core.c 188.6 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/highmem.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
37
#include <linux/capability.h>
L
Linus Torvalds 已提交
38 39
#include <linux/completion.h>
#include <linux/kernel_stat.h>
40
#include <linux/debug_locks.h>
41
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
57
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
58
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/unistd.h>
J
Jens Axboe 已提交
66
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
67
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
68
#include <linux/tick.h>
P
Peter Zijlstra 已提交
69 70
#include <linux/debugfs.h>
#include <linux/ctype.h>
71
#include <linux/ftrace.h>
72
#include <linux/slab.h>
73
#include <linux/init_task.h>
A
Al Viro 已提交
74
#include <linux/binfmts.h>
75
#include <linux/context_tracking.h>
L
Linus Torvalds 已提交
76

77
#include <asm/switch_to.h>
78
#include <asm/tlb.h>
79
#include <asm/irq_regs.h>
80
#include <asm/mutex.h>
G
Glauber Costa 已提交
81 82 83
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
84

85
#include "sched.h"
86
#include "../workqueue_internal.h"
87
#include "../smpboot.h"
88

89
#define CREATE_TRACE_POINTS
90
#include <trace/events/sched.h>
91

92
void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93
{
94 95
	unsigned long delta;
	ktime_t soft, hard, now;
96

97 98 99 100 101 102
	for (;;) {
		if (hrtimer_active(period_timer))
			break;

		now = hrtimer_cb_get_time(period_timer);
		hrtimer_forward(period_timer, now, period);
103

104 105 106 107 108 109 110 111
		soft = hrtimer_get_softexpires(period_timer);
		hard = hrtimer_get_expires(period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(period_timer, soft, delta,
					 HRTIMER_MODE_ABS_PINNED, 0);
	}
}

112 113
DEFINE_MUTEX(sched_domains_mutex);
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114

115
static void update_rq_clock_task(struct rq *rq, s64 delta);
116

117
void update_rq_clock(struct rq *rq)
118
{
119
	s64 delta;
120

121
	if (rq->skip_clock_update > 0)
122
		return;
123

124 125 126
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
127 128
}

I
Ingo Molnar 已提交
129 130 131
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
132 133 134 135

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
136
const_debug unsigned int sysctl_sched_features =
137
#include "features.h"
P
Peter Zijlstra 已提交
138 139 140 141 142 143 144 145
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

146
static const char * const sched_feat_names[] = {
147
#include "features.h"
P
Peter Zijlstra 已提交
148 149 150 151
};

#undef SCHED_FEAT

L
Li Zefan 已提交
152
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
153 154 155
{
	int i;

156
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
L
Li Zefan 已提交
157 158 159
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
160
	}
L
Li Zefan 已提交
161
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
162

L
Li Zefan 已提交
163
	return 0;
P
Peter Zijlstra 已提交
164 165
}

166 167
#ifdef HAVE_JUMP_LABEL

168 169
#define jump_label_key__true  STATIC_KEY_INIT_TRUE
#define jump_label_key__false STATIC_KEY_INIT_FALSE
170 171 172 173

#define SCHED_FEAT(name, enabled)	\
	jump_label_key__##enabled ,

174
struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175 176 177 178 179 180 181
#include "features.h"
};

#undef SCHED_FEAT

static void sched_feat_disable(int i)
{
182 183
	if (static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_dec(&sched_feat_keys[i]);
184 185 186 187
}

static void sched_feat_enable(int i)
{
188 189
	if (!static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_inc(&sched_feat_keys[i]);
190 191 192 193 194 195
}
#else
static void sched_feat_disable(int i) { };
static void sched_feat_enable(int i) { };
#endif /* HAVE_JUMP_LABEL */

196
static int sched_feat_set(char *cmp)
P
Peter Zijlstra 已提交
197 198
{
	int i;
199
	int neg = 0;
P
Peter Zijlstra 已提交
200

H
Hillf Danton 已提交
201
	if (strncmp(cmp, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
202 203 204 205
		neg = 1;
		cmp += 3;
	}

206
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
207
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
208
			if (neg) {
P
Peter Zijlstra 已提交
209
				sysctl_sched_features &= ~(1UL << i);
210 211
				sched_feat_disable(i);
			} else {
P
Peter Zijlstra 已提交
212
				sysctl_sched_features |= (1UL << i);
213 214
				sched_feat_enable(i);
			}
P
Peter Zijlstra 已提交
215 216 217 218
			break;
		}
	}

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
	return i;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
	cmp = strstrip(buf);

	i = sched_feat_set(cmp);
240
	if (i == __SCHED_FEAT_NR)
P
Peter Zijlstra 已提交
241 242
		return -EINVAL;

243
	*ppos += cnt;
P
Peter Zijlstra 已提交
244 245 246 247

	return cnt;
}

L
Li Zefan 已提交
248 249 250 251 252
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

253
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
254 255 256 257 258
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
259 260 261 262 263 264 265 266 267 268
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);
269
#endif /* CONFIG_SCHED_DEBUG */
I
Ingo Molnar 已提交
270

271 272 273 274 275 276
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

277 278 279 280 281 282 283 284
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
285
/*
P
Peter Zijlstra 已提交
286
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
287 288
 * default: 1s
 */
P
Peter Zijlstra 已提交
289
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
290

291
__read_mostly int scheduler_running;
292

P
Peter Zijlstra 已提交
293 294 295 296 297
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
298

299
/*
300
 * __task_rq_lock - lock the rq @p resides on.
301
 */
302
static inline struct rq *__task_rq_lock(struct task_struct *p)
303 304
	__acquires(rq->lock)
{
305 306
	struct rq *rq;

307 308
	lockdep_assert_held(&p->pi_lock);

309
	for (;;) {
310
		rq = task_rq(p);
311
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
312
		if (likely(rq == task_rq(p)))
313
			return rq;
314
		raw_spin_unlock(&rq->lock);
315 316 317
	}
}

L
Linus Torvalds 已提交
318
/*
319
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
L
Linus Torvalds 已提交
320
 */
321
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
322
	__acquires(p->pi_lock)
L
Linus Torvalds 已提交
323 324
	__acquires(rq->lock)
{
325
	struct rq *rq;
L
Linus Torvalds 已提交
326

327
	for (;;) {
328
		raw_spin_lock_irqsave(&p->pi_lock, *flags);
329
		rq = task_rq(p);
330
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
331
		if (likely(rq == task_rq(p)))
332
			return rq;
333 334
		raw_spin_unlock(&rq->lock);
		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
335 336 337
	}
}

A
Alexey Dobriyan 已提交
338
static void __task_rq_unlock(struct rq *rq)
339 340
	__releases(rq->lock)
{
341
	raw_spin_unlock(&rq->lock);
342 343
}

344 345
static inline void
task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
346
	__releases(rq->lock)
347
	__releases(p->pi_lock)
L
Linus Torvalds 已提交
348
{
349 350
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
351 352 353
}

/*
354
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
355
 */
A
Alexey Dobriyan 已提交
356
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
357 358
	__acquires(rq->lock)
{
359
	struct rq *rq;
L
Linus Torvalds 已提交
360 361 362

	local_irq_disable();
	rq = this_rq();
363
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
364 365 366 367

	return rq;
}

P
Peter Zijlstra 已提交
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

389
	raw_spin_lock(&rq->lock);
390
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
391
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
392
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
393 394 395 396

	return HRTIMER_NORESTART;
}

397
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
398 399 400 401 402 403 404 405 406

static int __hrtick_restart(struct rq *rq)
{
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = hrtimer_get_softexpires(timer);

	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
}

407 408 409 410
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
411
{
412
	struct rq *rq = arg;
413

414
	raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
415
	__hrtick_restart(rq);
416
	rq->hrtick_csd_pending = 0;
417
	raw_spin_unlock(&rq->lock);
418 419
}

420 421 422 423 424
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
425
void hrtick_start(struct rq *rq, u64 delay)
426
{
427 428
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
429

430
	hrtimer_set_expires(timer, time);
431 432

	if (rq == this_rq()) {
P
Peter Zijlstra 已提交
433
		__hrtick_restart(rq);
434
	} else if (!rq->hrtick_csd_pending) {
435
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
436 437
		rq->hrtick_csd_pending = 1;
	}
438 439 440 441 442 443 444 445 446 447 448 449 450 451
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
452
		hrtick_clear(cpu_rq(cpu));
453 454 455 456 457 458
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

459
static __init void init_hrtick(void)
460 461 462
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
463 464 465 466 467 468
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
469
void hrtick_start(struct rq *rq, u64 delay)
470
{
471
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
472
			HRTIMER_MODE_REL_PINNED, 0);
473
}
474

A
Andrew Morton 已提交
475
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
476 477
{
}
478
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
479

480
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
481
{
482 483
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
484

485 486 487 488
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
489

490 491
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
492
}
A
Andrew Morton 已提交
493
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
494 495 496 497 498 499 500 501
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

502 503 504
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
505
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
506

I
Ingo Molnar 已提交
507 508 509 510 511 512 513
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
514
void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
515 516 517
{
	int cpu;

518
	lockdep_assert_held(&task_rq(p)->lock);
I
Ingo Molnar 已提交
519

520
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
521 522
		return;

523
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
524 525

	cpu = task_cpu(p);
526 527
	if (cpu == smp_processor_id()) {
		set_preempt_need_resched();
I
Ingo Molnar 已提交
528
		return;
529
	}
I
Ingo Molnar 已提交
530 531 532 533 534 535 536

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

537
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
538 539 540 541
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

542
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
543 544
		return;
	resched_task(cpu_curr(cpu));
545
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
546
}
547

548
#ifdef CONFIG_SMP
549
#ifdef CONFIG_NO_HZ_COMMON
550 551 552 553 554 555 556 557 558 559 560 561 562 563
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
int get_nohz_timer_target(void)
{
	int cpu = smp_processor_id();
	int i;
	struct sched_domain *sd;

564
	rcu_read_lock();
565
	for_each_domain(cpu, sd) {
566 567 568 569 570 571
		for_each_cpu(i, sched_domain_span(sd)) {
			if (!idle_cpu(i)) {
				cpu = i;
				goto unlock;
			}
		}
572
	}
573 574
unlock:
	rcu_read_unlock();
575 576
	return cpu;
}
577 578 579 580 581 582 583 584 585 586
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
587
static void wake_up_idle_cpu(int cpu)
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;
603 604

	/*
605 606 607
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
608
	 */
609
	set_tsk_need_resched(rq->idle);
610

611 612 613 614
	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
615 616
}

617
static bool wake_up_full_nohz_cpu(int cpu)
618
{
619
	if (tick_nohz_full_cpu(cpu)) {
620 621 622 623 624 625 626 627 628 629 630
		if (cpu != smp_processor_id() ||
		    tick_nohz_tick_stopped())
			smp_send_reschedule(cpu);
		return true;
	}

	return false;
}

void wake_up_nohz_cpu(int cpu)
{
631
	if (!wake_up_full_nohz_cpu(cpu))
632 633 634
		wake_up_idle_cpu(cpu);
}

635
static inline bool got_nohz_idle_kick(void)
636
{
637
	int cpu = smp_processor_id();
638 639 640 641 642 643 644 645 646 647 648 649 650

	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
		return false;

	if (idle_cpu(cpu) && !need_resched())
		return true;

	/*
	 * We can't run Idle Load Balance on this CPU for this time so we
	 * cancel it and clear NOHZ_BALANCE_KICK
	 */
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
	return false;
651 652
}

653
#else /* CONFIG_NO_HZ_COMMON */
654

655
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
656
{
657
	return false;
P
Peter Zijlstra 已提交
658 659
}

660
#endif /* CONFIG_NO_HZ_COMMON */
661

662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
#ifdef CONFIG_NO_HZ_FULL
bool sched_can_stop_tick(void)
{
       struct rq *rq;

       rq = this_rq();

       /* Make sure rq->nr_running update is visible after the IPI */
       smp_rmb();

       /* More than one running task need preemption */
       if (rq->nr_running > 1)
               return false;

       return true;
}
#endif /* CONFIG_NO_HZ_FULL */
679

680
void sched_avg_update(struct rq *rq)
681
{
682 683
	s64 period = sched_avg_period();

684
	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
685 686 687 688 689 690
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
691 692 693
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
694 695
}

696
#endif /* CONFIG_SMP */
697

698 699
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
700
/*
701 702 703 704
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
705
 */
706
int walk_tg_tree_from(struct task_group *from,
707
			     tg_visitor down, tg_visitor up, void *data)
708 709
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
710
	int ret;
711

712 713
	parent = from;

714
down:
P
Peter Zijlstra 已提交
715 716
	ret = (*down)(parent, data);
	if (ret)
717
		goto out;
718 719 720 721 722 723 724
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
725
	ret = (*up)(parent, data);
726 727
	if (ret || parent == from)
		goto out;
728 729 730 731 732

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
733
out:
P
Peter Zijlstra 已提交
734
	return ret;
735 736
}

737
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
738
{
739
	return 0;
P
Peter Zijlstra 已提交
740
}
741 742
#endif

743 744
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
745 746 747
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
748 749 750 751
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
752
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
753
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
754 755
		return;
	}
756

757
	load->weight = scale_load(prio_to_weight[prio]);
N
Nikhil Rao 已提交
758
	load->inv_weight = prio_to_wmult[prio];
759 760
}

761
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
762
{
763
	update_rq_clock(rq);
764
	sched_info_queued(rq, p);
765
	p->sched_class->enqueue_task(rq, p, flags);
766 767
}

768
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
769
{
770
	update_rq_clock(rq);
771
	sched_info_dequeued(rq, p);
772
	p->sched_class->dequeue_task(rq, p, flags);
773 774
}

775
void activate_task(struct rq *rq, struct task_struct *p, int flags)
776 777 778 779
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

780
	enqueue_task(rq, p, flags);
781 782
}

783
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
784 785 786 787
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

788
	dequeue_task(rq, p, flags);
789 790
}

791
static void update_rq_clock_task(struct rq *rq, s64 delta)
792
{
793 794 795 796 797 798 799 800
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
801
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
823 824
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
825
	if (static_key_false((&paravirt_steal_rq_enabled))) {
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
		u64 st;

		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		st = steal_ticks(steal);
		steal = st * TICK_NSEC;

		rq->prev_steal_time_rq += steal;

		delta -= steal;
	}
#endif

843 844
	rq->clock_task += delta;

845 846 847 848
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
849 850
}

851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

881
/*
I
Ingo Molnar 已提交
882
 * __normal_prio - return the priority that is based on the static prio
883 884 885
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
886
	return p->static_prio;
887 888
}

889 890 891 892 893 894 895
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
896
static inline int normal_prio(struct task_struct *p)
897 898 899
{
	int prio;

900 901 902
	if (task_has_dl_policy(p))
		prio = MAX_DL_PRIO-1;
	else if (task_has_rt_policy(p))
903 904 905 906 907 908 909 910 911 912 913 914 915
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
916
static int effective_prio(struct task_struct *p)
917 918 919 920 921 922 923 924 925 926 927 928
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
929 930 931
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
932 933
 *
 * Return: 1 if the task is currently executing. 0 otherwise.
L
Linus Torvalds 已提交
934
 */
935
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
936 937 938 939
{
	return cpu_curr(task_cpu(p)) == p;
}

940 941
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
942
				       int oldprio)
943 944 945
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
946 947
			prev_class->switched_from(rq, p);
		p->sched_class->switched_to(rq, p);
948
	} else if (oldprio != p->prio || dl_task(p))
P
Peter Zijlstra 已提交
949
		p->sched_class->prio_changed(rq, p, oldprio);
950 951
}

952
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
				resched_task(rq->curr);
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
P
Peter Zijlstra 已提交
973
	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
974 975 976
		rq->skip_clock_update = 1;
}

L
Linus Torvalds 已提交
977
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
978
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
979
{
980 981 982 983 984
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
985
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
986
			!(task_preempt_count(p) & PREEMPT_ACTIVE));
987 988

#ifdef CONFIG_LOCKDEP
989 990 991 992 993
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
P
Peter Zijlstra 已提交
994
	 * see task_group().
995 996 997 998
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
999 1000 1001
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
1002 1003
#endif

1004
	trace_sched_migrate_task(p, new_cpu);
1005

1006
	if (task_cpu(p) != new_cpu) {
1007 1008
		if (p->sched_class->migrate_task_rq)
			p->sched_class->migrate_task_rq(p, new_cpu);
1009
		p->se.nr_migrations++;
1010
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1011
	}
I
Ingo Molnar 已提交
1012 1013

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1014 1015
}

1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
static void __migrate_swap_task(struct task_struct *p, int cpu)
{
	if (p->on_rq) {
		struct rq *src_rq, *dst_rq;

		src_rq = task_rq(p);
		dst_rq = cpu_rq(cpu);

		deactivate_task(src_rq, p, 0);
		set_task_cpu(p, cpu);
		activate_task(dst_rq, p, 0);
		check_preempt_curr(dst_rq, p, 0);
	} else {
		/*
		 * Task isn't running anymore; make it appear like we migrated
		 * it before it went to sleep. This means on wakeup we make the
		 * previous cpu our targer instead of where it really is.
		 */
		p->wake_cpu = cpu;
	}
}

struct migration_swap_arg {
	struct task_struct *src_task, *dst_task;
	int src_cpu, dst_cpu;
};

static int migrate_swap_stop(void *data)
{
	struct migration_swap_arg *arg = data;
	struct rq *src_rq, *dst_rq;
	int ret = -EAGAIN;

	src_rq = cpu_rq(arg->src_cpu);
	dst_rq = cpu_rq(arg->dst_cpu);

1052 1053
	double_raw_lock(&arg->src_task->pi_lock,
			&arg->dst_task->pi_lock);
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
	double_rq_lock(src_rq, dst_rq);
	if (task_cpu(arg->dst_task) != arg->dst_cpu)
		goto unlock;

	if (task_cpu(arg->src_task) != arg->src_cpu)
		goto unlock;

	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
		goto unlock;

	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
		goto unlock;

	__migrate_swap_task(arg->src_task, arg->dst_cpu);
	__migrate_swap_task(arg->dst_task, arg->src_cpu);

	ret = 0;

unlock:
	double_rq_unlock(src_rq, dst_rq);
1074 1075
	raw_spin_unlock(&arg->dst_task->pi_lock);
	raw_spin_unlock(&arg->src_task->pi_lock);
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097

	return ret;
}

/*
 * Cross migrate two tasks
 */
int migrate_swap(struct task_struct *cur, struct task_struct *p)
{
	struct migration_swap_arg arg;
	int ret = -EINVAL;

	arg = (struct migration_swap_arg){
		.src_task = cur,
		.src_cpu = task_cpu(cur),
		.dst_task = p,
		.dst_cpu = task_cpu(p),
	};

	if (arg.src_cpu == arg.dst_cpu)
		goto out;

1098 1099 1100 1101
	/*
	 * These three tests are all lockless; this is OK since all of them
	 * will be re-checked with proper locks held further down the line.
	 */
1102 1103 1104 1105 1106 1107 1108 1109 1110
	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
		goto out;

	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
		goto out;

	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
		goto out;

1111
	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1112 1113 1114 1115 1116 1117
	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);

out:
	return ret;
}

1118
struct migration_arg {
1119
	struct task_struct *task;
L
Linus Torvalds 已提交
1120
	int dest_cpu;
1121
};
L
Linus Torvalds 已提交
1122

1123 1124
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
1125 1126 1127
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1128 1129 1130 1131 1132 1133 1134
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1135 1136 1137 1138 1139 1140
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1141
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1142 1143
{
	unsigned long flags;
I
Ingo Molnar 已提交
1144
	int running, on_rq;
R
Roland McGrath 已提交
1145
	unsigned long ncsw;
1146
	struct rq *rq;
L
Linus Torvalds 已提交
1147

1148 1149 1150 1151 1152 1153 1154 1155
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1156

1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1168 1169 1170
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1171
			cpu_relax();
R
Roland McGrath 已提交
1172
		}
1173

1174 1175 1176 1177 1178 1179
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1180
		trace_sched_wait_task(p);
1181
		running = task_running(rq, p);
P
Peter Zijlstra 已提交
1182
		on_rq = p->on_rq;
R
Roland McGrath 已提交
1183
		ncsw = 0;
1184
		if (!match_state || p->state == match_state)
1185
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1186
		task_rq_unlock(rq, p, &flags);
1187

R
Roland McGrath 已提交
1188 1189 1190 1191 1192 1193
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1204

1205 1206 1207 1208 1209
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1210
		 * So if it was still runnable (but just not actively
1211 1212 1213 1214
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
1215 1216 1217 1218
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1219 1220
			continue;
		}
1221

1222 1223 1224 1225 1226 1227 1228
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1229 1230

	return ncsw;
L
Linus Torvalds 已提交
1231 1232 1233 1234 1235 1236 1237 1238 1239
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1240
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1241 1242 1243 1244 1245
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1246
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1247 1248 1249 1250 1251 1252 1253 1254 1255
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1256
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
1257
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1258

1259
#ifdef CONFIG_SMP
1260
/*
1261
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1262
 */
1263 1264
static int select_fallback_rq(int cpu, struct task_struct *p)
{
1265 1266
	int nid = cpu_to_node(cpu);
	const struct cpumask *nodemask = NULL;
1267 1268
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1269

1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
	/*
	 * If the node that the cpu is on has been offlined, cpu_to_node()
	 * will return -1. There is no cpu on the node, and we should
	 * select the cpu on the other node.
	 */
	if (nid != -1) {
		nodemask = cpumask_of_node(nid);

		/* Look for allowed, online CPU in same node. */
		for_each_cpu(dest_cpu, nodemask) {
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
				return dest_cpu;
		}
1287
	}
1288

1289 1290
	for (;;) {
		/* Any allowed, online CPU? */
1291
		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1292 1293 1294 1295 1296 1297
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			goto out;
		}
1298

1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
		switch (state) {
		case cpuset:
			/* No more Mr. Nice Guy. */
			cpuset_cpus_allowed_fallback(p);
			state = possible;
			break;

		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk_sched("process %d (%s) no longer affine to cpu%d\n",
					task_pid_nr(p), p->comm, cpu);
		}
1328 1329 1330 1331 1332
	}

	return dest_cpu;
}

1333
/*
1334
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1335
 */
1336
static inline
1337
int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1338
{
1339
	cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1351
	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
P
Peter Zijlstra 已提交
1352
		     !cpu_online(cpu)))
1353
		cpu = select_fallback_rq(task_cpu(p), p);
1354 1355

	return cpu;
1356
}
1357 1358 1359 1360 1361 1362

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1363 1364
#endif

P
Peter Zijlstra 已提交
1365
static void
1366
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1367
{
P
Peter Zijlstra 已提交
1368
#ifdef CONFIG_SCHEDSTATS
1369 1370
	struct rq *rq = this_rq();

P
Peter Zijlstra 已提交
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
#ifdef CONFIG_SMP
	int this_cpu = smp_processor_id();

	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	} else {
		struct sched_domain *sd;

		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1381
		rcu_read_lock();
P
Peter Zijlstra 已提交
1382 1383 1384 1385 1386 1387
		for_each_domain(this_cpu, sd) {
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
1388
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1389
	}
1390 1391 1392 1393

	if (wake_flags & WF_MIGRATED)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);

P
Peter Zijlstra 已提交
1394 1395 1396
#endif /* CONFIG_SMP */

	schedstat_inc(rq, ttwu_count);
T
Tejun Heo 已提交
1397
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1398 1399

	if (wake_flags & WF_SYNC)
T
Tejun Heo 已提交
1400
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1401 1402 1403 1404 1405 1406

#endif /* CONFIG_SCHEDSTATS */
}

static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
{
T
Tejun Heo 已提交
1407
	activate_task(rq, p, en_flags);
P
Peter Zijlstra 已提交
1408
	p->on_rq = 1;
1409 1410 1411 1412

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1413 1414
}

1415 1416 1417
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1418
static void
1419
ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
T
Tejun Heo 已提交
1420 1421
{
	check_preempt_curr(rq, p, wake_flags);
1422
	trace_sched_wakeup(p, true);
T
Tejun Heo 已提交
1423 1424 1425 1426 1427 1428

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);

1429
	if (rq->idle_stamp) {
1430
		u64 delta = rq_clock(rq) - rq->idle_stamp;
1431
		u64 max = 2*rq->max_idle_balance_cost;
T
Tejun Heo 已提交
1432

1433 1434 1435
		update_avg(&rq->avg_idle, delta);

		if (rq->avg_idle > max)
T
Tejun Heo 已提交
1436
			rq->avg_idle = max;
1437

T
Tejun Heo 已提交
1438 1439 1440 1441 1442
		rq->idle_stamp = 0;
	}
#endif
}

1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
static void
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
{
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
#endif

	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
	ttwu_do_wakeup(rq, p, wake_flags);
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
	if (p->on_rq) {
1468 1469
		/* check_preempt_curr() may use rq clock */
		update_rq_clock(rq);
1470 1471 1472 1473 1474 1475 1476 1477
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;
}

1478
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1479
static void sched_ttwu_pending(void)
1480 1481
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1482 1483
	struct llist_node *llist = llist_del_all(&rq->wake_list);
	struct task_struct *p;
1484 1485 1486

	raw_spin_lock(&rq->lock);

P
Peter Zijlstra 已提交
1487 1488 1489
	while (llist) {
		p = llist_entry(llist, struct task_struct, wake_entry);
		llist = llist_next(llist);
1490 1491 1492 1493 1494 1495 1496 1497
		ttwu_do_activate(rq, p, 0);
	}

	raw_spin_unlock(&rq->lock);
}

void scheduler_ipi(void)
{
1498 1499 1500 1501 1502
	/*
	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
	 * TIF_NEED_RESCHED remotely (for the first time) will also send
	 * this IPI.
	 */
1503
	preempt_fold_need_resched();
1504

1505 1506 1507
	if (llist_empty(&this_rq()->wake_list)
			&& !tick_nohz_full_cpu(smp_processor_id())
			&& !got_nohz_idle_kick())
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
1524
	tick_nohz_full_check();
P
Peter Zijlstra 已提交
1525
	sched_ttwu_pending();
1526 1527 1528 1529

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1530
	if (unlikely(got_nohz_idle_kick())) {
1531
		this_rq()->idle_balance = 1;
1532
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1533
	}
1534
	irq_exit();
1535 1536 1537 1538
}

static void ttwu_queue_remote(struct task_struct *p, int cpu)
{
P
Peter Zijlstra 已提交
1539
	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1540 1541
		smp_send_reschedule(cpu);
}
1542

1543
bool cpus_share_cache(int this_cpu, int that_cpu)
1544 1545 1546
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1547
#endif /* CONFIG_SMP */
1548

1549 1550 1551 1552
static void ttwu_queue(struct task_struct *p, int cpu)
{
	struct rq *rq = cpu_rq(cpu);

1553
#if defined(CONFIG_SMP)
1554
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1555
		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1556 1557 1558 1559 1560
		ttwu_queue_remote(p, cpu);
		return;
	}
#endif

1561 1562 1563
	raw_spin_lock(&rq->lock);
	ttwu_do_activate(rq, p, 0);
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
1564 1565 1566
}

/**
L
Linus Torvalds 已提交
1567
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1568
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1569
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1570
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1571 1572 1573 1574 1575 1576 1577
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
1578
 * Return: %true if @p was woken up, %false if it was already running.
T
Tejun Heo 已提交
1579
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
1580
 */
1581 1582
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1583 1584
{
	unsigned long flags;
1585
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1586

1587 1588 1589 1590 1591 1592 1593
	/*
	 * If we are going to wake up a thread waiting for CONDITION we
	 * need to ensure that CONDITION=1 done by the caller can not be
	 * reordered with p->state check below. This pairs with mb() in
	 * set_current_state() the waiting thread does.
	 */
	smp_mb__before_spinlock();
1594
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
1595
	if (!(p->state & state))
L
Linus Torvalds 已提交
1596 1597
		goto out;

1598
	success = 1; /* we're going to change ->state */
L
Linus Torvalds 已提交
1599 1600
	cpu = task_cpu(p);

1601 1602
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
1603 1604

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1605
	/*
1606 1607
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
P
Peter Zijlstra 已提交
1608
	 */
1609
	while (p->on_cpu)
1610
		cpu_relax();
1611
	/*
1612
	 * Pairs with the smp_wmb() in finish_lock_switch().
1613
	 */
1614
	smp_rmb();
L
Linus Torvalds 已提交
1615

1616
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
1617
	p->state = TASK_WAKING;
1618

1619
	if (p->sched_class->task_waking)
1620
		p->sched_class->task_waking(p);
1621

1622
	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1623 1624
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
1625
		set_task_cpu(p, cpu);
1626
	}
L
Linus Torvalds 已提交
1627 1628
#endif /* CONFIG_SMP */

1629 1630
	ttwu_queue(p, cpu);
stat:
1631
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
1632
out:
1633
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
1634 1635 1636 1637

	return success;
}

T
Tejun Heo 已提交
1638 1639 1640 1641
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
1642
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
1643
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1644
 * the current task.
T
Tejun Heo 已提交
1645 1646 1647 1648 1649
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

1650 1651 1652 1653
	if (WARN_ON_ONCE(rq != this_rq()) ||
	    WARN_ON_ONCE(p == current))
		return;

T
Tejun Heo 已提交
1654 1655
	lockdep_assert_held(&rq->lock);

1656 1657 1658 1659 1660 1661
	if (!raw_spin_trylock(&p->pi_lock)) {
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
	}

T
Tejun Heo 已提交
1662
	if (!(p->state & TASK_NORMAL))
1663
		goto out;
T
Tejun Heo 已提交
1664

P
Peter Zijlstra 已提交
1665
	if (!p->on_rq)
P
Peter Zijlstra 已提交
1666 1667
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

1668
	ttwu_do_wakeup(rq, p, 0);
1669
	ttwu_stat(p, smp_processor_id(), 0);
1670 1671
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
1672 1673
}

1674 1675 1676 1677 1678
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
1679 1680 1681
 * processes.
 *
 * Return: 1 if the process was woken up, 0 if it was already running.
1682 1683 1684 1685
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
1686
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1687
{
1688 1689
	WARN_ON(task_is_stopped_or_traced(p));
	return try_to_wake_up(p, TASK_NORMAL, 0);
L
Linus Torvalds 已提交
1690 1691 1692
}
EXPORT_SYMBOL(wake_up_process);

1693
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1694 1695 1696 1697 1698 1699 1700
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1701 1702 1703
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
1704
static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
1705
{
P
Peter Zijlstra 已提交
1706 1707 1708
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
1709 1710
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1711
	p->se.prev_sum_exec_runtime	= 0;
1712
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
1713
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
1714
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
1715 1716

#ifdef CONFIG_SCHEDSTATS
1717
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
1718
#endif
N
Nick Piggin 已提交
1719

1720 1721 1722 1723
	RB_CLEAR_NODE(&p->dl.rb_node);
	hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	p->dl.dl_runtime = p->dl.runtime = 0;
	p->dl.dl_deadline = p->dl.deadline = 0;
1724
	p->dl.dl_period = 0;
1725 1726
	p->dl.flags = 0;

P
Peter Zijlstra 已提交
1727
	INIT_LIST_HEAD(&p->rt.run_list);
N
Nick Piggin 已提交
1728

1729 1730 1731
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
1732 1733 1734

#ifdef CONFIG_NUMA_BALANCING
	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1735
		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1736 1737 1738
		p->mm->numa_scan_seq = 0;
	}

1739 1740 1741 1742 1743
	if (clone_flags & CLONE_VM)
		p->numa_preferred_nid = current->numa_preferred_nid;
	else
		p->numa_preferred_nid = -1;

1744 1745
	p->node_stamp = 0ULL;
	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1746
	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1747
	p->numa_work.next = &p->numa_work;
1748 1749
	p->numa_faults_memory = NULL;
	p->numa_faults_buffer_memory = NULL;
1750 1751
	p->last_task_numa_placement = 0;
	p->last_sum_exec_runtime = 0;
1752 1753 1754

	INIT_LIST_HEAD(&p->numa_entry);
	p->numa_group = NULL;
1755
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
1756 1757
}

1758
#ifdef CONFIG_NUMA_BALANCING
1759
#ifdef CONFIG_SCHED_DEBUG
1760 1761 1762 1763 1764 1765 1766
void set_numabalancing_state(bool enabled)
{
	if (enabled)
		sched_feat_set("NUMA");
	else
		sched_feat_set("NO_NUMA");
}
1767 1768 1769 1770 1771 1772
#else
__read_mostly bool numabalancing_enabled;

void set_numabalancing_state(bool enabled)
{
	numabalancing_enabled = enabled;
I
Ingo Molnar 已提交
1773
}
1774
#endif /* CONFIG_SCHED_DEBUG */
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797

#ifdef CONFIG_PROC_SYSCTL
int sysctl_numa_balancing(struct ctl_table *table, int write,
			 void __user *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table t;
	int err;
	int state = numabalancing_enabled;

	if (write && !capable(CAP_SYS_ADMIN))
		return -EPERM;

	t = *table;
	t.data = &state;
	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
	if (err < 0)
		return err;
	if (write)
		set_numabalancing_state(state);
	return err;
}
#endif
#endif
I
Ingo Molnar 已提交
1798 1799 1800 1801

/*
 * fork()/clone()-time setup:
 */
1802
int sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
1803
{
1804
	unsigned long flags;
I
Ingo Molnar 已提交
1805 1806
	int cpu = get_cpu();

1807
	__sched_fork(clone_flags, p);
1808
	/*
1809
	 * We mark the process as running here. This guarantees that
1810 1811 1812
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
1813
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1814

1815 1816 1817 1818 1819
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

1820 1821 1822 1823
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
1824
		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1825
			p->policy = SCHED_NORMAL;
1826
			p->static_prio = NICE_TO_PRIO(0);
1827 1828 1829 1830 1831 1832
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
1833

1834 1835 1836 1837 1838 1839
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
1840

1841 1842 1843 1844 1845 1846
	if (dl_prio(p->prio)) {
		put_cpu();
		return -EAGAIN;
	} else if (rt_prio(p->prio)) {
		p->sched_class = &rt_sched_class;
	} else {
H
Hiroshi Shimamoto 已提交
1847
		p->sched_class = &fair_sched_class;
1848
	}
1849

P
Peter Zijlstra 已提交
1850 1851 1852
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

1853 1854 1855 1856 1857 1858 1859
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
1860
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1861
	set_task_cpu(p, cpu);
1862
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1863

1864
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1865
	if (likely(sched_info_on()))
1866
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1867
#endif
P
Peter Zijlstra 已提交
1868 1869
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
1870
#endif
1871
	init_task_preempt_count(p);
1872
#ifdef CONFIG_SMP
1873
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1874
	RB_CLEAR_NODE(&p->pushable_dl_tasks);
1875
#endif
1876

N
Nick Piggin 已提交
1877
	put_cpu();
1878
	return 0;
L
Linus Torvalds 已提交
1879 1880
}

1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 20;

	/*
	 * Doing this here saves a lot of checks in all
	 * the calling paths, and returning zero seems
	 * safe for them anyway.
	 */
	if (period == 0)
		return 0;

	return div64_u64(runtime << 20, period);
}

#ifdef CONFIG_SMP
inline struct dl_bw *dl_bw_of(int i)
{
	return &cpu_rq(i)->rd->dl_bw;
}

1903
static inline int dl_bw_cpus(int i)
1904
{
1905 1906 1907 1908 1909 1910 1911
	struct root_domain *rd = cpu_rq(i)->rd;
	int cpus = 0;

	for_each_cpu_and(i, rd->span, cpu_active_mask)
		cpus++;

	return cpus;
1912 1913 1914 1915 1916 1917 1918
}
#else
inline struct dl_bw *dl_bw_of(int i)
{
	return &cpu_rq(i)->dl.dl_bw;
}

1919
static inline int dl_bw_cpus(int i)
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
{
	return 1;
}
#endif

static inline
void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
{
	dl_b->total_bw -= tsk_bw;
}

static inline
void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
{
	dl_b->total_bw += tsk_bw;
}

static inline
bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
{
	return dl_b->bw != -1 &&
	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
}

/*
 * We must be sure that accepting a new task (or allowing changing the
 * parameters of an existing one) is consistent with the bandwidth
 * constraints. If yes, this function also accordingly updates the currently
 * allocated bandwidth to reflect the new situation.
 *
 * This function is called while holding p's rq->lock.
 */
static int dl_overflow(struct task_struct *p, int policy,
		       const struct sched_attr *attr)
{

	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
	u64 period = attr->sched_period;
	u64 runtime = attr->sched_runtime;
	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
1960
	int cpus, err = -1;
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970

	if (new_bw == p->dl.dl_bw)
		return 0;

	/*
	 * Either if a task, enters, leave, or stays -deadline but changes
	 * its parameters, we may need to update accordingly the total
	 * allocated bandwidth of the container.
	 */
	raw_spin_lock(&dl_b->lock);
1971
	cpus = dl_bw_cpus(task_cpu(p));
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
	if (dl_policy(policy) && !task_has_dl_policy(p) &&
	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
		__dl_add(dl_b, new_bw);
		err = 0;
	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
		__dl_clear(dl_b, p->dl.dl_bw);
		__dl_add(dl_b, new_bw);
		err = 0;
	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
		__dl_clear(dl_b, p->dl.dl_bw);
		err = 0;
	}
	raw_spin_unlock(&dl_b->lock);

	return err;
}

extern void init_dl_bw(struct dl_bw *dl_b);

L
Linus Torvalds 已提交
1992 1993 1994 1995 1996 1997 1998
/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1999
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
2000 2001
{
	unsigned long flags;
I
Ingo Molnar 已提交
2002
	struct rq *rq;
2003

2004
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2005 2006 2007 2008 2009 2010
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 */
2011
	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2012 2013
#endif

2014 2015
	/* Initialize new task's runnable average */
	init_task_runnable_average(p);
2016
	rq = __task_rq_lock(p);
P
Peter Zijlstra 已提交
2017
	activate_task(rq, p, 0);
P
Peter Zijlstra 已提交
2018
	p->on_rq = 1;
2019
	trace_sched_wakeup_new(p, true);
P
Peter Zijlstra 已提交
2020
	check_preempt_curr(rq, p, WF_FORK);
2021
#ifdef CONFIG_SMP
2022 2023
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2024
#endif
2025
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
2026 2027
}

2028 2029 2030
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2031
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2032
 * @notifier: notifier struct to register
2033 2034 2035 2036 2037 2038 2039 2040 2041
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2042
 * @notifier: notifier struct to unregister
2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;

2056
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2057 2058 2059 2060 2061 2062 2063 2064 2065
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;

2066
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2067 2068 2069
		notifier->ops->sched_out(notifier, next);
}

2070
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2082
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2083

2084 2085 2086
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2087
 * @prev: the current task that is being switched out
2088 2089 2090 2091 2092 2093 2094 2095 2096
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2097 2098 2099
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2100
{
2101
	trace_sched_switch(prev, next);
2102
	sched_info_switch(rq, prev, next);
2103
	perf_event_task_sched_out(prev, next);
2104
	fire_sched_out_preempt_notifiers(prev, next);
2105 2106 2107 2108
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2109 2110
/**
 * finish_task_switch - clean up after a task-switch
2111
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2112 2113
 * @prev: the thread we just switched away from.
 *
2114 2115 2116 2117
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2118 2119
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2120
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2121 2122 2123
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2124
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2125 2126 2127
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2128
	long prev_state;
L
Linus Torvalds 已提交
2129 2130 2131 2132 2133

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2134
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2135 2136
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2137
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2138 2139 2140 2141 2142
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2143
	prev_state = prev->state;
2144
	vtime_task_switch(prev);
2145
	finish_arch_switch(prev);
2146
	perf_event_task_sched_in(prev, current);
2147
	finish_lock_switch(rq, prev);
2148
	finish_arch_post_lock_switch();
S
Steven Rostedt 已提交
2149

2150
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2151 2152
	if (mm)
		mmdrop(mm);
2153
	if (unlikely(prev_state == TASK_DEAD)) {
2154 2155
		task_numa_free(prev);

2156 2157 2158
		if (prev->sched_class->task_dead)
			prev->sched_class->task_dead(prev);

2159 2160 2161
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2162
		 */
2163
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2164
		put_task_struct(prev);
2165
	}
2166 2167

	tick_nohz_task_switch(current);
L
Linus Torvalds 已提交
2168 2169
}

2170 2171 2172 2173 2174 2175 2176 2177
#ifdef CONFIG_SMP

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

2178
		raw_spin_lock_irqsave(&rq->lock, flags);
2179 2180
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
2181
		raw_spin_unlock_irqrestore(&rq->lock, flags);
2182 2183 2184 2185 2186 2187

		rq->post_schedule = 0;
	}
}

#else
2188

2189 2190
static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
2191 2192
}

2193 2194
#endif

L
Linus Torvalds 已提交
2195 2196 2197 2198
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2199
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2200 2201
	__releases(rq->lock)
{
2202 2203
	struct rq *rq = this_rq();

2204
	finish_task_switch(rq, prev);
2205

2206 2207 2208 2209 2210
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2211

2212 2213 2214 2215
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2216
	if (current->set_child_tid)
2217
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2218 2219 2220 2221 2222 2223
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2224
static inline void
2225
context_switch(struct rq *rq, struct task_struct *prev,
2226
	       struct task_struct *next)
L
Linus Torvalds 已提交
2227
{
I
Ingo Molnar 已提交
2228
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2229

2230
	prepare_task_switch(rq, prev, next);
2231

I
Ingo Molnar 已提交
2232 2233
	mm = next->mm;
	oldmm = prev->active_mm;
2234 2235 2236 2237 2238
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2239
	arch_start_context_switch(prev);
2240

2241
	if (!mm) {
L
Linus Torvalds 已提交
2242 2243 2244 2245 2246 2247
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2248
	if (!prev->mm) {
L
Linus Torvalds 已提交
2249 2250 2251
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2252 2253 2254 2255 2256 2257 2258
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2259
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2260
#endif
L
Linus Torvalds 已提交
2261

2262
	context_tracking_task_switch(prev, next);
L
Linus Torvalds 已提交
2263 2264 2265
	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2266 2267 2268 2269 2270 2271 2272
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2273 2274 2275
}

/*
2276
 * nr_running and nr_context_switches:
L
Linus Torvalds 已提交
2277 2278
 *
 * externally visible scheduler statistics: current number of runnable
2279
 * threads, total number of context switches performed since bootup.
L
Linus Torvalds 已提交
2280 2281 2282 2283 2284 2285 2286 2287 2288
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2289
}
L
Linus Torvalds 已提交
2290 2291

unsigned long long nr_context_switches(void)
2292
{
2293 2294
	int i;
	unsigned long long sum = 0;
2295

2296
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2297
		sum += cpu_rq(i)->nr_switches;
2298

L
Linus Torvalds 已提交
2299 2300
	return sum;
}
2301

L
Linus Torvalds 已提交
2302 2303 2304
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2305

2306
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2307
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2308

L
Linus Torvalds 已提交
2309 2310
	return sum;
}
2311

2312
unsigned long nr_iowait_cpu(int cpu)
2313
{
2314
	struct rq *this = cpu_rq(cpu);
2315 2316
	return atomic_read(&this->nr_iowait);
}
2317

I
Ingo Molnar 已提交
2318
#ifdef CONFIG_SMP
2319

2320
/*
P
Peter Zijlstra 已提交
2321 2322
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2323
 */
P
Peter Zijlstra 已提交
2324
void sched_exec(void)
2325
{
P
Peter Zijlstra 已提交
2326
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2327
	unsigned long flags;
2328
	int dest_cpu;
2329

2330
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2331
	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2332 2333
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2334

2335
	if (likely(cpu_active(dest_cpu))) {
2336
		struct migration_arg arg = { p, dest_cpu };
2337

2338 2339
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2340 2341
		return;
	}
2342
unlock:
2343
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2344
}
I
Ingo Molnar 已提交
2345

L
Linus Torvalds 已提交
2346 2347 2348
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2349
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
2350 2351

EXPORT_PER_CPU_SYMBOL(kstat);
2352
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
2353 2354

/*
2355
 * Return any ns on the sched_clock that have not yet been accounted in
2356
 * @p in case that task is currently running.
2357 2358
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
2359
 */
2360 2361 2362 2363 2364 2365
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
2366
		ns = rq_clock_task(rq) - p->se.exec_start;
2367 2368 2369 2370 2371 2372 2373
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

2374
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
2375 2376
{
	unsigned long flags;
2377
	struct rq *rq;
2378
	u64 ns = 0;
2379

2380
	rq = task_rq_lock(p, &flags);
2381
	ns = do_task_delta_exec(p, rq);
2382
	task_rq_unlock(rq, p, &flags);
2383

2384 2385
	return ns;
}
2386

2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
	/*
	 * 64-bit doesn't need locks to atomically read a 64bit value.
	 * So we have a optimization chance when the task's delta_exec is 0.
	 * Reading ->on_cpu is racy, but this is ok.
	 *
	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
	 * If we race with it entering cpu, unaccounted time is 0. This is
	 * indistinguishable from the read occurring a few cycles earlier.
	 */
	if (!p->on_cpu)
		return p->se.sum_exec_runtime;
#endif

2412 2413
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2414
	task_rq_unlock(rq, p, &flags);
2415 2416 2417

	return ns;
}
2418

2419 2420 2421 2422 2423 2424 2425 2426
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2427
	struct task_struct *curr = rq->curr;
2428 2429

	sched_clock_tick();
I
Ingo Molnar 已提交
2430

2431
	raw_spin_lock(&rq->lock);
2432
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
2433
	curr->sched_class->task_tick(rq, curr, 0);
2434
	update_cpu_load_active(rq);
2435
	raw_spin_unlock(&rq->lock);
2436

2437
	perf_event_task_tick();
2438

2439
#ifdef CONFIG_SMP
2440
	rq->idle_balance = idle_cpu(cpu);
2441
	trigger_load_balance(rq);
2442
#endif
2443
	rq_last_tick_reset(rq);
L
Linus Torvalds 已提交
2444 2445
}

2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
#ifdef CONFIG_NO_HZ_FULL
/**
 * scheduler_tick_max_deferment
 *
 * Keep at least one tick per second when a single
 * active task is running because the scheduler doesn't
 * yet completely support full dynticks environment.
 *
 * This makes sure that uptime, CFS vruntime, load
 * balancing, etc... continue to move forward, even
 * with a very low granularity.
2457 2458
 *
 * Return: Maximum deferment in nanoseconds.
2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469
 */
u64 scheduler_tick_max_deferment(void)
{
	struct rq *rq = this_rq();
	unsigned long next, now = ACCESS_ONCE(jiffies);

	next = rq->last_sched_tick + HZ;

	if (time_before_eq(next, now))
		return 0;

2470
	return jiffies_to_nsecs(next - now);
L
Linus Torvalds 已提交
2471
}
2472
#endif
L
Linus Torvalds 已提交
2473

2474
notrace unsigned long get_parent_ip(unsigned long addr)
2475 2476 2477 2478 2479 2480 2481 2482
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
2483

2484 2485 2486
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

2487
void __kprobes preempt_count_add(int val)
L
Linus Torvalds 已提交
2488
{
2489
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2490 2491 2492
	/*
	 * Underflow?
	 */
2493 2494
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
2495
#endif
2496
	__preempt_count_add(val);
2497
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2498 2499 2500
	/*
	 * Spinlock count overflowing soon?
	 */
2501 2502
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
2503
#endif
2504 2505 2506 2507 2508 2509 2510
	if (preempt_count() == val) {
		unsigned long ip = get_parent_ip(CALLER_ADDR1);
#ifdef CONFIG_DEBUG_PREEMPT
		current->preempt_disable_ip = ip;
#endif
		trace_preempt_off(CALLER_ADDR0, ip);
	}
L
Linus Torvalds 已提交
2511
}
2512
EXPORT_SYMBOL(preempt_count_add);
L
Linus Torvalds 已提交
2513

2514
void __kprobes preempt_count_sub(int val)
L
Linus Torvalds 已提交
2515
{
2516
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2517 2518 2519
	/*
	 * Underflow?
	 */
2520
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2521
		return;
L
Linus Torvalds 已提交
2522 2523 2524
	/*
	 * Is the spinlock portion underflowing?
	 */
2525 2526 2527
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
2528
#endif
2529

2530 2531
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2532
	__preempt_count_sub(val);
L
Linus Torvalds 已提交
2533
}
2534
EXPORT_SYMBOL(preempt_count_sub);
L
Linus Torvalds 已提交
2535 2536 2537 2538

#endif

/*
I
Ingo Molnar 已提交
2539
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
2540
 */
I
Ingo Molnar 已提交
2541
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
2542
{
2543 2544 2545
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
2546 2547
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
2548

I
Ingo Molnar 已提交
2549
	debug_show_held_locks(prev);
2550
	print_modules();
I
Ingo Molnar 已提交
2551 2552
	if (irqs_disabled())
		print_irqtrace_events(prev);
2553 2554 2555 2556 2557 2558 2559
#ifdef CONFIG_DEBUG_PREEMPT
	if (in_atomic_preempt_off()) {
		pr_err("Preemption disabled at:");
		print_ip_sym(current->preempt_disable_ip);
		pr_cont("\n");
	}
#endif
2560
	dump_stack();
2561
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
I
Ingo Molnar 已提交
2562
}
L
Linus Torvalds 已提交
2563

I
Ingo Molnar 已提交
2564 2565 2566 2567 2568
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
2569
	/*
I
Ingo Molnar 已提交
2570
	 * Test if we are atomic. Since do_exit() needs to call into
2571 2572
	 * schedule() atomically, we ignore that path. Otherwise whine
	 * if we are scheduling when we should not.
L
Linus Torvalds 已提交
2573
	 */
2574
	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
I
Ingo Molnar 已提交
2575
		__schedule_bug(prev);
2576
	rcu_sleep_check();
I
Ingo Molnar 已提交
2577

L
Linus Torvalds 已提交
2578 2579
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

2580
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
2581 2582 2583 2584 2585 2586
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
2587
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
2588
{
2589
	const struct sched_class *class;
I
Ingo Molnar 已提交
2590
	struct task_struct *p;
L
Linus Torvalds 已提交
2591 2592

	/*
I
Ingo Molnar 已提交
2593 2594
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
2595
	 */
2596 2597
	if (likely(prev->sched_class == &fair_sched_class &&
		   rq->nr_running == rq->cfs.h_nr_running)) {
2598
		p = fair_sched_class.pick_next_task(rq, prev);
I
Ingo Molnar 已提交
2599 2600
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
2601 2602
	}

2603
	for_each_class(class) {
2604
		p = class->pick_next_task(rq, prev);
I
Ingo Molnar 已提交
2605 2606 2607
		if (p)
			return p;
	}
2608 2609

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
2610
}
L
Linus Torvalds 已提交
2611

I
Ingo Molnar 已提交
2612
/*
2613
 * __schedule() is the main scheduler function.
2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647
 *
 * The main means of driving the scheduler and thus entering this function are:
 *
 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 *      paths. For example, see arch/x86/entry_64.S.
 *
 *      To drive preemption between tasks, the scheduler sets the flag in timer
 *      interrupt handler scheduler_tick().
 *
 *   3. Wakeups don't really cause entry into schedule(). They add a
 *      task to the run-queue and that's it.
 *
 *      Now, if the new task added to the run-queue preempts the current
 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 *      called on the nearest possible occasion:
 *
 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
 *
 *         - in syscall or exception context, at the next outmost
 *           preempt_enable(). (this might be as soon as the wake_up()'s
 *           spin_unlock()!)
 *
 *         - in IRQ context, return from interrupt-handler to
 *           preemptible context
 *
 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
 *         then at the next:
 *
 *          - cond_resched() call
 *          - explicit schedule() call
 *          - return from syscall or exception to user-space
 *          - return from interrupt-handler to user-space
I
Ingo Molnar 已提交
2648
 */
2649
static void __sched __schedule(void)
I
Ingo Molnar 已提交
2650 2651
{
	struct task_struct *prev, *next;
2652
	unsigned long *switch_count;
I
Ingo Molnar 已提交
2653
	struct rq *rq;
2654
	int cpu;
I
Ingo Molnar 已提交
2655

2656 2657
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
2658 2659
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
2660
	rcu_note_context_switch(cpu);
I
Ingo Molnar 已提交
2661 2662 2663
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
2664

2665
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
2666
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
2667

2668 2669 2670 2671 2672 2673
	/*
	 * Make sure that signal_pending_state()->signal_pending() below
	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
	 * done by the caller to avoid the race with signal_wake_up().
	 */
	smp_mb__before_spinlock();
2674
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
2675

2676
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
2677
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
2678
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
2679
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
2680
		} else {
2681 2682 2683
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

T
Tejun Heo 已提交
2684
			/*
2685 2686 2687
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
2688 2689 2690 2691 2692 2693 2694 2695 2696
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
		}
I
Ingo Molnar 已提交
2697
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
2698 2699
	}

2700 2701 2702 2703
	if (prev->on_rq || rq->skip_clock_update < 0)
		update_rq_clock(rq);

	next = pick_next_task(rq, prev);
2704
	clear_tsk_need_resched(prev);
2705
	clear_preempt_need_resched();
2706
	rq->skip_clock_update = 0;
L
Linus Torvalds 已提交
2707 2708 2709 2710 2711 2712

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
2713
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
2714
		/*
2715 2716 2717 2718
		 * The context switch have flipped the stack from under us
		 * and restored the local variables which were saved when
		 * this task called schedule() in the past. prev == current
		 * is still correct, but it can be moved to another cpu/rq.
P
Peter Zijlstra 已提交
2719 2720 2721
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
2722
	} else
2723
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
2724

2725
	post_schedule(rq);
L
Linus Torvalds 已提交
2726

2727
	sched_preempt_enable_no_resched();
2728
	if (need_resched())
L
Linus Torvalds 已提交
2729 2730
		goto need_resched;
}
2731

2732 2733
static inline void sched_submit_work(struct task_struct *tsk)
{
2734
	if (!tsk->state || tsk_is_pi_blocked(tsk))
2735 2736 2737 2738 2739 2740 2741 2742 2743
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

S
Simon Kirby 已提交
2744
asmlinkage void __sched schedule(void)
2745
{
2746 2747 2748
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
2749 2750
	__schedule();
}
L
Linus Torvalds 已提交
2751 2752
EXPORT_SYMBOL(schedule);

2753
#ifdef CONFIG_CONTEXT_TRACKING
2754 2755 2756 2757 2758 2759 2760 2761
asmlinkage void __sched schedule_user(void)
{
	/*
	 * If we come here after a random call to set_need_resched(),
	 * or we have been woken up remotely but the IPI has not yet arrived,
	 * we haven't yet exited the RCU idle mode. Do it here manually until
	 * we find a better solution.
	 */
2762
	user_exit();
2763
	schedule();
2764
	user_enter();
2765 2766 2767
}
#endif

2768 2769 2770 2771 2772 2773 2774
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
2775
	sched_preempt_enable_no_resched();
2776 2777 2778 2779
	schedule();
	preempt_disable();
}

L
Linus Torvalds 已提交
2780 2781
#ifdef CONFIG_PREEMPT
/*
2782
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
2783
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
2784 2785
 * occur there and call schedule directly.
 */
2786
asmlinkage void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
2787 2788 2789
{
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
2790
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
2791
	 */
2792
	if (likely(!preemptible()))
L
Linus Torvalds 已提交
2793 2794
		return;

2795
	do {
2796
		__preempt_count_add(PREEMPT_ACTIVE);
2797
		__schedule();
2798
		__preempt_count_sub(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
2799

2800 2801 2802 2803 2804
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
2805
	} while (need_resched());
L
Linus Torvalds 已提交
2806 2807
}
EXPORT_SYMBOL(preempt_schedule);
2808
#endif /* CONFIG_PREEMPT */
L
Linus Torvalds 已提交
2809 2810

/*
2811
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
2812 2813 2814 2815 2816 2817
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
2818
	enum ctx_state prev_state;
2819

2820
	/* Catch callers which need to be fixed */
2821
	BUG_ON(preempt_count() || !irqs_disabled());
L
Linus Torvalds 已提交
2822

2823 2824
	prev_state = exception_enter();

2825
	do {
2826
		__preempt_count_add(PREEMPT_ACTIVE);
2827
		local_irq_enable();
2828
		__schedule();
2829
		local_irq_disable();
2830
		__preempt_count_sub(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
2831

2832 2833 2834 2835 2836
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
2837
	} while (need_resched());
2838 2839

	exception_exit(prev_state);
L
Linus Torvalds 已提交
2840 2841
}

P
Peter Zijlstra 已提交
2842
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
2843
			  void *key)
L
Linus Torvalds 已提交
2844
{
P
Peter Zijlstra 已提交
2845
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
2846 2847 2848
}
EXPORT_SYMBOL(default_wake_function);

2849 2850
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
2851
{
I
Ingo Molnar 已提交
2852 2853 2854 2855
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
2856

2857
	__set_current_state(state);
L
Linus Torvalds 已提交
2858

2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
2873 2874 2875
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
2876
long __sched
I
Ingo Molnar 已提交
2877
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
2878
{
2879
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
2880 2881 2882
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
2883
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
2884
{
2885
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
2886 2887 2888
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
2889
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
2890
{
2891
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
2892 2893 2894
}
EXPORT_SYMBOL(sleep_on_timeout);

2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
2905 2906
 * Used by the rt_mutex code to implement priority inheritance
 * logic. Call site only calls if the priority of the task changed.
2907
 */
2908
void rt_mutex_setprio(struct task_struct *p, int prio)
2909
{
2910
	int oldprio, on_rq, running, enqueue_flag = 0;
2911
	struct rq *rq;
2912
	const struct sched_class *prev_class;
2913

2914
	BUG_ON(prio > MAX_PRIO);
2915

2916
	rq = __task_rq_lock(p);
2917

2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

2936
	trace_sched_pi_setprio(p, prio);
2937
	p->pi_top_task = rt_mutex_get_top_task(p);
2938
	oldprio = p->prio;
2939
	prev_class = p->sched_class;
P
Peter Zijlstra 已提交
2940
	on_rq = p->on_rq;
2941
	running = task_current(rq, p);
2942
	if (on_rq)
2943
		dequeue_task(rq, p, 0);
2944 2945
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
2946

2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963
	/*
	 * Boosting condition are:
	 * 1. -rt task is running and holds mutex A
	 *      --> -dl task blocks on mutex A
	 *
	 * 2. -dl task is running and holds mutex A
	 *      --> -dl task blocks on mutex A and could preempt the
	 *          running task
	 */
	if (dl_prio(prio)) {
		if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
			dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
			p->dl.dl_boosted = 1;
			p->dl.dl_throttled = 0;
			enqueue_flag = ENQUEUE_REPLENISH;
		} else
			p->dl.dl_boosted = 0;
2964
		p->sched_class = &dl_sched_class;
2965 2966 2967 2968 2969
	} else if (rt_prio(prio)) {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
		if (oldprio < prio)
			enqueue_flag = ENQUEUE_HEAD;
I
Ingo Molnar 已提交
2970
		p->sched_class = &rt_sched_class;
2971 2972 2973
	} else {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
I
Ingo Molnar 已提交
2974
		p->sched_class = &fair_sched_class;
2975
	}
I
Ingo Molnar 已提交
2976

2977 2978
	p->prio = prio;

2979 2980
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
2981
	if (on_rq)
2982
		enqueue_task(rq, p, enqueue_flag);
2983

P
Peter Zijlstra 已提交
2984
	check_class_changed(rq, p, prev_class, oldprio);
2985
out_unlock:
2986
	__task_rq_unlock(rq);
2987 2988
}
#endif
2989

2990
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
2991
{
I
Ingo Molnar 已提交
2992
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
2993
	unsigned long flags;
2994
	struct rq *rq;
L
Linus Torvalds 已提交
2995

2996
	if (task_nice(p) == nice || nice < -20 || nice > 19)
L
Linus Torvalds 已提交
2997 2998 2999 3000 3001 3002 3003 3004 3005 3006
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
3007
	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
L
Linus Torvalds 已提交
3008
	 */
3009
	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3010 3011 3012
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
P
Peter Zijlstra 已提交
3013
	on_rq = p->on_rq;
3014
	if (on_rq)
3015
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
3016 3017

	p->static_prio = NICE_TO_PRIO(nice);
3018
	set_load_weight(p);
3019 3020 3021
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3022

I
Ingo Molnar 已提交
3023
	if (on_rq) {
3024
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
3025
		/*
3026 3027
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3028
		 */
3029
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
3030 3031 3032
			resched_task(rq->curr);
	}
out_unlock:
3033
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3034 3035 3036
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3037 3038 3039 3040 3041
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3042
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3043
{
3044 3045
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
3046

3047
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3048 3049 3050
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3051 3052 3053 3054 3055 3056 3057 3058 3059
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3060
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3061
{
3062
	long nice, retval;
L
Linus Torvalds 已提交
3063 3064 3065 3066 3067 3068

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
3069 3070
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
3071 3072 3073
	if (increment > 40)
		increment = 40;

3074
	nice = task_nice(current) + increment;
L
Linus Torvalds 已提交
3075 3076 3077 3078 3079
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
3080 3081 3082
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
3097
 * Return: The priority value as seen by users in /proc.
L
Linus Torvalds 已提交
3098 3099 3100
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3101
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3102 3103 3104 3105 3106 3107 3108
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
3109 3110
 *
 * Return: 1 if the CPU is currently idle. 0 otherwise.
L
Linus Torvalds 已提交
3111 3112 3113
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3128 3129 3130 3131 3132
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
3133 3134
 *
 * Return: The idle task for the cpu @cpu.
L
Linus Torvalds 已提交
3135
 */
3136
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3137 3138 3139 3140 3141 3142 3143
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
3144 3145
 *
 * The task of @pid, if found. %NULL otherwise.
L
Linus Torvalds 已提交
3146
 */
A
Alexey Dobriyan 已提交
3147
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
3148
{
3149
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
3150 3151
}

3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
/*
 * This function initializes the sched_dl_entity of a newly becoming
 * SCHED_DEADLINE task.
 *
 * Only the static values are considered here, the actual runtime and the
 * absolute deadline will be properly calculated when the task is enqueued
 * for the first time with its new policy.
 */
static void
__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	init_dl_task_timer(dl_se);
	dl_se->dl_runtime = attr->sched_runtime;
	dl_se->dl_deadline = attr->sched_deadline;
3168
	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3169
	dl_se->flags = attr->sched_flags;
3170
	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3171 3172 3173 3174
	dl_se->dl_throttled = 0;
	dl_se->dl_new = 1;
}

3175 3176
static void __setscheduler_params(struct task_struct *p,
		const struct sched_attr *attr)
L
Linus Torvalds 已提交
3177
{
3178 3179
	int policy = attr->sched_policy;

3180 3181 3182
	if (policy == -1) /* setparam */
		policy = p->policy;

L
Linus Torvalds 已提交
3183
	p->policy = policy;
3184

3185 3186
	if (dl_policy(policy))
		__setparam_dl(p, attr);
3187
	else if (fair_policy(policy))
3188 3189
		p->static_prio = NICE_TO_PRIO(attr->sched_nice);

3190 3191 3192 3193 3194 3195
	/*
	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
	 * !rt_policy. Always setting this ensures that things like
	 * getparam()/getattr() don't report silly values for !rt tasks.
	 */
	p->rt_priority = attr->sched_priority;
3196 3197
	set_load_weight(p);
}
3198

3199 3200 3201 3202 3203
/* Actually do priority change: must hold pi & rq lock. */
static void __setscheduler(struct rq *rq, struct task_struct *p,
			   const struct sched_attr *attr)
{
	__setscheduler_params(p, attr);
3204

3205 3206 3207
	if (dl_prio(p->prio))
		p->sched_class = &dl_sched_class;
	else if (rt_prio(p->prio))
3208 3209 3210
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
3211
}
3212 3213 3214 3215 3216 3217 3218 3219 3220

static void
__getparam_dl(struct task_struct *p, struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	attr->sched_priority = p->rt_priority;
	attr->sched_runtime = dl_se->dl_runtime;
	attr->sched_deadline = dl_se->dl_deadline;
3221
	attr->sched_period = dl_se->dl_period;
3222 3223 3224 3225 3226 3227
	attr->sched_flags = dl_se->flags;
}

/*
 * This function validates the new parameters of a -deadline task.
 * We ask for the deadline not being zero, and greater or equal
3228
 * than the runtime, as well as the period of being zero or
3229 3230 3231
 * greater than deadline. Furthermore, we have to be sure that
 * user parameters are above the internal resolution (1us); we
 * check sched_runtime only since it is always the smaller one.
3232 3233 3234 3235 3236
 */
static bool
__checkparam_dl(const struct sched_attr *attr)
{
	return attr && attr->sched_deadline != 0 &&
3237 3238
		(attr->sched_period == 0 ||
		(s64)(attr->sched_period   - attr->sched_deadline) >= 0) &&
3239 3240
		(s64)(attr->sched_deadline - attr->sched_runtime ) >= 0  &&
		attr->sched_runtime >= (2 << (DL_SCALE - 1));
3241 3242
}

3243 3244 3245 3246 3247 3248 3249 3250 3251 3252
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
3253 3254
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
3255 3256 3257 3258
	rcu_read_unlock();
	return match;
}

3259 3260 3261
static int __sched_setscheduler(struct task_struct *p,
				const struct sched_attr *attr,
				bool user)
L
Linus Torvalds 已提交
3262
{
3263
	int newprio = MAX_RT_PRIO - 1 - attr->sched_priority;
3264
	int retval, oldprio, oldpolicy = -1, on_rq, running;
3265
	int policy = attr->sched_policy;
L
Linus Torvalds 已提交
3266
	unsigned long flags;
3267
	const struct sched_class *prev_class;
3268
	struct rq *rq;
3269
	int reset_on_fork;
L
Linus Torvalds 已提交
3270

3271 3272
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
3273 3274
recheck:
	/* double check policy once rq lock held */
3275 3276
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
3277
		policy = oldpolicy = p->policy;
3278
	} else {
3279
		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3280

3281 3282
		if (policy != SCHED_DEADLINE &&
				policy != SCHED_FIFO && policy != SCHED_RR &&
3283 3284 3285 3286 3287
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

3288 3289 3290
	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
		return -EINVAL;

L
Linus Torvalds 已提交
3291 3292
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
3293 3294
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
3295
	 */
3296
	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3297
	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
3298
		return -EINVAL;
3299 3300
	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
	    (rt_policy(policy) != (attr->sched_priority != 0)))
L
Linus Torvalds 已提交
3301 3302
		return -EINVAL;

3303 3304 3305
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
3306
	if (user && !capable(CAP_SYS_NICE)) {
3307
		if (fair_policy(policy)) {
3308
			if (attr->sched_nice < task_nice(p) &&
3309
			    !can_nice(p, attr->sched_nice))
3310 3311 3312
				return -EPERM;
		}

3313
		if (rt_policy(policy)) {
3314 3315
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
3316 3317 3318 3319 3320 3321

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
3322 3323
			if (attr->sched_priority > p->rt_priority &&
			    attr->sched_priority > rlim_rtprio)
3324 3325
				return -EPERM;
		}
3326

I
Ingo Molnar 已提交
3327
		/*
3328 3329
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
3330
		 */
3331
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3332
			if (!can_nice(p, task_nice(p)))
3333 3334
				return -EPERM;
		}
3335

3336
		/* can't change other user's priorities */
3337
		if (!check_same_owner(p))
3338
			return -EPERM;
3339 3340 3341 3342

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
3343
	}
L
Linus Torvalds 已提交
3344

3345
	if (user) {
3346
		retval = security_task_setscheduler(p);
3347 3348 3349 3350
		if (retval)
			return retval;
	}

3351 3352 3353
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
3354
	 *
L
Lucas De Marchi 已提交
3355
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
3356 3357
	 * runqueue lock must be held.
	 */
3358
	rq = task_rq_lock(p, &flags);
3359

3360 3361 3362 3363
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
3364
		task_rq_unlock(rq, p, &flags);
3365 3366 3367
		return -EINVAL;
	}

3368
	/*
3369 3370
	 * If not changing anything there's no need to proceed further,
	 * but store a possible modification of reset_on_fork.
3371
	 */
3372
	if (unlikely(policy == p->policy)) {
3373
		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3374 3375 3376
			goto change;
		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
			goto change;
3377 3378
		if (dl_policy(policy))
			goto change;
3379

3380
		p->sched_reset_on_fork = reset_on_fork;
3381
		task_rq_unlock(rq, p, &flags);
3382 3383
		return 0;
	}
3384
change:
3385

3386
	if (user) {
3387
#ifdef CONFIG_RT_GROUP_SCHED
3388 3389 3390 3391 3392
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3393 3394
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
3395
			task_rq_unlock(rq, p, &flags);
3396 3397 3398
			return -EPERM;
		}
#endif
3399 3400 3401 3402 3403 3404 3405 3406 3407
#ifdef CONFIG_SMP
		if (dl_bandwidth_enabled() && dl_policy(policy)) {
			cpumask_t *span = rq->rd->span;

			/*
			 * Don't allow tasks with an affinity mask smaller than
			 * the entire root_domain to become SCHED_DEADLINE. We
			 * will also fail if there's no bandwidth available.
			 */
3408 3409
			if (!cpumask_subset(span, &p->cpus_allowed) ||
			    rq->rd->dl_bw.bw == 0) {
3410 3411 3412 3413 3414 3415
				task_rq_unlock(rq, p, &flags);
				return -EPERM;
			}
		}
#endif
	}
3416

L
Linus Torvalds 已提交
3417 3418 3419
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
3420
		task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3421 3422
		goto recheck;
	}
3423 3424 3425 3426 3427 3428

	/*
	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
	 * is available.
	 */
3429
	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3430 3431 3432 3433
		task_rq_unlock(rq, p, &flags);
		return -EBUSY;
	}

3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451
	p->sched_reset_on_fork = reset_on_fork;
	oldprio = p->prio;

	/*
	 * Special case for priority boosted tasks.
	 *
	 * If the new priority is lower or equal (user space view)
	 * than the current (boosted) priority, we just store the new
	 * normal parameters and do not touch the scheduler class and
	 * the runqueue. This will be done when the task deboost
	 * itself.
	 */
	if (rt_mutex_check_prio(p, newprio)) {
		__setscheduler_params(p, attr);
		task_rq_unlock(rq, p, &flags);
		return 0;
	}

P
Peter Zijlstra 已提交
3452
	on_rq = p->on_rq;
3453
	running = task_current(rq, p);
3454
	if (on_rq)
3455
		dequeue_task(rq, p, 0);
3456 3457
	if (running)
		p->sched_class->put_prev_task(rq, p);
3458

3459
	prev_class = p->sched_class;
3460
	__setscheduler(rq, p, attr);
3461

3462 3463
	if (running)
		p->sched_class->set_curr_task(rq);
3464 3465 3466 3467 3468 3469 3470
	if (on_rq) {
		/*
		 * We enqueue to tail when the priority of a task is
		 * increased (user space view).
		 */
		enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
	}
3471

P
Peter Zijlstra 已提交
3472
	check_class_changed(rq, p, prev_class, oldprio);
3473
	task_rq_unlock(rq, p, &flags);
3474

3475 3476
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
3477 3478
	return 0;
}
3479

3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499
static int _sched_setscheduler(struct task_struct *p, int policy,
			       const struct sched_param *param, bool check)
{
	struct sched_attr attr = {
		.sched_policy   = policy,
		.sched_priority = param->sched_priority,
		.sched_nice	= PRIO_TO_NICE(p->static_prio),
	};

	/*
	 * Fixup the legacy SCHED_RESET_ON_FORK hack
	 */
	if (policy & SCHED_RESET_ON_FORK) {
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
		policy &= ~SCHED_RESET_ON_FORK;
		attr.sched_policy = policy;
	}

	return __sched_setscheduler(p, &attr, check);
}
3500 3501 3502 3503 3504 3505
/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
3506 3507
 * Return: 0 on success. An error code otherwise.
 *
3508 3509 3510
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
3511
		       const struct sched_param *param)
3512
{
3513
	return _sched_setscheduler(p, policy, param, true);
3514
}
L
Linus Torvalds 已提交
3515 3516
EXPORT_SYMBOL_GPL(sched_setscheduler);

3517 3518 3519 3520 3521 3522
int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
{
	return __sched_setscheduler(p, attr, true);
}
EXPORT_SYMBOL_GPL(sched_setattr);

3523 3524 3525 3526 3527 3528 3529 3530 3531 3532
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
3533 3534
 *
 * Return: 0 on success. An error code otherwise.
3535 3536
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3537
			       const struct sched_param *param)
3538
{
3539
	return _sched_setscheduler(p, policy, param, false);
3540 3541
}

I
Ingo Molnar 已提交
3542 3543
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
3544 3545 3546
{
	struct sched_param lparam;
	struct task_struct *p;
3547
	int retval;
L
Linus Torvalds 已提交
3548 3549 3550 3551 3552

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
3553 3554 3555

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
3556
	p = find_process_by_pid(pid);
3557 3558 3559
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
3560

L
Linus Torvalds 已提交
3561 3562 3563
	return retval;
}

3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636
/*
 * Mimics kernel/events/core.c perf_copy_attr().
 */
static int sched_copy_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr)
{
	u32 size;
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = SCHED_ATTR_SIZE_VER0;

	if (size < SCHED_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
	 */
	if (size > sizeof(*attr)) {
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;

		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;

		for (; addr < end; addr++) {
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
		size = sizeof(*attr);
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * XXX: do we want to be lenient like existing syscalls; or do we want
	 * to be strict and return an error on out-of-bounds values?
	 */
	attr->sched_nice = clamp(attr->sched_nice, -20, 19);

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

L
Linus Torvalds 已提交
3637 3638 3639 3640 3641
/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
3642 3643
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
3644
 */
3645 3646
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
3647
{
3648 3649 3650 3651
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
3652 3653 3654 3655 3656 3657 3658
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
3659 3660
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
3661
 */
3662
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
3663 3664 3665 3666
{
	return do_sched_setscheduler(pid, -1, param);
}

3667 3668 3669
/**
 * sys_sched_setattr - same as above, but with extended sched_attr
 * @pid: the pid in question.
J
Juri Lelli 已提交
3670
 * @uattr: structure containing the extended parameters.
3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693
 */
SYSCALL_DEFINE2(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr)
{
	struct sched_attr attr;
	struct task_struct *p;
	int retval;

	if (!uattr || pid < 0)
		return -EINVAL;

	if (sched_copy_attr(uattr, &attr))
		return -EFAULT;

	rcu_read_lock();
	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (p != NULL)
		retval = sched_setattr(p, &attr);
	rcu_read_unlock();

	return retval;
}

L
Linus Torvalds 已提交
3694 3695 3696
/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
3697 3698 3699
 *
 * Return: On success, the policy of the thread. Otherwise, a negative error
 * code.
L
Linus Torvalds 已提交
3700
 */
3701
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
3702
{
3703
	struct task_struct *p;
3704
	int retval;
L
Linus Torvalds 已提交
3705 3706

	if (pid < 0)
3707
		return -EINVAL;
L
Linus Torvalds 已提交
3708 3709

	retval = -ESRCH;
3710
	rcu_read_lock();
L
Linus Torvalds 已提交
3711 3712 3713 3714
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
3715 3716
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
3717
	}
3718
	rcu_read_unlock();
L
Linus Torvalds 已提交
3719 3720 3721 3722
	return retval;
}

/**
3723
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
3724 3725
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
3726 3727 3728
 *
 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
 * code.
L
Linus Torvalds 已提交
3729
 */
3730
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
3731 3732
{
	struct sched_param lp;
3733
	struct task_struct *p;
3734
	int retval;
L
Linus Torvalds 已提交
3735 3736

	if (!param || pid < 0)
3737
		return -EINVAL;
L
Linus Torvalds 已提交
3738

3739
	rcu_read_lock();
L
Linus Torvalds 已提交
3740 3741 3742 3743 3744 3745 3746 3747 3748
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

3749 3750 3751 3752
	if (task_has_dl_policy(p)) {
		retval = -EINVAL;
		goto out_unlock;
	}
L
Linus Torvalds 已提交
3753
	lp.sched_priority = p->rt_priority;
3754
	rcu_read_unlock();
L
Linus Torvalds 已提交
3755 3756 3757 3758 3759 3760 3761 3762 3763

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
3764
	rcu_read_unlock();
L
Linus Torvalds 已提交
3765 3766 3767
	return retval;
}

3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809
static int sched_read_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr,
			   unsigned int usize)
{
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, usize))
		return -EFAULT;

	/*
	 * If we're handed a smaller struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. old
	 * user-space does not get uncomplete information.
	 */
	if (usize < sizeof(*attr)) {
		unsigned char *addr;
		unsigned char *end;

		addr = (void *)attr + usize;
		end  = (void *)attr + sizeof(*attr);

		for (; addr < end; addr++) {
			if (*addr)
				goto err_size;
		}

		attr->size = usize;
	}

	ret = copy_to_user(uattr, attr, usize);
	if (ret)
		return -EFAULT;

out:
	return ret;

err_size:
	ret = -E2BIG;
	goto out;
}

/**
3810
 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3811
 * @pid: the pid in question.
J
Juri Lelli 已提交
3812
 * @uattr: structure containing the extended parameters.
3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838
 * @size: sizeof(attr) for fwd/bwd comp.
 */
SYSCALL_DEFINE3(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
		unsigned int, size)
{
	struct sched_attr attr = {
		.size = sizeof(struct sched_attr),
	};
	struct task_struct *p;
	int retval;

	if (!uattr || pid < 0 || size > PAGE_SIZE ||
	    size < SCHED_ATTR_SIZE_VER0)
		return -EINVAL;

	rcu_read_lock();
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	attr.sched_policy = p->policy;
3839 3840
	if (p->sched_reset_on_fork)
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3841 3842 3843
	if (task_has_dl_policy(p))
		__getparam_dl(p, &attr);
	else if (task_has_rt_policy(p))
3844 3845
		attr.sched_priority = p->rt_priority;
	else
3846
		attr.sched_nice = task_nice(p);
3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857

	rcu_read_unlock();

	retval = sched_read_attr(uattr, &attr, size);
	return retval;

out_unlock:
	rcu_read_unlock();
	return retval;
}

3858
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
3859
{
3860
	cpumask_var_t cpus_allowed, new_mask;
3861 3862
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
3863

3864
	rcu_read_lock();
L
Linus Torvalds 已提交
3865 3866 3867

	p = find_process_by_pid(pid);
	if (!p) {
3868
		rcu_read_unlock();
L
Linus Torvalds 已提交
3869 3870 3871
		return -ESRCH;
	}

3872
	/* Prevent p going away */
L
Linus Torvalds 已提交
3873
	get_task_struct(p);
3874
	rcu_read_unlock();
L
Linus Torvalds 已提交
3875

3876 3877 3878 3879
	if (p->flags & PF_NO_SETAFFINITY) {
		retval = -EINVAL;
		goto out_put_task;
	}
3880 3881 3882 3883 3884 3885 3886 3887
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
3888
	retval = -EPERM;
E
Eric W. Biederman 已提交
3889 3890 3891 3892 3893 3894 3895 3896
	if (!check_same_owner(p)) {
		rcu_read_lock();
		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
			rcu_read_unlock();
			goto out_unlock;
		}
		rcu_read_unlock();
	}
L
Linus Torvalds 已提交
3897

3898
	retval = security_task_setscheduler(p);
3899 3900 3901
	if (retval)
		goto out_unlock;

3902 3903 3904 3905

	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);

3906 3907 3908 3909 3910 3911 3912 3913 3914 3915
	/*
	 * Since bandwidth control happens on root_domain basis,
	 * if admission test is enabled, we only admit -deadline
	 * tasks allowed to run on all the CPUs in the task's
	 * root_domain.
	 */
#ifdef CONFIG_SMP
	if (task_has_dl_policy(p)) {
		const struct cpumask *span = task_rq(p)->rd->span;

3916
		if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
3917 3918 3919 3920 3921
			retval = -EBUSY;
			goto out_unlock;
		}
	}
#endif
P
Peter Zijlstra 已提交
3922
again:
3923
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
3924

P
Paul Menage 已提交
3925
	if (!retval) {
3926 3927
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
3928 3929 3930 3931 3932
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
3933
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
3934 3935 3936
			goto again;
		}
	}
L
Linus Torvalds 已提交
3937
out_unlock:
3938 3939 3940 3941
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
3942 3943 3944 3945 3946
	put_task_struct(p);
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3947
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
3948
{
3949 3950 3951 3952 3953
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
3954 3955 3956 3957 3958 3959 3960 3961
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
3962 3963
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
3964
 */
3965 3966
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
3967
{
3968
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
3969 3970
	int retval;

3971 3972
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
3973

3974 3975 3976 3977 3978
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
3979 3980
}

3981
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
3982
{
3983
	struct task_struct *p;
3984
	unsigned long flags;
L
Linus Torvalds 已提交
3985 3986
	int retval;

3987
	rcu_read_lock();
L
Linus Torvalds 已提交
3988 3989 3990 3991 3992 3993

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

3994 3995 3996 3997
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

3998
	raw_spin_lock_irqsave(&p->pi_lock, flags);
3999
	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4000
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4001 4002

out_unlock:
4003
	rcu_read_unlock();
L
Linus Torvalds 已提交
4004

4005
	return retval;
L
Linus Torvalds 已提交
4006 4007 4008 4009 4010 4011 4012
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4013 4014
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4015
 */
4016 4017
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4018 4019
{
	int ret;
4020
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4021

A
Anton Blanchard 已提交
4022
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4023 4024
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4025 4026
		return -EINVAL;

4027 4028
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4029

4030 4031
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4032
		size_t retlen = min_t(size_t, len, cpumask_size());
4033 4034

		if (copy_to_user(user_mask_ptr, mask, retlen))
4035 4036
			ret = -EFAULT;
		else
4037
			ret = retlen;
4038 4039
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4040

4041
	return ret;
L
Linus Torvalds 已提交
4042 4043 4044 4045 4046
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4047 4048
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
4049 4050
 *
 * Return: 0.
L
Linus Torvalds 已提交
4051
 */
4052
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4053
{
4054
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4055

4056
	schedstat_inc(rq, yld_count);
4057
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4058 4059 4060 4061 4062 4063

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4064
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4065
	do_raw_spin_unlock(&rq->lock);
4066
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
4067 4068 4069 4070 4071 4072

	schedule();

	return 0;
}

A
Andrew Morton 已提交
4073
static void __cond_resched(void)
L
Linus Torvalds 已提交
4074
{
4075
	__preempt_count_add(PREEMPT_ACTIVE);
4076
	__schedule();
4077
	__preempt_count_sub(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4078 4079
}

4080
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4081
{
P
Peter Zijlstra 已提交
4082
	if (should_resched()) {
L
Linus Torvalds 已提交
4083 4084 4085 4086 4087
		__cond_resched();
		return 1;
	}
	return 0;
}
4088
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4089 4090

/*
4091
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4092 4093
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4094
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4095 4096 4097
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4098
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4099
{
P
Peter Zijlstra 已提交
4100
	int resched = should_resched();
J
Jan Kara 已提交
4101 4102
	int ret = 0;

4103 4104
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
4105
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4106
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4107
		if (resched)
N
Nick Piggin 已提交
4108 4109 4110
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
4111
		ret = 1;
L
Linus Torvalds 已提交
4112 4113
		spin_lock(lock);
	}
J
Jan Kara 已提交
4114
	return ret;
L
Linus Torvalds 已提交
4115
}
4116
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4117

4118
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4119 4120 4121
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
4122
	if (should_resched()) {
4123
		local_bh_enable();
L
Linus Torvalds 已提交
4124 4125 4126 4127 4128 4129
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
4130
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4131 4132 4133 4134

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
 * 	yield();
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
4153 4154 4155 4156 4157 4158 4159 4160
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

4161 4162 4163 4164
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
4165 4166
 * @p: target task
 * @preempt: whether task preemption is allowed or not
4167 4168 4169 4170
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
4171
 * Return:
4172 4173 4174
 *	true (>0) if we indeed boosted the target task.
 *	false (0) if we failed to boost the target.
 *	-ESRCH if there's no task to yield to.
4175 4176 4177 4178 4179 4180
 */
bool __sched yield_to(struct task_struct *p, bool preempt)
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
4181
	int yielded = 0;
4182 4183 4184 4185 4186 4187

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
4188 4189 4190 4191 4192 4193 4194 4195 4196
	/*
	 * If we're the only runnable task on the rq and target rq also
	 * has only one task, there's absolutely no point in yielding.
	 */
	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
		yielded = -ESRCH;
		goto out_irq;
	}

4197
	double_rq_lock(rq, p_rq);
4198
	if (task_rq(p) != p_rq) {
4199 4200 4201 4202 4203
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
4204
		goto out_unlock;
4205 4206

	if (curr->sched_class != p->sched_class)
4207
		goto out_unlock;
4208 4209

	if (task_running(p_rq, p) || p->state)
4210
		goto out_unlock;
4211 4212

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4213
	if (yielded) {
4214
		schedstat_inc(rq, yld_count);
4215 4216 4217 4218 4219 4220 4221
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
			resched_task(p_rq->curr);
	}
4222

4223
out_unlock:
4224
	double_rq_unlock(rq, p_rq);
4225
out_irq:
4226 4227
	local_irq_restore(flags);

4228
	if (yielded > 0)
4229 4230 4231 4232 4233 4234
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
4235
/*
I
Ingo Molnar 已提交
4236
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4237 4238 4239 4240
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
4241
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4242

4243
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4244
	atomic_inc(&rq->nr_iowait);
4245
	blk_flush_plug(current);
4246
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4247
	schedule();
4248
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4249
	atomic_dec(&rq->nr_iowait);
4250
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4251 4252 4253 4254 4255
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4256
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4257 4258
	long ret;

4259
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4260
	atomic_inc(&rq->nr_iowait);
4261
	blk_flush_plug(current);
4262
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4263
	ret = schedule_timeout(timeout);
4264
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4265
	atomic_dec(&rq->nr_iowait);
4266
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4267 4268 4269 4270 4271 4272 4273
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
4274 4275 4276
 * Return: On success, this syscall returns the maximum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
4277
 */
4278
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
4279 4280 4281 4282 4283 4284 4285 4286
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
4287
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
4288
	case SCHED_NORMAL:
4289
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4290
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4291 4292 4293 4294 4295 4296 4297 4298 4299 4300
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
4301 4302 4303
 * Return: On success, this syscall returns the minimum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
4304
 */
4305
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
4306 4307 4308 4309 4310 4311 4312 4313
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
4314
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
4315
	case SCHED_NORMAL:
4316
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4317
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
4330 4331 4332
 *
 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
 * an error code.
L
Linus Torvalds 已提交
4333
 */
4334
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4335
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
4336
{
4337
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4338
	unsigned int time_slice;
4339 4340
	unsigned long flags;
	struct rq *rq;
4341
	int retval;
L
Linus Torvalds 已提交
4342 4343 4344
	struct timespec t;

	if (pid < 0)
4345
		return -EINVAL;
L
Linus Torvalds 已提交
4346 4347

	retval = -ESRCH;
4348
	rcu_read_lock();
L
Linus Torvalds 已提交
4349 4350 4351 4352 4353 4354 4355 4356
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4357
	rq = task_rq_lock(p, &flags);
4358 4359 4360
	time_slice = 0;
	if (p->sched_class->get_rr_interval)
		time_slice = p->sched_class->get_rr_interval(rq, p);
4361
	task_rq_unlock(rq, p, &flags);
D
Dmitry Adamushko 已提交
4362

4363
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
4364
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4365 4366
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4367

L
Linus Torvalds 已提交
4368
out_unlock:
4369
	rcu_read_unlock();
L
Linus Torvalds 已提交
4370 4371 4372
	return retval;
}

4373
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4374

4375
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4376 4377
{
	unsigned long free = 0;
4378
	int ppid;
4379
	unsigned state;
L
Linus Torvalds 已提交
4380 4381

	state = p->state ? __ffs(p->state) + 1 : 0;
4382
	printk(KERN_INFO "%-15.15s %c", p->comm,
4383
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4384
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4385
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4386
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4387
	else
P
Peter Zijlstra 已提交
4388
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4389 4390
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4391
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4392
	else
P
Peter Zijlstra 已提交
4393
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4394 4395
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
4396
	free = stack_not_used(p);
L
Linus Torvalds 已提交
4397
#endif
4398 4399 4400
	rcu_read_lock();
	ppid = task_pid_nr(rcu_dereference(p->real_parent));
	rcu_read_unlock();
P
Peter Zijlstra 已提交
4401
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4402
		task_pid_nr(p), ppid,
4403
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
4404

4405
	print_worker_info(KERN_INFO, p);
4406
	show_stack(p, NULL);
L
Linus Torvalds 已提交
4407 4408
}

I
Ingo Molnar 已提交
4409
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4410
{
4411
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4412

4413
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
4414 4415
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4416
#else
P
Peter Zijlstra 已提交
4417 4418
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4419
#endif
4420
	rcu_read_lock();
L
Linus Torvalds 已提交
4421 4422 4423
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
4424
		 * console might take a lot of time:
L
Linus Torvalds 已提交
4425 4426
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4427
		if (!state_filter || (p->state & state_filter))
4428
			sched_show_task(p);
L
Linus Torvalds 已提交
4429 4430
	} while_each_thread(g, p);

4431 4432
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4433 4434 4435
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
4436
	rcu_read_unlock();
I
Ingo Molnar 已提交
4437 4438 4439
	/*
	 * Only show locks if all tasks are dumped:
	 */
4440
	if (!state_filter)
I
Ingo Molnar 已提交
4441
		debug_show_all_locks();
L
Linus Torvalds 已提交
4442 4443
}

4444
void init_idle_bootup_task(struct task_struct *idle)
I
Ingo Molnar 已提交
4445
{
I
Ingo Molnar 已提交
4446
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4447 4448
}

4449 4450 4451 4452 4453 4454 4455 4456
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4457
void init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4458
{
4459
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4460 4461
	unsigned long flags;

4462
	raw_spin_lock_irqsave(&rq->lock, flags);
4463

4464
	__sched_fork(0, idle);
4465
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
4466 4467
	idle->se.exec_start = sched_clock();

4468
	do_set_cpus_allowed(idle, cpumask_of(cpu));
4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
4480
	__set_task_cpu(idle, cpu);
4481
	rcu_read_unlock();
L
Linus Torvalds 已提交
4482 4483

	rq->curr = rq->idle = idle;
4484
	idle->on_rq = 1;
P
Peter Zijlstra 已提交
4485 4486
#if defined(CONFIG_SMP)
	idle->on_cpu = 1;
4487
#endif
4488
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
4489 4490

	/* Set the preempt count _outside_ the spinlocks! */
4491
	init_idle_preempt_count(idle, cpu);
4492

I
Ingo Molnar 已提交
4493 4494 4495 4496
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
4497
	ftrace_graph_init_idle_task(idle, cpu);
4498
	vtime_init_idle(idle, cpu);
4499 4500 4501
#if defined(CONFIG_SMP)
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
4502 4503
}

L
Linus Torvalds 已提交
4504
#ifdef CONFIG_SMP
4505 4506 4507 4508
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
	if (p->sched_class && p->sched_class->set_cpus_allowed)
		p->sched_class->set_cpus_allowed(p, new_mask);
4509 4510

	cpumask_copy(&p->cpus_allowed, new_mask);
4511
	p->nr_cpus_allowed = cpumask_weight(new_mask);
4512 4513
}

L
Linus Torvalds 已提交
4514 4515 4516
/*
 * This is how migration works:
 *
4517 4518 4519 4520 4521 4522
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
4523
 *    it and puts it into the right queue.
4524 4525
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
4526 4527 4528 4529 4530 4531 4532 4533
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
4534
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
4535 4536
 * call is not atomic; no spinlocks may be held.
 */
4537
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
4538 4539
{
	unsigned long flags;
4540
	struct rq *rq;
4541
	unsigned int dest_cpu;
4542
	int ret = 0;
L
Linus Torvalds 已提交
4543 4544

	rq = task_rq_lock(p, &flags);
4545

4546 4547 4548
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

4549
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
4550 4551 4552 4553
		ret = -EINVAL;
		goto out;
	}

4554
	do_set_cpus_allowed(p, new_mask);
4555

L
Linus Torvalds 已提交
4556
	/* Can the task run on the task's current CPU? If so, we're done */
4557
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
4558 4559
		goto out;

4560
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4561
	if (p->on_rq) {
4562
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
4563
		/* Need help from migration thread: drop lock and wait. */
4564
		task_rq_unlock(rq, p, &flags);
4565
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
4566 4567 4568 4569
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
4570
	task_rq_unlock(rq, p, &flags);
4571

L
Linus Torvalds 已提交
4572 4573
	return ret;
}
4574
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
4575 4576

/*
I
Ingo Molnar 已提交
4577
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
4578 4579 4580 4581 4582 4583
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4584 4585
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4586
 */
4587
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4588
{
4589
	struct rq *rq_dest, *rq_src;
4590
	int ret = 0;
L
Linus Torvalds 已提交
4591

4592
	if (unlikely(!cpu_active(dest_cpu)))
4593
		return ret;
L
Linus Torvalds 已提交
4594 4595 4596 4597

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

4598
	raw_spin_lock(&p->pi_lock);
L
Linus Torvalds 已提交
4599 4600 4601
	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
4602
		goto done;
L
Linus Torvalds 已提交
4603
	/* Affinity changed (again). */
4604
	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
L
Linus Torvalds 已提交
4605
		goto fail;
L
Linus Torvalds 已提交
4606

4607 4608 4609 4610
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
P
Peter Zijlstra 已提交
4611
	if (p->on_rq) {
4612
		dequeue_task(rq_src, p, 0);
4613
		set_task_cpu(p, dest_cpu);
4614
		enqueue_task(rq_dest, p, 0);
4615
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
4616
	}
L
Linus Torvalds 已提交
4617
done:
4618
	ret = 1;
L
Linus Torvalds 已提交
4619
fail:
L
Linus Torvalds 已提交
4620
	double_rq_unlock(rq_src, rq_dest);
4621
	raw_spin_unlock(&p->pi_lock);
4622
	return ret;
L
Linus Torvalds 已提交
4623 4624
}

4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639
#ifdef CONFIG_NUMA_BALANCING
/* Migrate current task p to target_cpu */
int migrate_task_to(struct task_struct *p, int target_cpu)
{
	struct migration_arg arg = { p, target_cpu };
	int curr_cpu = task_cpu(p);

	if (curr_cpu == target_cpu)
		return 0;

	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
		return -EINVAL;

	/* TODO: This is not properly updating schedstats */

4640
	trace_sched_move_numa(p, curr_cpu, target_cpu);
4641 4642
	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
}
4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670

/*
 * Requeue a task on a given node and accurately track the number of NUMA
 * tasks on the runqueues
 */
void sched_setnuma(struct task_struct *p, int nid)
{
	struct rq *rq;
	unsigned long flags;
	bool on_rq, running;

	rq = task_rq_lock(p, &flags);
	on_rq = p->on_rq;
	running = task_current(rq, p);

	if (on_rq)
		dequeue_task(rq, p, 0);
	if (running)
		p->sched_class->put_prev_task(rq, p);

	p->numa_preferred_nid = nid;

	if (running)
		p->sched_class->set_curr_task(rq);
	if (on_rq)
		enqueue_task(rq, p, 0);
	task_rq_unlock(rq, p, &flags);
}
4671 4672
#endif

L
Linus Torvalds 已提交
4673
/*
4674 4675 4676
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
4677
 */
4678
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
4679
{
4680
	struct migration_arg *arg = data;
4681

4682 4683 4684 4685
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
4686
	local_irq_disable();
4687
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4688
	local_irq_enable();
L
Linus Torvalds 已提交
4689
	return 0;
4690 4691
}

L
Linus Torvalds 已提交
4692
#ifdef CONFIG_HOTPLUG_CPU
4693

4694
/*
4695 4696
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
4697
 */
4698
void idle_task_exit(void)
L
Linus Torvalds 已提交
4699
{
4700
	struct mm_struct *mm = current->active_mm;
4701

4702
	BUG_ON(cpu_online(smp_processor_id()));
4703

4704 4705 4706
	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
L
Linus Torvalds 已提交
4707 4708 4709
}

/*
4710 4711 4712 4713 4714
 * Since this CPU is going 'away' for a while, fold any nr_active delta
 * we might have. Assumes we're called after migrate_tasks() so that the
 * nr_active count is stable.
 *
 * Also see the comment "Global load-average calculations".
L
Linus Torvalds 已提交
4715
 */
4716
static void calc_load_migrate(struct rq *rq)
L
Linus Torvalds 已提交
4717
{
4718 4719 4720
	long delta = calc_load_fold_active(rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
4721 4722
}

4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738
static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
{
}

static const struct sched_class fake_sched_class = {
	.put_prev_task = put_prev_task_fake,
};

static struct task_struct fake_task = {
	/*
	 * Avoid pull_{rt,dl}_task()
	 */
	.prio = MAX_PRIO + 1,
	.sched_class = &fake_sched_class,
};

4739
/*
4740 4741 4742 4743 4744 4745
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
4746
 */
4747
static void migrate_tasks(unsigned int dead_cpu)
L
Linus Torvalds 已提交
4748
{
4749
	struct rq *rq = cpu_rq(dead_cpu);
4750 4751
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
4752 4753

	/*
4754 4755 4756 4757 4758 4759 4760
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
4761
	 */
4762
	rq->stop = NULL;
4763

4764 4765 4766 4767 4768 4769 4770
	/*
	 * put_prev_task() and pick_next_task() sched
	 * class method both need to have an up-to-date
	 * value of rq->clock[_task]
	 */
	update_rq_clock(rq);

I
Ingo Molnar 已提交
4771
	for ( ; ; ) {
4772 4773 4774 4775 4776
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
4777
			break;
4778

4779
		next = pick_next_task(rq, &fake_task);
4780
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
4781
		next->sched_class->put_prev_task(rq, next);
4782

4783 4784 4785 4786 4787 4788 4789
		/* Find suitable destination for @next, with force if needed. */
		dest_cpu = select_fallback_rq(dead_cpu, next);
		raw_spin_unlock(&rq->lock);

		__migrate_task(next, dead_cpu, dest_cpu);

		raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
4790
	}
4791

4792
	rq->stop = stop;
4793
}
4794

L
Linus Torvalds 已提交
4795 4796
#endif /* CONFIG_HOTPLUG_CPU */

4797 4798 4799
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
4800 4801
	{
		.procname	= "sched_domain",
4802
		.mode		= 0555,
4803
	},
4804
	{}
4805 4806 4807
};

static struct ctl_table sd_ctl_root[] = {
4808 4809
	{
		.procname	= "kernel",
4810
		.mode		= 0555,
4811 4812
		.child		= sd_ctl_dir,
	},
4813
	{}
4814 4815 4816 4817 4818
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
4819
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4820 4821 4822 4823

	return entry;
}

4824 4825
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
4826
	struct ctl_table *entry;
4827

4828 4829 4830
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
4831
	 * will always be set. In the lowest directory the names are
4832 4833 4834
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
4835 4836
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
4837 4838 4839
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
4840 4841 4842 4843 4844

	kfree(*tablep);
	*tablep = NULL;
}

4845
static int min_load_idx = 0;
4846
static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4847

4848
static void
4849
set_table_entry(struct ctl_table *entry,
4850
		const char *procname, void *data, int maxlen,
4851 4852
		umode_t mode, proc_handler *proc_handler,
		bool load_idx)
4853 4854 4855 4856 4857 4858
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
4859 4860 4861 4862 4863

	if (load_idx) {
		entry->extra1 = &min_load_idx;
		entry->extra2 = &max_load_idx;
	}
4864 4865 4866 4867 4868
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
4869
	struct ctl_table *table = sd_alloc_ctl_entry(14);
4870

4871 4872 4873
	if (table == NULL)
		return NULL;

4874
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4875
		sizeof(long), 0644, proc_doulongvec_minmax, false);
4876
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4877
		sizeof(long), 0644, proc_doulongvec_minmax, false);
4878
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4879
		sizeof(int), 0644, proc_dointvec_minmax, true);
4880
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4881
		sizeof(int), 0644, proc_dointvec_minmax, true);
4882
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4883
		sizeof(int), 0644, proc_dointvec_minmax, true);
4884
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4885
		sizeof(int), 0644, proc_dointvec_minmax, true);
4886
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4887
		sizeof(int), 0644, proc_dointvec_minmax, true);
4888
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4889
		sizeof(int), 0644, proc_dointvec_minmax, false);
4890
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4891
		sizeof(int), 0644, proc_dointvec_minmax, false);
4892
	set_table_entry(&table[9], "cache_nice_tries",
4893
		&sd->cache_nice_tries,
4894
		sizeof(int), 0644, proc_dointvec_minmax, false);
4895
	set_table_entry(&table[10], "flags", &sd->flags,
4896
		sizeof(int), 0644, proc_dointvec_minmax, false);
4897 4898 4899 4900
	set_table_entry(&table[11], "max_newidle_lb_cost",
		&sd->max_newidle_lb_cost,
		sizeof(long), 0644, proc_doulongvec_minmax, false);
	set_table_entry(&table[12], "name", sd->name,
4901
		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4902
	/* &table[13] is terminator */
4903 4904 4905 4906

	return table;
}

4907
static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4908 4909 4910 4911 4912 4913 4914 4915 4916
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4917 4918
	if (table == NULL)
		return NULL;
4919 4920 4921 4922 4923

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
4924
		entry->mode = 0555;
4925 4926 4927 4928 4929 4930 4931 4932
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
4933
static void register_sched_domain_sysctl(void)
4934
{
4935
	int i, cpu_num = num_possible_cpus();
4936 4937 4938
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

4939 4940 4941
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

4942 4943 4944
	if (entry == NULL)
		return;

4945
	for_each_possible_cpu(i) {
4946 4947
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
4948
		entry->mode = 0555;
4949
		entry->child = sd_alloc_ctl_cpu_table(i);
4950
		entry++;
4951
	}
4952 4953

	WARN_ON(sd_sysctl_header);
4954 4955
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
4956

4957
/* may be called multiple times per register */
4958 4959
static void unregister_sched_domain_sysctl(void)
{
4960 4961
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
4962
	sd_sysctl_header = NULL;
4963 4964
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
4965
}
4966
#else
4967 4968 4969 4970
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
4971 4972 4973 4974
{
}
#endif

4975 4976 4977 4978 4979
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

4980
		cpumask_set_cpu(rq->cpu, rq->rd->online);
4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5000
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5001 5002 5003 5004
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5005 5006 5007 5008
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5009
static int
5010
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5011
{
5012
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5013
	unsigned long flags;
5014
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5015

5016
	switch (action & ~CPU_TASKS_FROZEN) {
5017

L
Linus Torvalds 已提交
5018
	case CPU_UP_PREPARE:
5019
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5020
		break;
5021

L
Linus Torvalds 已提交
5022
	case CPU_ONLINE:
5023
		/* Update our root-domain */
5024
		raw_spin_lock_irqsave(&rq->lock, flags);
5025
		if (rq->rd) {
5026
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5027 5028

			set_rq_online(rq);
5029
		}
5030
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5031
		break;
5032

L
Linus Torvalds 已提交
5033
#ifdef CONFIG_HOTPLUG_CPU
5034
	case CPU_DYING:
5035
		sched_ttwu_pending();
G
Gregory Haskins 已提交
5036
		/* Update our root-domain */
5037
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5038
		if (rq->rd) {
5039
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5040
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5041
		}
5042 5043
		migrate_tasks(cpu);
		BUG_ON(rq->nr_running != 1); /* the migration thread */
5044
		raw_spin_unlock_irqrestore(&rq->lock, flags);
5045
		break;
5046

5047
	case CPU_DEAD:
5048
		calc_load_migrate(rq);
G
Gregory Haskins 已提交
5049
		break;
L
Linus Torvalds 已提交
5050 5051
#endif
	}
5052 5053 5054

	update_max_interval();

L
Linus Torvalds 已提交
5055 5056 5057
	return NOTIFY_OK;
}

5058 5059 5060
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5061
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5062
 */
5063
static struct notifier_block migration_notifier = {
L
Linus Torvalds 已提交
5064
	.notifier_call = migration_call,
5065
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
5066 5067
};

5068
static int sched_cpu_active(struct notifier_block *nfb,
5069 5070 5071
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
5072
	case CPU_STARTING:
5073 5074 5075 5076 5077 5078 5079 5080
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

5081
static int sched_cpu_inactive(struct notifier_block *nfb,
5082 5083
					unsigned long action, void *hcpu)
{
5084 5085 5086
	unsigned long flags;
	long cpu = (long)hcpu;

5087 5088
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104
		set_cpu_active(cpu, false);

		/* explicitly allow suspend */
		if (!(action & CPU_TASKS_FROZEN)) {
			struct dl_bw *dl_b = dl_bw_of(cpu);
			bool overflow;
			int cpus;

			raw_spin_lock_irqsave(&dl_b->lock, flags);
			cpus = dl_bw_cpus(cpu);
			overflow = __dl_overflow(dl_b, cpus, 0, 0);
			raw_spin_unlock_irqrestore(&dl_b->lock, flags);

			if (overflow)
				return notifier_from_errno(-EBUSY);
		}
5105 5106
		return NOTIFY_OK;
	}
5107 5108

	return NOTIFY_DONE;
5109 5110
}

5111
static int __init migration_init(void)
L
Linus Torvalds 已提交
5112 5113
{
	void *cpu = (void *)(long)smp_processor_id();
5114
	int err;
5115

5116
	/* Initialize migration for the boot CPU */
5117 5118
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5119 5120
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5121

5122 5123 5124 5125
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

5126
	return 0;
L
Linus Torvalds 已提交
5127
}
5128
early_initcall(migration_init);
L
Linus Torvalds 已提交
5129 5130 5131
#endif

#ifdef CONFIG_SMP
5132

5133 5134
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

5135
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5136

5137
static __read_mostly int sched_debug_enabled;
5138

5139
static int __init sched_debug_setup(char *str)
5140
{
5141
	sched_debug_enabled = 1;
5142 5143 5144

	return 0;
}
5145 5146 5147 5148 5149 5150
early_param("sched_debug", sched_debug_setup);

static inline bool sched_debug(void)
{
	return sched_debug_enabled;
}
5151

5152
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5153
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5154
{
I
Ingo Molnar 已提交
5155
	struct sched_group *group = sd->groups;
5156
	char str[256];
L
Linus Torvalds 已提交
5157

R
Rusty Russell 已提交
5158
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5159
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5160 5161 5162 5163

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5164
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5165
		if (sd->parent)
P
Peter Zijlstra 已提交
5166 5167
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5168
		return -1;
N
Nick Piggin 已提交
5169 5170
	}

P
Peter Zijlstra 已提交
5171
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
5172

5173
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5174 5175
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5176
	}
5177
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5178 5179
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5180
	}
L
Linus Torvalds 已提交
5181

I
Ingo Molnar 已提交
5182
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5183
	do {
I
Ingo Molnar 已提交
5184
		if (!group) {
P
Peter Zijlstra 已提交
5185 5186
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5187 5188 5189
			break;
		}

5190 5191 5192 5193 5194 5195
		/*
		 * Even though we initialize ->power to something semi-sane,
		 * we leave power_orig unset. This allows us to detect if
		 * domain iteration is still funny without causing /0 traps.
		 */
		if (!group->sgp->power_orig) {
P
Peter Zijlstra 已提交
5196 5197 5198
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
5199 5200
			break;
		}
L
Linus Torvalds 已提交
5201

5202
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5203 5204
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
5205 5206
			break;
		}
L
Linus Torvalds 已提交
5207

5208 5209
		if (!(sd->flags & SD_OVERLAP) &&
		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5210 5211
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
5212 5213
			break;
		}
L
Linus Torvalds 已提交
5214

5215
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
5216

R
Rusty Russell 已提交
5217
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5218

P
Peter Zijlstra 已提交
5219
		printk(KERN_CONT " %s", str);
5220
		if (group->sgp->power != SCHED_POWER_SCALE) {
P
Peter Zijlstra 已提交
5221
			printk(KERN_CONT " (cpu_power = %d)",
5222
				group->sgp->power);
5223
		}
L
Linus Torvalds 已提交
5224

I
Ingo Molnar 已提交
5225 5226
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
5227
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5228

5229
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
5230
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5231

5232 5233
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
5234 5235
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
5236 5237
	return 0;
}
L
Linus Torvalds 已提交
5238

I
Ingo Molnar 已提交
5239 5240 5241
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5242

5243
	if (!sched_debug_enabled)
5244 5245
		return;

I
Ingo Molnar 已提交
5246 5247 5248 5249
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5250

I
Ingo Molnar 已提交
5251 5252 5253
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
5254
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
I
Ingo Molnar 已提交
5255
			break;
L
Linus Torvalds 已提交
5256 5257
		level++;
		sd = sd->parent;
5258
		if (!sd)
I
Ingo Molnar 已提交
5259 5260
			break;
	}
L
Linus Torvalds 已提交
5261
}
5262
#else /* !CONFIG_SCHED_DEBUG */
5263
# define sched_domain_debug(sd, cpu) do { } while (0)
5264 5265 5266 5267
static inline bool sched_debug(void)
{
	return false;
}
5268
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
5269

5270
static int sd_degenerate(struct sched_domain *sd)
5271
{
5272
	if (cpumask_weight(sched_domain_span(sd)) == 1)
5273 5274 5275 5276 5277 5278
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5279 5280 5281
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5282 5283 5284 5285 5286
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
5287
	if (sd->flags & (SD_WAKE_AFFINE))
5288 5289 5290 5291 5292
		return 0;

	return 1;
}

5293 5294
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5295 5296 5297 5298 5299 5300
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

5301
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5302 5303 5304 5305 5306 5307 5308
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5309 5310
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
5311 5312
				SD_SHARE_PKG_RESOURCES |
				SD_PREFER_SIBLING);
5313 5314
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
5315 5316 5317 5318 5319 5320 5321
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

5322
static void free_rootdomain(struct rcu_head *rcu)
5323
{
5324
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5325

5326
	cpupri_cleanup(&rd->cpupri);
5327
	cpudl_cleanup(&rd->cpudl);
5328
	free_cpumask_var(rd->dlo_mask);
5329 5330 5331 5332 5333 5334
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
5335 5336
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
5337
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
5338 5339
	unsigned long flags;

5340
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5341 5342

	if (rq->rd) {
I
Ingo Molnar 已提交
5343
		old_rd = rq->rd;
G
Gregory Haskins 已提交
5344

5345
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5346
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5347

5348
		cpumask_clear_cpu(rq->cpu, old_rd->span);
5349

I
Ingo Molnar 已提交
5350
		/*
5351
		 * If we dont want to free the old_rd yet then
I
Ingo Molnar 已提交
5352 5353 5354 5355 5356
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
5357 5358 5359 5360 5361
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

5362
	cpumask_set_cpu(rq->cpu, rd->span);
5363
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5364
		set_rq_online(rq);
G
Gregory Haskins 已提交
5365

5366
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
5367 5368

	if (old_rd)
5369
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
5370 5371
}

5372
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
5373 5374 5375
{
	memset(rd, 0, sizeof(*rd));

5376
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5377
		goto out;
5378
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5379
		goto free_span;
5380
	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5381
		goto free_online;
5382 5383
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
		goto free_dlo_mask;
5384

5385
	init_dl_bw(&rd->dl_bw);
5386 5387
	if (cpudl_init(&rd->cpudl) != 0)
		goto free_dlo_mask;
5388

5389
	if (cpupri_init(&rd->cpupri) != 0)
5390
		goto free_rto_mask;
5391
	return 0;
5392

5393 5394
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
5395 5396
free_dlo_mask:
	free_cpumask_var(rd->dlo_mask);
5397 5398 5399 5400
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
5401
out:
5402
	return -ENOMEM;
G
Gregory Haskins 已提交
5403 5404
}

5405 5406 5407 5408 5409 5410
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
struct root_domain def_root_domain;

G
Gregory Haskins 已提交
5411 5412
static void init_defrootdomain(void)
{
5413
	init_rootdomain(&def_root_domain);
5414

G
Gregory Haskins 已提交
5415 5416 5417
	atomic_set(&def_root_domain.refcount, 1);
}

5418
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
5419 5420 5421 5422 5423 5424 5425
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

5426
	if (init_rootdomain(rd) != 0) {
5427 5428 5429
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
5430 5431 5432 5433

	return rd;
}

5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452
static void free_sched_groups(struct sched_group *sg, int free_sgp)
{
	struct sched_group *tmp, *first;

	if (!sg)
		return;

	first = sg;
	do {
		tmp = sg->next;

		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
			kfree(sg->sgp);

		kfree(sg);
		sg = tmp;
	} while (sg != first);
}

5453 5454 5455
static void free_sched_domain(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5456 5457 5458 5459 5460 5461 5462 5463

	/*
	 * If its an overlapping domain it has private groups, iterate and
	 * nuke them all.
	 */
	if (sd->flags & SD_OVERLAP) {
		free_sched_groups(sd->groups, 1);
	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5464
		kfree(sd->groups->sgp);
5465
		kfree(sd->groups);
5466
	}
5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480
	kfree(sd);
}

static void destroy_sched_domain(struct sched_domain *sd, int cpu)
{
	call_rcu(&sd->rcu, free_sched_domain);
}

static void destroy_sched_domains(struct sched_domain *sd, int cpu)
{
	for (; sd; sd = sd->parent)
		destroy_sched_domain(sd, cpu);
}

5481 5482 5483 5484 5485 5486 5487
/*
 * Keep a special pointer to the highest sched_domain that has
 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 * allows us to avoid some pointer chasing select_idle_sibling().
 *
 * Also keep a unique ID per domain (we use the first cpu number in
 * the cpumask of the domain), this allows us to quickly tell if
5488
 * two cpus are in the same cache domain, see cpus_share_cache().
5489 5490
 */
DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5491
DEFINE_PER_CPU(int, sd_llc_size);
5492
DEFINE_PER_CPU(int, sd_llc_id);
5493
DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5494 5495
DEFINE_PER_CPU(struct sched_domain *, sd_busy);
DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5496 5497 5498 5499

static void update_top_cache_domain(int cpu)
{
	struct sched_domain *sd;
5500
	struct sched_domain *busy_sd = NULL;
5501
	int id = cpu;
5502
	int size = 1;
5503 5504

	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5505
	if (sd) {
5506
		id = cpumask_first(sched_domain_span(sd));
5507
		size = cpumask_weight(sched_domain_span(sd));
5508
		busy_sd = sd->parent; /* sd_busy */
5509
	}
5510
	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5511 5512

	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5513
	per_cpu(sd_llc_size, cpu) = size;
5514
	per_cpu(sd_llc_id, cpu) = id;
5515 5516 5517

	sd = lowest_flag_domain(cpu, SD_NUMA);
	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5518 5519 5520

	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5521 5522
}

L
Linus Torvalds 已提交
5523
/*
I
Ingo Molnar 已提交
5524
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
5525 5526
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
5527 5528
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
5529
{
5530
	struct rq *rq = cpu_rq(cpu);
5531 5532 5533
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
5534
	for (tmp = sd; tmp; ) {
5535 5536 5537
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5538

5539
		if (sd_parent_degenerate(tmp, parent)) {
5540
			tmp->parent = parent->parent;
5541 5542
			if (parent->parent)
				parent->parent->child = tmp;
5543 5544 5545 5546 5547 5548 5549
			/*
			 * Transfer SD_PREFER_SIBLING down in case of a
			 * degenerate parent; the spans match for this
			 * so the property transfers.
			 */
			if (parent->flags & SD_PREFER_SIBLING)
				tmp->flags |= SD_PREFER_SIBLING;
5550
			destroy_sched_domain(parent, cpu);
5551 5552
		} else
			tmp = tmp->parent;
5553 5554
	}

5555
	if (sd && sd_degenerate(sd)) {
5556
		tmp = sd;
5557
		sd = sd->parent;
5558
		destroy_sched_domain(tmp, cpu);
5559 5560 5561
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5562

5563
	sched_domain_debug(sd, cpu);
L
Linus Torvalds 已提交
5564

G
Gregory Haskins 已提交
5565
	rq_attach_root(rq, rd);
5566
	tmp = rq->sd;
N
Nick Piggin 已提交
5567
	rcu_assign_pointer(rq->sd, sd);
5568
	destroy_sched_domains(tmp, cpu);
5569 5570

	update_top_cache_domain(cpu);
L
Linus Torvalds 已提交
5571 5572 5573
}

/* cpus with isolated domains */
5574
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
5575 5576 5577 5578

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
5579
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
5580
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
5581 5582 5583
	return 1;
}

I
Ingo Molnar 已提交
5584
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5585

5586 5587 5588 5589 5590
static const struct cpumask *cpu_cpu_mask(int cpu)
{
	return cpumask_of_node(cpu_to_node(cpu));
}

5591 5592 5593
struct sd_data {
	struct sched_domain **__percpu sd;
	struct sched_group **__percpu sg;
5594
	struct sched_group_power **__percpu sgp;
5595 5596
};

5597
struct s_data {
5598
	struct sched_domain ** __percpu sd;
5599 5600 5601
	struct root_domain	*rd;
};

5602 5603
enum s_alloc {
	sa_rootdomain,
5604
	sa_sd,
5605
	sa_sd_storage,
5606 5607 5608
	sa_none,
};

5609 5610 5611
struct sched_domain_topology_level;

typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5612 5613
typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);

5614 5615
#define SDTL_OVERLAP	0x01

5616
struct sched_domain_topology_level {
5617 5618
	sched_domain_init_f init;
	sched_domain_mask_f mask;
5619
	int		    flags;
5620
	int		    numa_level;
5621
	struct sd_data      data;
5622 5623
};

P
Peter Zijlstra 已提交
5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661
/*
 * Build an iteration mask that can exclude certain CPUs from the upwards
 * domain traversal.
 *
 * Asymmetric node setups can result in situations where the domain tree is of
 * unequal depth, make sure to skip domains that already cover the entire
 * range.
 *
 * In that case build_sched_domains() will have terminated the iteration early
 * and our sibling sd spans will be empty. Domains should always include the
 * cpu they're built on, so check that.
 *
 */
static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
{
	const struct cpumask *span = sched_domain_span(sd);
	struct sd_data *sdd = sd->private;
	struct sched_domain *sibling;
	int i;

	for_each_cpu(i, span) {
		sibling = *per_cpu_ptr(sdd->sd, i);
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
			continue;

		cpumask_set_cpu(i, sched_group_mask(sg));
	}
}

/*
 * Return the canonical balance cpu for this group, this is the first cpu
 * of this group that's also in the iteration mask.
 */
int group_balance_cpu(struct sched_group *sg)
{
	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
}

5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679
static int
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered = sched_domains_tmpmask;
	struct sd_data *sdd = sd->private;
	struct sched_domain *child;
	int i;

	cpumask_clear(covered);

	for_each_cpu(i, span) {
		struct cpumask *sg_span;

		if (cpumask_test_cpu(i, covered))
			continue;

P
Peter Zijlstra 已提交
5680 5681 5682 5683 5684 5685
		child = *per_cpu_ptr(sdd->sd, i);

		/* See the comment near build_group_mask(). */
		if (!cpumask_test_cpu(i, sched_domain_span(child)))
			continue;

5686
		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5687
				GFP_KERNEL, cpu_to_node(cpu));
5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700

		if (!sg)
			goto fail;

		sg_span = sched_group_cpus(sg);
		if (child->child) {
			child = child->child;
			cpumask_copy(sg_span, sched_domain_span(child));
		} else
			cpumask_set_cpu(i, sg_span);

		cpumask_or(covered, covered, sg_span);

P
Peter Zijlstra 已提交
5701
		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
P
Peter Zijlstra 已提交
5702 5703 5704
		if (atomic_inc_return(&sg->sgp->ref) == 1)
			build_group_mask(sd, sg);

5705 5706 5707 5708 5709 5710
		/*
		 * Initialize sgp->power such that even if we mess up the
		 * domains and no possible iteration will get us here, we won't
		 * die on a /0 trap.
		 */
		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5711
		sg->sgp->power_orig = sg->sgp->power;
5712

P
Peter Zijlstra 已提交
5713 5714 5715 5716 5717
		/*
		 * Make sure the first group of this domain contains the
		 * canonical balance cpu. Otherwise the sched_domain iteration
		 * breaks. See update_sg_lb_stats().
		 */
P
Peter Zijlstra 已提交
5718
		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
P
Peter Zijlstra 已提交
5719
		    group_balance_cpu(sg) == cpu)
5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738
			groups = sg;

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
		last->next = first;
	}
	sd->groups = groups;

	return 0;

fail:
	free_sched_groups(first, 0);

	return -ENOMEM;
}

5739
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
5740
{
5741 5742
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
5743

5744 5745
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
5746

5747
	if (sg) {
5748
		*sg = *per_cpu_ptr(sdd->sg, cpu);
5749
		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5750
		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5751
	}
5752 5753

	return cpu;
5754 5755
}

5756
/*
5757 5758 5759
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
5760 5761
 *
 * Assumes the sched_domain tree is fully constructed
5762
 */
5763 5764
static int
build_sched_groups(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5765
{
5766 5767 5768
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
5769
	struct cpumask *covered;
5770
	int i;
5771

5772 5773 5774
	get_group(cpu, sdd, &sd->groups);
	atomic_inc(&sd->groups->ref);

5775
	if (cpu != cpumask_first(span))
5776 5777
		return 0;

5778 5779 5780
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

5781
	cpumask_clear(covered);
5782

5783 5784
	for_each_cpu(i, span) {
		struct sched_group *sg;
5785
		int group, j;
5786

5787 5788
		if (cpumask_test_cpu(i, covered))
			continue;
5789

5790
		group = get_group(i, sdd, &sg);
5791
		cpumask_clear(sched_group_cpus(sg));
5792
		sg->sgp->power = 0;
P
Peter Zijlstra 已提交
5793
		cpumask_setall(sched_group_mask(sg));
5794

5795 5796 5797
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
5798

5799 5800 5801
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
5802

5803 5804 5805 5806 5807 5808 5809
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
5810 5811

	return 0;
5812
}
5813

5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
5826
	struct sched_group *sg = sd->groups;
5827

5828
	WARN_ON(!sg);
5829 5830 5831 5832 5833

	do {
		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
		sg = sg->next;
	} while (sg != sd->groups);
5834

P
Peter Zijlstra 已提交
5835
	if (cpu != group_balance_cpu(sg))
5836
		return;
5837

5838
	update_group_power(sd, cpu);
5839
	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5840 5841
}

5842 5843 5844
int __weak arch_sd_sibling_asym_packing(void)
{
       return 0*SD_ASYM_PACKING;
5845 5846
}

5847 5848 5849 5850 5851
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

5852 5853 5854 5855 5856 5857
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

5858 5859 5860 5861 5862 5863 5864 5865 5866
#define SD_INIT_FUNC(type)						\
static noinline struct sched_domain *					\
sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
{									\
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
	*sd = SD_##type##_INIT;						\
	SD_INIT_NAME(sd, type);						\
	sd->private = &tl->data;					\
	return sd;							\
5867 5868 5869 5870 5871 5872 5873 5874 5875
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif
5876 5877 5878
#ifdef CONFIG_SCHED_BOOK
 SD_INIT_FUNC(BOOK)
#endif
5879

5880
static int default_relax_domain_level = -1;
5881
int sched_domain_level_max;
5882 5883 5884

static int __init setup_relax_domain_level(char *str)
{
5885 5886
	if (kstrtoint(str, 0, &default_relax_domain_level))
		pr_warn("Unable to set relax_domain_level\n");
5887

5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
5906
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5907 5908
	} else {
		/* turn on idle balance on this domain */
5909
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5910 5911 5912
	}
}

5913 5914 5915
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

5916 5917 5918 5919 5920
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
5921 5922
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
5923 5924
	case sa_sd:
		free_percpu(d->sd); /* fall through */
5925
	case sa_sd_storage:
5926
		__sdt_free(cpu_map); /* fall through */
5927 5928 5929 5930
	case sa_none:
		break;
	}
}
5931

5932 5933 5934
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
5935 5936
	memset(d, 0, sizeof(*d));

5937 5938
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
5939 5940 5941
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
5942
	d->rd = alloc_rootdomain();
5943
	if (!d->rd)
5944
		return sa_sd;
5945 5946
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
5947

5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

5960
	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5961
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5962 5963

	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5964
		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
5965 5966
}

5967 5968
#ifdef CONFIG_SCHED_SMT
static const struct cpumask *cpu_smt_mask(int cpu)
5969
{
5970
	return topology_thread_cpumask(cpu);
5971
}
5972
#endif
5973

5974 5975 5976
/*
 * Topology list, bottom-up.
 */
5977
static struct sched_domain_topology_level default_topology[] = {
5978 5979
#ifdef CONFIG_SCHED_SMT
	{ sd_init_SIBLING, cpu_smt_mask, },
5980
#endif
5981
#ifdef CONFIG_SCHED_MC
5982
	{ sd_init_MC, cpu_coregroup_mask, },
5983
#endif
5984 5985 5986 5987
#ifdef CONFIG_SCHED_BOOK
	{ sd_init_BOOK, cpu_book_mask, },
#endif
	{ sd_init_CPU, cpu_cpu_mask, },
5988 5989 5990 5991 5992
	{ NULL, },
};

static struct sched_domain_topology_level *sched_domain_topology = default_topology;

5993 5994 5995
#define for_each_sd_topology(tl)			\
	for (tl = sched_domain_topology; tl->init; tl++)

5996 5997 5998 5999 6000 6001 6002 6003 6004
#ifdef CONFIG_NUMA

static int sched_domains_numa_levels;
static int *sched_domains_numa_distance;
static struct cpumask ***sched_domains_numa_masks;
static int sched_domains_curr_level;

static inline int sd_local_flags(int level)
{
6005
	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022
		return 0;

	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
}

static struct sched_domain *
sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
{
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
	int level = tl->numa_level;
	int sd_weight = cpumask_weight(
			sched_domains_numa_masks[level][cpu_to_node(cpu)]);

	*sd = (struct sched_domain){
		.min_interval		= sd_weight,
		.max_interval		= 2*sd_weight,
		.busy_factor		= 32,
6023
		.imbalance_pct		= 125,
6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040
		.cache_nice_tries	= 2,
		.busy_idx		= 3,
		.idle_idx		= 2,
		.newidle_idx		= 0,
		.wake_idx		= 0,
		.forkexec_idx		= 0,

		.flags			= 1*SD_LOAD_BALANCE
					| 1*SD_BALANCE_NEWIDLE
					| 0*SD_BALANCE_EXEC
					| 0*SD_BALANCE_FORK
					| 0*SD_BALANCE_WAKE
					| 0*SD_WAKE_AFFINE
					| 0*SD_SHARE_CPUPOWER
					| 0*SD_SHARE_PKG_RESOURCES
					| 1*SD_SERIALIZE
					| 0*SD_PREFER_SIBLING
6041
					| 1*SD_NUMA
6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062
					| sd_local_flags(level)
					,
		.last_balance		= jiffies,
		.balance_interval	= sd_weight,
	};
	SD_INIT_NAME(sd, NUMA);
	sd->private = &tl->data;

	/*
	 * Ugly hack to pass state to sd_numa_mask()...
	 */
	sched_domains_curr_level = tl->numa_level;

	return sd;
}

static const struct cpumask *sd_numa_mask(int cpu)
{
	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
}

6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098
static void sched_numa_warn(const char *str)
{
	static int done = false;
	int i,j;

	if (done)
		return;

	done = true;

	printk(KERN_WARNING "ERROR: %s\n\n", str);

	for (i = 0; i < nr_node_ids; i++) {
		printk(KERN_WARNING "  ");
		for (j = 0; j < nr_node_ids; j++)
			printk(KERN_CONT "%02d ", node_distance(i,j));
		printk(KERN_CONT "\n");
	}
	printk(KERN_WARNING "\n");
}

static bool find_numa_distance(int distance)
{
	int i;

	if (distance == node_distance(0, 0))
		return true;

	for (i = 0; i < sched_domains_numa_levels; i++) {
		if (sched_domains_numa_distance[i] == distance)
			return true;
	}

	return false;
}

6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119
static void sched_init_numa(void)
{
	int next_distance, curr_distance = node_distance(0, 0);
	struct sched_domain_topology_level *tl;
	int level = 0;
	int i, j, k;

	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
	if (!sched_domains_numa_distance)
		return;

	/*
	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
	 * unique distances in the node_distance() table.
	 *
	 * Assumes node_distance(0,j) includes all distances in
	 * node_distance(i,j) in order to avoid cubic time.
	 */
	next_distance = curr_distance;
	for (i = 0; i < nr_node_ids; i++) {
		for (j = 0; j < nr_node_ids; j++) {
6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143
			for (k = 0; k < nr_node_ids; k++) {
				int distance = node_distance(i, k);

				if (distance > curr_distance &&
				    (distance < next_distance ||
				     next_distance == curr_distance))
					next_distance = distance;

				/*
				 * While not a strong assumption it would be nice to know
				 * about cases where if node A is connected to B, B is not
				 * equally connected to A.
				 */
				if (sched_debug() && node_distance(k, i) != distance)
					sched_numa_warn("Node-distance not symmetric");

				if (sched_debug() && i && !find_numa_distance(distance))
					sched_numa_warn("Node-0 not representative");
			}
			if (next_distance != curr_distance) {
				sched_domains_numa_distance[level++] = next_distance;
				sched_domains_numa_levels = level;
				curr_distance = next_distance;
			} else break;
6144
		}
6145 6146 6147 6148 6149 6150

		/*
		 * In case of sched_debug() we verify the above assumption.
		 */
		if (!sched_debug())
			break;
6151 6152 6153 6154 6155
	}
	/*
	 * 'level' contains the number of unique distances, excluding the
	 * identity distance node_distance(i,i).
	 *
V
Viresh Kumar 已提交
6156
	 * The sched_domains_numa_distance[] array includes the actual distance
6157 6158 6159
	 * numbers.
	 */

6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170
	/*
	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
	 * the array will contain less then 'level' members. This could be
	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
	 * in other functions.
	 *
	 * We reset it to 'level' at the end of this function.
	 */
	sched_domains_numa_levels = 0;

6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185
	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
	if (!sched_domains_numa_masks)
		return;

	/*
	 * Now for each level, construct a mask per node which contains all
	 * cpus of nodes that are that many hops away from us.
	 */
	for (i = 0; i < level; i++) {
		sched_domains_numa_masks[i] =
			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
		if (!sched_domains_numa_masks[i])
			return;

		for (j = 0; j < nr_node_ids; j++) {
6186
			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6187 6188 6189 6190 6191 6192
			if (!mask)
				return;

			sched_domains_numa_masks[i][j] = mask;

			for (k = 0; k < nr_node_ids; k++) {
6193
				if (node_distance(j, k) > sched_domains_numa_distance[i])
6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224
					continue;

				cpumask_or(mask, mask, cpumask_of_node(k));
			}
		}
	}

	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
	if (!tl)
		return;

	/*
	 * Copy the default topology bits..
	 */
	for (i = 0; default_topology[i].init; i++)
		tl[i] = default_topology[i];

	/*
	 * .. and append 'j' levels of NUMA goodness.
	 */
	for (j = 0; j < level; i++, j++) {
		tl[i] = (struct sched_domain_topology_level){
			.init = sd_numa_init,
			.mask = sd_numa_mask,
			.flags = SDTL_OVERLAP,
			.numa_level = j,
		};
	}

	sched_domain_topology = tl;
6225 6226

	sched_domains_numa_levels = level;
6227
}
6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274

static void sched_domains_numa_masks_set(int cpu)
{
	int i, j;
	int node = cpu_to_node(cpu);

	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++) {
			if (node_distance(j, node) <= sched_domains_numa_distance[i])
				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
		}
	}
}

static void sched_domains_numa_masks_clear(int cpu)
{
	int i, j;
	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++)
			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
	}
}

/*
 * Update sched_domains_numa_masks[level][node] array when new cpus
 * are onlined.
 */
static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	int cpu = (long)hcpu;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
		sched_domains_numa_masks_set(cpu);
		break;

	case CPU_DEAD:
		sched_domains_numa_masks_clear(cpu);
		break;

	default:
		return NOTIFY_DONE;
	}

	return NOTIFY_OK;
6275 6276 6277 6278 6279
}
#else
static inline void sched_init_numa(void)
{
}
6280 6281 6282 6283 6284 6285 6286

static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	return 0;
}
6287 6288
#endif /* CONFIG_NUMA */

6289 6290 6291 6292 6293
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

6294
	for_each_sd_topology(tl) {
6295 6296 6297 6298 6299 6300 6301 6302 6303 6304
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

6305 6306 6307 6308
		sdd->sgp = alloc_percpu(struct sched_group_power *);
		if (!sdd->sgp)
			return -ENOMEM;

6309 6310 6311
		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_group *sg;
6312
			struct sched_group_power *sgp;
6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325

		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

6326 6327
			sg->next = sg;

6328
			*per_cpu_ptr(sdd->sg, j) = sg;
6329

P
Peter Zijlstra 已提交
6330
			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6331 6332 6333 6334 6335
					GFP_KERNEL, cpu_to_node(j));
			if (!sgp)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sgp, j) = sgp;
6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

6347
	for_each_sd_topology(tl) {
6348 6349 6350
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363
			struct sched_domain *sd;

			if (sdd->sd) {
				sd = *per_cpu_ptr(sdd->sd, j);
				if (sd && (sd->flags & SD_OVERLAP))
					free_sched_groups(sd->groups, 0);
				kfree(*per_cpu_ptr(sdd->sd, j));
			}

			if (sdd->sg)
				kfree(*per_cpu_ptr(sdd->sg, j));
			if (sdd->sgp)
				kfree(*per_cpu_ptr(sdd->sgp, j));
6364 6365
		}
		free_percpu(sdd->sd);
6366
		sdd->sd = NULL;
6367
		free_percpu(sdd->sg);
6368
		sdd->sg = NULL;
6369
		free_percpu(sdd->sgp);
6370
		sdd->sgp = NULL;
6371 6372 6373
	}
}

6374
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6375 6376
		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
		struct sched_domain *child, int cpu)
6377
{
6378
	struct sched_domain *sd = tl->init(tl, cpu);
6379
	if (!sd)
6380
		return child;
6381 6382

	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6383 6384 6385
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6386
		child->parent = sd;
6387
		sd->child = child;
6388
	}
6389
	set_domain_attribute(sd, attr);
6390 6391 6392 6393

	return sd;
}

6394 6395 6396 6397
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
6398 6399
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
6400
{
6401
	enum s_alloc alloc_state;
6402
	struct sched_domain *sd;
6403
	struct s_data d;
6404
	int i, ret = -ENOMEM;
6405

6406 6407 6408
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
6409

6410
	/* Set up domains for cpus specified by the cpu_map. */
6411
	for_each_cpu(i, cpu_map) {
6412 6413
		struct sched_domain_topology_level *tl;

6414
		sd = NULL;
6415
		for_each_sd_topology(tl) {
6416
			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6417 6418
			if (tl == sched_domain_topology)
				*per_cpu_ptr(d.sd, i) = sd;
6419 6420
			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
				sd->flags |= SD_OVERLAP;
6421 6422
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
				break;
6423
		}
6424 6425 6426 6427 6428 6429
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6430 6431 6432 6433 6434 6435 6436
			if (sd->flags & SD_OVERLAP) {
				if (build_overlap_sched_groups(sd, i))
					goto error;
			} else {
				if (build_sched_groups(sd, i))
					goto error;
			}
6437
		}
6438
	}
6439

L
Linus Torvalds 已提交
6440
	/* Calculate CPU power for physical packages and nodes */
6441 6442 6443
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
6444

6445 6446
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
6447
			init_sched_groups_power(i, sd);
6448
		}
6449
	}
6450

L
Linus Torvalds 已提交
6451
	/* Attach the domains */
6452
	rcu_read_lock();
6453
	for_each_cpu(i, cpu_map) {
6454
		sd = *per_cpu_ptr(d.sd, i);
6455
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
6456
	}
6457
	rcu_read_unlock();
6458

6459
	ret = 0;
6460
error:
6461
	__free_domain_allocs(&d, alloc_state, cpu_map);
6462
	return ret;
L
Linus Torvalds 已提交
6463
}
P
Paul Jackson 已提交
6464

6465
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
6466
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
6467 6468
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
6469 6470 6471

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
6472 6473
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
6474
 */
6475
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
6476

6477 6478 6479 6480 6481 6482
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
6483
{
6484
	return 0;
6485 6486
}

6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

6512
/*
I
Ingo Molnar 已提交
6513
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6514 6515
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6516
 */
6517
static int init_sched_domains(const struct cpumask *cpu_map)
6518
{
6519 6520
	int err;

6521
	arch_update_cpu_topology();
P
Paul Jackson 已提交
6522
	ndoms_cur = 1;
6523
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
6524
	if (!doms_cur)
6525 6526
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6527
	err = build_sched_domains(doms_cur[0], NULL);
6528
	register_sched_domain_sysctl();
6529 6530

	return err;
6531 6532 6533 6534 6535 6536
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6537
static void detach_destroy_domains(const struct cpumask *cpu_map)
6538 6539 6540
{
	int i;

6541
	rcu_read_lock();
6542
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
6543
		cpu_attach_domain(NULL, &def_root_domain, i);
6544
	rcu_read_unlock();
6545 6546
}

6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
6563 6564
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
6565
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
6566 6567 6568
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
6569
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
6570 6571 6572
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
6573 6574 6575
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
6576 6577 6578 6579 6580 6581
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
6582
 *
6583
 * If doms_new == NULL it will be replaced with cpu_online_mask.
6584 6585
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
6586
 *
P
Paul Jackson 已提交
6587 6588
 * Call with hotplug lock held
 */
6589
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6590
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
6591
{
6592
	int i, j, n;
6593
	int new_topology;
P
Paul Jackson 已提交
6594

6595
	mutex_lock(&sched_domains_mutex);
6596

6597 6598 6599
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

6600 6601 6602
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

6603
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
6604 6605 6606

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
6607
		for (j = 0; j < n && !new_topology; j++) {
6608
			if (cpumask_equal(doms_cur[i], doms_new[j])
6609
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
6610 6611 6612
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
6613
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
6614 6615 6616 6617
match1:
		;
	}

6618
	n = ndoms_cur;
6619
	if (doms_new == NULL) {
6620
		n = 0;
6621
		doms_new = &fallback_doms;
6622
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6623
		WARN_ON_ONCE(dattr_new);
6624 6625
	}

P
Paul Jackson 已提交
6626 6627
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
6628
		for (j = 0; j < n && !new_topology; j++) {
6629
			if (cpumask_equal(doms_new[i], doms_cur[j])
6630
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
6631 6632 6633
				goto match2;
		}
		/* no match - add a new doms_new */
6634
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
6635 6636 6637 6638 6639
match2:
		;
	}

	/* Remember the new sched domains */
6640 6641
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
6642
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
6643
	doms_cur = doms_new;
6644
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
6645
	ndoms_cur = ndoms_new;
6646 6647

	register_sched_domain_sysctl();
6648

6649
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
6650 6651
}

6652 6653
static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */

L
Linus Torvalds 已提交
6654
/*
6655 6656 6657
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
6658 6659 6660
 *
 * If we come here as part of a suspend/resume, don't touch cpusets because we
 * want to restore it back to its original state upon resume anyway.
L
Linus Torvalds 已提交
6661
 */
6662 6663
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
6664
{
6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686
	switch (action) {
	case CPU_ONLINE_FROZEN:
	case CPU_DOWN_FAILED_FROZEN:

		/*
		 * num_cpus_frozen tracks how many CPUs are involved in suspend
		 * resume sequence. As long as this is not the last online
		 * operation in the resume sequence, just build a single sched
		 * domain, ignoring cpusets.
		 */
		num_cpus_frozen--;
		if (likely(num_cpus_frozen)) {
			partition_sched_domains(1, NULL, NULL);
			break;
		}

		/*
		 * This is the last CPU online operation. So fall through and
		 * restore the original sched domains by considering the
		 * cpuset configurations.
		 */

6687
	case CPU_ONLINE:
6688
	case CPU_DOWN_FAILED:
6689
		cpuset_update_active_cpus(true);
6690
		break;
6691 6692 6693
	default:
		return NOTIFY_DONE;
	}
6694
	return NOTIFY_OK;
6695
}
6696

6697 6698
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
6699
{
6700
	switch (action) {
6701
	case CPU_DOWN_PREPARE:
6702
		cpuset_update_active_cpus(false);
6703 6704 6705 6706 6707
		break;
	case CPU_DOWN_PREPARE_FROZEN:
		num_cpus_frozen++;
		partition_sched_domains(1, NULL, NULL);
		break;
6708 6709 6710
	default:
		return NOTIFY_DONE;
	}
6711
	return NOTIFY_OK;
6712 6713
}

L
Linus Torvalds 已提交
6714 6715
void __init sched_init_smp(void)
{
6716 6717 6718
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6719
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6720

6721 6722
	sched_init_numa();

6723 6724 6725 6726 6727
	/*
	 * There's no userspace yet to cause hotplug operations; hence all the
	 * cpu masks are stable and all blatant races in the below code cannot
	 * happen.
	 */
6728
	mutex_lock(&sched_domains_mutex);
6729
	init_sched_domains(cpu_active_mask);
6730 6731 6732
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6733
	mutex_unlock(&sched_domains_mutex);
6734

6735
	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6736 6737
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6738

6739
	init_hrtick();
6740 6741

	/* Move init over to a non-isolated CPU */
6742
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6743
		BUG();
I
Ingo Molnar 已提交
6744
	sched_init_granularity();
6745
	free_cpumask_var(non_isolated_cpus);
6746

6747
	init_sched_rt_class();
6748
	init_sched_dl_class();
L
Linus Torvalds 已提交
6749 6750 6751 6752
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6753
	sched_init_granularity();
L
Linus Torvalds 已提交
6754 6755 6756
}
#endif /* CONFIG_SMP */

6757 6758
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
6759 6760 6761 6762 6763 6764 6765
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

6766
#ifdef CONFIG_CGROUP_SCHED
6767 6768 6769 6770
/*
 * Default task group.
 * Every task in system belongs to this group at bootup.
 */
6771
struct task_group root_task_group;
6772
LIST_HEAD(task_groups);
6773
#endif
P
Peter Zijlstra 已提交
6774

6775
DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
P
Peter Zijlstra 已提交
6776

L
Linus Torvalds 已提交
6777 6778
void __init sched_init(void)
{
I
Ingo Molnar 已提交
6779
	int i, j;
6780 6781 6782 6783 6784 6785 6786
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6787
#endif
6788
#ifdef CONFIG_CPUMASK_OFFSTACK
6789
	alloc_size += num_possible_cpus() * cpumask_size();
6790 6791
#endif
	if (alloc_size) {
6792
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6793 6794

#ifdef CONFIG_FAIR_GROUP_SCHED
6795
		root_task_group.se = (struct sched_entity **)ptr;
6796 6797
		ptr += nr_cpu_ids * sizeof(void **);

6798
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6799
		ptr += nr_cpu_ids * sizeof(void **);
6800

6801
#endif /* CONFIG_FAIR_GROUP_SCHED */
6802
#ifdef CONFIG_RT_GROUP_SCHED
6803
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6804 6805
		ptr += nr_cpu_ids * sizeof(void **);

6806
		root_task_group.rt_rq = (struct rt_rq **)ptr;
6807 6808
		ptr += nr_cpu_ids * sizeof(void **);

6809
#endif /* CONFIG_RT_GROUP_SCHED */
6810 6811
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
6812
			per_cpu(load_balance_mask, i) = (void *)ptr;
6813 6814 6815
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
6816
	}
I
Ingo Molnar 已提交
6817

6818 6819 6820
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());
	init_dl_bandwidth(&def_dl_bandwidth,
6821
			global_rt_period(), global_rt_runtime());
6822

G
Gregory Haskins 已提交
6823 6824 6825 6826
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

6827
#ifdef CONFIG_RT_GROUP_SCHED
6828
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6829
			global_rt_period(), global_rt_runtime());
6830
#endif /* CONFIG_RT_GROUP_SCHED */
6831

D
Dhaval Giani 已提交
6832
#ifdef CONFIG_CGROUP_SCHED
6833 6834
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
6835
	INIT_LIST_HEAD(&root_task_group.siblings);
6836
	autogroup_init(&init_task);
6837

D
Dhaval Giani 已提交
6838
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
6839

6840
	for_each_possible_cpu(i) {
6841
		struct rq *rq;
L
Linus Torvalds 已提交
6842 6843

		rq = cpu_rq(i);
6844
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
6845
		rq->nr_running = 0;
6846 6847
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
6848
		init_cfs_rq(&rq->cfs);
P
Peter Zijlstra 已提交
6849
		init_rt_rq(&rq->rt, rq);
6850
		init_dl_rq(&rq->dl, rq);
I
Ingo Molnar 已提交
6851
#ifdef CONFIG_FAIR_GROUP_SCHED
6852
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
6853
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
6854
		/*
6855
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
6856 6857 6858 6859
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
6860
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
6861 6862 6863
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
6864
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
6865 6866 6867
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
6868
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
6869
		 *
6870 6871
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
6872
		 */
6873
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6874
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
6875 6876 6877
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6878
#ifdef CONFIG_RT_GROUP_SCHED
6879
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
6880
#endif
L
Linus Torvalds 已提交
6881

I
Ingo Molnar 已提交
6882 6883
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
6884 6885 6886

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
6887
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6888
		rq->sd = NULL;
G
Gregory Haskins 已提交
6889
		rq->rd = NULL;
6890
		rq->cpu_power = SCHED_POWER_SCALE;
6891
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
6892
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6893
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6894
		rq->push_cpu = 0;
6895
		rq->cpu = i;
6896
		rq->online = 0;
6897 6898
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
6899
		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6900 6901 6902

		INIT_LIST_HEAD(&rq->cfs_tasks);

6903
		rq_attach_root(rq, &def_root_domain);
6904
#ifdef CONFIG_NO_HZ_COMMON
6905
		rq->nohz_flags = 0;
6906
#endif
6907 6908 6909
#ifdef CONFIG_NO_HZ_FULL
		rq->last_sched_tick = 0;
#endif
L
Linus Torvalds 已提交
6910
#endif
P
Peter Zijlstra 已提交
6911
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
6912 6913 6914
		atomic_set(&rq->nr_iowait, 0);
	}

6915
	set_load_weight(&init_task);
6916

6917 6918 6919 6920
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

L
Linus Torvalds 已提交
6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
6934 6935 6936

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
6937 6938 6939 6940
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
6941

6942
#ifdef CONFIG_SMP
6943
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
R
Rusty Russell 已提交
6944 6945 6946
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6947
	idle_thread_set_boot_cpu();
6948 6949
#endif
	init_sched_fair_class();
6950

6951
	scheduler_running = 1;
L
Linus Torvalds 已提交
6952 6953
}

6954
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6955 6956
static inline int preempt_count_equals(int preempt_offset)
{
6957
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6958

A
Arnd Bergmann 已提交
6959
	return (nested == preempt_offset);
6960 6961
}

6962
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
6963 6964 6965
{
	static unsigned long prev_jiffy;	/* ratelimiting */

6966
	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6967 6968
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
	     !is_idle_task(current)) ||
6969
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
6970 6971 6972 6973 6974
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
6975 6976 6977 6978 6979 6980 6981
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
6982 6983 6984 6985

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
6986 6987 6988 6989 6990 6991 6992
#ifdef CONFIG_DEBUG_PREEMPT
	if (!preempt_count_equals(preempt_offset)) {
		pr_err("Preemption disabled at:");
		print_ip_sym(current->preempt_disable_ip);
		pr_cont("\n");
	}
#endif
I
Ingo Molnar 已提交
6993
	dump_stack();
L
Linus Torvalds 已提交
6994 6995 6996 6997 6998
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
6999 7000
static void normalize_task(struct rq *rq, struct task_struct *p)
{
P
Peter Zijlstra 已提交
7001
	const struct sched_class *prev_class = p->sched_class;
7002 7003 7004
	struct sched_attr attr = {
		.sched_policy = SCHED_NORMAL,
	};
P
Peter Zijlstra 已提交
7005
	int old_prio = p->prio;
7006
	int on_rq;
7007

P
Peter Zijlstra 已提交
7008
	on_rq = p->on_rq;
7009
	if (on_rq)
7010
		dequeue_task(rq, p, 0);
7011
	__setscheduler(rq, p, &attr);
7012
	if (on_rq) {
7013
		enqueue_task(rq, p, 0);
7014 7015
		resched_task(rq->curr);
	}
P
Peter Zijlstra 已提交
7016 7017

	check_class_changed(rq, p, prev_class, old_prio);
7018 7019
}

L
Linus Torvalds 已提交
7020 7021
void normalize_rt_tasks(void)
{
7022
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7023
	unsigned long flags;
7024
	struct rq *rq;
L
Linus Torvalds 已提交
7025

7026
	read_lock_irqsave(&tasklist_lock, flags);
7027
	do_each_thread(g, p) {
7028 7029 7030 7031 7032 7033
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
7034 7035
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
7036 7037 7038
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
7039
#endif
I
Ingo Molnar 已提交
7040

7041
		if (!dl_task(p) && !rt_task(p)) {
I
Ingo Molnar 已提交
7042 7043 7044 7045
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
7046
			if (task_nice(p) < 0 && p->mm)
I
Ingo Molnar 已提交
7047
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7048
			continue;
I
Ingo Molnar 已提交
7049
		}
L
Linus Torvalds 已提交
7050

7051
		raw_spin_lock(&p->pi_lock);
7052
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7053

7054
		normalize_task(rq, p);
7055

7056
		__task_rq_unlock(rq);
7057
		raw_spin_unlock(&p->pi_lock);
7058 7059
	} while_each_thread(g, p);

7060
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7061 7062 7063
}

#endif /* CONFIG_MAGIC_SYSRQ */
7064

7065
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7066
/*
7067
 * These functions are only useful for the IA64 MCA handling, or kdb.
7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7081 7082
 *
 * Return: The current task for @cpu.
7083
 */
7084
struct task_struct *curr_task(int cpu)
7085 7086 7087 7088
{
	return cpu_curr(cpu);
}

7089 7090 7091
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
7092 7093 7094 7095 7096 7097
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7098 7099
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7100 7101 7102 7103 7104 7105 7106
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7107
void set_curr_task(int cpu, struct task_struct *p)
7108 7109 7110 7111 7112
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7113

D
Dhaval Giani 已提交
7114
#ifdef CONFIG_CGROUP_SCHED
7115 7116 7117
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

7118 7119 7120 7121
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
7122
	autogroup_free(tg);
7123 7124 7125 7126
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
7127
struct task_group *sched_create_group(struct task_group *parent)
7128 7129 7130 7131 7132 7133 7134
{
	struct task_group *tg;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

7135
	if (!alloc_fair_sched_group(tg, parent))
7136 7137
		goto err;

7138
	if (!alloc_rt_sched_group(tg, parent))
7139 7140
		goto err;

7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151
	return tg;

err:
	free_sched_group(tg);
	return ERR_PTR(-ENOMEM);
}

void sched_online_group(struct task_group *tg, struct task_group *parent)
{
	unsigned long flags;

7152
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7153
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
7154 7155 7156 7157 7158

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
7159
	list_add_rcu(&tg->siblings, &parent->children);
7160
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7161 7162
}

7163
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
7164
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7165 7166
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
7167
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
7168 7169
}

7170
/* Destroy runqueue etc associated with a task group */
7171
void sched_destroy_group(struct task_group *tg)
7172 7173 7174 7175 7176 7177
{
	/* wait for possible concurrent references to cfs_rqs complete */
	call_rcu(&tg->rcu, free_sched_group_rcu);
}

void sched_offline_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7178
{
7179
	unsigned long flags;
7180
	int i;
S
Srivatsa Vaddagiri 已提交
7181

7182 7183
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
7184
		unregister_fair_sched_group(tg, i);
7185 7186

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7187
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
7188
	list_del_rcu(&tg->siblings);
7189
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7190 7191
}

7192
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7193 7194 7195
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7196 7197
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7198
{
P
Peter Zijlstra 已提交
7199
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
7200 7201 7202 7203 7204 7205
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

7206
	running = task_current(rq, tsk);
P
Peter Zijlstra 已提交
7207
	on_rq = tsk->on_rq;
S
Srivatsa Vaddagiri 已提交
7208

7209
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
7210
		dequeue_task(rq, tsk, 0);
7211 7212
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7213

7214
	tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
P
Peter Zijlstra 已提交
7215 7216 7217 7218 7219
				lockdep_is_held(&tsk->sighand->siglock)),
			  struct task_group, css);
	tg = autogroup_task_group(tsk, tg);
	tsk->sched_task_group = tg;

P
Peter Zijlstra 已提交
7220
#ifdef CONFIG_FAIR_GROUP_SCHED
7221 7222 7223
	if (tsk->sched_class->task_move_group)
		tsk->sched_class->task_move_group(tsk, on_rq);
	else
P
Peter Zijlstra 已提交
7224
#endif
7225
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
7226

7227 7228 7229
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
7230
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
7231

7232
	task_rq_unlock(rq, tsk, &flags);
S
Srivatsa Vaddagiri 已提交
7233
}
D
Dhaval Giani 已提交
7234
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
7235

7236 7237 7238 7239 7240
#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
P
Peter Zijlstra 已提交
7241

P
Peter Zijlstra 已提交
7242 7243
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
7244
{
P
Peter Zijlstra 已提交
7245
	struct task_struct *g, *p;
7246

P
Peter Zijlstra 已提交
7247
	do_each_thread(g, p) {
7248
		if (rt_task(p) && task_rq(p)->rt.tg == tg)
P
Peter Zijlstra 已提交
7249 7250
			return 1;
	} while_each_thread(g, p);
7251

P
Peter Zijlstra 已提交
7252 7253
	return 0;
}
7254

P
Peter Zijlstra 已提交
7255 7256 7257 7258 7259
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
7260

7261
static int tg_rt_schedulable(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
7262 7263 7264 7265 7266
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
7267

P
Peter Zijlstra 已提交
7268 7269
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
7270

P
Peter Zijlstra 已提交
7271 7272 7273
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
7274 7275
	}

7276 7277 7278 7279 7280
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
7281

7282 7283 7284
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
7285 7286
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
7287

P
Peter Zijlstra 已提交
7288
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7289

7290 7291 7292 7293 7294
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
7295

7296 7297 7298
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
7299 7300 7301
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7302

P
Peter Zijlstra 已提交
7303 7304 7305 7306
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
7307

P
Peter Zijlstra 已提交
7308
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7309
	}
P
Peter Zijlstra 已提交
7310

P
Peter Zijlstra 已提交
7311 7312 7313 7314
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
7315 7316
}

P
Peter Zijlstra 已提交
7317
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7318
{
7319 7320
	int ret;

P
Peter Zijlstra 已提交
7321 7322 7323 7324 7325 7326
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

7327 7328 7329 7330 7331
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7332 7333
}

7334
static int tg_set_rt_bandwidth(struct task_group *tg,
7335
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
7336
{
P
Peter Zijlstra 已提交
7337
	int i, err = 0;
P
Peter Zijlstra 已提交
7338 7339

	mutex_lock(&rt_constraints_mutex);
7340
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
7341 7342
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
7343
		goto unlock;
P
Peter Zijlstra 已提交
7344

7345
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7346 7347
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
7348 7349 7350 7351

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

7352
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7353
		rt_rq->rt_runtime = rt_runtime;
7354
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7355
	}
7356
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
7357
unlock:
7358
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
7359 7360 7361
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
7362 7363
}

7364
static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7365 7366 7367 7368 7369 7370 7371 7372
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

7373
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7374 7375
}

7376
static long sched_group_rt_runtime(struct task_group *tg)
P
Peter Zijlstra 已提交
7377 7378 7379
{
	u64 rt_runtime_us;

7380
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7381 7382
		return -1;

7383
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7384 7385 7386
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
7387

7388
static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7389 7390 7391 7392 7393 7394
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

7395 7396 7397
	if (rt_period == 0)
		return -EINVAL;

7398
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7399 7400
}

7401
static long sched_group_rt_period(struct task_group *tg)
7402 7403 7404 7405 7406 7407 7408
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}
7409
#endif /* CONFIG_RT_GROUP_SCHED */
7410

7411
#ifdef CONFIG_RT_GROUP_SCHED
7412 7413 7414 7415 7416
static int sched_rt_global_constraints(void)
{
	int ret = 0;

	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
7417
	read_lock(&tasklist_lock);
7418
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
7419
	read_unlock(&tasklist_lock);
7420 7421 7422 7423
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
7424

7425
static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7426 7427 7428 7429 7430 7431 7432 7433
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

7434
#else /* !CONFIG_RT_GROUP_SCHED */
7435 7436
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
7437
	unsigned long flags;
7438
	int i, ret = 0;
7439

7440
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7441 7442 7443
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

7444
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7445
		rt_rq->rt_runtime = global_rt_runtime();
7446
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7447
	}
7448
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7449

7450
	return ret;
7451
}
7452
#endif /* CONFIG_RT_GROUP_SCHED */
7453

7454 7455
static int sched_dl_global_constraints(void)
{
7456 7457
	u64 runtime = global_rt_runtime();
	u64 period = global_rt_period();
7458
	u64 new_bw = to_ratio(period, runtime);
7459
	int cpu, ret = 0;
7460 7461 7462 7463 7464 7465 7466 7467 7468 7469

	/*
	 * Here we want to check the bandwidth not being set to some
	 * value smaller than the currently allocated bandwidth in
	 * any of the root_domains.
	 *
	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
	 * cycling on root_domains... Discussion on different/better
	 * solutions is welcome!
	 */
7470 7471
	for_each_possible_cpu(cpu) {
		struct dl_bw *dl_b = dl_bw_of(cpu);
7472 7473

		raw_spin_lock(&dl_b->lock);
7474 7475
		if (new_bw < dl_b->total_bw)
			ret = -EBUSY;
7476
		raw_spin_unlock(&dl_b->lock);
7477 7478 7479

		if (ret)
			break;
7480 7481
	}

7482
	return ret;
7483 7484
}

7485
static void sched_dl_do_global(void)
7486
{
7487 7488
	u64 new_bw = -1;
	int cpu;
7489

7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504
	def_dl_bandwidth.dl_period = global_rt_period();
	def_dl_bandwidth.dl_runtime = global_rt_runtime();

	if (global_rt_runtime() != RUNTIME_INF)
		new_bw = to_ratio(global_rt_period(), global_rt_runtime());

	/*
	 * FIXME: As above...
	 */
	for_each_possible_cpu(cpu) {
		struct dl_bw *dl_b = dl_bw_of(cpu);

		raw_spin_lock(&dl_b->lock);
		dl_b->bw = new_bw;
		raw_spin_unlock(&dl_b->lock);
7505
	}
7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522
}

static int sched_rt_global_validate(void)
{
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

	if (sysctl_sched_rt_runtime > sysctl_sched_rt_period)
		return -EINVAL;

	return 0;
}

static void sched_rt_do_global(void)
{
	def_rt_bandwidth.rt_runtime = global_rt_runtime();
	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7523 7524
}

7525
int sched_rt_handler(struct ctl_table *table, int write,
7526
		void __user *buffer, size_t *lenp,
7527 7528 7529 7530
		loff_t *ppos)
{
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);
7531
	int ret;
7532 7533 7534 7535 7536

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

7537
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7538 7539

	if (!ret && write) {
7540 7541 7542 7543
		ret = sched_rt_global_validate();
		if (ret)
			goto undo;

7544
		ret = sched_rt_global_constraints();
7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558
		if (ret)
			goto undo;

		ret = sched_dl_global_constraints();
		if (ret)
			goto undo;

		sched_rt_do_global();
		sched_dl_do_global();
	}
	if (0) {
undo:
		sysctl_sched_rt_period = old_period;
		sysctl_sched_rt_runtime = old_runtime;
7559 7560 7561 7562 7563
	}
	mutex_unlock(&mutex);

	return ret;
}
7564

7565
int sched_rr_handler(struct ctl_table *table, int write,
7566 7567 7568 7569 7570 7571 7572 7573
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7574 7575
	/* make sure that internally we keep jiffies */
	/* also, writing zero resets timeslice to default */
7576
	if (!ret && write) {
7577 7578
		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7579 7580 7581 7582 7583
	}
	mutex_unlock(&mutex);
	return ret;
}

7584
#ifdef CONFIG_CGROUP_SCHED
7585

7586
static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7587
{
7588
	return css ? container_of(css, struct task_group, css) : NULL;
7589 7590
}

7591 7592
static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7593
{
7594 7595
	struct task_group *parent = css_tg(parent_css);
	struct task_group *tg;
7596

7597
	if (!parent) {
7598
		/* This is early initialization for the top cgroup */
7599
		return &root_task_group.css;
7600 7601
	}

7602
	tg = sched_create_group(parent);
7603 7604 7605 7606 7607 7608
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

7609
static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7610
{
7611 7612
	struct task_group *tg = css_tg(css);
	struct task_group *parent = css_tg(css_parent(css));
7613

T
Tejun Heo 已提交
7614 7615
	if (parent)
		sched_online_group(tg, parent);
7616 7617 7618
	return 0;
}

7619
static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7620
{
7621
	struct task_group *tg = css_tg(css);
7622 7623 7624 7625

	sched_destroy_group(tg);
}

7626
static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7627
{
7628
	struct task_group *tg = css_tg(css);
7629 7630 7631 7632

	sched_offline_group(tg);
}

7633
static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7634
				 struct cgroup_taskset *tset)
7635
{
7636 7637
	struct task_struct *task;

7638
	cgroup_taskset_for_each(task, css, tset) {
7639
#ifdef CONFIG_RT_GROUP_SCHED
7640
		if (!sched_rt_can_attach(css_tg(css), task))
7641
			return -EINVAL;
7642
#else
7643 7644 7645
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
7646
#endif
7647
	}
7648 7649
	return 0;
}
7650

7651
static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7652
			      struct cgroup_taskset *tset)
7653
{
7654 7655
	struct task_struct *task;

7656
	cgroup_taskset_for_each(task, css, tset)
7657
		sched_move_task(task);
7658 7659
}

7660 7661 7662
static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
			    struct cgroup_subsys_state *old_css,
			    struct task_struct *task)
7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	sched_move_task(task);
}

7675
#ifdef CONFIG_FAIR_GROUP_SCHED
7676 7677
static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
				struct cftype *cftype, u64 shareval)
7678
{
7679
	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7680 7681
}

7682 7683
static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
			       struct cftype *cft)
7684
{
7685
	struct task_group *tg = css_tg(css);
7686

7687
	return (u64) scale_load_down(tg->shares);
7688
}
7689 7690

#ifdef CONFIG_CFS_BANDWIDTH
7691 7692
static DEFINE_MUTEX(cfs_constraints_mutex);

7693 7694 7695
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

7696 7697
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

7698 7699
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
7700
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7701
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

7722 7723 7724 7725 7726
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

7727
	runtime_enabled = quota != RUNTIME_INF;
7728
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7729 7730 7731 7732 7733 7734
	/*
	 * If we need to toggle cfs_bandwidth_used, off->on must occur
	 * before making related changes, and on->off must occur afterwards
	 */
	if (runtime_enabled && !runtime_was_enabled)
		cfs_bandwidth_usage_inc();
7735 7736 7737
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
7738

P
Paul Turner 已提交
7739
	__refill_cfs_bandwidth_runtime(cfs_b);
7740 7741 7742 7743 7744 7745
	/* restart the period timer (if active) to handle new period expiry */
	if (runtime_enabled && cfs_b->timer_active) {
		/* force a reprogram */
		cfs_b->timer_active = 0;
		__start_cfs_bandwidth(cfs_b);
	}
7746 7747 7748 7749
	raw_spin_unlock_irq(&cfs_b->lock);

	for_each_possible_cpu(i) {
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7750
		struct rq *rq = cfs_rq->rq;
7751 7752

		raw_spin_lock_irq(&rq->lock);
7753
		cfs_rq->runtime_enabled = runtime_enabled;
7754
		cfs_rq->runtime_remaining = 0;
7755

7756
		if (cfs_rq->throttled)
7757
			unthrottle_cfs_rq(cfs_rq);
7758 7759
		raw_spin_unlock_irq(&rq->lock);
	}
7760 7761
	if (runtime_was_enabled && !runtime_enabled)
		cfs_bandwidth_usage_dec();
7762 7763
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
7764

7765
	return ret;
7766 7767 7768 7769 7770 7771
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

7772
	period = ktime_to_ns(tg->cfs_bandwidth.period);
7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

7785
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7786 7787
		return -1;

7788
	quota_us = tg->cfs_bandwidth.quota;
7789 7790 7791 7792 7793 7794 7795 7796 7797 7798
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
7799
	quota = tg->cfs_bandwidth.quota;
7800 7801 7802 7803 7804 7805 7806 7807

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

7808
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7809 7810 7811 7812 7813
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

7814 7815
static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
				  struct cftype *cft)
7816
{
7817
	return tg_get_cfs_quota(css_tg(css));
7818 7819
}

7820 7821
static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
				   struct cftype *cftype, s64 cfs_quota_us)
7822
{
7823
	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7824 7825
}

7826 7827
static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
				   struct cftype *cft)
7828
{
7829
	return tg_get_cfs_period(css_tg(css));
7830 7831
}

7832 7833
static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 cfs_period_us)
7834
{
7835
	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7836 7837
}

7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
7870
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7871 7872 7873 7874 7875
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
7876
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896

		quota = normalize_cfs_quota(tg, d);
		parent_quota = parent_b->hierarchal_quota;

		/*
		 * ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
	cfs_b->hierarchal_quota = quota;

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
7897
	int ret;
7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

7909 7910 7911 7912 7913
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7914
}
7915

7916
static int cpu_stats_show(struct seq_file *sf, void *v)
7917
{
7918
	struct task_group *tg = css_tg(seq_css(sf));
7919
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7920

7921 7922 7923
	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7924 7925 7926

	return 0;
}
7927
#endif /* CONFIG_CFS_BANDWIDTH */
7928
#endif /* CONFIG_FAIR_GROUP_SCHED */
7929

7930
#ifdef CONFIG_RT_GROUP_SCHED
7931 7932
static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
				struct cftype *cft, s64 val)
P
Peter Zijlstra 已提交
7933
{
7934
	return sched_group_set_rt_runtime(css_tg(css), val);
P
Peter Zijlstra 已提交
7935 7936
}

7937 7938
static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
P
Peter Zijlstra 已提交
7939
{
7940
	return sched_group_rt_runtime(css_tg(css));
P
Peter Zijlstra 已提交
7941
}
7942

7943 7944
static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 rt_period_us)
7945
{
7946
	return sched_group_set_rt_period(css_tg(css), rt_period_us);
7947 7948
}

7949 7950
static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
				   struct cftype *cft)
7951
{
7952
	return sched_group_rt_period(css_tg(css));
7953
}
7954
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
7955

7956
static struct cftype cpu_files[] = {
7957
#ifdef CONFIG_FAIR_GROUP_SCHED
7958 7959
	{
		.name = "shares",
7960 7961
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
7962
	},
7963
#endif
7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
7975 7976
	{
		.name = "stat",
7977
		.seq_show = cpu_stats_show,
7978
	},
7979
#endif
7980
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7981
	{
P
Peter Zijlstra 已提交
7982
		.name = "rt_runtime_us",
7983 7984
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
7985
	},
7986 7987
	{
		.name = "rt_period_us",
7988 7989
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
7990
	},
7991
#endif
7992
	{ }	/* terminate */
7993 7994 7995
};

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
7996
	.name		= "cpu",
7997 7998
	.css_alloc	= cpu_cgroup_css_alloc,
	.css_free	= cpu_cgroup_css_free,
7999 8000
	.css_online	= cpu_cgroup_css_online,
	.css_offline	= cpu_cgroup_css_offline,
8001 8002
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
8003
	.exit		= cpu_cgroup_exit,
I
Ingo Molnar 已提交
8004
	.subsys_id	= cpu_cgroup_subsys_id,
8005
	.base_cftypes	= cpu_files,
8006 8007 8008
	.early_init	= 1,
};

8009
#endif	/* CONFIG_CGROUP_SCHED */
8010

8011 8012 8013 8014 8015
void dump_cpu_task(int cpu)
{
	pr_info("Task dump for CPU %d:\n", cpu);
	sched_show_task(cpu_curr(cpu));
}