core.c 207.2 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28
 */

29
#include <linux/kasan.h>
L
Linus Torvalds 已提交
30 31 32 33
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
34
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
35 36 37
#include <linux/highmem.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
42
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
43 44 45
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
46
#include <linux/freezer.h>
47
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
48 49
#include <linux/blkdev.h>
#include <linux/delay.h>
50
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
51 52 53 54 55 56 57
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
58
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
59
#include <linux/seq_file.h>
60
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
61 62
#include <linux/syscalls.h>
#include <linux/times.h>
63
#include <linux/tsacct_kern.h>
64
#include <linux/kprobes.h>
65
#include <linux/delayacct.h>
66
#include <linux/unistd.h>
J
Jens Axboe 已提交
67
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
68
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
69
#include <linux/tick.h>
P
Peter Zijlstra 已提交
70
#include <linux/ctype.h>
71
#include <linux/ftrace.h>
72
#include <linux/slab.h>
73
#include <linux/init_task.h>
74
#include <linux/context_tracking.h>
75
#include <linux/compiler.h>
76
#include <linux/frame.h>
L
Linus Torvalds 已提交
77

78
#include <asm/switch_to.h>
79
#include <asm/tlb.h>
80
#include <asm/irq_regs.h>
81
#include <asm/mutex.h>
G
Glauber Costa 已提交
82 83 84
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
85

86
#include "sched.h"
87
#include "../workqueue_internal.h"
88
#include "../smpboot.h"
89

90
#define CREATE_TRACE_POINTS
91
#include <trace/events/sched.h>
92

93 94
DEFINE_MUTEX(sched_domains_mutex);
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
95

96
static void update_rq_clock_task(struct rq *rq, s64 delta);
97

98
void update_rq_clock(struct rq *rq)
99
{
100
	s64 delta;
101

102 103 104
	lockdep_assert_held(&rq->lock);

	if (rq->clock_skip_update & RQCF_ACT_SKIP)
105
		return;
106

107
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
108 109
	if (delta < 0)
		return;
110 111
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
112 113
}

I
Ingo Molnar 已提交
114 115 116
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
117 118 119 120

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
121
const_debug unsigned int sysctl_sched_features =
122
#include "features.h"
P
Peter Zijlstra 已提交
123 124 125 126
	0;

#undef SCHED_FEAT

127 128 129 130 131 132
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

133 134 135 136 137 138 139 140
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
141
/*
P
Peter Zijlstra 已提交
142
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
143 144
 * default: 1s
 */
P
Peter Zijlstra 已提交
145
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
146

147
__read_mostly int scheduler_running;
148

P
Peter Zijlstra 已提交
149 150 151 152 153
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
154

155 156 157
/* cpus with isolated domains */
cpumask_var_t cpu_isolated_map;

L
Linus Torvalds 已提交
158
/*
159
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
160
 */
A
Alexey Dobriyan 已提交
161
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
162 163
	__acquires(rq->lock)
{
164
	struct rq *rq;
L
Linus Torvalds 已提交
165 166 167

	local_irq_disable();
	rq = this_rq();
168
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
169 170 171 172

	return rq;
}

P
Peter Zijlstra 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

194
	raw_spin_lock(&rq->lock);
195
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
196
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
197
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
198 199 200 201

	return HRTIMER_NORESTART;
}

202
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
203

204
static void __hrtick_restart(struct rq *rq)
P
Peter Zijlstra 已提交
205 206 207
{
	struct hrtimer *timer = &rq->hrtick_timer;

208
	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
P
Peter Zijlstra 已提交
209 210
}

211 212 213 214
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
215
{
216
	struct rq *rq = arg;
217

218
	raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
219
	__hrtick_restart(rq);
220
	rq->hrtick_csd_pending = 0;
221
	raw_spin_unlock(&rq->lock);
222 223
}

224 225 226 227 228
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
229
void hrtick_start(struct rq *rq, u64 delay)
230
{
231
	struct hrtimer *timer = &rq->hrtick_timer;
232 233 234 235 236 237 238 239 240
	ktime_t time;
	s64 delta;

	/*
	 * Don't schedule slices shorter than 10000ns, that just
	 * doesn't make sense and can cause timer DoS.
	 */
	delta = max_t(s64, delay, 10000LL);
	time = ktime_add_ns(timer->base->get_time(), delta);
241

242
	hrtimer_set_expires(timer, time);
243 244

	if (rq == this_rq()) {
P
Peter Zijlstra 已提交
245
		__hrtick_restart(rq);
246
	} else if (!rq->hrtick_csd_pending) {
247
		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
248 249
		rq->hrtick_csd_pending = 1;
	}
250 251 252 253 254 255 256 257 258 259 260 261 262 263
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
264
		hrtick_clear(cpu_rq(cpu));
265 266 267 268 269 270
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

271
static __init void init_hrtick(void)
272 273 274
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
275 276 277 278 279 280
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
281
void hrtick_start(struct rq *rq, u64 delay)
282
{
W
Wanpeng Li 已提交
283 284 285 286 287
	/*
	 * Don't schedule slices shorter than 10000ns, that just
	 * doesn't make sense. Rely on vruntime for fairness.
	 */
	delay = max_t(u64, delay, 10000LL);
288 289
	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
		      HRTIMER_MODE_REL_PINNED);
290
}
291

A
Andrew Morton 已提交
292
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
293 294
{
}
295
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
296

297
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
298
{
299 300
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
301

302 303 304 305
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
306

307 308
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
309
}
A
Andrew Morton 已提交
310
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
311 312 313 314 315 316 317 318
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

319 320 321
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
322
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
323

324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
/*
 * cmpxchg based fetch_or, macro so it works for different integer types
 */
#define fetch_or(ptr, mask)						\
	({								\
		typeof(ptr) _ptr = (ptr);				\
		typeof(mask) _mask = (mask);				\
		typeof(*_ptr) _old, _val = *_ptr;			\
									\
		for (;;) {						\
			_old = cmpxchg(_ptr, _val, _val | _mask);	\
			if (_old == _val)				\
				break;					\
			_val = _old;					\
		}							\
	_old;								\
})

342
#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
343 344 345 346 347 348 349 350 351 352
/*
 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
 * this avoids any races wrt polling state changes and thereby avoids
 * spurious IPIs.
 */
static bool set_nr_and_not_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
}
353 354 355 356 357 358 359 360 361 362

/*
 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
 *
 * If this returns true, then the idle task promises to call
 * sched_ttwu_pending() and reschedule soon.
 */
static bool set_nr_if_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
363
	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
364 365 366 367 368 369 370 371 372 373 374 375 376 377

	for (;;) {
		if (!(val & _TIF_POLLING_NRFLAG))
			return false;
		if (val & _TIF_NEED_RESCHED)
			return true;
		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
		if (old == val)
			break;
		val = old;
	}
	return true;
}

378 379 380 381 382 383
#else
static bool set_nr_and_not_polling(struct task_struct *p)
{
	set_tsk_need_resched(p);
	return true;
}
384 385 386 387 388 389 390

#ifdef CONFIG_SMP
static bool set_nr_if_polling(struct task_struct *p)
{
	return false;
}
#endif
391 392
#endif

393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
void wake_q_add(struct wake_q_head *head, struct task_struct *task)
{
	struct wake_q_node *node = &task->wake_q;

	/*
	 * Atomically grab the task, if ->wake_q is !nil already it means
	 * its already queued (either by us or someone else) and will get the
	 * wakeup due to that.
	 *
	 * This cmpxchg() implies a full barrier, which pairs with the write
	 * barrier implied by the wakeup in wake_up_list().
	 */
	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
		return;

	get_task_struct(task);

	/*
	 * The head is context local, there can be no concurrency.
	 */
	*head->lastp = node;
	head->lastp = &node->next;
}

void wake_up_q(struct wake_q_head *head)
{
	struct wake_q_node *node = head->first;

	while (node != WAKE_Q_TAIL) {
		struct task_struct *task;

		task = container_of(node, struct task_struct, wake_q);
		BUG_ON(!task);
		/* task can safely be re-inserted now */
		node = node->next;
		task->wake_q.next = NULL;

		/*
		 * wake_up_process() implies a wmb() to pair with the queueing
		 * in wake_q_add() so as not to miss wakeups.
		 */
		wake_up_process(task);
		put_task_struct(task);
	}
}

I
Ingo Molnar 已提交
439
/*
440
 * resched_curr - mark rq's current task 'to be rescheduled now'.
I
Ingo Molnar 已提交
441 442 443 444 445
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
446
void resched_curr(struct rq *rq)
I
Ingo Molnar 已提交
447
{
448
	struct task_struct *curr = rq->curr;
I
Ingo Molnar 已提交
449 450
	int cpu;

451
	lockdep_assert_held(&rq->lock);
I
Ingo Molnar 已提交
452

453
	if (test_tsk_need_resched(curr))
I
Ingo Molnar 已提交
454 455
		return;

456
	cpu = cpu_of(rq);
457

458
	if (cpu == smp_processor_id()) {
459
		set_tsk_need_resched(curr);
460
		set_preempt_need_resched();
I
Ingo Molnar 已提交
461
		return;
462
	}
I
Ingo Molnar 已提交
463

464
	if (set_nr_and_not_polling(curr))
I
Ingo Molnar 已提交
465
		smp_send_reschedule(cpu);
466 467
	else
		trace_sched_wake_idle_without_ipi(cpu);
I
Ingo Molnar 已提交
468 469
}

470
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
471 472 473 474
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

475
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
476
		return;
477
	resched_curr(rq);
478
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
479
}
480

481
#ifdef CONFIG_SMP
482
#ifdef CONFIG_NO_HZ_COMMON
483 484 485 486 487 488 489 490
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
491
int get_nohz_timer_target(void)
492
{
493
	int i, cpu = smp_processor_id();
494 495
	struct sched_domain *sd;

496
	if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
497 498
		return cpu;

499
	rcu_read_lock();
500
	for_each_domain(cpu, sd) {
501
		for_each_cpu(i, sched_domain_span(sd)) {
502
			if (!idle_cpu(i) && is_housekeeping_cpu(cpu)) {
503 504 505 506
				cpu = i;
				goto unlock;
			}
		}
507
	}
508 509 510

	if (!is_housekeeping_cpu(cpu))
		cpu = housekeeping_any_cpu();
511 512
unlock:
	rcu_read_unlock();
513 514
	return cpu;
}
515 516 517 518 519 520 521 522 523 524
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
525
static void wake_up_idle_cpu(int cpu)
526 527 528 529 530 531
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

532
	if (set_nr_and_not_polling(rq->idle))
533
		smp_send_reschedule(cpu);
534 535
	else
		trace_sched_wake_idle_without_ipi(cpu);
536 537
}

538
static bool wake_up_full_nohz_cpu(int cpu)
539
{
540 541 542 543 544 545
	/*
	 * We just need the target to call irq_exit() and re-evaluate
	 * the next tick. The nohz full kick at least implies that.
	 * If needed we can still optimize that later with an
	 * empty IRQ.
	 */
546
	if (tick_nohz_full_cpu(cpu)) {
547 548
		if (cpu != smp_processor_id() ||
		    tick_nohz_tick_stopped())
549
			tick_nohz_full_kick_cpu(cpu);
550 551 552 553 554 555 556 557
		return true;
	}

	return false;
}

void wake_up_nohz_cpu(int cpu)
{
558
	if (!wake_up_full_nohz_cpu(cpu))
559 560 561
		wake_up_idle_cpu(cpu);
}

562
static inline bool got_nohz_idle_kick(void)
563
{
564
	int cpu = smp_processor_id();
565 566 567 568 569 570 571 572 573 574 575 576 577

	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
		return false;

	if (idle_cpu(cpu) && !need_resched())
		return true;

	/*
	 * We can't run Idle Load Balance on this CPU for this time so we
	 * cancel it and clear NOHZ_BALANCE_KICK
	 */
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
	return false;
578 579
}

580
#else /* CONFIG_NO_HZ_COMMON */
581

582
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
583
{
584
	return false;
P
Peter Zijlstra 已提交
585 586
}

587
#endif /* CONFIG_NO_HZ_COMMON */
588

589
#ifdef CONFIG_NO_HZ_FULL
590
bool sched_can_stop_tick(struct rq *rq)
591
{
592 593 594 595 596 597
	int fifo_nr_running;

	/* Deadline tasks, even if single, need the tick */
	if (rq->dl.dl_nr_running)
		return false;

598
	/*
599 600 601
	 * FIFO realtime policy runs the highest priority task (after DEADLINE).
	 * Other runnable tasks are of a lower priority. The scheduler tick
	 * isn't needed.
602
	 */
603 604
	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
	if (fifo_nr_running)
605 606 607 608
		return true;

	/*
	 * Round-robin realtime tasks time slice with other tasks at the same
609
	 * realtime priority.
610
	 */
611 612 613 614 615
	if (rq->rt.rr_nr_running) {
		if (rq->rt.rr_nr_running == 1)
			return true;
		else
			return false;
616 617
	}

618 619
	/* Normal multitasking need periodic preemption checks */
	if (rq->cfs.nr_running > 1)
620
		return false;
621

622
	return true;
623 624
}
#endif /* CONFIG_NO_HZ_FULL */
625

626
void sched_avg_update(struct rq *rq)
627
{
628 629
	s64 period = sched_avg_period();

630
	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
631 632 633 634 635 636
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
637 638 639
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
640 641
}

642
#endif /* CONFIG_SMP */
643

644 645
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
646
/*
647 648 649 650
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
651
 */
652
int walk_tg_tree_from(struct task_group *from,
653
			     tg_visitor down, tg_visitor up, void *data)
654 655
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
656
	int ret;
657

658 659
	parent = from;

660
down:
P
Peter Zijlstra 已提交
661 662
	ret = (*down)(parent, data);
	if (ret)
663
		goto out;
664 665 666 667 668 669 670
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
671
	ret = (*up)(parent, data);
672 673
	if (ret || parent == from)
		goto out;
674 675 676 677 678

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
679
out:
P
Peter Zijlstra 已提交
680
	return ret;
681 682
}

683
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
684
{
685
	return 0;
P
Peter Zijlstra 已提交
686
}
687 688
#endif

689 690
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
691 692 693
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
694 695 696
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
697
	if (idle_policy(p->policy)) {
698
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
699
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
700 701
		return;
	}
702

703 704
	load->weight = scale_load(sched_prio_to_weight[prio]);
	load->inv_weight = sched_prio_to_wmult[prio];
705 706
}

707
static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
708
{
709
	update_rq_clock(rq);
710 711
	if (!(flags & ENQUEUE_RESTORE))
		sched_info_queued(rq, p);
712
	p->sched_class->enqueue_task(rq, p, flags);
713 714
}

715
static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
716
{
717
	update_rq_clock(rq);
718 719
	if (!(flags & DEQUEUE_SAVE))
		sched_info_dequeued(rq, p);
720
	p->sched_class->dequeue_task(rq, p, flags);
721 722
}

723
void activate_task(struct rq *rq, struct task_struct *p, int flags)
724 725 726 727
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

728
	enqueue_task(rq, p, flags);
729 730
}

731
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
732 733 734 735
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

736
	dequeue_task(rq, p, flags);
737 738
}

739
static void update_rq_clock_task(struct rq *rq, s64 delta)
740
{
741 742 743 744 745 746 747 748
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
749
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
771 772
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
773
	if (static_key_false((&paravirt_steal_rq_enabled))) {
774 775 776 777 778 779 780 781 782 783 784
		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		rq->prev_steal_time_rq += steal;
		delta -= steal;
	}
#endif

785 786
	rq->clock_task += delta;

787
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
788
	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
789 790
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
791 792
}

793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

823
/*
I
Ingo Molnar 已提交
824
 * __normal_prio - return the priority that is based on the static prio
825 826 827
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
828
	return p->static_prio;
829 830
}

831 832 833 834 835 836 837
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
838
static inline int normal_prio(struct task_struct *p)
839 840 841
{
	int prio;

842 843 844
	if (task_has_dl_policy(p))
		prio = MAX_DL_PRIO-1;
	else if (task_has_rt_policy(p))
845 846 847 848 849 850 851 852 853 854 855 856 857
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
858
static int effective_prio(struct task_struct *p)
859 860 861 862 863 864 865 866 867 868 869 870
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
871 872 873
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
874 875
 *
 * Return: 1 if the task is currently executing. 0 otherwise.
L
Linus Torvalds 已提交
876
 */
877
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
878 879 880 881
{
	return cpu_curr(task_cpu(p)) == p;
}

882
/*
883 884 885 886 887
 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
 * use the balance_callback list if you want balancing.
 *
 * this means any call to check_class_changed() must be followed by a call to
 * balance_callback().
888
 */
889 890
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
891
				       int oldprio)
892 893 894
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
895
			prev_class->switched_from(rq, p);
896

P
Peter Zijlstra 已提交
897
		p->sched_class->switched_to(rq, p);
898
	} else if (oldprio != p->prio || dl_task(p))
P
Peter Zijlstra 已提交
899
		p->sched_class->prio_changed(rq, p, oldprio);
900 901
}

902
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
903 904 905 906 907 908 909 910 911 912
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
913
				resched_curr(rq);
914 915 916 917 918 919 920 921 922
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
923
	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
924
		rq_clock_skip_update(rq, true);
925 926
}

L
Linus Torvalds 已提交
927
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
/*
 * This is how migration works:
 *
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
 */

/*
 * move_queued_task - move a queued task to new rq.
 *
 * Returns (locked) new rq. Old rq's lock is released.
 */
947
static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
P
Peter Zijlstra 已提交
948 949 950 951
{
	lockdep_assert_held(&rq->lock);

	p->on_rq = TASK_ON_RQ_MIGRATING;
952
	dequeue_task(rq, p, 0);
P
Peter Zijlstra 已提交
953 954 955 956 957 958 959 960
	set_task_cpu(p, new_cpu);
	raw_spin_unlock(&rq->lock);

	rq = cpu_rq(new_cpu);

	raw_spin_lock(&rq->lock);
	BUG_ON(task_cpu(p) != new_cpu);
	enqueue_task(rq, p, 0);
961
	p->on_rq = TASK_ON_RQ_QUEUED;
P
Peter Zijlstra 已提交
962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
	check_preempt_curr(rq, p, 0);

	return rq;
}

struct migration_arg {
	struct task_struct *task;
	int dest_cpu;
};

/*
 * Move (not current) task off this cpu, onto dest cpu. We're doing
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
 */
981
static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
P
Peter Zijlstra 已提交
982 983
{
	if (unlikely(!cpu_active(dest_cpu)))
984
		return rq;
P
Peter Zijlstra 已提交
985 986 987

	/* Affinity changed (again). */
	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
988
		return rq;
P
Peter Zijlstra 已提交
989

990 991 992
	rq = move_queued_task(rq, p, dest_cpu);

	return rq;
P
Peter Zijlstra 已提交
993 994 995 996 997 998 999 1000 1001 1002
}

/*
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
 */
static int migration_cpu_stop(void *data)
{
	struct migration_arg *arg = data;
1003 1004
	struct task_struct *p = arg->task;
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016

	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
	local_irq_disable();
	/*
	 * We need to explicitly wake pending tasks before running
	 * __migrate_task() such that we will not miss enforcing cpus_allowed
	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
	 */
	sched_ttwu_pending();
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029

	raw_spin_lock(&p->pi_lock);
	raw_spin_lock(&rq->lock);
	/*
	 * If task_rq(p) != rq, it cannot be migrated here, because we're
	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
	 * we're holding p->pi_lock.
	 */
	if (task_rq(p) == rq && task_on_rq_queued(p))
		rq = __migrate_task(rq, p, arg->dest_cpu);
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock(&p->pi_lock);

P
Peter Zijlstra 已提交
1030 1031 1032 1033
	local_irq_enable();
	return 0;
}

1034 1035 1036 1037 1038
/*
 * sched_class::set_cpus_allowed must do the below, but is not required to
 * actually call this function.
 */
void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
P
Peter Zijlstra 已提交
1039 1040 1041 1042 1043
{
	cpumask_copy(&p->cpus_allowed, new_mask);
	p->nr_cpus_allowed = cpumask_weight(new_mask);
}

1044 1045
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
1046 1047 1048
	struct rq *rq = task_rq(p);
	bool queued, running;

1049
	lockdep_assert_held(&p->pi_lock);
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059

	queued = task_on_rq_queued(p);
	running = task_current(rq, p);

	if (queued) {
		/*
		 * Because __kthread_bind() calls this on blocked tasks without
		 * holding rq->lock.
		 */
		lockdep_assert_held(&rq->lock);
1060
		dequeue_task(rq, p, DEQUEUE_SAVE);
1061 1062 1063 1064
	}
	if (running)
		put_prev_task(rq, p);

1065
	p->sched_class->set_cpus_allowed(p, new_mask);
1066 1067 1068 1069

	if (running)
		p->sched_class->set_curr_task(rq);
	if (queued)
1070
		enqueue_task(rq, p, ENQUEUE_RESTORE);
1071 1072
}

P
Peter Zijlstra 已提交
1073 1074 1075 1076 1077 1078 1079 1080 1081
/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely. The
 * call is not atomic; no spinlocks may be held.
 */
1082 1083
static int __set_cpus_allowed_ptr(struct task_struct *p,
				  const struct cpumask *new_mask, bool check)
P
Peter Zijlstra 已提交
1084
{
1085 1086
	const struct cpumask *cpu_valid_mask = cpu_active_mask;
	unsigned int dest_cpu;
P
Peter Zijlstra 已提交
1087 1088 1089 1090 1091 1092
	unsigned long flags;
	struct rq *rq;
	int ret = 0;

	rq = task_rq_lock(p, &flags);

1093 1094 1095 1096 1097 1098 1099
	if (p->flags & PF_KTHREAD) {
		/*
		 * Kernel threads are allowed on online && !active CPUs
		 */
		cpu_valid_mask = cpu_online_mask;
	}

1100 1101 1102 1103 1104 1105 1106 1107 1108
	/*
	 * Must re-check here, to close a race against __kthread_bind(),
	 * sched_setaffinity() is not guaranteed to observe the flag.
	 */
	if (check && (p->flags & PF_NO_SETAFFINITY)) {
		ret = -EINVAL;
		goto out;
	}

P
Peter Zijlstra 已提交
1109 1110 1111
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

1112
	if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
P
Peter Zijlstra 已提交
1113 1114 1115 1116 1117 1118
		ret = -EINVAL;
		goto out;
	}

	do_set_cpus_allowed(p, new_mask);

1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
	if (p->flags & PF_KTHREAD) {
		/*
		 * For kernel threads that do indeed end up on online &&
		 * !active we want to ensure they are strict per-cpu threads.
		 */
		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
			!cpumask_intersects(new_mask, cpu_active_mask) &&
			p->nr_cpus_allowed != 1);
	}

P
Peter Zijlstra 已提交
1129 1130 1131 1132
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpumask_test_cpu(task_cpu(p), new_mask))
		goto out;

1133
	dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
P
Peter Zijlstra 已提交
1134 1135 1136 1137 1138 1139 1140
	if (task_running(rq, p) || p->state == TASK_WAKING) {
		struct migration_arg arg = { p, dest_cpu };
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, p, &flags);
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
		tlb_migrate_finish(p->mm);
		return 0;
1141 1142 1143 1144 1145 1146
	} else if (task_on_rq_queued(p)) {
		/*
		 * OK, since we're going to drop the lock immediately
		 * afterwards anyway.
		 */
		lockdep_unpin_lock(&rq->lock);
1147
		rq = move_queued_task(rq, p, dest_cpu);
1148 1149
		lockdep_pin_lock(&rq->lock);
	}
P
Peter Zijlstra 已提交
1150 1151 1152 1153 1154
out:
	task_rq_unlock(rq, p, &flags);

	return ret;
}
1155 1156 1157 1158 1159

int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
{
	return __set_cpus_allowed_ptr(p, new_mask, false);
}
P
Peter Zijlstra 已提交
1160 1161
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);

I
Ingo Molnar 已提交
1162
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1163
{
1164 1165 1166 1167 1168
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
1169
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
O
Oleg Nesterov 已提交
1170
			!p->on_rq);
1171

1172 1173 1174 1175 1176 1177 1178 1179 1180
	/*
	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
	 * time relying on p->on_rq.
	 */
	WARN_ON_ONCE(p->state == TASK_RUNNING &&
		     p->sched_class == &fair_sched_class &&
		     (p->on_rq && !task_on_rq_migrating(p)));

1181
#ifdef CONFIG_LOCKDEP
1182 1183 1184 1185 1186
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
P
Peter Zijlstra 已提交
1187
	 * see task_group().
1188 1189 1190 1191
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
1192 1193 1194
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
1195 1196
#endif

1197
	trace_sched_migrate_task(p, new_cpu);
1198

1199
	if (task_cpu(p) != new_cpu) {
1200
		if (p->sched_class->migrate_task_rq)
1201
			p->sched_class->migrate_task_rq(p);
1202
		p->se.nr_migrations++;
1203
		perf_event_task_migrate(p);
1204
	}
I
Ingo Molnar 已提交
1205 1206

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1207 1208
}

1209 1210
static void __migrate_swap_task(struct task_struct *p, int cpu)
{
1211
	if (task_on_rq_queued(p)) {
1212 1213 1214 1215 1216
		struct rq *src_rq, *dst_rq;

		src_rq = task_rq(p);
		dst_rq = cpu_rq(cpu);

1217
		p->on_rq = TASK_ON_RQ_MIGRATING;
1218 1219 1220
		deactivate_task(src_rq, p, 0);
		set_task_cpu(p, cpu);
		activate_task(dst_rq, p, 0);
1221
		p->on_rq = TASK_ON_RQ_QUEUED;
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
		check_preempt_curr(dst_rq, p, 0);
	} else {
		/*
		 * Task isn't running anymore; make it appear like we migrated
		 * it before it went to sleep. This means on wakeup we make the
		 * previous cpu our targer instead of where it really is.
		 */
		p->wake_cpu = cpu;
	}
}

struct migration_swap_arg {
	struct task_struct *src_task, *dst_task;
	int src_cpu, dst_cpu;
};

static int migrate_swap_stop(void *data)
{
	struct migration_swap_arg *arg = data;
	struct rq *src_rq, *dst_rq;
	int ret = -EAGAIN;

1244 1245 1246
	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
		return -EAGAIN;

1247 1248 1249
	src_rq = cpu_rq(arg->src_cpu);
	dst_rq = cpu_rq(arg->dst_cpu);

1250 1251
	double_raw_lock(&arg->src_task->pi_lock,
			&arg->dst_task->pi_lock);
1252
	double_rq_lock(src_rq, dst_rq);
1253

1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
	if (task_cpu(arg->dst_task) != arg->dst_cpu)
		goto unlock;

	if (task_cpu(arg->src_task) != arg->src_cpu)
		goto unlock;

	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
		goto unlock;

	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
		goto unlock;

	__migrate_swap_task(arg->src_task, arg->dst_cpu);
	__migrate_swap_task(arg->dst_task, arg->src_cpu);

	ret = 0;

unlock:
	double_rq_unlock(src_rq, dst_rq);
1273 1274
	raw_spin_unlock(&arg->dst_task->pi_lock);
	raw_spin_unlock(&arg->src_task->pi_lock);
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296

	return ret;
}

/*
 * Cross migrate two tasks
 */
int migrate_swap(struct task_struct *cur, struct task_struct *p)
{
	struct migration_swap_arg arg;
	int ret = -EINVAL;

	arg = (struct migration_swap_arg){
		.src_task = cur,
		.src_cpu = task_cpu(cur),
		.dst_task = p,
		.dst_cpu = task_cpu(p),
	};

	if (arg.src_cpu == arg.dst_cpu)
		goto out;

1297 1298 1299 1300
	/*
	 * These three tests are all lockless; this is OK since all of them
	 * will be re-checked with proper locks held further down the line.
	 */
1301 1302 1303 1304 1305 1306 1307 1308 1309
	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
		goto out;

	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
		goto out;

	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
		goto out;

1310
	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1311 1312 1313 1314 1315 1316
	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);

out:
	return ret;
}

L
Linus Torvalds 已提交
1317 1318 1319
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1320 1321 1322 1323 1324 1325 1326
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1327 1328 1329 1330 1331 1332
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1333
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1334 1335
{
	unsigned long flags;
1336
	int running, queued;
R
Roland McGrath 已提交
1337
	unsigned long ncsw;
1338
	struct rq *rq;
L
Linus Torvalds 已提交
1339

1340 1341 1342 1343 1344 1345 1346 1347
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1348

1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1360 1361 1362
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1363
			cpu_relax();
R
Roland McGrath 已提交
1364
		}
1365

1366 1367 1368 1369 1370 1371
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1372
		trace_sched_wait_task(p);
1373
		running = task_running(rq, p);
1374
		queued = task_on_rq_queued(p);
R
Roland McGrath 已提交
1375
		ncsw = 0;
1376
		if (!match_state || p->state == match_state)
1377
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1378
		task_rq_unlock(rq, p, &flags);
1379

R
Roland McGrath 已提交
1380 1381 1382 1383 1384 1385
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1396

1397 1398 1399 1400 1401
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1402
		 * So if it was still runnable (but just not actively
1403 1404 1405
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
1406
		if (unlikely(queued)) {
1407 1408 1409 1410
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1411 1412
			continue;
		}
1413

1414 1415 1416 1417 1418 1419 1420
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1421 1422

	return ncsw;
L
Linus Torvalds 已提交
1423 1424 1425 1426 1427 1428 1429 1430 1431
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1432
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1433 1434 1435 1436 1437
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1438
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1439 1440 1441 1442 1443 1444 1445 1446 1447
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1448
EXPORT_SYMBOL_GPL(kick_process);
L
Linus Torvalds 已提交
1449

1450
/*
1451
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
 *
 * A few notes on cpu_active vs cpu_online:
 *
 *  - cpu_active must be a subset of cpu_online
 *
 *  - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
 *    see __set_cpus_allowed_ptr(). At this point the newly online
 *    cpu isn't yet part of the sched domains, and balancing will not
 *    see it.
 *
 *  - on cpu-down we clear cpu_active() to mask the sched domains and
 *    avoid the load balancer to place new tasks on the to be removed
 *    cpu. Existing tasks will remain running there and will be taken
 *    off.
 *
 * This means that fallback selection must not select !active CPUs.
 * And can assume that any active CPU must be online. Conversely
 * select_task_rq() below may allow selection of !active CPUs in order
 * to satisfy the above rules.
1471
 */
1472 1473
static int select_fallback_rq(int cpu, struct task_struct *p)
{
1474 1475
	int nid = cpu_to_node(cpu);
	const struct cpumask *nodemask = NULL;
1476 1477
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1478

1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
	/*
	 * If the node that the cpu is on has been offlined, cpu_to_node()
	 * will return -1. There is no cpu on the node, and we should
	 * select the cpu on the other node.
	 */
	if (nid != -1) {
		nodemask = cpumask_of_node(nid);

		/* Look for allowed, online CPU in same node. */
		for_each_cpu(dest_cpu, nodemask) {
			if (!cpu_active(dest_cpu))
				continue;
			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
				return dest_cpu;
		}
1494
	}
1495

1496 1497
	for (;;) {
		/* Any allowed, online CPU? */
1498
		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1499 1500 1501 1502
			if (!cpu_active(dest_cpu))
				continue;
			goto out;
		}
1503

1504
		/* No more Mr. Nice Guy. */
1505 1506
		switch (state) {
		case cpuset:
1507 1508 1509 1510 1511 1512
			if (IS_ENABLED(CONFIG_CPUSETS)) {
				cpuset_cpus_allowed_fallback(p);
				state = possible;
				break;
			}
			/* fall-through */
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
1532
			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1533 1534
					task_pid_nr(p), p->comm, cpu);
		}
1535 1536 1537 1538 1539
	}

	return dest_cpu;
}

1540
/*
1541
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1542
 */
1543
static inline
1544
int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1545
{
1546 1547
	lockdep_assert_held(&p->pi_lock);

1548 1549
	if (p->nr_cpus_allowed > 1)
		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1550 1551
	else
		cpu = cpumask_any(tsk_cpus_allowed(p));
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1563
	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
P
Peter Zijlstra 已提交
1564
		     !cpu_online(cpu)))
1565
		cpu = select_fallback_rq(task_cpu(p), p);
1566 1567

	return cpu;
1568
}
1569 1570 1571 1572 1573 1574

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1575 1576 1577 1578 1579 1580 1581 1582 1583

#else

static inline int __set_cpus_allowed_ptr(struct task_struct *p,
					 const struct cpumask *new_mask, bool check)
{
	return set_cpus_allowed_ptr(p, new_mask);
}

P
Peter Zijlstra 已提交
1584
#endif /* CONFIG_SMP */
1585

P
Peter Zijlstra 已提交
1586
static void
1587
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1588
{
P
Peter Zijlstra 已提交
1589
#ifdef CONFIG_SCHEDSTATS
1590 1591
	struct rq *rq = this_rq();

P
Peter Zijlstra 已提交
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
#ifdef CONFIG_SMP
	int this_cpu = smp_processor_id();

	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	} else {
		struct sched_domain *sd;

		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1602
		rcu_read_lock();
P
Peter Zijlstra 已提交
1603 1604 1605 1606 1607 1608
		for_each_domain(this_cpu, sd) {
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
1609
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1610
	}
1611 1612 1613 1614

	if (wake_flags & WF_MIGRATED)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);

P
Peter Zijlstra 已提交
1615 1616 1617
#endif /* CONFIG_SMP */

	schedstat_inc(rq, ttwu_count);
T
Tejun Heo 已提交
1618
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1619 1620

	if (wake_flags & WF_SYNC)
T
Tejun Heo 已提交
1621
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1622 1623 1624 1625

#endif /* CONFIG_SCHEDSTATS */
}

1626
static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
P
Peter Zijlstra 已提交
1627
{
T
Tejun Heo 已提交
1628
	activate_task(rq, p, en_flags);
1629
	p->on_rq = TASK_ON_RQ_QUEUED;
1630 1631 1632 1633

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1634 1635
}

1636 1637 1638
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1639
static void
1640
ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
T
Tejun Heo 已提交
1641 1642 1643
{
	check_preempt_curr(rq, p, wake_flags);
	p->state = TASK_RUNNING;
1644 1645
	trace_sched_wakeup(p);

T
Tejun Heo 已提交
1646
#ifdef CONFIG_SMP
1647 1648
	if (p->sched_class->task_woken) {
		/*
1649 1650
		 * Our task @p is fully woken up and running; so its safe to
		 * drop the rq->lock, hereafter rq is only used for statistics.
1651
		 */
1652
		lockdep_unpin_lock(&rq->lock);
T
Tejun Heo 已提交
1653
		p->sched_class->task_woken(rq, p);
1654
		lockdep_pin_lock(&rq->lock);
1655
	}
T
Tejun Heo 已提交
1656

1657
	if (rq->idle_stamp) {
1658
		u64 delta = rq_clock(rq) - rq->idle_stamp;
1659
		u64 max = 2*rq->max_idle_balance_cost;
T
Tejun Heo 已提交
1660

1661 1662 1663
		update_avg(&rq->avg_idle, delta);

		if (rq->avg_idle > max)
T
Tejun Heo 已提交
1664
			rq->avg_idle = max;
1665

T
Tejun Heo 已提交
1666 1667 1668 1669 1670
		rq->idle_stamp = 0;
	}
#endif
}

1671 1672 1673
static void
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
{
1674 1675
	lockdep_assert_held(&rq->lock);

1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
#endif

	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
	ttwu_do_wakeup(rq, p, wake_flags);
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
1697
	if (task_on_rq_queued(p)) {
1698 1699
		/* check_preempt_curr() may use rq clock */
		update_rq_clock(rq);
1700 1701 1702 1703 1704 1705 1706 1707
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;
}

1708
#ifdef CONFIG_SMP
1709
void sched_ttwu_pending(void)
1710 1711
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1712 1713
	struct llist_node *llist = llist_del_all(&rq->wake_list);
	struct task_struct *p;
1714
	unsigned long flags;
1715

1716 1717 1718 1719
	if (!llist)
		return;

	raw_spin_lock_irqsave(&rq->lock, flags);
1720
	lockdep_pin_lock(&rq->lock);
1721

P
Peter Zijlstra 已提交
1722 1723 1724
	while (llist) {
		p = llist_entry(llist, struct task_struct, wake_entry);
		llist = llist_next(llist);
1725 1726 1727
		ttwu_do_activate(rq, p, 0);
	}

1728
	lockdep_unpin_lock(&rq->lock);
1729
	raw_spin_unlock_irqrestore(&rq->lock, flags);
1730 1731 1732 1733
}

void scheduler_ipi(void)
{
1734 1735 1736 1737 1738
	/*
	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
	 * TIF_NEED_RESCHED remotely (for the first time) will also send
	 * this IPI.
	 */
1739
	preempt_fold_need_resched();
1740

1741
	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
P
Peter Zijlstra 已提交
1758
	sched_ttwu_pending();
1759 1760 1761 1762

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1763
	if (unlikely(got_nohz_idle_kick())) {
1764
		this_rq()->idle_balance = 1;
1765
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1766
	}
1767
	irq_exit();
1768 1769 1770 1771
}

static void ttwu_queue_remote(struct task_struct *p, int cpu)
{
1772 1773 1774 1775 1776 1777 1778 1779
	struct rq *rq = cpu_rq(cpu);

	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
		if (!set_nr_if_polling(rq->idle))
			smp_send_reschedule(cpu);
		else
			trace_sched_wake_idle_without_ipi(cpu);
	}
1780
}
1781

1782 1783 1784 1785 1786
void wake_up_if_idle(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

1787 1788 1789 1790
	rcu_read_lock();

	if (!is_idle_task(rcu_dereference(rq->curr)))
		goto out;
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800

	if (set_nr_if_polling(rq->idle)) {
		trace_sched_wake_idle_without_ipi(cpu);
	} else {
		raw_spin_lock_irqsave(&rq->lock, flags);
		if (is_idle_task(rq->curr))
			smp_send_reschedule(cpu);
		/* Else cpu is not in idle, do nothing here */
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}
1801 1802 1803

out:
	rcu_read_unlock();
1804 1805
}

1806
bool cpus_share_cache(int this_cpu, int that_cpu)
1807 1808 1809
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1810
#endif /* CONFIG_SMP */
1811

1812 1813 1814 1815
static void ttwu_queue(struct task_struct *p, int cpu)
{
	struct rq *rq = cpu_rq(cpu);

1816
#if defined(CONFIG_SMP)
1817
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1818
		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1819 1820 1821 1822 1823
		ttwu_queue_remote(p, cpu);
		return;
	}
#endif

1824
	raw_spin_lock(&rq->lock);
1825
	lockdep_pin_lock(&rq->lock);
1826
	ttwu_do_activate(rq, p, 0);
1827
	lockdep_unpin_lock(&rq->lock);
1828
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
1829 1830
}

1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
/*
 * Notes on Program-Order guarantees on SMP systems.
 *
 *  MIGRATION
 *
 * The basic program-order guarantee on SMP systems is that when a task [t]
 * migrates, all its activity on its old cpu [c0] happens-before any subsequent
 * execution on its new cpu [c1].
 *
 * For migration (of runnable tasks) this is provided by the following means:
 *
 *  A) UNLOCK of the rq(c0)->lock scheduling out task t
 *  B) migration for t is required to synchronize *both* rq(c0)->lock and
 *     rq(c1)->lock (if not at the same time, then in that order).
 *  C) LOCK of the rq(c1)->lock scheduling in task
 *
 * Transitivity guarantees that B happens after A and C after B.
 * Note: we only require RCpc transitivity.
 * Note: the cpu doing B need not be c0 or c1
 *
 * Example:
 *
 *   CPU0            CPU1            CPU2
 *
 *   LOCK rq(0)->lock
 *   sched-out X
 *   sched-in Y
 *   UNLOCK rq(0)->lock
 *
 *                                   LOCK rq(0)->lock // orders against CPU0
 *                                   dequeue X
 *                                   UNLOCK rq(0)->lock
 *
 *                                   LOCK rq(1)->lock
 *                                   enqueue X
 *                                   UNLOCK rq(1)->lock
 *
 *                   LOCK rq(1)->lock // orders against CPU2
 *                   sched-out Z
 *                   sched-in X
 *                   UNLOCK rq(1)->lock
 *
 *
 *  BLOCKING -- aka. SLEEP + WAKEUP
 *
 * For blocking we (obviously) need to provide the same guarantee as for
 * migration. However the means are completely different as there is no lock
 * chain to provide order. Instead we do:
 *
 *   1) smp_store_release(X->on_cpu, 0)
 *   2) smp_cond_acquire(!X->on_cpu)
 *
 * Example:
 *
 *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
 *
 *   LOCK rq(0)->lock LOCK X->pi_lock
 *   dequeue X
 *   sched-out X
 *   smp_store_release(X->on_cpu, 0);
 *
 *                    smp_cond_acquire(!X->on_cpu);
 *                    X->state = WAKING
 *                    set_task_cpu(X,2)
 *
 *                    LOCK rq(2)->lock
 *                    enqueue X
 *                    X->state = RUNNING
 *                    UNLOCK rq(2)->lock
 *
 *                                          LOCK rq(2)->lock // orders against CPU1
 *                                          sched-out Z
 *                                          sched-in X
 *                                          UNLOCK rq(2)->lock
 *
 *                    UNLOCK X->pi_lock
 *   UNLOCK rq(0)->lock
 *
 *
 * However; for wakeups there is a second guarantee we must provide, namely we
 * must observe the state that lead to our wakeup. That is, not only must our
 * task observe its own prior state, it must also observe the stores prior to
 * its wakeup.
 *
 * This means that any means of doing remote wakeups must order the CPU doing
 * the wakeup against the CPU the task is going to end up running on. This,
 * however, is already required for the regular Program-Order guarantee above,
 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_acquire).
 *
 */

T
Tejun Heo 已提交
1922
/**
L
Linus Torvalds 已提交
1923
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1924
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1925
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1926
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1927 1928 1929 1930 1931 1932 1933
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
1934
 * Return: %true if @p was woken up, %false if it was already running.
T
Tejun Heo 已提交
1935
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
1936
 */
1937 1938
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1939 1940
{
	unsigned long flags;
1941
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1942

1943 1944 1945 1946 1947 1948 1949
	/*
	 * If we are going to wake up a thread waiting for CONDITION we
	 * need to ensure that CONDITION=1 done by the caller can not be
	 * reordered with p->state check below. This pairs with mb() in
	 * set_current_state() the waiting thread does.
	 */
	smp_mb__before_spinlock();
1950
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
1951
	if (!(p->state & state))
L
Linus Torvalds 已提交
1952 1953
		goto out;

1954 1955
	trace_sched_waking(p);

1956
	success = 1; /* we're going to change ->state */
L
Linus Torvalds 已提交
1957 1958
	cpu = task_cpu(p);

1959 1960
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
1961 1962

#ifdef CONFIG_SMP
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
	/*
	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
	 * possible to, falsely, observe p->on_cpu == 0.
	 *
	 * One must be running (->on_cpu == 1) in order to remove oneself
	 * from the runqueue.
	 *
	 *  [S] ->on_cpu = 1;	[L] ->on_rq
	 *      UNLOCK rq->lock
	 *			RMB
	 *      LOCK   rq->lock
	 *  [S] ->on_rq = 0;    [L] ->on_cpu
	 *
	 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
	 * from the consecutive calls to schedule(); the first switching to our
	 * task, the second putting it to sleep.
	 */
	smp_rmb();

P
Peter Zijlstra 已提交
1982
	/*
1983 1984
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
1985 1986 1987 1988 1989
	 *
	 * Pairs with the smp_store_release() in finish_lock_switch().
	 *
	 * This ensures that tasks getting woken will be fully ordered against
	 * their previous state and preserve Program Order.
1990
	 */
1991
	smp_cond_acquire(!p->on_cpu);
L
Linus Torvalds 已提交
1992

1993
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
1994
	p->state = TASK_WAKING;
1995

1996
	if (p->sched_class->task_waking)
1997
		p->sched_class->task_waking(p);
1998

1999
	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2000 2001
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
2002
		set_task_cpu(p, cpu);
2003
	}
L
Linus Torvalds 已提交
2004 2005
#endif /* CONFIG_SMP */

2006 2007
	ttwu_queue(p, cpu);
stat:
2008 2009
	if (schedstat_enabled())
		ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
2010
out:
2011
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2012 2013 2014 2015

	return success;
}

T
Tejun Heo 已提交
2016 2017 2018 2019
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
2020
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
2021
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2022
 * the current task.
T
Tejun Heo 已提交
2023 2024 2025 2026 2027
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

2028 2029 2030 2031
	if (WARN_ON_ONCE(rq != this_rq()) ||
	    WARN_ON_ONCE(p == current))
		return;

T
Tejun Heo 已提交
2032 2033
	lockdep_assert_held(&rq->lock);

2034
	if (!raw_spin_trylock(&p->pi_lock)) {
2035 2036 2037 2038 2039 2040 2041
		/*
		 * This is OK, because current is on_cpu, which avoids it being
		 * picked for load-balance and preemption/IRQs are still
		 * disabled avoiding further scheduler activity on it and we've
		 * not yet picked a replacement task.
		 */
		lockdep_unpin_lock(&rq->lock);
2042 2043 2044
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
2045
		lockdep_pin_lock(&rq->lock);
2046 2047
	}

T
Tejun Heo 已提交
2048
	if (!(p->state & TASK_NORMAL))
2049
		goto out;
T
Tejun Heo 已提交
2050

2051 2052
	trace_sched_waking(p);

2053
	if (!task_on_rq_queued(p))
P
Peter Zijlstra 已提交
2054 2055
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

2056
	ttwu_do_wakeup(rq, p, 0);
2057 2058
	if (schedstat_enabled())
		ttwu_stat(p, smp_processor_id(), 0);
2059 2060
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
2061 2062
}

2063 2064 2065 2066 2067
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
2068 2069 2070
 * processes.
 *
 * Return: 1 if the process was woken up, 0 if it was already running.
2071 2072 2073 2074
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2075
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2076
{
2077
	return try_to_wake_up(p, TASK_NORMAL, 0);
L
Linus Torvalds 已提交
2078 2079 2080
}
EXPORT_SYMBOL(wake_up_process);

2081
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2082 2083 2084 2085
{
	return try_to_wake_up(p, state, 0);
}

2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
/*
 * This function clears the sched_dl_entity static params.
 */
void __dl_clear_params(struct task_struct *p)
{
	struct sched_dl_entity *dl_se = &p->dl;

	dl_se->dl_runtime = 0;
	dl_se->dl_deadline = 0;
	dl_se->dl_period = 0;
	dl_se->flags = 0;
	dl_se->dl_bw = 0;
2098 2099 2100

	dl_se->dl_throttled = 0;
	dl_se->dl_yielded = 0;
2101 2102
}

L
Linus Torvalds 已提交
2103 2104 2105
/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2106 2107 2108
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
2109
static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
2110
{
P
Peter Zijlstra 已提交
2111 2112 2113
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
2114 2115
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2116
	p->se.prev_sum_exec_runtime	= 0;
2117
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
2118
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
2119
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
2120

2121 2122 2123 2124
#ifdef CONFIG_FAIR_GROUP_SCHED
	p->se.cfs_rq			= NULL;
#endif

I
Ingo Molnar 已提交
2125
#ifdef CONFIG_SCHEDSTATS
2126
	/* Even if schedstat is disabled, there should not be garbage */
2127
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
2128
#endif
N
Nick Piggin 已提交
2129

2130
	RB_CLEAR_NODE(&p->dl.rb_node);
2131
	init_dl_task_timer(&p->dl);
2132
	__dl_clear_params(p);
2133

P
Peter Zijlstra 已提交
2134
	INIT_LIST_HEAD(&p->rt.run_list);
2135 2136 2137 2138
	p->rt.timeout		= 0;
	p->rt.time_slice	= sched_rr_timeslice;
	p->rt.on_rq		= 0;
	p->rt.on_list		= 0;
N
Nick Piggin 已提交
2139

2140 2141 2142
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
2143 2144 2145

#ifdef CONFIG_NUMA_BALANCING
	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2146
		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2147 2148 2149
		p->mm->numa_scan_seq = 0;
	}

2150 2151 2152 2153 2154
	if (clone_flags & CLONE_VM)
		p->numa_preferred_nid = current->numa_preferred_nid;
	else
		p->numa_preferred_nid = -1;

2155 2156
	p->node_stamp = 0ULL;
	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2157
	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2158
	p->numa_work.next = &p->numa_work;
2159
	p->numa_faults = NULL;
2160 2161
	p->last_task_numa_placement = 0;
	p->last_sum_exec_runtime = 0;
2162 2163

	p->numa_group = NULL;
2164
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
2165 2166
}

2167 2168
DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);

2169
#ifdef CONFIG_NUMA_BALANCING
2170

2171 2172 2173
void set_numabalancing_state(bool enabled)
{
	if (enabled)
2174
		static_branch_enable(&sched_numa_balancing);
2175
	else
2176
		static_branch_disable(&sched_numa_balancing);
2177
}
2178 2179 2180 2181 2182 2183 2184

#ifdef CONFIG_PROC_SYSCTL
int sysctl_numa_balancing(struct ctl_table *table, int write,
			 void __user *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table t;
	int err;
2185
	int state = static_branch_likely(&sched_numa_balancing);
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200

	if (write && !capable(CAP_SYS_ADMIN))
		return -EPERM;

	t = *table;
	t.data = &state;
	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
	if (err < 0)
		return err;
	if (write)
		set_numabalancing_state(state);
	return err;
}
#endif
#endif
I
Ingo Molnar 已提交
2201

2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263
DEFINE_STATIC_KEY_FALSE(sched_schedstats);

#ifdef CONFIG_SCHEDSTATS
static void set_schedstats(bool enabled)
{
	if (enabled)
		static_branch_enable(&sched_schedstats);
	else
		static_branch_disable(&sched_schedstats);
}

void force_schedstat_enabled(void)
{
	if (!schedstat_enabled()) {
		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
		static_branch_enable(&sched_schedstats);
	}
}

static int __init setup_schedstats(char *str)
{
	int ret = 0;
	if (!str)
		goto out;

	if (!strcmp(str, "enable")) {
		set_schedstats(true);
		ret = 1;
	} else if (!strcmp(str, "disable")) {
		set_schedstats(false);
		ret = 1;
	}
out:
	if (!ret)
		pr_warn("Unable to parse schedstats=\n");

	return ret;
}
__setup("schedstats=", setup_schedstats);

#ifdef CONFIG_PROC_SYSCTL
int sysctl_schedstats(struct ctl_table *table, int write,
			 void __user *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table t;
	int err;
	int state = static_branch_likely(&sched_schedstats);

	if (write && !capable(CAP_SYS_ADMIN))
		return -EPERM;

	t = *table;
	t.data = &state;
	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
	if (err < 0)
		return err;
	if (write)
		set_schedstats(state);
	return err;
}
#endif
#endif
I
Ingo Molnar 已提交
2264 2265 2266 2267

/*
 * fork()/clone()-time setup:
 */
2268
int sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
2269
{
2270
	unsigned long flags;
I
Ingo Molnar 已提交
2271 2272
	int cpu = get_cpu();

2273
	__sched_fork(clone_flags, p);
2274
	/*
2275
	 * We mark the process as running here. This guarantees that
2276 2277 2278
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
2279
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2280

2281 2282 2283 2284 2285
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

2286 2287 2288 2289
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2290
		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2291
			p->policy = SCHED_NORMAL;
2292
			p->static_prio = NICE_TO_PRIO(0);
2293 2294 2295 2296 2297 2298
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
2299

2300 2301 2302 2303 2304 2305
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2306

2307 2308 2309 2310 2311 2312
	if (dl_prio(p->prio)) {
		put_cpu();
		return -EAGAIN;
	} else if (rt_prio(p->prio)) {
		p->sched_class = &rt_sched_class;
	} else {
H
Hiroshi Shimamoto 已提交
2313
		p->sched_class = &fair_sched_class;
2314
	}
2315

P
Peter Zijlstra 已提交
2316 2317 2318
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

2319 2320 2321 2322 2323 2324 2325
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
2326
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2327
	set_task_cpu(p, cpu);
2328
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2329

2330
#ifdef CONFIG_SCHED_INFO
I
Ingo Molnar 已提交
2331
	if (likely(sched_info_on()))
2332
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2333
#endif
P
Peter Zijlstra 已提交
2334 2335
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
2336
#endif
2337
	init_task_preempt_count(p);
2338
#ifdef CONFIG_SMP
2339
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2340
	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2341
#endif
2342

N
Nick Piggin 已提交
2343
	put_cpu();
2344
	return 0;
L
Linus Torvalds 已提交
2345 2346
}

2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 20;

	/*
	 * Doing this here saves a lot of checks in all
	 * the calling paths, and returning zero seems
	 * safe for them anyway.
	 */
	if (period == 0)
		return 0;

	return div64_u64(runtime << 20, period);
}

#ifdef CONFIG_SMP
inline struct dl_bw *dl_bw_of(int i)
{
2366 2367
	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
			 "sched RCU must be held");
2368 2369 2370
	return &cpu_rq(i)->rd->dl_bw;
}

2371
static inline int dl_bw_cpus(int i)
2372
{
2373 2374 2375
	struct root_domain *rd = cpu_rq(i)->rd;
	int cpus = 0;

2376 2377
	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
			 "sched RCU must be held");
2378 2379 2380 2381
	for_each_cpu_and(i, rd->span, cpu_active_mask)
		cpus++;

	return cpus;
2382 2383 2384 2385 2386 2387 2388
}
#else
inline struct dl_bw *dl_bw_of(int i)
{
	return &cpu_rq(i)->dl.dl_bw;
}

2389
static inline int dl_bw_cpus(int i)
2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
{
	return 1;
}
#endif

/*
 * We must be sure that accepting a new task (or allowing changing the
 * parameters of an existing one) is consistent with the bandwidth
 * constraints. If yes, this function also accordingly updates the currently
 * allocated bandwidth to reflect the new situation.
 *
 * This function is called while holding p's rq->lock.
2402 2403 2404
 *
 * XXX we should delay bw change until the task's 0-lag point, see
 * __setparam_dl().
2405 2406 2407 2408 2409 2410
 */
static int dl_overflow(struct task_struct *p, int policy,
		       const struct sched_attr *attr)
{

	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2411
	u64 period = attr->sched_period ?: attr->sched_deadline;
2412 2413
	u64 runtime = attr->sched_runtime;
	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2414
	int cpus, err = -1;
2415 2416 2417 2418 2419 2420 2421 2422 2423 2424

	if (new_bw == p->dl.dl_bw)
		return 0;

	/*
	 * Either if a task, enters, leave, or stays -deadline but changes
	 * its parameters, we may need to update accordingly the total
	 * allocated bandwidth of the container.
	 */
	raw_spin_lock(&dl_b->lock);
2425
	cpus = dl_bw_cpus(task_cpu(p));
2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445
	if (dl_policy(policy) && !task_has_dl_policy(p) &&
	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
		__dl_add(dl_b, new_bw);
		err = 0;
	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
		__dl_clear(dl_b, p->dl.dl_bw);
		__dl_add(dl_b, new_bw);
		err = 0;
	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
		__dl_clear(dl_b, p->dl.dl_bw);
		err = 0;
	}
	raw_spin_unlock(&dl_b->lock);

	return err;
}

extern void init_dl_bw(struct dl_bw *dl_b);

L
Linus Torvalds 已提交
2446 2447 2448 2449 2450 2451 2452
/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2453
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
2454 2455
{
	unsigned long flags;
I
Ingo Molnar 已提交
2456
	struct rq *rq;
2457

2458
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2459 2460
	/* Initialize new task's runnable average */
	init_entity_runnable_average(&p->se);
2461 2462 2463 2464 2465 2466
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 */
2467
	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2468 2469
#endif

2470
	rq = __task_rq_lock(p);
P
Peter Zijlstra 已提交
2471
	activate_task(rq, p, 0);
2472
	p->on_rq = TASK_ON_RQ_QUEUED;
2473
	trace_sched_wakeup_new(p);
P
Peter Zijlstra 已提交
2474
	check_preempt_curr(rq, p, WF_FORK);
2475
#ifdef CONFIG_SMP
2476 2477 2478 2479 2480 2481
	if (p->sched_class->task_woken) {
		/*
		 * Nothing relies on rq->lock after this, so its fine to
		 * drop it.
		 */
		lockdep_unpin_lock(&rq->lock);
2482
		p->sched_class->task_woken(rq, p);
2483 2484
		lockdep_pin_lock(&rq->lock);
	}
2485
#endif
2486
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
2487 2488
}

2489 2490
#ifdef CONFIG_PREEMPT_NOTIFIERS

2491 2492
static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;

2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504
void preempt_notifier_inc(void)
{
	static_key_slow_inc(&preempt_notifier_key);
}
EXPORT_SYMBOL_GPL(preempt_notifier_inc);

void preempt_notifier_dec(void)
{
	static_key_slow_dec(&preempt_notifier_key);
}
EXPORT_SYMBOL_GPL(preempt_notifier_dec);

2505
/**
2506
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2507
 * @notifier: notifier struct to register
2508 2509 2510
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
2511 2512 2513
	if (!static_key_false(&preempt_notifier_key))
		WARN(1, "registering preempt_notifier while notifiers disabled\n");

2514 2515 2516 2517 2518 2519
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2520
 * @notifier: notifier struct to unregister
2521
 *
2522
 * This is *not* safe to call from within a preemption notifier.
2523 2524 2525 2526 2527 2528 2529
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

2530
static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2531 2532 2533
{
	struct preempt_notifier *notifier;

2534
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2535 2536 2537
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

2538 2539 2540 2541 2542 2543
static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	if (static_key_false(&preempt_notifier_key))
		__fire_sched_in_preempt_notifiers(curr);
}

2544
static void
2545 2546
__fire_sched_out_preempt_notifiers(struct task_struct *curr,
				   struct task_struct *next)
2547 2548 2549
{
	struct preempt_notifier *notifier;

2550
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2551 2552 2553
		notifier->ops->sched_out(notifier, next);
}

2554 2555 2556 2557 2558 2559 2560 2561
static __always_inline void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	if (static_key_false(&preempt_notifier_key))
		__fire_sched_out_preempt_notifiers(curr, next);
}

2562
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2563

2564
static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2565 2566 2567
{
}

2568
static inline void
2569 2570 2571 2572 2573
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2574
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2575

2576 2577 2578
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2579
 * @prev: the current task that is being switched out
2580 2581 2582 2583 2584 2585 2586 2587 2588
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2589 2590 2591
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2592
{
2593
	sched_info_switch(rq, prev, next);
2594
	perf_event_task_sched_out(prev, next);
2595
	fire_sched_out_preempt_notifiers(prev, next);
2596 2597 2598 2599
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2600 2601 2602 2603
/**
 * finish_task_switch - clean up after a task-switch
 * @prev: the thread we just switched away from.
 *
2604 2605 2606 2607
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2608 2609
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2610
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2611 2612
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
2613 2614 2615 2616 2617
 *
 * The context switch have flipped the stack from under us and restored the
 * local variables which were saved when this task called schedule() in the
 * past. prev == current is still correct but we need to recalculate this_rq
 * because prev may have moved to another CPU.
L
Linus Torvalds 已提交
2618
 */
2619
static struct rq *finish_task_switch(struct task_struct *prev)
L
Linus Torvalds 已提交
2620 2621
	__releases(rq->lock)
{
2622
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
2623
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2624
	long prev_state;
L
Linus Torvalds 已提交
2625

2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
	/*
	 * The previous task will have left us with a preempt_count of 2
	 * because it left us after:
	 *
	 *	schedule()
	 *	  preempt_disable();			// 1
	 *	  __schedule()
	 *	    raw_spin_lock_irq(&rq->lock)	// 2
	 *
	 * Also, see FORK_PREEMPT_COUNT.
	 */
2637 2638 2639 2640
	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
		      "corrupted preempt_count: %s/%d/0x%x\n",
		      current->comm, current->pid, preempt_count()))
		preempt_count_set(FORK_PREEMPT_COUNT);
2641

L
Linus Torvalds 已提交
2642 2643 2644 2645
	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2646
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2647 2648
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2649 2650 2651 2652 2653
	 *
	 * We must observe prev->state before clearing prev->on_cpu (in
	 * finish_lock_switch), otherwise a concurrent wakeup can get prev
	 * running on another CPU and we could rave with its RUNNING -> DEAD
	 * transition, resulting in a double drop.
L
Linus Torvalds 已提交
2654
	 */
O
Oleg Nesterov 已提交
2655
	prev_state = prev->state;
2656
	vtime_task_switch(prev);
2657
	perf_event_task_sched_in(prev, current);
2658
	finish_lock_switch(rq, prev);
2659
	finish_arch_post_lock_switch();
S
Steven Rostedt 已提交
2660

2661
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2662 2663
	if (mm)
		mmdrop(mm);
2664
	if (unlikely(prev_state == TASK_DEAD)) {
2665 2666 2667
		if (prev->sched_class->task_dead)
			prev->sched_class->task_dead(prev);

2668 2669 2670
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2671
		 */
2672
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2673
		put_task_struct(prev);
2674
	}
2675

2676
	tick_nohz_task_switch();
2677
	return rq;
L
Linus Torvalds 已提交
2678 2679
}

2680 2681 2682
#ifdef CONFIG_SMP

/* rq->lock is NOT held, but preemption is disabled */
2683
static void __balance_callback(struct rq *rq)
2684
{
2685 2686 2687
	struct callback_head *head, *next;
	void (*func)(struct rq *rq);
	unsigned long flags;
2688

2689 2690 2691 2692 2693 2694 2695 2696
	raw_spin_lock_irqsave(&rq->lock, flags);
	head = rq->balance_callback;
	rq->balance_callback = NULL;
	while (head) {
		func = (void (*)(struct rq *))head->func;
		next = head->next;
		head->next = NULL;
		head = next;
2697

2698
		func(rq);
2699
	}
2700 2701 2702 2703 2704 2705 2706
	raw_spin_unlock_irqrestore(&rq->lock, flags);
}

static inline void balance_callback(struct rq *rq)
{
	if (unlikely(rq->balance_callback))
		__balance_callback(rq);
2707 2708 2709
}

#else
2710

2711
static inline void balance_callback(struct rq *rq)
2712
{
L
Linus Torvalds 已提交
2713 2714
}

2715 2716
#endif

L
Linus Torvalds 已提交
2717 2718 2719 2720
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2721
asmlinkage __visible void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2722 2723
	__releases(rq->lock)
{
2724
	struct rq *rq;
2725

2726 2727 2728 2729 2730 2731 2732 2733 2734
	/*
	 * New tasks start with FORK_PREEMPT_COUNT, see there and
	 * finish_task_switch() for details.
	 *
	 * finish_task_switch() will drop rq->lock() and lower preempt_count
	 * and the preempt_enable() will end up enabling preemption (on
	 * PREEMPT_COUNT kernels).
	 */

2735
	rq = finish_task_switch(prev);
2736
	balance_callback(rq);
2737
	preempt_enable();
2738

L
Linus Torvalds 已提交
2739
	if (current->set_child_tid)
2740
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2741 2742 2743
}

/*
2744
 * context_switch - switch to the new MM and the new thread's register state.
L
Linus Torvalds 已提交
2745
 */
2746
static __always_inline struct rq *
2747
context_switch(struct rq *rq, struct task_struct *prev,
2748
	       struct task_struct *next)
L
Linus Torvalds 已提交
2749
{
I
Ingo Molnar 已提交
2750
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2751

2752
	prepare_task_switch(rq, prev, next);
2753

I
Ingo Molnar 已提交
2754 2755
	mm = next->mm;
	oldmm = prev->active_mm;
2756 2757 2758 2759 2760
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2761
	arch_start_context_switch(prev);
2762

2763
	if (!mm) {
L
Linus Torvalds 已提交
2764 2765 2766 2767 2768 2769
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2770
	if (!prev->mm) {
L
Linus Torvalds 已提交
2771 2772 2773
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2774 2775 2776 2777 2778 2779
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
2780
	lockdep_unpin_lock(&rq->lock);
2781
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
2782 2783 2784

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);
I
Ingo Molnar 已提交
2785
	barrier();
2786 2787

	return finish_task_switch(prev);
L
Linus Torvalds 已提交
2788 2789 2790
}

/*
2791
 * nr_running and nr_context_switches:
L
Linus Torvalds 已提交
2792 2793
 *
 * externally visible scheduler statistics: current number of runnable
2794
 * threads, total number of context switches performed since bootup.
L
Linus Torvalds 已提交
2795 2796 2797 2798 2799 2800 2801 2802 2803
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2804
}
L
Linus Torvalds 已提交
2805

2806 2807
/*
 * Check if only the current task is running on the cpu.
2808 2809 2810 2811 2812 2813 2814 2815 2816 2817
 *
 * Caution: this function does not check that the caller has disabled
 * preemption, thus the result might have a time-of-check-to-time-of-use
 * race.  The caller is responsible to use it correctly, for example:
 *
 * - from a non-preemptable section (of course)
 *
 * - from a thread that is bound to a single CPU
 *
 * - in a loop with very short iterations (e.g. a polling loop)
2818 2819 2820
 */
bool single_task_running(void)
{
2821
	return raw_rq()->nr_running == 1;
2822 2823 2824
}
EXPORT_SYMBOL(single_task_running);

L
Linus Torvalds 已提交
2825
unsigned long long nr_context_switches(void)
2826
{
2827 2828
	int i;
	unsigned long long sum = 0;
2829

2830
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2831
		sum += cpu_rq(i)->nr_switches;
2832

L
Linus Torvalds 已提交
2833 2834
	return sum;
}
2835

L
Linus Torvalds 已提交
2836 2837 2838
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2839

2840
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2841
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2842

L
Linus Torvalds 已提交
2843 2844
	return sum;
}
2845

2846
unsigned long nr_iowait_cpu(int cpu)
2847
{
2848
	struct rq *this = cpu_rq(cpu);
2849 2850
	return atomic_read(&this->nr_iowait);
}
2851

2852 2853
void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
{
2854 2855 2856
	struct rq *rq = this_rq();
	*nr_waiters = atomic_read(&rq->nr_iowait);
	*load = rq->load.weight;
2857 2858
}

I
Ingo Molnar 已提交
2859
#ifdef CONFIG_SMP
2860

2861
/*
P
Peter Zijlstra 已提交
2862 2863
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2864
 */
P
Peter Zijlstra 已提交
2865
void sched_exec(void)
2866
{
P
Peter Zijlstra 已提交
2867
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2868
	unsigned long flags;
2869
	int dest_cpu;
2870

2871
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2872
	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2873 2874
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2875

2876
	if (likely(cpu_active(dest_cpu))) {
2877
		struct migration_arg arg = { p, dest_cpu };
2878

2879 2880
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2881 2882
		return;
	}
2883
unlock:
2884
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2885
}
I
Ingo Molnar 已提交
2886

L
Linus Torvalds 已提交
2887 2888 2889
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2890
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
2891 2892

EXPORT_PER_CPU_SYMBOL(kstat);
2893
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
2894

2895 2896 2897 2898 2899 2900 2901 2902 2903
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
2904
	u64 ns;
2905

2906 2907 2908 2909 2910 2911 2912 2913 2914
#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
	/*
	 * 64-bit doesn't need locks to atomically read a 64bit value.
	 * So we have a optimization chance when the task's delta_exec is 0.
	 * Reading ->on_cpu is racy, but this is ok.
	 *
	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
	 * If we race with it entering cpu, unaccounted time is 0. This is
	 * indistinguishable from the read occurring a few cycles earlier.
2915 2916
	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
	 * been accounted, so we're correct here as well.
2917
	 */
2918
	if (!p->on_cpu || !task_on_rq_queued(p))
2919 2920 2921
		return p->se.sum_exec_runtime;
#endif

2922
	rq = task_rq_lock(p, &flags);
2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
	/*
	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
	 * project cycles that may never be accounted to this
	 * thread, breaking clock_gettime().
	 */
	if (task_current(rq, p) && task_on_rq_queued(p)) {
		update_rq_clock(rq);
		p->sched_class->update_curr(rq);
	}
	ns = p->se.sum_exec_runtime;
2933
	task_rq_unlock(rq, p, &flags);
2934 2935 2936

	return ns;
}
2937

2938 2939 2940 2941 2942 2943 2944 2945
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2946
	struct task_struct *curr = rq->curr;
2947 2948

	sched_clock_tick();
I
Ingo Molnar 已提交
2949

2950
	raw_spin_lock(&rq->lock);
2951
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
2952
	curr->sched_class->task_tick(rq, curr, 0);
2953
	update_cpu_load_active(rq);
2954
	calc_global_load_tick(rq);
2955
	raw_spin_unlock(&rq->lock);
2956

2957
	perf_event_task_tick();
2958

2959
#ifdef CONFIG_SMP
2960
	rq->idle_balance = idle_cpu(cpu);
2961
	trigger_load_balance(rq);
2962
#endif
2963
	rq_last_tick_reset(rq);
L
Linus Torvalds 已提交
2964 2965
}

2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976
#ifdef CONFIG_NO_HZ_FULL
/**
 * scheduler_tick_max_deferment
 *
 * Keep at least one tick per second when a single
 * active task is running because the scheduler doesn't
 * yet completely support full dynticks environment.
 *
 * This makes sure that uptime, CFS vruntime, load
 * balancing, etc... continue to move forward, even
 * with a very low granularity.
2977 2978
 *
 * Return: Maximum deferment in nanoseconds.
2979 2980 2981 2982
 */
u64 scheduler_tick_max_deferment(void)
{
	struct rq *rq = this_rq();
2983
	unsigned long next, now = READ_ONCE(jiffies);
2984 2985 2986 2987 2988 2989

	next = rq->last_sched_tick + HZ;

	if (time_before_eq(next, now))
		return 0;

2990
	return jiffies_to_nsecs(next - now);
L
Linus Torvalds 已提交
2991
}
2992
#endif
L
Linus Torvalds 已提交
2993

2994 2995 2996
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

2997
void preempt_count_add(int val)
L
Linus Torvalds 已提交
2998
{
2999
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3000 3001 3002
	/*
	 * Underflow?
	 */
3003 3004
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
3005
#endif
3006
	__preempt_count_add(val);
3007
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3008 3009 3010
	/*
	 * Spinlock count overflowing soon?
	 */
3011 3012
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
3013
#endif
3014
	if (preempt_count() == val) {
3015
		unsigned long ip = get_lock_parent_ip();
3016 3017 3018 3019 3020
#ifdef CONFIG_DEBUG_PREEMPT
		current->preempt_disable_ip = ip;
#endif
		trace_preempt_off(CALLER_ADDR0, ip);
	}
L
Linus Torvalds 已提交
3021
}
3022
EXPORT_SYMBOL(preempt_count_add);
3023
NOKPROBE_SYMBOL(preempt_count_add);
L
Linus Torvalds 已提交
3024

3025
void preempt_count_sub(int val)
L
Linus Torvalds 已提交
3026
{
3027
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3028 3029 3030
	/*
	 * Underflow?
	 */
3031
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3032
		return;
L
Linus Torvalds 已提交
3033 3034 3035
	/*
	 * Is the spinlock portion underflowing?
	 */
3036 3037 3038
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
3039
#endif
3040

3041
	if (preempt_count() == val)
3042
		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3043
	__preempt_count_sub(val);
L
Linus Torvalds 已提交
3044
}
3045
EXPORT_SYMBOL(preempt_count_sub);
3046
NOKPROBE_SYMBOL(preempt_count_sub);
L
Linus Torvalds 已提交
3047 3048 3049 3050

#endif

/*
I
Ingo Molnar 已提交
3051
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3052
 */
I
Ingo Molnar 已提交
3053
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3054
{
3055 3056 3057
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
3058 3059
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
3060

I
Ingo Molnar 已提交
3061
	debug_show_held_locks(prev);
3062
	print_modules();
I
Ingo Molnar 已提交
3063 3064
	if (irqs_disabled())
		print_irqtrace_events(prev);
3065 3066 3067 3068 3069 3070 3071
#ifdef CONFIG_DEBUG_PREEMPT
	if (in_atomic_preempt_off()) {
		pr_err("Preemption disabled at:");
		print_ip_sym(current->preempt_disable_ip);
		pr_cont("\n");
	}
#endif
3072
	dump_stack();
3073
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
I
Ingo Molnar 已提交
3074
}
L
Linus Torvalds 已提交
3075

I
Ingo Molnar 已提交
3076 3077 3078 3079 3080
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
3081
#ifdef CONFIG_SCHED_STACK_END_CHECK
3082
	BUG_ON(task_stack_end_corrupted(prev));
3083
#endif
3084

3085
	if (unlikely(in_atomic_preempt_off())) {
I
Ingo Molnar 已提交
3086
		__schedule_bug(prev);
3087 3088
		preempt_count_set(PREEMPT_DISABLED);
	}
3089
	rcu_sleep_check();
I
Ingo Molnar 已提交
3090

L
Linus Torvalds 已提交
3091 3092
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3093
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3094 3095 3096 3097 3098 3099
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3100
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
3101
{
3102
	const struct sched_class *class = &fair_sched_class;
I
Ingo Molnar 已提交
3103
	struct task_struct *p;
L
Linus Torvalds 已提交
3104 3105

	/*
I
Ingo Molnar 已提交
3106 3107
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3108
	 */
3109
	if (likely(prev->sched_class == class &&
3110
		   rq->nr_running == rq->cfs.h_nr_running)) {
3111
		p = fair_sched_class.pick_next_task(rq, prev);
3112 3113 3114 3115 3116 3117 3118 3119
		if (unlikely(p == RETRY_TASK))
			goto again;

		/* assumes fair_sched_class->next == idle_sched_class */
		if (unlikely(!p))
			p = idle_sched_class.pick_next_task(rq, prev);

		return p;
L
Linus Torvalds 已提交
3120 3121
	}

3122
again:
3123
	for_each_class(class) {
3124
		p = class->pick_next_task(rq, prev);
3125 3126 3127
		if (p) {
			if (unlikely(p == RETRY_TASK))
				goto again;
I
Ingo Molnar 已提交
3128
			return p;
3129
		}
I
Ingo Molnar 已提交
3130
	}
3131 3132

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
3133
}
L
Linus Torvalds 已提交
3134

I
Ingo Molnar 已提交
3135
/*
3136
 * __schedule() is the main scheduler function.
3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170
 *
 * The main means of driving the scheduler and thus entering this function are:
 *
 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 *      paths. For example, see arch/x86/entry_64.S.
 *
 *      To drive preemption between tasks, the scheduler sets the flag in timer
 *      interrupt handler scheduler_tick().
 *
 *   3. Wakeups don't really cause entry into schedule(). They add a
 *      task to the run-queue and that's it.
 *
 *      Now, if the new task added to the run-queue preempts the current
 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 *      called on the nearest possible occasion:
 *
 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
 *
 *         - in syscall or exception context, at the next outmost
 *           preempt_enable(). (this might be as soon as the wake_up()'s
 *           spin_unlock()!)
 *
 *         - in IRQ context, return from interrupt-handler to
 *           preemptible context
 *
 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
 *         then at the next:
 *
 *          - cond_resched() call
 *          - explicit schedule() call
 *          - return from syscall or exception to user-space
 *          - return from interrupt-handler to user-space
3171
 *
3172
 * WARNING: must be called with preemption disabled!
I
Ingo Molnar 已提交
3173
 */
3174
static void __sched notrace __schedule(bool preempt)
I
Ingo Molnar 已提交
3175 3176
{
	struct task_struct *prev, *next;
3177
	unsigned long *switch_count;
I
Ingo Molnar 已提交
3178
	struct rq *rq;
3179
	int cpu;
I
Ingo Molnar 已提交
3180 3181 3182 3183 3184

	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	prev = rq->curr;

3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195
	/*
	 * do_exit() calls schedule() with preemption disabled as an exception;
	 * however we must fix that up, otherwise the next task will see an
	 * inconsistent (higher) preempt count.
	 *
	 * It also avoids the below schedule_debug() test from complaining
	 * about this.
	 */
	if (unlikely(prev->state == TASK_DEAD))
		preempt_enable_no_resched_notrace();

I
Ingo Molnar 已提交
3196
	schedule_debug(prev);
L
Linus Torvalds 已提交
3197

3198
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
3199
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
3200

3201 3202 3203
	local_irq_disable();
	rcu_note_context_switch();

3204 3205 3206 3207 3208 3209
	/*
	 * Make sure that signal_pending_state()->signal_pending() below
	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
	 * done by the caller to avoid the race with signal_wake_up().
	 */
	smp_mb__before_spinlock();
3210
	raw_spin_lock(&rq->lock);
3211
	lockdep_pin_lock(&rq->lock);
L
Linus Torvalds 已提交
3212

3213 3214
	rq->clock_skip_update <<= 1; /* promote REQ to ACT */

3215
	switch_count = &prev->nivcsw;
3216
	if (!preempt && prev->state) {
T
Tejun Heo 已提交
3217
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
3218
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
3219
		} else {
3220 3221 3222
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

T
Tejun Heo 已提交
3223
			/*
3224 3225 3226
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
3227 3228 3229 3230
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

3231
				to_wakeup = wq_worker_sleeping(prev);
T
Tejun Heo 已提交
3232 3233 3234 3235
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
		}
I
Ingo Molnar 已提交
3236
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3237 3238
	}

3239
	if (task_on_rq_queued(prev))
3240 3241 3242
		update_rq_clock(rq);

	next = pick_next_task(rq, prev);
3243
	clear_tsk_need_resched(prev);
3244
	clear_preempt_need_resched();
3245
	rq->clock_skip_update = 0;
L
Linus Torvalds 已提交
3246 3247 3248 3249 3250 3251

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

3252
		trace_sched_switch(preempt, prev, next);
3253
		rq = context_switch(rq, prev, next); /* unlocks the rq */
3254 3255
	} else {
		lockdep_unpin_lock(&rq->lock);
3256
		raw_spin_unlock_irq(&rq->lock);
3257
	}
L
Linus Torvalds 已提交
3258

3259
	balance_callback(rq);
L
Linus Torvalds 已提交
3260
}
3261
STACK_FRAME_NON_STANDARD(__schedule); /* switch_to() */
3262

3263 3264
static inline void sched_submit_work(struct task_struct *tsk)
{
3265
	if (!tsk->state || tsk_is_pi_blocked(tsk))
3266 3267 3268 3269 3270 3271 3272 3273 3274
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

3275
asmlinkage __visible void __sched schedule(void)
3276
{
3277 3278 3279
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
3280
	do {
3281
		preempt_disable();
3282
		__schedule(false);
3283
		sched_preempt_enable_no_resched();
3284
	} while (need_resched());
3285
}
L
Linus Torvalds 已提交
3286 3287
EXPORT_SYMBOL(schedule);

3288
#ifdef CONFIG_CONTEXT_TRACKING
3289
asmlinkage __visible void __sched schedule_user(void)
3290 3291 3292 3293 3294 3295
{
	/*
	 * If we come here after a random call to set_need_resched(),
	 * or we have been woken up remotely but the IPI has not yet arrived,
	 * we haven't yet exited the RCU idle mode. Do it here manually until
	 * we find a better solution.
3296 3297
	 *
	 * NB: There are buggy callers of this function.  Ideally we
3298
	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3299
	 * too frequently to make sense yet.
3300
	 */
3301
	enum ctx_state prev_state = exception_enter();
3302
	schedule();
3303
	exception_exit(prev_state);
3304 3305 3306
}
#endif

3307 3308 3309 3310 3311 3312 3313
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
3314
	sched_preempt_enable_no_resched();
3315 3316 3317 3318
	schedule();
	preempt_disable();
}

3319
static void __sched notrace preempt_schedule_common(void)
3320 3321
{
	do {
3322
		preempt_disable_notrace();
3323
		__schedule(true);
3324
		preempt_enable_no_resched_notrace();
3325 3326 3327 3328 3329 3330 3331 3332

		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
	} while (need_resched());
}

L
Linus Torvalds 已提交
3333 3334
#ifdef CONFIG_PREEMPT
/*
3335
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3336
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3337 3338
 * occur there and call schedule directly.
 */
3339
asmlinkage __visible void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
3340 3341 3342
{
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3343
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3344
	 */
3345
	if (likely(!preemptible()))
L
Linus Torvalds 已提交
3346 3347
		return;

3348
	preempt_schedule_common();
L
Linus Torvalds 已提交
3349
}
3350
NOKPROBE_SYMBOL(preempt_schedule);
L
Linus Torvalds 已提交
3351
EXPORT_SYMBOL(preempt_schedule);
3352 3353

/**
3354
 * preempt_schedule_notrace - preempt_schedule called by tracing
3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366
 *
 * The tracing infrastructure uses preempt_enable_notrace to prevent
 * recursion and tracing preempt enabling caused by the tracing
 * infrastructure itself. But as tracing can happen in areas coming
 * from userspace or just about to enter userspace, a preempt enable
 * can occur before user_exit() is called. This will cause the scheduler
 * to be called when the system is still in usermode.
 *
 * To prevent this, the preempt_enable_notrace will use this function
 * instead of preempt_schedule() to exit user context if needed before
 * calling the scheduler.
 */
3367
asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3368 3369 3370 3371 3372 3373 3374
{
	enum ctx_state prev_ctx;

	if (likely(!preemptible()))
		return;

	do {
3375
		preempt_disable_notrace();
3376 3377 3378 3379 3380 3381
		/*
		 * Needs preempt disabled in case user_exit() is traced
		 * and the tracer calls preempt_enable_notrace() causing
		 * an infinite recursion.
		 */
		prev_ctx = exception_enter();
3382
		__schedule(true);
3383 3384
		exception_exit(prev_ctx);

3385
		preempt_enable_no_resched_notrace();
3386 3387
	} while (need_resched());
}
3388
EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3389

3390
#endif /* CONFIG_PREEMPT */
L
Linus Torvalds 已提交
3391 3392

/*
3393
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3394 3395 3396 3397
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
3398
asmlinkage __visible void __sched preempt_schedule_irq(void)
L
Linus Torvalds 已提交
3399
{
3400
	enum ctx_state prev_state;
3401

3402
	/* Catch callers which need to be fixed */
3403
	BUG_ON(preempt_count() || !irqs_disabled());
L
Linus Torvalds 已提交
3404

3405 3406
	prev_state = exception_enter();

3407
	do {
3408
		preempt_disable();
3409
		local_irq_enable();
3410
		__schedule(true);
3411
		local_irq_disable();
3412
		sched_preempt_enable_no_resched();
3413
	} while (need_resched());
3414 3415

	exception_exit(prev_state);
L
Linus Torvalds 已提交
3416 3417
}

P
Peter Zijlstra 已提交
3418
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3419
			  void *key)
L
Linus Torvalds 已提交
3420
{
P
Peter Zijlstra 已提交
3421
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3422 3423 3424
}
EXPORT_SYMBOL(default_wake_function);

3425 3426 3427 3428 3429 3430 3431 3432 3433 3434
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
3435 3436
 * Used by the rt_mutex code to implement priority inheritance
 * logic. Call site only calls if the priority of the task changed.
3437
 */
3438
void rt_mutex_setprio(struct task_struct *p, int prio)
3439
{
3440
	int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
3441
	struct rq *rq;
3442
	const struct sched_class *prev_class;
3443

3444
	BUG_ON(prio > MAX_PRIO);
3445

3446
	rq = __task_rq_lock(p);
3447

3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

3466
	trace_sched_pi_setprio(p, prio);
3467
	oldprio = p->prio;
3468 3469 3470 3471

	if (oldprio == prio)
		queue_flag &= ~DEQUEUE_MOVE;

3472
	prev_class = p->sched_class;
3473
	queued = task_on_rq_queued(p);
3474
	running = task_current(rq, p);
3475
	if (queued)
3476
		dequeue_task(rq, p, queue_flag);
3477
	if (running)
3478
		put_prev_task(rq, p);
I
Ingo Molnar 已提交
3479

3480 3481 3482 3483 3484 3485 3486 3487 3488 3489
	/*
	 * Boosting condition are:
	 * 1. -rt task is running and holds mutex A
	 *      --> -dl task blocks on mutex A
	 *
	 * 2. -dl task is running and holds mutex A
	 *      --> -dl task blocks on mutex A and could preempt the
	 *          running task
	 */
	if (dl_prio(prio)) {
3490 3491 3492
		struct task_struct *pi_task = rt_mutex_get_top_task(p);
		if (!dl_prio(p->normal_prio) ||
		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3493
			p->dl.dl_boosted = 1;
3494
			queue_flag |= ENQUEUE_REPLENISH;
3495 3496
		} else
			p->dl.dl_boosted = 0;
3497
		p->sched_class = &dl_sched_class;
3498 3499 3500 3501
	} else if (rt_prio(prio)) {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
		if (oldprio < prio)
3502
			queue_flag |= ENQUEUE_HEAD;
I
Ingo Molnar 已提交
3503
		p->sched_class = &rt_sched_class;
3504 3505 3506
	} else {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
3507 3508
		if (rt_prio(oldprio))
			p->rt.timeout = 0;
I
Ingo Molnar 已提交
3509
		p->sched_class = &fair_sched_class;
3510
	}
I
Ingo Molnar 已提交
3511

3512 3513
	p->prio = prio;

3514 3515
	if (running)
		p->sched_class->set_curr_task(rq);
3516
	if (queued)
3517
		enqueue_task(rq, p, queue_flag);
3518

P
Peter Zijlstra 已提交
3519
	check_class_changed(rq, p, prev_class, oldprio);
3520
out_unlock:
3521
	preempt_disable(); /* avoid rq from going away on us */
3522
	__task_rq_unlock(rq);
3523 3524 3525

	balance_callback(rq);
	preempt_enable();
3526 3527
}
#endif
3528

3529
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3530
{
3531
	int old_prio, delta, queued;
L
Linus Torvalds 已提交
3532
	unsigned long flags;
3533
	struct rq *rq;
L
Linus Torvalds 已提交
3534

3535
	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
L
Linus Torvalds 已提交
3536 3537 3538 3539 3540 3541 3542 3543 3544 3545
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
3546
	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
L
Linus Torvalds 已提交
3547
	 */
3548
	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3549 3550 3551
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
3552 3553
	queued = task_on_rq_queued(p);
	if (queued)
3554
		dequeue_task(rq, p, DEQUEUE_SAVE);
L
Linus Torvalds 已提交
3555 3556

	p->static_prio = NICE_TO_PRIO(nice);
3557
	set_load_weight(p);
3558 3559 3560
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3561

3562
	if (queued) {
3563
		enqueue_task(rq, p, ENQUEUE_RESTORE);
L
Linus Torvalds 已提交
3564
		/*
3565 3566
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3567
		 */
3568
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3569
			resched_curr(rq);
L
Linus Torvalds 已提交
3570 3571
	}
out_unlock:
3572
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3573 3574 3575
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3576 3577 3578 3579 3580
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3581
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3582
{
3583
	/* convert nice value [19,-20] to rlimit style value [1,40] */
3584
	int nice_rlim = nice_to_rlimit(nice);
3585

3586
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3587 3588 3589
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3590 3591 3592 3593 3594 3595 3596 3597 3598
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3599
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3600
{
3601
	long nice, retval;
L
Linus Torvalds 已提交
3602 3603 3604 3605 3606 3607

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
3608
	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3609
	nice = task_nice(current) + increment;
L
Linus Torvalds 已提交
3610

3611
	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
M
Matt Mackall 已提交
3612 3613 3614
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
3629
 * Return: The priority value as seen by users in /proc.
L
Linus Torvalds 已提交
3630 3631 3632
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3633
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3634 3635 3636 3637 3638 3639 3640
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
3641 3642
 *
 * Return: 1 if the CPU is currently idle. 0 otherwise.
L
Linus Torvalds 已提交
3643 3644 3645
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3660 3661 3662 3663 3664
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
3665 3666
 *
 * Return: The idle task for the cpu @cpu.
L
Linus Torvalds 已提交
3667
 */
3668
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3669 3670 3671 3672 3673 3674 3675
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
3676 3677
 *
 * The task of @pid, if found. %NULL otherwise.
L
Linus Torvalds 已提交
3678
 */
A
Alexey Dobriyan 已提交
3679
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
3680
{
3681
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
3682 3683
}

3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698
/*
 * This function initializes the sched_dl_entity of a newly becoming
 * SCHED_DEADLINE task.
 *
 * Only the static values are considered here, the actual runtime and the
 * absolute deadline will be properly calculated when the task is enqueued
 * for the first time with its new policy.
 */
static void
__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	dl_se->dl_runtime = attr->sched_runtime;
	dl_se->dl_deadline = attr->sched_deadline;
3699
	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3700
	dl_se->flags = attr->sched_flags;
3701
	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721

	/*
	 * Changing the parameters of a task is 'tricky' and we're not doing
	 * the correct thing -- also see task_dead_dl() and switched_from_dl().
	 *
	 * What we SHOULD do is delay the bandwidth release until the 0-lag
	 * point. This would include retaining the task_struct until that time
	 * and change dl_overflow() to not immediately decrement the current
	 * amount.
	 *
	 * Instead we retain the current runtime/deadline and let the new
	 * parameters take effect after the current reservation period lapses.
	 * This is safe (albeit pessimistic) because the 0-lag point is always
	 * before the current scheduling deadline.
	 *
	 * We can still have temporary overloads because we do not delay the
	 * change in bandwidth until that time; so admission control is
	 * not on the safe side. It does however guarantee tasks will never
	 * consume more than promised.
	 */
3722 3723
}

3724 3725 3726 3727 3728 3729
/*
 * sched_setparam() passes in -1 for its policy, to let the functions
 * it calls know not to change it.
 */
#define SETPARAM_POLICY	-1

3730 3731
static void __setscheduler_params(struct task_struct *p,
		const struct sched_attr *attr)
L
Linus Torvalds 已提交
3732
{
3733 3734
	int policy = attr->sched_policy;

3735
	if (policy == SETPARAM_POLICY)
3736 3737
		policy = p->policy;

L
Linus Torvalds 已提交
3738
	p->policy = policy;
3739

3740 3741
	if (dl_policy(policy))
		__setparam_dl(p, attr);
3742
	else if (fair_policy(policy))
3743 3744
		p->static_prio = NICE_TO_PRIO(attr->sched_nice);

3745 3746 3747 3748 3749 3750
	/*
	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
	 * !rt_policy. Always setting this ensures that things like
	 * getparam()/getattr() don't report silly values for !rt tasks.
	 */
	p->rt_priority = attr->sched_priority;
3751
	p->normal_prio = normal_prio(p);
3752 3753
	set_load_weight(p);
}
3754

3755 3756
/* Actually do priority change: must hold pi & rq lock. */
static void __setscheduler(struct rq *rq, struct task_struct *p,
3757
			   const struct sched_attr *attr, bool keep_boost)
3758 3759
{
	__setscheduler_params(p, attr);
3760

3761
	/*
3762 3763
	 * Keep a potential priority boosting if called from
	 * sched_setscheduler().
3764
	 */
3765 3766 3767 3768
	if (keep_boost)
		p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
	else
		p->prio = normal_prio(p);
3769

3770 3771 3772
	if (dl_prio(p->prio))
		p->sched_class = &dl_sched_class;
	else if (rt_prio(p->prio))
3773 3774 3775
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
3776
}
3777 3778 3779 3780 3781 3782 3783 3784 3785

static void
__getparam_dl(struct task_struct *p, struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	attr->sched_priority = p->rt_priority;
	attr->sched_runtime = dl_se->dl_runtime;
	attr->sched_deadline = dl_se->dl_deadline;
3786
	attr->sched_period = dl_se->dl_period;
3787 3788 3789 3790 3791 3792
	attr->sched_flags = dl_se->flags;
}

/*
 * This function validates the new parameters of a -deadline task.
 * We ask for the deadline not being zero, and greater or equal
3793
 * than the runtime, as well as the period of being zero or
3794
 * greater than deadline. Furthermore, we have to be sure that
3795 3796 3797 3798
 * user parameters are above the internal resolution of 1us (we
 * check sched_runtime only since it is always the smaller one) and
 * below 2^63 ns (we have to check both sched_deadline and
 * sched_period, as the latter can be zero).
3799 3800 3801 3802
 */
static bool
__checkparam_dl(const struct sched_attr *attr)
{
3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828
	/* deadline != 0 */
	if (attr->sched_deadline == 0)
		return false;

	/*
	 * Since we truncate DL_SCALE bits, make sure we're at least
	 * that big.
	 */
	if (attr->sched_runtime < (1ULL << DL_SCALE))
		return false;

	/*
	 * Since we use the MSB for wrap-around and sign issues, make
	 * sure it's not set (mind that period can be equal to zero).
	 */
	if (attr->sched_deadline & (1ULL << 63) ||
	    attr->sched_period & (1ULL << 63))
		return false;

	/* runtime <= deadline <= period (if period != 0) */
	if ((attr->sched_period != 0 &&
	     attr->sched_period < attr->sched_deadline) ||
	    attr->sched_deadline < attr->sched_runtime)
		return false;

	return true;
3829 3830
}

3831 3832 3833 3834 3835 3836 3837 3838 3839 3840
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
3841 3842
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
3843 3844 3845 3846
	rcu_read_unlock();
	return match;
}

3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860
static bool dl_param_changed(struct task_struct *p,
		const struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	if (dl_se->dl_runtime != attr->sched_runtime ||
		dl_se->dl_deadline != attr->sched_deadline ||
		dl_se->dl_period != attr->sched_period ||
		dl_se->flags != attr->sched_flags)
		return true;

	return false;
}

3861 3862
static int __sched_setscheduler(struct task_struct *p,
				const struct sched_attr *attr,
3863
				bool user, bool pi)
L
Linus Torvalds 已提交
3864
{
3865 3866
	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
		      MAX_RT_PRIO - 1 - attr->sched_priority;
3867
	int retval, oldprio, oldpolicy = -1, queued, running;
3868
	int new_effective_prio, policy = attr->sched_policy;
L
Linus Torvalds 已提交
3869
	unsigned long flags;
3870
	const struct sched_class *prev_class;
3871
	struct rq *rq;
3872
	int reset_on_fork;
3873
	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
L
Linus Torvalds 已提交
3874

3875 3876
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
3877 3878
recheck:
	/* double check policy once rq lock held */
3879 3880
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
3881
		policy = oldpolicy = p->policy;
3882
	} else {
3883
		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3884

3885
		if (!valid_policy(policy))
3886 3887 3888
			return -EINVAL;
	}

3889 3890 3891
	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
		return -EINVAL;

L
Linus Torvalds 已提交
3892 3893
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
3894 3895
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
3896
	 */
3897
	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3898
	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
3899
		return -EINVAL;
3900 3901
	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
	    (rt_policy(policy) != (attr->sched_priority != 0)))
L
Linus Torvalds 已提交
3902 3903
		return -EINVAL;

3904 3905 3906
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
3907
	if (user && !capable(CAP_SYS_NICE)) {
3908
		if (fair_policy(policy)) {
3909
			if (attr->sched_nice < task_nice(p) &&
3910
			    !can_nice(p, attr->sched_nice))
3911 3912 3913
				return -EPERM;
		}

3914
		if (rt_policy(policy)) {
3915 3916
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
3917 3918 3919 3920 3921 3922

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
3923 3924
			if (attr->sched_priority > p->rt_priority &&
			    attr->sched_priority > rlim_rtprio)
3925 3926
				return -EPERM;
		}
3927

3928 3929 3930 3931 3932 3933 3934 3935 3936
		 /*
		  * Can't set/change SCHED_DEADLINE policy at all for now
		  * (safest behavior); in the future we would like to allow
		  * unprivileged DL tasks to increase their relative deadline
		  * or reduce their runtime (both ways reducing utilization)
		  */
		if (dl_policy(policy))
			return -EPERM;

I
Ingo Molnar 已提交
3937
		/*
3938 3939
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
3940
		 */
3941
		if (idle_policy(p->policy) && !idle_policy(policy)) {
3942
			if (!can_nice(p, task_nice(p)))
3943 3944
				return -EPERM;
		}
3945

3946
		/* can't change other user's priorities */
3947
		if (!check_same_owner(p))
3948
			return -EPERM;
3949 3950 3951 3952

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
3953
	}
L
Linus Torvalds 已提交
3954

3955
	if (user) {
3956
		retval = security_task_setscheduler(p);
3957 3958 3959 3960
		if (retval)
			return retval;
	}

3961 3962 3963
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
3964
	 *
L
Lucas De Marchi 已提交
3965
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
3966 3967
	 * runqueue lock must be held.
	 */
3968
	rq = task_rq_lock(p, &flags);
3969

3970 3971 3972 3973
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
3974
		task_rq_unlock(rq, p, &flags);
3975 3976 3977
		return -EINVAL;
	}

3978
	/*
3979 3980
	 * If not changing anything there's no need to proceed further,
	 * but store a possible modification of reset_on_fork.
3981
	 */
3982
	if (unlikely(policy == p->policy)) {
3983
		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3984 3985 3986
			goto change;
		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
			goto change;
3987
		if (dl_policy(policy) && dl_param_changed(p, attr))
3988
			goto change;
3989

3990
		p->sched_reset_on_fork = reset_on_fork;
3991
		task_rq_unlock(rq, p, &flags);
3992 3993
		return 0;
	}
3994
change:
3995

3996
	if (user) {
3997
#ifdef CONFIG_RT_GROUP_SCHED
3998 3999 4000 4001 4002
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4003 4004
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
4005
			task_rq_unlock(rq, p, &flags);
4006 4007 4008
			return -EPERM;
		}
#endif
4009 4010 4011 4012 4013 4014 4015 4016 4017
#ifdef CONFIG_SMP
		if (dl_bandwidth_enabled() && dl_policy(policy)) {
			cpumask_t *span = rq->rd->span;

			/*
			 * Don't allow tasks with an affinity mask smaller than
			 * the entire root_domain to become SCHED_DEADLINE. We
			 * will also fail if there's no bandwidth available.
			 */
4018 4019
			if (!cpumask_subset(span, &p->cpus_allowed) ||
			    rq->rd->dl_bw.bw == 0) {
4020 4021 4022 4023 4024 4025
				task_rq_unlock(rq, p, &flags);
				return -EPERM;
			}
		}
#endif
	}
4026

L
Linus Torvalds 已提交
4027 4028 4029
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4030
		task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
4031 4032
		goto recheck;
	}
4033 4034 4035 4036 4037 4038

	/*
	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
	 * is available.
	 */
4039
	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
4040 4041 4042 4043
		task_rq_unlock(rq, p, &flags);
		return -EBUSY;
	}

4044 4045 4046
	p->sched_reset_on_fork = reset_on_fork;
	oldprio = p->prio;

4047 4048 4049 4050 4051 4052 4053 4054 4055
	if (pi) {
		/*
		 * Take priority boosted tasks into account. If the new
		 * effective priority is unchanged, we just store the new
		 * normal parameters and do not touch the scheduler class and
		 * the runqueue. This will be done when the task deboost
		 * itself.
		 */
		new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
4056 4057
		if (new_effective_prio == oldprio)
			queue_flags &= ~DEQUEUE_MOVE;
4058 4059
	}

4060
	queued = task_on_rq_queued(p);
4061
	running = task_current(rq, p);
4062
	if (queued)
4063
		dequeue_task(rq, p, queue_flags);
4064
	if (running)
4065
		put_prev_task(rq, p);
4066

4067
	prev_class = p->sched_class;
4068
	__setscheduler(rq, p, attr, pi);
4069

4070 4071
	if (running)
		p->sched_class->set_curr_task(rq);
4072
	if (queued) {
4073 4074 4075 4076
		/*
		 * We enqueue to tail when the priority of a task is
		 * increased (user space view).
		 */
4077 4078
		if (oldprio < p->prio)
			queue_flags |= ENQUEUE_HEAD;
4079

4080
		enqueue_task(rq, p, queue_flags);
4081
	}
4082

P
Peter Zijlstra 已提交
4083
	check_class_changed(rq, p, prev_class, oldprio);
4084
	preempt_disable(); /* avoid rq from going away on us */
4085
	task_rq_unlock(rq, p, &flags);
4086

4087 4088
	if (pi)
		rt_mutex_adjust_pi(p);
4089

4090 4091 4092 4093 4094
	/*
	 * Run balance callbacks after we've adjusted the PI chain.
	 */
	balance_callback(rq);
	preempt_enable();
4095

L
Linus Torvalds 已提交
4096 4097
	return 0;
}
4098

4099 4100 4101 4102 4103 4104 4105 4106 4107
static int _sched_setscheduler(struct task_struct *p, int policy,
			       const struct sched_param *param, bool check)
{
	struct sched_attr attr = {
		.sched_policy   = policy,
		.sched_priority = param->sched_priority,
		.sched_nice	= PRIO_TO_NICE(p->static_prio),
	};

4108 4109
	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4110 4111 4112 4113 4114
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
		policy &= ~SCHED_RESET_ON_FORK;
		attr.sched_policy = policy;
	}

4115
	return __sched_setscheduler(p, &attr, check, true);
4116
}
4117 4118 4119 4120 4121 4122
/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
4123 4124
 * Return: 0 on success. An error code otherwise.
 *
4125 4126 4127
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
4128
		       const struct sched_param *param)
4129
{
4130
	return _sched_setscheduler(p, policy, param, true);
4131
}
L
Linus Torvalds 已提交
4132 4133
EXPORT_SYMBOL_GPL(sched_setscheduler);

4134 4135
int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
{
4136
	return __sched_setscheduler(p, attr, true, true);
4137 4138 4139
}
EXPORT_SYMBOL_GPL(sched_setattr);

4140 4141 4142 4143 4144 4145 4146 4147 4148 4149
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
4150 4151
 *
 * Return: 0 on success. An error code otherwise.
4152 4153
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4154
			       const struct sched_param *param)
4155
{
4156
	return _sched_setscheduler(p, policy, param, false);
4157
}
4158
EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4159

I
Ingo Molnar 已提交
4160 4161
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4162 4163 4164
{
	struct sched_param lparam;
	struct task_struct *p;
4165
	int retval;
L
Linus Torvalds 已提交
4166 4167 4168 4169 4170

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4171 4172 4173

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4174
	p = find_process_by_pid(pid);
4175 4176 4177
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4178

L
Linus Torvalds 已提交
4179 4180 4181
	return retval;
}

4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243
/*
 * Mimics kernel/events/core.c perf_copy_attr().
 */
static int sched_copy_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr)
{
	u32 size;
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = SCHED_ATTR_SIZE_VER0;

	if (size < SCHED_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
	 */
	if (size > sizeof(*attr)) {
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;

		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;

		for (; addr < end; addr++) {
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
		size = sizeof(*attr);
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * XXX: do we want to be lenient like existing syscalls; or do we want
	 * to be strict and return an error on out-of-bounds values?
	 */
4244
	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4245

4246
	return 0;
4247 4248 4249

err_size:
	put_user(sizeof(*attr), &uattr->size);
4250
	return -E2BIG;
4251 4252
}

L
Linus Torvalds 已提交
4253 4254 4255 4256 4257
/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4258 4259
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4260
 */
4261 4262
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
4263
{
4264 4265 4266 4267
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4268 4269 4270 4271 4272 4273 4274
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
4275 4276
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4277
 */
4278
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4279
{
4280
	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
L
Linus Torvalds 已提交
4281 4282
}

4283 4284 4285
/**
 * sys_sched_setattr - same as above, but with extended sched_attr
 * @pid: the pid in question.
J
Juri Lelli 已提交
4286
 * @uattr: structure containing the extended parameters.
4287
 * @flags: for future extension.
4288
 */
4289 4290
SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
			       unsigned int, flags)
4291 4292 4293 4294 4295
{
	struct sched_attr attr;
	struct task_struct *p;
	int retval;

4296
	if (!uattr || pid < 0 || flags)
4297 4298
		return -EINVAL;

4299 4300 4301
	retval = sched_copy_attr(uattr, &attr);
	if (retval)
		return retval;
4302

4303
	if ((int)attr.sched_policy < 0)
4304
		return -EINVAL;
4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315

	rcu_read_lock();
	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (p != NULL)
		retval = sched_setattr(p, &attr);
	rcu_read_unlock();

	return retval;
}

L
Linus Torvalds 已提交
4316 4317 4318
/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
4319 4320 4321
 *
 * Return: On success, the policy of the thread. Otherwise, a negative error
 * code.
L
Linus Torvalds 已提交
4322
 */
4323
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4324
{
4325
	struct task_struct *p;
4326
	int retval;
L
Linus Torvalds 已提交
4327 4328

	if (pid < 0)
4329
		return -EINVAL;
L
Linus Torvalds 已提交
4330 4331

	retval = -ESRCH;
4332
	rcu_read_lock();
L
Linus Torvalds 已提交
4333 4334 4335 4336
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4337 4338
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4339
	}
4340
	rcu_read_unlock();
L
Linus Torvalds 已提交
4341 4342 4343 4344
	return retval;
}

/**
4345
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4346 4347
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
4348 4349 4350
 *
 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
 * code.
L
Linus Torvalds 已提交
4351
 */
4352
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4353
{
4354
	struct sched_param lp = { .sched_priority = 0 };
4355
	struct task_struct *p;
4356
	int retval;
L
Linus Torvalds 已提交
4357 4358

	if (!param || pid < 0)
4359
		return -EINVAL;
L
Linus Torvalds 已提交
4360

4361
	rcu_read_lock();
L
Linus Torvalds 已提交
4362 4363 4364 4365 4366 4367 4368 4369 4370
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4371 4372
	if (task_has_rt_policy(p))
		lp.sched_priority = p->rt_priority;
4373
	rcu_read_unlock();
L
Linus Torvalds 已提交
4374 4375 4376 4377 4378 4379 4380 4381 4382

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4383
	rcu_read_unlock();
L
Linus Torvalds 已提交
4384 4385 4386
	return retval;
}

4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409
static int sched_read_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr,
			   unsigned int usize)
{
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, usize))
		return -EFAULT;

	/*
	 * If we're handed a smaller struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. old
	 * user-space does not get uncomplete information.
	 */
	if (usize < sizeof(*attr)) {
		unsigned char *addr;
		unsigned char *end;

		addr = (void *)attr + usize;
		end  = (void *)attr + sizeof(*attr);

		for (; addr < end; addr++) {
			if (*addr)
4410
				return -EFBIG;
4411 4412 4413 4414 4415
		}

		attr->size = usize;
	}

4416
	ret = copy_to_user(uattr, attr, attr->size);
4417 4418 4419
	if (ret)
		return -EFAULT;

4420
	return 0;
4421 4422 4423
}

/**
4424
 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4425
 * @pid: the pid in question.
J
Juri Lelli 已提交
4426
 * @uattr: structure containing the extended parameters.
4427
 * @size: sizeof(attr) for fwd/bwd comp.
4428
 * @flags: for future extension.
4429
 */
4430 4431
SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
		unsigned int, size, unsigned int, flags)
4432 4433 4434 4435 4436 4437 4438 4439
{
	struct sched_attr attr = {
		.size = sizeof(struct sched_attr),
	};
	struct task_struct *p;
	int retval;

	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4440
	    size < SCHED_ATTR_SIZE_VER0 || flags)
4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453
		return -EINVAL;

	rcu_read_lock();
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	attr.sched_policy = p->policy;
4454 4455
	if (p->sched_reset_on_fork)
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4456 4457 4458
	if (task_has_dl_policy(p))
		__getparam_dl(p, &attr);
	else if (task_has_rt_policy(p))
4459 4460
		attr.sched_priority = p->rt_priority;
	else
4461
		attr.sched_nice = task_nice(p);
4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472

	rcu_read_unlock();

	retval = sched_read_attr(uattr, &attr, size);
	return retval;

out_unlock:
	rcu_read_unlock();
	return retval;
}

4473
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4474
{
4475
	cpumask_var_t cpus_allowed, new_mask;
4476 4477
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4478

4479
	rcu_read_lock();
L
Linus Torvalds 已提交
4480 4481 4482

	p = find_process_by_pid(pid);
	if (!p) {
4483
		rcu_read_unlock();
L
Linus Torvalds 已提交
4484 4485 4486
		return -ESRCH;
	}

4487
	/* Prevent p going away */
L
Linus Torvalds 已提交
4488
	get_task_struct(p);
4489
	rcu_read_unlock();
L
Linus Torvalds 已提交
4490

4491 4492 4493 4494
	if (p->flags & PF_NO_SETAFFINITY) {
		retval = -EINVAL;
		goto out_put_task;
	}
4495 4496 4497 4498 4499 4500 4501 4502
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4503
	retval = -EPERM;
E
Eric W. Biederman 已提交
4504 4505 4506 4507
	if (!check_same_owner(p)) {
		rcu_read_lock();
		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
			rcu_read_unlock();
4508
			goto out_free_new_mask;
E
Eric W. Biederman 已提交
4509 4510 4511
		}
		rcu_read_unlock();
	}
L
Linus Torvalds 已提交
4512

4513
	retval = security_task_setscheduler(p);
4514
	if (retval)
4515
		goto out_free_new_mask;
4516

4517 4518 4519 4520

	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);

4521 4522 4523 4524 4525 4526 4527
	/*
	 * Since bandwidth control happens on root_domain basis,
	 * if admission test is enabled, we only admit -deadline
	 * tasks allowed to run on all the CPUs in the task's
	 * root_domain.
	 */
#ifdef CONFIG_SMP
4528 4529 4530
	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
		rcu_read_lock();
		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4531
			retval = -EBUSY;
4532
			rcu_read_unlock();
4533
			goto out_free_new_mask;
4534
		}
4535
		rcu_read_unlock();
4536 4537
	}
#endif
P
Peter Zijlstra 已提交
4538
again:
4539
	retval = __set_cpus_allowed_ptr(p, new_mask, true);
L
Linus Torvalds 已提交
4540

P
Paul Menage 已提交
4541
	if (!retval) {
4542 4543
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4544 4545 4546 4547 4548
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4549
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4550 4551 4552
			goto again;
		}
	}
4553
out_free_new_mask:
4554 4555 4556 4557
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4558 4559 4560 4561 4562
	put_task_struct(p);
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4563
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4564
{
4565 4566 4567 4568 4569
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4570 4571 4572 4573 4574 4575 4576 4577
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
4578 4579
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4580
 */
4581 4582
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4583
{
4584
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4585 4586
	int retval;

4587 4588
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4589

4590 4591 4592 4593 4594
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4595 4596
}

4597
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4598
{
4599
	struct task_struct *p;
4600
	unsigned long flags;
L
Linus Torvalds 已提交
4601 4602
	int retval;

4603
	rcu_read_lock();
L
Linus Torvalds 已提交
4604 4605 4606 4607 4608 4609

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4610 4611 4612 4613
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4614
	raw_spin_lock_irqsave(&p->pi_lock, flags);
4615
	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4616
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4617 4618

out_unlock:
4619
	rcu_read_unlock();
L
Linus Torvalds 已提交
4620

4621
	return retval;
L
Linus Torvalds 已提交
4622 4623 4624 4625 4626 4627 4628
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4629 4630
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4631
 */
4632 4633
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4634 4635
{
	int ret;
4636
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4637

A
Anton Blanchard 已提交
4638
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4639 4640
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4641 4642
		return -EINVAL;

4643 4644
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4645

4646 4647
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4648
		size_t retlen = min_t(size_t, len, cpumask_size());
4649 4650

		if (copy_to_user(user_mask_ptr, mask, retlen))
4651 4652
			ret = -EFAULT;
		else
4653
			ret = retlen;
4654 4655
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4656

4657
	return ret;
L
Linus Torvalds 已提交
4658 4659 4660 4661 4662
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4663 4664
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
4665 4666
 *
 * Return: 0.
L
Linus Torvalds 已提交
4667
 */
4668
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4669
{
4670
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4671

4672
	schedstat_inc(rq, yld_count);
4673
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4674 4675 4676 4677 4678 4679

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4680
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4681
	do_raw_spin_unlock(&rq->lock);
4682
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
4683 4684 4685 4686 4687 4688

	schedule();

	return 0;
}

4689
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4690
{
4691
	if (should_resched(0)) {
4692
		preempt_schedule_common();
L
Linus Torvalds 已提交
4693 4694 4695 4696
		return 1;
	}
	return 0;
}
4697
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4698 4699

/*
4700
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4701 4702
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4703
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4704 4705 4706
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4707
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4708
{
4709
	int resched = should_resched(PREEMPT_LOCK_OFFSET);
J
Jan Kara 已提交
4710 4711
	int ret = 0;

4712 4713
	lockdep_assert_held(lock);

4714
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4715
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4716
		if (resched)
4717
			preempt_schedule_common();
N
Nick Piggin 已提交
4718 4719
		else
			cpu_relax();
J
Jan Kara 已提交
4720
		ret = 1;
L
Linus Torvalds 已提交
4721 4722
		spin_lock(lock);
	}
J
Jan Kara 已提交
4723
	return ret;
L
Linus Torvalds 已提交
4724
}
4725
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4726

4727
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4728 4729 4730
{
	BUG_ON(!in_softirq());

4731
	if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4732
		local_bh_enable();
4733
		preempt_schedule_common();
L
Linus Torvalds 已提交
4734 4735 4736 4737 4738
		local_bh_disable();
		return 1;
	}
	return 0;
}
4739
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4740 4741 4742 4743

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
 * 	yield();
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
4762 4763 4764 4765 4766 4767 4768 4769
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

4770 4771 4772 4773
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
4774 4775
 * @p: target task
 * @preempt: whether task preemption is allowed or not
4776 4777 4778 4779
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
4780
 * Return:
4781 4782 4783
 *	true (>0) if we indeed boosted the target task.
 *	false (0) if we failed to boost the target.
 *	-ESRCH if there's no task to yield to.
4784
 */
4785
int __sched yield_to(struct task_struct *p, bool preempt)
4786 4787 4788 4789
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
4790
	int yielded = 0;
4791 4792 4793 4794 4795 4796

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
4797 4798 4799 4800 4801 4802 4803 4804 4805
	/*
	 * If we're the only runnable task on the rq and target rq also
	 * has only one task, there's absolutely no point in yielding.
	 */
	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
		yielded = -ESRCH;
		goto out_irq;
	}

4806
	double_rq_lock(rq, p_rq);
4807
	if (task_rq(p) != p_rq) {
4808 4809 4810 4811 4812
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
4813
		goto out_unlock;
4814 4815

	if (curr->sched_class != p->sched_class)
4816
		goto out_unlock;
4817 4818

	if (task_running(p_rq, p) || p->state)
4819
		goto out_unlock;
4820 4821

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4822
	if (yielded) {
4823
		schedstat_inc(rq, yld_count);
4824 4825 4826 4827 4828
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
4829
			resched_curr(p_rq);
4830
	}
4831

4832
out_unlock:
4833
	double_rq_unlock(rq, p_rq);
4834
out_irq:
4835 4836
	local_irq_restore(flags);

4837
	if (yielded > 0)
4838 4839 4840 4841 4842 4843
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
4844
/*
I
Ingo Molnar 已提交
4845
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4846 4847 4848 4849
 * that process accounting knows that this is a task in IO wait state.
 */
long __sched io_schedule_timeout(long timeout)
{
4850 4851
	int old_iowait = current->in_iowait;
	struct rq *rq;
L
Linus Torvalds 已提交
4852 4853
	long ret;

4854
	current->in_iowait = 1;
4855
	blk_schedule_flush_plug(current);
4856

4857
	delayacct_blkio_start();
4858
	rq = raw_rq();
L
Linus Torvalds 已提交
4859 4860
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
4861
	current->in_iowait = old_iowait;
L
Linus Torvalds 已提交
4862
	atomic_dec(&rq->nr_iowait);
4863
	delayacct_blkio_end();
4864

L
Linus Torvalds 已提交
4865 4866
	return ret;
}
4867
EXPORT_SYMBOL(io_schedule_timeout);
L
Linus Torvalds 已提交
4868 4869 4870 4871 4872

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
4873 4874 4875
 * Return: On success, this syscall returns the maximum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
4876
 */
4877
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
4878 4879 4880 4881 4882 4883 4884 4885
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
4886
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
4887
	case SCHED_NORMAL:
4888
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4889
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4890 4891 4892 4893 4894 4895 4896 4897 4898 4899
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
4900 4901 4902
 * Return: On success, this syscall returns the minimum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
4903
 */
4904
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
4905 4906 4907 4908 4909 4910 4911 4912
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
4913
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
4914
	case SCHED_NORMAL:
4915
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4916
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
4929 4930 4931
 *
 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
 * an error code.
L
Linus Torvalds 已提交
4932
 */
4933
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4934
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
4935
{
4936
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4937
	unsigned int time_slice;
4938 4939
	unsigned long flags;
	struct rq *rq;
4940
	int retval;
L
Linus Torvalds 已提交
4941 4942 4943
	struct timespec t;

	if (pid < 0)
4944
		return -EINVAL;
L
Linus Torvalds 已提交
4945 4946

	retval = -ESRCH;
4947
	rcu_read_lock();
L
Linus Torvalds 已提交
4948 4949 4950 4951 4952 4953 4954 4955
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4956
	rq = task_rq_lock(p, &flags);
4957 4958 4959
	time_slice = 0;
	if (p->sched_class->get_rr_interval)
		time_slice = p->sched_class->get_rr_interval(rq, p);
4960
	task_rq_unlock(rq, p, &flags);
D
Dmitry Adamushko 已提交
4961

4962
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
4963
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4964 4965
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4966

L
Linus Torvalds 已提交
4967
out_unlock:
4968
	rcu_read_unlock();
L
Linus Torvalds 已提交
4969 4970 4971
	return retval;
}

4972
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4973

4974
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4975 4976
{
	unsigned long free = 0;
4977
	int ppid;
4978
	unsigned long state = p->state;
L
Linus Torvalds 已提交
4979

4980 4981
	if (state)
		state = __ffs(state) + 1;
4982
	printk(KERN_INFO "%-15.15s %c", p->comm,
4983
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4984
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4985
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4986
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4987
	else
P
Peter Zijlstra 已提交
4988
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4989 4990
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4991
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4992
	else
P
Peter Zijlstra 已提交
4993
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4994 4995
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
4996
	free = stack_not_used(p);
L
Linus Torvalds 已提交
4997
#endif
4998
	ppid = 0;
4999
	rcu_read_lock();
5000 5001
	if (pid_alive(p))
		ppid = task_pid_nr(rcu_dereference(p->real_parent));
5002
	rcu_read_unlock();
P
Peter Zijlstra 已提交
5003
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5004
		task_pid_nr(p), ppid,
5005
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
5006

5007
	print_worker_info(KERN_INFO, p);
5008
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5009 5010
}

I
Ingo Molnar 已提交
5011
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5012
{
5013
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5014

5015
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
5016 5017
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5018
#else
P
Peter Zijlstra 已提交
5019 5020
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5021
#endif
5022
	rcu_read_lock();
5023
	for_each_process_thread(g, p) {
L
Linus Torvalds 已提交
5024 5025
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
5026
		 * console might take a lot of time:
L
Linus Torvalds 已提交
5027 5028
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5029
		if (!state_filter || (p->state & state_filter))
5030
			sched_show_task(p);
5031
	}
L
Linus Torvalds 已提交
5032

5033 5034
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5035 5036 5037
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
5038
	rcu_read_unlock();
I
Ingo Molnar 已提交
5039 5040 5041
	/*
	 * Only show locks if all tasks are dumped:
	 */
5042
	if (!state_filter)
I
Ingo Molnar 已提交
5043
		debug_show_all_locks();
L
Linus Torvalds 已提交
5044 5045
}

5046
void init_idle_bootup_task(struct task_struct *idle)
I
Ingo Molnar 已提交
5047
{
I
Ingo Molnar 已提交
5048
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5049 5050
}

5051 5052 5053 5054 5055 5056 5057 5058
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5059
void init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5060
{
5061
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5062 5063
	unsigned long flags;

5064 5065
	raw_spin_lock_irqsave(&idle->pi_lock, flags);
	raw_spin_lock(&rq->lock);
5066

5067
	__sched_fork(0, idle);
5068
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
5069 5070
	idle->se.exec_start = sched_clock();

5071 5072
	kasan_unpoison_task_stack(idle);

5073 5074 5075 5076 5077 5078 5079 5080 5081
#ifdef CONFIG_SMP
	/*
	 * Its possible that init_idle() gets called multiple times on a task,
	 * in that case do_set_cpus_allowed() will not do the right thing.
	 *
	 * And since this is boot we can forgo the serialization.
	 */
	set_cpus_allowed_common(idle, cpumask_of(cpu));
#endif
5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
5093
	__set_task_cpu(idle, cpu);
5094
	rcu_read_unlock();
L
Linus Torvalds 已提交
5095 5096

	rq->curr = rq->idle = idle;
5097
	idle->on_rq = TASK_ON_RQ_QUEUED;
5098
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
5099
	idle->on_cpu = 1;
5100
#endif
5101 5102
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
L
Linus Torvalds 已提交
5103 5104

	/* Set the preempt count _outside_ the spinlocks! */
5105
	init_idle_preempt_count(idle, cpu);
5106

I
Ingo Molnar 已提交
5107 5108 5109 5110
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
5111
	ftrace_graph_init_idle_task(idle, cpu);
5112
	vtime_init_idle(idle, cpu);
5113
#ifdef CONFIG_SMP
5114 5115
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
5116 5117
}

5118 5119 5120 5121 5122 5123 5124
int cpuset_cpumask_can_shrink(const struct cpumask *cur,
			      const struct cpumask *trial)
{
	int ret = 1, trial_cpus;
	struct dl_bw *cur_dl_b;
	unsigned long flags;

5125 5126 5127
	if (!cpumask_weight(cur))
		return ret;

5128
	rcu_read_lock_sched();
5129 5130 5131 5132 5133 5134 5135 5136
	cur_dl_b = dl_bw_of(cpumask_any(cur));
	trial_cpus = cpumask_weight(trial);

	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
	if (cur_dl_b->bw != -1 &&
	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
		ret = 0;
	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5137
	rcu_read_unlock_sched();
5138 5139 5140 5141

	return ret;
}

5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165
int task_can_attach(struct task_struct *p,
		    const struct cpumask *cs_cpus_allowed)
{
	int ret = 0;

	/*
	 * Kthreads which disallow setaffinity shouldn't be moved
	 * to a new cpuset; we don't want to change their cpu
	 * affinity and isolating such threads by their set of
	 * allowed nodes is unnecessary.  Thus, cpusets are not
	 * applicable for such threads.  This prevents checking for
	 * success of set_cpus_allowed_ptr() on all attached tasks
	 * before cpus_allowed may be changed.
	 */
	if (p->flags & PF_NO_SETAFFINITY) {
		ret = -EINVAL;
		goto out;
	}

#ifdef CONFIG_SMP
	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
					      cs_cpus_allowed)) {
		unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
							cs_cpus_allowed);
5166
		struct dl_bw *dl_b;
5167 5168 5169 5170
		bool overflow;
		int cpus;
		unsigned long flags;

5171 5172
		rcu_read_lock_sched();
		dl_b = dl_bw_of(dest_cpu);
5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187
		raw_spin_lock_irqsave(&dl_b->lock, flags);
		cpus = dl_bw_cpus(dest_cpu);
		overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
		if (overflow)
			ret = -EBUSY;
		else {
			/*
			 * We reserve space for this task in the destination
			 * root_domain, as we can't fail after this point.
			 * We will free resources in the source root_domain
			 * later on (see set_cpus_allowed_dl()).
			 */
			__dl_add(dl_b, p->dl.dl_bw);
		}
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5188
		rcu_read_unlock_sched();
5189 5190 5191 5192 5193 5194 5195

	}
#endif
out:
	return ret;
}

L
Linus Torvalds 已提交
5196 5197
#ifdef CONFIG_SMP

5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212
#ifdef CONFIG_NUMA_BALANCING
/* Migrate current task p to target_cpu */
int migrate_task_to(struct task_struct *p, int target_cpu)
{
	struct migration_arg arg = { p, target_cpu };
	int curr_cpu = task_cpu(p);

	if (curr_cpu == target_cpu)
		return 0;

	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
		return -EINVAL;

	/* TODO: This is not properly updating schedstats */

5213
	trace_sched_move_numa(p, curr_cpu, target_cpu);
5214 5215
	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
}
5216 5217 5218 5219 5220 5221 5222 5223 5224

/*
 * Requeue a task on a given node and accurately track the number of NUMA
 * tasks on the runqueues
 */
void sched_setnuma(struct task_struct *p, int nid)
{
	struct rq *rq;
	unsigned long flags;
5225
	bool queued, running;
5226 5227

	rq = task_rq_lock(p, &flags);
5228
	queued = task_on_rq_queued(p);
5229 5230
	running = task_current(rq, p);

5231
	if (queued)
5232
		dequeue_task(rq, p, DEQUEUE_SAVE);
5233
	if (running)
5234
		put_prev_task(rq, p);
5235 5236 5237 5238 5239

	p->numa_preferred_nid = nid;

	if (running)
		p->sched_class->set_curr_task(rq);
5240
	if (queued)
5241
		enqueue_task(rq, p, ENQUEUE_RESTORE);
5242 5243
	task_rq_unlock(rq, p, &flags);
}
P
Peter Zijlstra 已提交
5244
#endif /* CONFIG_NUMA_BALANCING */
5245

L
Linus Torvalds 已提交
5246
#ifdef CONFIG_HOTPLUG_CPU
5247
/*
5248 5249
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
5250
 */
5251
void idle_task_exit(void)
L
Linus Torvalds 已提交
5252
{
5253
	struct mm_struct *mm = current->active_mm;
5254

5255
	BUG_ON(cpu_online(smp_processor_id()));
5256

5257
	if (mm != &init_mm) {
5258
		switch_mm(mm, &init_mm, current);
5259 5260
		finish_arch_post_lock_switch();
	}
5261
	mmdrop(mm);
L
Linus Torvalds 已提交
5262 5263 5264
}

/*
5265 5266 5267 5268 5269
 * Since this CPU is going 'away' for a while, fold any nr_active delta
 * we might have. Assumes we're called after migrate_tasks() so that the
 * nr_active count is stable.
 *
 * Also see the comment "Global load-average calculations".
L
Linus Torvalds 已提交
5270
 */
5271
static void calc_load_migrate(struct rq *rq)
L
Linus Torvalds 已提交
5272
{
5273 5274 5275
	long delta = calc_load_fold_active(rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
5276 5277
}

5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293
static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
{
}

static const struct sched_class fake_sched_class = {
	.put_prev_task = put_prev_task_fake,
};

static struct task_struct fake_task = {
	/*
	 * Avoid pull_{rt,dl}_task()
	 */
	.prio = MAX_PRIO + 1,
	.sched_class = &fake_sched_class,
};

5294
/*
5295 5296 5297 5298 5299 5300
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
5301
 */
5302
static void migrate_tasks(struct rq *dead_rq)
L
Linus Torvalds 已提交
5303
{
5304
	struct rq *rq = dead_rq;
5305 5306
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
5307 5308

	/*
5309 5310 5311 5312 5313 5314 5315
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
5316
	 */
5317
	rq->stop = NULL;
5318

5319 5320 5321 5322 5323 5324 5325
	/*
	 * put_prev_task() and pick_next_task() sched
	 * class method both need to have an up-to-date
	 * value of rq->clock[_task]
	 */
	update_rq_clock(rq);

5326
	for (;;) {
5327 5328 5329 5330 5331
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
5332
			break;
5333

5334
		/*
W
Wanpeng Li 已提交
5335
		 * pick_next_task assumes pinned rq->lock.
5336 5337
		 */
		lockdep_pin_lock(&rq->lock);
5338
		next = pick_next_task(rq, &fake_task);
5339
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
5340
		next->sched_class->put_prev_task(rq, next);
5341

W
Wanpeng Li 已提交
5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365
		/*
		 * Rules for changing task_struct::cpus_allowed are holding
		 * both pi_lock and rq->lock, such that holding either
		 * stabilizes the mask.
		 *
		 * Drop rq->lock is not quite as disastrous as it usually is
		 * because !cpu_active at this point, which means load-balance
		 * will not interfere. Also, stop-machine.
		 */
		lockdep_unpin_lock(&rq->lock);
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&next->pi_lock);
		raw_spin_lock(&rq->lock);

		/*
		 * Since we're inside stop-machine, _nothing_ should have
		 * changed the task, WARN if weird stuff happened, because in
		 * that case the above rq->lock drop is a fail too.
		 */
		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
			raw_spin_unlock(&next->pi_lock);
			continue;
		}

5366
		/* Find suitable destination for @next, with force if needed. */
5367
		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5368

5369 5370 5371 5372 5373 5374
		rq = __migrate_task(rq, next, dest_cpu);
		if (rq != dead_rq) {
			raw_spin_unlock(&rq->lock);
			rq = dead_rq;
			raw_spin_lock(&rq->lock);
		}
W
Wanpeng Li 已提交
5375
		raw_spin_unlock(&next->pi_lock);
L
Linus Torvalds 已提交
5376
	}
5377

5378
	rq->stop = stop;
5379
}
L
Linus Torvalds 已提交
5380 5381
#endif /* CONFIG_HOTPLUG_CPU */

5382 5383 5384 5385 5386
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5387
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5407
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5408 5409 5410 5411
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5412 5413 5414 5415
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5416
static int
5417
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5418
{
5419
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5420
	unsigned long flags;
5421
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5422

5423
	switch (action & ~CPU_TASKS_FROZEN) {
5424

L
Linus Torvalds 已提交
5425
	case CPU_UP_PREPARE:
5426
		rq->calc_load_update = calc_load_update;
5427
		account_reset_rq(rq);
L
Linus Torvalds 已提交
5428
		break;
5429

L
Linus Torvalds 已提交
5430
	case CPU_ONLINE:
5431
		/* Update our root-domain */
5432
		raw_spin_lock_irqsave(&rq->lock, flags);
5433
		if (rq->rd) {
5434
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5435 5436

			set_rq_online(rq);
5437
		}
5438
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5439
		break;
5440

L
Linus Torvalds 已提交
5441
#ifdef CONFIG_HOTPLUG_CPU
5442
	case CPU_DYING:
5443
		sched_ttwu_pending();
G
Gregory Haskins 已提交
5444
		/* Update our root-domain */
5445
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5446
		if (rq->rd) {
5447
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5448
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5449
		}
5450
		migrate_tasks(rq);
5451
		BUG_ON(rq->nr_running != 1); /* the migration thread */
5452
		raw_spin_unlock_irqrestore(&rq->lock, flags);
5453
		break;
5454

5455
	case CPU_DEAD:
5456
		calc_load_migrate(rq);
G
Gregory Haskins 已提交
5457
		break;
L
Linus Torvalds 已提交
5458 5459
#endif
	}
5460 5461 5462

	update_max_interval();

L
Linus Torvalds 已提交
5463 5464 5465
	return NOTIFY_OK;
}

5466 5467 5468
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5469
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5470
 */
5471
static struct notifier_block migration_notifier = {
L
Linus Torvalds 已提交
5472
	.notifier_call = migration_call,
5473
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
5474 5475
};

5476
static void set_cpu_rq_start_time(void)
5477 5478 5479 5480 5481 5482
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
	rq->age_stamp = sched_clock_cpu(cpu);
}

5483
static int sched_cpu_active(struct notifier_block *nfb,
5484 5485
				      unsigned long action, void *hcpu)
{
P
Peter Zijlstra 已提交
5486 5487
	int cpu = (long)hcpu;

5488
	switch (action & ~CPU_TASKS_FROZEN) {
5489 5490 5491
	case CPU_STARTING:
		set_cpu_rq_start_time();
		return NOTIFY_OK;
P
Peter Zijlstra 已提交
5492

5493
	case CPU_DOWN_FAILED:
P
Peter Zijlstra 已提交
5494
		set_cpu_active(cpu, true);
5495
		return NOTIFY_OK;
P
Peter Zijlstra 已提交
5496

5497 5498 5499 5500 5501
	default:
		return NOTIFY_DONE;
	}
}

5502
static int sched_cpu_inactive(struct notifier_block *nfb,
5503 5504 5505 5506
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
5507
		set_cpu_active((long)hcpu, false);
5508
		return NOTIFY_OK;
5509 5510
	default:
		return NOTIFY_DONE;
5511 5512 5513
	}
}

5514
static int __init migration_init(void)
L
Linus Torvalds 已提交
5515 5516
{
	void *cpu = (void *)(long)smp_processor_id();
5517
	int err;
5518

5519
	/* Initialize migration for the boot CPU */
5520 5521
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5522 5523
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5524

5525 5526 5527 5528
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

5529
	return 0;
L
Linus Torvalds 已提交
5530
}
5531
early_initcall(migration_init);
5532

5533 5534
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

5535
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5536

5537
static __read_mostly int sched_debug_enabled;
5538

5539
static int __init sched_debug_setup(char *str)
5540
{
5541
	sched_debug_enabled = 1;
5542 5543 5544

	return 0;
}
5545 5546 5547 5548 5549 5550
early_param("sched_debug", sched_debug_setup);

static inline bool sched_debug(void)
{
	return sched_debug_enabled;
}
5551

5552
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5553
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5554
{
I
Ingo Molnar 已提交
5555
	struct sched_group *group = sd->groups;
L
Linus Torvalds 已提交
5556

5557
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5558 5559 5560 5561

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5562
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5563
		if (sd->parent)
P
Peter Zijlstra 已提交
5564 5565
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5566
		return -1;
N
Nick Piggin 已提交
5567 5568
	}

5569 5570
	printk(KERN_CONT "span %*pbl level %s\n",
	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
I
Ingo Molnar 已提交
5571

5572
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5573 5574
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5575
	}
5576
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5577 5578
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5579
	}
L
Linus Torvalds 已提交
5580

I
Ingo Molnar 已提交
5581
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5582
	do {
I
Ingo Molnar 已提交
5583
		if (!group) {
P
Peter Zijlstra 已提交
5584 5585
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5586 5587 5588
			break;
		}

5589
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5590 5591
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
5592 5593
			break;
		}
L
Linus Torvalds 已提交
5594

5595 5596
		if (!(sd->flags & SD_OVERLAP) &&
		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5597 5598
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
5599 5600
			break;
		}
L
Linus Torvalds 已提交
5601

5602
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
5603

5604 5605
		printk(KERN_CONT " %*pbl",
		       cpumask_pr_args(sched_group_cpus(group)));
5606
		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5607 5608
			printk(KERN_CONT " (cpu_capacity = %d)",
				group->sgc->capacity);
5609
		}
L
Linus Torvalds 已提交
5610

I
Ingo Molnar 已提交
5611 5612
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
5613
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5614

5615
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
5616
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5617

5618 5619
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
5620 5621
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
5622 5623
	return 0;
}
L
Linus Torvalds 已提交
5624

I
Ingo Molnar 已提交
5625 5626 5627
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5628

5629
	if (!sched_debug_enabled)
5630 5631
		return;

I
Ingo Molnar 已提交
5632 5633 5634 5635
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5636

I
Ingo Molnar 已提交
5637 5638 5639
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
5640
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
I
Ingo Molnar 已提交
5641
			break;
L
Linus Torvalds 已提交
5642 5643
		level++;
		sd = sd->parent;
5644
		if (!sd)
I
Ingo Molnar 已提交
5645 5646
			break;
	}
L
Linus Torvalds 已提交
5647
}
5648
#else /* !CONFIG_SCHED_DEBUG */
5649
# define sched_domain_debug(sd, cpu) do { } while (0)
5650 5651 5652 5653
static inline bool sched_debug(void)
{
	return false;
}
5654
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
5655

5656
static int sd_degenerate(struct sched_domain *sd)
5657
{
5658
	if (cpumask_weight(sched_domain_span(sd)) == 1)
5659 5660 5661 5662 5663 5664
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5665
			 SD_BALANCE_EXEC |
5666
			 SD_SHARE_CPUCAPACITY |
5667 5668
			 SD_SHARE_PKG_RESOURCES |
			 SD_SHARE_POWERDOMAIN)) {
5669 5670 5671 5672 5673
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
5674
	if (sd->flags & (SD_WAKE_AFFINE))
5675 5676 5677 5678 5679
		return 0;

	return 1;
}

5680 5681
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5682 5683 5684 5685 5686 5687
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

5688
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5689 5690 5691 5692 5693 5694 5695
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5696
				SD_BALANCE_EXEC |
5697
				SD_SHARE_CPUCAPACITY |
5698
				SD_SHARE_PKG_RESOURCES |
5699 5700
				SD_PREFER_SIBLING |
				SD_SHARE_POWERDOMAIN);
5701 5702
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
5703 5704 5705 5706 5707 5708 5709
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

5710
static void free_rootdomain(struct rcu_head *rcu)
5711
{
5712
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5713

5714
	cpupri_cleanup(&rd->cpupri);
5715
	cpudl_cleanup(&rd->cpudl);
5716
	free_cpumask_var(rd->dlo_mask);
5717 5718 5719 5720 5721 5722
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
5723 5724
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
5725
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
5726 5727
	unsigned long flags;

5728
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5729 5730

	if (rq->rd) {
I
Ingo Molnar 已提交
5731
		old_rd = rq->rd;
G
Gregory Haskins 已提交
5732

5733
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5734
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5735

5736
		cpumask_clear_cpu(rq->cpu, old_rd->span);
5737

I
Ingo Molnar 已提交
5738
		/*
5739
		 * If we dont want to free the old_rd yet then
I
Ingo Molnar 已提交
5740 5741 5742 5743 5744
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
5745 5746 5747 5748 5749
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

5750
	cpumask_set_cpu(rq->cpu, rd->span);
5751
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5752
		set_rq_online(rq);
G
Gregory Haskins 已提交
5753

5754
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
5755 5756

	if (old_rd)
5757
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
5758 5759
}

5760
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
5761 5762 5763
{
	memset(rd, 0, sizeof(*rd));

5764
	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
5765
		goto out;
5766
	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
5767
		goto free_span;
5768
	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5769
		goto free_online;
5770
	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5771
		goto free_dlo_mask;
5772

5773
	init_dl_bw(&rd->dl_bw);
5774 5775
	if (cpudl_init(&rd->cpudl) != 0)
		goto free_dlo_mask;
5776

5777
	if (cpupri_init(&rd->cpupri) != 0)
5778
		goto free_rto_mask;
5779
	return 0;
5780

5781 5782
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
5783 5784
free_dlo_mask:
	free_cpumask_var(rd->dlo_mask);
5785 5786 5787 5788
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
5789
out:
5790
	return -ENOMEM;
G
Gregory Haskins 已提交
5791 5792
}

5793 5794 5795 5796 5797 5798
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
struct root_domain def_root_domain;

G
Gregory Haskins 已提交
5799 5800
static void init_defrootdomain(void)
{
5801
	init_rootdomain(&def_root_domain);
5802

G
Gregory Haskins 已提交
5803 5804 5805
	atomic_set(&def_root_domain.refcount, 1);
}

5806
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
5807 5808 5809 5810 5811 5812 5813
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

5814
	if (init_rootdomain(rd) != 0) {
5815 5816 5817
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
5818 5819 5820 5821

	return rd;
}

5822
static void free_sched_groups(struct sched_group *sg, int free_sgc)
5823 5824 5825 5826 5827 5828 5829 5830 5831 5832
{
	struct sched_group *tmp, *first;

	if (!sg)
		return;

	first = sg;
	do {
		tmp = sg->next;

5833 5834
		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
			kfree(sg->sgc);
5835 5836 5837 5838 5839 5840

		kfree(sg);
		sg = tmp;
	} while (sg != first);
}

5841 5842 5843
static void free_sched_domain(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5844 5845 5846 5847 5848 5849 5850 5851

	/*
	 * If its an overlapping domain it has private groups, iterate and
	 * nuke them all.
	 */
	if (sd->flags & SD_OVERLAP) {
		free_sched_groups(sd->groups, 1);
	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5852
		kfree(sd->groups->sgc);
5853
		kfree(sd->groups);
5854
	}
5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868
	kfree(sd);
}

static void destroy_sched_domain(struct sched_domain *sd, int cpu)
{
	call_rcu(&sd->rcu, free_sched_domain);
}

static void destroy_sched_domains(struct sched_domain *sd, int cpu)
{
	for (; sd; sd = sd->parent)
		destroy_sched_domain(sd, cpu);
}

5869 5870 5871 5872 5873 5874 5875
/*
 * Keep a special pointer to the highest sched_domain that has
 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 * allows us to avoid some pointer chasing select_idle_sibling().
 *
 * Also keep a unique ID per domain (we use the first cpu number in
 * the cpumask of the domain), this allows us to quickly tell if
5876
 * two cpus are in the same cache domain, see cpus_share_cache().
5877 5878
 */
DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5879
DEFINE_PER_CPU(int, sd_llc_size);
5880
DEFINE_PER_CPU(int, sd_llc_id);
5881
DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5882 5883
DEFINE_PER_CPU(struct sched_domain *, sd_busy);
DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5884 5885 5886 5887

static void update_top_cache_domain(int cpu)
{
	struct sched_domain *sd;
5888
	struct sched_domain *busy_sd = NULL;
5889
	int id = cpu;
5890
	int size = 1;
5891 5892

	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5893
	if (sd) {
5894
		id = cpumask_first(sched_domain_span(sd));
5895
		size = cpumask_weight(sched_domain_span(sd));
5896
		busy_sd = sd->parent; /* sd_busy */
5897
	}
5898
	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5899 5900

	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5901
	per_cpu(sd_llc_size, cpu) = size;
5902
	per_cpu(sd_llc_id, cpu) = id;
5903 5904 5905

	sd = lowest_flag_domain(cpu, SD_NUMA);
	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5906 5907 5908

	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5909 5910
}

L
Linus Torvalds 已提交
5911
/*
I
Ingo Molnar 已提交
5912
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
5913 5914
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
5915 5916
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
5917
{
5918
	struct rq *rq = cpu_rq(cpu);
5919 5920 5921
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
5922
	for (tmp = sd; tmp; ) {
5923 5924 5925
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5926

5927
		if (sd_parent_degenerate(tmp, parent)) {
5928
			tmp->parent = parent->parent;
5929 5930
			if (parent->parent)
				parent->parent->child = tmp;
5931 5932 5933 5934 5935 5936 5937
			/*
			 * Transfer SD_PREFER_SIBLING down in case of a
			 * degenerate parent; the spans match for this
			 * so the property transfers.
			 */
			if (parent->flags & SD_PREFER_SIBLING)
				tmp->flags |= SD_PREFER_SIBLING;
5938
			destroy_sched_domain(parent, cpu);
5939 5940
		} else
			tmp = tmp->parent;
5941 5942
	}

5943
	if (sd && sd_degenerate(sd)) {
5944
		tmp = sd;
5945
		sd = sd->parent;
5946
		destroy_sched_domain(tmp, cpu);
5947 5948 5949
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5950

5951
	sched_domain_debug(sd, cpu);
L
Linus Torvalds 已提交
5952

G
Gregory Haskins 已提交
5953
	rq_attach_root(rq, rd);
5954
	tmp = rq->sd;
N
Nick Piggin 已提交
5955
	rcu_assign_pointer(rq->sd, sd);
5956
	destroy_sched_domains(tmp, cpu);
5957 5958

	update_top_cache_domain(cpu);
L
Linus Torvalds 已提交
5959 5960 5961 5962 5963
}

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
5964 5965
	int ret;

R
Rusty Russell 已提交
5966
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5967 5968 5969 5970 5971
	ret = cpulist_parse(str, cpu_isolated_map);
	if (ret) {
		pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
		return 0;
	}
L
Linus Torvalds 已提交
5972 5973
	return 1;
}
I
Ingo Molnar 已提交
5974
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5975

5976
struct s_data {
5977
	struct sched_domain ** __percpu sd;
5978 5979 5980
	struct root_domain	*rd;
};

5981 5982
enum s_alloc {
	sa_rootdomain,
5983
	sa_sd,
5984
	sa_sd_storage,
5985 5986 5987
	sa_none,
};

P
Peter Zijlstra 已提交
5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025
/*
 * Build an iteration mask that can exclude certain CPUs from the upwards
 * domain traversal.
 *
 * Asymmetric node setups can result in situations where the domain tree is of
 * unequal depth, make sure to skip domains that already cover the entire
 * range.
 *
 * In that case build_sched_domains() will have terminated the iteration early
 * and our sibling sd spans will be empty. Domains should always include the
 * cpu they're built on, so check that.
 *
 */
static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
{
	const struct cpumask *span = sched_domain_span(sd);
	struct sd_data *sdd = sd->private;
	struct sched_domain *sibling;
	int i;

	for_each_cpu(i, span) {
		sibling = *per_cpu_ptr(sdd->sd, i);
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
			continue;

		cpumask_set_cpu(i, sched_group_mask(sg));
	}
}

/*
 * Return the canonical balance cpu for this group, this is the first cpu
 * of this group that's also in the iteration mask.
 */
int group_balance_cpu(struct sched_group *sg)
{
	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
}

6026 6027 6028 6029 6030 6031 6032
static int
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered = sched_domains_tmpmask;
	struct sd_data *sdd = sd->private;
6033
	struct sched_domain *sibling;
6034 6035 6036 6037 6038 6039 6040 6041 6042 6043
	int i;

	cpumask_clear(covered);

	for_each_cpu(i, span) {
		struct cpumask *sg_span;

		if (cpumask_test_cpu(i, covered))
			continue;

6044
		sibling = *per_cpu_ptr(sdd->sd, i);
P
Peter Zijlstra 已提交
6045 6046

		/* See the comment near build_group_mask(). */
6047
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
P
Peter Zijlstra 已提交
6048 6049
			continue;

6050
		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6051
				GFP_KERNEL, cpu_to_node(cpu));
6052 6053 6054 6055 6056

		if (!sg)
			goto fail;

		sg_span = sched_group_cpus(sg);
6057 6058 6059
		if (sibling->child)
			cpumask_copy(sg_span, sched_domain_span(sibling->child));
		else
6060 6061 6062 6063
			cpumask_set_cpu(i, sg_span);

		cpumask_or(covered, covered, sg_span);

6064 6065
		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
		if (atomic_inc_return(&sg->sgc->ref) == 1)
P
Peter Zijlstra 已提交
6066 6067
			build_group_mask(sd, sg);

6068
		/*
6069
		 * Initialize sgc->capacity such that even if we mess up the
6070 6071 6072
		 * domains and no possible iteration will get us here, we won't
		 * die on a /0 trap.
		 */
6073
		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6074

P
Peter Zijlstra 已提交
6075 6076 6077 6078 6079
		/*
		 * Make sure the first group of this domain contains the
		 * canonical balance cpu. Otherwise the sched_domain iteration
		 * breaks. See update_sg_lb_stats().
		 */
P
Peter Zijlstra 已提交
6080
		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
P
Peter Zijlstra 已提交
6081
		    group_balance_cpu(sg) == cpu)
6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100
			groups = sg;

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
		last->next = first;
	}
	sd->groups = groups;

	return 0;

fail:
	free_sched_groups(first, 0);

	return -ENOMEM;
}

6101
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
6102
{
6103 6104
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
6105

6106 6107
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
6108

6109
	if (sg) {
6110
		*sg = *per_cpu_ptr(sdd->sg, cpu);
6111 6112
		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6113
	}
6114 6115

	return cpu;
6116 6117
}

6118
/*
6119 6120
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
6121
 * and ->cpu_capacity to 0.
6122 6123
 *
 * Assumes the sched_domain tree is fully constructed
6124
 */
6125 6126
static int
build_sched_groups(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
6127
{
6128 6129 6130
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
6131
	struct cpumask *covered;
6132
	int i;
6133

6134 6135 6136
	get_group(cpu, sdd, &sd->groups);
	atomic_inc(&sd->groups->ref);

6137
	if (cpu != cpumask_first(span))
6138 6139
		return 0;

6140 6141 6142
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

6143
	cpumask_clear(covered);
6144

6145 6146
	for_each_cpu(i, span) {
		struct sched_group *sg;
6147
		int group, j;
6148

6149 6150
		if (cpumask_test_cpu(i, covered))
			continue;
6151

6152
		group = get_group(i, sdd, &sg);
P
Peter Zijlstra 已提交
6153
		cpumask_setall(sched_group_mask(sg));
6154

6155 6156 6157
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
6158

6159 6160 6161
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
6162

6163 6164 6165 6166 6167 6168 6169
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
6170 6171

	return 0;
6172
}
6173

6174
/*
6175
 * Initialize sched groups cpu_capacity.
6176
 *
6177
 * cpu_capacity indicates the capacity of sched group, which is used while
6178
 * distributing the load between different sched groups in a sched domain.
6179 6180 6181 6182
 * Typically cpu_capacity for all the groups in a sched domain will be same
 * unless there are asymmetries in the topology. If there are asymmetries,
 * group having more cpu_capacity will pickup more load compared to the
 * group having less cpu_capacity.
6183
 */
6184
static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6185
{
6186
	struct sched_group *sg = sd->groups;
6187

6188
	WARN_ON(!sg);
6189 6190 6191 6192 6193

	do {
		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
		sg = sg->next;
	} while (sg != sd->groups);
6194

P
Peter Zijlstra 已提交
6195
	if (cpu != group_balance_cpu(sg))
6196
		return;
6197

6198 6199
	update_group_capacity(sd, cpu);
	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6200 6201
}

6202 6203 6204 6205 6206
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

6207
static int default_relax_domain_level = -1;
6208
int sched_domain_level_max;
6209 6210 6211

static int __init setup_relax_domain_level(char *str)
{
6212 6213
	if (kstrtoint(str, 0, &default_relax_domain_level))
		pr_warn("Unable to set relax_domain_level\n");
6214

6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
6233
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6234 6235
	} else {
		/* turn on idle balance on this domain */
6236
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6237 6238 6239
	}
}

6240 6241 6242
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

6243 6244 6245 6246 6247
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
6248 6249
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
6250 6251
	case sa_sd:
		free_percpu(d->sd); /* fall through */
6252
	case sa_sd_storage:
6253
		__sdt_free(cpu_map); /* fall through */
6254 6255 6256 6257
	case sa_none:
		break;
	}
}
6258

6259 6260 6261
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
6262 6263
	memset(d, 0, sizeof(*d));

6264 6265
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
6266 6267 6268
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
6269
	d->rd = alloc_rootdomain();
6270
	if (!d->rd)
6271
		return sa_sd;
6272 6273
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
6274

6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

6287
	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6288
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6289

6290 6291
	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6292 6293
}

6294 6295
#ifdef CONFIG_NUMA
static int sched_domains_numa_levels;
6296
enum numa_topology_type sched_numa_topology_type;
6297
static int *sched_domains_numa_distance;
6298
int sched_max_numa_distance;
6299 6300
static struct cpumask ***sched_domains_numa_masks;
static int sched_domains_curr_level;
6301
#endif
6302

6303 6304 6305
/*
 * SD_flags allowed in topology descriptions.
 *
6306
 * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6307 6308
 * SD_SHARE_PKG_RESOURCES - describes shared caches
 * SD_NUMA                - describes NUMA topologies
6309
 * SD_SHARE_POWERDOMAIN   - describes shared power domain
6310 6311 6312 6313 6314
 *
 * Odd one out:
 * SD_ASYM_PACKING        - describes SMT quirks
 */
#define TOPOLOGY_SD_FLAGS		\
6315
	(SD_SHARE_CPUCAPACITY |		\
6316 6317
	 SD_SHARE_PKG_RESOURCES |	\
	 SD_NUMA |			\
6318 6319
	 SD_ASYM_PACKING |		\
	 SD_SHARE_POWERDOMAIN)
6320 6321

static struct sched_domain *
6322
sd_init(struct sched_domain_topology_level *tl, int cpu)
6323 6324
{
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340
	int sd_weight, sd_flags = 0;

#ifdef CONFIG_NUMA
	/*
	 * Ugly hack to pass state to sd_numa_mask()...
	 */
	sched_domains_curr_level = tl->numa_level;
#endif

	sd_weight = cpumask_weight(tl->mask(cpu));

	if (tl->sd_flags)
		sd_flags = (*tl->sd_flags)();
	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
			"wrong sd_flags in topology description\n"))
		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6341 6342 6343 6344 6345

	*sd = (struct sched_domain){
		.min_interval		= sd_weight,
		.max_interval		= 2*sd_weight,
		.busy_factor		= 32,
6346
		.imbalance_pct		= 125,
6347 6348 6349 6350

		.cache_nice_tries	= 0,
		.busy_idx		= 0,
		.idle_idx		= 0,
6351 6352 6353 6354 6355 6356
		.newidle_idx		= 0,
		.wake_idx		= 0,
		.forkexec_idx		= 0,

		.flags			= 1*SD_LOAD_BALANCE
					| 1*SD_BALANCE_NEWIDLE
6357 6358
					| 1*SD_BALANCE_EXEC
					| 1*SD_BALANCE_FORK
6359
					| 0*SD_BALANCE_WAKE
6360
					| 1*SD_WAKE_AFFINE
6361
					| 0*SD_SHARE_CPUCAPACITY
6362
					| 0*SD_SHARE_PKG_RESOURCES
6363
					| 0*SD_SERIALIZE
6364
					| 0*SD_PREFER_SIBLING
6365 6366
					| 0*SD_NUMA
					| sd_flags
6367
					,
6368

6369 6370
		.last_balance		= jiffies,
		.balance_interval	= sd_weight,
6371
		.smt_gain		= 0,
6372 6373
		.max_newidle_lb_cost	= 0,
		.next_decay_max_lb_cost	= jiffies,
6374 6375 6376
#ifdef CONFIG_SCHED_DEBUG
		.name			= tl->name,
#endif
6377 6378 6379
	};

	/*
6380
	 * Convert topological properties into behaviour.
6381
	 */
6382

6383
	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6384
		sd->flags |= SD_PREFER_SIBLING;
6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414
		sd->imbalance_pct = 110;
		sd->smt_gain = 1178; /* ~15% */

	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
		sd->imbalance_pct = 117;
		sd->cache_nice_tries = 1;
		sd->busy_idx = 2;

#ifdef CONFIG_NUMA
	} else if (sd->flags & SD_NUMA) {
		sd->cache_nice_tries = 2;
		sd->busy_idx = 3;
		sd->idle_idx = 2;

		sd->flags |= SD_SERIALIZE;
		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
			sd->flags &= ~(SD_BALANCE_EXEC |
				       SD_BALANCE_FORK |
				       SD_WAKE_AFFINE);
		}

#endif
	} else {
		sd->flags |= SD_PREFER_SIBLING;
		sd->cache_nice_tries = 1;
		sd->busy_idx = 2;
		sd->idle_idx = 1;
	}

	sd->private = &tl->data;
6415 6416 6417 6418

	return sd;
}

6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432
/*
 * Topology list, bottom-up.
 */
static struct sched_domain_topology_level default_topology[] = {
#ifdef CONFIG_SCHED_SMT
	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
#endif
#ifdef CONFIG_SCHED_MC
	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
#endif
	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
	{ NULL, },
};

6433 6434
static struct sched_domain_topology_level *sched_domain_topology =
	default_topology;
6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445

#define for_each_sd_topology(tl)			\
	for (tl = sched_domain_topology; tl->mask; tl++)

void set_sched_topology(struct sched_domain_topology_level *tl)
{
	sched_domain_topology = tl;
}

#ifdef CONFIG_NUMA

6446 6447 6448 6449 6450
static const struct cpumask *sd_numa_mask(int cpu)
{
	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
}

6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471
static void sched_numa_warn(const char *str)
{
	static int done = false;
	int i,j;

	if (done)
		return;

	done = true;

	printk(KERN_WARNING "ERROR: %s\n\n", str);

	for (i = 0; i < nr_node_ids; i++) {
		printk(KERN_WARNING "  ");
		for (j = 0; j < nr_node_ids; j++)
			printk(KERN_CONT "%02d ", node_distance(i,j));
		printk(KERN_CONT "\n");
	}
	printk(KERN_WARNING "\n");
}

6472
bool find_numa_distance(int distance)
6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486
{
	int i;

	if (distance == node_distance(0, 0))
		return true;

	for (i = 0; i < sched_domains_numa_levels; i++) {
		if (sched_domains_numa_distance[i] == distance)
			return true;
	}

	return false;
}

6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511
/*
 * A system can have three types of NUMA topology:
 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
 *
 * The difference between a glueless mesh topology and a backplane
 * topology lies in whether communication between not directly
 * connected nodes goes through intermediary nodes (where programs
 * could run), or through backplane controllers. This affects
 * placement of programs.
 *
 * The type of topology can be discerned with the following tests:
 * - If the maximum distance between any nodes is 1 hop, the system
 *   is directly connected.
 * - If for two nodes A and B, located N > 1 hops away from each other,
 *   there is an intermediary node C, which is < N hops away from both
 *   nodes A and B, the system is a glueless mesh.
 */
static void init_numa_topology_type(void)
{
	int a, b, c, n;

	n = sched_max_numa_distance;

6512
	if (sched_domains_numa_levels <= 1) {
6513
		sched_numa_topology_type = NUMA_DIRECT;
6514 6515
		return;
	}
6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538

	for_each_online_node(a) {
		for_each_online_node(b) {
			/* Find two nodes furthest removed from each other. */
			if (node_distance(a, b) < n)
				continue;

			/* Is there an intermediary node between a and b? */
			for_each_online_node(c) {
				if (node_distance(a, c) < n &&
				    node_distance(b, c) < n) {
					sched_numa_topology_type =
							NUMA_GLUELESS_MESH;
					return;
				}
			}

			sched_numa_topology_type = NUMA_BACKPLANE;
			return;
		}
	}
}

6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559
static void sched_init_numa(void)
{
	int next_distance, curr_distance = node_distance(0, 0);
	struct sched_domain_topology_level *tl;
	int level = 0;
	int i, j, k;

	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
	if (!sched_domains_numa_distance)
		return;

	/*
	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
	 * unique distances in the node_distance() table.
	 *
	 * Assumes node_distance(0,j) includes all distances in
	 * node_distance(i,j) in order to avoid cubic time.
	 */
	next_distance = curr_distance;
	for (i = 0; i < nr_node_ids; i++) {
		for (j = 0; j < nr_node_ids; j++) {
6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583
			for (k = 0; k < nr_node_ids; k++) {
				int distance = node_distance(i, k);

				if (distance > curr_distance &&
				    (distance < next_distance ||
				     next_distance == curr_distance))
					next_distance = distance;

				/*
				 * While not a strong assumption it would be nice to know
				 * about cases where if node A is connected to B, B is not
				 * equally connected to A.
				 */
				if (sched_debug() && node_distance(k, i) != distance)
					sched_numa_warn("Node-distance not symmetric");

				if (sched_debug() && i && !find_numa_distance(distance))
					sched_numa_warn("Node-0 not representative");
			}
			if (next_distance != curr_distance) {
				sched_domains_numa_distance[level++] = next_distance;
				sched_domains_numa_levels = level;
				curr_distance = next_distance;
			} else break;
6584
		}
6585 6586 6587 6588 6589 6590

		/*
		 * In case of sched_debug() we verify the above assumption.
		 */
		if (!sched_debug())
			break;
6591
	}
6592 6593 6594 6595

	if (!level)
		return;

6596 6597 6598 6599
	/*
	 * 'level' contains the number of unique distances, excluding the
	 * identity distance node_distance(i,i).
	 *
V
Viresh Kumar 已提交
6600
	 * The sched_domains_numa_distance[] array includes the actual distance
6601 6602 6603
	 * numbers.
	 */

6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614
	/*
	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
	 * the array will contain less then 'level' members. This could be
	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
	 * in other functions.
	 *
	 * We reset it to 'level' at the end of this function.
	 */
	sched_domains_numa_levels = 0;

6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629
	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
	if (!sched_domains_numa_masks)
		return;

	/*
	 * Now for each level, construct a mask per node which contains all
	 * cpus of nodes that are that many hops away from us.
	 */
	for (i = 0; i < level; i++) {
		sched_domains_numa_masks[i] =
			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
		if (!sched_domains_numa_masks[i])
			return;

		for (j = 0; j < nr_node_ids; j++) {
6630
			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6631 6632 6633 6634 6635
			if (!mask)
				return;

			sched_domains_numa_masks[i][j] = mask;

6636
			for_each_node(k) {
6637
				if (node_distance(j, k) > sched_domains_numa_distance[i])
6638 6639 6640 6641 6642 6643 6644
					continue;

				cpumask_or(mask, mask, cpumask_of_node(k));
			}
		}
	}

6645 6646 6647
	/* Compute default topology size */
	for (i = 0; sched_domain_topology[i].mask; i++);

6648
	tl = kzalloc((i + level + 1) *
6649 6650 6651 6652 6653 6654 6655
			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
	if (!tl)
		return;

	/*
	 * Copy the default topology bits..
	 */
6656 6657
	for (i = 0; sched_domain_topology[i].mask; i++)
		tl[i] = sched_domain_topology[i];
6658 6659 6660 6661 6662 6663 6664

	/*
	 * .. and append 'j' levels of NUMA goodness.
	 */
	for (j = 0; j < level; i++, j++) {
		tl[i] = (struct sched_domain_topology_level){
			.mask = sd_numa_mask,
6665
			.sd_flags = cpu_numa_flags,
6666 6667
			.flags = SDTL_OVERLAP,
			.numa_level = j,
6668
			SD_INIT_NAME(NUMA)
6669 6670 6671 6672
		};
	}

	sched_domain_topology = tl;
6673 6674

	sched_domains_numa_levels = level;
6675
	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6676 6677

	init_numa_topology_type();
6678
}
6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725

static void sched_domains_numa_masks_set(int cpu)
{
	int i, j;
	int node = cpu_to_node(cpu);

	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++) {
			if (node_distance(j, node) <= sched_domains_numa_distance[i])
				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
		}
	}
}

static void sched_domains_numa_masks_clear(int cpu)
{
	int i, j;
	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++)
			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
	}
}

/*
 * Update sched_domains_numa_masks[level][node] array when new cpus
 * are onlined.
 */
static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	int cpu = (long)hcpu;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
		sched_domains_numa_masks_set(cpu);
		break;

	case CPU_DEAD:
		sched_domains_numa_masks_clear(cpu);
		break;

	default:
		return NOTIFY_DONE;
	}

	return NOTIFY_OK;
6726 6727 6728 6729 6730
}
#else
static inline void sched_init_numa(void)
{
}
6731 6732 6733 6734 6735 6736 6737

static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	return 0;
}
6738 6739
#endif /* CONFIG_NUMA */

6740 6741 6742 6743 6744
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

6745
	for_each_sd_topology(tl) {
6746 6747 6748 6749 6750 6751 6752 6753 6754 6755
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

6756 6757
		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
		if (!sdd->sgc)
6758 6759
			return -ENOMEM;

6760 6761 6762
		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_group *sg;
6763
			struct sched_group_capacity *sgc;
6764

P
Peter Zijlstra 已提交
6765
			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

6777 6778
			sg->next = sg;

6779
			*per_cpu_ptr(sdd->sg, j) = sg;
6780

6781
			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6782
					GFP_KERNEL, cpu_to_node(j));
6783
			if (!sgc)
6784 6785
				return -ENOMEM;

6786
			*per_cpu_ptr(sdd->sgc, j) = sgc;
6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

6798
	for_each_sd_topology(tl) {
6799 6800 6801
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812
			struct sched_domain *sd;

			if (sdd->sd) {
				sd = *per_cpu_ptr(sdd->sd, j);
				if (sd && (sd->flags & SD_OVERLAP))
					free_sched_groups(sd->groups, 0);
				kfree(*per_cpu_ptr(sdd->sd, j));
			}

			if (sdd->sg)
				kfree(*per_cpu_ptr(sdd->sg, j));
6813 6814
			if (sdd->sgc)
				kfree(*per_cpu_ptr(sdd->sgc, j));
6815 6816
		}
		free_percpu(sdd->sd);
6817
		sdd->sd = NULL;
6818
		free_percpu(sdd->sg);
6819
		sdd->sg = NULL;
6820 6821
		free_percpu(sdd->sgc);
		sdd->sgc = NULL;
6822 6823 6824
	}
}

6825
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6826 6827
		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
		struct sched_domain *child, int cpu)
6828
{
6829
	struct sched_domain *sd = sd_init(tl, cpu);
6830
	if (!sd)
6831
		return child;
6832 6833

	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6834 6835 6836
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6837
		child->parent = sd;
6838
		sd->child = child;
P
Peter Zijlstra 已提交
6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852

		if (!cpumask_subset(sched_domain_span(child),
				    sched_domain_span(sd))) {
			pr_err("BUG: arch topology borken\n");
#ifdef CONFIG_SCHED_DEBUG
			pr_err("     the %s domain not a subset of the %s domain\n",
					child->name, sd->name);
#endif
			/* Fixup, ensure @sd has at least @child cpus. */
			cpumask_or(sched_domain_span(sd),
				   sched_domain_span(sd),
				   sched_domain_span(child));
		}

6853
	}
6854
	set_domain_attribute(sd, attr);
6855 6856 6857 6858

	return sd;
}

6859 6860 6861 6862
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
6863 6864
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
6865
{
6866
	enum s_alloc alloc_state;
6867
	struct sched_domain *sd;
6868
	struct s_data d;
6869
	int i, ret = -ENOMEM;
6870

6871 6872 6873
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
6874

6875
	/* Set up domains for cpus specified by the cpu_map. */
6876
	for_each_cpu(i, cpu_map) {
6877 6878
		struct sched_domain_topology_level *tl;

6879
		sd = NULL;
6880
		for_each_sd_topology(tl) {
6881
			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6882 6883
			if (tl == sched_domain_topology)
				*per_cpu_ptr(d.sd, i) = sd;
6884 6885
			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
				sd->flags |= SD_OVERLAP;
6886 6887
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
				break;
6888
		}
6889 6890 6891 6892 6893 6894
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6895 6896 6897 6898 6899 6900 6901
			if (sd->flags & SD_OVERLAP) {
				if (build_overlap_sched_groups(sd, i))
					goto error;
			} else {
				if (build_sched_groups(sd, i))
					goto error;
			}
6902
		}
6903
	}
6904

6905
	/* Calculate CPU capacity for physical packages and nodes */
6906 6907 6908
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
6909

6910 6911
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
6912
			init_sched_groups_capacity(i, sd);
6913
		}
6914
	}
6915

L
Linus Torvalds 已提交
6916
	/* Attach the domains */
6917
	rcu_read_lock();
6918
	for_each_cpu(i, cpu_map) {
6919
		sd = *per_cpu_ptr(d.sd, i);
6920
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
6921
	}
6922
	rcu_read_unlock();
6923

6924
	ret = 0;
6925
error:
6926
	__free_domain_allocs(&d, alloc_state, cpu_map);
6927
	return ret;
L
Linus Torvalds 已提交
6928
}
P
Paul Jackson 已提交
6929

6930
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
6931
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
6932 6933
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
6934 6935 6936

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
6937 6938
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
6939
 */
6940
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
6941

6942 6943 6944 6945 6946
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
6947
int __weak arch_update_cpu_topology(void)
6948
{
6949
	return 0;
6950 6951
}

6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

6977
/*
I
Ingo Molnar 已提交
6978
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6979 6980
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6981
 */
6982
static int init_sched_domains(const struct cpumask *cpu_map)
6983
{
6984 6985
	int err;

6986
	arch_update_cpu_topology();
P
Paul Jackson 已提交
6987
	ndoms_cur = 1;
6988
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
6989
	if (!doms_cur)
6990 6991
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6992
	err = build_sched_domains(doms_cur[0], NULL);
6993
	register_sched_domain_sysctl();
6994 6995

	return err;
6996 6997 6998 6999 7000 7001
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7002
static void detach_destroy_domains(const struct cpumask *cpu_map)
7003 7004 7005
{
	int i;

7006
	rcu_read_lock();
7007
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
7008
		cpu_attach_domain(NULL, &def_root_domain, i);
7009
	rcu_read_unlock();
7010 7011
}

7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7028 7029
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7030
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7031 7032 7033
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
7034
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7035 7036 7037
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7038 7039 7040
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
7041 7042 7043 7044 7045 7046
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
7047
 *
7048
 * If doms_new == NULL it will be replaced with cpu_online_mask.
7049 7050
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
7051
 *
P
Paul Jackson 已提交
7052 7053
 * Call with hotplug lock held
 */
7054
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7055
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7056
{
7057
	int i, j, n;
7058
	int new_topology;
P
Paul Jackson 已提交
7059

7060
	mutex_lock(&sched_domains_mutex);
7061

7062 7063 7064
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7065 7066 7067
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

7068
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
7069 7070 7071

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
7072
		for (j = 0; j < n && !new_topology; j++) {
7073
			if (cpumask_equal(doms_cur[i], doms_new[j])
7074
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7075 7076 7077
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
7078
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
7079 7080 7081 7082
match1:
		;
	}

7083
	n = ndoms_cur;
7084
	if (doms_new == NULL) {
7085
		n = 0;
7086
		doms_new = &fallback_doms;
7087
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7088
		WARN_ON_ONCE(dattr_new);
7089 7090
	}

P
Paul Jackson 已提交
7091 7092
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
7093
		for (j = 0; j < n && !new_topology; j++) {
7094
			if (cpumask_equal(doms_new[i], doms_cur[j])
7095
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7096 7097 7098
				goto match2;
		}
		/* no match - add a new doms_new */
7099
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7100 7101 7102 7103 7104
match2:
		;
	}

	/* Remember the new sched domains */
7105 7106
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
7107
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7108
	doms_cur = doms_new;
7109
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7110
	ndoms_cur = ndoms_new;
7111 7112

	register_sched_domain_sysctl();
7113

7114
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7115 7116
}

7117 7118
static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */

L
Linus Torvalds 已提交
7119
/*
7120 7121 7122
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
7123 7124 7125
 *
 * If we come here as part of a suspend/resume, don't touch cpusets because we
 * want to restore it back to its original state upon resume anyway.
L
Linus Torvalds 已提交
7126
 */
7127 7128
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
7129
{
7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151
	switch (action) {
	case CPU_ONLINE_FROZEN:
	case CPU_DOWN_FAILED_FROZEN:

		/*
		 * num_cpus_frozen tracks how many CPUs are involved in suspend
		 * resume sequence. As long as this is not the last online
		 * operation in the resume sequence, just build a single sched
		 * domain, ignoring cpusets.
		 */
		num_cpus_frozen--;
		if (likely(num_cpus_frozen)) {
			partition_sched_domains(1, NULL, NULL);
			break;
		}

		/*
		 * This is the last CPU online operation. So fall through and
		 * restore the original sched domains by considering the
		 * cpuset configurations.
		 */

7152
	case CPU_ONLINE:
7153
		cpuset_update_active_cpus(true);
7154
		break;
7155 7156 7157
	default:
		return NOTIFY_DONE;
	}
7158
	return NOTIFY_OK;
7159
}
7160

7161 7162
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
7163
{
7164 7165 7166
	unsigned long flags;
	long cpu = (long)hcpu;
	struct dl_bw *dl_b;
7167 7168
	bool overflow;
	int cpus;
7169

7170
	switch (action) {
7171
	case CPU_DOWN_PREPARE:
7172 7173
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);
7174

7175 7176 7177 7178
		raw_spin_lock_irqsave(&dl_b->lock, flags);
		cpus = dl_bw_cpus(cpu);
		overflow = __dl_overflow(dl_b, cpus, 0, 0);
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7179

7180
		rcu_read_unlock_sched();
7181

7182 7183
		if (overflow)
			return notifier_from_errno(-EBUSY);
7184
		cpuset_update_active_cpus(false);
7185 7186 7187 7188 7189
		break;
	case CPU_DOWN_PREPARE_FROZEN:
		num_cpus_frozen++;
		partition_sched_domains(1, NULL, NULL);
		break;
7190 7191 7192
	default:
		return NOTIFY_DONE;
	}
7193
	return NOTIFY_OK;
7194 7195
}

L
Linus Torvalds 已提交
7196 7197
void __init sched_init_smp(void)
{
7198 7199 7200
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7201
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7202

7203 7204
	sched_init_numa();

7205 7206 7207 7208 7209
	/*
	 * There's no userspace yet to cause hotplug operations; hence all the
	 * cpu masks are stable and all blatant races in the below code cannot
	 * happen.
	 */
7210
	mutex_lock(&sched_domains_mutex);
7211
	init_sched_domains(cpu_active_mask);
7212 7213 7214
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7215
	mutex_unlock(&sched_domains_mutex);
7216

7217
	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7218 7219
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7220

7221
	init_hrtick();
7222 7223

	/* Move init over to a non-isolated CPU */
7224
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7225
		BUG();
I
Ingo Molnar 已提交
7226
	sched_init_granularity();
7227
	free_cpumask_var(non_isolated_cpus);
7228

7229
	init_sched_rt_class();
7230
	init_sched_dl_class();
L
Linus Torvalds 已提交
7231 7232 7233 7234
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7235
	sched_init_granularity();
L
Linus Torvalds 已提交
7236 7237 7238 7239 7240 7241 7242 7243 7244 7245
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

7246
#ifdef CONFIG_CGROUP_SCHED
7247 7248 7249 7250
/*
 * Default task group.
 * Every task in system belongs to this group at bootup.
 */
7251
struct task_group root_task_group;
7252
LIST_HEAD(task_groups);
7253 7254 7255

/* Cacheline aligned slab cache for task_group */
static struct kmem_cache *task_group_cache __read_mostly;
7256
#endif
P
Peter Zijlstra 已提交
7257

7258
DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
P
Peter Zijlstra 已提交
7259

L
Linus Torvalds 已提交
7260 7261
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7262
	int i, j;
7263 7264 7265 7266 7267 7268 7269 7270 7271
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
	if (alloc_size) {
7272
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7273 7274

#ifdef CONFIG_FAIR_GROUP_SCHED
7275
		root_task_group.se = (struct sched_entity **)ptr;
7276 7277
		ptr += nr_cpu_ids * sizeof(void **);

7278
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7279
		ptr += nr_cpu_ids * sizeof(void **);
7280

7281
#endif /* CONFIG_FAIR_GROUP_SCHED */
7282
#ifdef CONFIG_RT_GROUP_SCHED
7283
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7284 7285
		ptr += nr_cpu_ids * sizeof(void **);

7286
		root_task_group.rt_rq = (struct rt_rq **)ptr;
7287 7288
		ptr += nr_cpu_ids * sizeof(void **);

7289
#endif /* CONFIG_RT_GROUP_SCHED */
7290
	}
7291
#ifdef CONFIG_CPUMASK_OFFSTACK
7292 7293 7294
	for_each_possible_cpu(i) {
		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7295
	}
7296
#endif /* CONFIG_CPUMASK_OFFSTACK */
I
Ingo Molnar 已提交
7297

7298 7299 7300
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());
	init_dl_bandwidth(&def_dl_bandwidth,
7301
			global_rt_period(), global_rt_runtime());
7302

G
Gregory Haskins 已提交
7303 7304 7305 7306
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7307
#ifdef CONFIG_RT_GROUP_SCHED
7308
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7309
			global_rt_period(), global_rt_runtime());
7310
#endif /* CONFIG_RT_GROUP_SCHED */
7311

D
Dhaval Giani 已提交
7312
#ifdef CONFIG_CGROUP_SCHED
7313 7314
	task_group_cache = KMEM_CACHE(task_group, 0);

7315 7316
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
7317
	INIT_LIST_HEAD(&root_task_group.siblings);
7318
	autogroup_init(&init_task);
D
Dhaval Giani 已提交
7319
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
7320

7321
	for_each_possible_cpu(i) {
7322
		struct rq *rq;
L
Linus Torvalds 已提交
7323 7324

		rq = cpu_rq(i);
7325
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
7326
		rq->nr_running = 0;
7327 7328
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
7329
		init_cfs_rq(&rq->cfs);
7330 7331
		init_rt_rq(&rq->rt);
		init_dl_rq(&rq->dl);
I
Ingo Molnar 已提交
7332
#ifdef CONFIG_FAIR_GROUP_SCHED
7333
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
7334
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
7335
		/*
7336
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
7337 7338 7339 7340
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
7341
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
7342 7343 7344
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
7345
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
7346 7347 7348
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
7349
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
7350
		 *
7351 7352
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
7353
		 */
7354
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7355
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
7356 7357 7358
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7359
#ifdef CONFIG_RT_GROUP_SCHED
7360
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
7361
#endif
L
Linus Torvalds 已提交
7362

I
Ingo Molnar 已提交
7363 7364
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
7365 7366 7367

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
7368
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7369
		rq->sd = NULL;
G
Gregory Haskins 已提交
7370
		rq->rd = NULL;
7371
		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7372
		rq->balance_callback = NULL;
L
Linus Torvalds 已提交
7373
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7374
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7375
		rq->push_cpu = 0;
7376
		rq->cpu = i;
7377
		rq->online = 0;
7378 7379
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
7380
		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7381 7382 7383

		INIT_LIST_HEAD(&rq->cfs_tasks);

7384
		rq_attach_root(rq, &def_root_domain);
7385
#ifdef CONFIG_NO_HZ_COMMON
7386
		rq->nohz_flags = 0;
7387
#endif
7388 7389 7390
#ifdef CONFIG_NO_HZ_FULL
		rq->last_sched_tick = 0;
#endif
L
Linus Torvalds 已提交
7391
#endif
P
Peter Zijlstra 已提交
7392
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7393 7394 7395
		atomic_set(&rq->nr_iowait, 0);
	}

7396
	set_load_weight(&init_task);
7397

7398 7399 7400 7401
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

L
Linus Torvalds 已提交
7402 7403 7404 7405 7406 7407
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

7408 7409 7410 7411 7412
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;

L
Linus Torvalds 已提交
7413 7414 7415 7416 7417 7418 7419
	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
7420 7421 7422

	calc_load_update = jiffies + LOAD_FREQ;

7423
#ifdef CONFIG_SMP
7424
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
R
Rusty Russell 已提交
7425 7426 7427
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7428
	idle_thread_set_boot_cpu();
7429
	set_cpu_rq_start_time();
7430 7431
#endif
	init_sched_fair_class();
7432

7433
	scheduler_running = 1;
L
Linus Torvalds 已提交
7434 7435
}

7436
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7437 7438
static inline int preempt_count_equals(int preempt_offset)
{
7439
	int nested = preempt_count() + rcu_preempt_depth();
7440

A
Arnd Bergmann 已提交
7441
	return (nested == preempt_offset);
7442 7443
}

7444
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7445
{
P
Peter Zijlstra 已提交
7446 7447 7448 7449 7450
	/*
	 * Blocking primitives will set (and therefore destroy) current->state,
	 * since we will exit with TASK_RUNNING make sure we enter with it,
	 * otherwise we will destroy state.
	 */
7451
	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
P
Peter Zijlstra 已提交
7452 7453 7454 7455
			"do not call blocking ops when !TASK_RUNNING; "
			"state=%lx set at [<%p>] %pS\n",
			current->state,
			(void *)current->task_state_change,
7456
			(void *)current->task_state_change);
P
Peter Zijlstra 已提交
7457

7458 7459 7460 7461 7462
	___might_sleep(file, line, preempt_offset);
}
EXPORT_SYMBOL(__might_sleep);

void ___might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7463 7464 7465
{
	static unsigned long prev_jiffy;	/* ratelimiting */

7466
	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7467 7468
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
	     !is_idle_task(current)) ||
7469
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
7470 7471 7472 7473 7474
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
7475 7476 7477 7478 7479 7480 7481
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
7482

7483 7484 7485
	if (task_stack_end_corrupted(current))
		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");

I
Ingo Molnar 已提交
7486 7487 7488
	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
7489 7490 7491 7492 7493 7494 7495
#ifdef CONFIG_DEBUG_PREEMPT
	if (!preempt_count_equals(preempt_offset)) {
		pr_err("Preemption disabled at:");
		print_ip_sym(current->preempt_disable_ip);
		pr_cont("\n");
	}
#endif
I
Ingo Molnar 已提交
7496
	dump_stack();
L
Linus Torvalds 已提交
7497
}
7498
EXPORT_SYMBOL(___might_sleep);
L
Linus Torvalds 已提交
7499 7500 7501
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7502
void normalize_rt_tasks(void)
7503
{
7504
	struct task_struct *g, *p;
7505 7506 7507
	struct sched_attr attr = {
		.sched_policy = SCHED_NORMAL,
	};
L
Linus Torvalds 已提交
7508

7509
	read_lock(&tasklist_lock);
7510
	for_each_process_thread(g, p) {
7511 7512 7513
		/*
		 * Only normalize user tasks:
		 */
7514
		if (p->flags & PF_KTHREAD)
7515 7516
			continue;

I
Ingo Molnar 已提交
7517 7518
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
7519 7520 7521
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
7522
#endif
I
Ingo Molnar 已提交
7523

7524
		if (!dl_task(p) && !rt_task(p)) {
I
Ingo Molnar 已提交
7525 7526 7527 7528
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
7529
			if (task_nice(p) < 0)
I
Ingo Molnar 已提交
7530
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7531
			continue;
I
Ingo Molnar 已提交
7532
		}
L
Linus Torvalds 已提交
7533

7534
		__sched_setscheduler(p, &attr, false, false);
7535
	}
7536
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
7537 7538 7539
}

#endif /* CONFIG_MAGIC_SYSRQ */
7540

7541
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7542
/*
7543
 * These functions are only useful for the IA64 MCA handling, or kdb.
7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7557 7558
 *
 * Return: The current task for @cpu.
7559
 */
7560
struct task_struct *curr_task(int cpu)
7561 7562 7563 7564
{
	return cpu_curr(cpu);
}

7565 7566 7567
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
7568 7569 7570 7571 7572 7573
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7574 7575
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7576 7577 7578 7579 7580 7581 7582
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7583
void set_curr_task(int cpu, struct task_struct *p)
7584 7585 7586 7587 7588
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7589

D
Dhaval Giani 已提交
7590
#ifdef CONFIG_CGROUP_SCHED
7591 7592 7593
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

7594
static void sched_free_group(struct task_group *tg)
7595 7596 7597
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
7598
	autogroup_free(tg);
7599
	kmem_cache_free(task_group_cache, tg);
7600 7601 7602
}

/* allocate runqueue etc for a new task group */
7603
struct task_group *sched_create_group(struct task_group *parent)
7604 7605 7606
{
	struct task_group *tg;

7607
	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7608 7609 7610
	if (!tg)
		return ERR_PTR(-ENOMEM);

7611
	if (!alloc_fair_sched_group(tg, parent))
7612 7613
		goto err;

7614
	if (!alloc_rt_sched_group(tg, parent))
7615 7616
		goto err;

7617 7618 7619
	return tg;

err:
7620
	sched_free_group(tg);
7621 7622 7623 7624 7625 7626 7627
	return ERR_PTR(-ENOMEM);
}

void sched_online_group(struct task_group *tg, struct task_group *parent)
{
	unsigned long flags;

7628
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7629
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
7630 7631 7632 7633 7634

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
7635
	list_add_rcu(&tg->siblings, &parent->children);
7636
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7637 7638
}

7639
/* rcu callback to free various structures associated with a task group */
7640
static void sched_free_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7641 7642
{
	/* now it should be safe to free those cfs_rqs */
7643
	sched_free_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
7644 7645
}

7646
void sched_destroy_group(struct task_group *tg)
7647 7648
{
	/* wait for possible concurrent references to cfs_rqs complete */
7649
	call_rcu(&tg->rcu, sched_free_group_rcu);
7650 7651 7652
}

void sched_offline_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7653
{
7654
	unsigned long flags;
S
Srivatsa Vaddagiri 已提交
7655

7656
	/* end participation in shares distribution */
7657
	unregister_fair_sched_group(tg);
7658 7659

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7660
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
7661
	list_del_rcu(&tg->siblings);
7662
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7663 7664
}

7665
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7666 7667 7668
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7669 7670
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7671
{
P
Peter Zijlstra 已提交
7672
	struct task_group *tg;
7673
	int queued, running;
S
Srivatsa Vaddagiri 已提交
7674 7675 7676 7677 7678
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

7679
	running = task_current(rq, tsk);
7680
	queued = task_on_rq_queued(tsk);
S
Srivatsa Vaddagiri 已提交
7681

7682
	if (queued)
7683
		dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
7684
	if (unlikely(running))
7685
		put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7686

7687 7688 7689 7690 7691 7692
	/*
	 * All callers are synchronized by task_rq_lock(); we do not use RCU
	 * which is pointless here. Thus, we pass "true" to task_css_check()
	 * to prevent lockdep warnings.
	 */
	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
P
Peter Zijlstra 已提交
7693 7694 7695 7696
			  struct task_group, css);
	tg = autogroup_task_group(tsk, tg);
	tsk->sched_task_group = tg;

P
Peter Zijlstra 已提交
7697
#ifdef CONFIG_FAIR_GROUP_SCHED
7698
	if (tsk->sched_class->task_move_group)
7699
		tsk->sched_class->task_move_group(tsk);
7700
	else
P
Peter Zijlstra 已提交
7701
#endif
7702
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
7703

7704 7705
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
7706
	if (queued)
7707
		enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
S
Srivatsa Vaddagiri 已提交
7708

7709
	task_rq_unlock(rq, tsk, &flags);
S
Srivatsa Vaddagiri 已提交
7710
}
D
Dhaval Giani 已提交
7711
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
7712

7713 7714 7715 7716 7717
#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
P
Peter Zijlstra 已提交
7718

P
Peter Zijlstra 已提交
7719 7720
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
7721
{
P
Peter Zijlstra 已提交
7722
	struct task_struct *g, *p;
7723

7724 7725 7726 7727 7728 7729
	/*
	 * Autogroups do not have RT tasks; see autogroup_create().
	 */
	if (task_group_is_autogroup(tg))
		return 0;

7730
	for_each_process_thread(g, p) {
7731
		if (rt_task(p) && task_group(p) == tg)
P
Peter Zijlstra 已提交
7732
			return 1;
7733
	}
7734

P
Peter Zijlstra 已提交
7735 7736
	return 0;
}
7737

P
Peter Zijlstra 已提交
7738 7739 7740 7741 7742
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
7743

7744
static int tg_rt_schedulable(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
7745 7746 7747 7748 7749
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
7750

P
Peter Zijlstra 已提交
7751 7752
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
7753

P
Peter Zijlstra 已提交
7754 7755 7756
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
7757 7758
	}

7759 7760 7761 7762 7763
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
7764

7765 7766 7767
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
7768 7769
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
7770

P
Peter Zijlstra 已提交
7771
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7772

7773 7774 7775 7776 7777
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
7778

7779 7780 7781
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
7782 7783 7784
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7785

P
Peter Zijlstra 已提交
7786 7787 7788 7789
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
7790

P
Peter Zijlstra 已提交
7791
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7792
	}
P
Peter Zijlstra 已提交
7793

P
Peter Zijlstra 已提交
7794 7795 7796 7797
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
7798 7799
}

P
Peter Zijlstra 已提交
7800
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7801
{
7802 7803
	int ret;

P
Peter Zijlstra 已提交
7804 7805 7806 7807 7808 7809
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

7810 7811 7812 7813 7814
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7815 7816
}

7817
static int tg_set_rt_bandwidth(struct task_group *tg,
7818
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
7819
{
P
Peter Zijlstra 已提交
7820
	int i, err = 0;
P
Peter Zijlstra 已提交
7821

7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832
	/*
	 * Disallowing the root group RT runtime is BAD, it would disallow the
	 * kernel creating (and or operating) RT threads.
	 */
	if (tg == &root_task_group && rt_runtime == 0)
		return -EINVAL;

	/* No period doesn't make any sense. */
	if (rt_period == 0)
		return -EINVAL;

P
Peter Zijlstra 已提交
7833
	mutex_lock(&rt_constraints_mutex);
7834
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
7835 7836
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
7837
		goto unlock;
P
Peter Zijlstra 已提交
7838

7839
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7840 7841
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
7842 7843 7844 7845

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

7846
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7847
		rt_rq->rt_runtime = rt_runtime;
7848
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7849
	}
7850
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
7851
unlock:
7852
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
7853 7854 7855
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
7856 7857
}

7858
static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7859 7860 7861 7862 7863 7864 7865 7866
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

7867
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7868 7869
}

7870
static long sched_group_rt_runtime(struct task_group *tg)
P
Peter Zijlstra 已提交
7871 7872 7873
{
	u64 rt_runtime_us;

7874
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7875 7876
		return -1;

7877
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7878 7879 7880
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
7881

7882
static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
7883 7884 7885
{
	u64 rt_runtime, rt_period;

7886
	rt_period = rt_period_us * NSEC_PER_USEC;
7887 7888
	rt_runtime = tg->rt_bandwidth.rt_runtime;

7889
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7890 7891
}

7892
static long sched_group_rt_period(struct task_group *tg)
7893 7894 7895 7896 7897 7898 7899
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}
7900
#endif /* CONFIG_RT_GROUP_SCHED */
7901

7902
#ifdef CONFIG_RT_GROUP_SCHED
7903 7904 7905 7906 7907
static int sched_rt_global_constraints(void)
{
	int ret = 0;

	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
7908
	read_lock(&tasklist_lock);
7909
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
7910
	read_unlock(&tasklist_lock);
7911 7912 7913 7914
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
7915

7916
static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7917 7918 7919 7920 7921 7922 7923 7924
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

7925
#else /* !CONFIG_RT_GROUP_SCHED */
7926 7927
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
7928
	unsigned long flags;
7929
	int i, ret = 0;
7930

7931
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7932 7933 7934
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

7935
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7936
		rt_rq->rt_runtime = global_rt_runtime();
7937
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7938
	}
7939
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7940

7941
	return ret;
7942
}
7943
#endif /* CONFIG_RT_GROUP_SCHED */
7944

7945
static int sched_dl_global_validate(void)
7946
{
7947 7948
	u64 runtime = global_rt_runtime();
	u64 period = global_rt_period();
7949
	u64 new_bw = to_ratio(period, runtime);
7950
	struct dl_bw *dl_b;
7951
	int cpu, ret = 0;
7952
	unsigned long flags;
7953 7954 7955 7956 7957 7958 7959 7960 7961 7962

	/*
	 * Here we want to check the bandwidth not being set to some
	 * value smaller than the currently allocated bandwidth in
	 * any of the root_domains.
	 *
	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
	 * cycling on root_domains... Discussion on different/better
	 * solutions is welcome!
	 */
7963
	for_each_possible_cpu(cpu) {
7964 7965
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);
7966

7967
		raw_spin_lock_irqsave(&dl_b->lock, flags);
7968 7969
		if (new_bw < dl_b->total_bw)
			ret = -EBUSY;
7970
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7971

7972 7973
		rcu_read_unlock_sched();

7974 7975
		if (ret)
			break;
7976 7977
	}

7978
	return ret;
7979 7980
}

7981
static void sched_dl_do_global(void)
7982
{
7983
	u64 new_bw = -1;
7984
	struct dl_bw *dl_b;
7985
	int cpu;
7986
	unsigned long flags;
7987

7988 7989 7990 7991 7992 7993 7994 7995 7996 7997
	def_dl_bandwidth.dl_period = global_rt_period();
	def_dl_bandwidth.dl_runtime = global_rt_runtime();

	if (global_rt_runtime() != RUNTIME_INF)
		new_bw = to_ratio(global_rt_period(), global_rt_runtime());

	/*
	 * FIXME: As above...
	 */
	for_each_possible_cpu(cpu) {
7998 7999
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);
8000

8001
		raw_spin_lock_irqsave(&dl_b->lock, flags);
8002
		dl_b->bw = new_bw;
8003
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8004 8005

		rcu_read_unlock_sched();
8006
	}
8007 8008 8009 8010 8011 8012 8013
}

static int sched_rt_global_validate(void)
{
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8014 8015
	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
8016 8017 8018 8019 8020 8021 8022 8023 8024
		return -EINVAL;

	return 0;
}

static void sched_rt_do_global(void)
{
	def_rt_bandwidth.rt_runtime = global_rt_runtime();
	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
8025 8026
}

8027
int sched_rt_handler(struct ctl_table *table, int write,
8028
		void __user *buffer, size_t *lenp,
8029 8030 8031 8032
		loff_t *ppos)
{
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);
8033
	int ret;
8034 8035 8036 8037 8038

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

8039
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8040 8041

	if (!ret && write) {
8042 8043 8044 8045
		ret = sched_rt_global_validate();
		if (ret)
			goto undo;

8046
		ret = sched_dl_global_validate();
8047 8048 8049
		if (ret)
			goto undo;

8050
		ret = sched_rt_global_constraints();
8051 8052 8053 8054 8055 8056 8057 8058 8059 8060
		if (ret)
			goto undo;

		sched_rt_do_global();
		sched_dl_do_global();
	}
	if (0) {
undo:
		sysctl_sched_rt_period = old_period;
		sysctl_sched_rt_runtime = old_runtime;
8061 8062 8063 8064 8065
	}
	mutex_unlock(&mutex);

	return ret;
}
8066

8067
int sched_rr_handler(struct ctl_table *table, int write,
8068 8069 8070 8071 8072 8073 8074 8075
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8076 8077
	/* make sure that internally we keep jiffies */
	/* also, writing zero resets timeslice to default */
8078
	if (!ret && write) {
8079 8080
		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8081 8082 8083 8084 8085
	}
	mutex_unlock(&mutex);
	return ret;
}

8086
#ifdef CONFIG_CGROUP_SCHED
8087

8088
static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8089
{
8090
	return css ? container_of(css, struct task_group, css) : NULL;
8091 8092
}

8093 8094
static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8095
{
8096 8097
	struct task_group *parent = css_tg(parent_css);
	struct task_group *tg;
8098

8099
	if (!parent) {
8100
		/* This is early initialization for the top cgroup */
8101
		return &root_task_group.css;
8102 8103
	}

8104
	tg = sched_create_group(parent);
8105 8106 8107
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

8108 8109
	sched_online_group(tg, parent);

8110 8111 8112
	return &tg->css;
}

8113
static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8114
{
8115
	struct task_group *tg = css_tg(css);
8116

8117
	sched_offline_group(tg);
8118 8119
}

8120
static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8121
{
8122
	struct task_group *tg = css_tg(css);
8123

8124 8125 8126 8127
	/*
	 * Relies on the RCU grace period between css_released() and this.
	 */
	sched_free_group(tg);
8128 8129
}

8130
static void cpu_cgroup_fork(struct task_struct *task)
8131 8132 8133 8134
{
	sched_move_task(task);
}

8135
static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8136
{
8137
	struct task_struct *task;
8138
	struct cgroup_subsys_state *css;
8139

8140
	cgroup_taskset_for_each(task, css, tset) {
8141
#ifdef CONFIG_RT_GROUP_SCHED
8142
		if (!sched_rt_can_attach(css_tg(css), task))
8143
			return -EINVAL;
8144
#else
8145 8146 8147
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
8148
#endif
8149
	}
8150 8151
	return 0;
}
8152

8153
static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8154
{
8155
	struct task_struct *task;
8156
	struct cgroup_subsys_state *css;
8157

8158
	cgroup_taskset_for_each(task, css, tset)
8159
		sched_move_task(task);
8160 8161
}

8162
#ifdef CONFIG_FAIR_GROUP_SCHED
8163 8164
static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
				struct cftype *cftype, u64 shareval)
8165
{
8166
	return sched_group_set_shares(css_tg(css), scale_load(shareval));
8167 8168
}

8169 8170
static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
			       struct cftype *cft)
8171
{
8172
	struct task_group *tg = css_tg(css);
8173

8174
	return (u64) scale_load_down(tg->shares);
8175
}
8176 8177

#ifdef CONFIG_CFS_BANDWIDTH
8178 8179
static DEFINE_MUTEX(cfs_constraints_mutex);

8180 8181 8182
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

8183 8184
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

8185 8186
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
8187
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8188
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

8209 8210 8211 8212 8213
	/*
	 * Prevent race between setting of cfs_rq->runtime_enabled and
	 * unthrottle_offline_cfs_rqs().
	 */
	get_online_cpus();
8214 8215 8216 8217 8218
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

8219
	runtime_enabled = quota != RUNTIME_INF;
8220
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8221 8222 8223 8224 8225 8226
	/*
	 * If we need to toggle cfs_bandwidth_used, off->on must occur
	 * before making related changes, and on->off must occur afterwards
	 */
	if (runtime_enabled && !runtime_was_enabled)
		cfs_bandwidth_usage_inc();
8227 8228 8229
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
8230

P
Paul Turner 已提交
8231
	__refill_cfs_bandwidth_runtime(cfs_b);
8232
	/* restart the period timer (if active) to handle new period expiry */
P
Peter Zijlstra 已提交
8233 8234
	if (runtime_enabled)
		start_cfs_bandwidth(cfs_b);
8235 8236
	raw_spin_unlock_irq(&cfs_b->lock);

8237
	for_each_online_cpu(i) {
8238
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8239
		struct rq *rq = cfs_rq->rq;
8240 8241

		raw_spin_lock_irq(&rq->lock);
8242
		cfs_rq->runtime_enabled = runtime_enabled;
8243
		cfs_rq->runtime_remaining = 0;
8244

8245
		if (cfs_rq->throttled)
8246
			unthrottle_cfs_rq(cfs_rq);
8247 8248
		raw_spin_unlock_irq(&rq->lock);
	}
8249 8250
	if (runtime_was_enabled && !runtime_enabled)
		cfs_bandwidth_usage_dec();
8251 8252
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
8253
	put_online_cpus();
8254

8255
	return ret;
8256 8257 8258 8259 8260 8261
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

8262
	period = ktime_to_ns(tg->cfs_bandwidth.period);
8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

8275
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8276 8277
		return -1;

8278
	quota_us = tg->cfs_bandwidth.quota;
8279 8280 8281 8282 8283 8284 8285 8286 8287 8288
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
8289
	quota = tg->cfs_bandwidth.quota;
8290 8291 8292 8293 8294 8295 8296 8297

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

8298
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8299 8300 8301 8302 8303
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

8304 8305
static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
				  struct cftype *cft)
8306
{
8307
	return tg_get_cfs_quota(css_tg(css));
8308 8309
}

8310 8311
static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
				   struct cftype *cftype, s64 cfs_quota_us)
8312
{
8313
	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8314 8315
}

8316 8317
static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
				   struct cftype *cft)
8318
{
8319
	return tg_get_cfs_period(css_tg(css));
8320 8321
}

8322 8323
static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 cfs_period_us)
8324
{
8325
	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8326 8327
}

8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
8360
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8361 8362 8363 8364 8365
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
8366
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8367 8368

		quota = normalize_cfs_quota(tg, d);
8369
		parent_quota = parent_b->hierarchical_quota;
8370 8371 8372 8373 8374 8375 8376 8377 8378 8379

		/*
		 * ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
8380
	cfs_b->hierarchical_quota = quota;
8381 8382 8383 8384 8385 8386

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
8387
	int ret;
8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

8399 8400 8401 8402 8403
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
8404
}
8405

8406
static int cpu_stats_show(struct seq_file *sf, void *v)
8407
{
8408
	struct task_group *tg = css_tg(seq_css(sf));
8409
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8410

8411 8412 8413
	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8414 8415 8416

	return 0;
}
8417
#endif /* CONFIG_CFS_BANDWIDTH */
8418
#endif /* CONFIG_FAIR_GROUP_SCHED */
8419

8420
#ifdef CONFIG_RT_GROUP_SCHED
8421 8422
static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
				struct cftype *cft, s64 val)
P
Peter Zijlstra 已提交
8423
{
8424
	return sched_group_set_rt_runtime(css_tg(css), val);
P
Peter Zijlstra 已提交
8425 8426
}

8427 8428
static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
P
Peter Zijlstra 已提交
8429
{
8430
	return sched_group_rt_runtime(css_tg(css));
P
Peter Zijlstra 已提交
8431
}
8432

8433 8434
static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 rt_period_us)
8435
{
8436
	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8437 8438
}

8439 8440
static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
				   struct cftype *cft)
8441
{
8442
	return sched_group_rt_period(css_tg(css));
8443
}
8444
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
8445

8446
static struct cftype cpu_files[] = {
8447
#ifdef CONFIG_FAIR_GROUP_SCHED
8448 8449
	{
		.name = "shares",
8450 8451
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8452
	},
8453
#endif
8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
8465 8466
	{
		.name = "stat",
8467
		.seq_show = cpu_stats_show,
8468
	},
8469
#endif
8470
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8471
	{
P
Peter Zijlstra 已提交
8472
		.name = "rt_runtime_us",
8473 8474
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8475
	},
8476 8477
	{
		.name = "rt_period_us",
8478 8479
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8480
	},
8481
#endif
8482
	{ }	/* terminate */
8483 8484
};

8485
struct cgroup_subsys cpu_cgrp_subsys = {
8486
	.css_alloc	= cpu_cgroup_css_alloc,
8487
	.css_released	= cpu_cgroup_css_released,
8488
	.css_free	= cpu_cgroup_css_free,
8489
	.fork		= cpu_cgroup_fork,
8490 8491
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
8492
	.legacy_cftypes	= cpu_files,
8493
	.early_init	= true,
8494 8495
};

8496
#endif	/* CONFIG_CGROUP_SCHED */
8497

8498 8499 8500 8501 8502
void dump_cpu_task(int cpu)
{
	pr_info("Task dump for CPU %d:\n", cpu);
	sched_show_task(cpu_curr(cpu));
}
8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
 */
const int sched_prio_to_weight[40] = {
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
};

/*
 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
const u32 sched_prio_to_wmult[40] = {
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
};