core.c 198.5 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/highmem.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
37
#include <linux/capability.h>
L
Linus Torvalds 已提交
38 39
#include <linux/completion.h>
#include <linux/kernel_stat.h>
40
#include <linux/debug_locks.h>
41
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
57
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
58
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/unistd.h>
J
Jens Axboe 已提交
66
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
67
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
68
#include <linux/tick.h>
P
Peter Zijlstra 已提交
69 70
#include <linux/debugfs.h>
#include <linux/ctype.h>
71
#include <linux/ftrace.h>
72
#include <linux/slab.h>
73
#include <linux/init_task.h>
A
Al Viro 已提交
74
#include <linux/binfmts.h>
75
#include <linux/context_tracking.h>
L
Linus Torvalds 已提交
76

77
#include <asm/switch_to.h>
78
#include <asm/tlb.h>
79
#include <asm/irq_regs.h>
80
#include <asm/mutex.h>
G
Glauber Costa 已提交
81 82 83
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
84

85
#include "sched.h"
86
#include "../workqueue_internal.h"
87
#include "../smpboot.h"
88

89
#define CREATE_TRACE_POINTS
90
#include <trace/events/sched.h>
91

92
void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93
{
94 95
	unsigned long delta;
	ktime_t soft, hard, now;
96

97 98 99 100 101 102
	for (;;) {
		if (hrtimer_active(period_timer))
			break;

		now = hrtimer_cb_get_time(period_timer);
		hrtimer_forward(period_timer, now, period);
103

104 105 106 107 108 109 110 111
		soft = hrtimer_get_softexpires(period_timer);
		hard = hrtimer_get_expires(period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(period_timer, soft, delta,
					 HRTIMER_MODE_ABS_PINNED, 0);
	}
}

112 113
DEFINE_MUTEX(sched_domains_mutex);
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114

115
static void update_rq_clock_task(struct rq *rq, s64 delta);
116

117
void update_rq_clock(struct rq *rq)
118
{
119
	s64 delta;
120

121
	if (rq->skip_clock_update > 0)
122
		return;
123

124 125 126
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
127 128
}

I
Ingo Molnar 已提交
129 130 131
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
132 133 134 135

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
136
const_debug unsigned int sysctl_sched_features =
137
#include "features.h"
P
Peter Zijlstra 已提交
138 139 140 141 142 143 144 145
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

146
static const char * const sched_feat_names[] = {
147
#include "features.h"
P
Peter Zijlstra 已提交
148 149 150 151
};

#undef SCHED_FEAT

L
Li Zefan 已提交
152
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
153 154 155
{
	int i;

156
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
L
Li Zefan 已提交
157 158 159
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
160
	}
L
Li Zefan 已提交
161
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
162

L
Li Zefan 已提交
163
	return 0;
P
Peter Zijlstra 已提交
164 165
}

166 167
#ifdef HAVE_JUMP_LABEL

168 169
#define jump_label_key__true  STATIC_KEY_INIT_TRUE
#define jump_label_key__false STATIC_KEY_INIT_FALSE
170 171 172 173

#define SCHED_FEAT(name, enabled)	\
	jump_label_key__##enabled ,

174
struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175 176 177 178 179 180 181
#include "features.h"
};

#undef SCHED_FEAT

static void sched_feat_disable(int i)
{
182 183
	if (static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_dec(&sched_feat_keys[i]);
184 185 186 187
}

static void sched_feat_enable(int i)
{
188 189
	if (!static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_inc(&sched_feat_keys[i]);
190 191 192 193 194 195
}
#else
static void sched_feat_disable(int i) { };
static void sched_feat_enable(int i) { };
#endif /* HAVE_JUMP_LABEL */

196
static int sched_feat_set(char *cmp)
P
Peter Zijlstra 已提交
197 198
{
	int i;
199
	int neg = 0;
P
Peter Zijlstra 已提交
200

H
Hillf Danton 已提交
201
	if (strncmp(cmp, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
202 203 204 205
		neg = 1;
		cmp += 3;
	}

206
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
207
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
208
			if (neg) {
P
Peter Zijlstra 已提交
209
				sysctl_sched_features &= ~(1UL << i);
210 211
				sched_feat_disable(i);
			} else {
P
Peter Zijlstra 已提交
212
				sysctl_sched_features |= (1UL << i);
213 214
				sched_feat_enable(i);
			}
P
Peter Zijlstra 已提交
215 216 217 218
			break;
		}
	}

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
	return i;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
	cmp = strstrip(buf);

	i = sched_feat_set(cmp);
240
	if (i == __SCHED_FEAT_NR)
P
Peter Zijlstra 已提交
241 242
		return -EINVAL;

243
	*ppos += cnt;
P
Peter Zijlstra 已提交
244 245 246 247

	return cnt;
}

L
Li Zefan 已提交
248 249 250 251 252
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

253
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
254 255 256 257 258
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
259 260 261 262 263 264 265 266 267 268
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);
269
#endif /* CONFIG_SCHED_DEBUG */
I
Ingo Molnar 已提交
270

271 272 273 274 275 276
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

277 278 279 280 281 282 283 284
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
285
/*
P
Peter Zijlstra 已提交
286
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
287 288
 * default: 1s
 */
P
Peter Zijlstra 已提交
289
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
290

291
__read_mostly int scheduler_running;
292

P
Peter Zijlstra 已提交
293 294 295 296 297
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
298 299


L
Linus Torvalds 已提交
300

301
/*
302
 * __task_rq_lock - lock the rq @p resides on.
303
 */
304
static inline struct rq *__task_rq_lock(struct task_struct *p)
305 306
	__acquires(rq->lock)
{
307 308
	struct rq *rq;

309 310
	lockdep_assert_held(&p->pi_lock);

311
	for (;;) {
312
		rq = task_rq(p);
313
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
314
		if (likely(rq == task_rq(p)))
315
			return rq;
316
		raw_spin_unlock(&rq->lock);
317 318 319
	}
}

L
Linus Torvalds 已提交
320
/*
321
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
L
Linus Torvalds 已提交
322
 */
323
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
324
	__acquires(p->pi_lock)
L
Linus Torvalds 已提交
325 326
	__acquires(rq->lock)
{
327
	struct rq *rq;
L
Linus Torvalds 已提交
328

329
	for (;;) {
330
		raw_spin_lock_irqsave(&p->pi_lock, *flags);
331
		rq = task_rq(p);
332
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
333
		if (likely(rq == task_rq(p)))
334
			return rq;
335 336
		raw_spin_unlock(&rq->lock);
		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
337 338 339
	}
}

A
Alexey Dobriyan 已提交
340
static void __task_rq_unlock(struct rq *rq)
341 342
	__releases(rq->lock)
{
343
	raw_spin_unlock(&rq->lock);
344 345
}

346 347
static inline void
task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
348
	__releases(rq->lock)
349
	__releases(p->pi_lock)
L
Linus Torvalds 已提交
350
{
351 352
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
353 354 355
}

/*
356
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
357
 */
A
Alexey Dobriyan 已提交
358
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
359 360
	__acquires(rq->lock)
{
361
	struct rq *rq;
L
Linus Torvalds 已提交
362 363 364

	local_irq_disable();
	rq = this_rq();
365
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
366 367 368 369

	return rq;
}

P
Peter Zijlstra 已提交
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

398
	raw_spin_lock(&rq->lock);
399
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
400
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
401
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
402 403 404 405

	return HRTIMER_NORESTART;
}

406
#ifdef CONFIG_SMP
407 408 409 410
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
411
{
412
	struct rq *rq = arg;
413

414
	raw_spin_lock(&rq->lock);
415 416
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
417
	raw_spin_unlock(&rq->lock);
418 419
}

420 421 422 423 424
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
425
void hrtick_start(struct rq *rq, u64 delay)
426
{
427 428
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
429

430
	hrtimer_set_expires(timer, time);
431 432 433 434

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
435
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
436 437
		rq->hrtick_csd_pending = 1;
	}
438 439 440 441 442 443 444 445 446 447 448 449 450 451
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
452
		hrtick_clear(cpu_rq(cpu));
453 454 455 456 457 458
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

459
static __init void init_hrtick(void)
460 461 462
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
463 464 465 466 467 468
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
469
void hrtick_start(struct rq *rq, u64 delay)
470
{
471
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
472
			HRTIMER_MODE_REL_PINNED, 0);
473
}
474

A
Andrew Morton 已提交
475
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
476 477
{
}
478
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
479

480
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
481
{
482 483
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
484

485 486 487 488
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
489

490 491
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
492
}
A
Andrew Morton 已提交
493
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
494 495 496 497 498 499 500 501
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

502 503 504
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
505
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
506

I
Ingo Molnar 已提交
507 508 509 510 511 512 513 514 515 516
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
A
Al Viro 已提交
517
#define tsk_is_polling(t) 0
I
Ingo Molnar 已提交
518 519
#endif

520
void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
521 522 523
{
	int cpu;

524
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
525

526
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
527 528
		return;

529
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
530 531 532 533 534 535 536 537 538 539 540

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

541
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
542 543 544 545
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

546
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
547 548
		return;
	resched_task(cpu_curr(cpu));
549
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
550
}
551 552

#ifdef CONFIG_NO_HZ
553 554 555 556 557 558 559 560 561 562 563 564 565 566
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
int get_nohz_timer_target(void)
{
	int cpu = smp_processor_id();
	int i;
	struct sched_domain *sd;

567
	rcu_read_lock();
568
	for_each_domain(cpu, sd) {
569 570 571 572 573 574
		for_each_cpu(i, sched_domain_span(sd)) {
			if (!idle_cpu(i)) {
				cpu = i;
				goto unlock;
			}
		}
575
	}
576 577
unlock:
	rcu_read_unlock();
578 579
	return cpu;
}
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;
606 607

	/*
608 609 610
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
611
	 */
612
	set_tsk_need_resched(rq->idle);
613

614 615 616 617
	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
618 619
}

620
static inline bool got_nohz_idle_kick(void)
621
{
622 623
	int cpu = smp_processor_id();
	return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
624 625
}

626
#else /* CONFIG_NO_HZ */
627

628
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
629
{
630
	return false;
P
Peter Zijlstra 已提交
631 632
}

633
#endif /* CONFIG_NO_HZ */
634

635
void sched_avg_update(struct rq *rq)
636
{
637 638 639
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
640 641 642 643 644 645
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
646 647 648
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
649 650
}

651
#else /* !CONFIG_SMP */
652
void resched_task(struct task_struct *p)
653
{
654
	assert_raw_spin_locked(&task_rq(p)->lock);
655
	set_tsk_need_resched(p);
656
}
657
#endif /* CONFIG_SMP */
658

659 660
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
661
/*
662 663 664 665
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
666
 */
667
int walk_tg_tree_from(struct task_group *from,
668
			     tg_visitor down, tg_visitor up, void *data)
669 670
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
671
	int ret;
672

673 674
	parent = from;

675
down:
P
Peter Zijlstra 已提交
676 677
	ret = (*down)(parent, data);
	if (ret)
678
		goto out;
679 680 681 682 683 684 685
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
686
	ret = (*up)(parent, data);
687 688
	if (ret || parent == from)
		goto out;
689 690 691 692 693

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
694
out:
P
Peter Zijlstra 已提交
695
	return ret;
696 697
}

698
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
699
{
700
	return 0;
P
Peter Zijlstra 已提交
701
}
702 703
#endif

704 705
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
706 707 708
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
709 710 711 712
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
713
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
714
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
715 716
		return;
	}
717

718
	load->weight = scale_load(prio_to_weight[prio]);
N
Nikhil Rao 已提交
719
	load->inv_weight = prio_to_wmult[prio];
720 721
}

722
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
723
{
724
	update_rq_clock(rq);
I
Ingo Molnar 已提交
725
	sched_info_queued(p);
726
	p->sched_class->enqueue_task(rq, p, flags);
727 728
}

729
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
730
{
731
	update_rq_clock(rq);
732
	sched_info_dequeued(p);
733
	p->sched_class->dequeue_task(rq, p, flags);
734 735
}

736
void activate_task(struct rq *rq, struct task_struct *p, int flags)
737 738 739 740
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

741
	enqueue_task(rq, p, flags);
742 743
}

744
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
745 746 747 748
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

749
	dequeue_task(rq, p, flags);
750 751
}

752
static void update_rq_clock_task(struct rq *rq, s64 delta)
753
{
754 755 756 757 758 759 760 761
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
762
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
784 785
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
786
	if (static_key_false((&paravirt_steal_rq_enabled))) {
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
		u64 st;

		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		st = steal_ticks(steal);
		steal = st * TICK_NSEC;

		rq->prev_steal_time_rq += steal;

		delta -= steal;
	}
#endif

804 805
	rq->clock_task += delta;

806 807 808 809
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
810 811
}

812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

842
/*
I
Ingo Molnar 已提交
843
 * __normal_prio - return the priority that is based on the static prio
844 845 846
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
847
	return p->static_prio;
848 849
}

850 851 852 853 854 855 856
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
857
static inline int normal_prio(struct task_struct *p)
858 859 860
{
	int prio;

861
	if (task_has_rt_policy(p))
862 863 864 865 866 867 868 869 870 871 872 873 874
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
875
static int effective_prio(struct task_struct *p)
876 877 878 879 880 881 882 883 884 885 886 887
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
888 889 890 891
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
892
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
893 894 895 896
{
	return cpu_curr(task_cpu(p)) == p;
}

897 898
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
899
				       int oldprio)
900 901 902
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
903 904 905 906
			prev_class->switched_from(rq, p);
		p->sched_class->switched_to(rq, p);
	} else if (oldprio != p->prio)
		p->sched_class->prio_changed(rq, p, oldprio);
907 908
}

909
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
				resched_task(rq->curr);
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
P
Peter Zijlstra 已提交
930
	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
931 932 933
		rq->skip_clock_update = 1;
}

934 935 936 937 938 939 940
static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);

void register_task_migration_notifier(struct notifier_block *n)
{
	atomic_notifier_chain_register(&task_migration_notifier, n);
}

L
Linus Torvalds 已提交
941
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
942
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
943
{
944 945 946 947 948
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
949 950
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
951 952

#ifdef CONFIG_LOCKDEP
953 954 955 956 957
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
P
Peter Zijlstra 已提交
958
	 * see task_group().
959 960 961 962
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
963 964 965
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
966 967
#endif

968
	trace_sched_migrate_task(p, new_cpu);
969

970
	if (task_cpu(p) != new_cpu) {
971 972
		struct task_migration_notifier tmn;

973 974
		if (p->sched_class->migrate_task_rq)
			p->sched_class->migrate_task_rq(p, new_cpu);
975
		p->se.nr_migrations++;
976
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
977 978 979 980 981 982

		tmn.task = p;
		tmn.from_cpu = task_cpu(p);
		tmn.to_cpu = new_cpu;

		atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
983
	}
I
Ingo Molnar 已提交
984 985

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
986 987
}

988
struct migration_arg {
989
	struct task_struct *task;
L
Linus Torvalds 已提交
990
	int dest_cpu;
991
};
L
Linus Torvalds 已提交
992

993 994
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
995 996 997
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
998 999 1000 1001 1002 1003 1004
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1005 1006 1007 1008 1009 1010
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1011
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1012 1013
{
	unsigned long flags;
I
Ingo Molnar 已提交
1014
	int running, on_rq;
R
Roland McGrath 已提交
1015
	unsigned long ncsw;
1016
	struct rq *rq;
L
Linus Torvalds 已提交
1017

1018 1019 1020 1021 1022 1023 1024 1025
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1026

1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1038 1039 1040
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1041
			cpu_relax();
R
Roland McGrath 已提交
1042
		}
1043

1044 1045 1046 1047 1048 1049
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1050
		trace_sched_wait_task(p);
1051
		running = task_running(rq, p);
P
Peter Zijlstra 已提交
1052
		on_rq = p->on_rq;
R
Roland McGrath 已提交
1053
		ncsw = 0;
1054
		if (!match_state || p->state == match_state)
1055
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1056
		task_rq_unlock(rq, p, &flags);
1057

R
Roland McGrath 已提交
1058 1059 1060 1061 1062 1063
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1074

1075 1076 1077 1078 1079
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1080
		 * So if it was still runnable (but just not actively
1081 1082 1083 1084
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
1085 1086 1087 1088
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1089 1090
			continue;
		}
1091

1092 1093 1094 1095 1096 1097 1098
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1099 1100

	return ncsw;
L
Linus Torvalds 已提交
1101 1102 1103 1104 1105 1106 1107 1108 1109
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1110
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1111 1112 1113 1114 1115
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1116
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1117 1118 1119 1120 1121 1122 1123 1124 1125
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1126
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
1127
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1128

1129
#ifdef CONFIG_SMP
1130
/*
1131
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1132
 */
1133 1134
static int select_fallback_rq(int cpu, struct task_struct *p)
{
1135 1136
	int nid = cpu_to_node(cpu);
	const struct cpumask *nodemask = NULL;
1137 1138
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1139

1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
	/*
	 * If the node that the cpu is on has been offlined, cpu_to_node()
	 * will return -1. There is no cpu on the node, and we should
	 * select the cpu on the other node.
	 */
	if (nid != -1) {
		nodemask = cpumask_of_node(nid);

		/* Look for allowed, online CPU in same node. */
		for_each_cpu(dest_cpu, nodemask) {
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
				return dest_cpu;
		}
1157
	}
1158

1159 1160
	for (;;) {
		/* Any allowed, online CPU? */
1161
		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1162 1163 1164 1165 1166 1167
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			goto out;
		}
1168

1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
		switch (state) {
		case cpuset:
			/* No more Mr. Nice Guy. */
			cpuset_cpus_allowed_fallback(p);
			state = possible;
			break;

		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk_sched("process %d (%s) no longer affine to cpu%d\n",
					task_pid_nr(p), p->comm, cpu);
		}
1198 1199 1200 1201 1202
	}

	return dest_cpu;
}

1203
/*
1204
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1205
 */
1206
static inline
1207
int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1208
{
1209
	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1221
	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
P
Peter Zijlstra 已提交
1222
		     !cpu_online(cpu)))
1223
		cpu = select_fallback_rq(task_cpu(p), p);
1224 1225

	return cpu;
1226
}
1227 1228 1229 1230 1231 1232

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1233 1234
#endif

P
Peter Zijlstra 已提交
1235
static void
1236
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1237
{
P
Peter Zijlstra 已提交
1238
#ifdef CONFIG_SCHEDSTATS
1239 1240
	struct rq *rq = this_rq();

P
Peter Zijlstra 已提交
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
#ifdef CONFIG_SMP
	int this_cpu = smp_processor_id();

	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	} else {
		struct sched_domain *sd;

		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1251
		rcu_read_lock();
P
Peter Zijlstra 已提交
1252 1253 1254 1255 1256 1257
		for_each_domain(this_cpu, sd) {
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
1258
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1259
	}
1260 1261 1262 1263

	if (wake_flags & WF_MIGRATED)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);

P
Peter Zijlstra 已提交
1264 1265 1266
#endif /* CONFIG_SMP */

	schedstat_inc(rq, ttwu_count);
T
Tejun Heo 已提交
1267
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1268 1269

	if (wake_flags & WF_SYNC)
T
Tejun Heo 已提交
1270
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1271 1272 1273 1274 1275 1276

#endif /* CONFIG_SCHEDSTATS */
}

static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
{
T
Tejun Heo 已提交
1277
	activate_task(rq, p, en_flags);
P
Peter Zijlstra 已提交
1278
	p->on_rq = 1;
1279 1280 1281 1282

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1283 1284
}

1285 1286 1287
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1288
static void
1289
ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
T
Tejun Heo 已提交
1290
{
1291
	trace_sched_wakeup(p, true);
T
Tejun Heo 已提交
1292 1293 1294 1295 1296 1297 1298
	check_preempt_curr(rq, p, wake_flags);

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);

1299
	if (rq->idle_stamp) {
T
Tejun Heo 已提交
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
#endif
}

1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
static void
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
{
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
#endif

	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
	ttwu_do_wakeup(rq, p, wake_flags);
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
	if (p->on_rq) {
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;
}

1345
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1346
static void sched_ttwu_pending(void)
1347 1348
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1349 1350
	struct llist_node *llist = llist_del_all(&rq->wake_list);
	struct task_struct *p;
1351 1352 1353

	raw_spin_lock(&rq->lock);

P
Peter Zijlstra 已提交
1354 1355 1356
	while (llist) {
		p = llist_entry(llist, struct task_struct, wake_entry);
		llist = llist_next(llist);
1357 1358 1359 1360 1361 1362 1363 1364
		ttwu_do_activate(rq, p, 0);
	}

	raw_spin_unlock(&rq->lock);
}

void scheduler_ipi(void)
{
1365
	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
P
Peter Zijlstra 已提交
1382
	sched_ttwu_pending();
1383 1384 1385 1386

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1387 1388
	if (unlikely(got_nohz_idle_kick() && !need_resched())) {
		this_rq()->idle_balance = 1;
1389
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1390
	}
1391
	irq_exit();
1392 1393 1394 1395
}

static void ttwu_queue_remote(struct task_struct *p, int cpu)
{
P
Peter Zijlstra 已提交
1396
	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1397 1398
		smp_send_reschedule(cpu);
}
1399

1400
bool cpus_share_cache(int this_cpu, int that_cpu)
1401 1402 1403
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1404
#endif /* CONFIG_SMP */
1405

1406 1407 1408 1409
static void ttwu_queue(struct task_struct *p, int cpu)
{
	struct rq *rq = cpu_rq(cpu);

1410
#if defined(CONFIG_SMP)
1411
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1412
		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1413 1414 1415 1416 1417
		ttwu_queue_remote(p, cpu);
		return;
	}
#endif

1418 1419 1420
	raw_spin_lock(&rq->lock);
	ttwu_do_activate(rq, p, 0);
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
1421 1422 1423
}

/**
L
Linus Torvalds 已提交
1424
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1425
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1426
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1427
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1428 1429 1430 1431 1432 1433 1434
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
T
Tejun Heo 已提交
1435 1436
 * Returns %true if @p was woken up, %false if it was already running
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
1437
 */
1438 1439
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1440 1441
{
	unsigned long flags;
1442
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1443

1444
	smp_wmb();
1445
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
1446
	if (!(p->state & state))
L
Linus Torvalds 已提交
1447 1448
		goto out;

1449
	success = 1; /* we're going to change ->state */
L
Linus Torvalds 已提交
1450 1451
	cpu = task_cpu(p);

1452 1453
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
1454 1455

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1456
	/*
1457 1458
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
P
Peter Zijlstra 已提交
1459
	 */
1460
	while (p->on_cpu)
1461
		cpu_relax();
1462
	/*
1463
	 * Pairs with the smp_wmb() in finish_lock_switch().
1464
	 */
1465
	smp_rmb();
L
Linus Torvalds 已提交
1466

1467
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
1468
	p->state = TASK_WAKING;
1469

1470
	if (p->sched_class->task_waking)
1471
		p->sched_class->task_waking(p);
1472

1473
	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1474 1475
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
1476
		set_task_cpu(p, cpu);
1477
	}
L
Linus Torvalds 已提交
1478 1479
#endif /* CONFIG_SMP */

1480 1481
	ttwu_queue(p, cpu);
stat:
1482
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
1483
out:
1484
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
1485 1486 1487 1488

	return success;
}

T
Tejun Heo 已提交
1489 1490 1491 1492
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
1493
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
1494
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1495
 * the current task.
T
Tejun Heo 已提交
1496 1497 1498 1499 1500 1501 1502 1503 1504
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	BUG_ON(rq != this_rq());
	BUG_ON(p == current);
	lockdep_assert_held(&rq->lock);

1505 1506 1507 1508 1509 1510
	if (!raw_spin_trylock(&p->pi_lock)) {
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
	}

T
Tejun Heo 已提交
1511
	if (!(p->state & TASK_NORMAL))
1512
		goto out;
T
Tejun Heo 已提交
1513

P
Peter Zijlstra 已提交
1514
	if (!p->on_rq)
P
Peter Zijlstra 已提交
1515 1516
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

1517
	ttwu_do_wakeup(rq, p, 0);
1518
	ttwu_stat(p, smp_processor_id(), 0);
1519 1520
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
1521 1522
}

1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
1534
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1535
{
1536 1537
	WARN_ON(task_is_stopped_or_traced(p));
	return try_to_wake_up(p, TASK_NORMAL, 0);
L
Linus Torvalds 已提交
1538 1539 1540
}
EXPORT_SYMBOL(wake_up_process);

1541
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1542 1543 1544 1545 1546 1547 1548
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1549 1550 1551 1552 1553
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
P
Peter Zijlstra 已提交
1554 1555 1556
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
1557 1558
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1559
	p->se.prev_sum_exec_runtime	= 0;
1560
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
1561
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
1562
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
1563

1564 1565 1566 1567 1568 1569
/*
 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
 * removed when useful for applications beyond shares distribution (e.g.
 * load-balance).
 */
#if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
1570 1571 1572
	p->se.avg.runnable_avg_period = 0;
	p->se.avg.runnable_avg_sum = 0;
#endif
I
Ingo Molnar 已提交
1573
#ifdef CONFIG_SCHEDSTATS
1574
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
1575
#endif
N
Nick Piggin 已提交
1576

P
Peter Zijlstra 已提交
1577
	INIT_LIST_HEAD(&p->rt.run_list);
N
Nick Piggin 已提交
1578

1579 1580 1581
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
1582 1583 1584 1585

#ifdef CONFIG_NUMA_BALANCING
	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
		p->mm->numa_next_scan = jiffies;
1586
		p->mm->numa_next_reset = jiffies;
1587 1588 1589 1590 1591 1592
		p->mm->numa_scan_seq = 0;
	}

	p->node_stamp = 0ULL;
	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
	p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
1593
	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1594 1595
	p->numa_work.next = &p->numa_work;
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
1596 1597
}

1598
#ifdef CONFIG_NUMA_BALANCING
1599
#ifdef CONFIG_SCHED_DEBUG
1600 1601 1602 1603 1604 1605 1606
void set_numabalancing_state(bool enabled)
{
	if (enabled)
		sched_feat_set("NUMA");
	else
		sched_feat_set("NO_NUMA");
}
1607 1608 1609 1610 1611 1612
#else
__read_mostly bool numabalancing_enabled;

void set_numabalancing_state(bool enabled)
{
	numabalancing_enabled = enabled;
I
Ingo Molnar 已提交
1613
}
1614
#endif /* CONFIG_SCHED_DEBUG */
1615
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
1616 1617 1618 1619

/*
 * fork()/clone()-time setup:
 */
1620
void sched_fork(struct task_struct *p)
I
Ingo Molnar 已提交
1621
{
1622
	unsigned long flags;
I
Ingo Molnar 已提交
1623 1624 1625
	int cpu = get_cpu();

	__sched_fork(p);
1626
	/*
1627
	 * We mark the process as running here. This guarantees that
1628 1629 1630
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
1631
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1632

1633 1634 1635 1636 1637
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

1638 1639 1640 1641
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
1642
		if (task_has_rt_policy(p)) {
1643
			p->policy = SCHED_NORMAL;
1644
			p->static_prio = NICE_TO_PRIO(0);
1645 1646 1647 1648 1649 1650
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
1651

1652 1653 1654 1655 1656 1657
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
1658

H
Hiroshi Shimamoto 已提交
1659 1660
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
1661

P
Peter Zijlstra 已提交
1662 1663 1664
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

1665 1666 1667 1668 1669 1670 1671
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
1672
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1673
	set_task_cpu(p, cpu);
1674
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1675

1676
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1677
	if (likely(sched_info_on()))
1678
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1679
#endif
P
Peter Zijlstra 已提交
1680 1681
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
1682
#endif
1683
#ifdef CONFIG_PREEMPT_COUNT
1684
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1685
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1686
#endif
1687
#ifdef CONFIG_SMP
1688
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1689
#endif
1690

N
Nick Piggin 已提交
1691
	put_cpu();
L
Linus Torvalds 已提交
1692 1693 1694 1695 1696 1697 1698 1699 1700
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1701
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
1702 1703
{
	unsigned long flags;
I
Ingo Molnar 已提交
1704
	struct rq *rq;
1705

1706
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1707 1708 1709 1710 1711 1712
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 */
1713
	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1714 1715
#endif

1716
	rq = __task_rq_lock(p);
P
Peter Zijlstra 已提交
1717
	activate_task(rq, p, 0);
P
Peter Zijlstra 已提交
1718
	p->on_rq = 1;
1719
	trace_sched_wakeup_new(p, true);
P
Peter Zijlstra 已提交
1720
	check_preempt_curr(rq, p, WF_FORK);
1721
#ifdef CONFIG_SMP
1722 1723
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
1724
#endif
1725
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
1726 1727
}

1728 1729 1730
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
1731
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
1732
 * @notifier: notifier struct to register
1733 1734 1735 1736 1737 1738 1739 1740 1741
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1742
 * @notifier: notifier struct to unregister
1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;

1756
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1757 1758 1759 1760 1761 1762 1763 1764 1765
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;

1766
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1767 1768 1769
		notifier->ops->sched_out(notifier, next);
}

1770
#else /* !CONFIG_PREEMPT_NOTIFIERS */
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

1782
#endif /* CONFIG_PREEMPT_NOTIFIERS */
1783

1784 1785 1786
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1787
 * @prev: the current task that is being switched out
1788 1789 1790 1791 1792 1793 1794 1795 1796
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1797 1798 1799
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1800
{
1801
	trace_sched_switch(prev, next);
1802 1803
	sched_info_switch(prev, next);
	perf_event_task_sched_out(prev, next);
1804
	fire_sched_out_preempt_notifiers(prev, next);
1805 1806 1807 1808
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1809 1810
/**
 * finish_task_switch - clean up after a task-switch
1811
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1812 1813
 * @prev: the thread we just switched away from.
 *
1814 1815 1816 1817
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1818 1819
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
1820
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
1821 1822 1823
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
1824
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1825 1826 1827
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1828
	long prev_state;
L
Linus Torvalds 已提交
1829 1830 1831 1832 1833

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1834
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1835 1836
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1837
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1838 1839 1840 1841 1842
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1843
	prev_state = prev->state;
1844
	vtime_task_switch(prev);
1845
	finish_arch_switch(prev);
1846
	perf_event_task_sched_in(prev, current);
1847
	finish_lock_switch(rq, prev);
1848
	finish_arch_post_lock_switch();
S
Steven Rostedt 已提交
1849

1850
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1851 1852
	if (mm)
		mmdrop(mm);
1853
	if (unlikely(prev_state == TASK_DEAD)) {
1854 1855 1856
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1857
		 */
1858
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1859
		put_task_struct(prev);
1860
	}
L
Linus Torvalds 已提交
1861 1862
}

1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

1878
		raw_spin_lock_irqsave(&rq->lock, flags);
1879 1880
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
1881
		raw_spin_unlock_irqrestore(&rq->lock, flags);
1882 1883 1884 1885 1886 1887

		rq->post_schedule = 0;
	}
}

#else
1888

1889 1890 1891 1892 1893 1894
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
1895 1896
}

1897 1898
#endif

L
Linus Torvalds 已提交
1899 1900 1901 1902
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1903
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1904 1905
	__releases(rq->lock)
{
1906 1907
	struct rq *rq = this_rq();

1908
	finish_task_switch(rq, prev);
1909

1910 1911 1912 1913 1914
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
1915

1916 1917 1918 1919
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1920
	if (current->set_child_tid)
1921
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
1922 1923 1924 1925 1926 1927
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
1928
static inline void
1929
context_switch(struct rq *rq, struct task_struct *prev,
1930
	       struct task_struct *next)
L
Linus Torvalds 已提交
1931
{
I
Ingo Molnar 已提交
1932
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
1933

1934
	prepare_task_switch(rq, prev, next);
1935

I
Ingo Molnar 已提交
1936 1937
	mm = next->mm;
	oldmm = prev->active_mm;
1938 1939 1940 1941 1942
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
1943
	arch_start_context_switch(prev);
1944

1945
	if (!mm) {
L
Linus Torvalds 已提交
1946 1947 1948 1949 1950 1951
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

1952
	if (!prev->mm) {
L
Linus Torvalds 已提交
1953 1954 1955
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
1956 1957 1958 1959 1960 1961 1962
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1963
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1964
#endif
L
Linus Torvalds 已提交
1965

1966
	context_tracking_task_switch(prev, next);
L
Linus Torvalds 已提交
1967 1968 1969
	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
1970 1971 1972 1973 1974 1975 1976
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
1977 1978 1979
}

/*
1980
 * nr_running and nr_context_switches:
L
Linus Torvalds 已提交
1981 1982
 *
 * externally visible scheduler statistics: current number of runnable
1983
 * threads, total number of context switches performed since bootup.
L
Linus Torvalds 已提交
1984 1985 1986 1987 1988 1989 1990 1991 1992
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
1993
}
L
Linus Torvalds 已提交
1994 1995

unsigned long long nr_context_switches(void)
1996
{
1997 1998
	int i;
	unsigned long long sum = 0;
1999

2000
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2001
		sum += cpu_rq(i)->nr_switches;
2002

L
Linus Torvalds 已提交
2003 2004
	return sum;
}
2005

L
Linus Torvalds 已提交
2006 2007 2008
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2009

2010
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2011
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2012

L
Linus Torvalds 已提交
2013 2014
	return sum;
}
2015

2016
unsigned long nr_iowait_cpu(int cpu)
2017
{
2018
	struct rq *this = cpu_rq(cpu);
2019 2020
	return atomic_read(&this->nr_iowait);
}
2021

2022 2023 2024 2025 2026
unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}
2027

2028

2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
/*
 * Global load-average calculations
 *
 * We take a distributed and async approach to calculating the global load-avg
 * in order to minimize overhead.
 *
 * The global load average is an exponentially decaying average of nr_running +
 * nr_uninterruptible.
 *
 * Once every LOAD_FREQ:
 *
 *   nr_active = 0;
 *   for_each_possible_cpu(cpu)
 *   	nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
 *
 *   avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
 *
 * Due to a number of reasons the above turns in the mess below:
 *
 *  - for_each_possible_cpu() is prohibitively expensive on machines with
 *    serious number of cpus, therefore we need to take a distributed approach
 *    to calculating nr_active.
 *
 *        \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
 *                      = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
 *
 *    So assuming nr_active := 0 when we start out -- true per definition, we
 *    can simply take per-cpu deltas and fold those into a global accumulate
 *    to obtain the same result. See calc_load_fold_active().
 *
 *    Furthermore, in order to avoid synchronizing all per-cpu delta folding
 *    across the machine, we assume 10 ticks is sufficient time for every
 *    cpu to have completed this task.
 *
 *    This places an upper-bound on the IRQ-off latency of the machine. Then
 *    again, being late doesn't loose the delta, just wrecks the sample.
 *
 *  - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
 *    this would add another cross-cpu cacheline miss and atomic operation
 *    to the wakeup path. Instead we increment on whatever cpu the task ran
 *    when it went into uninterruptible state and decrement on whatever cpu
 *    did the wakeup. This means that only the sum of nr_uninterruptible over
 *    all cpus yields the correct result.
 *
 *  This covers the NO_HZ=n code, for extra head-aches, see the comment below.
 */

2076 2077 2078 2079
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
EXPORT_SYMBOL(avenrun); /* should be removed */

/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
}
2096

2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
static long calc_load_fold_active(struct rq *this_rq)
{
	long nr_active, delta = 0;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
	}

	return delta;
}

2112 2113 2114
/*
 * a1 = a0 * e + a * (1 - e)
 */
2115 2116 2117 2118 2119 2120 2121 2122 2123
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
{
	load *= exp;
	load += active * (FIXED_1 - exp);
	load += 1UL << (FSHIFT - 1);
	return load >> FSHIFT;
}

2124 2125
#ifdef CONFIG_NO_HZ
/*
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
 * Handle NO_HZ for the global load-average.
 *
 * Since the above described distributed algorithm to compute the global
 * load-average relies on per-cpu sampling from the tick, it is affected by
 * NO_HZ.
 *
 * The basic idea is to fold the nr_active delta into a global idle-delta upon
 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
 * when we read the global state.
 *
 * Obviously reality has to ruin such a delightfully simple scheme:
 *
 *  - When we go NO_HZ idle during the window, we can negate our sample
 *    contribution, causing under-accounting.
 *
 *    We avoid this by keeping two idle-delta counters and flipping them
 *    when the window starts, thus separating old and new NO_HZ load.
 *
 *    The only trick is the slight shift in index flip for read vs write.
 *
 *        0s            5s            10s           15s
 *          +10           +10           +10           +10
 *        |-|-----------|-|-----------|-|-----------|-|
 *    r:0 0 1           1 0           0 1           1 0
 *    w:0 1 1           0 0           1 1           0 0
 *
 *    This ensures we'll fold the old idle contribution in this window while
 *    accumlating the new one.
 *
 *  - When we wake up from NO_HZ idle during the window, we push up our
 *    contribution, since we effectively move our sample point to a known
 *    busy state.
 *
 *    This is solved by pushing the window forward, and thus skipping the
 *    sample, for this cpu (effectively using the idle-delta for this cpu which
 *    was in effect at the time the window opened). This also solves the issue
 *    of having to deal with a cpu having been in NOHZ idle for multiple
 *    LOAD_FREQ intervals.
2164 2165 2166
 *
 * When making the ILB scale, we should try to pull this in as well.
 */
2167 2168
static atomic_long_t calc_load_idle[2];
static int calc_load_idx;
2169

2170
static inline int calc_load_write_idx(void)
2171
{
2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197
	int idx = calc_load_idx;

	/*
	 * See calc_global_nohz(), if we observe the new index, we also
	 * need to observe the new update time.
	 */
	smp_rmb();

	/*
	 * If the folding window started, make sure we start writing in the
	 * next idle-delta.
	 */
	if (!time_before(jiffies, calc_load_update))
		idx++;

	return idx & 1;
}

static inline int calc_load_read_idx(void)
{
	return calc_load_idx & 1;
}

void calc_load_enter_idle(void)
{
	struct rq *this_rq = this_rq();
2198 2199
	long delta;

2200 2201 2202 2203
	/*
	 * We're going into NOHZ mode, if there's any pending delta, fold it
	 * into the pending idle delta.
	 */
2204
	delta = calc_load_fold_active(this_rq);
2205 2206 2207 2208
	if (delta) {
		int idx = calc_load_write_idx();
		atomic_long_add(delta, &calc_load_idle[idx]);
	}
2209 2210
}

2211
void calc_load_exit_idle(void)
2212
{
2213 2214 2215 2216 2217 2218 2219
	struct rq *this_rq = this_rq();

	/*
	 * If we're still before the sample window, we're done.
	 */
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
2220 2221

	/*
2222 2223 2224
	 * We woke inside or after the sample window, this means we're already
	 * accounted through the nohz accounting, so skip the entire deal and
	 * sync up for the next window.
2225
	 */
2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237
	this_rq->calc_load_update = calc_load_update;
	if (time_before(jiffies, this_rq->calc_load_update + 10))
		this_rq->calc_load_update += LOAD_FREQ;
}

static long calc_load_fold_idle(void)
{
	int idx = calc_load_read_idx();
	long delta = 0;

	if (atomic_long_read(&calc_load_idle[idx]))
		delta = atomic_long_xchg(&calc_load_idle[idx], 0);
2238 2239 2240

	return delta;
}
2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318

/**
 * fixed_power_int - compute: x^n, in O(log n) time
 *
 * @x:         base of the power
 * @frac_bits: fractional bits of @x
 * @n:         power to raise @x to.
 *
 * By exploiting the relation between the definition of the natural power
 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
 * (where: n_i \elem {0, 1}, the binary vector representing n),
 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
 * of course trivially computable in O(log_2 n), the length of our binary
 * vector.
 */
static unsigned long
fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
{
	unsigned long result = 1UL << frac_bits;

	if (n) for (;;) {
		if (n & 1) {
			result *= x;
			result += 1UL << (frac_bits - 1);
			result >>= frac_bits;
		}
		n >>= 1;
		if (!n)
			break;
		x *= x;
		x += 1UL << (frac_bits - 1);
		x >>= frac_bits;
	}

	return result;
}

/*
 * a1 = a0 * e + a * (1 - e)
 *
 * a2 = a1 * e + a * (1 - e)
 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
 *    = a0 * e^2 + a * (1 - e) * (1 + e)
 *
 * a3 = a2 * e + a * (1 - e)
 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
 *
 *  ...
 *
 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
 *    = a0 * e^n + a * (1 - e^n)
 *
 * [1] application of the geometric series:
 *
 *              n         1 - x^(n+1)
 *     S_n := \Sum x^i = -------------
 *             i=0          1 - x
 */
static unsigned long
calc_load_n(unsigned long load, unsigned long exp,
	    unsigned long active, unsigned int n)
{

	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
}

/*
 * NO_HZ can leave us missing all per-cpu ticks calling
 * calc_load_account_active(), but since an idle CPU folds its delta into
 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
 * in the pending idle delta if our idle period crossed a load cycle boundary.
 *
 * Once we've updated the global active value, we need to apply the exponential
 * weights adjusted to the number of cycles missed.
 */
2319
static void calc_global_nohz(void)
2320 2321 2322
{
	long delta, active, n;

2323 2324 2325 2326 2327 2328
	if (!time_before(jiffies, calc_load_update + 10)) {
		/*
		 * Catch-up, fold however many we are behind still
		 */
		delta = jiffies - calc_load_update - 10;
		n = 1 + (delta / LOAD_FREQ);
2329

2330 2331
		active = atomic_long_read(&calc_load_tasks);
		active = active > 0 ? active * FIXED_1 : 0;
2332

2333 2334 2335
		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2336

2337 2338
		calc_load_update += n * LOAD_FREQ;
	}
2339

2340 2341 2342 2343 2344 2345 2346 2347 2348
	/*
	 * Flip the idle index...
	 *
	 * Make sure we first write the new time then flip the index, so that
	 * calc_load_write_idx() will see the new time when it reads the new
	 * index, this avoids a double flip messing things up.
	 */
	smp_wmb();
	calc_load_idx++;
2349
}
2350
#else /* !CONFIG_NO_HZ */
2351

2352 2353
static inline long calc_load_fold_idle(void) { return 0; }
static inline void calc_global_nohz(void) { }
2354

2355
#endif /* CONFIG_NO_HZ */
2356 2357

/*
2358 2359
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
2360
 */
2361
void calc_global_load(unsigned long ticks)
2362
{
2363
	long active, delta;
L
Linus Torvalds 已提交
2364

2365
	if (time_before(jiffies, calc_load_update + 10))
2366
		return;
L
Linus Torvalds 已提交
2367

2368 2369 2370 2371 2372 2373 2374
	/*
	 * Fold the 'old' idle-delta to include all NO_HZ cpus.
	 */
	delta = calc_load_fold_idle();
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);

2375 2376
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
L
Linus Torvalds 已提交
2377

2378 2379 2380
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
I
Ingo Molnar 已提交
2381

2382
	calc_load_update += LOAD_FREQ;
2383 2384

	/*
2385
	 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
2386 2387
	 */
	calc_global_nohz();
2388
}
L
Linus Torvalds 已提交
2389

2390
/*
2391 2392
 * Called from update_cpu_load() to periodically update this CPU's
 * active count.
2393 2394 2395
 */
static void calc_load_account_active(struct rq *this_rq)
{
2396
	long delta;
2397

2398 2399
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
2400

2401 2402
	delta  = calc_load_fold_active(this_rq);
	if (delta)
2403
		atomic_long_add(delta, &calc_load_tasks);
2404 2405

	this_rq->calc_load_update += LOAD_FREQ;
2406 2407
}

2408 2409 2410 2411
/*
 * End of global load-average stuff
 */

2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
/*
 * The exact cpuload at various idx values, calculated at every tick would be
 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
 *
 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
 * on nth tick when cpu may be busy, then we have:
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
 *
 * decay_load_missed() below does efficient calculation of
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
 *
 * The calculation is approximated on a 128 point scale.
 * degrade_zero_ticks is the number of ticks after which load at any
 * particular idx is approximated to be zero.
 * degrade_factor is a precomputed table, a row for each load idx.
 * Each column corresponds to degradation factor for a power of two ticks,
 * based on 128 point scale.
 * Example:
 * row 2, col 3 (=12) says that the degradation at load idx 2 after
 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
 *
 * With this power of 2 load factors, we can degrade the load n times
 * by looking at 1 bits in n and doing as many mult/shift instead of
 * n mult/shifts needed by the exact degradation.
 */
#define DEGRADE_SHIFT		7
static const unsigned char
		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const unsigned char
		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
					{0, 0, 0, 0, 0, 0, 0, 0},
					{64, 32, 8, 0, 0, 0, 0, 0},
					{96, 72, 40, 12, 1, 0, 0},
					{112, 98, 75, 43, 15, 1, 0},
					{120, 112, 98, 76, 45, 16, 2} };

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}

2479
/*
I
Ingo Molnar 已提交
2480
 * Update rq->cpu_load[] statistics. This function is usually called every
2481 2482
 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
 * every tick. We fix it up based on jiffies.
2483
 */
2484 2485
static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
			      unsigned long pending_updates)
2486
{
I
Ingo Molnar 已提交
2487
	int i, scale;
2488

I
Ingo Molnar 已提交
2489
	this_rq->nr_load_updates++;
2490

I
Ingo Molnar 已提交
2491
	/* Update our load: */
2492 2493
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
I
Ingo Molnar 已提交
2494
		unsigned long old_load, new_load;
2495

I
Ingo Molnar 已提交
2496
		/* scale is effectively 1 << i now, and >> i divides by scale */
2497

I
Ingo Molnar 已提交
2498
		old_load = this_rq->cpu_load[i];
2499
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
I
Ingo Molnar 已提交
2500
		new_load = this_load;
I
Ingo Molnar 已提交
2501 2502 2503 2504 2505 2506
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
2507 2508 2509
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
I
Ingo Molnar 已提交
2510
	}
2511 2512

	sched_avg_update(this_rq);
2513 2514
}

2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528
#ifdef CONFIG_NO_HZ
/*
 * There is no sane way to deal with nohz on smp when using jiffies because the
 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
 *
 * Therefore we cannot use the delta approach from the regular tick since that
 * would seriously skew the load calculation. However we'll make do for those
 * updates happening while idle (nohz_idle_balance) or coming out of idle
 * (tick_nohz_idle_exit).
 *
 * This means we might still be one tick off for nohz periods.
 */

2529 2530 2531 2532 2533 2534
/*
 * Called from nohz_idle_balance() to update the load ratings before doing the
 * idle balance.
 */
void update_idle_cpu_load(struct rq *this_rq)
{
2535
	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2536 2537 2538 2539
	unsigned long load = this_rq->load.weight;
	unsigned long pending_updates;

	/*
2540
	 * bail if there's load or we're actually up-to-date.
2541 2542 2543 2544 2545 2546 2547 2548 2549 2550
	 */
	if (load || curr_jiffies == this_rq->last_load_update_tick)
		return;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	this_rq->last_load_update_tick = curr_jiffies;

	__update_cpu_load(this_rq, load, pending_updates);
}

2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576
/*
 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
 */
void update_cpu_load_nohz(void)
{
	struct rq *this_rq = this_rq();
	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
	unsigned long pending_updates;

	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

	raw_spin_lock(&this_rq->lock);
	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	if (pending_updates) {
		this_rq->last_load_update_tick = curr_jiffies;
		/*
		 * We were idle, this means load 0, the current load might be
		 * !0 due to remote wakeups and the sort.
		 */
		__update_cpu_load(this_rq, 0, pending_updates);
	}
	raw_spin_unlock(&this_rq->lock);
}
#endif /* CONFIG_NO_HZ */

2577 2578 2579
/*
 * Called from scheduler_tick()
 */
2580 2581
static void update_cpu_load_active(struct rq *this_rq)
{
2582
	/*
2583
	 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
2584 2585 2586
	 */
	this_rq->last_load_update_tick = jiffies;
	__update_cpu_load(this_rq, this_rq->load.weight, 1);
2587

2588
	calc_load_account_active(this_rq);
2589 2590
}

I
Ingo Molnar 已提交
2591
#ifdef CONFIG_SMP
2592

2593
/*
P
Peter Zijlstra 已提交
2594 2595
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2596
 */
P
Peter Zijlstra 已提交
2597
void sched_exec(void)
2598
{
P
Peter Zijlstra 已提交
2599
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2600
	unsigned long flags;
2601
	int dest_cpu;
2602

2603
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2604
	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2605 2606
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2607

2608
	if (likely(cpu_active(dest_cpu))) {
2609
		struct migration_arg arg = { p, dest_cpu };
2610

2611 2612
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2613 2614
		return;
	}
2615
unlock:
2616
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2617
}
I
Ingo Molnar 已提交
2618

L
Linus Torvalds 已提交
2619 2620 2621
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2622
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
2623 2624

EXPORT_PER_CPU_SYMBOL(kstat);
2625
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
2626 2627

/*
2628
 * Return any ns on the sched_clock that have not yet been accounted in
2629
 * @p in case that task is currently running.
2630 2631
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
2632
 */
2633 2634 2635 2636 2637 2638
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
2639
		ns = rq->clock_task - p->se.exec_start;
2640 2641 2642 2643 2644 2645 2646
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

2647
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
2648 2649
{
	unsigned long flags;
2650
	struct rq *rq;
2651
	u64 ns = 0;
2652

2653
	rq = task_rq_lock(p, &flags);
2654
	ns = do_task_delta_exec(p, rq);
2655
	task_rq_unlock(rq, p, &flags);
2656

2657 2658
	return ns;
}
2659

2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2673
	task_rq_unlock(rq, p, &flags);
2674 2675 2676

	return ns;
}
2677

2678 2679 2680 2681 2682 2683 2684 2685
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2686
	struct task_struct *curr = rq->curr;
2687 2688

	sched_clock_tick();
I
Ingo Molnar 已提交
2689

2690
	raw_spin_lock(&rq->lock);
2691
	update_rq_clock(rq);
2692
	update_cpu_load_active(rq);
P
Peter Zijlstra 已提交
2693
	curr->sched_class->task_tick(rq, curr, 0);
2694
	raw_spin_unlock(&rq->lock);
2695

2696
	perf_event_task_tick();
2697

2698
#ifdef CONFIG_SMP
2699
	rq->idle_balance = idle_cpu(cpu);
I
Ingo Molnar 已提交
2700
	trigger_load_balance(rq, cpu);
2701
#endif
L
Linus Torvalds 已提交
2702 2703
}

2704
notrace unsigned long get_parent_ip(unsigned long addr)
2705 2706 2707 2708 2709 2710 2711 2712
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
2713

2714 2715 2716
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

2717
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
2718
{
2719
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2720 2721 2722
	/*
	 * Underflow?
	 */
2723 2724
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
2725
#endif
L
Linus Torvalds 已提交
2726
	preempt_count() += val;
2727
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2728 2729 2730
	/*
	 * Spinlock count overflowing soon?
	 */
2731 2732
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
2733 2734 2735
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
2736 2737 2738
}
EXPORT_SYMBOL(add_preempt_count);

2739
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
2740
{
2741
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2742 2743 2744
	/*
	 * Underflow?
	 */
2745
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2746
		return;
L
Linus Torvalds 已提交
2747 2748 2749
	/*
	 * Is the spinlock portion underflowing?
	 */
2750 2751 2752
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
2753
#endif
2754

2755 2756
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
2757 2758 2759 2760 2761 2762 2763
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
2764
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
2765
 */
I
Ingo Molnar 已提交
2766
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
2767
{
2768 2769 2770
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
2771 2772
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
2773

I
Ingo Molnar 已提交
2774
	debug_show_held_locks(prev);
2775
	print_modules();
I
Ingo Molnar 已提交
2776 2777
	if (irqs_disabled())
		print_irqtrace_events(prev);
2778
	dump_stack();
2779
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
I
Ingo Molnar 已提交
2780
}
L
Linus Torvalds 已提交
2781

I
Ingo Molnar 已提交
2782 2783 2784 2785 2786
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
2787
	/*
I
Ingo Molnar 已提交
2788
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
2789 2790 2791
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
2792
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
2793
		__schedule_bug(prev);
2794
	rcu_sleep_check();
I
Ingo Molnar 已提交
2795

L
Linus Torvalds 已提交
2796 2797
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

2798
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
2799 2800
}

P
Peter Zijlstra 已提交
2801
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
2802
{
2803
	if (prev->on_rq || rq->skip_clock_update < 0)
2804
		update_rq_clock(rq);
P
Peter Zijlstra 已提交
2805
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
2806 2807
}

I
Ingo Molnar 已提交
2808 2809 2810 2811
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
2812
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
2813
{
2814
	const struct sched_class *class;
I
Ingo Molnar 已提交
2815
	struct task_struct *p;
L
Linus Torvalds 已提交
2816 2817

	/*
I
Ingo Molnar 已提交
2818 2819
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
2820
	 */
2821
	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2822
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
2823 2824
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
2825 2826
	}

2827
	for_each_class(class) {
2828
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
2829 2830 2831
		if (p)
			return p;
	}
2832 2833

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
2834
}
L
Linus Torvalds 已提交
2835

I
Ingo Molnar 已提交
2836
/*
2837
 * __schedule() is the main scheduler function.
2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871
 *
 * The main means of driving the scheduler and thus entering this function are:
 *
 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 *      paths. For example, see arch/x86/entry_64.S.
 *
 *      To drive preemption between tasks, the scheduler sets the flag in timer
 *      interrupt handler scheduler_tick().
 *
 *   3. Wakeups don't really cause entry into schedule(). They add a
 *      task to the run-queue and that's it.
 *
 *      Now, if the new task added to the run-queue preempts the current
 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 *      called on the nearest possible occasion:
 *
 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
 *
 *         - in syscall or exception context, at the next outmost
 *           preempt_enable(). (this might be as soon as the wake_up()'s
 *           spin_unlock()!)
 *
 *         - in IRQ context, return from interrupt-handler to
 *           preemptible context
 *
 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
 *         then at the next:
 *
 *          - cond_resched() call
 *          - explicit schedule() call
 *          - return from syscall or exception to user-space
 *          - return from interrupt-handler to user-space
I
Ingo Molnar 已提交
2872
 */
2873
static void __sched __schedule(void)
I
Ingo Molnar 已提交
2874 2875
{
	struct task_struct *prev, *next;
2876
	unsigned long *switch_count;
I
Ingo Molnar 已提交
2877
	struct rq *rq;
2878
	int cpu;
I
Ingo Molnar 已提交
2879

2880 2881
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
2882 2883
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
2884
	rcu_note_context_switch(cpu);
I
Ingo Molnar 已提交
2885 2886 2887
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
2888

2889
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
2890
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
2891

2892
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
2893

2894
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
2895
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
2896
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
2897
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
2898
		} else {
2899 2900 2901
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

T
Tejun Heo 已提交
2902
			/*
2903 2904 2905
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
2906 2907 2908 2909 2910 2911 2912 2913 2914
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
		}
I
Ingo Molnar 已提交
2915
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
2916 2917
	}

2918
	pre_schedule(rq, prev);
2919

I
Ingo Molnar 已提交
2920
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
2921 2922
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
2923
	put_prev_task(rq, prev);
2924
	next = pick_next_task(rq);
2925 2926
	clear_tsk_need_resched(prev);
	rq->skip_clock_update = 0;
L
Linus Torvalds 已提交
2927 2928 2929 2930 2931 2932

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
2933
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
2934
		/*
2935 2936 2937 2938
		 * The context switch have flipped the stack from under us
		 * and restored the local variables which were saved when
		 * this task called schedule() in the past. prev == current
		 * is still correct, but it can be moved to another cpu/rq.
P
Peter Zijlstra 已提交
2939 2940 2941
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
2942
	} else
2943
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
2944

2945
	post_schedule(rq);
L
Linus Torvalds 已提交
2946

2947
	sched_preempt_enable_no_resched();
2948
	if (need_resched())
L
Linus Torvalds 已提交
2949 2950
		goto need_resched;
}
2951

2952 2953
static inline void sched_submit_work(struct task_struct *tsk)
{
2954
	if (!tsk->state || tsk_is_pi_blocked(tsk))
2955 2956 2957 2958 2959 2960 2961 2962 2963
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

S
Simon Kirby 已提交
2964
asmlinkage void __sched schedule(void)
2965
{
2966 2967 2968
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
2969 2970
	__schedule();
}
L
Linus Torvalds 已提交
2971 2972
EXPORT_SYMBOL(schedule);

2973
#ifdef CONFIG_CONTEXT_TRACKING
2974 2975 2976 2977 2978 2979 2980 2981
asmlinkage void __sched schedule_user(void)
{
	/*
	 * If we come here after a random call to set_need_resched(),
	 * or we have been woken up remotely but the IPI has not yet arrived,
	 * we haven't yet exited the RCU idle mode. Do it here manually until
	 * we find a better solution.
	 */
2982
	user_exit();
2983
	schedule();
2984
	user_enter();
2985 2986 2987
}
#endif

2988 2989 2990 2991 2992 2993 2994
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
2995
	sched_preempt_enable_no_resched();
2996 2997 2998 2999
	schedule();
	preempt_disable();
}

3000
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3001

3002 3003 3004
static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
{
	if (lock->owner != owner)
3005
		return false;
3006 3007

	/*
3008 3009 3010 3011
	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
	 * lock->owner still matches owner, if that fails, owner might
	 * point to free()d memory, if it still matches, the rcu_read_lock()
	 * ensures the memory stays valid.
3012
	 */
3013
	barrier();
3014

3015
	return owner->on_cpu;
3016
}
3017

3018 3019 3020 3021 3022 3023 3024 3025
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
{
	if (!sched_feat(OWNER_SPIN))
		return 0;
3026

3027
	rcu_read_lock();
3028 3029
	while (owner_running(lock, owner)) {
		if (need_resched())
3030
			break;
3031

3032
		arch_mutex_cpu_relax();
3033
	}
3034
	rcu_read_unlock();
3035

3036
	/*
3037 3038 3039
	 * We break out the loop above on need_resched() and when the
	 * owner changed, which is a sign for heavy contention. Return
	 * success only when lock->owner is NULL.
3040
	 */
3041
	return lock->owner == NULL;
3042 3043 3044
}
#endif

L
Linus Torvalds 已提交
3045 3046
#ifdef CONFIG_PREEMPT
/*
3047
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3048
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3049 3050
 * occur there and call schedule directly.
 */
3051
asmlinkage void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
3052 3053
{
	struct thread_info *ti = current_thread_info();
3054

L
Linus Torvalds 已提交
3055 3056
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3057
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3058
	 */
N
Nick Piggin 已提交
3059
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3060 3061
		return;

3062
	do {
3063
		add_preempt_count_notrace(PREEMPT_ACTIVE);
3064
		__schedule();
3065
		sub_preempt_count_notrace(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3066

3067 3068 3069 3070 3071
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3072
	} while (need_resched());
L
Linus Torvalds 已提交
3073 3074 3075 3076
}
EXPORT_SYMBOL(preempt_schedule);

/*
3077
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3078 3079 3080 3081 3082 3083 3084
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
3085

3086
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3087 3088
	BUG_ON(ti->preempt_count || !irqs_disabled());

3089
	user_exit();
3090 3091 3092
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
3093
		__schedule();
3094 3095
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3096

3097 3098 3099 3100 3101
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3102
	} while (need_resched());
L
Linus Torvalds 已提交
3103 3104 3105 3106
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
3107
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3108
			  void *key)
L
Linus Torvalds 已提交
3109
{
P
Peter Zijlstra 已提交
3110
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3111 3112 3113 3114
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
3115 3116
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
3117 3118 3119
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
3120
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
3121 3122
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
3123
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
3124
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
3125
{
3126
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3127

3128
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3129 3130
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
3131
		if (curr->func(curr, mode, wake_flags, key) &&
3132
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3133 3134 3135 3136 3137 3138 3139 3140 3141
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3142
 * @key: is directly passed to the wakeup function
3143 3144 3145
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3146
 */
3147
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3148
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
3161
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
L
Linus Torvalds 已提交
3162
{
3163
	__wake_up_common(q, mode, nr, 0, NULL);
L
Linus Torvalds 已提交
3164
}
3165
EXPORT_SYMBOL_GPL(__wake_up_locked);
L
Linus Torvalds 已提交
3166

3167 3168 3169 3170
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}
3171
EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3172

L
Linus Torvalds 已提交
3173
/**
3174
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3175 3176 3177
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3178
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
3179 3180 3181 3182 3183 3184 3185
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
3186 3187 3188
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3189
 */
3190 3191
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3192 3193
{
	unsigned long flags;
P
Peter Zijlstra 已提交
3194
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
3195 3196 3197 3198 3199

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
3200
		wake_flags = 0;
L
Linus Torvalds 已提交
3201 3202

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
3203
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
3204 3205
	spin_unlock_irqrestore(&q->lock, flags);
}
3206 3207 3208 3209 3210 3211 3212 3213 3214
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
3215 3216
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

3217 3218 3219 3220 3221 3222 3223 3224
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
3225 3226 3227
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3228
 */
3229
void complete(struct completion *x)
L
Linus Torvalds 已提交
3230 3231 3232 3233 3234
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
3235
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
3236 3237 3238 3239
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

3240 3241 3242 3243 3244
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
3245 3246 3247
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3248
 */
3249
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
3250 3251 3252 3253 3254
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
3255
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
3256 3257 3258 3259
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

3260
static inline long __sched
3261 3262
do_wait_for_common(struct completion *x,
		   long (*action)(long), long timeout, int state)
L
Linus Torvalds 已提交
3263 3264 3265 3266
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

C
Changli Gao 已提交
3267
		__add_wait_queue_tail_exclusive(&x->wait, &wait);
L
Linus Torvalds 已提交
3268
		do {
3269
			if (signal_pending_state(state, current)) {
3270 3271
				timeout = -ERESTARTSYS;
				break;
3272 3273
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
3274
			spin_unlock_irq(&x->wait.lock);
3275
			timeout = action(timeout);
L
Linus Torvalds 已提交
3276
			spin_lock_irq(&x->wait.lock);
3277
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
3278
		__remove_wait_queue(&x->wait, &wait);
3279 3280
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
3281 3282
	}
	x->done--;
3283
	return timeout ?: 1;
L
Linus Torvalds 已提交
3284 3285
}

3286 3287 3288
static inline long __sched
__wait_for_common(struct completion *x,
		  long (*action)(long), long timeout, int state)
L
Linus Torvalds 已提交
3289 3290 3291 3292
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
3293
	timeout = do_wait_for_common(x, action, timeout, state);
L
Linus Torvalds 已提交
3294
	spin_unlock_irq(&x->wait.lock);
3295 3296
	return timeout;
}
L
Linus Torvalds 已提交
3297

3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
{
	return __wait_for_common(x, schedule_timeout, timeout, state);
}

static long __sched
wait_for_common_io(struct completion *x, long timeout, int state)
{
	return __wait_for_common(x, io_schedule_timeout, timeout, state);
}

3310 3311 3312 3313 3314 3315 3316 3317 3318 3319
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
3320
void __sched wait_for_completion(struct completion *x)
3321 3322
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3323
}
3324
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
3325

3326 3327 3328 3329 3330 3331 3332 3333
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
3334 3335 3336
 *
 * The return value is 0 if timed out, and positive (at least 1, or number of
 * jiffies left till timeout) if completed.
3337
 */
3338
unsigned long __sched
3339
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
3340
{
3341
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3342
}
3343
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
3344

3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377
/**
 * wait_for_completion_io: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout. The caller is accounted as waiting
 * for IO.
 */
void __sched wait_for_completion_io(struct completion *x)
{
	wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
}
EXPORT_SYMBOL(wait_for_completion_io);

/**
 * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible. The caller is accounted as waiting for IO.
 *
 * The return value is 0 if timed out, and positive (at least 1, or number of
 * jiffies left till timeout) if completed.
 */
unsigned long __sched
wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
{
	return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
}
EXPORT_SYMBOL(wait_for_completion_io_timeout);

3378 3379 3380 3381 3382 3383
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
3384 3385
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3386
 */
3387
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
3388
{
3389 3390 3391 3392
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
3393
}
3394
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
3395

3396 3397 3398 3399 3400 3401 3402
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3403 3404 3405
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
 * positive (at least 1, or number of jiffies left till timeout) if completed.
3406
 */
3407
long __sched
3408 3409
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
3410
{
3411
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
3412
}
3413
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
3414

3415 3416 3417 3418 3419 3420
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
3421 3422
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3423
 */
M
Matthew Wilcox 已提交
3424 3425 3426 3427 3428 3429 3430 3431 3432
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

3433 3434 3435 3436 3437 3438 3439 3440
/**
 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be
 * signaled or for a specified timeout to expire. It can be
 * interrupted by a kill signal. The timeout is in jiffies.
3441 3442 3443
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
 * positive (at least 1, or number of jiffies left till timeout) if completed.
3444
 */
3445
long __sched
3446 3447 3448 3449 3450 3451 3452
wait_for_completion_killable_timeout(struct completion *x,
				     unsigned long timeout)
{
	return wait_for_common(x, timeout, TASK_KILLABLE);
}
EXPORT_SYMBOL(wait_for_completion_killable_timeout);

3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
3467
	unsigned long flags;
3468 3469
	int ret = 1;

3470
	spin_lock_irqsave(&x->wait.lock, flags);
3471 3472 3473 3474
	if (!x->done)
		ret = 0;
	else
		x->done--;
3475
	spin_unlock_irqrestore(&x->wait.lock, flags);
3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
3490
	unsigned long flags;
3491 3492
	int ret = 1;

3493
	spin_lock_irqsave(&x->wait.lock, flags);
3494 3495
	if (!x->done)
		ret = 0;
3496
	spin_unlock_irqrestore(&x->wait.lock, flags);
3497 3498 3499 3500
	return ret;
}
EXPORT_SYMBOL(completion_done);

3501 3502
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
3503
{
I
Ingo Molnar 已提交
3504 3505 3506 3507
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3508

3509
	__set_current_state(state);
L
Linus Torvalds 已提交
3510

3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3525 3526 3527
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3528
long __sched
I
Ingo Molnar 已提交
3529
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3530
{
3531
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3532 3533 3534
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
3535
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3536
{
3537
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3538 3539 3540
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
3541
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3542
{
3543
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3544 3545 3546
}
EXPORT_SYMBOL(sleep_on_timeout);

3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
3559
void rt_mutex_setprio(struct task_struct *p, int prio)
3560
{
3561
	int oldprio, on_rq, running;
3562
	struct rq *rq;
3563
	const struct sched_class *prev_class;
3564 3565 3566

	BUG_ON(prio < 0 || prio > MAX_PRIO);

3567
	rq = __task_rq_lock(p);
3568

3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

3587
	trace_sched_pi_setprio(p, prio);
3588
	oldprio = p->prio;
3589
	prev_class = p->sched_class;
P
Peter Zijlstra 已提交
3590
	on_rq = p->on_rq;
3591
	running = task_current(rq, p);
3592
	if (on_rq)
3593
		dequeue_task(rq, p, 0);
3594 3595
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
3596 3597 3598 3599 3600 3601

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

3602 3603
	p->prio = prio;

3604 3605
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
3606
	if (on_rq)
3607
		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3608

P
Peter Zijlstra 已提交
3609
	check_class_changed(rq, p, prev_class, oldprio);
3610
out_unlock:
3611
	__task_rq_unlock(rq);
3612 3613
}
#endif
3614
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3615
{
I
Ingo Molnar 已提交
3616
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
3617
	unsigned long flags;
3618
	struct rq *rq;
L
Linus Torvalds 已提交
3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
3631
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
3632
	 */
3633
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3634 3635 3636
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
P
Peter Zijlstra 已提交
3637
	on_rq = p->on_rq;
3638
	if (on_rq)
3639
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
3640 3641

	p->static_prio = NICE_TO_PRIO(nice);
3642
	set_load_weight(p);
3643 3644 3645
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3646

I
Ingo Molnar 已提交
3647
	if (on_rq) {
3648
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
3649
		/*
3650 3651
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3652
		 */
3653
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
3654 3655 3656
			resched_task(rq->curr);
	}
out_unlock:
3657
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3658 3659 3660
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3661 3662 3663 3664 3665
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3666
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3667
{
3668 3669
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
3670

3671
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3672 3673 3674
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3675 3676 3677 3678 3679 3680 3681 3682 3683
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3684
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3685
{
3686
	long nice, retval;
L
Linus Torvalds 已提交
3687 3688 3689 3690 3691 3692

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
3693 3694
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
3695 3696 3697
	if (increment > 40)
		increment = 40;

3698
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
3699 3700 3701 3702 3703
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
3704 3705 3706
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3725
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3726 3727 3728 3729 3730 3731 3732 3733
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
3734
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
3735 3736 3737
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
3738
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
3739 3740 3741 3742 3743 3744 3745

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3760 3761 3762 3763 3764 3765
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
3766
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3767 3768 3769 3770 3771 3772 3773 3774
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
3775
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
3776
{
3777
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
3778 3779 3780
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
3781 3782
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
3783 3784 3785
{
	p->policy = policy;
	p->rt_priority = prio;
3786 3787 3788
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
3789 3790 3791 3792
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
3793
	set_load_weight(p);
L
Linus Torvalds 已提交
3794 3795
}

3796 3797 3798 3799 3800 3801 3802 3803 3804 3805
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
3806 3807
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
3808 3809 3810 3811
	rcu_read_unlock();
	return match;
}

3812
static int __sched_setscheduler(struct task_struct *p, int policy,
3813
				const struct sched_param *param, bool user)
L
Linus Torvalds 已提交
3814
{
3815
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
3816
	unsigned long flags;
3817
	const struct sched_class *prev_class;
3818
	struct rq *rq;
3819
	int reset_on_fork;
L
Linus Torvalds 已提交
3820

3821 3822
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
3823 3824
recheck:
	/* double check policy once rq lock held */
3825 3826
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
3827
		policy = oldpolicy = p->policy;
3828 3829 3830 3831 3832 3833 3834 3835 3836 3837
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
3838 3839
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
3840 3841
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
3842 3843
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
3844
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3845
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
3846
		return -EINVAL;
3847
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
3848 3849
		return -EINVAL;

3850 3851 3852
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
3853
	if (user && !capable(CAP_SYS_NICE)) {
3854
		if (rt_policy(policy)) {
3855 3856
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
3857 3858 3859 3860 3861 3862 3863 3864 3865 3866

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
3867

I
Ingo Molnar 已提交
3868
		/*
3869 3870
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
3871
		 */
3872 3873 3874 3875
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
			if (!can_nice(p, TASK_NICE(p)))
				return -EPERM;
		}
3876

3877
		/* can't change other user's priorities */
3878
		if (!check_same_owner(p))
3879
			return -EPERM;
3880 3881 3882 3883

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
3884
	}
L
Linus Torvalds 已提交
3885

3886
	if (user) {
3887
		retval = security_task_setscheduler(p);
3888 3889 3890 3891
		if (retval)
			return retval;
	}

3892 3893 3894
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
3895
	 *
L
Lucas De Marchi 已提交
3896
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
3897 3898
	 * runqueue lock must be held.
	 */
3899
	rq = task_rq_lock(p, &flags);
3900

3901 3902 3903 3904
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
3905
		task_rq_unlock(rq, p, &flags);
3906 3907 3908
		return -EINVAL;
	}

3909 3910 3911 3912 3913
	/*
	 * If not changing anything there's no need to proceed further:
	 */
	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
			param->sched_priority == p->rt_priority))) {
3914
		task_rq_unlock(rq, p, &flags);
3915 3916 3917
		return 0;
	}

3918 3919 3920 3921 3922 3923 3924
#ifdef CONFIG_RT_GROUP_SCHED
	if (user) {
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3925 3926
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
3927
			task_rq_unlock(rq, p, &flags);
3928 3929 3930 3931 3932
			return -EPERM;
		}
	}
#endif

L
Linus Torvalds 已提交
3933 3934 3935
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
3936
		task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3937 3938
		goto recheck;
	}
P
Peter Zijlstra 已提交
3939
	on_rq = p->on_rq;
3940
	running = task_current(rq, p);
3941
	if (on_rq)
3942
		dequeue_task(rq, p, 0);
3943 3944
	if (running)
		p->sched_class->put_prev_task(rq, p);
3945

3946 3947
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
3948
	oldprio = p->prio;
3949
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
3950
	__setscheduler(rq, p, policy, param->sched_priority);
3951

3952 3953
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
3954
	if (on_rq)
3955
		enqueue_task(rq, p, 0);
3956

P
Peter Zijlstra 已提交
3957
	check_class_changed(rq, p, prev_class, oldprio);
3958
	task_rq_unlock(rq, p, &flags);
3959

3960 3961
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
3962 3963
	return 0;
}
3964 3965 3966 3967 3968 3969 3970 3971 3972 3973

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
3974
		       const struct sched_param *param)
3975 3976 3977
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
3978 3979
EXPORT_SYMBOL_GPL(sched_setscheduler);

3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3992
			       const struct sched_param *param)
3993 3994 3995 3996
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
3997 3998
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
3999 4000 4001
{
	struct sched_param lparam;
	struct task_struct *p;
4002
	int retval;
L
Linus Torvalds 已提交
4003 4004 4005 4006 4007

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4008 4009 4010

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4011
	p = find_process_by_pid(pid);
4012 4013 4014
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4015

L
Linus Torvalds 已提交
4016 4017 4018 4019 4020 4021 4022 4023 4024
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
4025 4026
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
4027
{
4028 4029 4030 4031
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4032 4033 4034 4035 4036 4037 4038 4039
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
4040
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4041 4042 4043 4044 4045 4046 4047 4048
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
4049
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4050
{
4051
	struct task_struct *p;
4052
	int retval;
L
Linus Torvalds 已提交
4053 4054

	if (pid < 0)
4055
		return -EINVAL;
L
Linus Torvalds 已提交
4056 4057

	retval = -ESRCH;
4058
	rcu_read_lock();
L
Linus Torvalds 已提交
4059 4060 4061 4062
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4063 4064
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4065
	}
4066
	rcu_read_unlock();
L
Linus Torvalds 已提交
4067 4068 4069 4070
	return retval;
}

/**
4071
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4072 4073 4074
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
4075
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4076 4077
{
	struct sched_param lp;
4078
	struct task_struct *p;
4079
	int retval;
L
Linus Torvalds 已提交
4080 4081

	if (!param || pid < 0)
4082
		return -EINVAL;
L
Linus Torvalds 已提交
4083

4084
	rcu_read_lock();
L
Linus Torvalds 已提交
4085 4086 4087 4088 4089 4090 4091 4092 4093 4094
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
4095
	rcu_read_unlock();
L
Linus Torvalds 已提交
4096 4097 4098 4099 4100 4101 4102 4103 4104

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4105
	rcu_read_unlock();
L
Linus Torvalds 已提交
4106 4107 4108
	return retval;
}

4109
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4110
{
4111
	cpumask_var_t cpus_allowed, new_mask;
4112 4113
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4114

4115
	get_online_cpus();
4116
	rcu_read_lock();
L
Linus Torvalds 已提交
4117 4118 4119

	p = find_process_by_pid(pid);
	if (!p) {
4120
		rcu_read_unlock();
4121
		put_online_cpus();
L
Linus Torvalds 已提交
4122 4123 4124
		return -ESRCH;
	}

4125
	/* Prevent p going away */
L
Linus Torvalds 已提交
4126
	get_task_struct(p);
4127
	rcu_read_unlock();
L
Linus Torvalds 已提交
4128

4129 4130 4131 4132 4133 4134 4135 4136
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4137
	retval = -EPERM;
E
Eric W. Biederman 已提交
4138 4139 4140 4141 4142 4143 4144 4145
	if (!check_same_owner(p)) {
		rcu_read_lock();
		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
			rcu_read_unlock();
			goto out_unlock;
		}
		rcu_read_unlock();
	}
L
Linus Torvalds 已提交
4146

4147
	retval = security_task_setscheduler(p);
4148 4149 4150
	if (retval)
		goto out_unlock;

4151 4152
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Peter Zijlstra 已提交
4153
again:
4154
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
4155

P
Paul Menage 已提交
4156
	if (!retval) {
4157 4158
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4159 4160 4161 4162 4163
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4164
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4165 4166 4167
			goto again;
		}
	}
L
Linus Torvalds 已提交
4168
out_unlock:
4169 4170 4171 4172
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4173
	put_task_struct(p);
4174
	put_online_cpus();
L
Linus Torvalds 已提交
4175 4176 4177 4178
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4179
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4180
{
4181 4182 4183 4184 4185
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4186 4187 4188 4189 4190 4191 4192 4193 4194
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
4195 4196
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4197
{
4198
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4199 4200
	int retval;

4201 4202
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4203

4204 4205 4206 4207 4208
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4209 4210
}

4211
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4212
{
4213
	struct task_struct *p;
4214
	unsigned long flags;
L
Linus Torvalds 已提交
4215 4216
	int retval;

4217
	get_online_cpus();
4218
	rcu_read_lock();
L
Linus Torvalds 已提交
4219 4220 4221 4222 4223 4224

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4225 4226 4227 4228
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4229
	raw_spin_lock_irqsave(&p->pi_lock, flags);
4230
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4231
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4232 4233

out_unlock:
4234
	rcu_read_unlock();
4235
	put_online_cpus();
L
Linus Torvalds 已提交
4236

4237
	return retval;
L
Linus Torvalds 已提交
4238 4239 4240 4241 4242 4243 4244 4245
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
4246 4247
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4248 4249
{
	int ret;
4250
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4251

A
Anton Blanchard 已提交
4252
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4253 4254
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4255 4256
		return -EINVAL;

4257 4258
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4259

4260 4261
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4262
		size_t retlen = min_t(size_t, len, cpumask_size());
4263 4264

		if (copy_to_user(user_mask_ptr, mask, retlen))
4265 4266
			ret = -EFAULT;
		else
4267
			ret = retlen;
4268 4269
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4270

4271
	return ret;
L
Linus Torvalds 已提交
4272 4273 4274 4275 4276
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4277 4278
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4279
 */
4280
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4281
{
4282
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4283

4284
	schedstat_inc(rq, yld_count);
4285
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4286 4287 4288 4289 4290 4291

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4292
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4293
	do_raw_spin_unlock(&rq->lock);
4294
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
4295 4296 4297 4298 4299 4300

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
4301 4302 4303 4304 4305
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
4306
static void __cond_resched(void)
L
Linus Torvalds 已提交
4307
{
4308
	add_preempt_count(PREEMPT_ACTIVE);
4309
	__schedule();
4310
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4311 4312
}

4313
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4314
{
P
Peter Zijlstra 已提交
4315
	if (should_resched()) {
L
Linus Torvalds 已提交
4316 4317 4318 4319 4320
		__cond_resched();
		return 1;
	}
	return 0;
}
4321
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4322 4323

/*
4324
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4325 4326
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4327
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4328 4329 4330
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4331
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4332
{
P
Peter Zijlstra 已提交
4333
	int resched = should_resched();
J
Jan Kara 已提交
4334 4335
	int ret = 0;

4336 4337
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
4338
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4339
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4340
		if (resched)
N
Nick Piggin 已提交
4341 4342 4343
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
4344
		ret = 1;
L
Linus Torvalds 已提交
4345 4346
		spin_lock(lock);
	}
J
Jan Kara 已提交
4347
	return ret;
L
Linus Torvalds 已提交
4348
}
4349
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4350

4351
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4352 4353 4354
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
4355
	if (should_resched()) {
4356
		local_bh_enable();
L
Linus Torvalds 已提交
4357 4358 4359 4360 4361 4362
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
4363
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4364 4365 4366 4367

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
 * 	yield();
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
4386 4387 4388 4389 4390 4391 4392 4393
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

4394 4395 4396 4397
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
4398 4399
 * @p: target task
 * @preempt: whether task preemption is allowed or not
4400 4401 4402 4403
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
4404 4405 4406 4407
 * Returns:
 *	true (>0) if we indeed boosted the target task.
 *	false (0) if we failed to boost the target.
 *	-ESRCH if there's no task to yield to.
4408 4409 4410 4411 4412 4413
 */
bool __sched yield_to(struct task_struct *p, bool preempt)
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
4414
	int yielded = 0;
4415 4416 4417 4418 4419 4420

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
4421 4422 4423 4424 4425 4426 4427 4428 4429
	/*
	 * If we're the only runnable task on the rq and target rq also
	 * has only one task, there's absolutely no point in yielding.
	 */
	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
		yielded = -ESRCH;
		goto out_irq;
	}

4430 4431 4432 4433 4434 4435 4436
	double_rq_lock(rq, p_rq);
	while (task_rq(p) != p_rq) {
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
4437
		goto out_unlock;
4438 4439

	if (curr->sched_class != p->sched_class)
4440
		goto out_unlock;
4441 4442

	if (task_running(p_rq, p) || p->state)
4443
		goto out_unlock;
4444 4445

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4446
	if (yielded) {
4447
		schedstat_inc(rq, yld_count);
4448 4449 4450 4451 4452 4453 4454
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
			resched_task(p_rq->curr);
	}
4455

4456
out_unlock:
4457
	double_rq_unlock(rq, p_rq);
4458
out_irq:
4459 4460
	local_irq_restore(flags);

4461
	if (yielded > 0)
4462 4463 4464 4465 4466 4467
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
4468
/*
I
Ingo Molnar 已提交
4469
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4470 4471 4472 4473
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
4474
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4475

4476
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4477
	atomic_inc(&rq->nr_iowait);
4478
	blk_flush_plug(current);
4479
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4480
	schedule();
4481
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4482
	atomic_dec(&rq->nr_iowait);
4483
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4484 4485 4486 4487 4488
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4489
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4490 4491
	long ret;

4492
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4493
	atomic_inc(&rq->nr_iowait);
4494
	blk_flush_plug(current);
4495
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4496
	ret = schedule_timeout(timeout);
4497
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4498
	atomic_dec(&rq->nr_iowait);
4499
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4500 4501 4502 4503 4504 4505 4506 4507 4508 4509
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
4510
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
4511 4512 4513 4514 4515 4516 4517 4518 4519
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4520
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4521
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
4535
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
4536 4537 4538 4539 4540 4541 4542 4543 4544
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4545
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4546
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
4560
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4561
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
4562
{
4563
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4564
	unsigned int time_slice;
4565 4566
	unsigned long flags;
	struct rq *rq;
4567
	int retval;
L
Linus Torvalds 已提交
4568 4569 4570
	struct timespec t;

	if (pid < 0)
4571
		return -EINVAL;
L
Linus Torvalds 已提交
4572 4573

	retval = -ESRCH;
4574
	rcu_read_lock();
L
Linus Torvalds 已提交
4575 4576 4577 4578 4579 4580 4581 4582
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4583 4584
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
4585
	task_rq_unlock(rq, p, &flags);
D
Dmitry Adamushko 已提交
4586

4587
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
4588
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4589 4590
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4591

L
Linus Torvalds 已提交
4592
out_unlock:
4593
	rcu_read_unlock();
L
Linus Torvalds 已提交
4594 4595 4596
	return retval;
}

4597
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4598

4599
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4600 4601
{
	unsigned long free = 0;
4602
	int ppid;
4603
	unsigned state;
L
Linus Torvalds 已提交
4604 4605

	state = p->state ? __ffs(p->state) + 1 : 0;
4606
	printk(KERN_INFO "%-15.15s %c", p->comm,
4607
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4608
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4609
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4610
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4611
	else
P
Peter Zijlstra 已提交
4612
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4613 4614
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4615
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4616
	else
P
Peter Zijlstra 已提交
4617
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4618 4619
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
4620
	free = stack_not_used(p);
L
Linus Torvalds 已提交
4621
#endif
4622 4623 4624
	rcu_read_lock();
	ppid = task_pid_nr(rcu_dereference(p->real_parent));
	rcu_read_unlock();
P
Peter Zijlstra 已提交
4625
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4626
		task_pid_nr(p), ppid,
4627
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
4628

4629
	show_stack(p, NULL);
L
Linus Torvalds 已提交
4630 4631
}

I
Ingo Molnar 已提交
4632
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4633
{
4634
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4635

4636
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
4637 4638
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4639
#else
P
Peter Zijlstra 已提交
4640 4641
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4642
#endif
4643
	rcu_read_lock();
L
Linus Torvalds 已提交
4644 4645 4646
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
4647
		 * console might take a lot of time:
L
Linus Torvalds 已提交
4648 4649
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4650
		if (!state_filter || (p->state & state_filter))
4651
			sched_show_task(p);
L
Linus Torvalds 已提交
4652 4653
	} while_each_thread(g, p);

4654 4655
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4656 4657 4658
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
4659
	rcu_read_unlock();
I
Ingo Molnar 已提交
4660 4661 4662
	/*
	 * Only show locks if all tasks are dumped:
	 */
4663
	if (!state_filter)
I
Ingo Molnar 已提交
4664
		debug_show_all_locks();
L
Linus Torvalds 已提交
4665 4666
}

I
Ingo Molnar 已提交
4667 4668
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
4669
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4670 4671
}

4672 4673 4674 4675 4676 4677 4678 4679
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4680
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4681
{
4682
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4683 4684
	unsigned long flags;

4685
	raw_spin_lock_irqsave(&rq->lock, flags);
4686

I
Ingo Molnar 已提交
4687
	__sched_fork(idle);
4688
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
4689 4690
	idle->se.exec_start = sched_clock();

4691
	do_set_cpus_allowed(idle, cpumask_of(cpu));
4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
4703
	__set_task_cpu(idle, cpu);
4704
	rcu_read_unlock();
L
Linus Torvalds 已提交
4705 4706

	rq->curr = rq->idle = idle;
P
Peter Zijlstra 已提交
4707 4708
#if defined(CONFIG_SMP)
	idle->on_cpu = 1;
4709
#endif
4710
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
4711 4712

	/* Set the preempt count _outside_ the spinlocks! */
A
Al Viro 已提交
4713
	task_thread_info(idle)->preempt_count = 0;
4714

I
Ingo Molnar 已提交
4715 4716 4717 4718
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
4719
	ftrace_graph_init_idle_task(idle, cpu);
4720
	vtime_init_idle(idle);
4721 4722 4723
#if defined(CONFIG_SMP)
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
4724 4725
}

L
Linus Torvalds 已提交
4726
#ifdef CONFIG_SMP
4727 4728 4729 4730
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
	if (p->sched_class && p->sched_class->set_cpus_allowed)
		p->sched_class->set_cpus_allowed(p, new_mask);
4731 4732

	cpumask_copy(&p->cpus_allowed, new_mask);
4733
	p->nr_cpus_allowed = cpumask_weight(new_mask);
4734 4735
}

L
Linus Torvalds 已提交
4736 4737 4738
/*
 * This is how migration works:
 *
4739 4740 4741 4742 4743 4744
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
4745
 *    it and puts it into the right queue.
4746 4747
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
4748 4749 4750 4751 4752 4753 4754 4755
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
4756
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
4757 4758
 * call is not atomic; no spinlocks may be held.
 */
4759
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
4760 4761
{
	unsigned long flags;
4762
	struct rq *rq;
4763
	unsigned int dest_cpu;
4764
	int ret = 0;
L
Linus Torvalds 已提交
4765 4766

	rq = task_rq_lock(p, &flags);
4767

4768 4769 4770
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

4771
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
4772 4773 4774 4775
		ret = -EINVAL;
		goto out;
	}

4776
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
4777 4778 4779 4780
		ret = -EINVAL;
		goto out;
	}

4781
	do_set_cpus_allowed(p, new_mask);
4782

L
Linus Torvalds 已提交
4783
	/* Can the task run on the task's current CPU? If so, we're done */
4784
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
4785 4786
		goto out;

4787
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4788
	if (p->on_rq) {
4789
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
4790
		/* Need help from migration thread: drop lock and wait. */
4791
		task_rq_unlock(rq, p, &flags);
4792
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
4793 4794 4795 4796
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
4797
	task_rq_unlock(rq, p, &flags);
4798

L
Linus Torvalds 已提交
4799 4800
	return ret;
}
4801
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
4802 4803

/*
I
Ingo Molnar 已提交
4804
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
4805 4806 4807 4808 4809 4810
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4811 4812
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4813
 */
4814
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4815
{
4816
	struct rq *rq_dest, *rq_src;
4817
	int ret = 0;
L
Linus Torvalds 已提交
4818

4819
	if (unlikely(!cpu_active(dest_cpu)))
4820
		return ret;
L
Linus Torvalds 已提交
4821 4822 4823 4824

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

4825
	raw_spin_lock(&p->pi_lock);
L
Linus Torvalds 已提交
4826 4827 4828
	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
4829
		goto done;
L
Linus Torvalds 已提交
4830
	/* Affinity changed (again). */
4831
	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
L
Linus Torvalds 已提交
4832
		goto fail;
L
Linus Torvalds 已提交
4833

4834 4835 4836 4837
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
P
Peter Zijlstra 已提交
4838
	if (p->on_rq) {
4839
		dequeue_task(rq_src, p, 0);
4840
		set_task_cpu(p, dest_cpu);
4841
		enqueue_task(rq_dest, p, 0);
4842
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
4843
	}
L
Linus Torvalds 已提交
4844
done:
4845
	ret = 1;
L
Linus Torvalds 已提交
4846
fail:
L
Linus Torvalds 已提交
4847
	double_rq_unlock(rq_src, rq_dest);
4848
	raw_spin_unlock(&p->pi_lock);
4849
	return ret;
L
Linus Torvalds 已提交
4850 4851 4852
}

/*
4853 4854 4855
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
4856
 */
4857
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
4858
{
4859
	struct migration_arg *arg = data;
4860

4861 4862 4863 4864
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
4865
	local_irq_disable();
4866
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4867
	local_irq_enable();
L
Linus Torvalds 已提交
4868
	return 0;
4869 4870
}

L
Linus Torvalds 已提交
4871
#ifdef CONFIG_HOTPLUG_CPU
4872

4873
/*
4874 4875
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
4876
 */
4877
void idle_task_exit(void)
L
Linus Torvalds 已提交
4878
{
4879
	struct mm_struct *mm = current->active_mm;
4880

4881
	BUG_ON(cpu_online(smp_processor_id()));
4882

4883 4884 4885
	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
L
Linus Torvalds 已提交
4886 4887 4888
}

/*
4889 4890 4891 4892 4893
 * Since this CPU is going 'away' for a while, fold any nr_active delta
 * we might have. Assumes we're called after migrate_tasks() so that the
 * nr_active count is stable.
 *
 * Also see the comment "Global load-average calculations".
L
Linus Torvalds 已提交
4894
 */
4895
static void calc_load_migrate(struct rq *rq)
L
Linus Torvalds 已提交
4896
{
4897 4898 4899
	long delta = calc_load_fold_active(rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
4900 4901
}

4902
/*
4903 4904 4905 4906 4907 4908
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
4909
 */
4910
static void migrate_tasks(unsigned int dead_cpu)
L
Linus Torvalds 已提交
4911
{
4912
	struct rq *rq = cpu_rq(dead_cpu);
4913 4914
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
4915 4916

	/*
4917 4918 4919 4920 4921 4922 4923
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
4924
	 */
4925
	rq->stop = NULL;
4926

I
Ingo Molnar 已提交
4927
	for ( ; ; ) {
4928 4929 4930 4931 4932
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
4933
			break;
4934

4935
		next = pick_next_task(rq);
4936
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
4937
		next->sched_class->put_prev_task(rq, next);
4938

4939 4940 4941 4942 4943 4944 4945
		/* Find suitable destination for @next, with force if needed. */
		dest_cpu = select_fallback_rq(dead_cpu, next);
		raw_spin_unlock(&rq->lock);

		__migrate_task(next, dead_cpu, dest_cpu);

		raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
4946
	}
4947

4948
	rq->stop = stop;
4949
}
4950

L
Linus Torvalds 已提交
4951 4952
#endif /* CONFIG_HOTPLUG_CPU */

4953 4954 4955
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
4956 4957
	{
		.procname	= "sched_domain",
4958
		.mode		= 0555,
4959
	},
4960
	{}
4961 4962 4963
};

static struct ctl_table sd_ctl_root[] = {
4964 4965
	{
		.procname	= "kernel",
4966
		.mode		= 0555,
4967 4968
		.child		= sd_ctl_dir,
	},
4969
	{}
4970 4971 4972 4973 4974
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
4975
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4976 4977 4978 4979

	return entry;
}

4980 4981
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
4982
	struct ctl_table *entry;
4983

4984 4985 4986
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
4987
	 * will always be set. In the lowest directory the names are
4988 4989 4990
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
4991 4992
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
4993 4994 4995
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
4996 4997 4998 4999 5000

	kfree(*tablep);
	*tablep = NULL;
}

5001 5002 5003
static int min_load_idx = 0;
static int max_load_idx = CPU_LOAD_IDX_MAX;

5004
static void
5005
set_table_entry(struct ctl_table *entry,
5006
		const char *procname, void *data, int maxlen,
5007 5008
		umode_t mode, proc_handler *proc_handler,
		bool load_idx)
5009 5010 5011 5012 5013 5014
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
5015 5016 5017 5018 5019

	if (load_idx) {
		entry->extra1 = &min_load_idx;
		entry->extra2 = &max_load_idx;
	}
5020 5021 5022 5023 5024
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5025
	struct ctl_table *table = sd_alloc_ctl_entry(13);
5026

5027 5028 5029
	if (table == NULL)
		return NULL;

5030
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5031
		sizeof(long), 0644, proc_doulongvec_minmax, false);
5032
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5033
		sizeof(long), 0644, proc_doulongvec_minmax, false);
5034
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5035
		sizeof(int), 0644, proc_dointvec_minmax, true);
5036
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5037
		sizeof(int), 0644, proc_dointvec_minmax, true);
5038
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5039
		sizeof(int), 0644, proc_dointvec_minmax, true);
5040
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5041
		sizeof(int), 0644, proc_dointvec_minmax, true);
5042
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5043
		sizeof(int), 0644, proc_dointvec_minmax, true);
5044
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5045
		sizeof(int), 0644, proc_dointvec_minmax, false);
5046
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5047
		sizeof(int), 0644, proc_dointvec_minmax, false);
5048
	set_table_entry(&table[9], "cache_nice_tries",
5049
		&sd->cache_nice_tries,
5050
		sizeof(int), 0644, proc_dointvec_minmax, false);
5051
	set_table_entry(&table[10], "flags", &sd->flags,
5052
		sizeof(int), 0644, proc_dointvec_minmax, false);
5053
	set_table_entry(&table[11], "name", sd->name,
5054
		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5055
	/* &table[12] is terminator */
5056 5057 5058 5059

	return table;
}

5060
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5061 5062 5063 5064 5065 5066 5067 5068 5069
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5070 5071
	if (table == NULL)
		return NULL;
5072 5073 5074 5075 5076

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5077
		entry->mode = 0555;
5078 5079 5080 5081 5082 5083 5084 5085
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5086
static void register_sched_domain_sysctl(void)
5087
{
5088
	int i, cpu_num = num_possible_cpus();
5089 5090 5091
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5092 5093 5094
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5095 5096 5097
	if (entry == NULL)
		return;

5098
	for_each_possible_cpu(i) {
5099 5100
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5101
		entry->mode = 0555;
5102
		entry->child = sd_alloc_ctl_cpu_table(i);
5103
		entry++;
5104
	}
5105 5106

	WARN_ON(sd_sysctl_header);
5107 5108
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5109

5110
/* may be called multiple times per register */
5111 5112
static void unregister_sched_domain_sysctl(void)
{
5113 5114
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5115
	sd_sysctl_header = NULL;
5116 5117
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5118
}
5119
#else
5120 5121 5122 5123
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5124 5125 5126 5127
{
}
#endif

5128 5129 5130 5131 5132
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5133
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5153
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5154 5155 5156 5157
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5158 5159 5160 5161
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5162 5163
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5164
{
5165
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5166
	unsigned long flags;
5167
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5168

5169
	switch (action & ~CPU_TASKS_FROZEN) {
5170

L
Linus Torvalds 已提交
5171
	case CPU_UP_PREPARE:
5172
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5173
		break;
5174

L
Linus Torvalds 已提交
5175
	case CPU_ONLINE:
5176
		/* Update our root-domain */
5177
		raw_spin_lock_irqsave(&rq->lock, flags);
5178
		if (rq->rd) {
5179
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5180 5181

			set_rq_online(rq);
5182
		}
5183
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5184
		break;
5185

L
Linus Torvalds 已提交
5186
#ifdef CONFIG_HOTPLUG_CPU
5187
	case CPU_DYING:
5188
		sched_ttwu_pending();
G
Gregory Haskins 已提交
5189
		/* Update our root-domain */
5190
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5191
		if (rq->rd) {
5192
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5193
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5194
		}
5195 5196
		migrate_tasks(cpu);
		BUG_ON(rq->nr_running != 1); /* the migration thread */
5197
		raw_spin_unlock_irqrestore(&rq->lock, flags);
5198
		break;
5199

5200
	case CPU_DEAD:
5201
		calc_load_migrate(rq);
G
Gregory Haskins 已提交
5202
		break;
L
Linus Torvalds 已提交
5203 5204
#endif
	}
5205 5206 5207

	update_max_interval();

L
Linus Torvalds 已提交
5208 5209 5210
	return NOTIFY_OK;
}

5211 5212 5213
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5214
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5215
 */
5216
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5217
	.notifier_call = migration_call,
5218
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
5219 5220
};

5221 5222 5223 5224
static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
5225
	case CPU_STARTING:
5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		set_cpu_active((long)hcpu, false);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

5246
static int __init migration_init(void)
L
Linus Torvalds 已提交
5247 5248
{
	void *cpu = (void *)(long)smp_processor_id();
5249
	int err;
5250

5251
	/* Initialize migration for the boot CPU */
5252 5253
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5254 5255
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5256

5257 5258 5259 5260
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

5261
	return 0;
L
Linus Torvalds 已提交
5262
}
5263
early_initcall(migration_init);
L
Linus Torvalds 已提交
5264 5265 5266
#endif

#ifdef CONFIG_SMP
5267

5268 5269
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

5270
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5271

5272
static __read_mostly int sched_debug_enabled;
5273

5274
static int __init sched_debug_setup(char *str)
5275
{
5276
	sched_debug_enabled = 1;
5277 5278 5279

	return 0;
}
5280 5281 5282 5283 5284 5285
early_param("sched_debug", sched_debug_setup);

static inline bool sched_debug(void)
{
	return sched_debug_enabled;
}
5286

5287
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5288
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5289
{
I
Ingo Molnar 已提交
5290
	struct sched_group *group = sd->groups;
5291
	char str[256];
L
Linus Torvalds 已提交
5292

R
Rusty Russell 已提交
5293
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5294
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5295 5296 5297 5298

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5299
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5300
		if (sd->parent)
P
Peter Zijlstra 已提交
5301 5302
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5303
		return -1;
N
Nick Piggin 已提交
5304 5305
	}

P
Peter Zijlstra 已提交
5306
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
5307

5308
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5309 5310
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5311
	}
5312
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5313 5314
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5315
	}
L
Linus Torvalds 已提交
5316

I
Ingo Molnar 已提交
5317
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5318
	do {
I
Ingo Molnar 已提交
5319
		if (!group) {
P
Peter Zijlstra 已提交
5320 5321
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5322 5323 5324
			break;
		}

5325 5326 5327 5328 5329 5330
		/*
		 * Even though we initialize ->power to something semi-sane,
		 * we leave power_orig unset. This allows us to detect if
		 * domain iteration is still funny without causing /0 traps.
		 */
		if (!group->sgp->power_orig) {
P
Peter Zijlstra 已提交
5331 5332 5333
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
5334 5335
			break;
		}
L
Linus Torvalds 已提交
5336

5337
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5338 5339
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
5340 5341
			break;
		}
L
Linus Torvalds 已提交
5342

5343 5344
		if (!(sd->flags & SD_OVERLAP) &&
		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5345 5346
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
5347 5348
			break;
		}
L
Linus Torvalds 已提交
5349

5350
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
5351

R
Rusty Russell 已提交
5352
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5353

P
Peter Zijlstra 已提交
5354
		printk(KERN_CONT " %s", str);
5355
		if (group->sgp->power != SCHED_POWER_SCALE) {
P
Peter Zijlstra 已提交
5356
			printk(KERN_CONT " (cpu_power = %d)",
5357
				group->sgp->power);
5358
		}
L
Linus Torvalds 已提交
5359

I
Ingo Molnar 已提交
5360 5361
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
5362
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5363

5364
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
5365
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5366

5367 5368
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
5369 5370
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
5371 5372
	return 0;
}
L
Linus Torvalds 已提交
5373

I
Ingo Molnar 已提交
5374 5375 5376
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5377

5378
	if (!sched_debug_enabled)
5379 5380
		return;

I
Ingo Molnar 已提交
5381 5382 5383 5384
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5385

I
Ingo Molnar 已提交
5386 5387 5388
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
5389
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
I
Ingo Molnar 已提交
5390
			break;
L
Linus Torvalds 已提交
5391 5392
		level++;
		sd = sd->parent;
5393
		if (!sd)
I
Ingo Molnar 已提交
5394 5395
			break;
	}
L
Linus Torvalds 已提交
5396
}
5397
#else /* !CONFIG_SCHED_DEBUG */
5398
# define sched_domain_debug(sd, cpu) do { } while (0)
5399 5400 5401 5402
static inline bool sched_debug(void)
{
	return false;
}
5403
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
5404

5405
static int sd_degenerate(struct sched_domain *sd)
5406
{
5407
	if (cpumask_weight(sched_domain_span(sd)) == 1)
5408 5409 5410 5411 5412 5413
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5414 5415 5416
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5417 5418 5419 5420 5421
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
5422
	if (sd->flags & (SD_WAKE_AFFINE))
5423 5424 5425 5426 5427
		return 0;

	return 1;
}

5428 5429
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5430 5431 5432 5433 5434 5435
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

5436
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5437 5438 5439 5440 5441 5442 5443
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5444 5445 5446
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5447 5448
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
5449 5450 5451 5452 5453 5454 5455
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

5456
static void free_rootdomain(struct rcu_head *rcu)
5457
{
5458
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5459

5460
	cpupri_cleanup(&rd->cpupri);
5461 5462 5463 5464 5465 5466
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
5467 5468
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
5469
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
5470 5471
	unsigned long flags;

5472
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5473 5474

	if (rq->rd) {
I
Ingo Molnar 已提交
5475
		old_rd = rq->rd;
G
Gregory Haskins 已提交
5476

5477
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5478
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5479

5480
		cpumask_clear_cpu(rq->cpu, old_rd->span);
5481

I
Ingo Molnar 已提交
5482 5483 5484 5485 5486 5487 5488
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
5489 5490 5491 5492 5493
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

5494
	cpumask_set_cpu(rq->cpu, rd->span);
5495
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5496
		set_rq_online(rq);
G
Gregory Haskins 已提交
5497

5498
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
5499 5500

	if (old_rd)
5501
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
5502 5503
}

5504
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
5505 5506 5507
{
	memset(rd, 0, sizeof(*rd));

5508
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5509
		goto out;
5510
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5511
		goto free_span;
5512
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5513
		goto free_online;
5514

5515
	if (cpupri_init(&rd->cpupri) != 0)
5516
		goto free_rto_mask;
5517
	return 0;
5518

5519 5520
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
5521 5522 5523 5524
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
5525
out:
5526
	return -ENOMEM;
G
Gregory Haskins 已提交
5527 5528
}

5529 5530 5531 5532 5533 5534
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
struct root_domain def_root_domain;

G
Gregory Haskins 已提交
5535 5536
static void init_defrootdomain(void)
{
5537
	init_rootdomain(&def_root_domain);
5538

G
Gregory Haskins 已提交
5539 5540 5541
	atomic_set(&def_root_domain.refcount, 1);
}

5542
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
5543 5544 5545 5546 5547 5548 5549
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

5550
	if (init_rootdomain(rd) != 0) {
5551 5552 5553
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
5554 5555 5556 5557

	return rd;
}

5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576
static void free_sched_groups(struct sched_group *sg, int free_sgp)
{
	struct sched_group *tmp, *first;

	if (!sg)
		return;

	first = sg;
	do {
		tmp = sg->next;

		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
			kfree(sg->sgp);

		kfree(sg);
		sg = tmp;
	} while (sg != first);
}

5577 5578 5579
static void free_sched_domain(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5580 5581 5582 5583 5584 5585 5586 5587

	/*
	 * If its an overlapping domain it has private groups, iterate and
	 * nuke them all.
	 */
	if (sd->flags & SD_OVERLAP) {
		free_sched_groups(sd->groups, 1);
	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5588
		kfree(sd->groups->sgp);
5589
		kfree(sd->groups);
5590
	}
5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604
	kfree(sd);
}

static void destroy_sched_domain(struct sched_domain *sd, int cpu)
{
	call_rcu(&sd->rcu, free_sched_domain);
}

static void destroy_sched_domains(struct sched_domain *sd, int cpu)
{
	for (; sd; sd = sd->parent)
		destroy_sched_domain(sd, cpu);
}

5605 5606 5607 5608 5609 5610 5611
/*
 * Keep a special pointer to the highest sched_domain that has
 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 * allows us to avoid some pointer chasing select_idle_sibling().
 *
 * Also keep a unique ID per domain (we use the first cpu number in
 * the cpumask of the domain), this allows us to quickly tell if
5612
 * two cpus are in the same cache domain, see cpus_share_cache().
5613 5614 5615 5616 5617 5618 5619 5620 5621 5622
 */
DEFINE_PER_CPU(struct sched_domain *, sd_llc);
DEFINE_PER_CPU(int, sd_llc_id);

static void update_top_cache_domain(int cpu)
{
	struct sched_domain *sd;
	int id = cpu;

	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5623
	if (sd)
5624 5625 5626 5627 5628 5629
		id = cpumask_first(sched_domain_span(sd));

	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
	per_cpu(sd_llc_id, cpu) = id;
}

L
Linus Torvalds 已提交
5630
/*
I
Ingo Molnar 已提交
5631
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
5632 5633
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
5634 5635
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
5636
{
5637
	struct rq *rq = cpu_rq(cpu);
5638 5639 5640
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
5641
	for (tmp = sd; tmp; ) {
5642 5643 5644
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5645

5646
		if (sd_parent_degenerate(tmp, parent)) {
5647
			tmp->parent = parent->parent;
5648 5649
			if (parent->parent)
				parent->parent->child = tmp;
5650
			destroy_sched_domain(parent, cpu);
5651 5652
		} else
			tmp = tmp->parent;
5653 5654
	}

5655
	if (sd && sd_degenerate(sd)) {
5656
		tmp = sd;
5657
		sd = sd->parent;
5658
		destroy_sched_domain(tmp, cpu);
5659 5660 5661
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5662

5663
	sched_domain_debug(sd, cpu);
L
Linus Torvalds 已提交
5664

G
Gregory Haskins 已提交
5665
	rq_attach_root(rq, rd);
5666
	tmp = rq->sd;
N
Nick Piggin 已提交
5667
	rcu_assign_pointer(rq->sd, sd);
5668
	destroy_sched_domains(tmp, cpu);
5669 5670

	update_top_cache_domain(cpu);
L
Linus Torvalds 已提交
5671 5672 5673
}

/* cpus with isolated domains */
5674
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
5675 5676 5677 5678

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
5679
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
5680
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
5681 5682 5683
	return 1;
}

I
Ingo Molnar 已提交
5684
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5685

5686 5687 5688 5689 5690
static const struct cpumask *cpu_cpu_mask(int cpu)
{
	return cpumask_of_node(cpu_to_node(cpu));
}

5691 5692 5693
struct sd_data {
	struct sched_domain **__percpu sd;
	struct sched_group **__percpu sg;
5694
	struct sched_group_power **__percpu sgp;
5695 5696
};

5697
struct s_data {
5698
	struct sched_domain ** __percpu sd;
5699 5700 5701
	struct root_domain	*rd;
};

5702 5703
enum s_alloc {
	sa_rootdomain,
5704
	sa_sd,
5705
	sa_sd_storage,
5706 5707 5708
	sa_none,
};

5709 5710 5711
struct sched_domain_topology_level;

typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5712 5713
typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);

5714 5715
#define SDTL_OVERLAP	0x01

5716
struct sched_domain_topology_level {
5717 5718
	sched_domain_init_f init;
	sched_domain_mask_f mask;
5719
	int		    flags;
5720
	int		    numa_level;
5721
	struct sd_data      data;
5722 5723
};

P
Peter Zijlstra 已提交
5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761
/*
 * Build an iteration mask that can exclude certain CPUs from the upwards
 * domain traversal.
 *
 * Asymmetric node setups can result in situations where the domain tree is of
 * unequal depth, make sure to skip domains that already cover the entire
 * range.
 *
 * In that case build_sched_domains() will have terminated the iteration early
 * and our sibling sd spans will be empty. Domains should always include the
 * cpu they're built on, so check that.
 *
 */
static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
{
	const struct cpumask *span = sched_domain_span(sd);
	struct sd_data *sdd = sd->private;
	struct sched_domain *sibling;
	int i;

	for_each_cpu(i, span) {
		sibling = *per_cpu_ptr(sdd->sd, i);
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
			continue;

		cpumask_set_cpu(i, sched_group_mask(sg));
	}
}

/*
 * Return the canonical balance cpu for this group, this is the first cpu
 * of this group that's also in the iteration mask.
 */
int group_balance_cpu(struct sched_group *sg)
{
	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
}

5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779
static int
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered = sched_domains_tmpmask;
	struct sd_data *sdd = sd->private;
	struct sched_domain *child;
	int i;

	cpumask_clear(covered);

	for_each_cpu(i, span) {
		struct cpumask *sg_span;

		if (cpumask_test_cpu(i, covered))
			continue;

P
Peter Zijlstra 已提交
5780 5781 5782 5783 5784 5785
		child = *per_cpu_ptr(sdd->sd, i);

		/* See the comment near build_group_mask(). */
		if (!cpumask_test_cpu(i, sched_domain_span(child)))
			continue;

5786
		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5787
				GFP_KERNEL, cpu_to_node(cpu));
5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800

		if (!sg)
			goto fail;

		sg_span = sched_group_cpus(sg);
		if (child->child) {
			child = child->child;
			cpumask_copy(sg_span, sched_domain_span(child));
		} else
			cpumask_set_cpu(i, sg_span);

		cpumask_or(covered, covered, sg_span);

P
Peter Zijlstra 已提交
5801
		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
P
Peter Zijlstra 已提交
5802 5803 5804
		if (atomic_inc_return(&sg->sgp->ref) == 1)
			build_group_mask(sd, sg);

5805 5806 5807 5808 5809 5810
		/*
		 * Initialize sgp->power such that even if we mess up the
		 * domains and no possible iteration will get us here, we won't
		 * die on a /0 trap.
		 */
		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5811

P
Peter Zijlstra 已提交
5812 5813 5814 5815 5816
		/*
		 * Make sure the first group of this domain contains the
		 * canonical balance cpu. Otherwise the sched_domain iteration
		 * breaks. See update_sg_lb_stats().
		 */
P
Peter Zijlstra 已提交
5817
		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
P
Peter Zijlstra 已提交
5818
		    group_balance_cpu(sg) == cpu)
5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837
			groups = sg;

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
		last->next = first;
	}
	sd->groups = groups;

	return 0;

fail:
	free_sched_groups(first, 0);

	return -ENOMEM;
}

5838
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
5839
{
5840 5841
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
5842

5843 5844
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
5845

5846
	if (sg) {
5847
		*sg = *per_cpu_ptr(sdd->sg, cpu);
5848
		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5849
		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5850
	}
5851 5852

	return cpu;
5853 5854
}

5855
/*
5856 5857 5858
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
5859 5860
 *
 * Assumes the sched_domain tree is fully constructed
5861
 */
5862 5863
static int
build_sched_groups(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5864
{
5865 5866 5867
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
5868
	struct cpumask *covered;
5869
	int i;
5870

5871 5872 5873 5874 5875 5876
	get_group(cpu, sdd, &sd->groups);
	atomic_inc(&sd->groups->ref);

	if (cpu != cpumask_first(sched_domain_span(sd)))
		return 0;

5877 5878 5879
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

5880
	cpumask_clear(covered);
5881

5882 5883 5884 5885
	for_each_cpu(i, span) {
		struct sched_group *sg;
		int group = get_group(i, sdd, &sg);
		int j;
5886

5887 5888
		if (cpumask_test_cpu(i, covered))
			continue;
5889

5890
		cpumask_clear(sched_group_cpus(sg));
5891
		sg->sgp->power = 0;
P
Peter Zijlstra 已提交
5892
		cpumask_setall(sched_group_mask(sg));
5893

5894 5895 5896
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
5897

5898 5899 5900
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
5901

5902 5903 5904 5905 5906 5907 5908
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
5909 5910

	return 0;
5911
}
5912

5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
5925
	struct sched_group *sg = sd->groups;
5926

5927 5928 5929 5930 5931 5932
	WARN_ON(!sd || !sg);

	do {
		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
		sg = sg->next;
	} while (sg != sd->groups);
5933

P
Peter Zijlstra 已提交
5934
	if (cpu != group_balance_cpu(sg))
5935
		return;
5936

5937
	update_group_power(sd, cpu);
5938
	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5939 5940
}

5941 5942 5943
int __weak arch_sd_sibling_asym_packing(void)
{
       return 0*SD_ASYM_PACKING;
5944 5945
}

5946 5947 5948 5949 5950
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

5951 5952 5953 5954 5955 5956
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

5957 5958 5959 5960 5961 5962 5963 5964 5965
#define SD_INIT_FUNC(type)						\
static noinline struct sched_domain *					\
sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
{									\
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
	*sd = SD_##type##_INIT;						\
	SD_INIT_NAME(sd, type);						\
	sd->private = &tl->data;					\
	return sd;							\
5966 5967 5968 5969 5970 5971 5972 5973 5974
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif
5975 5976 5977
#ifdef CONFIG_SCHED_BOOK
 SD_INIT_FUNC(BOOK)
#endif
5978

5979
static int default_relax_domain_level = -1;
5980
int sched_domain_level_max;
5981 5982 5983

static int __init setup_relax_domain_level(char *str)
{
5984 5985
	if (kstrtoint(str, 0, &default_relax_domain_level))
		pr_warn("Unable to set relax_domain_level\n");
5986

5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
6005
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6006 6007
	} else {
		/* turn on idle balance on this domain */
6008
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6009 6010 6011
	}
}

6012 6013 6014
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

6015 6016 6017 6018 6019
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
6020 6021
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
6022 6023
	case sa_sd:
		free_percpu(d->sd); /* fall through */
6024
	case sa_sd_storage:
6025
		__sdt_free(cpu_map); /* fall through */
6026 6027 6028 6029
	case sa_none:
		break;
	}
}
6030

6031 6032 6033
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
6034 6035
	memset(d, 0, sizeof(*d));

6036 6037
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
6038 6039 6040
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
6041
	d->rd = alloc_rootdomain();
6042
	if (!d->rd)
6043
		return sa_sd;
6044 6045
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
6046

6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

6059
	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6060
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6061 6062

	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6063
		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
6064 6065
}

6066 6067
#ifdef CONFIG_SCHED_SMT
static const struct cpumask *cpu_smt_mask(int cpu)
6068
{
6069
	return topology_thread_cpumask(cpu);
6070
}
6071
#endif
6072

6073 6074 6075
/*
 * Topology list, bottom-up.
 */
6076
static struct sched_domain_topology_level default_topology[] = {
6077 6078
#ifdef CONFIG_SCHED_SMT
	{ sd_init_SIBLING, cpu_smt_mask, },
6079
#endif
6080
#ifdef CONFIG_SCHED_MC
6081
	{ sd_init_MC, cpu_coregroup_mask, },
6082
#endif
6083 6084 6085 6086
#ifdef CONFIG_SCHED_BOOK
	{ sd_init_BOOK, cpu_book_mask, },
#endif
	{ sd_init_CPU, cpu_cpu_mask, },
6087 6088 6089 6090 6091
	{ NULL, },
};

static struct sched_domain_topology_level *sched_domain_topology = default_topology;

6092 6093 6094 6095 6096 6097 6098 6099 6100
#ifdef CONFIG_NUMA

static int sched_domains_numa_levels;
static int *sched_domains_numa_distance;
static struct cpumask ***sched_domains_numa_masks;
static int sched_domains_curr_level;

static inline int sd_local_flags(int level)
{
6101
	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118
		return 0;

	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
}

static struct sched_domain *
sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
{
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
	int level = tl->numa_level;
	int sd_weight = cpumask_weight(
			sched_domains_numa_masks[level][cpu_to_node(cpu)]);

	*sd = (struct sched_domain){
		.min_interval		= sd_weight,
		.max_interval		= 2*sd_weight,
		.busy_factor		= 32,
6119
		.imbalance_pct		= 125,
6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157
		.cache_nice_tries	= 2,
		.busy_idx		= 3,
		.idle_idx		= 2,
		.newidle_idx		= 0,
		.wake_idx		= 0,
		.forkexec_idx		= 0,

		.flags			= 1*SD_LOAD_BALANCE
					| 1*SD_BALANCE_NEWIDLE
					| 0*SD_BALANCE_EXEC
					| 0*SD_BALANCE_FORK
					| 0*SD_BALANCE_WAKE
					| 0*SD_WAKE_AFFINE
					| 0*SD_SHARE_CPUPOWER
					| 0*SD_SHARE_PKG_RESOURCES
					| 1*SD_SERIALIZE
					| 0*SD_PREFER_SIBLING
					| sd_local_flags(level)
					,
		.last_balance		= jiffies,
		.balance_interval	= sd_weight,
	};
	SD_INIT_NAME(sd, NUMA);
	sd->private = &tl->data;

	/*
	 * Ugly hack to pass state to sd_numa_mask()...
	 */
	sched_domains_curr_level = tl->numa_level;

	return sd;
}

static const struct cpumask *sd_numa_mask(int cpu)
{
	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
}

6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193
static void sched_numa_warn(const char *str)
{
	static int done = false;
	int i,j;

	if (done)
		return;

	done = true;

	printk(KERN_WARNING "ERROR: %s\n\n", str);

	for (i = 0; i < nr_node_ids; i++) {
		printk(KERN_WARNING "  ");
		for (j = 0; j < nr_node_ids; j++)
			printk(KERN_CONT "%02d ", node_distance(i,j));
		printk(KERN_CONT "\n");
	}
	printk(KERN_WARNING "\n");
}

static bool find_numa_distance(int distance)
{
	int i;

	if (distance == node_distance(0, 0))
		return true;

	for (i = 0; i < sched_domains_numa_levels; i++) {
		if (sched_domains_numa_distance[i] == distance)
			return true;
	}

	return false;
}

6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214
static void sched_init_numa(void)
{
	int next_distance, curr_distance = node_distance(0, 0);
	struct sched_domain_topology_level *tl;
	int level = 0;
	int i, j, k;

	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
	if (!sched_domains_numa_distance)
		return;

	/*
	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
	 * unique distances in the node_distance() table.
	 *
	 * Assumes node_distance(0,j) includes all distances in
	 * node_distance(i,j) in order to avoid cubic time.
	 */
	next_distance = curr_distance;
	for (i = 0; i < nr_node_ids; i++) {
		for (j = 0; j < nr_node_ids; j++) {
6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238
			for (k = 0; k < nr_node_ids; k++) {
				int distance = node_distance(i, k);

				if (distance > curr_distance &&
				    (distance < next_distance ||
				     next_distance == curr_distance))
					next_distance = distance;

				/*
				 * While not a strong assumption it would be nice to know
				 * about cases where if node A is connected to B, B is not
				 * equally connected to A.
				 */
				if (sched_debug() && node_distance(k, i) != distance)
					sched_numa_warn("Node-distance not symmetric");

				if (sched_debug() && i && !find_numa_distance(distance))
					sched_numa_warn("Node-0 not representative");
			}
			if (next_distance != curr_distance) {
				sched_domains_numa_distance[level++] = next_distance;
				sched_domains_numa_levels = level;
				curr_distance = next_distance;
			} else break;
6239
		}
6240 6241 6242 6243 6244 6245

		/*
		 * In case of sched_debug() we verify the above assumption.
		 */
		if (!sched_debug())
			break;
6246 6247 6248 6249 6250 6251 6252 6253 6254
	}
	/*
	 * 'level' contains the number of unique distances, excluding the
	 * identity distance node_distance(i,i).
	 *
	 * The sched_domains_nume_distance[] array includes the actual distance
	 * numbers.
	 */

6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265
	/*
	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
	 * the array will contain less then 'level' members. This could be
	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
	 * in other functions.
	 *
	 * We reset it to 'level' at the end of this function.
	 */
	sched_domains_numa_levels = 0;

6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280
	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
	if (!sched_domains_numa_masks)
		return;

	/*
	 * Now for each level, construct a mask per node which contains all
	 * cpus of nodes that are that many hops away from us.
	 */
	for (i = 0; i < level; i++) {
		sched_domains_numa_masks[i] =
			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
		if (!sched_domains_numa_masks[i])
			return;

		for (j = 0; j < nr_node_ids; j++) {
6281
			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6282 6283 6284 6285 6286 6287
			if (!mask)
				return;

			sched_domains_numa_masks[i][j] = mask;

			for (k = 0; k < nr_node_ids; k++) {
6288
				if (node_distance(j, k) > sched_domains_numa_distance[i])
6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319
					continue;

				cpumask_or(mask, mask, cpumask_of_node(k));
			}
		}
	}

	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
	if (!tl)
		return;

	/*
	 * Copy the default topology bits..
	 */
	for (i = 0; default_topology[i].init; i++)
		tl[i] = default_topology[i];

	/*
	 * .. and append 'j' levels of NUMA goodness.
	 */
	for (j = 0; j < level; i++, j++) {
		tl[i] = (struct sched_domain_topology_level){
			.init = sd_numa_init,
			.mask = sd_numa_mask,
			.flags = SDTL_OVERLAP,
			.numa_level = j,
		};
	}

	sched_domain_topology = tl;
6320 6321

	sched_domains_numa_levels = level;
6322
}
6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369

static void sched_domains_numa_masks_set(int cpu)
{
	int i, j;
	int node = cpu_to_node(cpu);

	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++) {
			if (node_distance(j, node) <= sched_domains_numa_distance[i])
				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
		}
	}
}

static void sched_domains_numa_masks_clear(int cpu)
{
	int i, j;
	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++)
			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
	}
}

/*
 * Update sched_domains_numa_masks[level][node] array when new cpus
 * are onlined.
 */
static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	int cpu = (long)hcpu;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
		sched_domains_numa_masks_set(cpu);
		break;

	case CPU_DEAD:
		sched_domains_numa_masks_clear(cpu);
		break;

	default:
		return NOTIFY_DONE;
	}

	return NOTIFY_OK;
6370 6371 6372 6373 6374
}
#else
static inline void sched_init_numa(void)
{
}
6375 6376 6377 6378 6379 6380 6381

static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	return 0;
}
6382 6383
#endif /* CONFIG_NUMA */

6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for (tl = sched_domain_topology; tl->init; tl++) {
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

6400 6401 6402 6403
		sdd->sgp = alloc_percpu(struct sched_group_power *);
		if (!sdd->sgp)
			return -ENOMEM;

6404 6405 6406
		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_group *sg;
6407
			struct sched_group_power *sgp;
6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420

		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

6421 6422
			sg->next = sg;

6423
			*per_cpu_ptr(sdd->sg, j) = sg;
6424

P
Peter Zijlstra 已提交
6425
			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6426 6427 6428 6429 6430
					GFP_KERNEL, cpu_to_node(j));
			if (!sgp)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sgp, j) = sgp;
6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for (tl = sched_domain_topology; tl->init; tl++) {
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458
			struct sched_domain *sd;

			if (sdd->sd) {
				sd = *per_cpu_ptr(sdd->sd, j);
				if (sd && (sd->flags & SD_OVERLAP))
					free_sched_groups(sd->groups, 0);
				kfree(*per_cpu_ptr(sdd->sd, j));
			}

			if (sdd->sg)
				kfree(*per_cpu_ptr(sdd->sg, j));
			if (sdd->sgp)
				kfree(*per_cpu_ptr(sdd->sgp, j));
6459 6460
		}
		free_percpu(sdd->sd);
6461
		sdd->sd = NULL;
6462
		free_percpu(sdd->sg);
6463
		sdd->sg = NULL;
6464
		free_percpu(sdd->sgp);
6465
		sdd->sgp = NULL;
6466 6467 6468
	}
}

6469 6470
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
		struct s_data *d, const struct cpumask *cpu_map,
6471
		struct sched_domain_attr *attr, struct sched_domain *child,
6472 6473
		int cpu)
{
6474
	struct sched_domain *sd = tl->init(tl, cpu);
6475
	if (!sd)
6476
		return child;
6477 6478

	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6479 6480 6481
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6482
		child->parent = sd;
6483
	}
6484
	sd->child = child;
6485
	set_domain_attribute(sd, attr);
6486 6487 6488 6489

	return sd;
}

6490 6491 6492 6493
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
6494 6495
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
6496 6497
{
	enum s_alloc alloc_state = sa_none;
6498
	struct sched_domain *sd;
6499
	struct s_data d;
6500
	int i, ret = -ENOMEM;
6501

6502 6503 6504
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
6505

6506
	/* Set up domains for cpus specified by the cpu_map. */
6507
	for_each_cpu(i, cpu_map) {
6508 6509
		struct sched_domain_topology_level *tl;

6510
		sd = NULL;
6511
		for (tl = sched_domain_topology; tl->init; tl++) {
6512
			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6513 6514
			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
				sd->flags |= SD_OVERLAP;
6515 6516
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
				break;
6517
		}
6518

6519 6520 6521
		while (sd->child)
			sd = sd->child;

6522
		*per_cpu_ptr(d.sd, i) = sd;
6523 6524 6525 6526 6527 6528
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6529 6530 6531 6532 6533 6534 6535
			if (sd->flags & SD_OVERLAP) {
				if (build_overlap_sched_groups(sd, i))
					goto error;
			} else {
				if (build_sched_groups(sd, i))
					goto error;
			}
6536
		}
6537
	}
6538

L
Linus Torvalds 已提交
6539
	/* Calculate CPU power for physical packages and nodes */
6540 6541 6542
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
6543

6544 6545
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
6546
			init_sched_groups_power(i, sd);
6547
		}
6548
	}
6549

L
Linus Torvalds 已提交
6550
	/* Attach the domains */
6551
	rcu_read_lock();
6552
	for_each_cpu(i, cpu_map) {
6553
		sd = *per_cpu_ptr(d.sd, i);
6554
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
6555
	}
6556
	rcu_read_unlock();
6557

6558
	ret = 0;
6559
error:
6560
	__free_domain_allocs(&d, alloc_state, cpu_map);
6561
	return ret;
L
Linus Torvalds 已提交
6562
}
P
Paul Jackson 已提交
6563

6564
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
6565
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
6566 6567
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
6568 6569 6570

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
6571 6572
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
6573
 */
6574
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
6575

6576 6577 6578 6579 6580 6581
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
6582
{
6583
	return 0;
6584 6585
}

6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

6611
/*
I
Ingo Molnar 已提交
6612
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6613 6614
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6615
 */
6616
static int init_sched_domains(const struct cpumask *cpu_map)
6617
{
6618 6619
	int err;

6620
	arch_update_cpu_topology();
P
Paul Jackson 已提交
6621
	ndoms_cur = 1;
6622
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
6623
	if (!doms_cur)
6624 6625
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6626
	err = build_sched_domains(doms_cur[0], NULL);
6627
	register_sched_domain_sysctl();
6628 6629

	return err;
6630 6631 6632 6633 6634 6635
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6636
static void detach_destroy_domains(const struct cpumask *cpu_map)
6637 6638 6639
{
	int i;

6640
	rcu_read_lock();
6641
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
6642
		cpu_attach_domain(NULL, &def_root_domain, i);
6643
	rcu_read_unlock();
6644 6645
}

6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
6662 6663
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
6664
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
6665 6666 6667
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
6668
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
6669 6670 6671
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
6672 6673 6674
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
6675 6676 6677 6678 6679 6680
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
6681
 *
6682
 * If doms_new == NULL it will be replaced with cpu_online_mask.
6683 6684
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
6685
 *
P
Paul Jackson 已提交
6686 6687
 * Call with hotplug lock held
 */
6688
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6689
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
6690
{
6691
	int i, j, n;
6692
	int new_topology;
P
Paul Jackson 已提交
6693

6694
	mutex_lock(&sched_domains_mutex);
6695

6696 6697 6698
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

6699 6700 6701
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

6702
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
6703 6704 6705

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
6706
		for (j = 0; j < n && !new_topology; j++) {
6707
			if (cpumask_equal(doms_cur[i], doms_new[j])
6708
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
6709 6710 6711
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
6712
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
6713 6714 6715 6716
match1:
		;
	}

6717 6718
	if (doms_new == NULL) {
		ndoms_cur = 0;
6719
		doms_new = &fallback_doms;
6720
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6721
		WARN_ON_ONCE(dattr_new);
6722 6723
	}

P
Paul Jackson 已提交
6724 6725
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
6726
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6727
			if (cpumask_equal(doms_new[i], doms_cur[j])
6728
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
6729 6730 6731
				goto match2;
		}
		/* no match - add a new doms_new */
6732
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
6733 6734 6735 6736 6737
match2:
		;
	}

	/* Remember the new sched domains */
6738 6739
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
6740
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
6741
	doms_cur = doms_new;
6742
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
6743
	ndoms_cur = ndoms_new;
6744 6745

	register_sched_domain_sysctl();
6746

6747
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
6748 6749
}

6750 6751
static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */

L
Linus Torvalds 已提交
6752
/*
6753 6754 6755
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
6756 6757 6758
 *
 * If we come here as part of a suspend/resume, don't touch cpusets because we
 * want to restore it back to its original state upon resume anyway.
L
Linus Torvalds 已提交
6759
 */
6760 6761
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
6762
{
6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784
	switch (action) {
	case CPU_ONLINE_FROZEN:
	case CPU_DOWN_FAILED_FROZEN:

		/*
		 * num_cpus_frozen tracks how many CPUs are involved in suspend
		 * resume sequence. As long as this is not the last online
		 * operation in the resume sequence, just build a single sched
		 * domain, ignoring cpusets.
		 */
		num_cpus_frozen--;
		if (likely(num_cpus_frozen)) {
			partition_sched_domains(1, NULL, NULL);
			break;
		}

		/*
		 * This is the last CPU online operation. So fall through and
		 * restore the original sched domains by considering the
		 * cpuset configurations.
		 */

6785
	case CPU_ONLINE:
6786
	case CPU_DOWN_FAILED:
6787
		cpuset_update_active_cpus(true);
6788
		break;
6789 6790 6791
	default:
		return NOTIFY_DONE;
	}
6792
	return NOTIFY_OK;
6793
}
6794

6795 6796
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
6797
{
6798
	switch (action) {
6799
	case CPU_DOWN_PREPARE:
6800
		cpuset_update_active_cpus(false);
6801 6802 6803 6804 6805
		break;
	case CPU_DOWN_PREPARE_FROZEN:
		num_cpus_frozen++;
		partition_sched_domains(1, NULL, NULL);
		break;
6806 6807 6808
	default:
		return NOTIFY_DONE;
	}
6809
	return NOTIFY_OK;
6810 6811
}

L
Linus Torvalds 已提交
6812 6813
void __init sched_init_smp(void)
{
6814 6815 6816
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6817
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6818

6819 6820
	sched_init_numa();

6821
	get_online_cpus();
6822
	mutex_lock(&sched_domains_mutex);
6823
	init_sched_domains(cpu_active_mask);
6824 6825 6826
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6827
	mutex_unlock(&sched_domains_mutex);
6828
	put_online_cpus();
6829

6830
	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6831 6832
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6833 6834 6835 6836

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

6837
	init_hrtick();
6838 6839

	/* Move init over to a non-isolated CPU */
6840
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6841
		BUG();
I
Ingo Molnar 已提交
6842
	sched_init_granularity();
6843
	free_cpumask_var(non_isolated_cpus);
6844

6845
	init_sched_rt_class();
L
Linus Torvalds 已提交
6846 6847 6848 6849
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6850
	sched_init_granularity();
L
Linus Torvalds 已提交
6851 6852 6853
}
#endif /* CONFIG_SMP */

6854 6855
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
6856 6857 6858 6859 6860 6861 6862
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

6863 6864
#ifdef CONFIG_CGROUP_SCHED
struct task_group root_task_group;
6865
LIST_HEAD(task_groups);
6866
#endif
P
Peter Zijlstra 已提交
6867

6868
DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
P
Peter Zijlstra 已提交
6869

L
Linus Torvalds 已提交
6870 6871
void __init sched_init(void)
{
I
Ingo Molnar 已提交
6872
	int i, j;
6873 6874 6875 6876 6877 6878 6879
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6880
#endif
6881
#ifdef CONFIG_CPUMASK_OFFSTACK
6882
	alloc_size += num_possible_cpus() * cpumask_size();
6883 6884
#endif
	if (alloc_size) {
6885
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6886 6887

#ifdef CONFIG_FAIR_GROUP_SCHED
6888
		root_task_group.se = (struct sched_entity **)ptr;
6889 6890
		ptr += nr_cpu_ids * sizeof(void **);

6891
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6892
		ptr += nr_cpu_ids * sizeof(void **);
6893

6894
#endif /* CONFIG_FAIR_GROUP_SCHED */
6895
#ifdef CONFIG_RT_GROUP_SCHED
6896
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6897 6898
		ptr += nr_cpu_ids * sizeof(void **);

6899
		root_task_group.rt_rq = (struct rt_rq **)ptr;
6900 6901
		ptr += nr_cpu_ids * sizeof(void **);

6902
#endif /* CONFIG_RT_GROUP_SCHED */
6903 6904 6905 6906 6907 6908
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
6909
	}
I
Ingo Molnar 已提交
6910

G
Gregory Haskins 已提交
6911 6912 6913 6914
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

6915 6916 6917 6918
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
6919
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6920
			global_rt_period(), global_rt_runtime());
6921
#endif /* CONFIG_RT_GROUP_SCHED */
6922

D
Dhaval Giani 已提交
6923
#ifdef CONFIG_CGROUP_SCHED
6924 6925
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
6926
	INIT_LIST_HEAD(&root_task_group.siblings);
6927
	autogroup_init(&init_task);
6928

D
Dhaval Giani 已提交
6929
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
6930

6931 6932 6933 6934 6935 6936
#ifdef CONFIG_CGROUP_CPUACCT
	root_cpuacct.cpustat = &kernel_cpustat;
	root_cpuacct.cpuusage = alloc_percpu(u64);
	/* Too early, not expected to fail */
	BUG_ON(!root_cpuacct.cpuusage);
#endif
6937
	for_each_possible_cpu(i) {
6938
		struct rq *rq;
L
Linus Torvalds 已提交
6939 6940

		rq = cpu_rq(i);
6941
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
6942
		rq->nr_running = 0;
6943 6944
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
6945
		init_cfs_rq(&rq->cfs);
P
Peter Zijlstra 已提交
6946
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
6947
#ifdef CONFIG_FAIR_GROUP_SCHED
6948
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
6949
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
6950
		/*
6951
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
6952 6953 6954 6955
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
6956
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
6957 6958 6959
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
6960
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
6961 6962 6963
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
6964
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
6965
		 *
6966 6967
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
6968
		 */
6969
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6970
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
6971 6972 6973
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6974
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
6975
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6976
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
6977
#endif
L
Linus Torvalds 已提交
6978

I
Ingo Molnar 已提交
6979 6980
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
6981 6982 6983

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
6984
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6985
		rq->sd = NULL;
G
Gregory Haskins 已提交
6986
		rq->rd = NULL;
6987
		rq->cpu_power = SCHED_POWER_SCALE;
6988
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
6989
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6990
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6991
		rq->push_cpu = 0;
6992
		rq->cpu = i;
6993
		rq->online = 0;
6994 6995
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
6996 6997 6998

		INIT_LIST_HEAD(&rq->cfs_tasks);

6999
		rq_attach_root(rq, &def_root_domain);
7000
#ifdef CONFIG_NO_HZ
7001
		rq->nohz_flags = 0;
7002
#endif
L
Linus Torvalds 已提交
7003
#endif
P
Peter Zijlstra 已提交
7004
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7005 7006 7007
		atomic_set(&rq->nr_iowait, 0);
	}

7008
	set_load_weight(&init_task);
7009

7010 7011 7012 7013
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

7014
#ifdef CONFIG_RT_MUTEXES
7015
	plist_head_init(&init_task.pi_waiters);
7016 7017
#endif

L
Linus Torvalds 已提交
7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
7031 7032 7033

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
7034 7035 7036 7037
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
7038

7039
#ifdef CONFIG_SMP
7040
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
R
Rusty Russell 已提交
7041 7042 7043
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7044
	idle_thread_set_boot_cpu();
7045 7046
#endif
	init_sched_fair_class();
7047

7048
	scheduler_running = 1;
L
Linus Torvalds 已提交
7049 7050
}

7051
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7052 7053
static inline int preempt_count_equals(int preempt_offset)
{
7054
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7055

A
Arnd Bergmann 已提交
7056
	return (nested == preempt_offset);
7057 7058
}

7059
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7060 7061 7062
{
	static unsigned long prev_jiffy;	/* ratelimiting */

7063
	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7064 7065
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
7066 7067 7068 7069 7070
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
7071 7072 7073 7074 7075 7076 7077
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
7078 7079 7080 7081 7082

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
7083 7084 7085 7086 7087
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7088 7089
static void normalize_task(struct rq *rq, struct task_struct *p)
{
P
Peter Zijlstra 已提交
7090 7091
	const struct sched_class *prev_class = p->sched_class;
	int old_prio = p->prio;
7092
	int on_rq;
7093

P
Peter Zijlstra 已提交
7094
	on_rq = p->on_rq;
7095
	if (on_rq)
7096
		dequeue_task(rq, p, 0);
7097 7098
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
7099
		enqueue_task(rq, p, 0);
7100 7101
		resched_task(rq->curr);
	}
P
Peter Zijlstra 已提交
7102 7103

	check_class_changed(rq, p, prev_class, old_prio);
7104 7105
}

L
Linus Torvalds 已提交
7106 7107
void normalize_rt_tasks(void)
{
7108
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7109
	unsigned long flags;
7110
	struct rq *rq;
L
Linus Torvalds 已提交
7111

7112
	read_lock_irqsave(&tasklist_lock, flags);
7113
	do_each_thread(g, p) {
7114 7115 7116 7117 7118 7119
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
7120 7121
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
7122 7123 7124
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
7125
#endif
I
Ingo Molnar 已提交
7126 7127 7128 7129 7130 7131 7132 7133

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7134
			continue;
I
Ingo Molnar 已提交
7135
		}
L
Linus Torvalds 已提交
7136

7137
		raw_spin_lock(&p->pi_lock);
7138
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7139

7140
		normalize_task(rq, p);
7141

7142
		__task_rq_unlock(rq);
7143
		raw_spin_unlock(&p->pi_lock);
7144 7145
	} while_each_thread(g, p);

7146
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7147 7148 7149
}

#endif /* CONFIG_MAGIC_SYSRQ */
7150

7151
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7152
/*
7153
 * These functions are only useful for the IA64 MCA handling, or kdb.
7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7168
struct task_struct *curr_task(int cpu)
7169 7170 7171 7172
{
	return cpu_curr(cpu);
}

7173 7174 7175
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
7176 7177 7178 7179 7180 7181
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7182 7183
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7184 7185 7186 7187 7188 7189 7190
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7191
void set_curr_task(int cpu, struct task_struct *p)
7192 7193 7194 7195 7196
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7197

D
Dhaval Giani 已提交
7198
#ifdef CONFIG_CGROUP_SCHED
7199 7200 7201
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

7202 7203 7204 7205
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
7206
	autogroup_free(tg);
7207 7208 7209 7210
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
7211
struct task_group *sched_create_group(struct task_group *parent)
7212 7213 7214 7215 7216 7217 7218
{
	struct task_group *tg;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

7219
	if (!alloc_fair_sched_group(tg, parent))
7220 7221
		goto err;

7222
	if (!alloc_rt_sched_group(tg, parent))
7223 7224
		goto err;

7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235
	return tg;

err:
	free_sched_group(tg);
	return ERR_PTR(-ENOMEM);
}

void sched_online_group(struct task_group *tg, struct task_group *parent)
{
	unsigned long flags;

7236
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7237
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
7238 7239 7240 7241 7242

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
7243
	list_add_rcu(&tg->siblings, &parent->children);
7244
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7245 7246
}

7247
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
7248
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7249 7250
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
7251
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
7252 7253
}

7254
/* Destroy runqueue etc associated with a task group */
7255
void sched_destroy_group(struct task_group *tg)
7256 7257 7258 7259 7260 7261
{
	/* wait for possible concurrent references to cfs_rqs complete */
	call_rcu(&tg->rcu, free_sched_group_rcu);
}

void sched_offline_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7262
{
7263
	unsigned long flags;
7264
	int i;
S
Srivatsa Vaddagiri 已提交
7265

7266 7267
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
7268
		unregister_fair_sched_group(tg, i);
7269 7270

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7271
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
7272
	list_del_rcu(&tg->siblings);
7273
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7274 7275
}

7276
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7277 7278 7279
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7280 7281
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7282
{
P
Peter Zijlstra 已提交
7283
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
7284 7285 7286 7287 7288 7289
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

7290
	running = task_current(rq, tsk);
P
Peter Zijlstra 已提交
7291
	on_rq = tsk->on_rq;
S
Srivatsa Vaddagiri 已提交
7292

7293
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
7294
		dequeue_task(rq, tsk, 0);
7295 7296
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7297

P
Peter Zijlstra 已提交
7298 7299 7300 7301 7302 7303
	tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
				lockdep_is_held(&tsk->sighand->siglock)),
			  struct task_group, css);
	tg = autogroup_task_group(tsk, tg);
	tsk->sched_task_group = tg;

P
Peter Zijlstra 已提交
7304
#ifdef CONFIG_FAIR_GROUP_SCHED
7305 7306 7307
	if (tsk->sched_class->task_move_group)
		tsk->sched_class->task_move_group(tsk, on_rq);
	else
P
Peter Zijlstra 已提交
7308
#endif
7309
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
7310

7311 7312 7313
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
7314
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
7315

7316
	task_rq_unlock(rq, tsk, &flags);
S
Srivatsa Vaddagiri 已提交
7317
}
D
Dhaval Giani 已提交
7318
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
7319

7320
#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
P
Peter Zijlstra 已提交
7321 7322 7323
static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7324
		return 1ULL << 20;
P
Peter Zijlstra 已提交
7325

P
Peter Zijlstra 已提交
7326
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
7327
}
7328 7329 7330 7331 7332 7333 7334
#endif

#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
P
Peter Zijlstra 已提交
7335

P
Peter Zijlstra 已提交
7336 7337
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
7338
{
P
Peter Zijlstra 已提交
7339
	struct task_struct *g, *p;
7340

P
Peter Zijlstra 已提交
7341
	do_each_thread(g, p) {
7342
		if (rt_task(p) && task_rq(p)->rt.tg == tg)
P
Peter Zijlstra 已提交
7343 7344
			return 1;
	} while_each_thread(g, p);
7345

P
Peter Zijlstra 已提交
7346 7347
	return 0;
}
7348

P
Peter Zijlstra 已提交
7349 7350 7351 7352 7353
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
7354

7355
static int tg_rt_schedulable(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
7356 7357 7358 7359 7360
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
7361

P
Peter Zijlstra 已提交
7362 7363
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
7364

P
Peter Zijlstra 已提交
7365 7366 7367
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
7368 7369
	}

7370 7371 7372 7373 7374
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
7375

7376 7377 7378
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
7379 7380
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
7381

P
Peter Zijlstra 已提交
7382
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7383

7384 7385 7386 7387 7388
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
7389

7390 7391 7392
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
7393 7394 7395
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7396

P
Peter Zijlstra 已提交
7397 7398 7399 7400
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
7401

P
Peter Zijlstra 已提交
7402
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7403
	}
P
Peter Zijlstra 已提交
7404

P
Peter Zijlstra 已提交
7405 7406 7407 7408
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
7409 7410
}

P
Peter Zijlstra 已提交
7411
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7412
{
7413 7414
	int ret;

P
Peter Zijlstra 已提交
7415 7416 7417 7418 7419 7420
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

7421 7422 7423 7424 7425
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7426 7427
}

7428
static int tg_set_rt_bandwidth(struct task_group *tg,
7429
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
7430
{
P
Peter Zijlstra 已提交
7431
	int i, err = 0;
P
Peter Zijlstra 已提交
7432 7433

	mutex_lock(&rt_constraints_mutex);
7434
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
7435 7436
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
7437
		goto unlock;
P
Peter Zijlstra 已提交
7438

7439
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7440 7441
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
7442 7443 7444 7445

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

7446
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7447
		rt_rq->rt_runtime = rt_runtime;
7448
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7449
	}
7450
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
7451
unlock:
7452
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
7453 7454 7455
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
7456 7457
}

7458
static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7459 7460 7461 7462 7463 7464 7465 7466
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

7467
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7468 7469
}

7470
static long sched_group_rt_runtime(struct task_group *tg)
P
Peter Zijlstra 已提交
7471 7472 7473
{
	u64 rt_runtime_us;

7474
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7475 7476
		return -1;

7477
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7478 7479 7480
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
7481

7482
static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7483 7484 7485 7486 7487 7488
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

7489 7490 7491
	if (rt_period == 0)
		return -EINVAL;

7492
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7493 7494
}

7495
static long sched_group_rt_period(struct task_group *tg)
7496 7497 7498 7499 7500 7501 7502 7503 7504 7505
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
7506
	u64 runtime, period;
7507 7508
	int ret = 0;

7509 7510 7511
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7512 7513 7514 7515 7516 7517 7518 7519
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
7520

7521
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
7522
	read_lock(&tasklist_lock);
7523
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
7524
	read_unlock(&tasklist_lock);
7525 7526 7527 7528
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
7529

7530
static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7531 7532 7533 7534 7535 7536 7537 7538
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

7539
#else /* !CONFIG_RT_GROUP_SCHED */
7540 7541
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
7542 7543 7544
	unsigned long flags;
	int i;

7545 7546 7547
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7548 7549 7550 7551 7552 7553 7554
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

7555
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7556 7557 7558
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

7559
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7560
		rt_rq->rt_runtime = global_rt_runtime();
7561
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7562
	}
7563
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7564

7565 7566
	return 0;
}
7567
#endif /* CONFIG_RT_GROUP_SCHED */
7568

7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587
int sched_rr_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
	/* make sure that internally we keep jiffies */
	/* also, writing zero resets timeslice to default */
	if (!ret && write) {
		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
	}
	mutex_unlock(&mutex);
	return ret;
}

7588
int sched_rt_handler(struct ctl_table *table, int write,
7589
		void __user *buffer, size_t *lenp,
7590 7591 7592 7593 7594 7595 7596 7597 7598 7599
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

7600
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
7617

7618
#ifdef CONFIG_CGROUP_SCHED
7619 7620

/* return corresponding task_group object of a cgroup */
7621
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7622
{
7623 7624
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
7625 7626
}

7627
static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp)
7628
{
7629
	struct task_group *tg, *parent;
7630

7631
	if (!cgrp->parent) {
7632
		/* This is early initialization for the top cgroup */
7633
		return &root_task_group.css;
7634 7635
	}

7636 7637
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
7638 7639 7640 7641 7642 7643
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656
static int cpu_cgroup_css_online(struct cgroup *cgrp)
{
	struct task_group *tg = cgroup_tg(cgrp);
	struct task_group *parent;

	if (!cgrp->parent)
		return 0;

	parent = cgroup_tg(cgrp->parent);
	sched_online_group(tg, parent);
	return 0;
}

7657
static void cpu_cgroup_css_free(struct cgroup *cgrp)
7658
{
7659
	struct task_group *tg = cgroup_tg(cgrp);
7660 7661 7662 7663

	sched_destroy_group(tg);
}

7664 7665 7666 7667 7668 7669 7670
static void cpu_cgroup_css_offline(struct cgroup *cgrp)
{
	struct task_group *tg = cgroup_tg(cgrp);

	sched_offline_group(tg);
}

7671
static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7672
				 struct cgroup_taskset *tset)
7673
{
7674 7675 7676
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset) {
7677
#ifdef CONFIG_RT_GROUP_SCHED
7678 7679
		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
			return -EINVAL;
7680
#else
7681 7682 7683
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
7684
#endif
7685
	}
7686 7687
	return 0;
}
7688

7689
static void cpu_cgroup_attach(struct cgroup *cgrp,
7690
			      struct cgroup_taskset *tset)
7691
{
7692 7693 7694 7695
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset)
		sched_move_task(task);
7696 7697
}

7698
static void
7699 7700
cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
		struct task_struct *task)
7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	sched_move_task(task);
}

7713
#ifdef CONFIG_FAIR_GROUP_SCHED
7714
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7715
				u64 shareval)
7716
{
7717
	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7718 7719
}

7720
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7721
{
7722
	struct task_group *tg = cgroup_tg(cgrp);
7723

7724
	return (u64) scale_load_down(tg->shares);
7725
}
7726 7727

#ifdef CONFIG_CFS_BANDWIDTH
7728 7729
static DEFINE_MUTEX(cfs_constraints_mutex);

7730 7731 7732
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

7733 7734
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

7735 7736
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
7737
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7738
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

7759 7760 7761 7762 7763
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

7764
	runtime_enabled = quota != RUNTIME_INF;
7765 7766
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7767 7768 7769
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
7770

P
Paul Turner 已提交
7771
	__refill_cfs_bandwidth_runtime(cfs_b);
7772 7773 7774 7775 7776 7777
	/* restart the period timer (if active) to handle new period expiry */
	if (runtime_enabled && cfs_b->timer_active) {
		/* force a reprogram */
		cfs_b->timer_active = 0;
		__start_cfs_bandwidth(cfs_b);
	}
7778 7779 7780 7781
	raw_spin_unlock_irq(&cfs_b->lock);

	for_each_possible_cpu(i) {
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7782
		struct rq *rq = cfs_rq->rq;
7783 7784

		raw_spin_lock_irq(&rq->lock);
7785
		cfs_rq->runtime_enabled = runtime_enabled;
7786
		cfs_rq->runtime_remaining = 0;
7787

7788
		if (cfs_rq->throttled)
7789
			unthrottle_cfs_rq(cfs_rq);
7790 7791
		raw_spin_unlock_irq(&rq->lock);
	}
7792 7793
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
7794

7795
	return ret;
7796 7797 7798 7799 7800 7801
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

7802
	period = ktime_to_ns(tg->cfs_bandwidth.period);
7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

7815
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7816 7817
		return -1;

7818
	quota_us = tg->cfs_bandwidth.quota;
7819 7820 7821 7822 7823 7824 7825 7826 7827 7828
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
7829
	quota = tg->cfs_bandwidth.quota;
7830 7831 7832 7833 7834 7835 7836 7837

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

7838
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
{
	return tg_get_cfs_quota(cgroup_tg(cgrp));
}

static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
				s64 cfs_quota_us)
{
	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
}

static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
{
	return tg_get_cfs_period(cgroup_tg(cgrp));
}

static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
				u64 cfs_period_us)
{
	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
}

7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
7898
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7899 7900 7901 7902 7903
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
7904
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924

		quota = normalize_cfs_quota(tg, d);
		parent_quota = parent_b->hierarchal_quota;

		/*
		 * ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
	cfs_b->hierarchal_quota = quota;

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
7925
	int ret;
7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

7937 7938 7939 7940 7941
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7942
}
7943 7944 7945 7946 7947

static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct task_group *tg = cgroup_tg(cgrp);
7948
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7949 7950 7951 7952 7953 7954 7955

	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
	cb->fill(cb, "throttled_time", cfs_b->throttled_time);

	return 0;
}
7956
#endif /* CONFIG_CFS_BANDWIDTH */
7957
#endif /* CONFIG_FAIR_GROUP_SCHED */
7958

7959
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
7960
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7961
				s64 val)
P
Peter Zijlstra 已提交
7962
{
7963
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
7964 7965
}

7966
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
7967
{
7968
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
7969
}
7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
7981
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
7982

7983
static struct cftype cpu_files[] = {
7984
#ifdef CONFIG_FAIR_GROUP_SCHED
7985 7986
	{
		.name = "shares",
7987 7988
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
7989
	},
7990
#endif
7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
8002 8003 8004 8005
	{
		.name = "stat",
		.read_map = cpu_stats_show,
	},
8006
#endif
8007
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8008
	{
P
Peter Zijlstra 已提交
8009
		.name = "rt_runtime_us",
8010 8011
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8012
	},
8013 8014
	{
		.name = "rt_period_us",
8015 8016
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8017
	},
8018
#endif
8019
	{ }	/* terminate */
8020 8021 8022
};

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
8023
	.name		= "cpu",
8024 8025
	.css_alloc	= cpu_cgroup_css_alloc,
	.css_free	= cpu_cgroup_css_free,
8026 8027
	.css_online	= cpu_cgroup_css_online,
	.css_offline	= cpu_cgroup_css_offline,
8028 8029
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
8030
	.exit		= cpu_cgroup_exit,
I
Ingo Molnar 已提交
8031
	.subsys_id	= cpu_cgroup_subsys_id,
8032
	.base_cftypes	= cpu_files,
8033 8034 8035
	.early_init	= 1,
};

8036
#endif	/* CONFIG_CGROUP_SCHED */
8037 8038 8039 8040 8041 8042 8043 8044 8045 8046

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

8047 8048
struct cpuacct root_cpuacct;

8049
/* create a new cpu accounting group */
8050
static struct cgroup_subsys_state *cpuacct_css_alloc(struct cgroup *cgrp)
8051
{
8052
	struct cpuacct *ca;
8053

8054 8055 8056 8057
	if (!cgrp->parent)
		return &root_cpuacct.css;

	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8058
	if (!ca)
8059
		goto out;
8060 8061

	ca->cpuusage = alloc_percpu(u64);
8062 8063 8064
	if (!ca->cpuusage)
		goto out_free_ca;

8065 8066 8067
	ca->cpustat = alloc_percpu(struct kernel_cpustat);
	if (!ca->cpustat)
		goto out_free_cpuusage;
8068

8069
	return &ca->css;
8070

8071
out_free_cpuusage:
8072 8073 8074 8075 8076
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
8077 8078 8079
}

/* destroy an existing cpu accounting group */
8080
static void cpuacct_css_free(struct cgroup *cgrp)
8081
{
8082
	struct cpuacct *ca = cgroup_ca(cgrp);
8083

8084
	free_percpu(ca->cpustat);
8085 8086 8087 8088
	free_percpu(ca->cpuusage);
	kfree(ca);
}

8089 8090
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
8091
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8092 8093 8094 8095 8096 8097
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
8098
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8099
	data = *cpuusage;
8100
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8101 8102 8103 8104 8105 8106 8107 8108 8109
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
8110
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8111 8112 8113 8114 8115

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
8116
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8117
	*cpuusage = val;
8118
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8119 8120 8121 8122 8123
#else
	*cpuusage = val;
#endif
}

8124
/* return total cpu usage (in nanoseconds) of a group */
8125
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8126
{
8127
	struct cpuacct *ca = cgroup_ca(cgrp);
8128 8129 8130
	u64 totalcpuusage = 0;
	int i;

8131 8132
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
8133 8134 8135 8136

	return totalcpuusage;
}

8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

8149 8150
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
8151 8152 8153 8154 8155

out:
	return err;
}

8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

8171 8172 8173 8174 8175 8176
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8177
			      struct cgroup_map_cb *cb)
8178 8179
{
	struct cpuacct *ca = cgroup_ca(cgrp);
8180 8181
	int cpu;
	s64 val = 0;
8182

8183 8184 8185 8186
	for_each_online_cpu(cpu) {
		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
		val += kcpustat->cpustat[CPUTIME_USER];
		val += kcpustat->cpustat[CPUTIME_NICE];
8187
	}
8188 8189
	val = cputime64_to_clock_t(val);
	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8190

8191 8192 8193 8194 8195 8196
	val = 0;
	for_each_online_cpu(cpu) {
		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
		val += kcpustat->cpustat[CPUTIME_SYSTEM];
		val += kcpustat->cpustat[CPUTIME_IRQ];
		val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8197
	}
8198 8199 8200 8201

	val = cputime64_to_clock_t(val);
	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);

8202 8203 8204
	return 0;
}

8205 8206 8207
static struct cftype files[] = {
	{
		.name = "usage",
8208 8209
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
8210
	},
8211 8212 8213 8214
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
8215 8216 8217 8218
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
8219
	{ }	/* terminate */
8220 8221 8222 8223 8224 8225 8226
};

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
8227
void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8228 8229
{
	struct cpuacct *ca;
8230
	int cpu;
8231

L
Li Zefan 已提交
8232
	if (unlikely(!cpuacct_subsys.active))
8233 8234
		return;

8235
	cpu = task_cpu(tsk);
8236 8237 8238

	rcu_read_lock();

8239 8240
	ca = task_ca(tsk);

8241
	for (; ca; ca = parent_ca(ca)) {
8242
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8243 8244
		*cpuusage += cputime;
	}
8245 8246

	rcu_read_unlock();
8247 8248 8249 8250
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
8251 8252
	.css_alloc = cpuacct_css_alloc,
	.css_free = cpuacct_css_free,
8253
	.subsys_id = cpuacct_subsys_id,
8254
	.base_cftypes = files,
8255 8256
};
#endif	/* CONFIG_CGROUP_CPUACCT */
8257 8258 8259 8260 8261 8262

void dump_cpu_task(int cpu)
{
	pr_info("Task dump for CPU %d:\n", cpu);
	sched_show_task(cpu_curr(cpu));
}