\
	spin_unlock(&q->lock);

#define	SLEEP_ON_TAIL					\
	spin_lock_irq(&q->lock);			\
	__remove_wait_queue(q, &wait);			\
	spin_unlock_irqrestore(&q->lock, flags);

void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	SLEEP_ON_VAR

	current->state = TASK_INTERRUPTIBLE;

	SLEEP_ON_HEAD
	schedule();
	SLEEP_ON_TAIL
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3791 3792
long fastcall __sched
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832
{
	SLEEP_ON_VAR

	current->state = TASK_INTERRUPTIBLE;

	SLEEP_ON_HEAD
	timeout = schedule_timeout(timeout);
	SLEEP_ON_TAIL

	return timeout;
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

void fastcall __sched sleep_on(wait_queue_head_t *q)
{
	SLEEP_ON_VAR

	current->state = TASK_UNINTERRUPTIBLE;

	SLEEP_ON_HEAD
	schedule();
	SLEEP_ON_TAIL
}
EXPORT_SYMBOL(sleep_on);

long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
{
	SLEEP_ON_VAR

	current->state = TASK_UNINTERRUPTIBLE;

	SLEEP_ON_HEAD
	timeout = schedule_timeout(timeout);
	SLEEP_ON_TAIL

	return timeout;
}

EXPORT_SYMBOL(sleep_on_timeout);

3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
3845
void rt_mutex_setprio(struct task_struct *p, int prio)
3846
{
3847
	struct prio_array *array;
3848
	unsigned long flags;
3849
	struct rq *rq;
3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885
	int oldprio;

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);

	oldprio = p->prio;
	array = p->array;
	if (array)
		dequeue_task(p, array);
	p->prio = prio;

	if (array) {
		/*
		 * If changing to an RT priority then queue it
		 * in the active array!
		 */
		if (rt_task(p))
			array = rq->active;
		enqueue_task(p, array);
		/*
		 * Reschedule if we are currently running on this runqueue and
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
		 */
		if (task_running(rq, p)) {
			if (p->prio > oldprio)
				resched_task(rq->curr);
		} else if (TASK_PREEMPTS_CURR(p, rq))
			resched_task(rq->curr);
	}
	task_rq_unlock(rq, &flags);
}

#endif

3886
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3887
{
3888
	struct prio_array *array;
3889
	int old_prio, delta;
L
Linus Torvalds 已提交
3890
	unsigned long flags;
3891
	struct rq *rq;
L
Linus Torvalds 已提交
3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
3904
	 * not SCHED_NORMAL/SCHED_BATCH:
L
Linus Torvalds 已提交
3905
	 */
3906
	if (has_rt_policy(p)) {
L
Linus Torvalds 已提交
3907 3908 3909 3910
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
	array = p->array;
3911
	if (array) {
L
Linus Torvalds 已提交
3912
		dequeue_task(p, array);
3913 3914
		dec_raw_weighted_load(rq, p);
	}
L
Linus Torvalds 已提交
3915 3916

	p->static_prio = NICE_TO_PRIO(nice);
3917
	set_load_weight(p);
3918 3919 3920
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3921 3922 3923

	if (array) {
		enqueue_task(p, array);
3924
		inc_raw_weighted_load(rq, p);
L
Linus Torvalds 已提交
3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936
		/*
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
		 */
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3937 3938 3939 3940 3941
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3942
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3943
{
3944 3945
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
3946

M
Matt Mackall 已提交
3947 3948 3949 3950
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
3962
	long nice, retval;
L
Linus Torvalds 已提交
3963 3964 3965 3966 3967 3968

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
3969 3970
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
3971 3972 3973 3974 3975 3976 3977 3978 3979
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
3980 3981 3982
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4001
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4002 4003 4004 4005 4006 4007 4008 4009
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4010
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028
{
	return TASK_NICE(p);
}
EXPORT_SYMBOL_GPL(task_nice);

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4029
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4030 4031 4032 4033 4034 4035 4036 4037
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
4038
static inline struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4039 4040 4041 4042 4043 4044 4045 4046
{
	return pid ? find_task_by_pid(pid) : current;
}

/* Actually do priority change: must hold rq lock. */
static void __setscheduler(struct task_struct *p, int policy, int prio)
{
	BUG_ON(p->array);
4047

L
Linus Torvalds 已提交
4048 4049
	p->policy = policy;
	p->rt_priority = prio;
4050 4051 4052 4053 4054 4055 4056 4057
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
	/*
	 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
	 */
	if (policy == SCHED_BATCH)
		p->sleep_avg = 0;
4058
	set_load_weight(p);
L
Linus Torvalds 已提交
4059 4060 4061
}

/**
4062
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4063 4064 4065
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4066
 *
4067
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4068
 */
I
Ingo Molnar 已提交
4069 4070
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4071
{
4072
	int retval, oldprio, oldpolicy = -1;
4073
	struct prio_array *array;
L
Linus Torvalds 已提交
4074
	unsigned long flags;
4075
	struct rq *rq;
L
Linus Torvalds 已提交
4076

4077 4078
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4079 4080 4081 4082 4083
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4084 4085
			policy != SCHED_NORMAL && policy != SCHED_BATCH)
		return -EINVAL;
L
Linus Torvalds 已提交
4086 4087
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4088 4089
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
	 * SCHED_BATCH is 0.
L
Linus Torvalds 已提交
4090 4091
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4092
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4093
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4094
		return -EINVAL;
4095
	if (is_rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4096 4097
		return -EINVAL;

4098 4099 4100 4101
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119
		if (is_rt_policy(policy)) {
			unsigned long rlim_rtprio;
			unsigned long flags;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
4120

4121 4122 4123 4124 4125
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4126 4127 4128 4129

	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4130 4131 4132 4133 4134
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4135 4136 4137 4138
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4139
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4140 4141 4142
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4143 4144
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164
		goto recheck;
	}
	array = p->array;
	if (array)
		deactivate_task(p, rq);
	oldprio = p->prio;
	__setscheduler(p, policy, param->sched_priority);
	if (array) {
		__activate_task(p, rq);
		/*
		 * Reschedule if we are currently running on this runqueue and
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
		 */
		if (task_running(rq, p)) {
			if (p->prio > oldprio)
				resched_task(rq->curr);
		} else if (TASK_PREEMPTS_CURR(p, rq))
			resched_task(rq->curr);
	}
4165 4166 4167
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

4168 4169
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4170 4171 4172 4173
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
4174 4175
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4176 4177 4178
{
	struct sched_param lparam;
	struct task_struct *p;
4179
	int retval;
L
Linus Torvalds 已提交
4180 4181 4182 4183 4184

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4185 4186 4187

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4188
	p = find_process_by_pid(pid);
4189 4190 4191
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4192

L
Linus Torvalds 已提交
4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
				       struct sched_param __user *param)
{
4205 4206 4207 4208
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
4228
	struct task_struct *p;
L
Linus Torvalds 已提交
4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255
	int retval = -EINVAL;

	if (pid < 0)
		goto out_nounlock;

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);

out_nounlock:
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
4256
	struct task_struct *p;
L
Linus Torvalds 已提交
4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290
	int retval = -EINVAL;

	if (!param || pid < 0)
		goto out_nounlock;

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

out_nounlock:
	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

long sched_setaffinity(pid_t pid, cpumask_t new_mask)
{
	cpumask_t cpus_allowed;
4291 4292
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316

	lock_cpu_hotplug();
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
		unlock_cpu_hotplug();
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
	 * tasklist_lock held.  We will bump the task_struct's
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

4317 4318 4319 4320
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

L
Linus Torvalds 已提交
4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367
	cpus_allowed = cpuset_cpus_allowed(p);
	cpus_and(new_mask, new_mask, cpus_allowed);
	retval = set_cpus_allowed(p, new_mask);

out_unlock:
	put_task_struct(p);
	unlock_cpu_hotplug();
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

	return sched_setaffinity(pid, new_mask);
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

4368
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
4369 4370 4371
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
4372
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4373 4374
EXPORT_SYMBOL(cpu_online_map);

4375
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4376
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
4377 4378 4379 4380
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
4381
	struct task_struct *p;
L
Linus Torvalds 已提交
4382 4383 4384 4385 4386 4387 4388 4389 4390 4391
	int retval;

	lock_cpu_hotplug();
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4392 4393 4394 4395
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4396
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434

out_unlock:
	read_unlock(&tasklist_lock);
	unlock_cpu_hotplug();
	if (retval)
		return retval;

	return 0;
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
4435
 * This function yields the current CPU by moving the calling thread
L
Linus Torvalds 已提交
4436 4437 4438 4439 4440
 * to the expired array. If there are no other threads running on this
 * CPU then this function will return.
 */
asmlinkage long sys_sched_yield(void)
{
4441 4442
	struct rq *rq = this_rq_lock();
	struct prio_array *array = current->array, *target = rq->expired;
L
Linus Torvalds 已提交
4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454

	schedstat_inc(rq, yld_cnt);
	/*
	 * We implement yielding by moving the task into the expired
	 * queue.
	 *
	 * (special rule: RT tasks will just roundrobin in the active
	 *  array.)
	 */
	if (rt_task(current))
		target = rq->active;

4455
	if (array->nr_active == 1) {
L
Linus Torvalds 已提交
4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475
		schedstat_inc(rq, yld_act_empty);
		if (!rq->expired->nr_active)
			schedstat_inc(rq, yld_both_empty);
	} else if (!rq->expired->nr_active)
		schedstat_inc(rq, yld_exp_empty);

	if (array != target) {
		dequeue_task(current, array);
		enqueue_task(current, target);
	} else
		/*
		 * requeue_task is cheaper so perform that if possible.
		 */
		requeue_task(current, array);

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4476
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4477 4478 4479 4480 4481 4482 4483 4484
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
4485
static void __cond_resched(void)
L
Linus Torvalds 已提交
4486
{
4487 4488 4489
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
4490 4491 4492 4493 4494
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
4495 4496 4497 4498 4499 4500 4501 4502 4503
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

int __sched cond_resched(void)
{
4504 4505
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520
		__cond_resched();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched);

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
 * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
4521
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4522
{
J
Jan Kara 已提交
4523 4524
	int ret = 0;

L
Linus Torvalds 已提交
4525 4526 4527
	if (need_lockbreak(lock)) {
		spin_unlock(lock);
		cpu_relax();
J
Jan Kara 已提交
4528
		ret = 1;
L
Linus Torvalds 已提交
4529 4530
		spin_lock(lock);
	}
4531
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4532
		spin_release(&lock->dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4533 4534 4535
		_raw_spin_unlock(lock);
		preempt_enable_no_resched();
		__cond_resched();
J
Jan Kara 已提交
4536
		ret = 1;
L
Linus Torvalds 已提交
4537 4538
		spin_lock(lock);
	}
J
Jan Kara 已提交
4539
	return ret;
L
Linus Torvalds 已提交
4540 4541 4542 4543 4544 4545 4546
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

4547
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4548 4549 4550
		raw_local_irq_disable();
		_local_bh_enable();
		raw_local_irq_enable();
L
Linus Torvalds 已提交
4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
4562
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
 * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
4581
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4582

4583
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4584 4585 4586
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
4587
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4588 4589 4590 4591 4592
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4593
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4594 4595
	long ret;

4596
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4597 4598 4599
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
4600
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4621
	case SCHED_BATCH:
L
Linus Torvalds 已提交
4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4645
	case SCHED_BATCH:
L
Linus Torvalds 已提交
4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
4662
	struct task_struct *p;
L
Linus Torvalds 已提交
4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678
	int retval = -EINVAL;
	struct timespec t;

	if (pid < 0)
		goto out_nounlock;

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4679
	jiffies_to_timespec(p->policy == SCHED_FIFO ?
L
Linus Torvalds 已提交
4680 4681 4682 4683 4684 4685 4686 4687 4688 4689
				0 : task_timeslice(p), &t);
	read_unlock(&tasklist_lock);
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
out_nounlock:
	return retval;
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

4690
static const char stat_nam[] = "RSDTtZX";
4691 4692

static void show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4693 4694
{
	unsigned long free = 0;
4695
	unsigned state;
L
Linus Torvalds 已提交
4696 4697

	state = p->state ? __ffs(p->state) + 1 : 0;
4698 4699
	printk("%-13.13s %c", p->comm,
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
L
Linus Torvalds 已提交
4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712
#if (BITS_PER_LONG == 32)
	if (state == TASK_RUNNING)
		printk(" running ");
	else
		printk(" %08lX ", thread_saved_pc(p));
#else
	if (state == TASK_RUNNING)
		printk("  running task   ");
	else
		printk(" %016lx ", thread_saved_pc(p));
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
4713
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
4714 4715
		while (!*n)
			n++;
4716
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
4717 4718
	}
#endif
4719
	printk("%5lu %5d %6d", free, p->pid, p->parent->pid);
L
Linus Torvalds 已提交
4720 4721 4722 4723 4724 4725 4726 4727 4728
	if (!p->mm)
		printk(" (L-TLB)\n");
	else
		printk(" (NOTLB)\n");

	if (state != TASK_RUNNING)
		show_stack(p, NULL);
}

I
Ingo Molnar 已提交
4729
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4730
{
4731
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4732 4733 4734

#if (BITS_PER_LONG == 32)
	printk("\n"
4735 4736
	       "                         free                        sibling\n");
	printk("  task             PC    stack   pid father child younger older\n");
L
Linus Torvalds 已提交
4737 4738
#else
	printk("\n"
4739 4740
	       "                                 free                        sibling\n");
	printk("  task                 PC        stack   pid father child younger older\n");
L
Linus Torvalds 已提交
4741 4742 4743 4744 4745 4746 4747 4748
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4749
		if (!state_filter || (p->state & state_filter))
I
Ingo Molnar 已提交
4750
			show_task(p);
L
Linus Torvalds 已提交
4751 4752
	} while_each_thread(g, p);

4753 4754
	touch_all_softlockup_watchdogs();

L
Linus Torvalds 已提交
4755
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
4756 4757 4758 4759 4760
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
4761 4762
}

4763 4764 4765 4766 4767 4768 4769 4770
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4771
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4772
{
4773
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4774 4775
	unsigned long flags;

4776
	idle->timestamp = sched_clock();
L
Linus Torvalds 已提交
4777 4778
	idle->sleep_avg = 0;
	idle->array = NULL;
4779
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
4780 4781 4782 4783 4784 4785
	idle->state = TASK_RUNNING;
	idle->cpus_allowed = cpumask_of_cpu(cpu);
	set_task_cpu(idle, cpu);

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
4786 4787 4788
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
4789 4790 4791 4792
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
A
Al Viro 已提交
4793
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
L
Linus Torvalds 已提交
4794
#else
A
Al Viro 已提交
4795
	task_thread_info(idle)->preempt_count = 0;
L
Linus Torvalds 已提交
4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811
#endif
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
4812
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely.  The
 * call is not atomic; no spinlocks may be held.
 */
4834
int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
L
Linus Torvalds 已提交
4835
{
4836
	struct migration_req req;
L
Linus Torvalds 已提交
4837
	unsigned long flags;
4838
	struct rq *rq;
4839
	int ret = 0;
L
Linus Torvalds 已提交
4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861

	rq = task_rq_lock(p, &flags);
	if (!cpus_intersects(new_mask, cpu_online_map)) {
		ret = -EINVAL;
		goto out;
	}

	p->cpus_allowed = new_mask;
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpu_isset(task_cpu(p), new_mask))
		goto out;

	if (migrate_task(p, any_online_cpu(new_mask), &req)) {
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
4862

L
Linus Torvalds 已提交
4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874
	return ret;
}
EXPORT_SYMBOL_GPL(set_cpus_allowed);

/*
 * Move (not current) task off this cpu, onto dest cpu.  We're doing
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4875 4876
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4877
 */
4878
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4879
{
4880
	struct rq *rq_dest, *rq_src;
4881
	int ret = 0;
L
Linus Torvalds 已提交
4882 4883

	if (unlikely(cpu_is_offline(dest_cpu)))
4884
		return ret;
L
Linus Torvalds 已提交
4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

	set_task_cpu(p, dest_cpu);
	if (p->array) {
		/*
		 * Sync timestamp with rq_dest's before activating.
		 * The same thing could be achieved by doing this step
		 * afterwards, and pretending it was a local activate.
		 * This way is cleaner and logically correct.
		 */
4905 4906
		p->timestamp = p->timestamp - rq_src->most_recent_timestamp
				+ rq_dest->most_recent_timestamp;
L
Linus Torvalds 已提交
4907
		deactivate_task(p, rq_src);
4908
		__activate_task(p, rq_dest);
L
Linus Torvalds 已提交
4909 4910 4911
		if (TASK_PREEMPTS_CURR(p, rq_dest))
			resched_task(rq_dest->curr);
	}
4912
	ret = 1;
L
Linus Torvalds 已提交
4913 4914
out:
	double_rq_unlock(rq_src, rq_dest);
4915
	return ret;
L
Linus Torvalds 已提交
4916 4917 4918 4919 4920 4921 4922
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
4923
static int migration_thread(void *data)
L
Linus Torvalds 已提交
4924 4925
{
	int cpu = (long)data;
4926
	struct rq *rq;
L
Linus Torvalds 已提交
4927 4928 4929 4930 4931 4932

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
4933
		struct migration_req *req;
L
Linus Torvalds 已提交
4934 4935
		struct list_head *head;

4936
		try_to_freeze();
L
Linus Torvalds 已提交
4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
4958
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
4959 4960
		list_del_init(head->next);

N
Nick Piggin 已提交
4961 4962 4963
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
4982 4983 4984 4985
/*
 * Figure out where task on dead CPU should go, use force if neccessary.
 * NOTE: interrupts should be disabled by the caller
 */
4986
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
4987
{
4988
	unsigned long flags;
L
Linus Torvalds 已提交
4989
	cpumask_t mask;
4990 4991
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
4992

4993
restart:
L
Linus Torvalds 已提交
4994 4995
	/* On same node? */
	mask = node_to_cpumask(cpu_to_node(dead_cpu));
4996
	cpus_and(mask, mask, p->cpus_allowed);
L
Linus Torvalds 已提交
4997 4998 4999 5000
	dest_cpu = any_online_cpu(mask);

	/* On any allowed CPU? */
	if (dest_cpu == NR_CPUS)
5001
		dest_cpu = any_online_cpu(p->cpus_allowed);
L
Linus Torvalds 已提交
5002 5003 5004

	/* No more Mr. Nice Guy. */
	if (dest_cpu == NR_CPUS) {
5005 5006 5007
		rq = task_rq_lock(p, &flags);
		cpus_setall(p->cpus_allowed);
		dest_cpu = any_online_cpu(p->cpus_allowed);
5008
		task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5009 5010 5011 5012 5013 5014

		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
5015
		if (p->mm && printk_ratelimit())
L
Linus Torvalds 已提交
5016 5017
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
5018
			       p->pid, p->comm, dead_cpu);
L
Linus Torvalds 已提交
5019
	}
5020
	if (!__migrate_task(p, dead_cpu, dest_cpu))
5021
		goto restart;
L
Linus Torvalds 已提交
5022 5023 5024 5025 5026 5027 5028 5029 5030
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5031
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5032
{
5033
	struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
L
Linus Torvalds 已提交
5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5047
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5048 5049 5050

	write_lock_irq(&tasklist_lock);

5051 5052
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5053 5054
			continue;

5055 5056 5057
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5058 5059 5060 5061 5062 5063

	write_unlock_irq(&tasklist_lock);
}

/* Schedules idle task to be the next runnable task on current CPU.
 * It does so by boosting its priority to highest possible and adding it to
5064
 * the _front_ of the runqueue. Used by CPU offline code.
L
Linus Torvalds 已提交
5065 5066 5067
 */
void sched_idle_next(void)
{
5068
	int this_cpu = smp_processor_id();
5069
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5070 5071 5072 5073
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5074
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5075

5076 5077 5078
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5079 5080 5081 5082
	 */
	spin_lock_irqsave(&rq->lock, flags);

	__setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
5083 5084

	/* Add idle task to the _front_ of its priority queue: */
L
Linus Torvalds 已提交
5085 5086 5087 5088 5089
	__activate_idle_task(p, rq);

	spin_unlock_irqrestore(&rq->lock, flags);
}

5090 5091
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5105
/* called under rq->lock with disabled interrupts */
5106
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5107
{
5108
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5109 5110

	/* Must be exiting, otherwise would be on tasklist. */
5111
	BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
L
Linus Torvalds 已提交
5112 5113

	/* Cannot have done final schedule yet: would have vanished. */
5114
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5115

5116
	get_task_struct(p);
L
Linus Torvalds 已提交
5117 5118 5119 5120 5121

	/*
	 * Drop lock around migration; if someone else moves it,
	 * that's OK.  No task can be added to this CPU, so iteration is
	 * fine.
5122
	 * NOTE: interrupts should be left disabled  --dev@
L
Linus Torvalds 已提交
5123
	 */
5124
	spin_unlock(&rq->lock);
5125
	move_task_off_dead_cpu(dead_cpu, p);
5126
	spin_lock(&rq->lock);
L
Linus Torvalds 已提交
5127

5128
	put_task_struct(p);
L
Linus Torvalds 已提交
5129 5130 5131 5132 5133
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5134
	struct rq *rq = cpu_rq(dead_cpu);
5135
	unsigned int arr, i;
L
Linus Torvalds 已提交
5136 5137 5138 5139

	for (arr = 0; arr < 2; arr++) {
		for (i = 0; i < MAX_PRIO; i++) {
			struct list_head *list = &rq->arrays[arr].queue[i];
5140

L
Linus Torvalds 已提交
5141
			while (!list_empty(list))
5142 5143
				migrate_dead(dead_cpu, list_entry(list->next,
					     struct task_struct, run_list));
L
Linus Torvalds 已提交
5144 5145 5146 5147 5148 5149 5150 5151 5152
		}
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5153 5154
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5155 5156
{
	struct task_struct *p;
5157
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5158
	unsigned long flags;
5159
	struct rq *rq;
L
Linus Torvalds 已提交
5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173

	switch (action) {
	case CPU_UP_PREPARE:
		p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
		if (IS_ERR(p))
			return NOTIFY_BAD;
		p->flags |= PF_NOFREEZE;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
		__setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
5174

L
Linus Torvalds 已提交
5175 5176 5177 5178
	case CPU_ONLINE:
		/* Strictly unneccessary, as first user will wake it. */
		wake_up_process(cpu_rq(cpu)->migration_thread);
		break;
5179

L
Linus Torvalds 已提交
5180 5181
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5182 5183
		if (!cpu_rq(cpu)->migration_thread)
			break;
L
Linus Torvalds 已提交
5184
		/* Unbind it from offline cpu so it can run.  Fall thru. */
5185 5186
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
5187 5188 5189
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5190

L
Linus Torvalds 已提交
5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210
	case CPU_DEAD:
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
		rq = task_rq_lock(rq->idle, &flags);
		deactivate_task(rq->idle, rq);
		rq->idle->static_prio = MAX_PRIO;
		__setscheduler(rq->idle, SCHED_NORMAL, 0);
		migrate_dead_tasks(cpu);
		task_rq_unlock(rq, &flags);
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

		/* No need to migrate the tasks: it was best-effort if
		 * they didn't do lock_cpu_hotplug().  Just wake up
		 * the requestors. */
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
5211 5212
			struct migration_req *req;

L
Linus Torvalds 已提交
5213
			req = list_entry(rq->migration_queue.next,
5214
					 struct migration_req, list);
L
Linus Torvalds 已提交
5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
5228
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5229 5230 5231 5232 5233 5234 5235
	.notifier_call = migration_call,
	.priority = 10
};

int __init migration_init(void)
{
	void *cpu = (void *)(long)smp_processor_id();
5236
	int err;
5237 5238

	/* Start one for the boot CPU: */
5239 5240
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5241 5242
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5243

L
Linus Torvalds 已提交
5244 5245 5246 5247 5248
	return 0;
}
#endif

#ifdef CONFIG_SMP
5249 5250 5251 5252 5253

/* Number of possible processor ids */
int nr_cpu_ids __read_mostly = NR_CPUS;
EXPORT_SYMBOL(nr_cpu_ids);

5254
#undef SCHED_DOMAIN_DEBUG
L
Linus Torvalds 已提交
5255 5256 5257 5258 5259
#ifdef SCHED_DOMAIN_DEBUG
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;

N
Nick Piggin 已提交
5260 5261 5262 5263 5264
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}

L
Linus Torvalds 已提交
5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	do {
		int i;
		char str[NR_CPUS];
		struct sched_group *group = sd->groups;
		cpumask_t groupmask;

		cpumask_scnprintf(str, NR_CPUS, sd->span);
		cpus_clear(groupmask);

		printk(KERN_DEBUG);
		for (i = 0; i < level + 1; i++)
			printk(" ");
		printk("domain %d: ", level);

		if (!(sd->flags & SD_LOAD_BALANCE)) {
			printk("does not load-balance\n");
			if (sd->parent)
5284 5285
				printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
						" has parent");
L
Linus Torvalds 已提交
5286 5287 5288 5289 5290 5291
			break;
		}

		printk("span %s\n", str);

		if (!cpu_isset(cpu, sd->span))
5292 5293
			printk(KERN_ERR "ERROR: domain->span does not contain "
					"CPU%d\n", cpu);
L
Linus Torvalds 已提交
5294
		if (!cpu_isset(cpu, group->cpumask))
5295 5296
			printk(KERN_ERR "ERROR: domain->groups does not contain"
					" CPU%d\n", cpu);
L
Linus Torvalds 已提交
5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310

		printk(KERN_DEBUG);
		for (i = 0; i < level + 2; i++)
			printk(" ");
		printk("groups:");
		do {
			if (!group) {
				printk("\n");
				printk(KERN_ERR "ERROR: group is NULL\n");
				break;
			}

			if (!group->cpu_power) {
				printk("\n");
5311 5312
				printk(KERN_ERR "ERROR: domain->cpu_power not "
						"set\n");
L
Linus Torvalds 已提交
5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334
			}

			if (!cpus_weight(group->cpumask)) {
				printk("\n");
				printk(KERN_ERR "ERROR: empty group\n");
			}

			if (cpus_intersects(groupmask, group->cpumask)) {
				printk("\n");
				printk(KERN_ERR "ERROR: repeated CPUs\n");
			}

			cpus_or(groupmask, groupmask, group->cpumask);

			cpumask_scnprintf(str, NR_CPUS, group->cpumask);
			printk(" %s", str);

			group = group->next;
		} while (group != sd->groups);
		printk("\n");

		if (!cpus_equal(sd->span, groupmask))
5335 5336
			printk(KERN_ERR "ERROR: groups don't span "
					"domain->span\n");
L
Linus Torvalds 已提交
5337 5338 5339

		level++;
		sd = sd->parent;
5340 5341
		if (!sd)
			continue;
L
Linus Torvalds 已提交
5342

5343 5344 5345
		if (!cpus_subset(groupmask, sd->span))
			printk(KERN_ERR "ERROR: parent span is not a superset "
				"of domain->span\n");
L
Linus Torvalds 已提交
5346 5347 5348 5349

	} while (sd);
}
#else
5350
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
5351 5352
#endif

5353
static int sd_degenerate(struct sched_domain *sd)
5354 5355 5356 5357 5358 5359 5360 5361
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5362 5363 5364
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

5378 5379
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5398 5399 5400
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5401 5402 5403 5404 5405 5406 5407
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
5408 5409 5410 5411
/*
 * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
 * hold the hotplug lock.
 */
5412
static void cpu_attach_domain(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5413
{
5414
	struct rq *rq = cpu_rq(cpu);
5415 5416 5417 5418 5419 5420 5421
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5422
		if (sd_parent_degenerate(tmp, parent)) {
5423
			tmp->parent = parent->parent;
5424 5425 5426
			if (parent->parent)
				parent->parent->child = tmp;
		}
5427 5428
	}

5429
	if (sd && sd_degenerate(sd)) {
5430
		sd = sd->parent;
5431 5432 5433
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5434 5435 5436

	sched_domain_debug(sd, cpu);

N
Nick Piggin 已提交
5437
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
5438 5439 5440
}

/* cpus with isolated domains */
5441
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

__setup ("isolcpus=", isolated_cpu_setup);

/*
5459 5460 5461 5462
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
5463 5464 5465 5466 5467
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
5468
static void
5469 5470 5471
init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
					struct sched_group **sg))
L
Linus Torvalds 已提交
5472 5473 5474 5475 5476 5477
{
	struct sched_group *first = NULL, *last = NULL;
	cpumask_t covered = CPU_MASK_NONE;
	int i;

	for_each_cpu_mask(i, span) {
5478 5479
		struct sched_group *sg;
		int group = group_fn(i, cpu_map, &sg);
L
Linus Torvalds 已提交
5480 5481 5482 5483 5484 5485 5486 5487 5488
		int j;

		if (cpu_isset(i, covered))
			continue;

		sg->cpumask = CPU_MASK_NONE;
		sg->cpu_power = 0;

		for_each_cpu_mask(j, span) {
5489
			if (group_fn(j, cpu_map, NULL) != group)
L
Linus Torvalds 已提交
5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503
				continue;

			cpu_set(j, covered);
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

5504
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
5505

5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533
/*
 * Self-tuning task migration cost measurement between source and target CPUs.
 *
 * This is done by measuring the cost of manipulating buffers of varying
 * sizes. For a given buffer-size here are the steps that are taken:
 *
 * 1) the source CPU reads+dirties a shared buffer
 * 2) the target CPU reads+dirties the same shared buffer
 *
 * We measure how long they take, in the following 4 scenarios:
 *
 *  - source: CPU1, target: CPU2 | cost1
 *  - source: CPU2, target: CPU1 | cost2
 *  - source: CPU1, target: CPU1 | cost3
 *  - source: CPU2, target: CPU2 | cost4
 *
 * We then calculate the cost3+cost4-cost1-cost2 difference - this is
 * the cost of migration.
 *
 * We then start off from a small buffer-size and iterate up to larger
 * buffer sizes, in 5% steps - measuring each buffer-size separately, and
 * doing a maximum search for the cost. (The maximum cost for a migration
 * normally occurs when the working set size is around the effective cache
 * size.)
 */
#define SEARCH_SCOPE		2
#define MIN_CACHE_SIZE		(64*1024U)
#define DEFAULT_CACHE_SIZE	(5*1024*1024U)
5534
#define ITERATIONS		1
5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551
#define SIZE_THRESH		130
#define COST_THRESH		130

/*
 * The migration cost is a function of 'domain distance'. Domain
 * distance is the number of steps a CPU has to iterate down its
 * domain tree to share a domain with the other CPU. The farther
 * two CPUs are from each other, the larger the distance gets.
 *
 * Note that we use the distance only to cache measurement results,
 * the distance value is not used numerically otherwise. When two
 * CPUs have the same distance it is assumed that the migration
 * cost is the same. (this is a simplification but quite practical)
 */
#define MAX_DOMAIN_DISTANCE 32

static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563
		{ [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
/*
 * Architectures may override the migration cost and thus avoid
 * boot-time calibration. Unit is nanoseconds. Mostly useful for
 * virtualized hardware:
 */
#ifdef CONFIG_DEFAULT_MIGRATION_COST
			CONFIG_DEFAULT_MIGRATION_COST
#else
			-1LL
#endif
};
5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662

/*
 * Allow override of migration cost - in units of microseconds.
 * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
 * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
 */
static int __init migration_cost_setup(char *str)
{
	int ints[MAX_DOMAIN_DISTANCE+1], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);

	printk("#ints: %d\n", ints[0]);
	for (i = 1; i <= ints[0]; i++) {
		migration_cost[i-1] = (unsigned long long)ints[i]*1000;
		printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
	}
	return 1;
}

__setup ("migration_cost=", migration_cost_setup);

/*
 * Global multiplier (divisor) for migration-cutoff values,
 * in percentiles. E.g. use a value of 150 to get 1.5 times
 * longer cache-hot cutoff times.
 *
 * (We scale it from 100 to 128 to long long handling easier.)
 */

#define MIGRATION_FACTOR_SCALE 128

static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;

static int __init setup_migration_factor(char *str)
{
	get_option(&str, &migration_factor);
	migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
	return 1;
}

__setup("migration_factor=", setup_migration_factor);

/*
 * Estimated distance of two CPUs, measured via the number of domains
 * we have to pass for the two CPUs to be in the same span:
 */
static unsigned long domain_distance(int cpu1, int cpu2)
{
	unsigned long distance = 0;
	struct sched_domain *sd;

	for_each_domain(cpu1, sd) {
		WARN_ON(!cpu_isset(cpu1, sd->span));
		if (cpu_isset(cpu2, sd->span))
			return distance;
		distance++;
	}
	if (distance >= MAX_DOMAIN_DISTANCE) {
		WARN_ON(1);
		distance = MAX_DOMAIN_DISTANCE-1;
	}

	return distance;
}

static unsigned int migration_debug;

static int __init setup_migration_debug(char *str)
{
	get_option(&str, &migration_debug);
	return 1;
}

__setup("migration_debug=", setup_migration_debug);

/*
 * Maximum cache-size that the scheduler should try to measure.
 * Architectures with larger caches should tune this up during
 * bootup. Gets used in the domain-setup code (i.e. during SMP
 * bootup).
 */
unsigned int max_cache_size;

static int __init setup_max_cache_size(char *str)
{
	get_option(&str, &max_cache_size);
	return 1;
}

__setup("max_cache_size=", setup_max_cache_size);

/*
 * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
 * is the operation that is timed, so we try to generate unpredictable
 * cachemisses that still end up filling the L2 cache:
 */
static void touch_cache(void *__cache, unsigned long __size)
{
5663 5664 5665
	unsigned long size = __size / sizeof(long);
	unsigned long chunk1 = size / 3;
	unsigned long chunk2 = 2 * size / 3;
5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683
	unsigned long *cache = __cache;
	int i;

	for (i = 0; i < size/6; i += 8) {
		switch (i % 6) {
			case 0: cache[i]++;
			case 1: cache[size-1-i]++;
			case 2: cache[chunk1-i]++;
			case 3: cache[chunk1+i]++;
			case 4: cache[chunk2-i]++;
			case 5: cache[chunk2+i]++;
		}
	}
}

/*
 * Measure the cache-cost of one task migration. Returns in units of nsec.
 */
5684 5685
static unsigned long long
measure_one(void *cache, unsigned long size, int source, int target)
5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773
{
	cpumask_t mask, saved_mask;
	unsigned long long t0, t1, t2, t3, cost;

	saved_mask = current->cpus_allowed;

	/*
	 * Flush source caches to RAM and invalidate them:
	 */
	sched_cacheflush();

	/*
	 * Migrate to the source CPU:
	 */
	mask = cpumask_of_cpu(source);
	set_cpus_allowed(current, mask);
	WARN_ON(smp_processor_id() != source);

	/*
	 * Dirty the working set:
	 */
	t0 = sched_clock();
	touch_cache(cache, size);
	t1 = sched_clock();

	/*
	 * Migrate to the target CPU, dirty the L2 cache and access
	 * the shared buffer. (which represents the working set
	 * of a migrated task.)
	 */
	mask = cpumask_of_cpu(target);
	set_cpus_allowed(current, mask);
	WARN_ON(smp_processor_id() != target);

	t2 = sched_clock();
	touch_cache(cache, size);
	t3 = sched_clock();

	cost = t1-t0 + t3-t2;

	if (migration_debug >= 2)
		printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
			source, target, t1-t0, t1-t0, t3-t2, cost);
	/*
	 * Flush target caches to RAM and invalidate them:
	 */
	sched_cacheflush();

	set_cpus_allowed(current, saved_mask);

	return cost;
}

/*
 * Measure a series of task migrations and return the average
 * result. Since this code runs early during bootup the system
 * is 'undisturbed' and the average latency makes sense.
 *
 * The algorithm in essence auto-detects the relevant cache-size,
 * so it will properly detect different cachesizes for different
 * cache-hierarchies, depending on how the CPUs are connected.
 *
 * Architectures can prime the upper limit of the search range via
 * max_cache_size, otherwise the search range defaults to 20MB...64K.
 */
static unsigned long long
measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
{
	unsigned long long cost1, cost2;
	int i;

	/*
	 * Measure the migration cost of 'size' bytes, over an
	 * average of 10 runs:
	 *
	 * (We perturb the cache size by a small (0..4k)
	 *  value to compensate size/alignment related artifacts.
	 *  We also subtract the cost of the operation done on
	 *  the same CPU.)
	 */
	cost1 = 0;

	/*
	 * dry run, to make sure we start off cache-cold on cpu1,
	 * and to get any vmalloc pagefaults in advance:
	 */
	measure_one(cache, size, cpu1, cpu2);
	for (i = 0; i < ITERATIONS; i++)
5774
		cost1 += measure_one(cache, size - i * 1024, cpu1, cpu2);
5775 5776 5777

	measure_one(cache, size, cpu2, cpu1);
	for (i = 0; i < ITERATIONS; i++)
5778
		cost1 += measure_one(cache, size - i * 1024, cpu2, cpu1);
5779 5780 5781 5782 5783 5784 5785 5786 5787

	/*
	 * (We measure the non-migrating [cached] cost on both
	 *  cpu1 and cpu2, to handle CPUs with different speeds)
	 */
	cost2 = 0;

	measure_one(cache, size, cpu1, cpu1);
	for (i = 0; i < ITERATIONS; i++)
5788
		cost2 += measure_one(cache, size - i * 1024, cpu1, cpu1);
5789 5790 5791

	measure_one(cache, size, cpu2, cpu2);
	for (i = 0; i < ITERATIONS; i++)
5792
		cost2 += measure_one(cache, size - i * 1024, cpu2, cpu2);
5793 5794 5795 5796

	/*
	 * Get the per-iteration migration cost:
	 */
5797 5798
	do_div(cost1, 2 * ITERATIONS);
	do_div(cost2, 2 * ITERATIONS);
5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835

	return cost1 - cost2;
}

static unsigned long long measure_migration_cost(int cpu1, int cpu2)
{
	unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
	unsigned int max_size, size, size_found = 0;
	long long cost = 0, prev_cost;
	void *cache;

	/*
	 * Search from max_cache_size*5 down to 64K - the real relevant
	 * cachesize has to lie somewhere inbetween.
	 */
	if (max_cache_size) {
		max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
		size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
	} else {
		/*
		 * Since we have no estimation about the relevant
		 * search range
		 */
		max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
		size = MIN_CACHE_SIZE;
	}

	if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
		printk("cpu %d and %d not both online!\n", cpu1, cpu2);
		return 0;
	}

	/*
	 * Allocate the working set:
	 */
	cache = vmalloc(max_size);
	if (!cache) {
5836
		printk("could not vmalloc %d bytes for cache!\n", 2 * max_size);
5837
		return 1000000; /* return 1 msec on very small boxen */
5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860
	}

	while (size <= max_size) {
		prev_cost = cost;
		cost = measure_cost(cpu1, cpu2, cache, size);

		/*
		 * Update the max:
		 */
		if (cost > 0) {
			if (max_cost < cost) {
				max_cost = cost;
				size_found = size;
			}
		}
		/*
		 * Calculate average fluctuation, we use this to prevent
		 * noise from triggering an early break out of the loop:
		 */
		fluct = abs(cost - prev_cost);
		avg_fluct = (avg_fluct + fluct)/2;

		if (migration_debug)
5861 5862
			printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): "
				"(%8Ld %8Ld)\n",
5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885
				cpu1, cpu2, size,
				(long)cost / 1000000,
				((long)cost / 100000) % 10,
				(long)max_cost / 1000000,
				((long)max_cost / 100000) % 10,
				domain_distance(cpu1, cpu2),
				cost, avg_fluct);

		/*
		 * If we iterated at least 20% past the previous maximum,
		 * and the cost has dropped by more than 20% already,
		 * (taking fluctuations into account) then we assume to
		 * have found the maximum and break out of the loop early:
		 */
		if (size_found && (size*100 > size_found*SIZE_THRESH))
			if (cost+avg_fluct <= 0 ||
				max_cost*100 > (cost+avg_fluct)*COST_THRESH) {

				if (migration_debug)
					printk("-> found max.\n");
				break;
			}
		/*
5886
		 * Increase the cachesize in 10% steps:
5887
		 */
5888
		size = size * 10 / 9;
5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956
	}

	if (migration_debug)
		printk("[%d][%d] working set size found: %d, cost: %Ld\n",
			cpu1, cpu2, size_found, max_cost);

	vfree(cache);

	/*
	 * A task is considered 'cache cold' if at least 2 times
	 * the worst-case cost of migration has passed.
	 *
	 * (this limit is only listened to if the load-balancing
	 * situation is 'nice' - if there is a large imbalance we
	 * ignore it for the sake of CPU utilization and
	 * processing fairness.)
	 */
	return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
}

static void calibrate_migration_costs(const cpumask_t *cpu_map)
{
	int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
	unsigned long j0, j1, distance, max_distance = 0;
	struct sched_domain *sd;

	j0 = jiffies;

	/*
	 * First pass - calculate the cacheflush times:
	 */
	for_each_cpu_mask(cpu1, *cpu_map) {
		for_each_cpu_mask(cpu2, *cpu_map) {
			if (cpu1 == cpu2)
				continue;
			distance = domain_distance(cpu1, cpu2);
			max_distance = max(max_distance, distance);
			/*
			 * No result cached yet?
			 */
			if (migration_cost[distance] == -1LL)
				migration_cost[distance] =
					measure_migration_cost(cpu1, cpu2);
		}
	}
	/*
	 * Second pass - update the sched domain hierarchy with
	 * the new cache-hot-time estimations:
	 */
	for_each_cpu_mask(cpu, *cpu_map) {
		distance = 0;
		for_each_domain(cpu, sd) {
			sd->cache_hot_time = migration_cost[distance];
			distance++;
		}
	}
	/*
	 * Print the matrix:
	 */
	if (migration_debug)
		printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
			max_cache_size,
#ifdef CONFIG_X86
			cpu_khz/1000
#else
			-1
#endif
		);
5957 5958 5959 5960 5961 5962
	if (system_state == SYSTEM_BOOTING && num_online_cpus() > 1) {
		printk("migration_cost=");
		for (distance = 0; distance <= max_distance; distance++) {
			if (distance)
				printk(",");
			printk("%ld", (long)migration_cost[distance] / 1000);
5963
		}
5964
		printk("\n");
5965 5966 5967
	}
	j1 = jiffies;
	if (migration_debug)
5968
		printk("migration: %ld seconds\n", (j1-j0) / HZ);
5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982

	/*
	 * Move back to the original CPU. NUMA-Q gets confused
	 * if we migrate to another quad during bootup.
	 */
	if (raw_smp_processor_id() != orig_cpu) {
		cpumask_t mask = cpumask_of_cpu(orig_cpu),
			saved_mask = current->cpus_allowed;

		set_cpus_allowed(current, mask);
		set_cpus_allowed(current, saved_mask);
	}
}

5983
#ifdef CONFIG_NUMA
5984

5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
 * Find the next node to include in a given scheduling domain.  Simply
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
static int find_next_best_node(int node, unsigned long *used_nodes)
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
		if (test_bit(n, used_nodes))
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	set_bit(best_node, used_nodes);
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
 * @size: number of nodes to include in this span
 *
 * Given a node, construct a good cpumask for its sched_domain to span.  It
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
static cpumask_t sched_domain_node_span(int node)
{
	DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
6037 6038
	cpumask_t span, nodemask;
	int i;
6039 6040 6041 6042 6043 6044 6045 6046 6047 6048

	cpus_clear(span);
	bitmap_zero(used_nodes, MAX_NUMNODES);

	nodemask = node_to_cpumask(node);
	cpus_or(span, span, nodemask);
	set_bit(node, used_nodes);

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
		int next_node = find_next_best_node(node, used_nodes);
6049

6050 6051 6052 6053 6054 6055 6056 6057
		nodemask = node_to_cpumask(next_node);
		cpus_or(span, span, nodemask);
	}

	return span;
}
#endif

6058
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6059

6060
/*
6061
 * SMT sched-domains:
6062
 */
L
Linus Torvalds 已提交
6063 6064
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6065
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6066

6067 6068
static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
			    struct sched_group **sg)
L
Linus Torvalds 已提交
6069
{
6070 6071
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
6072 6073 6074 6075
	return cpu;
}
#endif

6076 6077 6078
/*
 * multi-core sched-domains:
 */
6079 6080
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
6081
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6082 6083 6084
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6085 6086
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
6087
{
6088
	int group;
6089 6090
	cpumask_t mask = cpu_sibling_map[cpu];
	cpus_and(mask, mask, *cpu_map);
6091 6092 6093 6094
	group = first_cpu(mask);
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
6095 6096
}
#elif defined(CONFIG_SCHED_MC)
6097 6098
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
6099
{
6100 6101
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
6102 6103 6104 6105
	return cpu;
}
#endif

L
Linus Torvalds 已提交
6106
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6107
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6108

6109 6110
static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
L
Linus Torvalds 已提交
6111
{
6112
	int group;
6113
#ifdef CONFIG_SCHED_MC
6114
	cpumask_t mask = cpu_coregroup_map(cpu);
6115
	cpus_and(mask, mask, *cpu_map);
6116
	group = first_cpu(mask);
6117
#elif defined(CONFIG_SCHED_SMT)
6118 6119
	cpumask_t mask = cpu_sibling_map[cpu];
	cpus_and(mask, mask, *cpu_map);
6120
	group = first_cpu(mask);
L
Linus Torvalds 已提交
6121
#else
6122
	group = cpu;
L
Linus Torvalds 已提交
6123
#endif
6124 6125 6126
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
6127 6128 6129 6130
}

#ifdef CONFIG_NUMA
/*
6131 6132 6133
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6134
 */
6135
static DEFINE_PER_CPU(struct sched_domain, node_domains);
6136
static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
L
Linus Torvalds 已提交
6137

6138
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6139
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6140

6141 6142
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
				 struct sched_group **sg)
6143
{
6144 6145 6146 6147 6148 6149 6150 6151 6152
	cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
	int group;

	cpus_and(nodemask, nodemask, *cpu_map);
	group = first_cpu(nodemask);

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
6153
}
6154

6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
next_sg:
	for_each_cpu_mask(j, sg->cpumask) {
		struct sched_domain *sd;

		sd = &per_cpu(phys_domains, j);
		if (j != first_cpu(sd->groups->cpumask)) {
			/*
			 * Only add "power" once for each
			 * physical package.
			 */
			continue;
		}

		sg->cpu_power += sd->groups->cpu_power;
	}
	sg = sg->next;
	if (sg != group_head)
		goto next_sg;
}
L
Linus Torvalds 已提交
6181 6182
#endif

6183
#ifdef CONFIG_NUMA
6184 6185 6186
/* Free memory allocated for various sched_group structures */
static void free_sched_groups(const cpumask_t *cpu_map)
{
6187
	int cpu, i;
6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			cpumask_t nodemask = node_to_cpumask(i);
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

			cpus_and(nodemask, nodemask, *cpu_map);
			if (cpus_empty(nodemask))
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6218 6219 6220 6221 6222
#else
static void free_sched_groups(const cpumask_t *cpu_map)
{
}
#endif
6223

6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
		sd->groups->cpu_power = SCHED_LOAD_SCALE;
		return;
	}

	sd->groups->cpu_power = 0;

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
		sd->groups->cpu_power += group->cpu_power;
		group = group->next;
	} while (group != child->groups);
}

L
Linus Torvalds 已提交
6276
/*
6277 6278
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
6279
 */
6280
static int build_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6281 6282
{
	int i;
6283
	struct sched_domain *sd;
6284 6285
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
6286
	int sd_allnodes = 0;
6287 6288 6289 6290

	/*
	 * Allocate the per-node list of sched groups
	 */
6291
	sched_group_nodes = kzalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
6292
					   GFP_KERNEL);
6293 6294
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6295
		return -ENOMEM;
6296 6297 6298
	}
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif
L
Linus Torvalds 已提交
6299 6300

	/*
6301
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
6302
	 */
6303
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6304 6305 6306
		struct sched_domain *sd = NULL, *p;
		cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));

6307
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6308 6309

#ifdef CONFIG_NUMA
6310
		if (cpus_weight(*cpu_map)
6311 6312 6313 6314
				> SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
			sd = &per_cpu(allnodes_domains, i);
			*sd = SD_ALLNODES_INIT;
			sd->span = *cpu_map;
6315
			cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6316
			p = sd;
6317
			sd_allnodes = 1;
6318 6319 6320
		} else
			p = NULL;

L
Linus Torvalds 已提交
6321 6322
		sd = &per_cpu(node_domains, i);
		*sd = SD_NODE_INIT;
6323 6324
		sd->span = sched_domain_node_span(cpu_to_node(i));
		sd->parent = p;
6325 6326
		if (p)
			p->child = sd;
6327
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6328 6329 6330 6331 6332 6333 6334
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
		*sd = SD_CPU_INIT;
		sd->span = nodemask;
		sd->parent = p;
6335 6336
		if (p)
			p->child = sd;
6337
		cpu_to_phys_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6338

6339 6340 6341 6342 6343 6344 6345
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
		*sd = SD_MC_INIT;
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
6346
		p->child = sd;
6347
		cpu_to_core_group(i, cpu_map, &sd->groups);
6348 6349
#endif

L
Linus Torvalds 已提交
6350 6351 6352 6353 6354
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
		*sd = SD_SIBLING_INIT;
		sd->span = cpu_sibling_map[i];
6355
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6356
		sd->parent = p;
6357
		p->child = sd;
6358
		cpu_to_cpu_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6359 6360 6361 6362 6363
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
6364
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6365
		cpumask_t this_sibling_map = cpu_sibling_map[i];
6366
		cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
L
Linus Torvalds 已提交
6367 6368 6369
		if (i != first_cpu(this_sibling_map))
			continue;

6370
		init_sched_build_groups(this_sibling_map, cpu_map, &cpu_to_cpu_group);
L
Linus Torvalds 已提交
6371 6372 6373
	}
#endif

6374 6375 6376 6377 6378 6379 6380
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
		cpumask_t this_core_map = cpu_coregroup_map(i);
		cpus_and(this_core_map, this_core_map, *cpu_map);
		if (i != first_cpu(this_core_map))
			continue;
6381
		init_sched_build_groups(this_core_map, cpu_map, &cpu_to_core_group);
6382 6383 6384 6385
	}
#endif


L
Linus Torvalds 已提交
6386 6387 6388 6389
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
		cpumask_t nodemask = node_to_cpumask(i);

6390
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6391 6392 6393
		if (cpus_empty(nodemask))
			continue;

6394
		init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
L
Linus Torvalds 已提交
6395 6396 6397 6398
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
6399 6400
	if (sd_allnodes)
		init_sched_build_groups(*cpu_map, cpu_map, &cpu_to_allnodes_group);
6401 6402 6403 6404 6405 6406 6407 6408 6409 6410

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
		cpumask_t nodemask = node_to_cpumask(i);
		cpumask_t domainspan;
		cpumask_t covered = CPU_MASK_NONE;
		int j;

		cpus_and(nodemask, nodemask, *cpu_map);
6411 6412
		if (cpus_empty(nodemask)) {
			sched_group_nodes[i] = NULL;
6413
			continue;
6414
		}
6415 6416 6417 6418

		domainspan = sched_domain_node_span(i);
		cpus_and(domainspan, domainspan, *cpu_map);

6419
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6420 6421 6422 6423 6424
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
6425 6426 6427 6428 6429 6430 6431 6432
		sched_group_nodes[i] = sg;
		for_each_cpu_mask(j, nodemask) {
			struct sched_domain *sd;
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
		sg->cpu_power = 0;
		sg->cpumask = nodemask;
6433
		sg->next = sg;
6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451
		cpus_or(covered, covered, nodemask);
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
			cpumask_t tmp, notcovered;
			int n = (i + j) % MAX_NUMNODES;

			cpus_complement(notcovered, covered);
			cpus_and(tmp, notcovered, *cpu_map);
			cpus_and(tmp, tmp, domainspan);
			if (cpus_empty(tmp))
				break;

			nodemask = node_to_cpumask(n);
			cpus_and(tmp, tmp, nodemask);
			if (cpus_empty(tmp))
				continue;

6452 6453
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
6454 6455 6456
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
6457
				goto error;
6458 6459 6460
			}
			sg->cpu_power = 0;
			sg->cpumask = tmp;
6461
			sg->next = prev->next;
6462 6463 6464 6465 6466
			cpus_or(covered, covered, tmp);
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
6467 6468 6469
#endif

	/* Calculate CPU power for physical packages and nodes */
6470
#ifdef CONFIG_SCHED_SMT
6471
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6472
		sd = &per_cpu(cpu_domains, i);
6473
		init_sched_groups_power(i, sd);
6474
	}
L
Linus Torvalds 已提交
6475
#endif
6476
#ifdef CONFIG_SCHED_MC
6477
	for_each_cpu_mask(i, *cpu_map) {
6478
		sd = &per_cpu(core_domains, i);
6479
		init_sched_groups_power(i, sd);
6480 6481
	}
#endif
6482

6483
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6484
		sd = &per_cpu(phys_domains, i);
6485
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
6486 6487
	}

6488
#ifdef CONFIG_NUMA
6489 6490
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
6491

6492 6493
	if (sd_allnodes) {
		struct sched_group *sg;
6494

6495
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6496 6497
		init_numa_sched_groups_power(sg);
	}
6498 6499
#endif

L
Linus Torvalds 已提交
6500
	/* Attach the domains */
6501
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6502 6503 6504
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
6505 6506
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
6507 6508 6509 6510 6511
#else
		sd = &per_cpu(phys_domains, i);
#endif
		cpu_attach_domain(sd, i);
	}
6512 6513 6514 6515
	/*
	 * Tune cache-hot values:
	 */
	calibrate_migration_costs(cpu_map);
6516 6517 6518

	return 0;

6519
#ifdef CONFIG_NUMA
6520 6521 6522
error:
	free_sched_groups(cpu_map);
	return -ENOMEM;
6523
#endif
L
Linus Torvalds 已提交
6524
}
6525 6526 6527
/*
 * Set up scheduler domains and groups.  Callers must hold the hotplug lock.
 */
6528
static int arch_init_sched_domains(const cpumask_t *cpu_map)
6529 6530
{
	cpumask_t cpu_default_map;
6531
	int err;
L
Linus Torvalds 已提交
6532

6533 6534 6535 6536 6537 6538 6539
	/*
	 * Setup mask for cpus without special case scheduling requirements.
	 * For now this just excludes isolated cpus, but could be used to
	 * exclude other special cases in the future.
	 */
	cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);

6540 6541 6542
	err = build_sched_domains(&cpu_default_map);

	return err;
6543 6544 6545
}

static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6546
{
6547
	free_sched_groups(cpu_map);
6548
}
L
Linus Torvalds 已提交
6549

6550 6551 6552 6553
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6554
static void detach_destroy_domains(const cpumask_t *cpu_map)
6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571
{
	int i;

	for_each_cpu_mask(i, *cpu_map)
		cpu_attach_domain(NULL, i);
	synchronize_sched();
	arch_destroy_sched_domains(cpu_map);
}

/*
 * Partition sched domains as specified by the cpumasks below.
 * This attaches all cpus from the cpumasks to the NULL domain,
 * waits for a RCU quiescent period, recalculates sched
 * domain information and then attaches them back to the
 * correct sched domains
 * Call with hotplug lock held
 */
6572
int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6573 6574
{
	cpumask_t change_map;
6575
	int err = 0;
6576 6577 6578 6579 6580 6581 6582 6583

	cpus_and(*partition1, *partition1, cpu_online_map);
	cpus_and(*partition2, *partition2, cpu_online_map);
	cpus_or(change_map, *partition1, *partition2);

	/* Detach sched domains from all of the affected cpus */
	detach_destroy_domains(&change_map);
	if (!cpus_empty(*partition1))
6584 6585 6586 6587 6588
		err = build_sched_domains(partition1);
	if (!err && !cpus_empty(*partition2))
		err = build_sched_domains(partition2);

	return err;
6589 6590
}

6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
int arch_reinit_sched_domains(void)
{
	int err;

	lock_cpu_hotplug();
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
	unlock_cpu_hotplug();

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;
6624

6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643
#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
#endif

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
6644 6645
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657
{
	return sched_power_savings_store(buf, count, 0);
}
SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
	    sched_mc_power_savings_store);
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
6658 6659
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
6660 6661 6662 6663 6664 6665 6666
{
	return sched_power_savings_store(buf, count, 1);
}
SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
	    sched_smt_power_savings_store);
#endif

L
Linus Torvalds 已提交
6667 6668 6669
/*
 * Force a reinitialization of the sched domains hierarchy.  The domains
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
6670
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
6671 6672 6673 6674 6675 6676 6677 6678
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_DOWN_PREPARE:
6679
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
	case CPU_DEAD:
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
6695
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6696 6697 6698 6699 6700 6701

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
6702 6703
	cpumask_t non_isolated_cpus;

L
Linus Torvalds 已提交
6704
	lock_cpu_hotplug();
6705
	arch_init_sched_domains(&cpu_online_map);
6706
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6707 6708
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
L
Linus Torvalds 已提交
6709 6710 6711
	unlock_cpu_hotplug();
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
6712 6713 6714 6715

	/* Move init over to a non-isolated CPU */
	if (set_cpus_allowed(current, non_isolated_cpus) < 0)
		BUG();
L
Linus Torvalds 已提交
6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726
}
#else
void __init sched_init_smp(void)
{
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	/* Linker adds these: start and end of __sched functions */
	extern char __sched_text_start[], __sched_text_end[];
6727

L
Linus Torvalds 已提交
6728 6729 6730 6731 6732 6733 6734 6735
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

void __init sched_init(void)
{
	int i, j, k;
6736
	int highest_cpu = 0;
L
Linus Torvalds 已提交
6737

6738
	for_each_possible_cpu(i) {
6739 6740
		struct prio_array *array;
		struct rq *rq;
L
Linus Torvalds 已提交
6741 6742 6743

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
6744
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
6745
		rq->nr_running = 0;
L
Linus Torvalds 已提交
6746 6747 6748 6749 6750
		rq->active = rq->arrays;
		rq->expired = rq->arrays + 1;
		rq->best_expired_prio = MAX_PRIO;

#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6751
		rq->sd = NULL;
N
Nick Piggin 已提交
6752 6753
		for (j = 1; j < 3; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
6754 6755
		rq->active_balance = 0;
		rq->push_cpu = 0;
6756
		rq->cpu = i;
L
Linus Torvalds 已提交
6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
#endif
		atomic_set(&rq->nr_iowait, 0);

		for (j = 0; j < 2; j++) {
			array = rq->arrays + j;
			for (k = 0; k < MAX_PRIO; k++) {
				INIT_LIST_HEAD(array->queue + k);
				__clear_bit(k, array->bitmap);
			}
			// delimiter for bitsearch
			__set_bit(MAX_PRIO, array->bitmap);
		}
6771
		highest_cpu = i;
L
Linus Torvalds 已提交
6772 6773
	}

6774
	set_load_weight(&init_task);
6775

6776
#ifdef CONFIG_SMP
6777
	nr_cpu_ids = highest_cpu + 1;
6778 6779 6780
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

6781 6782 6783 6784
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
6803
#ifdef in_atomic
L
Linus Torvalds 已提交
6804 6805 6806 6807 6808 6809 6810
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
6811
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
6812 6813 6814
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
6815
		debug_show_held_locks(current);
6816 6817
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
6818 6819 6820 6821 6822 6823 6824 6825 6826 6827
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
void normalize_rt_tasks(void)
{
6828
	struct prio_array *array;
L
Linus Torvalds 已提交
6829 6830
	struct task_struct *p;
	unsigned long flags;
6831
	struct rq *rq;
L
Linus Torvalds 已提交
6832 6833

	read_lock_irq(&tasklist_lock);
6834
	for_each_process(p) {
L
Linus Torvalds 已提交
6835 6836 6837
		if (!rt_task(p))
			continue;

6838 6839
		spin_lock_irqsave(&p->pi_lock, flags);
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
6840 6841 6842 6843 6844 6845 6846 6847 6848 6849

		array = p->array;
		if (array)
			deactivate_task(p, task_rq(p));
		__setscheduler(p, SCHED_NORMAL, 0);
		if (array) {
			__activate_task(p, task_rq(p));
			resched_task(rq->curr);
		}

6850 6851
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
6852 6853 6854 6855 6856
	}
	read_unlock_irq(&tasklist_lock);
}

#endif /* CONFIG_MAGIC_SYSRQ */
6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6875
struct task_struct *curr_task(int cpu)
6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
 * are serviced on a separate stack.  It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner.  This function
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6895
void set_curr_task(int cpu, struct task_struct *p)
6896 6897 6898 6899 6900
{
	cpu_curr(cpu) = p;
}

#endif