core.c 192.9 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/highmem.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
37
#include <linux/capability.h>
L
Linus Torvalds 已提交
38 39
#include <linux/completion.h>
#include <linux/kernel_stat.h>
40
#include <linux/debug_locks.h>
41
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
57
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
58
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/unistd.h>
J
Jens Axboe 已提交
66
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
67
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
68
#include <linux/tick.h>
P
Peter Zijlstra 已提交
69 70
#include <linux/debugfs.h>
#include <linux/ctype.h>
71
#include <linux/ftrace.h>
72
#include <linux/slab.h>
73
#include <linux/init_task.h>
L
Linus Torvalds 已提交
74

75
#include <asm/tlb.h>
76
#include <asm/irq_regs.h>
G
Glauber Costa 已提交
77 78 79
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
80

81
#include "sched.h"
82
#include "../workqueue_sched.h"
83

84
#define CREATE_TRACE_POINTS
85
#include <trace/events/sched.h>
86

87
void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
88
{
89 90
	unsigned long delta;
	ktime_t soft, hard, now;
91

92 93 94 95 96 97
	for (;;) {
		if (hrtimer_active(period_timer))
			break;

		now = hrtimer_cb_get_time(period_timer);
		hrtimer_forward(period_timer, now, period);
98

99 100 101 102 103 104 105 106
		soft = hrtimer_get_softexpires(period_timer);
		hard = hrtimer_get_expires(period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(period_timer, soft, delta,
					 HRTIMER_MODE_ABS_PINNED, 0);
	}
}

107 108
DEFINE_MUTEX(sched_domains_mutex);
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
109

110
static void update_rq_clock_task(struct rq *rq, s64 delta);
111

112
void update_rq_clock(struct rq *rq)
113
{
114
	s64 delta;
115

116
	if (rq->skip_clock_update > 0)
117
		return;
118

119 120 121
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
122 123
}

I
Ingo Molnar 已提交
124 125 126
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
127 128 129 130

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
131
const_debug unsigned int sysctl_sched_features =
132
#include "features.h"
P
Peter Zijlstra 已提交
133 134 135 136 137 138 139 140
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

141
static __read_mostly char *sched_feat_names[] = {
142
#include "features.h"
P
Peter Zijlstra 已提交
143 144 145 146 147
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
148
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
149 150 151
{
	int i;

152
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
L
Li Zefan 已提交
153 154 155
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
156
	}
L
Li Zefan 已提交
157
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
158

L
Li Zefan 已提交
159
	return 0;
P
Peter Zijlstra 已提交
160 161
}

162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
#ifdef HAVE_JUMP_LABEL

#define jump_label_key__true  jump_label_key_enabled
#define jump_label_key__false jump_label_key_disabled

#define SCHED_FEAT(name, enabled)	\
	jump_label_key__##enabled ,

struct jump_label_key sched_feat_keys[__SCHED_FEAT_NR] = {
#include "features.h"
};

#undef SCHED_FEAT

static void sched_feat_disable(int i)
{
	if (jump_label_enabled(&sched_feat_keys[i]))
		jump_label_dec(&sched_feat_keys[i]);
}

static void sched_feat_enable(int i)
{
	if (!jump_label_enabled(&sched_feat_keys[i]))
		jump_label_inc(&sched_feat_keys[i]);
}
#else
static void sched_feat_disable(int i) { };
static void sched_feat_enable(int i) { };
#endif /* HAVE_JUMP_LABEL */

P
Peter Zijlstra 已提交
192 193 194 195 196
static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
197
	char *cmp;
P
Peter Zijlstra 已提交
198 199 200 201 202 203 204 205 206 207
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
208
	cmp = strstrip(buf);
P
Peter Zijlstra 已提交
209

H
Hillf Danton 已提交
210
	if (strncmp(cmp, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
211 212 213 214
		neg = 1;
		cmp += 3;
	}

215
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
216
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
217
			if (neg) {
P
Peter Zijlstra 已提交
218
				sysctl_sched_features &= ~(1UL << i);
219 220
				sched_feat_disable(i);
			} else {
P
Peter Zijlstra 已提交
221
				sysctl_sched_features |= (1UL << i);
222 223
				sched_feat_enable(i);
			}
P
Peter Zijlstra 已提交
224 225 226 227
			break;
		}
	}

228
	if (i == __SCHED_FEAT_NR)
P
Peter Zijlstra 已提交
229 230
		return -EINVAL;

231
	*ppos += cnt;
P
Peter Zijlstra 已提交
232 233 234 235

	return cnt;
}

L
Li Zefan 已提交
236 237 238 239 240
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

241
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
242 243 244 245 246
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
247 248 249 250 251 252 253 254 255 256
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);
257
#endif /* CONFIG_SCHED_DEBUG */
I
Ingo Molnar 已提交
258

259 260 261 262 263 264
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

265 266 267 268 269 270 271 272
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
273
/*
P
Peter Zijlstra 已提交
274
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
275 276
 * default: 1s
 */
P
Peter Zijlstra 已提交
277
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
278

279
__read_mostly int scheduler_running;
280

P
Peter Zijlstra 已提交
281 282 283 284 285
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
286 287


L
Linus Torvalds 已提交
288

289
/*
290
 * __task_rq_lock - lock the rq @p resides on.
291
 */
292
static inline struct rq *__task_rq_lock(struct task_struct *p)
293 294
	__acquires(rq->lock)
{
295 296
	struct rq *rq;

297 298
	lockdep_assert_held(&p->pi_lock);

299
	for (;;) {
300
		rq = task_rq(p);
301
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
302
		if (likely(rq == task_rq(p)))
303
			return rq;
304
		raw_spin_unlock(&rq->lock);
305 306 307
	}
}

L
Linus Torvalds 已提交
308
/*
309
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
L
Linus Torvalds 已提交
310
 */
311
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
312
	__acquires(p->pi_lock)
L
Linus Torvalds 已提交
313 314
	__acquires(rq->lock)
{
315
	struct rq *rq;
L
Linus Torvalds 已提交
316

317
	for (;;) {
318
		raw_spin_lock_irqsave(&p->pi_lock, *flags);
319
		rq = task_rq(p);
320
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
321
		if (likely(rq == task_rq(p)))
322
			return rq;
323 324
		raw_spin_unlock(&rq->lock);
		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
325 326 327
	}
}

A
Alexey Dobriyan 已提交
328
static void __task_rq_unlock(struct rq *rq)
329 330
	__releases(rq->lock)
{
331
	raw_spin_unlock(&rq->lock);
332 333
}

334 335
static inline void
task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
336
	__releases(rq->lock)
337
	__releases(p->pi_lock)
L
Linus Torvalds 已提交
338
{
339 340
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
341 342 343
}

/*
344
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
345
 */
A
Alexey Dobriyan 已提交
346
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
347 348
	__acquires(rq->lock)
{
349
	struct rq *rq;
L
Linus Torvalds 已提交
350 351 352

	local_irq_disable();
	rq = this_rq();
353
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
354 355 356 357

	return rq;
}

P
Peter Zijlstra 已提交
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

386
	raw_spin_lock(&rq->lock);
387
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
388
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
389
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
390 391 392 393

	return HRTIMER_NORESTART;
}

394
#ifdef CONFIG_SMP
395 396 397 398
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
399
{
400
	struct rq *rq = arg;
401

402
	raw_spin_lock(&rq->lock);
403 404
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
405
	raw_spin_unlock(&rq->lock);
406 407
}

408 409 410 411 412
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
413
void hrtick_start(struct rq *rq, u64 delay)
414
{
415 416
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
417

418
	hrtimer_set_expires(timer, time);
419 420 421 422

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
423
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
424 425
		rq->hrtick_csd_pending = 1;
	}
426 427 428 429 430 431 432 433 434 435 436 437 438 439
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
440
		hrtick_clear(cpu_rq(cpu));
441 442 443 444 445 446
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

447
static __init void init_hrtick(void)
448 449 450
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
451 452 453 454 455 456
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
457
void hrtick_start(struct rq *rq, u64 delay)
458
{
459
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
460
			HRTIMER_MODE_REL_PINNED, 0);
461
}
462

A
Andrew Morton 已提交
463
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
464 465
{
}
466
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
467

468
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
469
{
470 471
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
472

473 474 475 476
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
477

478 479
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
480
}
A
Andrew Morton 已提交
481
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
482 483 484 485 486 487 488 489
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

490 491 492
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
493
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
494

I
Ingo Molnar 已提交
495 496 497 498 499 500 501 502 503 504 505 506 507
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

508
void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
509 510 511
{
	int cpu;

512
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
513

514
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
515 516
		return;

517
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
518 519 520 521 522 523 524 525 526 527 528

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

529
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
530 531 532 533
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

534
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
535 536
		return;
	resched_task(cpu_curr(cpu));
537
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
538
}
539 540

#ifdef CONFIG_NO_HZ
541 542 543 544 545 546 547 548 549 550 551 552 553 554
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
int get_nohz_timer_target(void)
{
	int cpu = smp_processor_id();
	int i;
	struct sched_domain *sd;

555
	rcu_read_lock();
556
	for_each_domain(cpu, sd) {
557 558 559 560 561 562
		for_each_cpu(i, sched_domain_span(sd)) {
			if (!idle_cpu(i)) {
				cpu = i;
				goto unlock;
			}
		}
563
	}
564 565
unlock:
	rcu_read_unlock();
566 567
	return cpu;
}
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;
594 595

	/*
596 597 598
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
599
	 */
600
	set_tsk_need_resched(rq->idle);
601

602 603 604 605
	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
606 607
}

608
static inline bool got_nohz_idle_kick(void)
609
{
610 611
	int cpu = smp_processor_id();
	return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
612 613
}

614
#else /* CONFIG_NO_HZ */
615

616
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
617
{
618
	return false;
P
Peter Zijlstra 已提交
619 620
}

621
#endif /* CONFIG_NO_HZ */
622

623
void sched_avg_update(struct rq *rq)
624
{
625 626 627
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
628 629 630 631 632 633
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
634 635 636
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
637 638
}

639
#else /* !CONFIG_SMP */
640
void resched_task(struct task_struct *p)
641
{
642
	assert_raw_spin_locked(&task_rq(p)->lock);
643
	set_tsk_need_resched(p);
644
}
645
#endif /* CONFIG_SMP */
646

647 648
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
649
/*
650 651 652 653
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
654
 */
655
int walk_tg_tree_from(struct task_group *from,
656
			     tg_visitor down, tg_visitor up, void *data)
657 658
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
659
	int ret;
660

661 662
	parent = from;

663
down:
P
Peter Zijlstra 已提交
664 665
	ret = (*down)(parent, data);
	if (ret)
666
		goto out;
667 668 669 670 671 672 673
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
674
	ret = (*up)(parent, data);
675 676
	if (ret || parent == from)
		goto out;
677 678 679 680 681

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
682
out:
P
Peter Zijlstra 已提交
683
	return ret;
684 685
}

686
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
687
{
688
	return 0;
P
Peter Zijlstra 已提交
689
}
690 691
#endif

692
void update_cpu_load(struct rq *this_rq);
693

694 695
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
696 697 698
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
699 700 701 702
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
703
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
704
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
705 706
		return;
	}
707

708
	load->weight = scale_load(prio_to_weight[prio]);
N
Nikhil Rao 已提交
709
	load->inv_weight = prio_to_wmult[prio];
710 711
}

712
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
713
{
714
	update_rq_clock(rq);
I
Ingo Molnar 已提交
715
	sched_info_queued(p);
716
	p->sched_class->enqueue_task(rq, p, flags);
717 718
}

719
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
720
{
721
	update_rq_clock(rq);
722
	sched_info_dequeued(p);
723
	p->sched_class->dequeue_task(rq, p, flags);
724 725
}

726 727 728
/*
 * activate_task - move a task to the runqueue.
 */
729
void activate_task(struct rq *rq, struct task_struct *p, int flags)
730 731 732 733
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

734
	enqueue_task(rq, p, flags);
735 736 737 738 739
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
740
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
741 742 743 744
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

745
	dequeue_task(rq, p, flags);
746 747
}

748 749
#ifdef CONFIG_IRQ_TIME_ACCOUNTING

750 751 752 753 754 755 756
/*
 * There are no locks covering percpu hardirq/softirq time.
 * They are only modified in account_system_vtime, on corresponding CPU
 * with interrupts disabled. So, writes are safe.
 * They are read and saved off onto struct rq in update_rq_clock().
 * This may result in other CPU reading this CPU's irq time and can
 * race with irq/account_system_vtime on this CPU. We would either get old
757 758 759
 * or new value with a side effect of accounting a slice of irq time to wrong
 * task when irq is in progress while we read rq->clock. That is a worthy
 * compromise in place of having locks on each irq in account_system_time.
760
 */
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
static DEFINE_PER_CPU(u64, cpu_hardirq_time);
static DEFINE_PER_CPU(u64, cpu_softirq_time);

static DEFINE_PER_CPU(u64, irq_start_time);
static int sched_clock_irqtime;

void enable_sched_clock_irqtime(void)
{
	sched_clock_irqtime = 1;
}

void disable_sched_clock_irqtime(void)
{
	sched_clock_irqtime = 0;
}

777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
#ifndef CONFIG_64BIT
static DEFINE_PER_CPU(seqcount_t, irq_time_seq);

static inline void irq_time_write_begin(void)
{
	__this_cpu_inc(irq_time_seq.sequence);
	smp_wmb();
}

static inline void irq_time_write_end(void)
{
	smp_wmb();
	__this_cpu_inc(irq_time_seq.sequence);
}

static inline u64 irq_time_read(int cpu)
{
	u64 irq_time;
	unsigned seq;

	do {
		seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
		irq_time = per_cpu(cpu_softirq_time, cpu) +
			   per_cpu(cpu_hardirq_time, cpu);
	} while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));

	return irq_time;
}
#else /* CONFIG_64BIT */
static inline void irq_time_write_begin(void)
{
}

static inline void irq_time_write_end(void)
{
}

static inline u64 irq_time_read(int cpu)
815 816 817
{
	return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
}
818
#endif /* CONFIG_64BIT */
819

820 821 822 823
/*
 * Called before incrementing preempt_count on {soft,}irq_enter
 * and before decrementing preempt_count on {soft,}irq_exit.
 */
824 825 826
void account_system_vtime(struct task_struct *curr)
{
	unsigned long flags;
827
	s64 delta;
828 829 830 831 832 833 834 835
	int cpu;

	if (!sched_clock_irqtime)
		return;

	local_irq_save(flags);

	cpu = smp_processor_id();
836 837 838
	delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
	__this_cpu_add(irq_start_time, delta);

839
	irq_time_write_begin();
840 841 842 843 844 845 846
	/*
	 * We do not account for softirq time from ksoftirqd here.
	 * We want to continue accounting softirq time to ksoftirqd thread
	 * in that case, so as not to confuse scheduler with a special task
	 * that do not consume any time, but still wants to run.
	 */
	if (hardirq_count())
847
		__this_cpu_add(cpu_hardirq_time, delta);
848
	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
849
		__this_cpu_add(cpu_softirq_time, delta);
850

851
	irq_time_write_end();
852 853
	local_irq_restore(flags);
}
I
Ingo Molnar 已提交
854
EXPORT_SYMBOL_GPL(account_system_vtime);
855

G
Glauber Costa 已提交
856 857 858 859
#endif /* CONFIG_IRQ_TIME_ACCOUNTING */

#ifdef CONFIG_PARAVIRT
static inline u64 steal_ticks(u64 steal)
860
{
G
Glauber Costa 已提交
861 862
	if (unlikely(steal > NSEC_PER_SEC))
		return div_u64(steal, TICK_NSEC);
863

G
Glauber Costa 已提交
864 865 866 867
	return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
}
#endif

868
static void update_rq_clock_task(struct rq *rq, s64 delta)
869
{
870 871 872 873 874 875 876 877
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
878
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
	if (static_branch((&paravirt_steal_rq_enabled))) {
		u64 st;

		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		st = steal_ticks(steal);
		steal = st * TICK_NSEC;

		rq->prev_steal_time_rq += steal;

		delta -= steal;
	}
#endif

920 921
	rq->clock_task += delta;

922 923 924 925
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
926 927
}

928
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
929 930
static int irqtime_account_hi_update(void)
{
931
	u64 *cpustat = kcpustat_this_cpu->cpustat;
932 933 934 935 936 937
	unsigned long flags;
	u64 latest_ns;
	int ret = 0;

	local_irq_save(flags);
	latest_ns = this_cpu_read(cpu_hardirq_time);
938
	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
939 940 941 942 943 944 945
		ret = 1;
	local_irq_restore(flags);
	return ret;
}

static int irqtime_account_si_update(void)
{
946
	u64 *cpustat = kcpustat_this_cpu->cpustat;
947 948 949 950 951 952
	unsigned long flags;
	u64 latest_ns;
	int ret = 0;

	local_irq_save(flags);
	latest_ns = this_cpu_read(cpu_softirq_time);
953
	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
954 955 956 957 958
		ret = 1;
	local_irq_restore(flags);
	return ret;
}

959
#else /* CONFIG_IRQ_TIME_ACCOUNTING */
960

961 962
#define sched_clock_irqtime	(0)

963
#endif
964

965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

995
/*
I
Ingo Molnar 已提交
996
 * __normal_prio - return the priority that is based on the static prio
997 998 999
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1000
	return p->static_prio;
1001 1002
}

1003 1004 1005 1006 1007 1008 1009
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1010
static inline int normal_prio(struct task_struct *p)
1011 1012 1013
{
	int prio;

1014
	if (task_has_rt_policy(p))
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1028
static int effective_prio(struct task_struct *p)
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1041 1042 1043 1044
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1045
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1046 1047 1048 1049
{
	return cpu_curr(task_cpu(p)) == p;
}

1050 1051
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
1052
				       int oldprio)
1053 1054 1055
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
1056 1057 1058 1059
			prev_class->switched_from(rq, p);
		p->sched_class->switched_to(rq, p);
	} else if (oldprio != p->prio)
		p->sched_class->prio_changed(rq, p, oldprio);
1060 1061
}

1062
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
				resched_task(rq->curr);
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
P
Peter Zijlstra 已提交
1083
	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1084 1085 1086
		rq->skip_clock_update = 1;
}

L
Linus Torvalds 已提交
1087
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1088
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1089
{
1090 1091 1092 1093 1094
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
1095 1096
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
1097 1098

#ifdef CONFIG_LOCKDEP
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
	 * see set_task_rq().
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
1109 1110 1111
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
1112 1113
#endif

1114
	trace_sched_migrate_task(p, new_cpu);
1115

1116 1117
	if (task_cpu(p) != new_cpu) {
		p->se.nr_migrations++;
1118
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1119
	}
I
Ingo Molnar 已提交
1120 1121

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1122 1123
}

1124
struct migration_arg {
1125
	struct task_struct *task;
L
Linus Torvalds 已提交
1126
	int dest_cpu;
1127
};
L
Linus Torvalds 已提交
1128

1129 1130
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
1131 1132 1133
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1134 1135 1136 1137 1138 1139 1140
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1141 1142 1143 1144 1145 1146
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1147
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1148 1149
{
	unsigned long flags;
I
Ingo Molnar 已提交
1150
	int running, on_rq;
R
Roland McGrath 已提交
1151
	unsigned long ncsw;
1152
	struct rq *rq;
L
Linus Torvalds 已提交
1153

1154 1155 1156 1157 1158 1159 1160 1161
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1162

1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1174 1175 1176
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1177
			cpu_relax();
R
Roland McGrath 已提交
1178
		}
1179

1180 1181 1182 1183 1184 1185
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1186
		trace_sched_wait_task(p);
1187
		running = task_running(rq, p);
P
Peter Zijlstra 已提交
1188
		on_rq = p->on_rq;
R
Roland McGrath 已提交
1189
		ncsw = 0;
1190
		if (!match_state || p->state == match_state)
1191
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1192
		task_rq_unlock(rq, p, &flags);
1193

R
Roland McGrath 已提交
1194 1195 1196 1197 1198 1199
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1210

1211 1212 1213 1214 1215
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1216
		 * So if it was still runnable (but just not actively
1217 1218 1219 1220
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
1221 1222 1223 1224
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1225 1226
			continue;
		}
1227

1228 1229 1230 1231 1232 1233 1234
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1235 1236

	return ncsw;
L
Linus Torvalds 已提交
1237 1238 1239 1240 1241 1242 1243 1244 1245
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1246
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1247 1248 1249 1250 1251
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1252
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1253 1254 1255 1256 1257 1258 1259 1260 1261
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1262
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
1263
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1264

1265
#ifdef CONFIG_SMP
1266
/*
1267
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1268
 */
1269 1270 1271 1272 1273 1274 1275
static int select_fallback_rq(int cpu, struct task_struct *p)
{
	int dest_cpu;
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));

	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
1276
		if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1277 1278 1279
			return dest_cpu;

	/* Any allowed, online CPU? */
1280
	dest_cpu = cpumask_any_and(tsk_cpus_allowed(p), cpu_active_mask);
1281 1282 1283 1284
	if (dest_cpu < nr_cpu_ids)
		return dest_cpu;

	/* No more Mr. Nice Guy. */
1285 1286 1287 1288 1289 1290 1291 1292 1293
	dest_cpu = cpuset_cpus_allowed_fallback(p);
	/*
	 * Don't tell them about moving exiting tasks or
	 * kernel threads (both mm NULL), since they never
	 * leave kernel.
	 */
	if (p->mm && printk_ratelimit()) {
		printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
				task_pid_nr(p), p->comm, cpu);
1294 1295 1296 1297 1298
	}

	return dest_cpu;
}

1299
/*
1300
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1301
 */
1302
static inline
1303
int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1304
{
1305
	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1317
	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
P
Peter Zijlstra 已提交
1318
		     !cpu_online(cpu)))
1319
		cpu = select_fallback_rq(task_cpu(p), p);
1320 1321

	return cpu;
1322
}
1323 1324 1325 1326 1327 1328

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1329 1330
#endif

P
Peter Zijlstra 已提交
1331
static void
1332
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1333
{
P
Peter Zijlstra 已提交
1334
#ifdef CONFIG_SCHEDSTATS
1335 1336
	struct rq *rq = this_rq();

P
Peter Zijlstra 已提交
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
#ifdef CONFIG_SMP
	int this_cpu = smp_processor_id();

	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	} else {
		struct sched_domain *sd;

		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1347
		rcu_read_lock();
P
Peter Zijlstra 已提交
1348 1349 1350 1351 1352 1353
		for_each_domain(this_cpu, sd) {
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
1354
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1355
	}
1356 1357 1358 1359

	if (wake_flags & WF_MIGRATED)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);

P
Peter Zijlstra 已提交
1360 1361 1362
#endif /* CONFIG_SMP */

	schedstat_inc(rq, ttwu_count);
T
Tejun Heo 已提交
1363
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1364 1365

	if (wake_flags & WF_SYNC)
T
Tejun Heo 已提交
1366
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1367 1368 1369 1370 1371 1372

#endif /* CONFIG_SCHEDSTATS */
}

static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
{
T
Tejun Heo 已提交
1373
	activate_task(rq, p, en_flags);
P
Peter Zijlstra 已提交
1374
	p->on_rq = 1;
1375 1376 1377 1378

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1379 1380
}

1381 1382 1383
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1384
static void
1385
ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
T
Tejun Heo 已提交
1386
{
1387
	trace_sched_wakeup(p, true);
T
Tejun Heo 已提交
1388 1389 1390 1391 1392 1393 1394
	check_preempt_curr(rq, p, wake_flags);

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);

1395
	if (rq->idle_stamp) {
T
Tejun Heo 已提交
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
#endif
}

1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
static void
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
{
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
#endif

	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
	ttwu_do_wakeup(rq, p, wake_flags);
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
	if (p->on_rq) {
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;
}

1441
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1442
static void sched_ttwu_pending(void)
1443 1444
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1445 1446
	struct llist_node *llist = llist_del_all(&rq->wake_list);
	struct task_struct *p;
1447 1448 1449

	raw_spin_lock(&rq->lock);

P
Peter Zijlstra 已提交
1450 1451 1452
	while (llist) {
		p = llist_entry(llist, struct task_struct, wake_entry);
		llist = llist_next(llist);
1453 1454 1455 1456 1457 1458 1459 1460
		ttwu_do_activate(rq, p, 0);
	}

	raw_spin_unlock(&rq->lock);
}

void scheduler_ipi(void)
{
1461
	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
P
Peter Zijlstra 已提交
1478
	sched_ttwu_pending();
1479 1480 1481 1482

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1483 1484
	if (unlikely(got_nohz_idle_kick() && !need_resched())) {
		this_rq()->idle_balance = 1;
1485
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1486
	}
1487
	irq_exit();
1488 1489 1490 1491
}

static void ttwu_queue_remote(struct task_struct *p, int cpu)
{
P
Peter Zijlstra 已提交
1492
	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1493 1494
		smp_send_reschedule(cpu);
}
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514

#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
	if (p->on_cpu) {
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;

}
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
#endif /* CONFIG_SMP */
1515

1516 1517 1518 1519
static void ttwu_queue(struct task_struct *p, int cpu)
{
	struct rq *rq = cpu_rq(cpu);

1520
#if defined(CONFIG_SMP)
1521
	if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) {
1522
		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1523 1524 1525 1526 1527
		ttwu_queue_remote(p, cpu);
		return;
	}
#endif

1528 1529 1530
	raw_spin_lock(&rq->lock);
	ttwu_do_activate(rq, p, 0);
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
1531 1532 1533
}

/**
L
Linus Torvalds 已提交
1534
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1535
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1536
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1537
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1538 1539 1540 1541 1542 1543 1544
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
T
Tejun Heo 已提交
1545 1546
 * Returns %true if @p was woken up, %false if it was already running
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
1547
 */
1548 1549
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1550 1551
{
	unsigned long flags;
1552
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1553

1554
	smp_wmb();
1555
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
1556
	if (!(p->state & state))
L
Linus Torvalds 已提交
1557 1558
		goto out;

1559
	success = 1; /* we're going to change ->state */
L
Linus Torvalds 已提交
1560 1561
	cpu = task_cpu(p);

1562 1563
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
1564 1565

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1566
	/*
1567 1568
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
P
Peter Zijlstra 已提交
1569
	 */
1570 1571 1572
	while (p->on_cpu) {
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
		/*
1573 1574 1575 1576 1577
		 * In case the architecture enables interrupts in
		 * context_switch(), we cannot busy wait, since that
		 * would lead to deadlocks when an interrupt hits and
		 * tries to wake up @prev. So bail and do a complete
		 * remote wakeup.
1578
		 */
1579
		if (ttwu_activate_remote(p, wake_flags))
1580
			goto stat;
1581
#else
1582
		cpu_relax();
1583
#endif
1584
	}
1585
	/*
1586
	 * Pairs with the smp_wmb() in finish_lock_switch().
1587
	 */
1588
	smp_rmb();
L
Linus Torvalds 已提交
1589

1590
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
1591
	p->state = TASK_WAKING;
1592

1593
	if (p->sched_class->task_waking)
1594
		p->sched_class->task_waking(p);
1595

1596
	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1597 1598
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
1599
		set_task_cpu(p, cpu);
1600
	}
L
Linus Torvalds 已提交
1601 1602
#endif /* CONFIG_SMP */

1603 1604
	ttwu_queue(p, cpu);
stat:
1605
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
1606
out:
1607
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
1608 1609 1610 1611

	return success;
}

T
Tejun Heo 已提交
1612 1613 1614 1615
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
1616
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
1617
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1618
 * the current task.
T
Tejun Heo 已提交
1619 1620 1621 1622 1623 1624 1625 1626 1627
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	BUG_ON(rq != this_rq());
	BUG_ON(p == current);
	lockdep_assert_held(&rq->lock);

1628 1629 1630 1631 1632 1633
	if (!raw_spin_trylock(&p->pi_lock)) {
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
	}

T
Tejun Heo 已提交
1634
	if (!(p->state & TASK_NORMAL))
1635
		goto out;
T
Tejun Heo 已提交
1636

P
Peter Zijlstra 已提交
1637
	if (!p->on_rq)
P
Peter Zijlstra 已提交
1638 1639
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

1640
	ttwu_do_wakeup(rq, p, 0);
1641
	ttwu_stat(p, smp_processor_id(), 0);
1642 1643
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
1644 1645
}

1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
1657
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1658
{
1659
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
1660 1661 1662
}
EXPORT_SYMBOL(wake_up_process);

1663
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1664 1665 1666 1667 1668 1669 1670
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1671 1672 1673 1674 1675
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
P
Peter Zijlstra 已提交
1676 1677 1678
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
1679 1680
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1681
	p->se.prev_sum_exec_runtime	= 0;
1682
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
1683
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
1684
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
1685 1686

#ifdef CONFIG_SCHEDSTATS
1687
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
1688
#endif
N
Nick Piggin 已提交
1689

P
Peter Zijlstra 已提交
1690
	INIT_LIST_HEAD(&p->rt.run_list);
N
Nick Piggin 已提交
1691

1692 1693 1694
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
I
Ingo Molnar 已提交
1695 1696 1697 1698 1699
}

/*
 * fork()/clone()-time setup:
 */
1700
void sched_fork(struct task_struct *p)
I
Ingo Molnar 已提交
1701
{
1702
	unsigned long flags;
I
Ingo Molnar 已提交
1703 1704 1705
	int cpu = get_cpu();

	__sched_fork(p);
1706
	/*
1707
	 * We mark the process as running here. This guarantees that
1708 1709 1710
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
1711
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1712

1713 1714 1715 1716 1717
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

1718 1719 1720 1721
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
1722
		if (task_has_rt_policy(p)) {
1723
			p->policy = SCHED_NORMAL;
1724
			p->static_prio = NICE_TO_PRIO(0);
1725 1726 1727 1728 1729 1730
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
1731

1732 1733 1734 1735 1736 1737
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
1738

H
Hiroshi Shimamoto 已提交
1739 1740
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
1741

P
Peter Zijlstra 已提交
1742 1743 1744
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

1745 1746 1747 1748 1749 1750 1751
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
1752
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1753
	set_task_cpu(p, cpu);
1754
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1755

1756
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1757
	if (likely(sched_info_on()))
1758
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1759
#endif
P
Peter Zijlstra 已提交
1760 1761
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
1762
#endif
1763
#ifdef CONFIG_PREEMPT_COUNT
1764
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1765
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1766
#endif
1767
#ifdef CONFIG_SMP
1768
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1769
#endif
1770

N
Nick Piggin 已提交
1771
	put_cpu();
L
Linus Torvalds 已提交
1772 1773 1774 1775 1776 1777 1778 1779 1780
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1781
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
1782 1783
{
	unsigned long flags;
I
Ingo Molnar 已提交
1784
	struct rq *rq;
1785

1786
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1787 1788 1789 1790 1791 1792
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 */
1793
	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1794 1795
#endif

1796
	rq = __task_rq_lock(p);
P
Peter Zijlstra 已提交
1797
	activate_task(rq, p, 0);
P
Peter Zijlstra 已提交
1798
	p->on_rq = 1;
1799
	trace_sched_wakeup_new(p, true);
P
Peter Zijlstra 已提交
1800
	check_preempt_curr(rq, p, WF_FORK);
1801
#ifdef CONFIG_SMP
1802 1803
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
1804
#endif
1805
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
1806 1807
}

1808 1809 1810
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
1811
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
1812
 * @notifier: notifier struct to register
1813 1814 1815 1816 1817 1818 1819 1820 1821
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1822
 * @notifier: notifier struct to unregister
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

1852
#else /* !CONFIG_PREEMPT_NOTIFIERS */
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

1864
#endif /* CONFIG_PREEMPT_NOTIFIERS */
1865

1866 1867 1868
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1869
 * @prev: the current task that is being switched out
1870 1871 1872 1873 1874 1875 1876 1877 1878
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1879 1880 1881
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1882
{
1883 1884
	sched_info_switch(prev, next);
	perf_event_task_sched_out(prev, next);
1885
	fire_sched_out_preempt_notifiers(prev, next);
1886 1887
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
1888
	trace_sched_switch(prev, next);
1889 1890
}

L
Linus Torvalds 已提交
1891 1892
/**
 * finish_task_switch - clean up after a task-switch
1893
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1894 1895
 * @prev: the thread we just switched away from.
 *
1896 1897 1898 1899
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1900 1901
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
1902
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
1903 1904 1905
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
1906
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1907 1908 1909
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1910
	long prev_state;
L
Linus Torvalds 已提交
1911 1912 1913 1914 1915

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1916
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1917 1918
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1919
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1920 1921 1922 1923 1924
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1925
	prev_state = prev->state;
1926
	finish_arch_switch(prev);
1927 1928 1929
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_disable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1930
	perf_event_task_sched_in(prev, current);
1931 1932 1933
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1934
	finish_lock_switch(rq, prev);
S
Steven Rostedt 已提交
1935

1936
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1937 1938
	if (mm)
		mmdrop(mm);
1939
	if (unlikely(prev_state == TASK_DEAD)) {
1940 1941 1942
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1943
		 */
1944
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1945
		put_task_struct(prev);
1946
	}
L
Linus Torvalds 已提交
1947 1948
}

1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

1964
		raw_spin_lock_irqsave(&rq->lock, flags);
1965 1966
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
1967
		raw_spin_unlock_irqrestore(&rq->lock, flags);
1968 1969 1970 1971 1972 1973

		rq->post_schedule = 0;
	}
}

#else
1974

1975 1976 1977 1978 1979 1980
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
1981 1982
}

1983 1984
#endif

L
Linus Torvalds 已提交
1985 1986 1987 1988
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1989
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1990 1991
	__releases(rq->lock)
{
1992 1993
	struct rq *rq = this_rq();

1994
	finish_task_switch(rq, prev);
1995

1996 1997 1998 1999 2000
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2001

2002 2003 2004 2005
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2006
	if (current->set_child_tid)
2007
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2008 2009 2010 2011 2012 2013
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2014
static inline void
2015
context_switch(struct rq *rq, struct task_struct *prev,
2016
	       struct task_struct *next)
L
Linus Torvalds 已提交
2017
{
I
Ingo Molnar 已提交
2018
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2019

2020
	prepare_task_switch(rq, prev, next);
2021

I
Ingo Molnar 已提交
2022 2023
	mm = next->mm;
	oldmm = prev->active_mm;
2024 2025 2026 2027 2028
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2029
	arch_start_context_switch(prev);
2030

2031
	if (!mm) {
L
Linus Torvalds 已提交
2032 2033 2034 2035 2036 2037
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2038
	if (!prev->mm) {
L
Linus Torvalds 已提交
2039 2040 2041
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2042 2043 2044 2045 2046 2047 2048
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2049
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2050
#endif
L
Linus Torvalds 已提交
2051 2052 2053 2054

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2055 2056 2057 2058 2059 2060 2061
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2079
}
L
Linus Torvalds 已提交
2080 2081

unsigned long nr_uninterruptible(void)
2082
{
L
Linus Torvalds 已提交
2083
	unsigned long i, sum = 0;
2084

2085
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2086
		sum += cpu_rq(i)->nr_uninterruptible;
2087 2088

	/*
L
Linus Torvalds 已提交
2089 2090
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
2091
	 */
L
Linus Torvalds 已提交
2092 2093
	if (unlikely((long)sum < 0))
		sum = 0;
2094

L
Linus Torvalds 已提交
2095
	return sum;
2096 2097
}

L
Linus Torvalds 已提交
2098
unsigned long long nr_context_switches(void)
2099
{
2100 2101
	int i;
	unsigned long long sum = 0;
2102

2103
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2104
		sum += cpu_rq(i)->nr_switches;
2105

L
Linus Torvalds 已提交
2106 2107
	return sum;
}
2108

L
Linus Torvalds 已提交
2109 2110 2111
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2112

2113
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2114
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2115

L
Linus Torvalds 已提交
2116 2117
	return sum;
}
2118

2119
unsigned long nr_iowait_cpu(int cpu)
2120
{
2121
	struct rq *this = cpu_rq(cpu);
2122 2123
	return atomic_read(&this->nr_iowait);
}
2124

2125 2126 2127 2128 2129
unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}
2130

2131

2132 2133 2134 2135 2136
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);
2137

2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
static long calc_load_fold_active(struct rq *this_rq)
{
	long nr_active, delta = 0;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
	}

	return delta;
}

2153 2154 2155 2156 2157 2158 2159 2160 2161
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
{
	load *= exp;
	load += active * (FIXED_1 - exp);
	load += 1UL << (FSHIFT - 1);
	return load >> FSHIFT;
}

2162 2163 2164 2165 2166 2167 2168 2169
#ifdef CONFIG_NO_HZ
/*
 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
 *
 * When making the ILB scale, we should try to pull this in as well.
 */
static atomic_long_t calc_load_tasks_idle;

2170
void calc_load_account_idle(struct rq *this_rq)
2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
{
	long delta;

	delta = calc_load_fold_active(this_rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks_idle);
}

static long calc_load_fold_idle(void)
{
	long delta = 0;

	/*
	 * Its got a race, we don't care...
	 */
	if (atomic_long_read(&calc_load_tasks_idle))
		delta = atomic_long_xchg(&calc_load_tasks_idle, 0);

	return delta;
}
2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312

/**
 * fixed_power_int - compute: x^n, in O(log n) time
 *
 * @x:         base of the power
 * @frac_bits: fractional bits of @x
 * @n:         power to raise @x to.
 *
 * By exploiting the relation between the definition of the natural power
 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
 * (where: n_i \elem {0, 1}, the binary vector representing n),
 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
 * of course trivially computable in O(log_2 n), the length of our binary
 * vector.
 */
static unsigned long
fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
{
	unsigned long result = 1UL << frac_bits;

	if (n) for (;;) {
		if (n & 1) {
			result *= x;
			result += 1UL << (frac_bits - 1);
			result >>= frac_bits;
		}
		n >>= 1;
		if (!n)
			break;
		x *= x;
		x += 1UL << (frac_bits - 1);
		x >>= frac_bits;
	}

	return result;
}

/*
 * a1 = a0 * e + a * (1 - e)
 *
 * a2 = a1 * e + a * (1 - e)
 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
 *    = a0 * e^2 + a * (1 - e) * (1 + e)
 *
 * a3 = a2 * e + a * (1 - e)
 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
 *
 *  ...
 *
 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
 *    = a0 * e^n + a * (1 - e^n)
 *
 * [1] application of the geometric series:
 *
 *              n         1 - x^(n+1)
 *     S_n := \Sum x^i = -------------
 *             i=0          1 - x
 */
static unsigned long
calc_load_n(unsigned long load, unsigned long exp,
	    unsigned long active, unsigned int n)
{

	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
}

/*
 * NO_HZ can leave us missing all per-cpu ticks calling
 * calc_load_account_active(), but since an idle CPU folds its delta into
 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
 * in the pending idle delta if our idle period crossed a load cycle boundary.
 *
 * Once we've updated the global active value, we need to apply the exponential
 * weights adjusted to the number of cycles missed.
 */
static void calc_global_nohz(unsigned long ticks)
{
	long delta, active, n;

	if (time_before(jiffies, calc_load_update))
		return;

	/*
	 * If we crossed a calc_load_update boundary, make sure to fold
	 * any pending idle changes, the respective CPUs might have
	 * missed the tick driven calc_load_account_active() update
	 * due to NO_HZ.
	 */
	delta = calc_load_fold_idle();
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);

	/*
	 * If we were idle for multiple load cycles, apply them.
	 */
	if (ticks >= LOAD_FREQ) {
		n = ticks / LOAD_FREQ;

		active = atomic_long_read(&calc_load_tasks);
		active = active > 0 ? active * FIXED_1 : 0;

		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);

		calc_load_update += n * LOAD_FREQ;
	}

	/*
	 * Its possible the remainder of the above division also crosses
	 * a LOAD_FREQ period, the regular check in calc_global_load()
	 * which comes after this will take care of that.
	 *
	 * Consider us being 11 ticks before a cycle completion, and us
	 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
	 * age us 4 cycles, and the test in calc_global_load() will
	 * pick up the final one.
	 */
}
2313
#else
2314
void calc_load_account_idle(struct rq *this_rq)
2315 2316 2317 2318 2319 2320 2321
{
}

static inline long calc_load_fold_idle(void)
{
	return 0;
}
2322 2323 2324 2325

static void calc_global_nohz(unsigned long ticks)
{
}
2326 2327
#endif

2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
2341 2342 2343
}

/*
2344 2345
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
2346
 */
2347
void calc_global_load(unsigned long ticks)
2348
{
2349
	long active;
L
Linus Torvalds 已提交
2350

2351 2352 2353
	calc_global_nohz(ticks);

	if (time_before(jiffies, calc_load_update + 10))
2354
		return;
L
Linus Torvalds 已提交
2355

2356 2357
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
L
Linus Torvalds 已提交
2358

2359 2360 2361
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
I
Ingo Molnar 已提交
2362

2363 2364
	calc_load_update += LOAD_FREQ;
}
L
Linus Torvalds 已提交
2365

2366
/*
2367 2368
 * Called from update_cpu_load() to periodically update this CPU's
 * active count.
2369 2370 2371
 */
static void calc_load_account_active(struct rq *this_rq)
{
2372
	long delta;
2373

2374 2375
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
2376

2377 2378 2379
	delta  = calc_load_fold_active(this_rq);
	delta += calc_load_fold_idle();
	if (delta)
2380
		atomic_long_add(delta, &calc_load_tasks);
2381 2382

	this_rq->calc_load_update += LOAD_FREQ;
2383 2384
}

2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
/*
 * The exact cpuload at various idx values, calculated at every tick would be
 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
 *
 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
 * on nth tick when cpu may be busy, then we have:
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
 *
 * decay_load_missed() below does efficient calculation of
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
 *
 * The calculation is approximated on a 128 point scale.
 * degrade_zero_ticks is the number of ticks after which load at any
 * particular idx is approximated to be zero.
 * degrade_factor is a precomputed table, a row for each load idx.
 * Each column corresponds to degradation factor for a power of two ticks,
 * based on 128 point scale.
 * Example:
 * row 2, col 3 (=12) says that the degradation at load idx 2 after
 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
 *
 * With this power of 2 load factors, we can degrade the load n times
 * by looking at 1 bits in n and doing as many mult/shift instead of
 * n mult/shifts needed by the exact degradation.
 */
#define DEGRADE_SHIFT		7
static const unsigned char
		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const unsigned char
		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
					{0, 0, 0, 0, 0, 0, 0, 0},
					{64, 32, 8, 0, 0, 0, 0, 0},
					{96, 72, 40, 12, 1, 0, 0},
					{112, 98, 75, 43, 15, 1, 0},
					{120, 112, 98, 76, 45, 16, 2} };

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}

2452
/*
I
Ingo Molnar 已提交
2453
 * Update rq->cpu_load[] statistics. This function is usually called every
2454 2455
 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
 * every tick. We fix it up based on jiffies.
2456
 */
2457
void update_cpu_load(struct rq *this_rq)
2458
{
2459
	unsigned long this_load = this_rq->load.weight;
2460 2461
	unsigned long curr_jiffies = jiffies;
	unsigned long pending_updates;
I
Ingo Molnar 已提交
2462
	int i, scale;
2463

I
Ingo Molnar 已提交
2464
	this_rq->nr_load_updates++;
2465

2466 2467 2468 2469 2470 2471 2472
	/* Avoid repeated calls on same jiffy, when moving in and out of idle */
	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	this_rq->last_load_update_tick = curr_jiffies;

I
Ingo Molnar 已提交
2473
	/* Update our load: */
2474 2475
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
I
Ingo Molnar 已提交
2476
		unsigned long old_load, new_load;
2477

I
Ingo Molnar 已提交
2478
		/* scale is effectively 1 << i now, and >> i divides by scale */
2479

I
Ingo Molnar 已提交
2480
		old_load = this_rq->cpu_load[i];
2481
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
I
Ingo Molnar 已提交
2482
		new_load = this_load;
I
Ingo Molnar 已提交
2483 2484 2485 2486 2487 2488
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
2489 2490 2491
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
I
Ingo Molnar 已提交
2492
	}
2493 2494

	sched_avg_update(this_rq);
2495 2496 2497 2498 2499
}

static void update_cpu_load_active(struct rq *this_rq)
{
	update_cpu_load(this_rq);
2500

2501
	calc_load_account_active(this_rq);
2502 2503
}

I
Ingo Molnar 已提交
2504
#ifdef CONFIG_SMP
2505

2506
/*
P
Peter Zijlstra 已提交
2507 2508
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2509
 */
P
Peter Zijlstra 已提交
2510
void sched_exec(void)
2511
{
P
Peter Zijlstra 已提交
2512
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2513
	unsigned long flags;
2514
	int dest_cpu;
2515

2516
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2517
	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2518 2519
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2520

2521
	if (likely(cpu_active(dest_cpu))) {
2522
		struct migration_arg arg = { p, dest_cpu };
2523

2524 2525
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2526 2527
		return;
	}
2528
unlock:
2529
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2530
}
I
Ingo Molnar 已提交
2531

L
Linus Torvalds 已提交
2532 2533 2534
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2535
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
2536 2537

EXPORT_PER_CPU_SYMBOL(kstat);
2538
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
2539 2540

/*
2541
 * Return any ns on the sched_clock that have not yet been accounted in
2542
 * @p in case that task is currently running.
2543 2544
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
2545
 */
2546 2547 2548 2549 2550 2551
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
2552
		ns = rq->clock_task - p->se.exec_start;
2553 2554 2555 2556 2557 2558 2559
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

2560
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
2561 2562
{
	unsigned long flags;
2563
	struct rq *rq;
2564
	u64 ns = 0;
2565

2566
	rq = task_rq_lock(p, &flags);
2567
	ns = do_task_delta_exec(p, rq);
2568
	task_rq_unlock(rq, p, &flags);
2569

2570 2571
	return ns;
}
2572

2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2586
	task_rq_unlock(rq, p, &flags);
2587 2588 2589

	return ns;
}
2590

2591 2592 2593 2594 2595
#ifdef CONFIG_CGROUP_CPUACCT
struct cgroup_subsys cpuacct_subsys;
struct cpuacct root_cpuacct;
#endif

2596 2597
static inline void task_group_account_field(struct task_struct *p, int index,
					    u64 tmp)
2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
{
#ifdef CONFIG_CGROUP_CPUACCT
	struct kernel_cpustat *kcpustat;
	struct cpuacct *ca;
#endif
	/*
	 * Since all updates are sure to touch the root cgroup, we
	 * get ourselves ahead and touch it first. If the root cgroup
	 * is the only cgroup, then nothing else should be necessary.
	 *
	 */
	__get_cpu_var(kernel_cpustat).cpustat[index] += tmp;

#ifdef CONFIG_CGROUP_CPUACCT
	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(p);
	while (ca && (ca != &root_cpuacct)) {
		kcpustat = this_cpu_ptr(ca->cpustat);
		kcpustat->cpustat[index] += tmp;
		ca = parent_ca(ca);
	}
	rcu_read_unlock();
#endif
}


L
Linus Torvalds 已提交
2627 2628 2629 2630
/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
2631
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
2632
 */
2633 2634
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
2635
{
2636
	int index;
L
Linus Torvalds 已提交
2637

2638
	/* Add user time to process. */
2639 2640
	p->utime += cputime;
	p->utimescaled += cputime_scaled;
2641
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
2642

2643
	index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
2644

L
Linus Torvalds 已提交
2645
	/* Add user time to cpustat. */
2646
	task_group_account_field(p, index, (__force u64) cputime);
2647

2648 2649
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
2650 2651
}

2652 2653 2654 2655
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
2656
 * @cputime_scaled: cputime scaled by cpu frequency
2657
 */
2658 2659
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
2660
{
2661
	u64 *cpustat = kcpustat_this_cpu->cpustat;
2662

2663
	/* Add guest time to process. */
2664 2665
	p->utime += cputime;
	p->utimescaled += cputime_scaled;
2666
	account_group_user_time(p, cputime);
2667
	p->gtime += cputime;
2668

2669
	/* Add guest time to cpustat. */
2670
	if (TASK_NICE(p) > 0) {
2671 2672
		cpustat[CPUTIME_NICE] += (__force u64) cputime;
		cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
2673
	} else {
2674 2675
		cpustat[CPUTIME_USER] += (__force u64) cputime;
		cpustat[CPUTIME_GUEST] += (__force u64) cputime;
2676
	}
2677 2678
}

2679 2680 2681 2682 2683 2684 2685 2686 2687
/*
 * Account system cpu time to a process and desired cpustat field
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in kernel space since the last update
 * @cputime_scaled: cputime scaled by cpu frequency
 * @target_cputime64: pointer to cpustat field that has to be updated
 */
static inline
void __account_system_time(struct task_struct *p, cputime_t cputime,
2688
			cputime_t cputime_scaled, int index)
2689 2690
{
	/* Add system time to process. */
2691 2692
	p->stime += cputime;
	p->stimescaled += cputime_scaled;
2693 2694 2695
	account_group_system_time(p, cputime);

	/* Add system time to cpustat. */
2696
	task_group_account_field(p, index, (__force u64) cputime);
2697 2698 2699 2700 2701

	/* Account for system time used */
	acct_update_integrals(p);
}

L
Linus Torvalds 已提交
2702 2703 2704 2705 2706
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
2707
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
2708 2709
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
2710
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
2711
{
2712
	int index;
L
Linus Torvalds 已提交
2713

2714
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
2715
		account_guest_time(p, cputime, cputime_scaled);
2716 2717
		return;
	}
2718

L
Linus Torvalds 已提交
2719
	if (hardirq_count() - hardirq_offset)
2720
		index = CPUTIME_IRQ;
2721
	else if (in_serving_softirq())
2722
		index = CPUTIME_SOFTIRQ;
L
Linus Torvalds 已提交
2723
	else
2724
		index = CPUTIME_SYSTEM;
2725

2726
	__account_system_time(p, cputime, cputime_scaled, index);
L
Linus Torvalds 已提交
2727 2728
}

2729
/*
L
Linus Torvalds 已提交
2730
 * Account for involuntary wait time.
2731
 * @cputime: the cpu time spent in involuntary wait
2732
 */
2733
void account_steal_time(cputime_t cputime)
2734
{
2735
	u64 *cpustat = kcpustat_this_cpu->cpustat;
2736

2737
	cpustat[CPUTIME_STEAL] += (__force u64) cputime;
2738 2739
}

L
Linus Torvalds 已提交
2740
/*
2741 2742
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
2743
 */
2744
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
2745
{
2746
	u64 *cpustat = kcpustat_this_cpu->cpustat;
2747
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
2748

2749
	if (atomic_read(&rq->nr_iowait) > 0)
2750
		cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
2751
	else
2752
		cpustat[CPUTIME_IDLE] += (__force u64) cputime;
L
Linus Torvalds 已提交
2753 2754
}

G
Glauber Costa 已提交
2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773
static __always_inline bool steal_account_process_tick(void)
{
#ifdef CONFIG_PARAVIRT
	if (static_branch(&paravirt_steal_enabled)) {
		u64 steal, st = 0;

		steal = paravirt_steal_clock(smp_processor_id());
		steal -= this_rq()->prev_steal_time;

		st = steal_ticks(steal);
		this_rq()->prev_steal_time += st * TICK_NSEC;

		account_steal_time(st);
		return st;
	}
#endif
	return false;
}

2774 2775
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
/*
 * Account a tick to a process and cpustat
 * @p: the process that the cpu time gets accounted to
 * @user_tick: is the tick from userspace
 * @rq: the pointer to rq
 *
 * Tick demultiplexing follows the order
 * - pending hardirq update
 * - pending softirq update
 * - user_time
 * - idle_time
 * - system time
 *   - check for guest_time
 *   - else account as system_time
 *
 * Check for hardirq is done both for system and user time as there is
 * no timer going off while we are on hardirq and hence we may never get an
 * opportunity to update it solely in system time.
 * p->stime and friends are only updated on system time and not on irq
 * softirq as those do not count in task exec_runtime any more.
 */
static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
						struct rq *rq)
{
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2802
	u64 *cpustat = kcpustat_this_cpu->cpustat;
2803

G
Glauber Costa 已提交
2804 2805 2806
	if (steal_account_process_tick())
		return;

2807
	if (irqtime_account_hi_update()) {
2808
		cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
2809
	} else if (irqtime_account_si_update()) {
2810
		cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
2811 2812 2813 2814 2815 2816 2817
	} else if (this_cpu_ksoftirqd() == p) {
		/*
		 * ksoftirqd time do not get accounted in cpu_softirq_time.
		 * So, we have to handle it separately here.
		 * Also, p->stime needs to be updated for ksoftirqd.
		 */
		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2818
					CPUTIME_SOFTIRQ);
2819 2820 2821 2822 2823 2824 2825 2826
	} else if (user_tick) {
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
	} else if (p == rq->idle) {
		account_idle_time(cputime_one_jiffy);
	} else if (p->flags & PF_VCPU) { /* System time or guest time */
		account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
	} else {
		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2827
					CPUTIME_SYSTEM);
2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838
	}
}

static void irqtime_account_idle_ticks(int ticks)
{
	int i;
	struct rq *rq = this_rq();

	for (i = 0; i < ticks; i++)
		irqtime_account_process_tick(current, 0, rq);
}
2839
#else /* CONFIG_IRQ_TIME_ACCOUNTING */
2840 2841 2842
static void irqtime_account_idle_ticks(int ticks) {}
static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
						struct rq *rq) {}
2843
#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2844 2845 2846 2847 2848 2849 2850 2851

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
2852
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2853 2854
	struct rq *rq = this_rq();

2855 2856 2857 2858 2859
	if (sched_clock_irqtime) {
		irqtime_account_process_tick(p, user_tick, rq);
		return;
	}

G
Glauber Costa 已提交
2860 2861 2862
	if (steal_account_process_tick())
		return;

2863
	if (user_tick)
2864
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2865
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
2866
		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
2867 2868
				    one_jiffy_scaled);
	else
2869
		account_idle_time(cputime_one_jiffy);
2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
2888 2889 2890 2891 2892 2893

	if (sched_clock_irqtime) {
		irqtime_account_idle_ticks(ticks);
		return;
	}

2894
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
2895 2896
}

2897 2898
#endif

2899 2900 2901 2902
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
2903
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2904
{
2905 2906
	*ut = p->utime;
	*st = p->stime;
2907 2908
}

2909
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2910
{
2911 2912 2913 2914 2915 2916
	struct task_cputime cputime;

	thread_group_cputime(p, &cputime);

	*ut = cputime.utime;
	*st = cputime.stime;
2917 2918
}
#else
2919 2920

#ifndef nsecs_to_cputime
2921
# define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
2922 2923
#endif

2924
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2925
{
2926
	cputime_t rtime, utime = p->utime, total = utime + p->stime;
2927 2928 2929 2930

	/*
	 * Use CFS's precise accounting:
	 */
2931
	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
2932 2933

	if (total) {
2934
		u64 temp = (__force u64) rtime;
2935

2936 2937 2938
		temp *= (__force u64) utime;
		do_div(temp, (__force u32) total);
		utime = (__force cputime_t) temp;
2939 2940
	} else
		utime = rtime;
2941

2942 2943 2944
	/*
	 * Compare with previous values, to keep monotonicity:
	 */
2945
	p->prev_utime = max(p->prev_utime, utime);
2946
	p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
2947

2948 2949
	*ut = p->prev_utime;
	*st = p->prev_stime;
2950 2951
}

2952 2953 2954 2955
/*
 * Must be called with siglock held.
 */
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2956
{
2957 2958 2959
	struct signal_struct *sig = p->signal;
	struct task_cputime cputime;
	cputime_t rtime, utime, total;
2960

2961
	thread_group_cputime(p, &cputime);
2962

2963
	total = cputime.utime + cputime.stime;
2964
	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
2965

2966
	if (total) {
2967
		u64 temp = (__force u64) rtime;
2968

2969 2970 2971
		temp *= (__force u64) cputime.utime;
		do_div(temp, (__force u32) total);
		utime = (__force cputime_t) temp;
2972 2973 2974 2975
	} else
		utime = rtime;

	sig->prev_utime = max(sig->prev_utime, utime);
2976
	sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime);
2977 2978 2979

	*ut = sig->prev_utime;
	*st = sig->prev_stime;
2980 2981 2982
}
#endif

2983 2984 2985 2986 2987 2988 2989 2990
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2991
	struct task_struct *curr = rq->curr;
2992 2993

	sched_clock_tick();
I
Ingo Molnar 已提交
2994

2995
	raw_spin_lock(&rq->lock);
2996
	update_rq_clock(rq);
2997
	update_cpu_load_active(rq);
P
Peter Zijlstra 已提交
2998
	curr->sched_class->task_tick(rq, curr, 0);
2999
	raw_spin_unlock(&rq->lock);
3000

3001
	perf_event_task_tick();
3002

3003
#ifdef CONFIG_SMP
3004
	rq->idle_balance = idle_cpu(cpu);
I
Ingo Molnar 已提交
3005
	trigger_load_balance(rq, cpu);
3006
#endif
L
Linus Torvalds 已提交
3007 3008
}

3009
notrace unsigned long get_parent_ip(unsigned long addr)
3010 3011 3012 3013 3014 3015 3016 3017
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
3018

3019 3020 3021
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

3022
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
3023
{
3024
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3025 3026 3027
	/*
	 * Underflow?
	 */
3028 3029
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
3030
#endif
L
Linus Torvalds 已提交
3031
	preempt_count() += val;
3032
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3033 3034 3035
	/*
	 * Spinlock count overflowing soon?
	 */
3036 3037
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
3038 3039 3040
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3041 3042 3043
}
EXPORT_SYMBOL(add_preempt_count);

3044
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
3045
{
3046
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3047 3048 3049
	/*
	 * Underflow?
	 */
3050
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3051
		return;
L
Linus Torvalds 已提交
3052 3053 3054
	/*
	 * Is the spinlock portion underflowing?
	 */
3055 3056 3057
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
3058
#endif
3059

3060 3061
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3062 3063 3064 3065 3066 3067 3068
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3069
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3070
 */
I
Ingo Molnar 已提交
3071
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3072
{
3073 3074
	struct pt_regs *regs = get_irq_regs();

P
Peter Zijlstra 已提交
3075 3076
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
3077

I
Ingo Molnar 已提交
3078
	debug_show_held_locks(prev);
3079
	print_modules();
I
Ingo Molnar 已提交
3080 3081
	if (irqs_disabled())
		print_irqtrace_events(prev);
3082 3083 3084 3085 3086

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
3087
}
L
Linus Torvalds 已提交
3088

I
Ingo Molnar 已提交
3089 3090 3091 3092 3093
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3094
	/*
I
Ingo Molnar 已提交
3095
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
3096 3097 3098
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
3099
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
3100
		__schedule_bug(prev);
3101
	rcu_sleep_check();
I
Ingo Molnar 已提交
3102

L
Linus Torvalds 已提交
3103 3104
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3105
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3106 3107
}

P
Peter Zijlstra 已提交
3108
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
3109
{
3110
	if (prev->on_rq || rq->skip_clock_update < 0)
3111
		update_rq_clock(rq);
P
Peter Zijlstra 已提交
3112
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
3113 3114
}

I
Ingo Molnar 已提交
3115 3116 3117 3118
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3119
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
3120
{
3121
	const struct sched_class *class;
I
Ingo Molnar 已提交
3122
	struct task_struct *p;
L
Linus Torvalds 已提交
3123 3124

	/*
I
Ingo Molnar 已提交
3125 3126
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3127
	 */
3128
	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
3129
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3130 3131
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3132 3133
	}

3134
	for_each_class(class) {
3135
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3136 3137 3138
		if (p)
			return p;
	}
3139 3140

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
3141
}
L
Linus Torvalds 已提交
3142

I
Ingo Molnar 已提交
3143
/*
3144
 * __schedule() is the main scheduler function.
I
Ingo Molnar 已提交
3145
 */
3146
static void __sched __schedule(void)
I
Ingo Molnar 已提交
3147 3148
{
	struct task_struct *prev, *next;
3149
	unsigned long *switch_count;
I
Ingo Molnar 已提交
3150
	struct rq *rq;
3151
	int cpu;
I
Ingo Molnar 已提交
3152

3153 3154
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
3155 3156
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
3157
	rcu_note_context_switch(cpu);
I
Ingo Molnar 已提交
3158 3159 3160
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
3161

3162
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
3163
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
3164

3165
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
3166

3167
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
3168
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
3169
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
3170
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
3171
		} else {
3172 3173 3174
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

T
Tejun Heo 已提交
3175
			/*
3176 3177 3178
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
3179 3180 3181 3182 3183 3184 3185 3186 3187
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
		}
I
Ingo Molnar 已提交
3188
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3189 3190
	}

3191
	pre_schedule(rq, prev);
3192

I
Ingo Molnar 已提交
3193
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3194 3195
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
3196
	put_prev_task(rq, prev);
3197
	next = pick_next_task(rq);
3198 3199
	clear_tsk_need_resched(prev);
	rq->skip_clock_update = 0;
L
Linus Torvalds 已提交
3200 3201 3202 3203 3204 3205

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3206
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
3207
		/*
3208 3209 3210 3211
		 * The context switch have flipped the stack from under us
		 * and restored the local variables which were saved when
		 * this task called schedule() in the past. prev == current
		 * is still correct, but it can be moved to another cpu/rq.
P
Peter Zijlstra 已提交
3212 3213 3214
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3215
	} else
3216
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
3217

3218
	post_schedule(rq);
L
Linus Torvalds 已提交
3219 3220

	preempt_enable_no_resched();
3221
	if (need_resched())
L
Linus Torvalds 已提交
3222 3223
		goto need_resched;
}
3224

3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236
static inline void sched_submit_work(struct task_struct *tsk)
{
	if (!tsk->state)
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

S
Simon Kirby 已提交
3237
asmlinkage void __sched schedule(void)
3238
{
3239 3240 3241
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
3242 3243
	__schedule();
}
L
Linus Torvalds 已提交
3244 3245
EXPORT_SYMBOL(schedule);

3246
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3247

3248 3249 3250
static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
{
	if (lock->owner != owner)
3251
		return false;
3252 3253

	/*
3254 3255 3256 3257
	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
	 * lock->owner still matches owner, if that fails, owner might
	 * point to free()d memory, if it still matches, the rcu_read_lock()
	 * ensures the memory stays valid.
3258
	 */
3259
	barrier();
3260

3261
	return owner->on_cpu;
3262
}
3263

3264 3265 3266 3267 3268 3269 3270 3271
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
{
	if (!sched_feat(OWNER_SPIN))
		return 0;
3272

3273
	rcu_read_lock();
3274 3275
	while (owner_running(lock, owner)) {
		if (need_resched())
3276
			break;
3277

3278
		arch_mutex_cpu_relax();
3279
	}
3280
	rcu_read_unlock();
3281

3282
	/*
3283 3284 3285
	 * We break out the loop above on need_resched() and when the
	 * owner changed, which is a sign for heavy contention. Return
	 * success only when lock->owner is NULL.
3286
	 */
3287
	return lock->owner == NULL;
3288 3289 3290
}
#endif

L
Linus Torvalds 已提交
3291 3292
#ifdef CONFIG_PREEMPT
/*
3293
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3294
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3295 3296
 * occur there and call schedule directly.
 */
3297
asmlinkage void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
3298 3299
{
	struct thread_info *ti = current_thread_info();
3300

L
Linus Torvalds 已提交
3301 3302
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3303
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3304
	 */
N
Nick Piggin 已提交
3305
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3306 3307
		return;

3308
	do {
3309
		add_preempt_count_notrace(PREEMPT_ACTIVE);
3310
		__schedule();
3311
		sub_preempt_count_notrace(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3312

3313 3314 3315 3316 3317
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3318
	} while (need_resched());
L
Linus Torvalds 已提交
3319 3320 3321 3322
}
EXPORT_SYMBOL(preempt_schedule);

/*
3323
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3324 3325 3326 3327 3328 3329 3330
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
3331

3332
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3333 3334
	BUG_ON(ti->preempt_count || !irqs_disabled());

3335 3336 3337
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
3338
		__schedule();
3339 3340
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3341

3342 3343 3344 3345 3346
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3347
	} while (need_resched());
L
Linus Torvalds 已提交
3348 3349 3350 3351
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
3352
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3353
			  void *key)
L
Linus Torvalds 已提交
3354
{
P
Peter Zijlstra 已提交
3355
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3356 3357 3358 3359
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
3360 3361
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
3362 3363 3364
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
3365
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
3366 3367
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
3368
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
3369
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
3370
{
3371
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3372

3373
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3374 3375
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
3376
		if (curr->func(curr, mode, wake_flags, key) &&
3377
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3378 3379 3380 3381 3382 3383 3384 3385 3386
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3387
 * @key: is directly passed to the wakeup function
3388 3389 3390
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3391
 */
3392
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3393
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
3406
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
3407 3408 3409
{
	__wake_up_common(q, mode, 1, 0, NULL);
}
3410
EXPORT_SYMBOL_GPL(__wake_up_locked);
L
Linus Torvalds 已提交
3411

3412 3413 3414 3415
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}
3416
EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3417

L
Linus Torvalds 已提交
3418
/**
3419
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3420 3421 3422
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3423
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
3424 3425 3426 3427 3428 3429 3430
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
3431 3432 3433
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3434
 */
3435 3436
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3437 3438
{
	unsigned long flags;
P
Peter Zijlstra 已提交
3439
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
3440 3441 3442 3443 3444

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
3445
		wake_flags = 0;
L
Linus Torvalds 已提交
3446 3447

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
3448
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
3449 3450
	spin_unlock_irqrestore(&q->lock, flags);
}
3451 3452 3453 3454 3455 3456 3457 3458 3459
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
3460 3461
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

3462 3463 3464 3465 3466 3467 3468 3469
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
3470 3471 3472
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3473
 */
3474
void complete(struct completion *x)
L
Linus Torvalds 已提交
3475 3476 3477 3478 3479
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
3480
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
3481 3482 3483 3484
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

3485 3486 3487 3488 3489
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
3490 3491 3492
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3493
 */
3494
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
3495 3496 3497 3498 3499
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
3500
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
3501 3502 3503 3504
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

3505 3506
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3507 3508 3509 3510
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

C
Changli Gao 已提交
3511
		__add_wait_queue_tail_exclusive(&x->wait, &wait);
L
Linus Torvalds 已提交
3512
		do {
3513
			if (signal_pending_state(state, current)) {
3514 3515
				timeout = -ERESTARTSYS;
				break;
3516 3517
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
3518 3519 3520
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
3521
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
3522
		__remove_wait_queue(&x->wait, &wait);
3523 3524
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
3525 3526
	}
	x->done--;
3527
	return timeout ?: 1;
L
Linus Torvalds 已提交
3528 3529
}

3530 3531
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3532 3533 3534 3535
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
3536
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
3537
	spin_unlock_irq(&x->wait.lock);
3538 3539
	return timeout;
}
L
Linus Torvalds 已提交
3540

3541 3542 3543 3544 3545 3546 3547 3548 3549 3550
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
3551
void __sched wait_for_completion(struct completion *x)
3552 3553
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3554
}
3555
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
3556

3557 3558 3559 3560 3561 3562 3563 3564
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
3565 3566 3567
 *
 * The return value is 0 if timed out, and positive (at least 1, or number of
 * jiffies left till timeout) if completed.
3568
 */
3569
unsigned long __sched
3570
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
3571
{
3572
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3573
}
3574
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
3575

3576 3577 3578 3579 3580 3581
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
3582 3583
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3584
 */
3585
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
3586
{
3587 3588 3589 3590
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
3591
}
3592
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
3593

3594 3595 3596 3597 3598 3599 3600
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3601 3602 3603
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
 * positive (at least 1, or number of jiffies left till timeout) if completed.
3604
 */
3605
long __sched
3606 3607
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
3608
{
3609
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
3610
}
3611
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
3612

3613 3614 3615 3616 3617 3618
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
3619 3620
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3621
 */
M
Matthew Wilcox 已提交
3622 3623 3624 3625 3626 3627 3628 3629 3630
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

3631 3632 3633 3634 3635 3636 3637 3638
/**
 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be
 * signaled or for a specified timeout to expire. It can be
 * interrupted by a kill signal. The timeout is in jiffies.
3639 3640 3641
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
 * positive (at least 1, or number of jiffies left till timeout) if completed.
3642
 */
3643
long __sched
3644 3645 3646 3647 3648 3649 3650
wait_for_completion_killable_timeout(struct completion *x,
				     unsigned long timeout)
{
	return wait_for_common(x, timeout, TASK_KILLABLE);
}
EXPORT_SYMBOL(wait_for_completion_killable_timeout);

3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
3665
	unsigned long flags;
3666 3667
	int ret = 1;

3668
	spin_lock_irqsave(&x->wait.lock, flags);
3669 3670 3671 3672
	if (!x->done)
		ret = 0;
	else
		x->done--;
3673
	spin_unlock_irqrestore(&x->wait.lock, flags);
3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
3688
	unsigned long flags;
3689 3690
	int ret = 1;

3691
	spin_lock_irqsave(&x->wait.lock, flags);
3692 3693
	if (!x->done)
		ret = 0;
3694
	spin_unlock_irqrestore(&x->wait.lock, flags);
3695 3696 3697 3698
	return ret;
}
EXPORT_SYMBOL(completion_done);

3699 3700
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
3701
{
I
Ingo Molnar 已提交
3702 3703 3704 3705
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3706

3707
	__set_current_state(state);
L
Linus Torvalds 已提交
3708

3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3723 3724 3725
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3726
long __sched
I
Ingo Molnar 已提交
3727
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3728
{
3729
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3730 3731 3732
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
3733
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3734
{
3735
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3736 3737 3738
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
3739
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3740
{
3741
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3742 3743 3744
}
EXPORT_SYMBOL(sleep_on_timeout);

3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
3757
void rt_mutex_setprio(struct task_struct *p, int prio)
3758
{
3759
	int oldprio, on_rq, running;
3760
	struct rq *rq;
3761
	const struct sched_class *prev_class;
3762 3763 3764

	BUG_ON(prio < 0 || prio > MAX_PRIO);

3765
	rq = __task_rq_lock(p);
3766

3767
	trace_sched_pi_setprio(p, prio);
3768
	oldprio = p->prio;
3769
	prev_class = p->sched_class;
P
Peter Zijlstra 已提交
3770
	on_rq = p->on_rq;
3771
	running = task_current(rq, p);
3772
	if (on_rq)
3773
		dequeue_task(rq, p, 0);
3774 3775
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
3776 3777 3778 3779 3780 3781

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

3782 3783
	p->prio = prio;

3784 3785
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
3786
	if (on_rq)
3787
		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3788

P
Peter Zijlstra 已提交
3789
	check_class_changed(rq, p, prev_class, oldprio);
3790
	__task_rq_unlock(rq);
3791 3792 3793 3794
}

#endif

3795
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3796
{
I
Ingo Molnar 已提交
3797
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
3798
	unsigned long flags;
3799
	struct rq *rq;
L
Linus Torvalds 已提交
3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
3812
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
3813
	 */
3814
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3815 3816 3817
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
P
Peter Zijlstra 已提交
3818
	on_rq = p->on_rq;
3819
	if (on_rq)
3820
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
3821 3822

	p->static_prio = NICE_TO_PRIO(nice);
3823
	set_load_weight(p);
3824 3825 3826
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3827

I
Ingo Molnar 已提交
3828
	if (on_rq) {
3829
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
3830
		/*
3831 3832
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3833
		 */
3834
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
3835 3836 3837
			resched_task(rq->curr);
	}
out_unlock:
3838
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3839 3840 3841
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3842 3843 3844 3845 3846
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3847
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3848
{
3849 3850
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
3851

3852
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3853 3854 3855
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3856 3857 3858 3859 3860 3861 3862 3863 3864
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3865
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3866
{
3867
	long nice, retval;
L
Linus Torvalds 已提交
3868 3869 3870 3871 3872 3873

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
3874 3875
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
3876 3877 3878
	if (increment > 40)
		increment = 40;

3879
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
3880 3881 3882 3883 3884
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
3885 3886 3887
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3906
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3907 3908 3909 3910 3911 3912 3913 3914
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
3915
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
3916 3917 3918
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
3919
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
3920 3921 3922 3923 3924 3925 3926

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3941 3942 3943 3944 3945 3946
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
3947
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3948 3949 3950 3951 3952 3953 3954 3955
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
3956
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
3957
{
3958
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
3959 3960 3961
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
3962 3963
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
3964 3965 3966
{
	p->policy = policy;
	p->rt_priority = prio;
3967 3968 3969
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
3970 3971 3972 3973
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
3974
	set_load_weight(p);
L
Linus Torvalds 已提交
3975 3976
}

3977 3978 3979 3980 3981 3982 3983 3984 3985 3986
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
3987 3988 3989 3990 3991
	if (cred->user->user_ns == pcred->user->user_ns)
		match = (cred->euid == pcred->euid ||
			 cred->euid == pcred->uid);
	else
		match = false;
3992 3993 3994 3995
	rcu_read_unlock();
	return match;
}

3996
static int __sched_setscheduler(struct task_struct *p, int policy,
3997
				const struct sched_param *param, bool user)
L
Linus Torvalds 已提交
3998
{
3999
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4000
	unsigned long flags;
4001
	const struct sched_class *prev_class;
4002
	struct rq *rq;
4003
	int reset_on_fork;
L
Linus Torvalds 已提交
4004

4005 4006
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4007 4008
recheck:
	/* double check policy once rq lock held */
4009 4010
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
4011
		policy = oldpolicy = p->policy;
4012 4013 4014 4015 4016 4017 4018 4019 4020 4021
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
4022 4023
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4024 4025
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4026 4027
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4028
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4029
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4030
		return -EINVAL;
4031
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4032 4033
		return -EINVAL;

4034 4035 4036
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
4037
	if (user && !capable(CAP_SYS_NICE)) {
4038
		if (rt_policy(policy)) {
4039 4040
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
4041 4042 4043 4044 4045 4046 4047 4048 4049 4050

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
4051

I
Ingo Molnar 已提交
4052
		/*
4053 4054
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
4055
		 */
4056 4057 4058 4059
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
			if (!can_nice(p, TASK_NICE(p)))
				return -EPERM;
		}
4060

4061
		/* can't change other user's priorities */
4062
		if (!check_same_owner(p))
4063
			return -EPERM;
4064 4065 4066 4067

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
4068
	}
L
Linus Torvalds 已提交
4069

4070
	if (user) {
4071
		retval = security_task_setscheduler(p);
4072 4073 4074 4075
		if (retval)
			return retval;
	}

4076 4077 4078
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
4079
	 *
L
Lucas De Marchi 已提交
4080
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
4081 4082
	 * runqueue lock must be held.
	 */
4083
	rq = task_rq_lock(p, &flags);
4084

4085 4086 4087 4088
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
4089
		task_rq_unlock(rq, p, &flags);
4090 4091 4092
		return -EINVAL;
	}

4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103
	/*
	 * If not changing anything there's no need to proceed further:
	 */
	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
			param->sched_priority == p->rt_priority))) {

		__task_rq_unlock(rq);
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		return 0;
	}

4104 4105 4106 4107 4108 4109 4110
#ifdef CONFIG_RT_GROUP_SCHED
	if (user) {
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4111 4112
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
4113
			task_rq_unlock(rq, p, &flags);
4114 4115 4116 4117 4118
			return -EPERM;
		}
	}
#endif

L
Linus Torvalds 已提交
4119 4120 4121
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4122
		task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
4123 4124
		goto recheck;
	}
P
Peter Zijlstra 已提交
4125
	on_rq = p->on_rq;
4126
	running = task_current(rq, p);
4127
	if (on_rq)
4128
		deactivate_task(rq, p, 0);
4129 4130
	if (running)
		p->sched_class->put_prev_task(rq, p);
4131

4132 4133
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
4134
	oldprio = p->prio;
4135
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
4136
	__setscheduler(rq, p, policy, param->sched_priority);
4137

4138 4139
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
4140
	if (on_rq)
I
Ingo Molnar 已提交
4141
		activate_task(rq, p, 0);
4142

P
Peter Zijlstra 已提交
4143
	check_class_changed(rq, p, prev_class, oldprio);
4144
	task_rq_unlock(rq, p, &flags);
4145

4146 4147
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4148 4149
	return 0;
}
4150 4151 4152 4153 4154 4155 4156 4157 4158 4159

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
4160
		       const struct sched_param *param)
4161 4162 4163
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
4164 4165
EXPORT_SYMBOL_GPL(sched_setscheduler);

4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4178
			       const struct sched_param *param)
4179 4180 4181 4182
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
4183 4184
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4185 4186 4187
{
	struct sched_param lparam;
	struct task_struct *p;
4188
	int retval;
L
Linus Torvalds 已提交
4189 4190 4191 4192 4193

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4194 4195 4196

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4197
	p = find_process_by_pid(pid);
4198 4199 4200
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4201

L
Linus Torvalds 已提交
4202 4203 4204 4205 4206 4207 4208 4209 4210
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
4211 4212
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
4213
{
4214 4215 4216 4217
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4218 4219 4220 4221 4222 4223 4224 4225
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
4226
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4227 4228 4229 4230 4231 4232 4233 4234
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
4235
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4236
{
4237
	struct task_struct *p;
4238
	int retval;
L
Linus Torvalds 已提交
4239 4240

	if (pid < 0)
4241
		return -EINVAL;
L
Linus Torvalds 已提交
4242 4243

	retval = -ESRCH;
4244
	rcu_read_lock();
L
Linus Torvalds 已提交
4245 4246 4247 4248
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4249 4250
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4251
	}
4252
	rcu_read_unlock();
L
Linus Torvalds 已提交
4253 4254 4255 4256
	return retval;
}

/**
4257
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4258 4259 4260
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
4261
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4262 4263
{
	struct sched_param lp;
4264
	struct task_struct *p;
4265
	int retval;
L
Linus Torvalds 已提交
4266 4267

	if (!param || pid < 0)
4268
		return -EINVAL;
L
Linus Torvalds 已提交
4269

4270
	rcu_read_lock();
L
Linus Torvalds 已提交
4271 4272 4273 4274 4275 4276 4277 4278 4279 4280
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
4281
	rcu_read_unlock();
L
Linus Torvalds 已提交
4282 4283 4284 4285 4286 4287 4288 4289 4290

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4291
	rcu_read_unlock();
L
Linus Torvalds 已提交
4292 4293 4294
	return retval;
}

4295
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4296
{
4297
	cpumask_var_t cpus_allowed, new_mask;
4298 4299
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4300

4301
	get_online_cpus();
4302
	rcu_read_lock();
L
Linus Torvalds 已提交
4303 4304 4305

	p = find_process_by_pid(pid);
	if (!p) {
4306
		rcu_read_unlock();
4307
		put_online_cpus();
L
Linus Torvalds 已提交
4308 4309 4310
		return -ESRCH;
	}

4311
	/* Prevent p going away */
L
Linus Torvalds 已提交
4312
	get_task_struct(p);
4313
	rcu_read_unlock();
L
Linus Torvalds 已提交
4314

4315 4316 4317 4318 4319 4320 4321 4322
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4323
	retval = -EPERM;
4324
	if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
L
Linus Torvalds 已提交
4325 4326
		goto out_unlock;

4327
	retval = security_task_setscheduler(p);
4328 4329 4330
	if (retval)
		goto out_unlock;

4331 4332
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Peter Zijlstra 已提交
4333
again:
4334
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
4335

P
Paul Menage 已提交
4336
	if (!retval) {
4337 4338
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4339 4340 4341 4342 4343
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4344
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4345 4346 4347
			goto again;
		}
	}
L
Linus Torvalds 已提交
4348
out_unlock:
4349 4350 4351 4352
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4353
	put_task_struct(p);
4354
	put_online_cpus();
L
Linus Torvalds 已提交
4355 4356 4357 4358
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4359
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4360
{
4361 4362 4363 4364 4365
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4366 4367 4368 4369 4370 4371 4372 4373 4374
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
4375 4376
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4377
{
4378
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4379 4380
	int retval;

4381 4382
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4383

4384 4385 4386 4387 4388
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4389 4390
}

4391
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4392
{
4393
	struct task_struct *p;
4394
	unsigned long flags;
L
Linus Torvalds 已提交
4395 4396
	int retval;

4397
	get_online_cpus();
4398
	rcu_read_lock();
L
Linus Torvalds 已提交
4399 4400 4401 4402 4403 4404

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4405 4406 4407 4408
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4409
	raw_spin_lock_irqsave(&p->pi_lock, flags);
4410
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4411
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4412 4413

out_unlock:
4414
	rcu_read_unlock();
4415
	put_online_cpus();
L
Linus Torvalds 已提交
4416

4417
	return retval;
L
Linus Torvalds 已提交
4418 4419 4420 4421 4422 4423 4424 4425
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
4426 4427
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4428 4429
{
	int ret;
4430
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4431

A
Anton Blanchard 已提交
4432
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4433 4434
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4435 4436
		return -EINVAL;

4437 4438
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4439

4440 4441
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4442
		size_t retlen = min_t(size_t, len, cpumask_size());
4443 4444

		if (copy_to_user(user_mask_ptr, mask, retlen))
4445 4446
			ret = -EFAULT;
		else
4447
			ret = retlen;
4448 4449
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4450

4451
	return ret;
L
Linus Torvalds 已提交
4452 4453 4454 4455 4456
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4457 4458
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4459
 */
4460
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4461
{
4462
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4463

4464
	schedstat_inc(rq, yld_count);
4465
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4466 4467 4468 4469 4470 4471

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4472
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4473
	do_raw_spin_unlock(&rq->lock);
L
Linus Torvalds 已提交
4474 4475 4476 4477 4478 4479 4480
	preempt_enable_no_resched();

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
4481 4482 4483 4484 4485
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
4486
static void __cond_resched(void)
L
Linus Torvalds 已提交
4487
{
4488
	add_preempt_count(PREEMPT_ACTIVE);
4489
	__schedule();
4490
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4491 4492
}

4493
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4494
{
P
Peter Zijlstra 已提交
4495
	if (should_resched()) {
L
Linus Torvalds 已提交
4496 4497 4498 4499 4500
		__cond_resched();
		return 1;
	}
	return 0;
}
4501
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4502 4503

/*
4504
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4505 4506
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4507
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4508 4509 4510
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4511
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4512
{
P
Peter Zijlstra 已提交
4513
	int resched = should_resched();
J
Jan Kara 已提交
4514 4515
	int ret = 0;

4516 4517
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
4518
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4519
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4520
		if (resched)
N
Nick Piggin 已提交
4521 4522 4523
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
4524
		ret = 1;
L
Linus Torvalds 已提交
4525 4526
		spin_lock(lock);
	}
J
Jan Kara 已提交
4527
	return ret;
L
Linus Torvalds 已提交
4528
}
4529
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4530

4531
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4532 4533 4534
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
4535
	if (should_resched()) {
4536
		local_bh_enable();
L
Linus Torvalds 已提交
4537 4538 4539 4540 4541 4542
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
4543
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4544 4545 4546 4547

/**
 * yield - yield the current processor to other threads.
 *
4548
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4549 4550 4551 4552 4553 4554 4555 4556 4557
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

4558 4559 4560 4561
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
4562 4563
 * @p: target task
 * @preempt: whether task preemption is allowed or not
4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
 * Returns true if we indeed boosted the target task.
 */
bool __sched yield_to(struct task_struct *p, bool preempt)
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
	bool yielded = 0;

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
	double_rq_lock(rq, p_rq);
	while (task_rq(p) != p_rq) {
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
		goto out;

	if (curr->sched_class != p->sched_class)
		goto out;

	if (task_running(p_rq, p) || p->state)
		goto out;

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4598
	if (yielded) {
4599
		schedstat_inc(rq, yld_count);
4600 4601 4602 4603 4604 4605
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
			resched_task(p_rq->curr);
4606 4607 4608 4609 4610 4611 4612
	} else {
		/*
		 * We might have set it in task_yield_fair(), but are
		 * not going to schedule(), so don't want to skip
		 * the next update.
		 */
		rq->skip_clock_update = 0;
4613
	}
4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625

out:
	double_rq_unlock(rq, p_rq);
	local_irq_restore(flags);

	if (yielded)
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
4626
/*
I
Ingo Molnar 已提交
4627
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4628 4629 4630 4631
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
4632
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4633

4634
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4635
	atomic_inc(&rq->nr_iowait);
4636
	blk_flush_plug(current);
4637
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4638
	schedule();
4639
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4640
	atomic_dec(&rq->nr_iowait);
4641
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4642 4643 4644 4645 4646
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4647
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4648 4649
	long ret;

4650
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4651
	atomic_inc(&rq->nr_iowait);
4652
	blk_flush_plug(current);
4653
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4654
	ret = schedule_timeout(timeout);
4655
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4656
	atomic_dec(&rq->nr_iowait);
4657
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4658 4659 4660 4661 4662 4663 4664 4665 4666 4667
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
4668
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
4669 4670 4671 4672 4673 4674 4675 4676 4677
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4678
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4679
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
4693
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
4694 4695 4696 4697 4698 4699 4700 4701 4702
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4703
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4704
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
4718
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4719
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
4720
{
4721
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4722
	unsigned int time_slice;
4723 4724
	unsigned long flags;
	struct rq *rq;
4725
	int retval;
L
Linus Torvalds 已提交
4726 4727 4728
	struct timespec t;

	if (pid < 0)
4729
		return -EINVAL;
L
Linus Torvalds 已提交
4730 4731

	retval = -ESRCH;
4732
	rcu_read_lock();
L
Linus Torvalds 已提交
4733 4734 4735 4736 4737 4738 4739 4740
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4741 4742
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
4743
	task_rq_unlock(rq, p, &flags);
D
Dmitry Adamushko 已提交
4744

4745
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
4746
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4747 4748
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4749

L
Linus Torvalds 已提交
4750
out_unlock:
4751
	rcu_read_unlock();
L
Linus Torvalds 已提交
4752 4753 4754
	return retval;
}

4755
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4756

4757
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4758 4759
{
	unsigned long free = 0;
4760
	unsigned state;
L
Linus Torvalds 已提交
4761 4762

	state = p->state ? __ffs(p->state) + 1 : 0;
4763
	printk(KERN_INFO "%-15.15s %c", p->comm,
4764
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4765
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4766
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4767
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4768
	else
P
Peter Zijlstra 已提交
4769
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4770 4771
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4772
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4773
	else
P
Peter Zijlstra 已提交
4774
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4775 4776
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
4777
	free = stack_not_used(p);
L
Linus Torvalds 已提交
4778
#endif
P
Peter Zijlstra 已提交
4779
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4780
		task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
4781
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
4782

4783
	show_stack(p, NULL);
L
Linus Torvalds 已提交
4784 4785
}

I
Ingo Molnar 已提交
4786
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4787
{
4788
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4789

4790
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
4791 4792
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4793
#else
P
Peter Zijlstra 已提交
4794 4795
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4796
#endif
4797
	rcu_read_lock();
L
Linus Torvalds 已提交
4798 4799 4800
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
4801
		 * console might take a lot of time:
L
Linus Torvalds 已提交
4802 4803
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4804
		if (!state_filter || (p->state & state_filter))
4805
			sched_show_task(p);
L
Linus Torvalds 已提交
4806 4807
	} while_each_thread(g, p);

4808 4809
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4810 4811 4812
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
4813
	rcu_read_unlock();
I
Ingo Molnar 已提交
4814 4815 4816
	/*
	 * Only show locks if all tasks are dumped:
	 */
4817
	if (!state_filter)
I
Ingo Molnar 已提交
4818
		debug_show_all_locks();
L
Linus Torvalds 已提交
4819 4820
}

I
Ingo Molnar 已提交
4821 4822
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
4823
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4824 4825
}

4826 4827 4828 4829 4830 4831 4832 4833
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4834
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4835
{
4836
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4837 4838
	unsigned long flags;

4839
	raw_spin_lock_irqsave(&rq->lock, flags);
4840

I
Ingo Molnar 已提交
4841
	__sched_fork(idle);
4842
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
4843 4844
	idle->se.exec_start = sched_clock();

4845
	do_set_cpus_allowed(idle, cpumask_of(cpu));
4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
4857
	__set_task_cpu(idle, cpu);
4858
	rcu_read_unlock();
L
Linus Torvalds 已提交
4859 4860

	rq->curr = rq->idle = idle;
P
Peter Zijlstra 已提交
4861 4862
#if defined(CONFIG_SMP)
	idle->on_cpu = 1;
4863
#endif
4864
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
4865 4866

	/* Set the preempt count _outside_ the spinlocks! */
A
Al Viro 已提交
4867
	task_thread_info(idle)->preempt_count = 0;
4868

I
Ingo Molnar 已提交
4869 4870 4871 4872
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
4873
	ftrace_graph_init_idle_task(idle, cpu);
4874 4875 4876
#if defined(CONFIG_SMP)
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
4877 4878
}

L
Linus Torvalds 已提交
4879
#ifdef CONFIG_SMP
4880 4881 4882 4883
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
	if (p->sched_class && p->sched_class->set_cpus_allowed)
		p->sched_class->set_cpus_allowed(p, new_mask);
4884 4885 4886

	cpumask_copy(&p->cpus_allowed, new_mask);
	p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
4887 4888
}

L
Linus Torvalds 已提交
4889 4890 4891
/*
 * This is how migration works:
 *
4892 4893 4894 4895 4896 4897
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
4898
 *    it and puts it into the right queue.
4899 4900
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
4901 4902 4903 4904 4905 4906 4907 4908
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
4909
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
4910 4911
 * call is not atomic; no spinlocks may be held.
 */
4912
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
4913 4914
{
	unsigned long flags;
4915
	struct rq *rq;
4916
	unsigned int dest_cpu;
4917
	int ret = 0;
L
Linus Torvalds 已提交
4918 4919

	rq = task_rq_lock(p, &flags);
4920

4921 4922 4923
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

4924
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
4925 4926 4927 4928
		ret = -EINVAL;
		goto out;
	}

4929
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
4930 4931 4932 4933
		ret = -EINVAL;
		goto out;
	}

4934
	do_set_cpus_allowed(p, new_mask);
4935

L
Linus Torvalds 已提交
4936
	/* Can the task run on the task's current CPU? If so, we're done */
4937
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
4938 4939
		goto out;

4940
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4941
	if (p->on_rq) {
4942
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
4943
		/* Need help from migration thread: drop lock and wait. */
4944
		task_rq_unlock(rq, p, &flags);
4945
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
4946 4947 4948 4949
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
4950
	task_rq_unlock(rq, p, &flags);
4951

L
Linus Torvalds 已提交
4952 4953
	return ret;
}
4954
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
4955 4956

/*
I
Ingo Molnar 已提交
4957
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
4958 4959 4960 4961 4962 4963
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4964 4965
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4966
 */
4967
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4968
{
4969
	struct rq *rq_dest, *rq_src;
4970
	int ret = 0;
L
Linus Torvalds 已提交
4971

4972
	if (unlikely(!cpu_active(dest_cpu)))
4973
		return ret;
L
Linus Torvalds 已提交
4974 4975 4976 4977

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

4978
	raw_spin_lock(&p->pi_lock);
L
Linus Torvalds 已提交
4979 4980 4981
	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
4982
		goto done;
L
Linus Torvalds 已提交
4983
	/* Affinity changed (again). */
4984
	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
L
Linus Torvalds 已提交
4985
		goto fail;
L
Linus Torvalds 已提交
4986

4987 4988 4989 4990
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
P
Peter Zijlstra 已提交
4991
	if (p->on_rq) {
4992
		deactivate_task(rq_src, p, 0);
4993
		set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
4994
		activate_task(rq_dest, p, 0);
4995
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
4996
	}
L
Linus Torvalds 已提交
4997
done:
4998
	ret = 1;
L
Linus Torvalds 已提交
4999
fail:
L
Linus Torvalds 已提交
5000
	double_rq_unlock(rq_src, rq_dest);
5001
	raw_spin_unlock(&p->pi_lock);
5002
	return ret;
L
Linus Torvalds 已提交
5003 5004 5005
}

/*
5006 5007 5008
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
5009
 */
5010
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
5011
{
5012
	struct migration_arg *arg = data;
5013

5014 5015 5016 5017
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
5018
	local_irq_disable();
5019
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5020
	local_irq_enable();
L
Linus Torvalds 已提交
5021
	return 0;
5022 5023
}

L
Linus Torvalds 已提交
5024
#ifdef CONFIG_HOTPLUG_CPU
5025

5026
/*
5027 5028
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
5029
 */
5030
void idle_task_exit(void)
L
Linus Torvalds 已提交
5031
{
5032
	struct mm_struct *mm = current->active_mm;
5033

5034
	BUG_ON(cpu_online(smp_processor_id()));
5035

5036 5037 5038
	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
L
Linus Torvalds 已提交
5039 5040 5041 5042 5043 5044 5045 5046 5047
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5048
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5049
{
5050
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
L
Linus Torvalds 已提交
5051 5052 5053 5054 5055

	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
}

I
Ingo Molnar 已提交
5056
/*
5057
 * remove the tasks which were accounted by rq from calc_load_tasks.
L
Linus Torvalds 已提交
5058
 */
5059
static void calc_global_load_remove(struct rq *rq)
L
Linus Torvalds 已提交
5060
{
5061 5062
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
	rq->calc_load_active = 0;
L
Linus Torvalds 已提交
5063 5064
}

5065
/*
5066 5067 5068 5069 5070 5071
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
5072
 */
5073
static void migrate_tasks(unsigned int dead_cpu)
L
Linus Torvalds 已提交
5074
{
5075
	struct rq *rq = cpu_rq(dead_cpu);
5076 5077
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
5078 5079

	/*
5080 5081 5082 5083 5084 5085 5086
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
5087
	 */
5088
	rq->stop = NULL;
5089

5090 5091 5092
	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);

I
Ingo Molnar 已提交
5093
	for ( ; ; ) {
5094 5095 5096 5097 5098
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
5099
			break;
5100

5101
		next = pick_next_task(rq);
5102
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
5103
		next->sched_class->put_prev_task(rq, next);
5104

5105 5106 5107 5108 5109 5110 5111
		/* Find suitable destination for @next, with force if needed. */
		dest_cpu = select_fallback_rq(dead_cpu, next);
		raw_spin_unlock(&rq->lock);

		__migrate_task(next, dead_cpu, dest_cpu);

		raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
5112
	}
5113

5114
	rq->stop = stop;
5115
}
5116

L
Linus Torvalds 已提交
5117 5118
#endif /* CONFIG_HOTPLUG_CPU */

5119 5120 5121
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5122 5123
	{
		.procname	= "sched_domain",
5124
		.mode		= 0555,
5125
	},
5126
	{}
5127 5128 5129
};

static struct ctl_table sd_ctl_root[] = {
5130 5131
	{
		.procname	= "kernel",
5132
		.mode		= 0555,
5133 5134
		.child		= sd_ctl_dir,
	},
5135
	{}
5136 5137 5138 5139 5140
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5141
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5142 5143 5144 5145

	return entry;
}

5146 5147
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5148
	struct ctl_table *entry;
5149

5150 5151 5152
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5153
	 * will always be set. In the lowest directory the names are
5154 5155 5156
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5157 5158
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5159 5160 5161
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5162 5163 5164 5165 5166

	kfree(*tablep);
	*tablep = NULL;
}

5167
static void
5168
set_table_entry(struct ctl_table *entry,
5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5182
	struct ctl_table *table = sd_alloc_ctl_entry(13);
5183

5184 5185 5186
	if (table == NULL)
		return NULL;

5187
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5188
		sizeof(long), 0644, proc_doulongvec_minmax);
5189
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5190
		sizeof(long), 0644, proc_doulongvec_minmax);
5191
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5192
		sizeof(int), 0644, proc_dointvec_minmax);
5193
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5194
		sizeof(int), 0644, proc_dointvec_minmax);
5195
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5196
		sizeof(int), 0644, proc_dointvec_minmax);
5197
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5198
		sizeof(int), 0644, proc_dointvec_minmax);
5199
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5200
		sizeof(int), 0644, proc_dointvec_minmax);
5201
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5202
		sizeof(int), 0644, proc_dointvec_minmax);
5203
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5204
		sizeof(int), 0644, proc_dointvec_minmax);
5205
	set_table_entry(&table[9], "cache_nice_tries",
5206 5207
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5208
	set_table_entry(&table[10], "flags", &sd->flags,
5209
		sizeof(int), 0644, proc_dointvec_minmax);
5210 5211 5212
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
5213 5214 5215 5216

	return table;
}

5217
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5218 5219 5220 5221 5222 5223 5224 5225 5226
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5227 5228
	if (table == NULL)
		return NULL;
5229 5230 5231 5232 5233

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5234
		entry->mode = 0555;
5235 5236 5237 5238 5239 5240 5241 5242
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5243
static void register_sched_domain_sysctl(void)
5244
{
5245
	int i, cpu_num = num_possible_cpus();
5246 5247 5248
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5249 5250 5251
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5252 5253 5254
	if (entry == NULL)
		return;

5255
	for_each_possible_cpu(i) {
5256 5257
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5258
		entry->mode = 0555;
5259
		entry->child = sd_alloc_ctl_cpu_table(i);
5260
		entry++;
5261
	}
5262 5263

	WARN_ON(sd_sysctl_header);
5264 5265
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5266

5267
/* may be called multiple times per register */
5268 5269
static void unregister_sched_domain_sysctl(void)
{
5270 5271
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5272
	sd_sysctl_header = NULL;
5273 5274
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5275
}
5276
#else
5277 5278 5279 5280
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5281 5282 5283 5284
{
}
#endif

5285 5286 5287 5288 5289
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5290
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5310
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5311 5312 5313 5314
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5315 5316 5317 5318
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5319 5320
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5321
{
5322
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5323
	unsigned long flags;
5324
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5325

5326
	switch (action & ~CPU_TASKS_FROZEN) {
5327

L
Linus Torvalds 已提交
5328
	case CPU_UP_PREPARE:
5329
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5330
		break;
5331

L
Linus Torvalds 已提交
5332
	case CPU_ONLINE:
5333
		/* Update our root-domain */
5334
		raw_spin_lock_irqsave(&rq->lock, flags);
5335
		if (rq->rd) {
5336
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5337 5338

			set_rq_online(rq);
5339
		}
5340
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5341
		break;
5342

L
Linus Torvalds 已提交
5343
#ifdef CONFIG_HOTPLUG_CPU
5344
	case CPU_DYING:
5345
		sched_ttwu_pending();
G
Gregory Haskins 已提交
5346
		/* Update our root-domain */
5347
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5348
		if (rq->rd) {
5349
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5350
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5351
		}
5352 5353
		migrate_tasks(cpu);
		BUG_ON(rq->nr_running != 1); /* the migration thread */
5354
		raw_spin_unlock_irqrestore(&rq->lock, flags);
5355 5356 5357

		migrate_nr_uninterruptible(rq);
		calc_global_load_remove(rq);
G
Gregory Haskins 已提交
5358
		break;
L
Linus Torvalds 已提交
5359 5360
#endif
	}
5361 5362 5363

	update_max_interval();

L
Linus Torvalds 已提交
5364 5365 5366
	return NOTIFY_OK;
}

5367 5368 5369
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5370
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5371
 */
5372
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5373
	.notifier_call = migration_call,
5374
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
5375 5376
};

5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401
static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		set_cpu_active((long)hcpu, false);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

5402
static int __init migration_init(void)
L
Linus Torvalds 已提交
5403 5404
{
	void *cpu = (void *)(long)smp_processor_id();
5405
	int err;
5406

5407
	/* Initialize migration for the boot CPU */
5408 5409
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5410 5411
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5412

5413 5414 5415 5416
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

5417
	return 0;
L
Linus Torvalds 已提交
5418
}
5419
early_initcall(migration_init);
L
Linus Torvalds 已提交
5420 5421 5422
#endif

#ifdef CONFIG_SMP
5423

5424 5425
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

5426
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5427

5428 5429 5430 5431 5432 5433 5434 5435 5436 5437
static __read_mostly int sched_domain_debug_enabled;

static int __init sched_domain_debug_setup(char *str)
{
	sched_domain_debug_enabled = 1;

	return 0;
}
early_param("sched_debug", sched_domain_debug_setup);

5438
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5439
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5440
{
I
Ingo Molnar 已提交
5441
	struct sched_group *group = sd->groups;
5442
	char str[256];
L
Linus Torvalds 已提交
5443

R
Rusty Russell 已提交
5444
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5445
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5446 5447 5448 5449

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5450
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5451
		if (sd->parent)
P
Peter Zijlstra 已提交
5452 5453
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5454
		return -1;
N
Nick Piggin 已提交
5455 5456
	}

P
Peter Zijlstra 已提交
5457
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
5458

5459
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5460 5461
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5462
	}
5463
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5464 5465
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5466
	}
L
Linus Torvalds 已提交
5467

I
Ingo Molnar 已提交
5468
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5469
	do {
I
Ingo Molnar 已提交
5470
		if (!group) {
P
Peter Zijlstra 已提交
5471 5472
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5473 5474 5475
			break;
		}

5476
		if (!group->sgp->power) {
P
Peter Zijlstra 已提交
5477 5478 5479
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
5480 5481
			break;
		}
L
Linus Torvalds 已提交
5482

5483
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5484 5485
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
5486 5487
			break;
		}
L
Linus Torvalds 已提交
5488

5489
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5490 5491
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
5492 5493
			break;
		}
L
Linus Torvalds 已提交
5494

5495
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
5496

R
Rusty Russell 已提交
5497
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5498

P
Peter Zijlstra 已提交
5499
		printk(KERN_CONT " %s", str);
5500
		if (group->sgp->power != SCHED_POWER_SCALE) {
P
Peter Zijlstra 已提交
5501
			printk(KERN_CONT " (cpu_power = %d)",
5502
				group->sgp->power);
5503
		}
L
Linus Torvalds 已提交
5504

I
Ingo Molnar 已提交
5505 5506
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
5507
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5508

5509
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
5510
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5511

5512 5513
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
5514 5515
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
5516 5517
	return 0;
}
L
Linus Torvalds 已提交
5518

I
Ingo Molnar 已提交
5519 5520 5521
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5522

5523 5524 5525
	if (!sched_domain_debug_enabled)
		return;

I
Ingo Molnar 已提交
5526 5527 5528 5529
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5530

I
Ingo Molnar 已提交
5531 5532 5533
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
5534
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
I
Ingo Molnar 已提交
5535
			break;
L
Linus Torvalds 已提交
5536 5537
		level++;
		sd = sd->parent;
5538
		if (!sd)
I
Ingo Molnar 已提交
5539 5540
			break;
	}
L
Linus Torvalds 已提交
5541
}
5542
#else /* !CONFIG_SCHED_DEBUG */
5543
# define sched_domain_debug(sd, cpu) do { } while (0)
5544
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
5545

5546
static int sd_degenerate(struct sched_domain *sd)
5547
{
5548
	if (cpumask_weight(sched_domain_span(sd)) == 1)
5549 5550 5551 5552 5553 5554
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5555 5556 5557
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5558 5559 5560 5561 5562
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
5563
	if (sd->flags & (SD_WAKE_AFFINE))
5564 5565 5566 5567 5568
		return 0;

	return 1;
}

5569 5570
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5571 5572 5573 5574 5575 5576
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

5577
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5578 5579 5580 5581 5582 5583 5584
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5585 5586 5587
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5588 5589
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
5590 5591 5592 5593 5594 5595 5596
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

5597
static void free_rootdomain(struct rcu_head *rcu)
5598
{
5599
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5600

5601
	cpupri_cleanup(&rd->cpupri);
5602 5603 5604 5605 5606 5607
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
5608 5609
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
5610
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
5611 5612
	unsigned long flags;

5613
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5614 5615

	if (rq->rd) {
I
Ingo Molnar 已提交
5616
		old_rd = rq->rd;
G
Gregory Haskins 已提交
5617

5618
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5619
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5620

5621
		cpumask_clear_cpu(rq->cpu, old_rd->span);
5622

I
Ingo Molnar 已提交
5623 5624 5625 5626 5627 5628 5629
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
5630 5631 5632 5633 5634
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

5635
	cpumask_set_cpu(rq->cpu, rd->span);
5636
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5637
		set_rq_online(rq);
G
Gregory Haskins 已提交
5638

5639
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
5640 5641

	if (old_rd)
5642
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
5643 5644
}

5645
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
5646 5647 5648
{
	memset(rd, 0, sizeof(*rd));

5649
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5650
		goto out;
5651
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5652
		goto free_span;
5653
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5654
		goto free_online;
5655

5656
	if (cpupri_init(&rd->cpupri) != 0)
5657
		goto free_rto_mask;
5658
	return 0;
5659

5660 5661
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
5662 5663 5664 5665
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
5666
out:
5667
	return -ENOMEM;
G
Gregory Haskins 已提交
5668 5669
}

5670 5671 5672 5673 5674 5675
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
struct root_domain def_root_domain;

G
Gregory Haskins 已提交
5676 5677
static void init_defrootdomain(void)
{
5678
	init_rootdomain(&def_root_domain);
5679

G
Gregory Haskins 已提交
5680 5681 5682
	atomic_set(&def_root_domain.refcount, 1);
}

5683
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
5684 5685 5686 5687 5688 5689 5690
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

5691
	if (init_rootdomain(rd) != 0) {
5692 5693 5694
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
5695 5696 5697 5698

	return rd;
}

5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717
static void free_sched_groups(struct sched_group *sg, int free_sgp)
{
	struct sched_group *tmp, *first;

	if (!sg)
		return;

	first = sg;
	do {
		tmp = sg->next;

		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
			kfree(sg->sgp);

		kfree(sg);
		sg = tmp;
	} while (sg != first);
}

5718 5719 5720
static void free_sched_domain(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5721 5722 5723 5724 5725 5726 5727 5728

	/*
	 * If its an overlapping domain it has private groups, iterate and
	 * nuke them all.
	 */
	if (sd->flags & SD_OVERLAP) {
		free_sched_groups(sd->groups, 1);
	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5729
		kfree(sd->groups->sgp);
5730
		kfree(sd->groups);
5731
	}
5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745
	kfree(sd);
}

static void destroy_sched_domain(struct sched_domain *sd, int cpu)
{
	call_rcu(&sd->rcu, free_sched_domain);
}

static void destroy_sched_domains(struct sched_domain *sd, int cpu)
{
	for (; sd; sd = sd->parent)
		destroy_sched_domain(sd, cpu);
}

L
Linus Torvalds 已提交
5746
/*
I
Ingo Molnar 已提交
5747
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
5748 5749
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
5750 5751
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
5752
{
5753
	struct rq *rq = cpu_rq(cpu);
5754 5755 5756
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
5757
	for (tmp = sd; tmp; ) {
5758 5759 5760
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5761

5762
		if (sd_parent_degenerate(tmp, parent)) {
5763
			tmp->parent = parent->parent;
5764 5765
			if (parent->parent)
				parent->parent->child = tmp;
5766
			destroy_sched_domain(parent, cpu);
5767 5768
		} else
			tmp = tmp->parent;
5769 5770
	}

5771
	if (sd && sd_degenerate(sd)) {
5772
		tmp = sd;
5773
		sd = sd->parent;
5774
		destroy_sched_domain(tmp, cpu);
5775 5776 5777
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5778

5779
	sched_domain_debug(sd, cpu);
L
Linus Torvalds 已提交
5780

G
Gregory Haskins 已提交
5781
	rq_attach_root(rq, rd);
5782
	tmp = rq->sd;
N
Nick Piggin 已提交
5783
	rcu_assign_pointer(rq->sd, sd);
5784
	destroy_sched_domains(tmp, cpu);
L
Linus Torvalds 已提交
5785 5786 5787
}

/* cpus with isolated domains */
5788
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
5789 5790 5791 5792

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
5793
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
5794
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
5795 5796 5797
	return 1;
}

I
Ingo Molnar 已提交
5798
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5799

5800
#ifdef CONFIG_NUMA
5801

5802 5803 5804 5805 5806
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
5807
 * Find the next node to include in a given scheduling domain. Simply
5808 5809 5810 5811
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
5812
static int find_next_best_node(int node, nodemask_t *used_nodes)
5813
{
5814
	int i, n, val, min_val, best_node = -1;
5815 5816 5817

	min_val = INT_MAX;

5818
	for (i = 0; i < nr_node_ids; i++) {
5819
		/* Start at @node */
5820
		n = (node + i) % nr_node_ids;
5821 5822 5823 5824 5825

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
5826
		if (node_isset(n, *used_nodes))
5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

5838 5839
	if (best_node != -1)
		node_set(best_node, *used_nodes);
5840 5841 5842 5843 5844 5845
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
5846
 * @span: resulting cpumask
5847
 *
I
Ingo Molnar 已提交
5848
 * Given a node, construct a good cpumask for its sched_domain to span. It
5849 5850 5851
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
5852
static void sched_domain_node_span(int node, struct cpumask *span)
5853
{
5854
	nodemask_t used_nodes;
5855
	int i;
5856

5857
	cpumask_clear(span);
5858
	nodes_clear(used_nodes);
5859

5860
	cpumask_or(span, span, cpumask_of_node(node));
5861
	node_set(node, used_nodes);
5862 5863

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5864
		int next_node = find_next_best_node(node, &used_nodes);
5865 5866
		if (next_node < 0)
			break;
5867
		cpumask_or(span, span, cpumask_of_node(next_node));
5868 5869
	}
}
5870 5871 5872 5873 5874 5875 5876 5877 5878

static const struct cpumask *cpu_node_mask(int cpu)
{
	lockdep_assert_held(&sched_domains_mutex);

	sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);

	return sched_domains_tmpmask;
}
5879 5880 5881 5882 5883

static const struct cpumask *cpu_allnodes_mask(int cpu)
{
	return cpu_possible_mask;
}
5884
#endif /* CONFIG_NUMA */
5885

5886 5887 5888 5889 5890
static const struct cpumask *cpu_cpu_mask(int cpu)
{
	return cpumask_of_node(cpu_to_node(cpu));
}

5891
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5892

5893 5894 5895
struct sd_data {
	struct sched_domain **__percpu sd;
	struct sched_group **__percpu sg;
5896
	struct sched_group_power **__percpu sgp;
5897 5898
};

5899
struct s_data {
5900
	struct sched_domain ** __percpu sd;
5901 5902 5903
	struct root_domain	*rd;
};

5904 5905
enum s_alloc {
	sa_rootdomain,
5906
	sa_sd,
5907
	sa_sd_storage,
5908 5909 5910
	sa_none,
};

5911 5912 5913
struct sched_domain_topology_level;

typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5914 5915
typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);

5916 5917
#define SDTL_OVERLAP	0x01

5918
struct sched_domain_topology_level {
5919 5920
	sched_domain_init_f init;
	sched_domain_mask_f mask;
5921
	int		    flags;
5922
	struct sd_data      data;
5923 5924
};

5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943
static int
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered = sched_domains_tmpmask;
	struct sd_data *sdd = sd->private;
	struct sched_domain *child;
	int i;

	cpumask_clear(covered);

	for_each_cpu(i, span) {
		struct cpumask *sg_span;

		if (cpumask_test_cpu(i, covered))
			continue;

		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5944
				GFP_KERNEL, cpu_to_node(cpu));
5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982

		if (!sg)
			goto fail;

		sg_span = sched_group_cpus(sg);

		child = *per_cpu_ptr(sdd->sd, i);
		if (child->child) {
			child = child->child;
			cpumask_copy(sg_span, sched_domain_span(child));
		} else
			cpumask_set_cpu(i, sg_span);

		cpumask_or(covered, covered, sg_span);

		sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
		atomic_inc(&sg->sgp->ref);

		if (cpumask_test_cpu(cpu, sg_span))
			groups = sg;

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
		last->next = first;
	}
	sd->groups = groups;

	return 0;

fail:
	free_sched_groups(first, 0);

	return -ENOMEM;
}

5983
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
5984
{
5985 5986
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
5987

5988 5989
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
5990

5991
	if (sg) {
5992
		*sg = *per_cpu_ptr(sdd->sg, cpu);
5993
		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5994
		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5995
	}
5996 5997

	return cpu;
5998 5999
}

6000
/*
6001 6002 6003
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
6004 6005
 *
 * Assumes the sched_domain tree is fully constructed
6006
 */
6007 6008
static int
build_sched_groups(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
6009
{
6010 6011 6012
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
6013
	struct cpumask *covered;
6014
	int i;
6015

6016 6017 6018 6019 6020 6021
	get_group(cpu, sdd, &sd->groups);
	atomic_inc(&sd->groups->ref);

	if (cpu != cpumask_first(sched_domain_span(sd)))
		return 0;

6022 6023 6024
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

6025
	cpumask_clear(covered);
6026

6027 6028 6029 6030
	for_each_cpu(i, span) {
		struct sched_group *sg;
		int group = get_group(i, sdd, &sg);
		int j;
6031

6032 6033
		if (cpumask_test_cpu(i, covered))
			continue;
6034

6035
		cpumask_clear(sched_group_cpus(sg));
6036
		sg->sgp->power = 0;
6037

6038 6039 6040
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
6041

6042 6043 6044
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
6045

6046 6047 6048 6049 6050 6051 6052
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
6053 6054

	return 0;
6055
}
6056

6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
6069
	struct sched_group *sg = sd->groups;
6070

6071 6072 6073 6074 6075 6076
	WARN_ON(!sd || !sg);

	do {
		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
		sg = sg->next;
	} while (sg != sd->groups);
6077

6078 6079
	if (cpu != group_first_cpu(sg))
		return;
6080

6081
	update_group_power(sd, cpu);
6082
	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
6083 6084
}

6085 6086 6087
int __weak arch_sd_sibling_asym_packing(void)
{
       return 0*SD_ASYM_PACKING;
6088 6089
}

6090 6091 6092 6093 6094
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

6095 6096 6097 6098 6099 6100
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

6101 6102 6103 6104 6105 6106 6107 6108 6109
#define SD_INIT_FUNC(type)						\
static noinline struct sched_domain *					\
sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
{									\
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
	*sd = SD_##type##_INIT;						\
	SD_INIT_NAME(sd, type);						\
	sd->private = &tl->data;					\
	return sd;							\
6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif
6123 6124 6125
#ifdef CONFIG_SCHED_BOOK
 SD_INIT_FUNC(BOOK)
#endif
6126

6127
static int default_relax_domain_level = -1;
6128
int sched_domain_level_max;
6129 6130 6131

static int __init setup_relax_domain_level(char *str)
{
6132 6133 6134
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
6135
	if (val < sched_domain_level_max)
6136 6137
		default_relax_domain_level = val;

6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
6156
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6157 6158
	} else {
		/* turn on idle balance on this domain */
6159
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6160 6161 6162
	}
}

6163 6164 6165
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

6166 6167 6168 6169 6170
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
6171 6172
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
6173 6174
	case sa_sd:
		free_percpu(d->sd); /* fall through */
6175
	case sa_sd_storage:
6176
		__sdt_free(cpu_map); /* fall through */
6177 6178 6179 6180
	case sa_none:
		break;
	}
}
6181

6182 6183 6184
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
6185 6186
	memset(d, 0, sizeof(*d));

6187 6188
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
6189 6190 6191
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
6192
	d->rd = alloc_rootdomain();
6193
	if (!d->rd)
6194
		return sa_sd;
6195 6196
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
6197

6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

6210
	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6211
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6212 6213

	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6214
		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
6215 6216
}

6217 6218
#ifdef CONFIG_SCHED_SMT
static const struct cpumask *cpu_smt_mask(int cpu)
6219
{
6220
	return topology_thread_cpumask(cpu);
6221
}
6222
#endif
6223

6224 6225 6226
/*
 * Topology list, bottom-up.
 */
6227
static struct sched_domain_topology_level default_topology[] = {
6228 6229
#ifdef CONFIG_SCHED_SMT
	{ sd_init_SIBLING, cpu_smt_mask, },
6230
#endif
6231
#ifdef CONFIG_SCHED_MC
6232
	{ sd_init_MC, cpu_coregroup_mask, },
6233
#endif
6234 6235 6236 6237 6238
#ifdef CONFIG_SCHED_BOOK
	{ sd_init_BOOK, cpu_book_mask, },
#endif
	{ sd_init_CPU, cpu_cpu_mask, },
#ifdef CONFIG_NUMA
6239
	{ sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
6240
	{ sd_init_ALLNODES, cpu_allnodes_mask, },
L
Linus Torvalds 已提交
6241
#endif
6242 6243 6244 6245 6246
	{ NULL, },
};

static struct sched_domain_topology_level *sched_domain_topology = default_topology;

6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for (tl = sched_domain_topology; tl->init; tl++) {
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

6263 6264 6265 6266
		sdd->sgp = alloc_percpu(struct sched_group_power *);
		if (!sdd->sgp)
			return -ENOMEM;

6267 6268 6269
		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_group *sg;
6270
			struct sched_group_power *sgp;
6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284

		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sg, j) = sg;
6285 6286 6287 6288 6289 6290 6291

			sgp = kzalloc_node(sizeof(struct sched_group_power),
					GFP_KERNEL, cpu_to_node(j));
			if (!sgp)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sgp, j) = sgp;
6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for (tl = sched_domain_topology; tl->init; tl++) {
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
6307 6308 6309
			struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
			if (sd && (sd->flags & SD_OVERLAP))
				free_sched_groups(sd->groups, 0);
6310
			kfree(*per_cpu_ptr(sdd->sd, j));
6311
			kfree(*per_cpu_ptr(sdd->sg, j));
6312
			kfree(*per_cpu_ptr(sdd->sgp, j));
6313 6314 6315
		}
		free_percpu(sdd->sd);
		free_percpu(sdd->sg);
6316
		free_percpu(sdd->sgp);
6317 6318 6319
	}
}

6320 6321
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
		struct s_data *d, const struct cpumask *cpu_map,
6322
		struct sched_domain_attr *attr, struct sched_domain *child,
6323 6324
		int cpu)
{
6325
	struct sched_domain *sd = tl->init(tl, cpu);
6326
	if (!sd)
6327
		return child;
6328 6329 6330

	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6331 6332 6333
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6334
		child->parent = sd;
6335
	}
6336
	sd->child = child;
6337 6338 6339 6340

	return sd;
}

6341 6342 6343 6344
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
6345 6346
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
6347 6348
{
	enum s_alloc alloc_state = sa_none;
6349
	struct sched_domain *sd;
6350
	struct s_data d;
6351
	int i, ret = -ENOMEM;
6352

6353 6354 6355
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
6356

6357
	/* Set up domains for cpus specified by the cpu_map. */
6358
	for_each_cpu(i, cpu_map) {
6359 6360
		struct sched_domain_topology_level *tl;

6361
		sd = NULL;
6362
		for (tl = sched_domain_topology; tl->init; tl++) {
6363
			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6364 6365
			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
				sd->flags |= SD_OVERLAP;
6366 6367
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
				break;
6368
		}
6369

6370 6371 6372
		while (sd->child)
			sd = sd->child;

6373
		*per_cpu_ptr(d.sd, i) = sd;
6374 6375 6376 6377 6378 6379
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6380 6381 6382 6383 6384 6385 6386
			if (sd->flags & SD_OVERLAP) {
				if (build_overlap_sched_groups(sd, i))
					goto error;
			} else {
				if (build_sched_groups(sd, i))
					goto error;
			}
6387
		}
6388
	}
6389

L
Linus Torvalds 已提交
6390
	/* Calculate CPU power for physical packages and nodes */
6391 6392 6393
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
6394

6395 6396
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
6397
			init_sched_groups_power(i, sd);
6398
		}
6399
	}
6400

L
Linus Torvalds 已提交
6401
	/* Attach the domains */
6402
	rcu_read_lock();
6403
	for_each_cpu(i, cpu_map) {
6404
		sd = *per_cpu_ptr(d.sd, i);
6405
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
6406
	}
6407
	rcu_read_unlock();
6408

6409
	ret = 0;
6410
error:
6411
	__free_domain_allocs(&d, alloc_state, cpu_map);
6412
	return ret;
L
Linus Torvalds 已提交
6413
}
P
Paul Jackson 已提交
6414

6415
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
6416
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
6417 6418
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
6419 6420 6421

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
6422 6423
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
6424
 */
6425
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
6426

6427 6428 6429 6430 6431 6432
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
6433
{
6434
	return 0;
6435 6436
}

6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

6462
/*
I
Ingo Molnar 已提交
6463
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6464 6465
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6466
 */
6467
static int init_sched_domains(const struct cpumask *cpu_map)
6468
{
6469 6470
	int err;

6471
	arch_update_cpu_topology();
P
Paul Jackson 已提交
6472
	ndoms_cur = 1;
6473
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
6474
	if (!doms_cur)
6475 6476
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6477
	dattr_cur = NULL;
6478
	err = build_sched_domains(doms_cur[0], NULL);
6479
	register_sched_domain_sysctl();
6480 6481

	return err;
6482 6483 6484 6485 6486 6487
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6488
static void detach_destroy_domains(const struct cpumask *cpu_map)
6489 6490 6491
{
	int i;

6492
	rcu_read_lock();
6493
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
6494
		cpu_attach_domain(NULL, &def_root_domain, i);
6495
	rcu_read_unlock();
6496 6497
}

6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
6514 6515
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
6516
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
6517 6518 6519
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
6520
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
6521 6522 6523
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
6524 6525 6526
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
6527 6528 6529 6530 6531 6532
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
6533
 *
6534
 * If doms_new == NULL it will be replaced with cpu_online_mask.
6535 6536
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
6537
 *
P
Paul Jackson 已提交
6538 6539
 * Call with hotplug lock held
 */
6540
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6541
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
6542
{
6543
	int i, j, n;
6544
	int new_topology;
P
Paul Jackson 已提交
6545

6546
	mutex_lock(&sched_domains_mutex);
6547

6548 6549 6550
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

6551 6552 6553
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

6554
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
6555 6556 6557

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
6558
		for (j = 0; j < n && !new_topology; j++) {
6559
			if (cpumask_equal(doms_cur[i], doms_new[j])
6560
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
6561 6562 6563
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
6564
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
6565 6566 6567 6568
match1:
		;
	}

6569 6570
	if (doms_new == NULL) {
		ndoms_cur = 0;
6571
		doms_new = &fallback_doms;
6572
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6573
		WARN_ON_ONCE(dattr_new);
6574 6575
	}

P
Paul Jackson 已提交
6576 6577
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
6578
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6579
			if (cpumask_equal(doms_new[i], doms_cur[j])
6580
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
6581 6582 6583
				goto match2;
		}
		/* no match - add a new doms_new */
6584
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
6585 6586 6587 6588 6589
match2:
		;
	}

	/* Remember the new sched domains */
6590 6591
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
6592
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
6593
	doms_cur = doms_new;
6594
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
6595
	ndoms_cur = ndoms_new;
6596 6597

	register_sched_domain_sysctl();
6598

6599
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
6600 6601
}

6602
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6603
static void reinit_sched_domains(void)
6604
{
6605
	get_online_cpus();
6606 6607 6608 6609

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

6610
	rebuild_sched_domains();
6611
	put_online_cpus();
6612 6613 6614 6615
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
6616
	unsigned int level = 0;
6617

6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
6629 6630 6631
		return -EINVAL;

	if (smt)
6632
		sched_smt_power_savings = level;
6633
	else
6634
		sched_mc_power_savings = level;
6635

6636
	reinit_sched_domains();
6637

6638
	return count;
6639 6640 6641
}

#ifdef CONFIG_SCHED_MC
6642
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
6643
					   struct sysdev_class_attribute *attr,
6644
					   char *page)
6645 6646 6647
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
6648
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
6649
					    struct sysdev_class_attribute *attr,
6650
					    const char *buf, size_t count)
6651 6652 6653
{
	return sched_power_savings_store(buf, count, 0);
}
6654 6655 6656
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
6657 6658 6659
#endif

#ifdef CONFIG_SCHED_SMT
6660
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
6661
					    struct sysdev_class_attribute *attr,
6662
					    char *page)
6663 6664 6665
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
6666
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
6667
					     struct sysdev_class_attribute *attr,
6668
					     const char *buf, size_t count)
6669 6670 6671
{
	return sched_power_savings_store(buf, count, 1);
}
6672 6673
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
6674 6675 6676
		   sched_smt_power_savings_store);
#endif

6677
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
6693
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
6694

L
Linus Torvalds 已提交
6695
/*
6696 6697 6698
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
L
Linus Torvalds 已提交
6699
 */
6700 6701
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
6702
{
6703
	switch (action & ~CPU_TASKS_FROZEN) {
6704
	case CPU_ONLINE:
6705
	case CPU_DOWN_FAILED:
6706
		cpuset_update_active_cpus();
6707
		return NOTIFY_OK;
6708 6709 6710 6711
	default:
		return NOTIFY_DONE;
	}
}
6712

6713 6714
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
6715 6716 6717 6718 6719
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		cpuset_update_active_cpus();
		return NOTIFY_OK;
6720 6721 6722 6723 6724
	default:
		return NOTIFY_DONE;
	}
}

L
Linus Torvalds 已提交
6725 6726
void __init sched_init_smp(void)
{
6727 6728 6729
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6730
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6731

6732
	get_online_cpus();
6733
	mutex_lock(&sched_domains_mutex);
6734
	init_sched_domains(cpu_active_mask);
6735 6736 6737
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6738
	mutex_unlock(&sched_domains_mutex);
6739
	put_online_cpus();
6740

6741 6742
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6743 6744 6745 6746

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

6747
	init_hrtick();
6748 6749

	/* Move init over to a non-isolated CPU */
6750
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6751
		BUG();
I
Ingo Molnar 已提交
6752
	sched_init_granularity();
6753
	free_cpumask_var(non_isolated_cpus);
6754

6755
	init_sched_rt_class();
L
Linus Torvalds 已提交
6756 6757 6758 6759
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6760
	sched_init_granularity();
L
Linus Torvalds 已提交
6761 6762 6763
}
#endif /* CONFIG_SMP */

6764 6765
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
6766 6767 6768 6769 6770 6771 6772
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

6773 6774
#ifdef CONFIG_CGROUP_SCHED
struct task_group root_task_group;
6775
#endif
P
Peter Zijlstra 已提交
6776

6777
DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
P
Peter Zijlstra 已提交
6778

L
Linus Torvalds 已提交
6779 6780
void __init sched_init(void)
{
I
Ingo Molnar 已提交
6781
	int i, j;
6782 6783 6784 6785 6786 6787 6788
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6789
#endif
6790
#ifdef CONFIG_CPUMASK_OFFSTACK
6791
	alloc_size += num_possible_cpus() * cpumask_size();
6792 6793
#endif
	if (alloc_size) {
6794
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6795 6796

#ifdef CONFIG_FAIR_GROUP_SCHED
6797
		root_task_group.se = (struct sched_entity **)ptr;
6798 6799
		ptr += nr_cpu_ids * sizeof(void **);

6800
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6801
		ptr += nr_cpu_ids * sizeof(void **);
6802

6803
#endif /* CONFIG_FAIR_GROUP_SCHED */
6804
#ifdef CONFIG_RT_GROUP_SCHED
6805
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6806 6807
		ptr += nr_cpu_ids * sizeof(void **);

6808
		root_task_group.rt_rq = (struct rt_rq **)ptr;
6809 6810
		ptr += nr_cpu_ids * sizeof(void **);

6811
#endif /* CONFIG_RT_GROUP_SCHED */
6812 6813 6814 6815 6816 6817
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
6818
	}
I
Ingo Molnar 已提交
6819

G
Gregory Haskins 已提交
6820 6821 6822 6823
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

6824 6825 6826 6827
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
6828
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6829
			global_rt_period(), global_rt_runtime());
6830
#endif /* CONFIG_RT_GROUP_SCHED */
6831

D
Dhaval Giani 已提交
6832
#ifdef CONFIG_CGROUP_SCHED
6833 6834
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
6835
	INIT_LIST_HEAD(&root_task_group.siblings);
6836
	autogroup_init(&init_task);
6837

D
Dhaval Giani 已提交
6838
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
6839

6840 6841 6842 6843 6844 6845
#ifdef CONFIG_CGROUP_CPUACCT
	root_cpuacct.cpustat = &kernel_cpustat;
	root_cpuacct.cpuusage = alloc_percpu(u64);
	/* Too early, not expected to fail */
	BUG_ON(!root_cpuacct.cpuusage);
#endif
6846
	for_each_possible_cpu(i) {
6847
		struct rq *rq;
L
Linus Torvalds 已提交
6848 6849

		rq = cpu_rq(i);
6850
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
6851
		rq->nr_running = 0;
6852 6853
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
6854
		init_cfs_rq(&rq->cfs);
P
Peter Zijlstra 已提交
6855
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
6856
#ifdef CONFIG_FAIR_GROUP_SCHED
6857
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
6858
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
6859
		/*
6860
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
6861 6862 6863 6864
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
6865
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
6866 6867 6868
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
6869
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
6870 6871 6872
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
6873
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
6874
		 *
6875 6876
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
6877
		 */
6878
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6879
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
6880 6881 6882
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6883
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
6884
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6885
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
6886
#endif
L
Linus Torvalds 已提交
6887

I
Ingo Molnar 已提交
6888 6889
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
6890 6891 6892

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
6893
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6894
		rq->sd = NULL;
G
Gregory Haskins 已提交
6895
		rq->rd = NULL;
6896
		rq->cpu_power = SCHED_POWER_SCALE;
6897
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
6898
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6899
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6900
		rq->push_cpu = 0;
6901
		rq->cpu = i;
6902
		rq->online = 0;
6903 6904
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
6905
		rq_attach_root(rq, &def_root_domain);
6906
#ifdef CONFIG_NO_HZ
6907
		rq->nohz_flags = 0;
6908
#endif
L
Linus Torvalds 已提交
6909
#endif
P
Peter Zijlstra 已提交
6910
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
6911 6912 6913
		atomic_set(&rq->nr_iowait, 0);
	}

6914
	set_load_weight(&init_task);
6915

6916 6917 6918 6919
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

6920
#ifdef CONFIG_RT_MUTEXES
6921
	plist_head_init(&init_task.pi_waiters);
6922 6923
#endif

L
Linus Torvalds 已提交
6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
6937 6938 6939

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
6940 6941 6942 6943
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
6944

6945
#ifdef CONFIG_SMP
6946
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
R
Rusty Russell 已提交
6947 6948 6949
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6950 6951
#endif
	init_sched_fair_class();
6952

6953
	scheduler_running = 1;
L
Linus Torvalds 已提交
6954 6955
}

6956
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6957 6958
static inline int preempt_count_equals(int preempt_offset)
{
6959
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6960

A
Arnd Bergmann 已提交
6961
	return (nested == preempt_offset);
6962 6963
}

6964
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
6965 6966 6967
{
	static unsigned long prev_jiffy;	/* ratelimiting */

6968
	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6969 6970
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
6971 6972 6973 6974 6975
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
6976 6977 6978 6979 6980 6981 6982
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
6983 6984 6985 6986 6987

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
6988 6989 6990 6991 6992
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
6993 6994
static void normalize_task(struct rq *rq, struct task_struct *p)
{
P
Peter Zijlstra 已提交
6995 6996
	const struct sched_class *prev_class = p->sched_class;
	int old_prio = p->prio;
6997
	int on_rq;
6998

P
Peter Zijlstra 已提交
6999
	on_rq = p->on_rq;
7000 7001 7002 7003 7004 7005 7006
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
P
Peter Zijlstra 已提交
7007 7008

	check_class_changed(rq, p, prev_class, old_prio);
7009 7010
}

L
Linus Torvalds 已提交
7011 7012
void normalize_rt_tasks(void)
{
7013
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7014
	unsigned long flags;
7015
	struct rq *rq;
L
Linus Torvalds 已提交
7016

7017
	read_lock_irqsave(&tasklist_lock, flags);
7018
	do_each_thread(g, p) {
7019 7020 7021 7022 7023 7024
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
7025 7026
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
7027 7028 7029
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
7030
#endif
I
Ingo Molnar 已提交
7031 7032 7033 7034 7035 7036 7037 7038

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7039
			continue;
I
Ingo Molnar 已提交
7040
		}
L
Linus Torvalds 已提交
7041

7042
		raw_spin_lock(&p->pi_lock);
7043
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7044

7045
		normalize_task(rq, p);
7046

7047
		__task_rq_unlock(rq);
7048
		raw_spin_unlock(&p->pi_lock);
7049 7050
	} while_each_thread(g, p);

7051
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7052 7053 7054
}

#endif /* CONFIG_MAGIC_SYSRQ */
7055

7056
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7057
/*
7058
 * These functions are only useful for the IA64 MCA handling, or kdb.
7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7073
struct task_struct *curr_task(int cpu)
7074 7075 7076 7077
{
	return cpu_curr(cpu);
}

7078 7079 7080
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
7081 7082 7083 7084 7085 7086
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7087 7088
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7089 7090 7091 7092 7093 7094 7095
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7096
void set_curr_task(int cpu, struct task_struct *p)
7097 7098 7099 7100 7101
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7102

7103
#ifdef CONFIG_RT_GROUP_SCHED
7104 7105
#else /* !CONFIG_RT_GROUP_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
7106

D
Dhaval Giani 已提交
7107
#ifdef CONFIG_CGROUP_SCHED
7108 7109 7110
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

7111 7112 7113 7114
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
7115
	autogroup_free(tg);
7116 7117 7118 7119
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
7120
struct task_group *sched_create_group(struct task_group *parent)
7121 7122 7123 7124 7125 7126 7127 7128
{
	struct task_group *tg;
	unsigned long flags;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

7129
	if (!alloc_fair_sched_group(tg, parent))
7130 7131
		goto err;

7132
	if (!alloc_rt_sched_group(tg, parent))
7133 7134
		goto err;

7135
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7136
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
7137 7138 7139 7140 7141

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
7142
	list_add_rcu(&tg->siblings, &parent->children);
7143
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7144

7145
	return tg;
S
Srivatsa Vaddagiri 已提交
7146 7147

err:
P
Peter Zijlstra 已提交
7148
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
7149 7150 7151
	return ERR_PTR(-ENOMEM);
}

7152
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
7153
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7154 7155
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
7156
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
7157 7158
}

7159
/* Destroy runqueue etc associated with a task group */
7160
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7161
{
7162
	unsigned long flags;
7163
	int i;
S
Srivatsa Vaddagiri 已提交
7164

7165 7166
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
7167
		unregister_fair_sched_group(tg, i);
7168 7169

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7170
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
7171
	list_del_rcu(&tg->siblings);
7172
	spin_unlock_irqrestore(&task_group_lock, flags);
7173 7174

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
7175
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
7176 7177
}

7178
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7179 7180 7181
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7182 7183
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7184 7185 7186 7187 7188 7189 7190
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

7191
	running = task_current(rq, tsk);
P
Peter Zijlstra 已提交
7192
	on_rq = tsk->on_rq;
S
Srivatsa Vaddagiri 已提交
7193

7194
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
7195
		dequeue_task(rq, tsk, 0);
7196 7197
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7198

P
Peter Zijlstra 已提交
7199
#ifdef CONFIG_FAIR_GROUP_SCHED
7200 7201 7202
	if (tsk->sched_class->task_move_group)
		tsk->sched_class->task_move_group(tsk, on_rq);
	else
P
Peter Zijlstra 已提交
7203
#endif
7204
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
7205

7206 7207 7208
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
7209
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
7210

7211
	task_rq_unlock(rq, tsk, &flags);
S
Srivatsa Vaddagiri 已提交
7212
}
D
Dhaval Giani 已提交
7213
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
7214

7215 7216
#ifdef CONFIG_FAIR_GROUP_SCHED
#endif
7217

7218
#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
P
Peter Zijlstra 已提交
7219 7220 7221
static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7222
		return 1ULL << 20;
P
Peter Zijlstra 已提交
7223

P
Peter Zijlstra 已提交
7224
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
7225
}
7226 7227 7228 7229 7230 7231 7232
#endif

#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
P
Peter Zijlstra 已提交
7233

P
Peter Zijlstra 已提交
7234 7235
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
7236
{
P
Peter Zijlstra 已提交
7237
	struct task_struct *g, *p;
7238

P
Peter Zijlstra 已提交
7239
	do_each_thread(g, p) {
7240
		if (rt_task(p) && task_rq(p)->rt.tg == tg)
P
Peter Zijlstra 已提交
7241 7242
			return 1;
	} while_each_thread(g, p);
7243

P
Peter Zijlstra 已提交
7244 7245
	return 0;
}
7246

P
Peter Zijlstra 已提交
7247 7248 7249 7250 7251
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
7252

7253
static int tg_rt_schedulable(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
7254 7255 7256 7257 7258
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
7259

P
Peter Zijlstra 已提交
7260 7261
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
7262

P
Peter Zijlstra 已提交
7263 7264 7265
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
7266 7267
	}

7268 7269 7270 7271 7272
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
7273

7274 7275 7276
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
7277 7278
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
7279

P
Peter Zijlstra 已提交
7280
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7281

7282 7283 7284 7285 7286
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
7287

7288 7289 7290
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
7291 7292 7293
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7294

P
Peter Zijlstra 已提交
7295 7296 7297 7298
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
7299

P
Peter Zijlstra 已提交
7300
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7301
	}
P
Peter Zijlstra 已提交
7302

P
Peter Zijlstra 已提交
7303 7304 7305 7306
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
7307 7308
}

P
Peter Zijlstra 已提交
7309
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7310
{
7311 7312
	int ret;

P
Peter Zijlstra 已提交
7313 7314 7315 7316 7317 7318
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

7319 7320 7321 7322 7323
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7324 7325
}

7326
static int tg_set_rt_bandwidth(struct task_group *tg,
7327
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
7328
{
P
Peter Zijlstra 已提交
7329
	int i, err = 0;
P
Peter Zijlstra 已提交
7330 7331

	mutex_lock(&rt_constraints_mutex);
7332
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
7333 7334
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
7335
		goto unlock;
P
Peter Zijlstra 已提交
7336

7337
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7338 7339
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
7340 7341 7342 7343

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

7344
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7345
		rt_rq->rt_runtime = rt_runtime;
7346
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7347
	}
7348
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
7349
unlock:
7350
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
7351 7352 7353
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
7354 7355
}

7356 7357 7358 7359 7360 7361 7362 7363 7364
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

7365
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7366 7367
}

P
Peter Zijlstra 已提交
7368 7369 7370 7371
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

7372
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7373 7374
		return -1;

7375
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7376 7377 7378
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
7379 7380 7381 7382 7383 7384 7385 7386

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

7387 7388 7389
	if (rt_period == 0)
		return -EINVAL;

7390
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
7404
	u64 runtime, period;
7405 7406
	int ret = 0;

7407 7408 7409
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7410 7411 7412 7413 7414 7415 7416 7417
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
7418

7419
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
7420
	read_lock(&tasklist_lock);
7421
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
7422
	read_unlock(&tasklist_lock);
7423 7424 7425 7426
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
7427 7428 7429 7430 7431 7432 7433 7434 7435 7436

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

7437
#else /* !CONFIG_RT_GROUP_SCHED */
7438 7439
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
7440 7441 7442
	unsigned long flags;
	int i;

7443 7444 7445
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7446 7447 7448 7449 7450 7451 7452
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

7453
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7454 7455 7456
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

7457
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7458
		rt_rq->rt_runtime = global_rt_runtime();
7459
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7460
	}
7461
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7462

7463 7464
	return 0;
}
7465
#endif /* CONFIG_RT_GROUP_SCHED */
7466 7467

int sched_rt_handler(struct ctl_table *table, int write,
7468
		void __user *buffer, size_t *lenp,
7469 7470 7471 7472 7473 7474 7475 7476 7477 7478
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

7479
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
7496

7497
#ifdef CONFIG_CGROUP_SCHED
7498 7499

/* return corresponding task_group object of a cgroup */
7500
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7501
{
7502 7503
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
7504 7505 7506
}

static struct cgroup_subsys_state *
7507
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
7508
{
7509
	struct task_group *tg, *parent;
7510

7511
	if (!cgrp->parent) {
7512
		/* This is early initialization for the top cgroup */
7513
		return &root_task_group.css;
7514 7515
	}

7516 7517
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
7518 7519 7520 7521 7522 7523
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
7524 7525
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7526
{
7527
	struct task_group *tg = cgroup_tg(cgrp);
7528 7529 7530 7531

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
7532
static int
7533
cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
7534
{
7535
#ifdef CONFIG_RT_GROUP_SCHED
7536
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
7537 7538
		return -EINVAL;
#else
7539 7540 7541
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
7542
#endif
7543 7544
	return 0;
}
7545 7546

static void
7547
cpu_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
7548 7549 7550 7551
{
	sched_move_task(tsk);
}

7552
static void
7553 7554
cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
		struct cgroup *old_cgrp, struct task_struct *task)
7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	sched_move_task(task);
}

7567
#ifdef CONFIG_FAIR_GROUP_SCHED
7568
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7569
				u64 shareval)
7570
{
7571
	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7572 7573
}

7574
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7575
{
7576
	struct task_group *tg = cgroup_tg(cgrp);
7577

7578
	return (u64) scale_load_down(tg->shares);
7579
}
7580 7581

#ifdef CONFIG_CFS_BANDWIDTH
7582 7583
static DEFINE_MUTEX(cfs_constraints_mutex);

7584 7585 7586
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

7587 7588
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

7589 7590
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
7591
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7592
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

7613 7614 7615 7616 7617
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

7618
	runtime_enabled = quota != RUNTIME_INF;
7619 7620
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7621 7622 7623
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
7624

P
Paul Turner 已提交
7625
	__refill_cfs_bandwidth_runtime(cfs_b);
7626 7627 7628 7629 7630 7631
	/* restart the period timer (if active) to handle new period expiry */
	if (runtime_enabled && cfs_b->timer_active) {
		/* force a reprogram */
		cfs_b->timer_active = 0;
		__start_cfs_bandwidth(cfs_b);
	}
7632 7633 7634 7635
	raw_spin_unlock_irq(&cfs_b->lock);

	for_each_possible_cpu(i) {
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7636
		struct rq *rq = cfs_rq->rq;
7637 7638

		raw_spin_lock_irq(&rq->lock);
7639
		cfs_rq->runtime_enabled = runtime_enabled;
7640
		cfs_rq->runtime_remaining = 0;
7641

7642
		if (cfs_rq->throttled)
7643
			unthrottle_cfs_rq(cfs_rq);
7644 7645
		raw_spin_unlock_irq(&rq->lock);
	}
7646 7647
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
7648

7649
	return ret;
7650 7651 7652 7653 7654 7655
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

7656
	period = ktime_to_ns(tg->cfs_bandwidth.period);
7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

7669
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7670 7671
		return -1;

7672
	quota_us = tg->cfs_bandwidth.quota;
7673 7674 7675 7676 7677 7678 7679 7680 7681 7682
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
7683
	quota = tg->cfs_bandwidth.quota;
7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694

	if (period <= 0)
		return -EINVAL;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

7695
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
{
	return tg_get_cfs_quota(cgroup_tg(cgrp));
}

static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
				s64 cfs_quota_us)
{
	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
}

static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
{
	return tg_get_cfs_period(cgroup_tg(cgrp));
}

static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
				u64 cfs_period_us)
{
	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
}

7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
7755
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7756 7757 7758 7759 7760
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
7761
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781

		quota = normalize_cfs_quota(tg, d);
		parent_quota = parent_b->hierarchal_quota;

		/*
		 * ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
	cfs_b->hierarchal_quota = quota;

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
7782
	int ret;
7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

7794 7795 7796 7797 7798
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7799
}
7800 7801 7802 7803 7804

static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct task_group *tg = cgroup_tg(cgrp);
7805
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7806 7807 7808 7809 7810 7811 7812

	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
	cb->fill(cb, "throttled_time", cfs_b->throttled_time);

	return 0;
}
7813
#endif /* CONFIG_CFS_BANDWIDTH */
7814
#endif /* CONFIG_FAIR_GROUP_SCHED */
7815

7816
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
7817
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7818
				s64 val)
P
Peter Zijlstra 已提交
7819
{
7820
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
7821 7822
}

7823
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
7824
{
7825
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
7826
}
7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
7838
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
7839

7840
static struct cftype cpu_files[] = {
7841
#ifdef CONFIG_FAIR_GROUP_SCHED
7842 7843
	{
		.name = "shares",
7844 7845
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
7846
	},
7847
#endif
7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
7859 7860 7861 7862
	{
		.name = "stat",
		.read_map = cpu_stats_show,
	},
7863
#endif
7864
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7865
	{
P
Peter Zijlstra 已提交
7866
		.name = "rt_runtime_us",
7867 7868
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
7869
	},
7870 7871
	{
		.name = "rt_period_us",
7872 7873
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
7874
	},
7875
#endif
7876 7877 7878 7879
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
7880
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
7881 7882 7883
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
7884 7885 7886
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
7887 7888
	.can_attach_task = cpu_cgroup_can_attach_task,
	.attach_task	= cpu_cgroup_attach_task,
7889
	.exit		= cpu_cgroup_exit,
I
Ingo Molnar 已提交
7890 7891
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
7892 7893 7894
	.early_init	= 1,
};

7895
#endif	/* CONFIG_CGROUP_SCHED */
7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
7908
	struct cgroup_subsys *ss, struct cgroup *cgrp)
7909
{
7910
	struct cpuacct *ca;
7911

7912 7913 7914 7915
	if (!cgrp->parent)
		return &root_cpuacct.css;

	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7916
	if (!ca)
7917
		goto out;
7918 7919

	ca->cpuusage = alloc_percpu(u64);
7920 7921 7922
	if (!ca->cpuusage)
		goto out_free_ca;

7923 7924 7925
	ca->cpustat = alloc_percpu(struct kernel_cpustat);
	if (!ca->cpustat)
		goto out_free_cpuusage;
7926

7927
	return &ca->css;
7928

7929
out_free_cpuusage:
7930 7931 7932 7933 7934
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
7935 7936 7937
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
7938
static void
7939
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7940
{
7941
	struct cpuacct *ca = cgroup_ca(cgrp);
7942

7943
	free_percpu(ca->cpustat);
7944 7945 7946 7947
	free_percpu(ca->cpuusage);
	kfree(ca);
}

7948 7949
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
7950
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
7951 7952 7953 7954 7955 7956
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
7957
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
7958
	data = *cpuusage;
7959
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
7960 7961 7962 7963 7964 7965 7966 7967 7968
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
7969
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
7970 7971 7972 7973 7974

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
7975
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
7976
	*cpuusage = val;
7977
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
7978 7979 7980 7981 7982
#else
	*cpuusage = val;
#endif
}

7983
/* return total cpu usage (in nanoseconds) of a group */
7984
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
7985
{
7986
	struct cpuacct *ca = cgroup_ca(cgrp);
7987 7988 7989
	u64 totalcpuusage = 0;
	int i;

7990 7991
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
7992 7993 7994 7995

	return totalcpuusage;
}

7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

8008 8009
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
8010 8011 8012 8013 8014

out:
	return err;
}

8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

8030 8031 8032 8033 8034 8035
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8036
			      struct cgroup_map_cb *cb)
8037 8038
{
	struct cpuacct *ca = cgroup_ca(cgrp);
8039 8040
	int cpu;
	s64 val = 0;
8041

8042 8043 8044 8045
	for_each_online_cpu(cpu) {
		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
		val += kcpustat->cpustat[CPUTIME_USER];
		val += kcpustat->cpustat[CPUTIME_NICE];
8046
	}
8047 8048
	val = cputime64_to_clock_t(val);
	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8049

8050 8051 8052 8053 8054 8055
	val = 0;
	for_each_online_cpu(cpu) {
		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
		val += kcpustat->cpustat[CPUTIME_SYSTEM];
		val += kcpustat->cpustat[CPUTIME_IRQ];
		val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8056
	}
8057 8058 8059 8060

	val = cputime64_to_clock_t(val);
	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);

8061 8062 8063
	return 0;
}

8064 8065 8066
static struct cftype files[] = {
	{
		.name = "usage",
8067 8068
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
8069
	},
8070 8071 8072 8073
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
8074 8075 8076 8077
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
8078 8079
};

8080
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8081
{
8082
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8083 8084 8085 8086 8087 8088 8089
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
8090
void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8091 8092
{
	struct cpuacct *ca;
8093
	int cpu;
8094

L
Li Zefan 已提交
8095
	if (unlikely(!cpuacct_subsys.active))
8096 8097
		return;

8098
	cpu = task_cpu(tsk);
8099 8100 8101

	rcu_read_lock();

8102 8103
	ca = task_ca(tsk);

8104
	for (; ca; ca = parent_ca(ca)) {
8105
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8106 8107
		*cpuusage += cputime;
	}
8108 8109

	rcu_read_unlock();
8110 8111 8112 8113 8114 8115 8116 8117 8118 8119
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */