core.c 195.7 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/highmem.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
37
#include <linux/capability.h>
L
Linus Torvalds 已提交
38 39
#include <linux/completion.h>
#include <linux/kernel_stat.h>
40
#include <linux/debug_locks.h>
41
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
57
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
58
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/unistd.h>
J
Jens Axboe 已提交
66
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
67
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
68
#include <linux/tick.h>
P
Peter Zijlstra 已提交
69 70
#include <linux/debugfs.h>
#include <linux/ctype.h>
71
#include <linux/ftrace.h>
72
#include <linux/slab.h>
73
#include <linux/init_task.h>
A
Al Viro 已提交
74
#include <linux/binfmts.h>
75
#include <linux/context_tracking.h>
L
Linus Torvalds 已提交
76

77
#include <asm/switch_to.h>
78
#include <asm/tlb.h>
79
#include <asm/irq_regs.h>
80
#include <asm/mutex.h>
G
Glauber Costa 已提交
81 82 83
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
84

85
#include "sched.h"
86
#include "../workqueue_sched.h"
87
#include "../smpboot.h"
88

89
#define CREATE_TRACE_POINTS
90
#include <trace/events/sched.h>
91

92
void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93
{
94 95
	unsigned long delta;
	ktime_t soft, hard, now;
96

97 98 99 100 101 102
	for (;;) {
		if (hrtimer_active(period_timer))
			break;

		now = hrtimer_cb_get_time(period_timer);
		hrtimer_forward(period_timer, now, period);
103

104 105 106 107 108 109 110 111
		soft = hrtimer_get_softexpires(period_timer);
		hard = hrtimer_get_expires(period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(period_timer, soft, delta,
					 HRTIMER_MODE_ABS_PINNED, 0);
	}
}

112 113
DEFINE_MUTEX(sched_domains_mutex);
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114

115
static void update_rq_clock_task(struct rq *rq, s64 delta);
116

117
void update_rq_clock(struct rq *rq)
118
{
119
	s64 delta;
120

121
	if (rq->skip_clock_update > 0)
122
		return;
123

124 125 126
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
127 128
}

I
Ingo Molnar 已提交
129 130 131
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
132 133 134 135

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
136
const_debug unsigned int sysctl_sched_features =
137
#include "features.h"
P
Peter Zijlstra 已提交
138 139 140 141 142 143 144 145
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

146
static const char * const sched_feat_names[] = {
147
#include "features.h"
P
Peter Zijlstra 已提交
148 149 150 151
};

#undef SCHED_FEAT

L
Li Zefan 已提交
152
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
153 154 155
{
	int i;

156
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
L
Li Zefan 已提交
157 158 159
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
160
	}
L
Li Zefan 已提交
161
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
162

L
Li Zefan 已提交
163
	return 0;
P
Peter Zijlstra 已提交
164 165
}

166 167
#ifdef HAVE_JUMP_LABEL

168 169
#define jump_label_key__true  STATIC_KEY_INIT_TRUE
#define jump_label_key__false STATIC_KEY_INIT_FALSE
170 171 172 173

#define SCHED_FEAT(name, enabled)	\
	jump_label_key__##enabled ,

174
struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175 176 177 178 179 180 181
#include "features.h"
};

#undef SCHED_FEAT

static void sched_feat_disable(int i)
{
182 183
	if (static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_dec(&sched_feat_keys[i]);
184 185 186 187
}

static void sched_feat_enable(int i)
{
188 189
	if (!static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_inc(&sched_feat_keys[i]);
190 191 192 193 194 195
}
#else
static void sched_feat_disable(int i) { };
static void sched_feat_enable(int i) { };
#endif /* HAVE_JUMP_LABEL */

196
static int sched_feat_set(char *cmp)
P
Peter Zijlstra 已提交
197 198
{
	int i;
199
	int neg = 0;
P
Peter Zijlstra 已提交
200

H
Hillf Danton 已提交
201
	if (strncmp(cmp, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
202 203 204 205
		neg = 1;
		cmp += 3;
	}

206
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
207
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
208
			if (neg) {
P
Peter Zijlstra 已提交
209
				sysctl_sched_features &= ~(1UL << i);
210 211
				sched_feat_disable(i);
			} else {
P
Peter Zijlstra 已提交
212
				sysctl_sched_features |= (1UL << i);
213 214
				sched_feat_enable(i);
			}
P
Peter Zijlstra 已提交
215 216 217 218
			break;
		}
	}

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
	return i;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
	cmp = strstrip(buf);

	i = sched_feat_set(cmp);
240
	if (i == __SCHED_FEAT_NR)
P
Peter Zijlstra 已提交
241 242
		return -EINVAL;

243
	*ppos += cnt;
P
Peter Zijlstra 已提交
244 245 246 247

	return cnt;
}

L
Li Zefan 已提交
248 249 250 251 252
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

253
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
254 255 256 257 258
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
259 260 261 262 263 264 265 266 267 268
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);
269
#endif /* CONFIG_SCHED_DEBUG */
I
Ingo Molnar 已提交
270

271 272 273 274 275 276
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

277 278 279 280 281 282 283 284
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
285
/*
P
Peter Zijlstra 已提交
286
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
287 288
 * default: 1s
 */
P
Peter Zijlstra 已提交
289
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
290

291
__read_mostly int scheduler_running;
292

P
Peter Zijlstra 已提交
293 294 295 296 297
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
298 299


L
Linus Torvalds 已提交
300

301
/*
302
 * __task_rq_lock - lock the rq @p resides on.
303
 */
304
static inline struct rq *__task_rq_lock(struct task_struct *p)
305 306
	__acquires(rq->lock)
{
307 308
	struct rq *rq;

309 310
	lockdep_assert_held(&p->pi_lock);

311
	for (;;) {
312
		rq = task_rq(p);
313
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
314
		if (likely(rq == task_rq(p)))
315
			return rq;
316
		raw_spin_unlock(&rq->lock);
317 318 319
	}
}

L
Linus Torvalds 已提交
320
/*
321
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
L
Linus Torvalds 已提交
322
 */
323
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
324
	__acquires(p->pi_lock)
L
Linus Torvalds 已提交
325 326
	__acquires(rq->lock)
{
327
	struct rq *rq;
L
Linus Torvalds 已提交
328

329
	for (;;) {
330
		raw_spin_lock_irqsave(&p->pi_lock, *flags);
331
		rq = task_rq(p);
332
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
333
		if (likely(rq == task_rq(p)))
334
			return rq;
335 336
		raw_spin_unlock(&rq->lock);
		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
337 338 339
	}
}

A
Alexey Dobriyan 已提交
340
static void __task_rq_unlock(struct rq *rq)
341 342
	__releases(rq->lock)
{
343
	raw_spin_unlock(&rq->lock);
344 345
}

346 347
static inline void
task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
348
	__releases(rq->lock)
349
	__releases(p->pi_lock)
L
Linus Torvalds 已提交
350
{
351 352
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
353 354 355
}

/*
356
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
357
 */
A
Alexey Dobriyan 已提交
358
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
359 360
	__acquires(rq->lock)
{
361
	struct rq *rq;
L
Linus Torvalds 已提交
362 363 364

	local_irq_disable();
	rq = this_rq();
365
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
366 367 368 369

	return rq;
}

P
Peter Zijlstra 已提交
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

398
	raw_spin_lock(&rq->lock);
399
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
400
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
401
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
402 403 404 405

	return HRTIMER_NORESTART;
}

406
#ifdef CONFIG_SMP
407 408 409 410
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
411
{
412
	struct rq *rq = arg;
413

414
	raw_spin_lock(&rq->lock);
415 416
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
417
	raw_spin_unlock(&rq->lock);
418 419
}

420 421 422 423 424
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
425
void hrtick_start(struct rq *rq, u64 delay)
426
{
427 428
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
429

430
	hrtimer_set_expires(timer, time);
431 432 433 434

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
435
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
436 437
		rq->hrtick_csd_pending = 1;
	}
438 439 440 441 442 443 444 445 446 447 448 449 450 451
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
452
		hrtick_clear(cpu_rq(cpu));
453 454 455 456 457 458
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

459
static __init void init_hrtick(void)
460 461 462
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
463 464 465 466 467 468
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
469
void hrtick_start(struct rq *rq, u64 delay)
470
{
471
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
472
			HRTIMER_MODE_REL_PINNED, 0);
473
}
474

A
Andrew Morton 已提交
475
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
476 477
{
}
478
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
479

480
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
481
{
482 483
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
484

485 486 487 488
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
489

490 491
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
492
}
A
Andrew Morton 已提交
493
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
494 495 496 497 498 499 500 501
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

502 503 504
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
505
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
506

I
Ingo Molnar 已提交
507 508 509 510 511 512 513 514 515 516
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
A
Al Viro 已提交
517
#define tsk_is_polling(t) 0
I
Ingo Molnar 已提交
518 519
#endif

520
void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
521 522 523
{
	int cpu;

524
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
525

526
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
527 528
		return;

529
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
530 531 532 533 534 535 536 537 538 539 540

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

541
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
542 543 544 545
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

546
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
547 548
		return;
	resched_task(cpu_curr(cpu));
549
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
550
}
551 552

#ifdef CONFIG_NO_HZ
553 554 555 556 557 558 559 560 561 562 563 564 565 566
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
int get_nohz_timer_target(void)
{
	int cpu = smp_processor_id();
	int i;
	struct sched_domain *sd;

567
	rcu_read_lock();
568
	for_each_domain(cpu, sd) {
569 570 571 572 573 574
		for_each_cpu(i, sched_domain_span(sd)) {
			if (!idle_cpu(i)) {
				cpu = i;
				goto unlock;
			}
		}
575
	}
576 577
unlock:
	rcu_read_unlock();
578 579
	return cpu;
}
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;
606 607

	/*
608 609 610
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
611
	 */
612
	set_tsk_need_resched(rq->idle);
613

614 615 616 617
	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
618 619
}

620
static inline bool got_nohz_idle_kick(void)
621
{
622 623
	int cpu = smp_processor_id();
	return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
624 625
}

626
#else /* CONFIG_NO_HZ */
627

628
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
629
{
630
	return false;
P
Peter Zijlstra 已提交
631 632
}

633
#endif /* CONFIG_NO_HZ */
634

635
void sched_avg_update(struct rq *rq)
636
{
637 638 639
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
640 641 642 643 644 645
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
646 647 648
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
649 650
}

651
#else /* !CONFIG_SMP */
652
void resched_task(struct task_struct *p)
653
{
654
	assert_raw_spin_locked(&task_rq(p)->lock);
655
	set_tsk_need_resched(p);
656
}
657
#endif /* CONFIG_SMP */
658

659 660
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
661
/*
662 663 664 665
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
666
 */
667
int walk_tg_tree_from(struct task_group *from,
668
			     tg_visitor down, tg_visitor up, void *data)
669 670
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
671
	int ret;
672

673 674
	parent = from;

675
down:
P
Peter Zijlstra 已提交
676 677
	ret = (*down)(parent, data);
	if (ret)
678
		goto out;
679 680 681 682 683 684 685
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
686
	ret = (*up)(parent, data);
687 688
	if (ret || parent == from)
		goto out;
689 690 691 692 693

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
694
out:
P
Peter Zijlstra 已提交
695
	return ret;
696 697
}

698
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
699
{
700
	return 0;
P
Peter Zijlstra 已提交
701
}
702 703
#endif

704 705
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
706 707 708
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
709 710 711 712
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
713
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
714
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
715 716
		return;
	}
717

718
	load->weight = scale_load(prio_to_weight[prio]);
N
Nikhil Rao 已提交
719
	load->inv_weight = prio_to_wmult[prio];
720 721
}

722
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
723
{
724
	update_rq_clock(rq);
I
Ingo Molnar 已提交
725
	sched_info_queued(p);
726
	p->sched_class->enqueue_task(rq, p, flags);
727 728
}

729
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
730
{
731
	update_rq_clock(rq);
732
	sched_info_dequeued(p);
733
	p->sched_class->dequeue_task(rq, p, flags);
734 735
}

736
void activate_task(struct rq *rq, struct task_struct *p, int flags)
737 738 739 740
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

741
	enqueue_task(rq, p, flags);
742 743
}

744
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
745 746 747 748
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

749
	dequeue_task(rq, p, flags);
750 751
}

752
static void update_rq_clock_task(struct rq *rq, s64 delta)
753
{
754 755 756 757 758 759 760 761
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
762
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
784 785
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
786
	if (static_key_false((&paravirt_steal_rq_enabled))) {
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
		u64 st;

		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		st = steal_ticks(steal);
		steal = st * TICK_NSEC;

		rq->prev_steal_time_rq += steal;

		delta -= steal;
	}
#endif

804 805
	rq->clock_task += delta;

806 807 808 809
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
810 811
}

812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

842
/*
I
Ingo Molnar 已提交
843
 * __normal_prio - return the priority that is based on the static prio
844 845 846
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
847
	return p->static_prio;
848 849
}

850 851 852 853 854 855 856
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
857
static inline int normal_prio(struct task_struct *p)
858 859 860
{
	int prio;

861
	if (task_has_rt_policy(p))
862 863 864 865 866 867 868 869 870 871 872 873 874
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
875
static int effective_prio(struct task_struct *p)
876 877 878 879 880 881 882 883 884 885 886 887
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
888 889 890 891
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
892
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
893 894 895 896
{
	return cpu_curr(task_cpu(p)) == p;
}

897 898
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
899
				       int oldprio)
900 901 902
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
903 904 905 906
			prev_class->switched_from(rq, p);
		p->sched_class->switched_to(rq, p);
	} else if (oldprio != p->prio)
		p->sched_class->prio_changed(rq, p, oldprio);
907 908
}

909
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
				resched_task(rq->curr);
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
P
Peter Zijlstra 已提交
930
	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
931 932 933
		rq->skip_clock_update = 1;
}

934 935 936 937 938 939 940
static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);

void register_task_migration_notifier(struct notifier_block *n)
{
	atomic_notifier_chain_register(&task_migration_notifier, n);
}

L
Linus Torvalds 已提交
941
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
942
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
943
{
944 945 946 947 948
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
949 950
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
951 952

#ifdef CONFIG_LOCKDEP
953 954 955 956 957
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
P
Peter Zijlstra 已提交
958
	 * see task_group().
959 960 961 962
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
963 964 965
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
966 967
#endif

968
	trace_sched_migrate_task(p, new_cpu);
969

970
	if (task_cpu(p) != new_cpu) {
971 972
		struct task_migration_notifier tmn;

973 974
		if (p->sched_class->migrate_task_rq)
			p->sched_class->migrate_task_rq(p, new_cpu);
975
		p->se.nr_migrations++;
976
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
977 978 979 980 981 982

		tmn.task = p;
		tmn.from_cpu = task_cpu(p);
		tmn.to_cpu = new_cpu;

		atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
983
	}
I
Ingo Molnar 已提交
984 985

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
986 987
}

988
struct migration_arg {
989
	struct task_struct *task;
L
Linus Torvalds 已提交
990
	int dest_cpu;
991
};
L
Linus Torvalds 已提交
992

993 994
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
995 996 997
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
998 999 1000 1001 1002 1003 1004
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1005 1006 1007 1008 1009 1010
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1011
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1012 1013
{
	unsigned long flags;
I
Ingo Molnar 已提交
1014
	int running, on_rq;
R
Roland McGrath 已提交
1015
	unsigned long ncsw;
1016
	struct rq *rq;
L
Linus Torvalds 已提交
1017

1018 1019 1020 1021 1022 1023 1024 1025
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1026

1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1038 1039 1040
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1041
			cpu_relax();
R
Roland McGrath 已提交
1042
		}
1043

1044 1045 1046 1047 1048 1049
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1050
		trace_sched_wait_task(p);
1051
		running = task_running(rq, p);
P
Peter Zijlstra 已提交
1052
		on_rq = p->on_rq;
R
Roland McGrath 已提交
1053
		ncsw = 0;
1054
		if (!match_state || p->state == match_state)
1055
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1056
		task_rq_unlock(rq, p, &flags);
1057

R
Roland McGrath 已提交
1058 1059 1060 1061 1062 1063
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1074

1075 1076 1077 1078 1079
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1080
		 * So if it was still runnable (but just not actively
1081 1082 1083 1084
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
1085 1086 1087 1088
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1089 1090
			continue;
		}
1091

1092 1093 1094 1095 1096 1097 1098
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1099 1100

	return ncsw;
L
Linus Torvalds 已提交
1101 1102 1103 1104 1105 1106 1107 1108 1109
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1110
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1111 1112 1113 1114 1115
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1116
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1117 1118 1119 1120 1121 1122 1123 1124 1125
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1126
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
1127
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1128

1129
#ifdef CONFIG_SMP
1130
/*
1131
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1132
 */
1133 1134 1135
static int select_fallback_rq(int cpu, struct task_struct *p)
{
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1136 1137
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1138 1139

	/* Look for allowed, online CPU in same node. */
1140
	for_each_cpu(dest_cpu, nodemask) {
1141 1142 1143 1144
		if (!cpu_online(dest_cpu))
			continue;
		if (!cpu_active(dest_cpu))
			continue;
1145
		if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1146
			return dest_cpu;
1147
	}
1148

1149 1150
	for (;;) {
		/* Any allowed, online CPU? */
1151
		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1152 1153 1154 1155 1156 1157
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			goto out;
		}
1158

1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
		switch (state) {
		case cpuset:
			/* No more Mr. Nice Guy. */
			cpuset_cpus_allowed_fallback(p);
			state = possible;
			break;

		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk_sched("process %d (%s) no longer affine to cpu%d\n",
					task_pid_nr(p), p->comm, cpu);
		}
1188 1189 1190 1191 1192
	}

	return dest_cpu;
}

1193
/*
1194
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1195
 */
1196
static inline
1197
int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1198
{
1199
	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1211
	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
P
Peter Zijlstra 已提交
1212
		     !cpu_online(cpu)))
1213
		cpu = select_fallback_rq(task_cpu(p), p);
1214 1215

	return cpu;
1216
}
1217 1218 1219 1220 1221 1222

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1223 1224
#endif

P
Peter Zijlstra 已提交
1225
static void
1226
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1227
{
P
Peter Zijlstra 已提交
1228
#ifdef CONFIG_SCHEDSTATS
1229 1230
	struct rq *rq = this_rq();

P
Peter Zijlstra 已提交
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
#ifdef CONFIG_SMP
	int this_cpu = smp_processor_id();

	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	} else {
		struct sched_domain *sd;

		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1241
		rcu_read_lock();
P
Peter Zijlstra 已提交
1242 1243 1244 1245 1246 1247
		for_each_domain(this_cpu, sd) {
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
1248
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1249
	}
1250 1251 1252 1253

	if (wake_flags & WF_MIGRATED)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);

P
Peter Zijlstra 已提交
1254 1255 1256
#endif /* CONFIG_SMP */

	schedstat_inc(rq, ttwu_count);
T
Tejun Heo 已提交
1257
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1258 1259

	if (wake_flags & WF_SYNC)
T
Tejun Heo 已提交
1260
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1261 1262 1263 1264 1265 1266

#endif /* CONFIG_SCHEDSTATS */
}

static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
{
T
Tejun Heo 已提交
1267
	activate_task(rq, p, en_flags);
P
Peter Zijlstra 已提交
1268
	p->on_rq = 1;
1269 1270 1271 1272

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1273 1274
}

1275 1276 1277
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1278
static void
1279
ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
T
Tejun Heo 已提交
1280
{
1281
	trace_sched_wakeup(p, true);
T
Tejun Heo 已提交
1282 1283 1284 1285 1286 1287 1288
	check_preempt_curr(rq, p, wake_flags);

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);

1289
	if (rq->idle_stamp) {
T
Tejun Heo 已提交
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
#endif
}

1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
static void
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
{
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
#endif

	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
	ttwu_do_wakeup(rq, p, wake_flags);
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
	if (p->on_rq) {
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;
}

1335
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1336
static void sched_ttwu_pending(void)
1337 1338
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1339 1340
	struct llist_node *llist = llist_del_all(&rq->wake_list);
	struct task_struct *p;
1341 1342 1343

	raw_spin_lock(&rq->lock);

P
Peter Zijlstra 已提交
1344 1345 1346
	while (llist) {
		p = llist_entry(llist, struct task_struct, wake_entry);
		llist = llist_next(llist);
1347 1348 1349 1350 1351 1352 1353 1354
		ttwu_do_activate(rq, p, 0);
	}

	raw_spin_unlock(&rq->lock);
}

void scheduler_ipi(void)
{
1355
	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
P
Peter Zijlstra 已提交
1372
	sched_ttwu_pending();
1373 1374 1375 1376

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1377 1378
	if (unlikely(got_nohz_idle_kick() && !need_resched())) {
		this_rq()->idle_balance = 1;
1379
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1380
	}
1381
	irq_exit();
1382 1383 1384 1385
}

static void ttwu_queue_remote(struct task_struct *p, int cpu)
{
P
Peter Zijlstra 已提交
1386
	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1387 1388
		smp_send_reschedule(cpu);
}
1389

1390
bool cpus_share_cache(int this_cpu, int that_cpu)
1391 1392 1393
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1394
#endif /* CONFIG_SMP */
1395

1396 1397 1398 1399
static void ttwu_queue(struct task_struct *p, int cpu)
{
	struct rq *rq = cpu_rq(cpu);

1400
#if defined(CONFIG_SMP)
1401
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1402
		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1403 1404 1405 1406 1407
		ttwu_queue_remote(p, cpu);
		return;
	}
#endif

1408 1409 1410
	raw_spin_lock(&rq->lock);
	ttwu_do_activate(rq, p, 0);
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
1411 1412 1413
}

/**
L
Linus Torvalds 已提交
1414
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1415
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1416
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1417
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1418 1419 1420 1421 1422 1423 1424
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
T
Tejun Heo 已提交
1425 1426
 * Returns %true if @p was woken up, %false if it was already running
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
1427
 */
1428 1429
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1430 1431
{
	unsigned long flags;
1432
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1433

1434
	smp_wmb();
1435
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
1436
	if (!(p->state & state))
L
Linus Torvalds 已提交
1437 1438
		goto out;

1439
	success = 1; /* we're going to change ->state */
L
Linus Torvalds 已提交
1440 1441
	cpu = task_cpu(p);

1442 1443
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
1444 1445

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1446
	/*
1447 1448
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
P
Peter Zijlstra 已提交
1449
	 */
1450
	while (p->on_cpu)
1451
		cpu_relax();
1452
	/*
1453
	 * Pairs with the smp_wmb() in finish_lock_switch().
1454
	 */
1455
	smp_rmb();
L
Linus Torvalds 已提交
1456

1457
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
1458
	p->state = TASK_WAKING;
1459

1460
	if (p->sched_class->task_waking)
1461
		p->sched_class->task_waking(p);
1462

1463
	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1464 1465
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
1466
		set_task_cpu(p, cpu);
1467
	}
L
Linus Torvalds 已提交
1468 1469
#endif /* CONFIG_SMP */

1470 1471
	ttwu_queue(p, cpu);
stat:
1472
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
1473
out:
1474
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
1475 1476 1477 1478

	return success;
}

T
Tejun Heo 已提交
1479 1480 1481 1482
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
1483
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
1484
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1485
 * the current task.
T
Tejun Heo 已提交
1486 1487 1488 1489 1490 1491 1492 1493 1494
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	BUG_ON(rq != this_rq());
	BUG_ON(p == current);
	lockdep_assert_held(&rq->lock);

1495 1496 1497 1498 1499 1500
	if (!raw_spin_trylock(&p->pi_lock)) {
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
	}

T
Tejun Heo 已提交
1501
	if (!(p->state & TASK_NORMAL))
1502
		goto out;
T
Tejun Heo 已提交
1503

P
Peter Zijlstra 已提交
1504
	if (!p->on_rq)
P
Peter Zijlstra 已提交
1505 1506
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

1507
	ttwu_do_wakeup(rq, p, 0);
1508
	ttwu_stat(p, smp_processor_id(), 0);
1509 1510
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
1511 1512
}

1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
1524
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1525
{
1526
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
1527 1528 1529
}
EXPORT_SYMBOL(wake_up_process);

1530
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1531 1532 1533 1534 1535 1536 1537
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1538 1539 1540 1541 1542
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
P
Peter Zijlstra 已提交
1543 1544 1545
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
1546 1547
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1548
	p->se.prev_sum_exec_runtime	= 0;
1549
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
1550
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
1551
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
1552

1553 1554 1555 1556 1557 1558
/*
 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
 * removed when useful for applications beyond shares distribution (e.g.
 * load-balance).
 */
#if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
1559 1560 1561
	p->se.avg.runnable_avg_period = 0;
	p->se.avg.runnable_avg_sum = 0;
#endif
I
Ingo Molnar 已提交
1562
#ifdef CONFIG_SCHEDSTATS
1563
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
1564
#endif
N
Nick Piggin 已提交
1565

P
Peter Zijlstra 已提交
1566
	INIT_LIST_HEAD(&p->rt.run_list);
N
Nick Piggin 已提交
1567

1568 1569 1570
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
1571 1572 1573 1574

#ifdef CONFIG_NUMA_BALANCING
	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
		p->mm->numa_next_scan = jiffies;
1575
		p->mm->numa_next_reset = jiffies;
1576 1577 1578 1579 1580 1581
		p->mm->numa_scan_seq = 0;
	}

	p->node_stamp = 0ULL;
	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
	p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
1582
	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1583 1584
	p->numa_work.next = &p->numa_work;
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
1585 1586
}

1587
#ifdef CONFIG_NUMA_BALANCING
1588
#ifdef CONFIG_SCHED_DEBUG
1589 1590 1591 1592 1593 1594 1595
void set_numabalancing_state(bool enabled)
{
	if (enabled)
		sched_feat_set("NUMA");
	else
		sched_feat_set("NO_NUMA");
}
1596 1597 1598 1599 1600 1601
#else
__read_mostly bool numabalancing_enabled;

void set_numabalancing_state(bool enabled)
{
	numabalancing_enabled = enabled;
I
Ingo Molnar 已提交
1602
}
1603
#endif /* CONFIG_SCHED_DEBUG */
1604
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
1605 1606 1607 1608

/*
 * fork()/clone()-time setup:
 */
1609
void sched_fork(struct task_struct *p)
I
Ingo Molnar 已提交
1610
{
1611
	unsigned long flags;
I
Ingo Molnar 已提交
1612 1613 1614
	int cpu = get_cpu();

	__sched_fork(p);
1615
	/*
1616
	 * We mark the process as running here. This guarantees that
1617 1618 1619
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
1620
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1621

1622 1623 1624 1625 1626
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

1627 1628 1629 1630
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
1631
		if (task_has_rt_policy(p)) {
1632
			p->policy = SCHED_NORMAL;
1633
			p->static_prio = NICE_TO_PRIO(0);
1634 1635 1636 1637 1638 1639
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
1640

1641 1642 1643 1644 1645 1646
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
1647

H
Hiroshi Shimamoto 已提交
1648 1649
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
1650

P
Peter Zijlstra 已提交
1651 1652 1653
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

1654 1655 1656 1657 1658 1659 1660
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
1661
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1662
	set_task_cpu(p, cpu);
1663
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1664

1665
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1666
	if (likely(sched_info_on()))
1667
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1668
#endif
P
Peter Zijlstra 已提交
1669 1670
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
1671
#endif
1672
#ifdef CONFIG_PREEMPT_COUNT
1673
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1674
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1675
#endif
1676
#ifdef CONFIG_SMP
1677
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1678
#endif
1679

N
Nick Piggin 已提交
1680
	put_cpu();
L
Linus Torvalds 已提交
1681 1682 1683 1684 1685 1686 1687 1688 1689
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1690
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
1691 1692
{
	unsigned long flags;
I
Ingo Molnar 已提交
1693
	struct rq *rq;
1694

1695
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1696 1697 1698 1699 1700 1701
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 */
1702
	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1703 1704
#endif

1705
	rq = __task_rq_lock(p);
P
Peter Zijlstra 已提交
1706
	activate_task(rq, p, 0);
P
Peter Zijlstra 已提交
1707
	p->on_rq = 1;
1708
	trace_sched_wakeup_new(p, true);
P
Peter Zijlstra 已提交
1709
	check_preempt_curr(rq, p, WF_FORK);
1710
#ifdef CONFIG_SMP
1711 1712
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
1713
#endif
1714
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
1715 1716
}

1717 1718 1719
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
1720
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
1721
 * @notifier: notifier struct to register
1722 1723 1724 1725 1726 1727 1728 1729 1730
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1731
 * @notifier: notifier struct to unregister
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

1761
#else /* !CONFIG_PREEMPT_NOTIFIERS */
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

1773
#endif /* CONFIG_PREEMPT_NOTIFIERS */
1774

1775 1776 1777
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1778
 * @prev: the current task that is being switched out
1779 1780 1781 1782 1783 1784 1785 1786 1787
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1788 1789 1790
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1791
{
1792
	trace_sched_switch(prev, next);
1793 1794
	sched_info_switch(prev, next);
	perf_event_task_sched_out(prev, next);
1795
	fire_sched_out_preempt_notifiers(prev, next);
1796 1797 1798 1799
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1800 1801
/**
 * finish_task_switch - clean up after a task-switch
1802
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1803 1804
 * @prev: the thread we just switched away from.
 *
1805 1806 1807 1808
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1809 1810
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
1811
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
1812 1813 1814
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
1815
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1816 1817 1818
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1819
	long prev_state;
L
Linus Torvalds 已提交
1820 1821 1822 1823 1824

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1825
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1826 1827
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1828
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1829 1830 1831 1832 1833
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1834
	prev_state = prev->state;
1835
	vtime_task_switch(prev);
1836
	finish_arch_switch(prev);
1837
	perf_event_task_sched_in(prev, current);
1838
	finish_lock_switch(rq, prev);
1839
	finish_arch_post_lock_switch();
S
Steven Rostedt 已提交
1840

1841
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1842 1843
	if (mm)
		mmdrop(mm);
1844
	if (unlikely(prev_state == TASK_DEAD)) {
1845 1846 1847
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1848
		 */
1849
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1850
		put_task_struct(prev);
1851
	}
L
Linus Torvalds 已提交
1852 1853
}

1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

1869
		raw_spin_lock_irqsave(&rq->lock, flags);
1870 1871
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
1872
		raw_spin_unlock_irqrestore(&rq->lock, flags);
1873 1874 1875 1876 1877 1878

		rq->post_schedule = 0;
	}
}

#else
1879

1880 1881 1882 1883 1884 1885
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
1886 1887
}

1888 1889
#endif

L
Linus Torvalds 已提交
1890 1891 1892 1893
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1894
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1895 1896
	__releases(rq->lock)
{
1897 1898
	struct rq *rq = this_rq();

1899
	finish_task_switch(rq, prev);
1900

1901 1902 1903 1904 1905
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
1906

1907 1908 1909 1910
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1911
	if (current->set_child_tid)
1912
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
1913 1914 1915 1916 1917 1918
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
1919
static inline void
1920
context_switch(struct rq *rq, struct task_struct *prev,
1921
	       struct task_struct *next)
L
Linus Torvalds 已提交
1922
{
I
Ingo Molnar 已提交
1923
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
1924

1925
	prepare_task_switch(rq, prev, next);
1926

I
Ingo Molnar 已提交
1927 1928
	mm = next->mm;
	oldmm = prev->active_mm;
1929 1930 1931 1932 1933
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
1934
	arch_start_context_switch(prev);
1935

1936
	if (!mm) {
L
Linus Torvalds 已提交
1937 1938 1939 1940 1941 1942
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

1943
	if (!prev->mm) {
L
Linus Torvalds 已提交
1944 1945 1946
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
1947 1948 1949 1950 1951 1952 1953
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1954
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1955
#endif
L
Linus Torvalds 已提交
1956

1957
	context_tracking_task_switch(prev, next);
L
Linus Torvalds 已提交
1958 1959 1960
	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
1961 1962 1963 1964 1965 1966 1967
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
1985
}
L
Linus Torvalds 已提交
1986 1987

unsigned long nr_uninterruptible(void)
1988
{
L
Linus Torvalds 已提交
1989
	unsigned long i, sum = 0;
1990

1991
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1992
		sum += cpu_rq(i)->nr_uninterruptible;
1993 1994

	/*
L
Linus Torvalds 已提交
1995 1996
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
1997
	 */
L
Linus Torvalds 已提交
1998 1999
	if (unlikely((long)sum < 0))
		sum = 0;
2000

L
Linus Torvalds 已提交
2001
	return sum;
2002 2003
}

L
Linus Torvalds 已提交
2004
unsigned long long nr_context_switches(void)
2005
{
2006 2007
	int i;
	unsigned long long sum = 0;
2008

2009
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2010
		sum += cpu_rq(i)->nr_switches;
2011

L
Linus Torvalds 已提交
2012 2013
	return sum;
}
2014

L
Linus Torvalds 已提交
2015 2016 2017
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2018

2019
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2020
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2021

L
Linus Torvalds 已提交
2022 2023
	return sum;
}
2024

2025
unsigned long nr_iowait_cpu(int cpu)
2026
{
2027
	struct rq *this = cpu_rq(cpu);
2028 2029
	return atomic_read(&this->nr_iowait);
}
2030

2031 2032 2033 2034 2035
unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}
2036

2037

2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
/*
 * Global load-average calculations
 *
 * We take a distributed and async approach to calculating the global load-avg
 * in order to minimize overhead.
 *
 * The global load average is an exponentially decaying average of nr_running +
 * nr_uninterruptible.
 *
 * Once every LOAD_FREQ:
 *
 *   nr_active = 0;
 *   for_each_possible_cpu(cpu)
 *   	nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
 *
 *   avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
 *
 * Due to a number of reasons the above turns in the mess below:
 *
 *  - for_each_possible_cpu() is prohibitively expensive on machines with
 *    serious number of cpus, therefore we need to take a distributed approach
 *    to calculating nr_active.
 *
 *        \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
 *                      = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
 *
 *    So assuming nr_active := 0 when we start out -- true per definition, we
 *    can simply take per-cpu deltas and fold those into a global accumulate
 *    to obtain the same result. See calc_load_fold_active().
 *
 *    Furthermore, in order to avoid synchronizing all per-cpu delta folding
 *    across the machine, we assume 10 ticks is sufficient time for every
 *    cpu to have completed this task.
 *
 *    This places an upper-bound on the IRQ-off latency of the machine. Then
 *    again, being late doesn't loose the delta, just wrecks the sample.
 *
 *  - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
 *    this would add another cross-cpu cacheline miss and atomic operation
 *    to the wakeup path. Instead we increment on whatever cpu the task ran
 *    when it went into uninterruptible state and decrement on whatever cpu
 *    did the wakeup. This means that only the sum of nr_uninterruptible over
 *    all cpus yields the correct result.
 *
 *  This covers the NO_HZ=n code, for extra head-aches, see the comment below.
 */

2085 2086 2087 2088
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
EXPORT_SYMBOL(avenrun); /* should be removed */

/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
}
2105

2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
static long calc_load_fold_active(struct rq *this_rq)
{
	long nr_active, delta = 0;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
	}

	return delta;
}

2121 2122 2123
/*
 * a1 = a0 * e + a * (1 - e)
 */
2124 2125 2126 2127 2128 2129 2130 2131 2132
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
{
	load *= exp;
	load += active * (FIXED_1 - exp);
	load += 1UL << (FSHIFT - 1);
	return load >> FSHIFT;
}

2133 2134
#ifdef CONFIG_NO_HZ
/*
2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172
 * Handle NO_HZ for the global load-average.
 *
 * Since the above described distributed algorithm to compute the global
 * load-average relies on per-cpu sampling from the tick, it is affected by
 * NO_HZ.
 *
 * The basic idea is to fold the nr_active delta into a global idle-delta upon
 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
 * when we read the global state.
 *
 * Obviously reality has to ruin such a delightfully simple scheme:
 *
 *  - When we go NO_HZ idle during the window, we can negate our sample
 *    contribution, causing under-accounting.
 *
 *    We avoid this by keeping two idle-delta counters and flipping them
 *    when the window starts, thus separating old and new NO_HZ load.
 *
 *    The only trick is the slight shift in index flip for read vs write.
 *
 *        0s            5s            10s           15s
 *          +10           +10           +10           +10
 *        |-|-----------|-|-----------|-|-----------|-|
 *    r:0 0 1           1 0           0 1           1 0
 *    w:0 1 1           0 0           1 1           0 0
 *
 *    This ensures we'll fold the old idle contribution in this window while
 *    accumlating the new one.
 *
 *  - When we wake up from NO_HZ idle during the window, we push up our
 *    contribution, since we effectively move our sample point to a known
 *    busy state.
 *
 *    This is solved by pushing the window forward, and thus skipping the
 *    sample, for this cpu (effectively using the idle-delta for this cpu which
 *    was in effect at the time the window opened). This also solves the issue
 *    of having to deal with a cpu having been in NOHZ idle for multiple
 *    LOAD_FREQ intervals.
2173 2174 2175
 *
 * When making the ILB scale, we should try to pull this in as well.
 */
2176 2177
static atomic_long_t calc_load_idle[2];
static int calc_load_idx;
2178

2179
static inline int calc_load_write_idx(void)
2180
{
2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
	int idx = calc_load_idx;

	/*
	 * See calc_global_nohz(), if we observe the new index, we also
	 * need to observe the new update time.
	 */
	smp_rmb();

	/*
	 * If the folding window started, make sure we start writing in the
	 * next idle-delta.
	 */
	if (!time_before(jiffies, calc_load_update))
		idx++;

	return idx & 1;
}

static inline int calc_load_read_idx(void)
{
	return calc_load_idx & 1;
}

void calc_load_enter_idle(void)
{
	struct rq *this_rq = this_rq();
2207 2208
	long delta;

2209 2210 2211 2212
	/*
	 * We're going into NOHZ mode, if there's any pending delta, fold it
	 * into the pending idle delta.
	 */
2213
	delta = calc_load_fold_active(this_rq);
2214 2215 2216 2217
	if (delta) {
		int idx = calc_load_write_idx();
		atomic_long_add(delta, &calc_load_idle[idx]);
	}
2218 2219
}

2220
void calc_load_exit_idle(void)
2221
{
2222 2223 2224 2225 2226 2227 2228
	struct rq *this_rq = this_rq();

	/*
	 * If we're still before the sample window, we're done.
	 */
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
2229 2230

	/*
2231 2232 2233
	 * We woke inside or after the sample window, this means we're already
	 * accounted through the nohz accounting, so skip the entire deal and
	 * sync up for the next window.
2234
	 */
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
	this_rq->calc_load_update = calc_load_update;
	if (time_before(jiffies, this_rq->calc_load_update + 10))
		this_rq->calc_load_update += LOAD_FREQ;
}

static long calc_load_fold_idle(void)
{
	int idx = calc_load_read_idx();
	long delta = 0;

	if (atomic_long_read(&calc_load_idle[idx]))
		delta = atomic_long_xchg(&calc_load_idle[idx], 0);
2247 2248 2249

	return delta;
}
2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327

/**
 * fixed_power_int - compute: x^n, in O(log n) time
 *
 * @x:         base of the power
 * @frac_bits: fractional bits of @x
 * @n:         power to raise @x to.
 *
 * By exploiting the relation between the definition of the natural power
 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
 * (where: n_i \elem {0, 1}, the binary vector representing n),
 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
 * of course trivially computable in O(log_2 n), the length of our binary
 * vector.
 */
static unsigned long
fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
{
	unsigned long result = 1UL << frac_bits;

	if (n) for (;;) {
		if (n & 1) {
			result *= x;
			result += 1UL << (frac_bits - 1);
			result >>= frac_bits;
		}
		n >>= 1;
		if (!n)
			break;
		x *= x;
		x += 1UL << (frac_bits - 1);
		x >>= frac_bits;
	}

	return result;
}

/*
 * a1 = a0 * e + a * (1 - e)
 *
 * a2 = a1 * e + a * (1 - e)
 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
 *    = a0 * e^2 + a * (1 - e) * (1 + e)
 *
 * a3 = a2 * e + a * (1 - e)
 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
 *
 *  ...
 *
 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
 *    = a0 * e^n + a * (1 - e^n)
 *
 * [1] application of the geometric series:
 *
 *              n         1 - x^(n+1)
 *     S_n := \Sum x^i = -------------
 *             i=0          1 - x
 */
static unsigned long
calc_load_n(unsigned long load, unsigned long exp,
	    unsigned long active, unsigned int n)
{

	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
}

/*
 * NO_HZ can leave us missing all per-cpu ticks calling
 * calc_load_account_active(), but since an idle CPU folds its delta into
 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
 * in the pending idle delta if our idle period crossed a load cycle boundary.
 *
 * Once we've updated the global active value, we need to apply the exponential
 * weights adjusted to the number of cycles missed.
 */
2328
static void calc_global_nohz(void)
2329 2330 2331
{
	long delta, active, n;

2332 2333 2334 2335 2336 2337
	if (!time_before(jiffies, calc_load_update + 10)) {
		/*
		 * Catch-up, fold however many we are behind still
		 */
		delta = jiffies - calc_load_update - 10;
		n = 1 + (delta / LOAD_FREQ);
2338

2339 2340
		active = atomic_long_read(&calc_load_tasks);
		active = active > 0 ? active * FIXED_1 : 0;
2341

2342 2343 2344
		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2345

2346 2347
		calc_load_update += n * LOAD_FREQ;
	}
2348

2349 2350 2351 2352 2353 2354 2355 2356 2357
	/*
	 * Flip the idle index...
	 *
	 * Make sure we first write the new time then flip the index, so that
	 * calc_load_write_idx() will see the new time when it reads the new
	 * index, this avoids a double flip messing things up.
	 */
	smp_wmb();
	calc_load_idx++;
2358
}
2359
#else /* !CONFIG_NO_HZ */
2360

2361 2362
static inline long calc_load_fold_idle(void) { return 0; }
static inline void calc_global_nohz(void) { }
2363

2364
#endif /* CONFIG_NO_HZ */
2365 2366

/*
2367 2368
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
2369
 */
2370
void calc_global_load(unsigned long ticks)
2371
{
2372
	long active, delta;
L
Linus Torvalds 已提交
2373

2374
	if (time_before(jiffies, calc_load_update + 10))
2375
		return;
L
Linus Torvalds 已提交
2376

2377 2378 2379 2380 2381 2382 2383
	/*
	 * Fold the 'old' idle-delta to include all NO_HZ cpus.
	 */
	delta = calc_load_fold_idle();
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);

2384 2385
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
L
Linus Torvalds 已提交
2386

2387 2388 2389
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
I
Ingo Molnar 已提交
2390

2391
	calc_load_update += LOAD_FREQ;
2392 2393

	/*
2394
	 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
2395 2396
	 */
	calc_global_nohz();
2397
}
L
Linus Torvalds 已提交
2398

2399
/*
2400 2401
 * Called from update_cpu_load() to periodically update this CPU's
 * active count.
2402 2403 2404
 */
static void calc_load_account_active(struct rq *this_rq)
{
2405
	long delta;
2406

2407 2408
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
2409

2410 2411
	delta  = calc_load_fold_active(this_rq);
	if (delta)
2412
		atomic_long_add(delta, &calc_load_tasks);
2413 2414

	this_rq->calc_load_update += LOAD_FREQ;
2415 2416
}

2417 2418 2419 2420
/*
 * End of global load-average stuff
 */

2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
/*
 * The exact cpuload at various idx values, calculated at every tick would be
 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
 *
 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
 * on nth tick when cpu may be busy, then we have:
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
 *
 * decay_load_missed() below does efficient calculation of
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
 *
 * The calculation is approximated on a 128 point scale.
 * degrade_zero_ticks is the number of ticks after which load at any
 * particular idx is approximated to be zero.
 * degrade_factor is a precomputed table, a row for each load idx.
 * Each column corresponds to degradation factor for a power of two ticks,
 * based on 128 point scale.
 * Example:
 * row 2, col 3 (=12) says that the degradation at load idx 2 after
 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
 *
 * With this power of 2 load factors, we can degrade the load n times
 * by looking at 1 bits in n and doing as many mult/shift instead of
 * n mult/shifts needed by the exact degradation.
 */
#define DEGRADE_SHIFT		7
static const unsigned char
		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const unsigned char
		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
					{0, 0, 0, 0, 0, 0, 0, 0},
					{64, 32, 8, 0, 0, 0, 0, 0},
					{96, 72, 40, 12, 1, 0, 0},
					{112, 98, 75, 43, 15, 1, 0},
					{120, 112, 98, 76, 45, 16, 2} };

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}

2488
/*
I
Ingo Molnar 已提交
2489
 * Update rq->cpu_load[] statistics. This function is usually called every
2490 2491
 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
 * every tick. We fix it up based on jiffies.
2492
 */
2493 2494
static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
			      unsigned long pending_updates)
2495
{
I
Ingo Molnar 已提交
2496
	int i, scale;
2497

I
Ingo Molnar 已提交
2498
	this_rq->nr_load_updates++;
2499

I
Ingo Molnar 已提交
2500
	/* Update our load: */
2501 2502
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
I
Ingo Molnar 已提交
2503
		unsigned long old_load, new_load;
2504

I
Ingo Molnar 已提交
2505
		/* scale is effectively 1 << i now, and >> i divides by scale */
2506

I
Ingo Molnar 已提交
2507
		old_load = this_rq->cpu_load[i];
2508
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
I
Ingo Molnar 已提交
2509
		new_load = this_load;
I
Ingo Molnar 已提交
2510 2511 2512 2513 2514 2515
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
2516 2517 2518
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
I
Ingo Molnar 已提交
2519
	}
2520 2521

	sched_avg_update(this_rq);
2522 2523
}

2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537
#ifdef CONFIG_NO_HZ
/*
 * There is no sane way to deal with nohz on smp when using jiffies because the
 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
 *
 * Therefore we cannot use the delta approach from the regular tick since that
 * would seriously skew the load calculation. However we'll make do for those
 * updates happening while idle (nohz_idle_balance) or coming out of idle
 * (tick_nohz_idle_exit).
 *
 * This means we might still be one tick off for nohz periods.
 */

2538 2539 2540 2541 2542 2543
/*
 * Called from nohz_idle_balance() to update the load ratings before doing the
 * idle balance.
 */
void update_idle_cpu_load(struct rq *this_rq)
{
2544
	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2545 2546 2547 2548
	unsigned long load = this_rq->load.weight;
	unsigned long pending_updates;

	/*
2549
	 * bail if there's load or we're actually up-to-date.
2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
	 */
	if (load || curr_jiffies == this_rq->last_load_update_tick)
		return;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	this_rq->last_load_update_tick = curr_jiffies;

	__update_cpu_load(this_rq, load, pending_updates);
}

2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585
/*
 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
 */
void update_cpu_load_nohz(void)
{
	struct rq *this_rq = this_rq();
	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
	unsigned long pending_updates;

	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

	raw_spin_lock(&this_rq->lock);
	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	if (pending_updates) {
		this_rq->last_load_update_tick = curr_jiffies;
		/*
		 * We were idle, this means load 0, the current load might be
		 * !0 due to remote wakeups and the sort.
		 */
		__update_cpu_load(this_rq, 0, pending_updates);
	}
	raw_spin_unlock(&this_rq->lock);
}
#endif /* CONFIG_NO_HZ */

2586 2587 2588
/*
 * Called from scheduler_tick()
 */
2589 2590
static void update_cpu_load_active(struct rq *this_rq)
{
2591
	/*
2592
	 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
2593 2594 2595
	 */
	this_rq->last_load_update_tick = jiffies;
	__update_cpu_load(this_rq, this_rq->load.weight, 1);
2596

2597
	calc_load_account_active(this_rq);
2598 2599
}

I
Ingo Molnar 已提交
2600
#ifdef CONFIG_SMP
2601

2602
/*
P
Peter Zijlstra 已提交
2603 2604
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2605
 */
P
Peter Zijlstra 已提交
2606
void sched_exec(void)
2607
{
P
Peter Zijlstra 已提交
2608
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2609
	unsigned long flags;
2610
	int dest_cpu;
2611

2612
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2613
	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2614 2615
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2616

2617
	if (likely(cpu_active(dest_cpu))) {
2618
		struct migration_arg arg = { p, dest_cpu };
2619

2620 2621
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2622 2623
		return;
	}
2624
unlock:
2625
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2626
}
I
Ingo Molnar 已提交
2627

L
Linus Torvalds 已提交
2628 2629 2630
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2631
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
2632 2633

EXPORT_PER_CPU_SYMBOL(kstat);
2634
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
2635 2636

/*
2637
 * Return any ns on the sched_clock that have not yet been accounted in
2638
 * @p in case that task is currently running.
2639 2640
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
2641
 */
2642 2643 2644 2645 2646 2647
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
2648
		ns = rq->clock_task - p->se.exec_start;
2649 2650 2651 2652 2653 2654 2655
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

2656
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
2657 2658
{
	unsigned long flags;
2659
	struct rq *rq;
2660
	u64 ns = 0;
2661

2662
	rq = task_rq_lock(p, &flags);
2663
	ns = do_task_delta_exec(p, rq);
2664
	task_rq_unlock(rq, p, &flags);
2665

2666 2667
	return ns;
}
2668

2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2682
	task_rq_unlock(rq, p, &flags);
2683 2684 2685

	return ns;
}
2686

2687 2688 2689 2690 2691 2692 2693 2694
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2695
	struct task_struct *curr = rq->curr;
2696 2697

	sched_clock_tick();
I
Ingo Molnar 已提交
2698

2699
	raw_spin_lock(&rq->lock);
2700
	update_rq_clock(rq);
2701
	update_cpu_load_active(rq);
P
Peter Zijlstra 已提交
2702
	curr->sched_class->task_tick(rq, curr, 0);
2703
	raw_spin_unlock(&rq->lock);
2704

2705
	perf_event_task_tick();
2706

2707
#ifdef CONFIG_SMP
2708
	rq->idle_balance = idle_cpu(cpu);
I
Ingo Molnar 已提交
2709
	trigger_load_balance(rq, cpu);
2710
#endif
L
Linus Torvalds 已提交
2711 2712
}

2713
notrace unsigned long get_parent_ip(unsigned long addr)
2714 2715 2716 2717 2718 2719 2720 2721
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
2722

2723 2724 2725
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

2726
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
2727
{
2728
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2729 2730 2731
	/*
	 * Underflow?
	 */
2732 2733
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
2734
#endif
L
Linus Torvalds 已提交
2735
	preempt_count() += val;
2736
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2737 2738 2739
	/*
	 * Spinlock count overflowing soon?
	 */
2740 2741
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
2742 2743 2744
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
2745 2746 2747
}
EXPORT_SYMBOL(add_preempt_count);

2748
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
2749
{
2750
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2751 2752 2753
	/*
	 * Underflow?
	 */
2754
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2755
		return;
L
Linus Torvalds 已提交
2756 2757 2758
	/*
	 * Is the spinlock portion underflowing?
	 */
2759 2760 2761
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
2762
#endif
2763

2764 2765
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
2766 2767 2768 2769 2770 2771 2772
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
2773
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
2774
 */
I
Ingo Molnar 已提交
2775
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
2776
{
2777 2778 2779
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
2780 2781
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
2782

I
Ingo Molnar 已提交
2783
	debug_show_held_locks(prev);
2784
	print_modules();
I
Ingo Molnar 已提交
2785 2786
	if (irqs_disabled())
		print_irqtrace_events(prev);
2787
	dump_stack();
2788
	add_taint(TAINT_WARN);
I
Ingo Molnar 已提交
2789
}
L
Linus Torvalds 已提交
2790

I
Ingo Molnar 已提交
2791 2792 2793 2794 2795
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
2796
	/*
I
Ingo Molnar 已提交
2797
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
2798 2799 2800
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
2801
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
2802
		__schedule_bug(prev);
2803
	rcu_sleep_check();
I
Ingo Molnar 已提交
2804

L
Linus Torvalds 已提交
2805 2806
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

2807
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
2808 2809
}

P
Peter Zijlstra 已提交
2810
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
2811
{
2812
	if (prev->on_rq || rq->skip_clock_update < 0)
2813
		update_rq_clock(rq);
P
Peter Zijlstra 已提交
2814
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
2815 2816
}

I
Ingo Molnar 已提交
2817 2818 2819 2820
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
2821
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
2822
{
2823
	const struct sched_class *class;
I
Ingo Molnar 已提交
2824
	struct task_struct *p;
L
Linus Torvalds 已提交
2825 2826

	/*
I
Ingo Molnar 已提交
2827 2828
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
2829
	 */
2830
	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2831
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
2832 2833
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
2834 2835
	}

2836
	for_each_class(class) {
2837
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
2838 2839 2840
		if (p)
			return p;
	}
2841 2842

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
2843
}
L
Linus Torvalds 已提交
2844

I
Ingo Molnar 已提交
2845
/*
2846
 * __schedule() is the main scheduler function.
2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880
 *
 * The main means of driving the scheduler and thus entering this function are:
 *
 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 *      paths. For example, see arch/x86/entry_64.S.
 *
 *      To drive preemption between tasks, the scheduler sets the flag in timer
 *      interrupt handler scheduler_tick().
 *
 *   3. Wakeups don't really cause entry into schedule(). They add a
 *      task to the run-queue and that's it.
 *
 *      Now, if the new task added to the run-queue preempts the current
 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 *      called on the nearest possible occasion:
 *
 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
 *
 *         - in syscall or exception context, at the next outmost
 *           preempt_enable(). (this might be as soon as the wake_up()'s
 *           spin_unlock()!)
 *
 *         - in IRQ context, return from interrupt-handler to
 *           preemptible context
 *
 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
 *         then at the next:
 *
 *          - cond_resched() call
 *          - explicit schedule() call
 *          - return from syscall or exception to user-space
 *          - return from interrupt-handler to user-space
I
Ingo Molnar 已提交
2881
 */
2882
static void __sched __schedule(void)
I
Ingo Molnar 已提交
2883 2884
{
	struct task_struct *prev, *next;
2885
	unsigned long *switch_count;
I
Ingo Molnar 已提交
2886
	struct rq *rq;
2887
	int cpu;
I
Ingo Molnar 已提交
2888

2889 2890
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
2891 2892
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
2893
	rcu_note_context_switch(cpu);
I
Ingo Molnar 已提交
2894 2895 2896
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
2897

2898
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
2899
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
2900

2901
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
2902

2903
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
2904
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
2905
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
2906
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
2907
		} else {
2908 2909 2910
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

T
Tejun Heo 已提交
2911
			/*
2912 2913 2914
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
2915 2916 2917 2918 2919 2920 2921 2922 2923
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
		}
I
Ingo Molnar 已提交
2924
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
2925 2926
	}

2927
	pre_schedule(rq, prev);
2928

I
Ingo Molnar 已提交
2929
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
2930 2931
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
2932
	put_prev_task(rq, prev);
2933
	next = pick_next_task(rq);
2934 2935
	clear_tsk_need_resched(prev);
	rq->skip_clock_update = 0;
L
Linus Torvalds 已提交
2936 2937 2938 2939 2940 2941

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
2942
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
2943
		/*
2944 2945 2946 2947
		 * The context switch have flipped the stack from under us
		 * and restored the local variables which were saved when
		 * this task called schedule() in the past. prev == current
		 * is still correct, but it can be moved to another cpu/rq.
P
Peter Zijlstra 已提交
2948 2949 2950
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
2951
	} else
2952
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
2953

2954
	post_schedule(rq);
L
Linus Torvalds 已提交
2955

2956
	sched_preempt_enable_no_resched();
2957
	if (need_resched())
L
Linus Torvalds 已提交
2958 2959
		goto need_resched;
}
2960

2961 2962
static inline void sched_submit_work(struct task_struct *tsk)
{
2963
	if (!tsk->state || tsk_is_pi_blocked(tsk))
2964 2965 2966 2967 2968 2969 2970 2971 2972
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

S
Simon Kirby 已提交
2973
asmlinkage void __sched schedule(void)
2974
{
2975 2976 2977
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
2978 2979
	__schedule();
}
L
Linus Torvalds 已提交
2980 2981
EXPORT_SYMBOL(schedule);

2982
#ifdef CONFIG_CONTEXT_TRACKING
2983 2984 2985 2986 2987 2988 2989 2990
asmlinkage void __sched schedule_user(void)
{
	/*
	 * If we come here after a random call to set_need_resched(),
	 * or we have been woken up remotely but the IPI has not yet arrived,
	 * we haven't yet exited the RCU idle mode. Do it here manually until
	 * we find a better solution.
	 */
2991
	user_exit();
2992
	schedule();
2993
	user_enter();
2994 2995 2996
}
#endif

2997 2998 2999 3000 3001 3002 3003
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
3004
	sched_preempt_enable_no_resched();
3005 3006 3007 3008
	schedule();
	preempt_disable();
}

3009
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3010

3011 3012 3013
static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
{
	if (lock->owner != owner)
3014
		return false;
3015 3016

	/*
3017 3018 3019 3020
	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
	 * lock->owner still matches owner, if that fails, owner might
	 * point to free()d memory, if it still matches, the rcu_read_lock()
	 * ensures the memory stays valid.
3021
	 */
3022
	barrier();
3023

3024
	return owner->on_cpu;
3025
}
3026

3027 3028 3029 3030 3031 3032 3033 3034
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
{
	if (!sched_feat(OWNER_SPIN))
		return 0;
3035

3036
	rcu_read_lock();
3037 3038
	while (owner_running(lock, owner)) {
		if (need_resched())
3039
			break;
3040

3041
		arch_mutex_cpu_relax();
3042
	}
3043
	rcu_read_unlock();
3044

3045
	/*
3046 3047 3048
	 * We break out the loop above on need_resched() and when the
	 * owner changed, which is a sign for heavy contention. Return
	 * success only when lock->owner is NULL.
3049
	 */
3050
	return lock->owner == NULL;
3051 3052 3053
}
#endif

L
Linus Torvalds 已提交
3054 3055
#ifdef CONFIG_PREEMPT
/*
3056
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3057
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3058 3059
 * occur there and call schedule directly.
 */
3060
asmlinkage void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
3061 3062
{
	struct thread_info *ti = current_thread_info();
3063

L
Linus Torvalds 已提交
3064 3065
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3066
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3067
	 */
N
Nick Piggin 已提交
3068
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3069 3070
		return;

3071
	do {
3072
		add_preempt_count_notrace(PREEMPT_ACTIVE);
3073
		__schedule();
3074
		sub_preempt_count_notrace(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3075

3076 3077 3078 3079 3080
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3081
	} while (need_resched());
L
Linus Torvalds 已提交
3082 3083 3084 3085
}
EXPORT_SYMBOL(preempt_schedule);

/*
3086
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3087 3088 3089 3090 3091 3092 3093
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
3094

3095
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3096 3097
	BUG_ON(ti->preempt_count || !irqs_disabled());

3098
	user_exit();
3099 3100 3101
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
3102
		__schedule();
3103 3104
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3105

3106 3107 3108 3109 3110
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3111
	} while (need_resched());
L
Linus Torvalds 已提交
3112 3113 3114 3115
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
3116
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3117
			  void *key)
L
Linus Torvalds 已提交
3118
{
P
Peter Zijlstra 已提交
3119
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3120 3121 3122 3123
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
3124 3125
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
3126 3127 3128
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
3129
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
3130 3131
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
3132
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
3133
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
3134
{
3135
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3136

3137
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3138 3139
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
3140
		if (curr->func(curr, mode, wake_flags, key) &&
3141
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3142 3143 3144 3145 3146 3147 3148 3149 3150
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3151
 * @key: is directly passed to the wakeup function
3152 3153 3154
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3155
 */
3156
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3157
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
3170
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
L
Linus Torvalds 已提交
3171
{
3172
	__wake_up_common(q, mode, nr, 0, NULL);
L
Linus Torvalds 已提交
3173
}
3174
EXPORT_SYMBOL_GPL(__wake_up_locked);
L
Linus Torvalds 已提交
3175

3176 3177 3178 3179
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}
3180
EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3181

L
Linus Torvalds 已提交
3182
/**
3183
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3184 3185 3186
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3187
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
3188 3189 3190 3191 3192 3193 3194
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
3195 3196 3197
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3198
 */
3199 3200
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3201 3202
{
	unsigned long flags;
P
Peter Zijlstra 已提交
3203
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
3204 3205 3206 3207 3208

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
3209
		wake_flags = 0;
L
Linus Torvalds 已提交
3210 3211

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
3212
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
3213 3214
	spin_unlock_irqrestore(&q->lock, flags);
}
3215 3216 3217 3218 3219 3220 3221 3222 3223
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
3224 3225
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

3226 3227 3228 3229 3230 3231 3232 3233
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
3234 3235 3236
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3237
 */
3238
void complete(struct completion *x)
L
Linus Torvalds 已提交
3239 3240 3241 3242 3243
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
3244
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
3245 3246 3247 3248
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

3249 3250 3251 3252 3253
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
3254 3255 3256
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3257
 */
3258
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
3259 3260 3261 3262 3263
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
3264
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
3265 3266 3267 3268
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

3269 3270
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3271 3272 3273 3274
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

C
Changli Gao 已提交
3275
		__add_wait_queue_tail_exclusive(&x->wait, &wait);
L
Linus Torvalds 已提交
3276
		do {
3277
			if (signal_pending_state(state, current)) {
3278 3279
				timeout = -ERESTARTSYS;
				break;
3280 3281
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
3282 3283 3284
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
3285
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
3286
		__remove_wait_queue(&x->wait, &wait);
3287 3288
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
3289 3290
	}
	x->done--;
3291
	return timeout ?: 1;
L
Linus Torvalds 已提交
3292 3293
}

3294 3295
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3296 3297 3298 3299
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
3300
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
3301
	spin_unlock_irq(&x->wait.lock);
3302 3303
	return timeout;
}
L
Linus Torvalds 已提交
3304

3305 3306 3307 3308 3309 3310 3311 3312 3313 3314
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
3315
void __sched wait_for_completion(struct completion *x)
3316 3317
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3318
}
3319
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
3320

3321 3322 3323 3324 3325 3326 3327 3328
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
3329 3330 3331
 *
 * The return value is 0 if timed out, and positive (at least 1, or number of
 * jiffies left till timeout) if completed.
3332
 */
3333
unsigned long __sched
3334
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
3335
{
3336
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3337
}
3338
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
3339

3340 3341 3342 3343 3344 3345
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
3346 3347
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3348
 */
3349
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
3350
{
3351 3352 3353 3354
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
3355
}
3356
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
3357

3358 3359 3360 3361 3362 3363 3364
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3365 3366 3367
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
 * positive (at least 1, or number of jiffies left till timeout) if completed.
3368
 */
3369
long __sched
3370 3371
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
3372
{
3373
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
3374
}
3375
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
3376

3377 3378 3379 3380 3381 3382
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
3383 3384
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3385
 */
M
Matthew Wilcox 已提交
3386 3387 3388 3389 3390 3391 3392 3393 3394
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

3395 3396 3397 3398 3399 3400 3401 3402
/**
 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be
 * signaled or for a specified timeout to expire. It can be
 * interrupted by a kill signal. The timeout is in jiffies.
3403 3404 3405
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
 * positive (at least 1, or number of jiffies left till timeout) if completed.
3406
 */
3407
long __sched
3408 3409 3410 3411 3412 3413 3414
wait_for_completion_killable_timeout(struct completion *x,
				     unsigned long timeout)
{
	return wait_for_common(x, timeout, TASK_KILLABLE);
}
EXPORT_SYMBOL(wait_for_completion_killable_timeout);

3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
3429
	unsigned long flags;
3430 3431
	int ret = 1;

3432
	spin_lock_irqsave(&x->wait.lock, flags);
3433 3434 3435 3436
	if (!x->done)
		ret = 0;
	else
		x->done--;
3437
	spin_unlock_irqrestore(&x->wait.lock, flags);
3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
3452
	unsigned long flags;
3453 3454
	int ret = 1;

3455
	spin_lock_irqsave(&x->wait.lock, flags);
3456 3457
	if (!x->done)
		ret = 0;
3458
	spin_unlock_irqrestore(&x->wait.lock, flags);
3459 3460 3461 3462
	return ret;
}
EXPORT_SYMBOL(completion_done);

3463 3464
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
3465
{
I
Ingo Molnar 已提交
3466 3467 3468 3469
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3470

3471
	__set_current_state(state);
L
Linus Torvalds 已提交
3472

3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3487 3488 3489
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3490
long __sched
I
Ingo Molnar 已提交
3491
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3492
{
3493
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3494 3495 3496
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
3497
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3498
{
3499
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3500 3501 3502
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
3503
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3504
{
3505
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3506 3507 3508
}
EXPORT_SYMBOL(sleep_on_timeout);

3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
3521
void rt_mutex_setprio(struct task_struct *p, int prio)
3522
{
3523
	int oldprio, on_rq, running;
3524
	struct rq *rq;
3525
	const struct sched_class *prev_class;
3526 3527 3528

	BUG_ON(prio < 0 || prio > MAX_PRIO);

3529
	rq = __task_rq_lock(p);
3530

3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

3549
	trace_sched_pi_setprio(p, prio);
3550
	oldprio = p->prio;
3551
	prev_class = p->sched_class;
P
Peter Zijlstra 已提交
3552
	on_rq = p->on_rq;
3553
	running = task_current(rq, p);
3554
	if (on_rq)
3555
		dequeue_task(rq, p, 0);
3556 3557
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
3558 3559 3560 3561 3562 3563

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

3564 3565
	p->prio = prio;

3566 3567
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
3568
	if (on_rq)
3569
		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3570

P
Peter Zijlstra 已提交
3571
	check_class_changed(rq, p, prev_class, oldprio);
3572
out_unlock:
3573
	__task_rq_unlock(rq);
3574 3575
}
#endif
3576
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3577
{
I
Ingo Molnar 已提交
3578
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
3579
	unsigned long flags;
3580
	struct rq *rq;
L
Linus Torvalds 已提交
3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
3593
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
3594
	 */
3595
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3596 3597 3598
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
P
Peter Zijlstra 已提交
3599
	on_rq = p->on_rq;
3600
	if (on_rq)
3601
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
3602 3603

	p->static_prio = NICE_TO_PRIO(nice);
3604
	set_load_weight(p);
3605 3606 3607
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3608

I
Ingo Molnar 已提交
3609
	if (on_rq) {
3610
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
3611
		/*
3612 3613
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3614
		 */
3615
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
3616 3617 3618
			resched_task(rq->curr);
	}
out_unlock:
3619
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3620 3621 3622
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3623 3624 3625 3626 3627
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3628
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3629
{
3630 3631
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
3632

3633
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3634 3635 3636
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3637 3638 3639 3640 3641 3642 3643 3644 3645
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3646
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3647
{
3648
	long nice, retval;
L
Linus Torvalds 已提交
3649 3650 3651 3652 3653 3654

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
3655 3656
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
3657 3658 3659
	if (increment > 40)
		increment = 40;

3660
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
3661 3662 3663 3664 3665
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
3666 3667 3668
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3687
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3688 3689 3690 3691 3692 3693 3694 3695
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
3696
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
3697 3698 3699
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
3700
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
3701 3702 3703 3704 3705 3706 3707

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3722 3723 3724 3725 3726 3727
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
3728
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3729 3730 3731 3732 3733 3734 3735 3736
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
3737
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
3738
{
3739
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
3740 3741 3742
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
3743 3744
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
3745 3746 3747
{
	p->policy = policy;
	p->rt_priority = prio;
3748 3749 3750
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
3751 3752 3753 3754
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
3755
	set_load_weight(p);
L
Linus Torvalds 已提交
3756 3757
}

3758 3759 3760 3761 3762 3763 3764 3765 3766 3767
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
3768 3769
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
3770 3771 3772 3773
	rcu_read_unlock();
	return match;
}

3774
static int __sched_setscheduler(struct task_struct *p, int policy,
3775
				const struct sched_param *param, bool user)
L
Linus Torvalds 已提交
3776
{
3777
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
3778
	unsigned long flags;
3779
	const struct sched_class *prev_class;
3780
	struct rq *rq;
3781
	int reset_on_fork;
L
Linus Torvalds 已提交
3782

3783 3784
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
3785 3786
recheck:
	/* double check policy once rq lock held */
3787 3788
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
3789
		policy = oldpolicy = p->policy;
3790 3791 3792 3793 3794 3795 3796 3797 3798 3799
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
3800 3801
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
3802 3803
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
3804 3805
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
3806
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3807
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
3808
		return -EINVAL;
3809
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
3810 3811
		return -EINVAL;

3812 3813 3814
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
3815
	if (user && !capable(CAP_SYS_NICE)) {
3816
		if (rt_policy(policy)) {
3817 3818
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
3819 3820 3821 3822 3823 3824 3825 3826 3827 3828

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
3829

I
Ingo Molnar 已提交
3830
		/*
3831 3832
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
3833
		 */
3834 3835 3836 3837
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
			if (!can_nice(p, TASK_NICE(p)))
				return -EPERM;
		}
3838

3839
		/* can't change other user's priorities */
3840
		if (!check_same_owner(p))
3841
			return -EPERM;
3842 3843 3844 3845

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
3846
	}
L
Linus Torvalds 已提交
3847

3848
	if (user) {
3849
		retval = security_task_setscheduler(p);
3850 3851 3852 3853
		if (retval)
			return retval;
	}

3854 3855 3856
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
3857
	 *
L
Lucas De Marchi 已提交
3858
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
3859 3860
	 * runqueue lock must be held.
	 */
3861
	rq = task_rq_lock(p, &flags);
3862

3863 3864 3865 3866
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
3867
		task_rq_unlock(rq, p, &flags);
3868 3869 3870
		return -EINVAL;
	}

3871 3872 3873 3874 3875
	/*
	 * If not changing anything there's no need to proceed further:
	 */
	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
			param->sched_priority == p->rt_priority))) {
3876
		task_rq_unlock(rq, p, &flags);
3877 3878 3879
		return 0;
	}

3880 3881 3882 3883 3884 3885 3886
#ifdef CONFIG_RT_GROUP_SCHED
	if (user) {
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3887 3888
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
3889
			task_rq_unlock(rq, p, &flags);
3890 3891 3892 3893 3894
			return -EPERM;
		}
	}
#endif

L
Linus Torvalds 已提交
3895 3896 3897
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
3898
		task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3899 3900
		goto recheck;
	}
P
Peter Zijlstra 已提交
3901
	on_rq = p->on_rq;
3902
	running = task_current(rq, p);
3903
	if (on_rq)
3904
		dequeue_task(rq, p, 0);
3905 3906
	if (running)
		p->sched_class->put_prev_task(rq, p);
3907

3908 3909
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
3910
	oldprio = p->prio;
3911
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
3912
	__setscheduler(rq, p, policy, param->sched_priority);
3913

3914 3915
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
3916
	if (on_rq)
3917
		enqueue_task(rq, p, 0);
3918

P
Peter Zijlstra 已提交
3919
	check_class_changed(rq, p, prev_class, oldprio);
3920
	task_rq_unlock(rq, p, &flags);
3921

3922 3923
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
3924 3925
	return 0;
}
3926 3927 3928 3929 3930 3931 3932 3933 3934 3935

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
3936
		       const struct sched_param *param)
3937 3938 3939
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
3940 3941
EXPORT_SYMBOL_GPL(sched_setscheduler);

3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3954
			       const struct sched_param *param)
3955 3956 3957 3958
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
3959 3960
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
3961 3962 3963
{
	struct sched_param lparam;
	struct task_struct *p;
3964
	int retval;
L
Linus Torvalds 已提交
3965 3966 3967 3968 3969

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
3970 3971 3972

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
3973
	p = find_process_by_pid(pid);
3974 3975 3976
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
3977

L
Linus Torvalds 已提交
3978 3979 3980 3981 3982 3983 3984 3985 3986
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
3987 3988
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
3989
{
3990 3991 3992 3993
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
3994 3995 3996 3997 3998 3999 4000 4001
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
4002
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4003 4004 4005 4006 4007 4008 4009 4010
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
4011
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4012
{
4013
	struct task_struct *p;
4014
	int retval;
L
Linus Torvalds 已提交
4015 4016

	if (pid < 0)
4017
		return -EINVAL;
L
Linus Torvalds 已提交
4018 4019

	retval = -ESRCH;
4020
	rcu_read_lock();
L
Linus Torvalds 已提交
4021 4022 4023 4024
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4025 4026
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4027
	}
4028
	rcu_read_unlock();
L
Linus Torvalds 已提交
4029 4030 4031 4032
	return retval;
}

/**
4033
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4034 4035 4036
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
4037
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4038 4039
{
	struct sched_param lp;
4040
	struct task_struct *p;
4041
	int retval;
L
Linus Torvalds 已提交
4042 4043

	if (!param || pid < 0)
4044
		return -EINVAL;
L
Linus Torvalds 已提交
4045

4046
	rcu_read_lock();
L
Linus Torvalds 已提交
4047 4048 4049 4050 4051 4052 4053 4054 4055 4056
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
4057
	rcu_read_unlock();
L
Linus Torvalds 已提交
4058 4059 4060 4061 4062 4063 4064 4065 4066

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4067
	rcu_read_unlock();
L
Linus Torvalds 已提交
4068 4069 4070
	return retval;
}

4071
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4072
{
4073
	cpumask_var_t cpus_allowed, new_mask;
4074 4075
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4076

4077
	get_online_cpus();
4078
	rcu_read_lock();
L
Linus Torvalds 已提交
4079 4080 4081

	p = find_process_by_pid(pid);
	if (!p) {
4082
		rcu_read_unlock();
4083
		put_online_cpus();
L
Linus Torvalds 已提交
4084 4085 4086
		return -ESRCH;
	}

4087
	/* Prevent p going away */
L
Linus Torvalds 已提交
4088
	get_task_struct(p);
4089
	rcu_read_unlock();
L
Linus Torvalds 已提交
4090

4091 4092 4093 4094 4095 4096 4097 4098
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4099
	retval = -EPERM;
E
Eric W. Biederman 已提交
4100 4101 4102 4103 4104 4105 4106 4107
	if (!check_same_owner(p)) {
		rcu_read_lock();
		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
			rcu_read_unlock();
			goto out_unlock;
		}
		rcu_read_unlock();
	}
L
Linus Torvalds 已提交
4108

4109
	retval = security_task_setscheduler(p);
4110 4111 4112
	if (retval)
		goto out_unlock;

4113 4114
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Peter Zijlstra 已提交
4115
again:
4116
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
4117

P
Paul Menage 已提交
4118
	if (!retval) {
4119 4120
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4121 4122 4123 4124 4125
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4126
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4127 4128 4129
			goto again;
		}
	}
L
Linus Torvalds 已提交
4130
out_unlock:
4131 4132 4133 4134
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4135
	put_task_struct(p);
4136
	put_online_cpus();
L
Linus Torvalds 已提交
4137 4138 4139 4140
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4141
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4142
{
4143 4144 4145 4146 4147
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4148 4149 4150 4151 4152 4153 4154 4155 4156
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
4157 4158
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4159
{
4160
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4161 4162
	int retval;

4163 4164
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4165

4166 4167 4168 4169 4170
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4171 4172
}

4173
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4174
{
4175
	struct task_struct *p;
4176
	unsigned long flags;
L
Linus Torvalds 已提交
4177 4178
	int retval;

4179
	get_online_cpus();
4180
	rcu_read_lock();
L
Linus Torvalds 已提交
4181 4182 4183 4184 4185 4186

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4187 4188 4189 4190
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4191
	raw_spin_lock_irqsave(&p->pi_lock, flags);
4192
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4193
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4194 4195

out_unlock:
4196
	rcu_read_unlock();
4197
	put_online_cpus();
L
Linus Torvalds 已提交
4198

4199
	return retval;
L
Linus Torvalds 已提交
4200 4201 4202 4203 4204 4205 4206 4207
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
4208 4209
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4210 4211
{
	int ret;
4212
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4213

A
Anton Blanchard 已提交
4214
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4215 4216
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4217 4218
		return -EINVAL;

4219 4220
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4221

4222 4223
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4224
		size_t retlen = min_t(size_t, len, cpumask_size());
4225 4226

		if (copy_to_user(user_mask_ptr, mask, retlen))
4227 4228
			ret = -EFAULT;
		else
4229
			ret = retlen;
4230 4231
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4232

4233
	return ret;
L
Linus Torvalds 已提交
4234 4235 4236 4237 4238
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4239 4240
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4241
 */
4242
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4243
{
4244
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4245

4246
	schedstat_inc(rq, yld_count);
4247
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4248 4249 4250 4251 4252 4253

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4254
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4255
	do_raw_spin_unlock(&rq->lock);
4256
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
4257 4258 4259 4260 4261 4262

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
4263 4264 4265 4266 4267
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
4268
static void __cond_resched(void)
L
Linus Torvalds 已提交
4269
{
4270
	add_preempt_count(PREEMPT_ACTIVE);
4271
	__schedule();
4272
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4273 4274
}

4275
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4276
{
P
Peter Zijlstra 已提交
4277
	if (should_resched()) {
L
Linus Torvalds 已提交
4278 4279 4280 4281 4282
		__cond_resched();
		return 1;
	}
	return 0;
}
4283
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4284 4285

/*
4286
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4287 4288
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4289
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4290 4291 4292
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4293
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4294
{
P
Peter Zijlstra 已提交
4295
	int resched = should_resched();
J
Jan Kara 已提交
4296 4297
	int ret = 0;

4298 4299
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
4300
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4301
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4302
		if (resched)
N
Nick Piggin 已提交
4303 4304 4305
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
4306
		ret = 1;
L
Linus Torvalds 已提交
4307 4308
		spin_lock(lock);
	}
J
Jan Kara 已提交
4309
	return ret;
L
Linus Torvalds 已提交
4310
}
4311
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4312

4313
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4314 4315 4316
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
4317
	if (should_resched()) {
4318
		local_bh_enable();
L
Linus Torvalds 已提交
4319 4320 4321 4322 4323 4324
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
4325
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4326 4327 4328 4329

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
 * 	yield();
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
4348 4349 4350 4351 4352 4353 4354 4355
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

4356 4357 4358 4359
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
4360 4361
 * @p: target task
 * @preempt: whether task preemption is allowed or not
4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
 * Returns true if we indeed boosted the target task.
 */
bool __sched yield_to(struct task_struct *p, bool preempt)
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
	bool yielded = 0;

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
	double_rq_lock(rq, p_rq);
	while (task_rq(p) != p_rq) {
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
		goto out;

	if (curr->sched_class != p->sched_class)
		goto out;

	if (task_running(p_rq, p) || p->state)
		goto out;

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4396
	if (yielded) {
4397
		schedstat_inc(rq, yld_count);
4398 4399 4400 4401 4402 4403 4404
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
			resched_task(p_rq->curr);
	}
4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416

out:
	double_rq_unlock(rq, p_rq);
	local_irq_restore(flags);

	if (yielded)
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
4417
/*
I
Ingo Molnar 已提交
4418
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4419 4420 4421 4422
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
4423
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4424

4425
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4426
	atomic_inc(&rq->nr_iowait);
4427
	blk_flush_plug(current);
4428
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4429
	schedule();
4430
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4431
	atomic_dec(&rq->nr_iowait);
4432
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4433 4434 4435 4436 4437
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4438
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4439 4440
	long ret;

4441
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4442
	atomic_inc(&rq->nr_iowait);
4443
	blk_flush_plug(current);
4444
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4445
	ret = schedule_timeout(timeout);
4446
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4447
	atomic_dec(&rq->nr_iowait);
4448
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4449 4450 4451 4452 4453 4454 4455 4456 4457 4458
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
4459
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
4460 4461 4462 4463 4464 4465 4466 4467 4468
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4469
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4470
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
4484
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
4485 4486 4487 4488 4489 4490 4491 4492 4493
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4494
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4495
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
4509
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4510
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
4511
{
4512
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4513
	unsigned int time_slice;
4514 4515
	unsigned long flags;
	struct rq *rq;
4516
	int retval;
L
Linus Torvalds 已提交
4517 4518 4519
	struct timespec t;

	if (pid < 0)
4520
		return -EINVAL;
L
Linus Torvalds 已提交
4521 4522

	retval = -ESRCH;
4523
	rcu_read_lock();
L
Linus Torvalds 已提交
4524 4525 4526 4527 4528 4529 4530 4531
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4532 4533
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
4534
	task_rq_unlock(rq, p, &flags);
D
Dmitry Adamushko 已提交
4535

4536
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
4537
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4538 4539
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4540

L
Linus Torvalds 已提交
4541
out_unlock:
4542
	rcu_read_unlock();
L
Linus Torvalds 已提交
4543 4544 4545
	return retval;
}

4546
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4547

4548
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4549 4550
{
	unsigned long free = 0;
4551
	int ppid;
4552
	unsigned state;
L
Linus Torvalds 已提交
4553 4554

	state = p->state ? __ffs(p->state) + 1 : 0;
4555
	printk(KERN_INFO "%-15.15s %c", p->comm,
4556
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4557
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4558
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4559
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4560
	else
P
Peter Zijlstra 已提交
4561
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4562 4563
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4564
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4565
	else
P
Peter Zijlstra 已提交
4566
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4567 4568
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
4569
	free = stack_not_used(p);
L
Linus Torvalds 已提交
4570
#endif
4571 4572 4573
	rcu_read_lock();
	ppid = task_pid_nr(rcu_dereference(p->real_parent));
	rcu_read_unlock();
P
Peter Zijlstra 已提交
4574
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4575
		task_pid_nr(p), ppid,
4576
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
4577

4578
	show_stack(p, NULL);
L
Linus Torvalds 已提交
4579 4580
}

I
Ingo Molnar 已提交
4581
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4582
{
4583
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4584

4585
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
4586 4587
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4588
#else
P
Peter Zijlstra 已提交
4589 4590
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4591
#endif
4592
	rcu_read_lock();
L
Linus Torvalds 已提交
4593 4594 4595
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
4596
		 * console might take a lot of time:
L
Linus Torvalds 已提交
4597 4598
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4599
		if (!state_filter || (p->state & state_filter))
4600
			sched_show_task(p);
L
Linus Torvalds 已提交
4601 4602
	} while_each_thread(g, p);

4603 4604
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4605 4606 4607
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
4608
	rcu_read_unlock();
I
Ingo Molnar 已提交
4609 4610 4611
	/*
	 * Only show locks if all tasks are dumped:
	 */
4612
	if (!state_filter)
I
Ingo Molnar 已提交
4613
		debug_show_all_locks();
L
Linus Torvalds 已提交
4614 4615
}

I
Ingo Molnar 已提交
4616 4617
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
4618
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4619 4620
}

4621 4622 4623 4624 4625 4626 4627 4628
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4629
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4630
{
4631
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4632 4633
	unsigned long flags;

4634
	raw_spin_lock_irqsave(&rq->lock, flags);
4635

I
Ingo Molnar 已提交
4636
	__sched_fork(idle);
4637
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
4638 4639
	idle->se.exec_start = sched_clock();

4640
	do_set_cpus_allowed(idle, cpumask_of(cpu));
4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
4652
	__set_task_cpu(idle, cpu);
4653
	rcu_read_unlock();
L
Linus Torvalds 已提交
4654 4655

	rq->curr = rq->idle = idle;
P
Peter Zijlstra 已提交
4656 4657
#if defined(CONFIG_SMP)
	idle->on_cpu = 1;
4658
#endif
4659
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
4660 4661

	/* Set the preempt count _outside_ the spinlocks! */
A
Al Viro 已提交
4662
	task_thread_info(idle)->preempt_count = 0;
4663

I
Ingo Molnar 已提交
4664 4665 4666 4667
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
4668
	ftrace_graph_init_idle_task(idle, cpu);
4669 4670 4671
#if defined(CONFIG_SMP)
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
4672 4673
}

L
Linus Torvalds 已提交
4674
#ifdef CONFIG_SMP
4675 4676 4677 4678
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
	if (p->sched_class && p->sched_class->set_cpus_allowed)
		p->sched_class->set_cpus_allowed(p, new_mask);
4679 4680

	cpumask_copy(&p->cpus_allowed, new_mask);
4681
	p->nr_cpus_allowed = cpumask_weight(new_mask);
4682 4683
}

L
Linus Torvalds 已提交
4684 4685 4686
/*
 * This is how migration works:
 *
4687 4688 4689 4690 4691 4692
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
4693
 *    it and puts it into the right queue.
4694 4695
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
4696 4697 4698 4699 4700 4701 4702 4703
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
4704
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
4705 4706
 * call is not atomic; no spinlocks may be held.
 */
4707
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
4708 4709
{
	unsigned long flags;
4710
	struct rq *rq;
4711
	unsigned int dest_cpu;
4712
	int ret = 0;
L
Linus Torvalds 已提交
4713 4714

	rq = task_rq_lock(p, &flags);
4715

4716 4717 4718
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

4719
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
4720 4721 4722 4723
		ret = -EINVAL;
		goto out;
	}

4724
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
4725 4726 4727 4728
		ret = -EINVAL;
		goto out;
	}

4729
	do_set_cpus_allowed(p, new_mask);
4730

L
Linus Torvalds 已提交
4731
	/* Can the task run on the task's current CPU? If so, we're done */
4732
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
4733 4734
		goto out;

4735
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4736
	if (p->on_rq) {
4737
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
4738
		/* Need help from migration thread: drop lock and wait. */
4739
		task_rq_unlock(rq, p, &flags);
4740
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
4741 4742 4743 4744
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
4745
	task_rq_unlock(rq, p, &flags);
4746

L
Linus Torvalds 已提交
4747 4748
	return ret;
}
4749
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
4750 4751

/*
I
Ingo Molnar 已提交
4752
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
4753 4754 4755 4756 4757 4758
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4759 4760
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4761
 */
4762
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4763
{
4764
	struct rq *rq_dest, *rq_src;
4765
	int ret = 0;
L
Linus Torvalds 已提交
4766

4767
	if (unlikely(!cpu_active(dest_cpu)))
4768
		return ret;
L
Linus Torvalds 已提交
4769 4770 4771 4772

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

4773
	raw_spin_lock(&p->pi_lock);
L
Linus Torvalds 已提交
4774 4775 4776
	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
4777
		goto done;
L
Linus Torvalds 已提交
4778
	/* Affinity changed (again). */
4779
	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
L
Linus Torvalds 已提交
4780
		goto fail;
L
Linus Torvalds 已提交
4781

4782 4783 4784 4785
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
P
Peter Zijlstra 已提交
4786
	if (p->on_rq) {
4787
		dequeue_task(rq_src, p, 0);
4788
		set_task_cpu(p, dest_cpu);
4789
		enqueue_task(rq_dest, p, 0);
4790
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
4791
	}
L
Linus Torvalds 已提交
4792
done:
4793
	ret = 1;
L
Linus Torvalds 已提交
4794
fail:
L
Linus Torvalds 已提交
4795
	double_rq_unlock(rq_src, rq_dest);
4796
	raw_spin_unlock(&p->pi_lock);
4797
	return ret;
L
Linus Torvalds 已提交
4798 4799 4800
}

/*
4801 4802 4803
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
4804
 */
4805
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
4806
{
4807
	struct migration_arg *arg = data;
4808

4809 4810 4811 4812
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
4813
	local_irq_disable();
4814
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4815
	local_irq_enable();
L
Linus Torvalds 已提交
4816
	return 0;
4817 4818
}

L
Linus Torvalds 已提交
4819
#ifdef CONFIG_HOTPLUG_CPU
4820

4821
/*
4822 4823
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
4824
 */
4825
void idle_task_exit(void)
L
Linus Torvalds 已提交
4826
{
4827
	struct mm_struct *mm = current->active_mm;
4828

4829
	BUG_ON(cpu_online(smp_processor_id()));
4830

4831 4832 4833
	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
L
Linus Torvalds 已提交
4834 4835 4836
}

/*
4837 4838 4839 4840 4841
 * Since this CPU is going 'away' for a while, fold any nr_active delta
 * we might have. Assumes we're called after migrate_tasks() so that the
 * nr_active count is stable.
 *
 * Also see the comment "Global load-average calculations".
L
Linus Torvalds 已提交
4842
 */
4843
static void calc_load_migrate(struct rq *rq)
L
Linus Torvalds 已提交
4844
{
4845 4846 4847
	long delta = calc_load_fold_active(rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
4848 4849
}

4850
/*
4851 4852 4853 4854 4855 4856
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
4857
 */
4858
static void migrate_tasks(unsigned int dead_cpu)
L
Linus Torvalds 已提交
4859
{
4860
	struct rq *rq = cpu_rq(dead_cpu);
4861 4862
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
4863 4864

	/*
4865 4866 4867 4868 4869 4870 4871
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
4872
	 */
4873
	rq->stop = NULL;
4874

I
Ingo Molnar 已提交
4875
	for ( ; ; ) {
4876 4877 4878 4879 4880
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
4881
			break;
4882

4883
		next = pick_next_task(rq);
4884
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
4885
		next->sched_class->put_prev_task(rq, next);
4886

4887 4888 4889 4890 4891 4892 4893
		/* Find suitable destination for @next, with force if needed. */
		dest_cpu = select_fallback_rq(dead_cpu, next);
		raw_spin_unlock(&rq->lock);

		__migrate_task(next, dead_cpu, dest_cpu);

		raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
4894
	}
4895

4896
	rq->stop = stop;
4897
}
4898

L
Linus Torvalds 已提交
4899 4900
#endif /* CONFIG_HOTPLUG_CPU */

4901 4902 4903
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
4904 4905
	{
		.procname	= "sched_domain",
4906
		.mode		= 0555,
4907
	},
4908
	{}
4909 4910 4911
};

static struct ctl_table sd_ctl_root[] = {
4912 4913
	{
		.procname	= "kernel",
4914
		.mode		= 0555,
4915 4916
		.child		= sd_ctl_dir,
	},
4917
	{}
4918 4919 4920 4921 4922
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
4923
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4924 4925 4926 4927

	return entry;
}

4928 4929
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
4930
	struct ctl_table *entry;
4931

4932 4933 4934
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
4935
	 * will always be set. In the lowest directory the names are
4936 4937 4938
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
4939 4940
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
4941 4942 4943
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
4944 4945 4946 4947 4948

	kfree(*tablep);
	*tablep = NULL;
}

4949 4950 4951
static int min_load_idx = 0;
static int max_load_idx = CPU_LOAD_IDX_MAX;

4952
static void
4953
set_table_entry(struct ctl_table *entry,
4954
		const char *procname, void *data, int maxlen,
4955 4956
		umode_t mode, proc_handler *proc_handler,
		bool load_idx)
4957 4958 4959 4960 4961 4962
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
4963 4964 4965 4966 4967

	if (load_idx) {
		entry->extra1 = &min_load_idx;
		entry->extra2 = &max_load_idx;
	}
4968 4969 4970 4971 4972
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
4973
	struct ctl_table *table = sd_alloc_ctl_entry(13);
4974

4975 4976 4977
	if (table == NULL)
		return NULL;

4978
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4979
		sizeof(long), 0644, proc_doulongvec_minmax, false);
4980
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4981
		sizeof(long), 0644, proc_doulongvec_minmax, false);
4982
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4983
		sizeof(int), 0644, proc_dointvec_minmax, true);
4984
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4985
		sizeof(int), 0644, proc_dointvec_minmax, true);
4986
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4987
		sizeof(int), 0644, proc_dointvec_minmax, true);
4988
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4989
		sizeof(int), 0644, proc_dointvec_minmax, true);
4990
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4991
		sizeof(int), 0644, proc_dointvec_minmax, true);
4992
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4993
		sizeof(int), 0644, proc_dointvec_minmax, false);
4994
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4995
		sizeof(int), 0644, proc_dointvec_minmax, false);
4996
	set_table_entry(&table[9], "cache_nice_tries",
4997
		&sd->cache_nice_tries,
4998
		sizeof(int), 0644, proc_dointvec_minmax, false);
4999
	set_table_entry(&table[10], "flags", &sd->flags,
5000
		sizeof(int), 0644, proc_dointvec_minmax, false);
5001
	set_table_entry(&table[11], "name", sd->name,
5002
		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5003
	/* &table[12] is terminator */
5004 5005 5006 5007

	return table;
}

5008
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5009 5010 5011 5012 5013 5014 5015 5016 5017
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5018 5019
	if (table == NULL)
		return NULL;
5020 5021 5022 5023 5024

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5025
		entry->mode = 0555;
5026 5027 5028 5029 5030 5031 5032 5033
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5034
static void register_sched_domain_sysctl(void)
5035
{
5036
	int i, cpu_num = num_possible_cpus();
5037 5038 5039
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5040 5041 5042
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5043 5044 5045
	if (entry == NULL)
		return;

5046
	for_each_possible_cpu(i) {
5047 5048
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5049
		entry->mode = 0555;
5050
		entry->child = sd_alloc_ctl_cpu_table(i);
5051
		entry++;
5052
	}
5053 5054

	WARN_ON(sd_sysctl_header);
5055 5056
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5057

5058
/* may be called multiple times per register */
5059 5060
static void unregister_sched_domain_sysctl(void)
{
5061 5062
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5063
	sd_sysctl_header = NULL;
5064 5065
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5066
}
5067
#else
5068 5069 5070 5071
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5072 5073 5074 5075
{
}
#endif

5076 5077 5078 5079 5080
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5081
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5101
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5102 5103 5104 5105
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5106 5107 5108 5109
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5110 5111
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5112
{
5113
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5114
	unsigned long flags;
5115
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5116

5117
	switch (action & ~CPU_TASKS_FROZEN) {
5118

L
Linus Torvalds 已提交
5119
	case CPU_UP_PREPARE:
5120
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5121
		break;
5122

L
Linus Torvalds 已提交
5123
	case CPU_ONLINE:
5124
		/* Update our root-domain */
5125
		raw_spin_lock_irqsave(&rq->lock, flags);
5126
		if (rq->rd) {
5127
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5128 5129

			set_rq_online(rq);
5130
		}
5131
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5132
		break;
5133

L
Linus Torvalds 已提交
5134
#ifdef CONFIG_HOTPLUG_CPU
5135
	case CPU_DYING:
5136
		sched_ttwu_pending();
G
Gregory Haskins 已提交
5137
		/* Update our root-domain */
5138
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5139
		if (rq->rd) {
5140
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5141
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5142
		}
5143 5144
		migrate_tasks(cpu);
		BUG_ON(rq->nr_running != 1); /* the migration thread */
5145
		raw_spin_unlock_irqrestore(&rq->lock, flags);
5146
		break;
5147

5148
	case CPU_DEAD:
5149
		calc_load_migrate(rq);
G
Gregory Haskins 已提交
5150
		break;
L
Linus Torvalds 已提交
5151 5152
#endif
	}
5153 5154 5155

	update_max_interval();

L
Linus Torvalds 已提交
5156 5157 5158
	return NOTIFY_OK;
}

5159 5160 5161
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5162
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5163
 */
5164
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5165
	.notifier_call = migration_call,
5166
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
5167 5168
};

5169 5170 5171 5172
static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
5173
	case CPU_STARTING:
5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		set_cpu_active((long)hcpu, false);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

5194
static int __init migration_init(void)
L
Linus Torvalds 已提交
5195 5196
{
	void *cpu = (void *)(long)smp_processor_id();
5197
	int err;
5198

5199
	/* Initialize migration for the boot CPU */
5200 5201
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5202 5203
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5204

5205 5206 5207 5208
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

5209
	return 0;
L
Linus Torvalds 已提交
5210
}
5211
early_initcall(migration_init);
L
Linus Torvalds 已提交
5212 5213 5214
#endif

#ifdef CONFIG_SMP
5215

5216 5217
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

5218
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5219

5220
static __read_mostly int sched_debug_enabled;
5221

5222
static int __init sched_debug_setup(char *str)
5223
{
5224
	sched_debug_enabled = 1;
5225 5226 5227

	return 0;
}
5228 5229 5230 5231 5232 5233
early_param("sched_debug", sched_debug_setup);

static inline bool sched_debug(void)
{
	return sched_debug_enabled;
}
5234

5235
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5236
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5237
{
I
Ingo Molnar 已提交
5238
	struct sched_group *group = sd->groups;
5239
	char str[256];
L
Linus Torvalds 已提交
5240

R
Rusty Russell 已提交
5241
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5242
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5243 5244 5245 5246

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5247
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5248
		if (sd->parent)
P
Peter Zijlstra 已提交
5249 5250
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5251
		return -1;
N
Nick Piggin 已提交
5252 5253
	}

P
Peter Zijlstra 已提交
5254
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
5255

5256
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5257 5258
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5259
	}
5260
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5261 5262
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5263
	}
L
Linus Torvalds 已提交
5264

I
Ingo Molnar 已提交
5265
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5266
	do {
I
Ingo Molnar 已提交
5267
		if (!group) {
P
Peter Zijlstra 已提交
5268 5269
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5270 5271 5272
			break;
		}

5273 5274 5275 5276 5277 5278
		/*
		 * Even though we initialize ->power to something semi-sane,
		 * we leave power_orig unset. This allows us to detect if
		 * domain iteration is still funny without causing /0 traps.
		 */
		if (!group->sgp->power_orig) {
P
Peter Zijlstra 已提交
5279 5280 5281
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
5282 5283
			break;
		}
L
Linus Torvalds 已提交
5284

5285
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5286 5287
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
5288 5289
			break;
		}
L
Linus Torvalds 已提交
5290

5291 5292
		if (!(sd->flags & SD_OVERLAP) &&
		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5293 5294
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
5295 5296
			break;
		}
L
Linus Torvalds 已提交
5297

5298
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
5299

R
Rusty Russell 已提交
5300
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5301

P
Peter Zijlstra 已提交
5302
		printk(KERN_CONT " %s", str);
5303
		if (group->sgp->power != SCHED_POWER_SCALE) {
P
Peter Zijlstra 已提交
5304
			printk(KERN_CONT " (cpu_power = %d)",
5305
				group->sgp->power);
5306
		}
L
Linus Torvalds 已提交
5307

I
Ingo Molnar 已提交
5308 5309
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
5310
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5311

5312
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
5313
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5314

5315 5316
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
5317 5318
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
5319 5320
	return 0;
}
L
Linus Torvalds 已提交
5321

I
Ingo Molnar 已提交
5322 5323 5324
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5325

5326
	if (!sched_debug_enabled)
5327 5328
		return;

I
Ingo Molnar 已提交
5329 5330 5331 5332
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5333

I
Ingo Molnar 已提交
5334 5335 5336
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
5337
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
I
Ingo Molnar 已提交
5338
			break;
L
Linus Torvalds 已提交
5339 5340
		level++;
		sd = sd->parent;
5341
		if (!sd)
I
Ingo Molnar 已提交
5342 5343
			break;
	}
L
Linus Torvalds 已提交
5344
}
5345
#else /* !CONFIG_SCHED_DEBUG */
5346
# define sched_domain_debug(sd, cpu) do { } while (0)
5347 5348 5349 5350
static inline bool sched_debug(void)
{
	return false;
}
5351
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
5352

5353
static int sd_degenerate(struct sched_domain *sd)
5354
{
5355
	if (cpumask_weight(sched_domain_span(sd)) == 1)
5356 5357 5358 5359 5360 5361
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5362 5363 5364
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5365 5366 5367 5368 5369
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
5370
	if (sd->flags & (SD_WAKE_AFFINE))
5371 5372 5373 5374 5375
		return 0;

	return 1;
}

5376 5377
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5378 5379 5380 5381 5382 5383
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

5384
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5385 5386 5387 5388 5389 5390 5391
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5392 5393 5394
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5395 5396
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
5397 5398 5399 5400 5401 5402 5403
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

5404
static void free_rootdomain(struct rcu_head *rcu)
5405
{
5406
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5407

5408
	cpupri_cleanup(&rd->cpupri);
5409 5410 5411 5412 5413 5414
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
5415 5416
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
5417
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
5418 5419
	unsigned long flags;

5420
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5421 5422

	if (rq->rd) {
I
Ingo Molnar 已提交
5423
		old_rd = rq->rd;
G
Gregory Haskins 已提交
5424

5425
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5426
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5427

5428
		cpumask_clear_cpu(rq->cpu, old_rd->span);
5429

I
Ingo Molnar 已提交
5430 5431 5432 5433 5434 5435 5436
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
5437 5438 5439 5440 5441
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

5442
	cpumask_set_cpu(rq->cpu, rd->span);
5443
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5444
		set_rq_online(rq);
G
Gregory Haskins 已提交
5445

5446
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
5447 5448

	if (old_rd)
5449
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
5450 5451
}

5452
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
5453 5454 5455
{
	memset(rd, 0, sizeof(*rd));

5456
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5457
		goto out;
5458
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5459
		goto free_span;
5460
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5461
		goto free_online;
5462

5463
	if (cpupri_init(&rd->cpupri) != 0)
5464
		goto free_rto_mask;
5465
	return 0;
5466

5467 5468
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
5469 5470 5471 5472
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
5473
out:
5474
	return -ENOMEM;
G
Gregory Haskins 已提交
5475 5476
}

5477 5478 5479 5480 5481 5482
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
struct root_domain def_root_domain;

G
Gregory Haskins 已提交
5483 5484
static void init_defrootdomain(void)
{
5485
	init_rootdomain(&def_root_domain);
5486

G
Gregory Haskins 已提交
5487 5488 5489
	atomic_set(&def_root_domain.refcount, 1);
}

5490
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
5491 5492 5493 5494 5495 5496 5497
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

5498
	if (init_rootdomain(rd) != 0) {
5499 5500 5501
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
5502 5503 5504 5505

	return rd;
}

5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524
static void free_sched_groups(struct sched_group *sg, int free_sgp)
{
	struct sched_group *tmp, *first;

	if (!sg)
		return;

	first = sg;
	do {
		tmp = sg->next;

		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
			kfree(sg->sgp);

		kfree(sg);
		sg = tmp;
	} while (sg != first);
}

5525 5526 5527
static void free_sched_domain(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5528 5529 5530 5531 5532 5533 5534 5535

	/*
	 * If its an overlapping domain it has private groups, iterate and
	 * nuke them all.
	 */
	if (sd->flags & SD_OVERLAP) {
		free_sched_groups(sd->groups, 1);
	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5536
		kfree(sd->groups->sgp);
5537
		kfree(sd->groups);
5538
	}
5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552
	kfree(sd);
}

static void destroy_sched_domain(struct sched_domain *sd, int cpu)
{
	call_rcu(&sd->rcu, free_sched_domain);
}

static void destroy_sched_domains(struct sched_domain *sd, int cpu)
{
	for (; sd; sd = sd->parent)
		destroy_sched_domain(sd, cpu);
}

5553 5554 5555 5556 5557 5558 5559
/*
 * Keep a special pointer to the highest sched_domain that has
 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 * allows us to avoid some pointer chasing select_idle_sibling().
 *
 * Also keep a unique ID per domain (we use the first cpu number in
 * the cpumask of the domain), this allows us to quickly tell if
5560
 * two cpus are in the same cache domain, see cpus_share_cache().
5561 5562 5563 5564 5565 5566 5567 5568 5569 5570
 */
DEFINE_PER_CPU(struct sched_domain *, sd_llc);
DEFINE_PER_CPU(int, sd_llc_id);

static void update_top_cache_domain(int cpu)
{
	struct sched_domain *sd;
	int id = cpu;

	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5571
	if (sd)
5572 5573 5574 5575 5576 5577
		id = cpumask_first(sched_domain_span(sd));

	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
	per_cpu(sd_llc_id, cpu) = id;
}

L
Linus Torvalds 已提交
5578
/*
I
Ingo Molnar 已提交
5579
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
5580 5581
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
5582 5583
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
5584
{
5585
	struct rq *rq = cpu_rq(cpu);
5586 5587 5588
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
5589
	for (tmp = sd; tmp; ) {
5590 5591 5592
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5593

5594
		if (sd_parent_degenerate(tmp, parent)) {
5595
			tmp->parent = parent->parent;
5596 5597
			if (parent->parent)
				parent->parent->child = tmp;
5598
			destroy_sched_domain(parent, cpu);
5599 5600
		} else
			tmp = tmp->parent;
5601 5602
	}

5603
	if (sd && sd_degenerate(sd)) {
5604
		tmp = sd;
5605
		sd = sd->parent;
5606
		destroy_sched_domain(tmp, cpu);
5607 5608 5609
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5610

5611
	sched_domain_debug(sd, cpu);
L
Linus Torvalds 已提交
5612

G
Gregory Haskins 已提交
5613
	rq_attach_root(rq, rd);
5614
	tmp = rq->sd;
N
Nick Piggin 已提交
5615
	rcu_assign_pointer(rq->sd, sd);
5616
	destroy_sched_domains(tmp, cpu);
5617 5618

	update_top_cache_domain(cpu);
L
Linus Torvalds 已提交
5619 5620 5621
}

/* cpus with isolated domains */
5622
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
5623 5624 5625 5626

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
5627
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
5628
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
5629 5630 5631
	return 1;
}

I
Ingo Molnar 已提交
5632
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5633

5634 5635 5636 5637 5638
static const struct cpumask *cpu_cpu_mask(int cpu)
{
	return cpumask_of_node(cpu_to_node(cpu));
}

5639 5640 5641
struct sd_data {
	struct sched_domain **__percpu sd;
	struct sched_group **__percpu sg;
5642
	struct sched_group_power **__percpu sgp;
5643 5644
};

5645
struct s_data {
5646
	struct sched_domain ** __percpu sd;
5647 5648 5649
	struct root_domain	*rd;
};

5650 5651
enum s_alloc {
	sa_rootdomain,
5652
	sa_sd,
5653
	sa_sd_storage,
5654 5655 5656
	sa_none,
};

5657 5658 5659
struct sched_domain_topology_level;

typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5660 5661
typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);

5662 5663
#define SDTL_OVERLAP	0x01

5664
struct sched_domain_topology_level {
5665 5666
	sched_domain_init_f init;
	sched_domain_mask_f mask;
5667
	int		    flags;
5668
	int		    numa_level;
5669
	struct sd_data      data;
5670 5671
};

P
Peter Zijlstra 已提交
5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709
/*
 * Build an iteration mask that can exclude certain CPUs from the upwards
 * domain traversal.
 *
 * Asymmetric node setups can result in situations where the domain tree is of
 * unequal depth, make sure to skip domains that already cover the entire
 * range.
 *
 * In that case build_sched_domains() will have terminated the iteration early
 * and our sibling sd spans will be empty. Domains should always include the
 * cpu they're built on, so check that.
 *
 */
static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
{
	const struct cpumask *span = sched_domain_span(sd);
	struct sd_data *sdd = sd->private;
	struct sched_domain *sibling;
	int i;

	for_each_cpu(i, span) {
		sibling = *per_cpu_ptr(sdd->sd, i);
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
			continue;

		cpumask_set_cpu(i, sched_group_mask(sg));
	}
}

/*
 * Return the canonical balance cpu for this group, this is the first cpu
 * of this group that's also in the iteration mask.
 */
int group_balance_cpu(struct sched_group *sg)
{
	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
}

5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727
static int
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered = sched_domains_tmpmask;
	struct sd_data *sdd = sd->private;
	struct sched_domain *child;
	int i;

	cpumask_clear(covered);

	for_each_cpu(i, span) {
		struct cpumask *sg_span;

		if (cpumask_test_cpu(i, covered))
			continue;

P
Peter Zijlstra 已提交
5728 5729 5730 5731 5732 5733
		child = *per_cpu_ptr(sdd->sd, i);

		/* See the comment near build_group_mask(). */
		if (!cpumask_test_cpu(i, sched_domain_span(child)))
			continue;

5734
		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5735
				GFP_KERNEL, cpu_to_node(cpu));
5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748

		if (!sg)
			goto fail;

		sg_span = sched_group_cpus(sg);
		if (child->child) {
			child = child->child;
			cpumask_copy(sg_span, sched_domain_span(child));
		} else
			cpumask_set_cpu(i, sg_span);

		cpumask_or(covered, covered, sg_span);

P
Peter Zijlstra 已提交
5749
		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
P
Peter Zijlstra 已提交
5750 5751 5752
		if (atomic_inc_return(&sg->sgp->ref) == 1)
			build_group_mask(sd, sg);

5753 5754 5755 5756 5757 5758
		/*
		 * Initialize sgp->power such that even if we mess up the
		 * domains and no possible iteration will get us here, we won't
		 * die on a /0 trap.
		 */
		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5759

P
Peter Zijlstra 已提交
5760 5761 5762 5763 5764
		/*
		 * Make sure the first group of this domain contains the
		 * canonical balance cpu. Otherwise the sched_domain iteration
		 * breaks. See update_sg_lb_stats().
		 */
P
Peter Zijlstra 已提交
5765
		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
P
Peter Zijlstra 已提交
5766
		    group_balance_cpu(sg) == cpu)
5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785
			groups = sg;

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
		last->next = first;
	}
	sd->groups = groups;

	return 0;

fail:
	free_sched_groups(first, 0);

	return -ENOMEM;
}

5786
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
5787
{
5788 5789
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
5790

5791 5792
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
5793

5794
	if (sg) {
5795
		*sg = *per_cpu_ptr(sdd->sg, cpu);
5796
		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5797
		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5798
	}
5799 5800

	return cpu;
5801 5802
}

5803
/*
5804 5805 5806
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
5807 5808
 *
 * Assumes the sched_domain tree is fully constructed
5809
 */
5810 5811
static int
build_sched_groups(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5812
{
5813 5814 5815
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
5816
	struct cpumask *covered;
5817
	int i;
5818

5819 5820 5821 5822 5823 5824
	get_group(cpu, sdd, &sd->groups);
	atomic_inc(&sd->groups->ref);

	if (cpu != cpumask_first(sched_domain_span(sd)))
		return 0;

5825 5826 5827
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

5828
	cpumask_clear(covered);
5829

5830 5831 5832 5833
	for_each_cpu(i, span) {
		struct sched_group *sg;
		int group = get_group(i, sdd, &sg);
		int j;
5834

5835 5836
		if (cpumask_test_cpu(i, covered))
			continue;
5837

5838
		cpumask_clear(sched_group_cpus(sg));
5839
		sg->sgp->power = 0;
P
Peter Zijlstra 已提交
5840
		cpumask_setall(sched_group_mask(sg));
5841

5842 5843 5844
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
5845

5846 5847 5848
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
5849

5850 5851 5852 5853 5854 5855 5856
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
5857 5858

	return 0;
5859
}
5860

5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
5873
	struct sched_group *sg = sd->groups;
5874

5875 5876 5877 5878 5879 5880
	WARN_ON(!sd || !sg);

	do {
		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
		sg = sg->next;
	} while (sg != sd->groups);
5881

P
Peter Zijlstra 已提交
5882
	if (cpu != group_balance_cpu(sg))
5883
		return;
5884

5885
	update_group_power(sd, cpu);
5886
	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5887 5888
}

5889 5890 5891
int __weak arch_sd_sibling_asym_packing(void)
{
       return 0*SD_ASYM_PACKING;
5892 5893
}

5894 5895 5896 5897 5898
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

5899 5900 5901 5902 5903 5904
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

5905 5906 5907 5908 5909 5910 5911 5912 5913
#define SD_INIT_FUNC(type)						\
static noinline struct sched_domain *					\
sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
{									\
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
	*sd = SD_##type##_INIT;						\
	SD_INIT_NAME(sd, type);						\
	sd->private = &tl->data;					\
	return sd;							\
5914 5915 5916 5917 5918 5919 5920 5921 5922
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif
5923 5924 5925
#ifdef CONFIG_SCHED_BOOK
 SD_INIT_FUNC(BOOK)
#endif
5926

5927
static int default_relax_domain_level = -1;
5928
int sched_domain_level_max;
5929 5930 5931

static int __init setup_relax_domain_level(char *str)
{
5932 5933
	if (kstrtoint(str, 0, &default_relax_domain_level))
		pr_warn("Unable to set relax_domain_level\n");
5934

5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
5953
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5954 5955
	} else {
		/* turn on idle balance on this domain */
5956
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5957 5958 5959
	}
}

5960 5961 5962
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

5963 5964 5965 5966 5967
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
5968 5969
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
5970 5971
	case sa_sd:
		free_percpu(d->sd); /* fall through */
5972
	case sa_sd_storage:
5973
		__sdt_free(cpu_map); /* fall through */
5974 5975 5976 5977
	case sa_none:
		break;
	}
}
5978

5979 5980 5981
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
5982 5983
	memset(d, 0, sizeof(*d));

5984 5985
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
5986 5987 5988
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
5989
	d->rd = alloc_rootdomain();
5990
	if (!d->rd)
5991
		return sa_sd;
5992 5993
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
5994

5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

6007
	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6008
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6009 6010

	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6011
		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
6012 6013
}

6014 6015
#ifdef CONFIG_SCHED_SMT
static const struct cpumask *cpu_smt_mask(int cpu)
6016
{
6017
	return topology_thread_cpumask(cpu);
6018
}
6019
#endif
6020

6021 6022 6023
/*
 * Topology list, bottom-up.
 */
6024
static struct sched_domain_topology_level default_topology[] = {
6025 6026
#ifdef CONFIG_SCHED_SMT
	{ sd_init_SIBLING, cpu_smt_mask, },
6027
#endif
6028
#ifdef CONFIG_SCHED_MC
6029
	{ sd_init_MC, cpu_coregroup_mask, },
6030
#endif
6031 6032 6033 6034
#ifdef CONFIG_SCHED_BOOK
	{ sd_init_BOOK, cpu_book_mask, },
#endif
	{ sd_init_CPU, cpu_cpu_mask, },
6035 6036 6037 6038 6039
	{ NULL, },
};

static struct sched_domain_topology_level *sched_domain_topology = default_topology;

6040 6041 6042 6043 6044 6045 6046 6047 6048
#ifdef CONFIG_NUMA

static int sched_domains_numa_levels;
static int *sched_domains_numa_distance;
static struct cpumask ***sched_domains_numa_masks;
static int sched_domains_curr_level;

static inline int sd_local_flags(int level)
{
6049
	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066
		return 0;

	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
}

static struct sched_domain *
sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
{
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
	int level = tl->numa_level;
	int sd_weight = cpumask_weight(
			sched_domains_numa_masks[level][cpu_to_node(cpu)]);

	*sd = (struct sched_domain){
		.min_interval		= sd_weight,
		.max_interval		= 2*sd_weight,
		.busy_factor		= 32,
6067
		.imbalance_pct		= 125,
6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105
		.cache_nice_tries	= 2,
		.busy_idx		= 3,
		.idle_idx		= 2,
		.newidle_idx		= 0,
		.wake_idx		= 0,
		.forkexec_idx		= 0,

		.flags			= 1*SD_LOAD_BALANCE
					| 1*SD_BALANCE_NEWIDLE
					| 0*SD_BALANCE_EXEC
					| 0*SD_BALANCE_FORK
					| 0*SD_BALANCE_WAKE
					| 0*SD_WAKE_AFFINE
					| 0*SD_SHARE_CPUPOWER
					| 0*SD_SHARE_PKG_RESOURCES
					| 1*SD_SERIALIZE
					| 0*SD_PREFER_SIBLING
					| sd_local_flags(level)
					,
		.last_balance		= jiffies,
		.balance_interval	= sd_weight,
	};
	SD_INIT_NAME(sd, NUMA);
	sd->private = &tl->data;

	/*
	 * Ugly hack to pass state to sd_numa_mask()...
	 */
	sched_domains_curr_level = tl->numa_level;

	return sd;
}

static const struct cpumask *sd_numa_mask(int cpu)
{
	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
}

6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141
static void sched_numa_warn(const char *str)
{
	static int done = false;
	int i,j;

	if (done)
		return;

	done = true;

	printk(KERN_WARNING "ERROR: %s\n\n", str);

	for (i = 0; i < nr_node_ids; i++) {
		printk(KERN_WARNING "  ");
		for (j = 0; j < nr_node_ids; j++)
			printk(KERN_CONT "%02d ", node_distance(i,j));
		printk(KERN_CONT "\n");
	}
	printk(KERN_WARNING "\n");
}

static bool find_numa_distance(int distance)
{
	int i;

	if (distance == node_distance(0, 0))
		return true;

	for (i = 0; i < sched_domains_numa_levels; i++) {
		if (sched_domains_numa_distance[i] == distance)
			return true;
	}

	return false;
}

6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162
static void sched_init_numa(void)
{
	int next_distance, curr_distance = node_distance(0, 0);
	struct sched_domain_topology_level *tl;
	int level = 0;
	int i, j, k;

	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
	if (!sched_domains_numa_distance)
		return;

	/*
	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
	 * unique distances in the node_distance() table.
	 *
	 * Assumes node_distance(0,j) includes all distances in
	 * node_distance(i,j) in order to avoid cubic time.
	 */
	next_distance = curr_distance;
	for (i = 0; i < nr_node_ids; i++) {
		for (j = 0; j < nr_node_ids; j++) {
6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186
			for (k = 0; k < nr_node_ids; k++) {
				int distance = node_distance(i, k);

				if (distance > curr_distance &&
				    (distance < next_distance ||
				     next_distance == curr_distance))
					next_distance = distance;

				/*
				 * While not a strong assumption it would be nice to know
				 * about cases where if node A is connected to B, B is not
				 * equally connected to A.
				 */
				if (sched_debug() && node_distance(k, i) != distance)
					sched_numa_warn("Node-distance not symmetric");

				if (sched_debug() && i && !find_numa_distance(distance))
					sched_numa_warn("Node-0 not representative");
			}
			if (next_distance != curr_distance) {
				sched_domains_numa_distance[level++] = next_distance;
				sched_domains_numa_levels = level;
				curr_distance = next_distance;
			} else break;
6187
		}
6188 6189 6190 6191 6192 6193

		/*
		 * In case of sched_debug() we verify the above assumption.
		 */
		if (!sched_debug())
			break;
6194 6195 6196 6197 6198 6199 6200 6201 6202
	}
	/*
	 * 'level' contains the number of unique distances, excluding the
	 * identity distance node_distance(i,i).
	 *
	 * The sched_domains_nume_distance[] array includes the actual distance
	 * numbers.
	 */

6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213
	/*
	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
	 * the array will contain less then 'level' members. This could be
	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
	 * in other functions.
	 *
	 * We reset it to 'level' at the end of this function.
	 */
	sched_domains_numa_levels = 0;

6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228
	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
	if (!sched_domains_numa_masks)
		return;

	/*
	 * Now for each level, construct a mask per node which contains all
	 * cpus of nodes that are that many hops away from us.
	 */
	for (i = 0; i < level; i++) {
		sched_domains_numa_masks[i] =
			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
		if (!sched_domains_numa_masks[i])
			return;

		for (j = 0; j < nr_node_ids; j++) {
6229
			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6230 6231 6232 6233 6234 6235
			if (!mask)
				return;

			sched_domains_numa_masks[i][j] = mask;

			for (k = 0; k < nr_node_ids; k++) {
6236
				if (node_distance(j, k) > sched_domains_numa_distance[i])
6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267
					continue;

				cpumask_or(mask, mask, cpumask_of_node(k));
			}
		}
	}

	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
	if (!tl)
		return;

	/*
	 * Copy the default topology bits..
	 */
	for (i = 0; default_topology[i].init; i++)
		tl[i] = default_topology[i];

	/*
	 * .. and append 'j' levels of NUMA goodness.
	 */
	for (j = 0; j < level; i++, j++) {
		tl[i] = (struct sched_domain_topology_level){
			.init = sd_numa_init,
			.mask = sd_numa_mask,
			.flags = SDTL_OVERLAP,
			.numa_level = j,
		};
	}

	sched_domain_topology = tl;
6268 6269

	sched_domains_numa_levels = level;
6270
}
6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317

static void sched_domains_numa_masks_set(int cpu)
{
	int i, j;
	int node = cpu_to_node(cpu);

	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++) {
			if (node_distance(j, node) <= sched_domains_numa_distance[i])
				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
		}
	}
}

static void sched_domains_numa_masks_clear(int cpu)
{
	int i, j;
	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++)
			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
	}
}

/*
 * Update sched_domains_numa_masks[level][node] array when new cpus
 * are onlined.
 */
static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	int cpu = (long)hcpu;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
		sched_domains_numa_masks_set(cpu);
		break;

	case CPU_DEAD:
		sched_domains_numa_masks_clear(cpu);
		break;

	default:
		return NOTIFY_DONE;
	}

	return NOTIFY_OK;
6318 6319 6320 6321 6322
}
#else
static inline void sched_init_numa(void)
{
}
6323 6324 6325 6326 6327 6328 6329

static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	return 0;
}
6330 6331
#endif /* CONFIG_NUMA */

6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for (tl = sched_domain_topology; tl->init; tl++) {
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

6348 6349 6350 6351
		sdd->sgp = alloc_percpu(struct sched_group_power *);
		if (!sdd->sgp)
			return -ENOMEM;

6352 6353 6354
		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_group *sg;
6355
			struct sched_group_power *sgp;
6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368

		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

6369 6370
			sg->next = sg;

6371
			*per_cpu_ptr(sdd->sg, j) = sg;
6372

P
Peter Zijlstra 已提交
6373
			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6374 6375 6376 6377 6378
					GFP_KERNEL, cpu_to_node(j));
			if (!sgp)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sgp, j) = sgp;
6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for (tl = sched_domain_topology; tl->init; tl++) {
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406
			struct sched_domain *sd;

			if (sdd->sd) {
				sd = *per_cpu_ptr(sdd->sd, j);
				if (sd && (sd->flags & SD_OVERLAP))
					free_sched_groups(sd->groups, 0);
				kfree(*per_cpu_ptr(sdd->sd, j));
			}

			if (sdd->sg)
				kfree(*per_cpu_ptr(sdd->sg, j));
			if (sdd->sgp)
				kfree(*per_cpu_ptr(sdd->sgp, j));
6407 6408
		}
		free_percpu(sdd->sd);
6409
		sdd->sd = NULL;
6410
		free_percpu(sdd->sg);
6411
		sdd->sg = NULL;
6412
		free_percpu(sdd->sgp);
6413
		sdd->sgp = NULL;
6414 6415 6416
	}
}

6417 6418
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
		struct s_data *d, const struct cpumask *cpu_map,
6419
		struct sched_domain_attr *attr, struct sched_domain *child,
6420 6421
		int cpu)
{
6422
	struct sched_domain *sd = tl->init(tl, cpu);
6423
	if (!sd)
6424
		return child;
6425 6426

	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6427 6428 6429
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6430
		child->parent = sd;
6431
	}
6432
	sd->child = child;
6433
	set_domain_attribute(sd, attr);
6434 6435 6436 6437

	return sd;
}

6438 6439 6440 6441
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
6442 6443
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
6444 6445
{
	enum s_alloc alloc_state = sa_none;
6446
	struct sched_domain *sd;
6447
	struct s_data d;
6448
	int i, ret = -ENOMEM;
6449

6450 6451 6452
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
6453

6454
	/* Set up domains for cpus specified by the cpu_map. */
6455
	for_each_cpu(i, cpu_map) {
6456 6457
		struct sched_domain_topology_level *tl;

6458
		sd = NULL;
6459
		for (tl = sched_domain_topology; tl->init; tl++) {
6460
			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6461 6462
			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
				sd->flags |= SD_OVERLAP;
6463 6464
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
				break;
6465
		}
6466

6467 6468 6469
		while (sd->child)
			sd = sd->child;

6470
		*per_cpu_ptr(d.sd, i) = sd;
6471 6472 6473 6474 6475 6476
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6477 6478 6479 6480 6481 6482 6483
			if (sd->flags & SD_OVERLAP) {
				if (build_overlap_sched_groups(sd, i))
					goto error;
			} else {
				if (build_sched_groups(sd, i))
					goto error;
			}
6484
		}
6485
	}
6486

L
Linus Torvalds 已提交
6487
	/* Calculate CPU power for physical packages and nodes */
6488 6489 6490
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
6491

6492 6493
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
6494
			init_sched_groups_power(i, sd);
6495
		}
6496
	}
6497

L
Linus Torvalds 已提交
6498
	/* Attach the domains */
6499
	rcu_read_lock();
6500
	for_each_cpu(i, cpu_map) {
6501
		sd = *per_cpu_ptr(d.sd, i);
6502
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
6503
	}
6504
	rcu_read_unlock();
6505

6506
	ret = 0;
6507
error:
6508
	__free_domain_allocs(&d, alloc_state, cpu_map);
6509
	return ret;
L
Linus Torvalds 已提交
6510
}
P
Paul Jackson 已提交
6511

6512
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
6513
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
6514 6515
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
6516 6517 6518

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
6519 6520
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
6521
 */
6522
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
6523

6524 6525 6526 6527 6528 6529
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
6530
{
6531
	return 0;
6532 6533
}

6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

6559
/*
I
Ingo Molnar 已提交
6560
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6561 6562
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6563
 */
6564
static int init_sched_domains(const struct cpumask *cpu_map)
6565
{
6566 6567
	int err;

6568
	arch_update_cpu_topology();
P
Paul Jackson 已提交
6569
	ndoms_cur = 1;
6570
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
6571
	if (!doms_cur)
6572 6573
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6574
	err = build_sched_domains(doms_cur[0], NULL);
6575
	register_sched_domain_sysctl();
6576 6577

	return err;
6578 6579 6580 6581 6582 6583
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6584
static void detach_destroy_domains(const struct cpumask *cpu_map)
6585 6586 6587
{
	int i;

6588
	rcu_read_lock();
6589
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
6590
		cpu_attach_domain(NULL, &def_root_domain, i);
6591
	rcu_read_unlock();
6592 6593
}

6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
6610 6611
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
6612
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
6613 6614 6615
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
6616
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
6617 6618 6619
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
6620 6621 6622
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
6623 6624 6625 6626 6627 6628
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
6629
 *
6630
 * If doms_new == NULL it will be replaced with cpu_online_mask.
6631 6632
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
6633
 *
P
Paul Jackson 已提交
6634 6635
 * Call with hotplug lock held
 */
6636
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6637
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
6638
{
6639
	int i, j, n;
6640
	int new_topology;
P
Paul Jackson 已提交
6641

6642
	mutex_lock(&sched_domains_mutex);
6643

6644 6645 6646
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

6647 6648 6649
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

6650
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
6651 6652 6653

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
6654
		for (j = 0; j < n && !new_topology; j++) {
6655
			if (cpumask_equal(doms_cur[i], doms_new[j])
6656
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
6657 6658 6659
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
6660
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
6661 6662 6663 6664
match1:
		;
	}

6665 6666
	if (doms_new == NULL) {
		ndoms_cur = 0;
6667
		doms_new = &fallback_doms;
6668
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6669
		WARN_ON_ONCE(dattr_new);
6670 6671
	}

P
Paul Jackson 已提交
6672 6673
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
6674
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6675
			if (cpumask_equal(doms_new[i], doms_cur[j])
6676
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
6677 6678 6679
				goto match2;
		}
		/* no match - add a new doms_new */
6680
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
6681 6682 6683 6684 6685
match2:
		;
	}

	/* Remember the new sched domains */
6686 6687
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
6688
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
6689
	doms_cur = doms_new;
6690
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
6691
	ndoms_cur = ndoms_new;
6692 6693

	register_sched_domain_sysctl();
6694

6695
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
6696 6697
}

6698 6699
static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */

L
Linus Torvalds 已提交
6700
/*
6701 6702 6703
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
6704 6705 6706
 *
 * If we come here as part of a suspend/resume, don't touch cpusets because we
 * want to restore it back to its original state upon resume anyway.
L
Linus Torvalds 已提交
6707
 */
6708 6709
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
6710
{
6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732
	switch (action) {
	case CPU_ONLINE_FROZEN:
	case CPU_DOWN_FAILED_FROZEN:

		/*
		 * num_cpus_frozen tracks how many CPUs are involved in suspend
		 * resume sequence. As long as this is not the last online
		 * operation in the resume sequence, just build a single sched
		 * domain, ignoring cpusets.
		 */
		num_cpus_frozen--;
		if (likely(num_cpus_frozen)) {
			partition_sched_domains(1, NULL, NULL);
			break;
		}

		/*
		 * This is the last CPU online operation. So fall through and
		 * restore the original sched domains by considering the
		 * cpuset configurations.
		 */

6733
	case CPU_ONLINE:
6734
	case CPU_DOWN_FAILED:
6735
		cpuset_update_active_cpus(true);
6736
		break;
6737 6738 6739
	default:
		return NOTIFY_DONE;
	}
6740
	return NOTIFY_OK;
6741
}
6742

6743 6744
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
6745
{
6746
	switch (action) {
6747
	case CPU_DOWN_PREPARE:
6748
		cpuset_update_active_cpus(false);
6749 6750 6751 6752 6753
		break;
	case CPU_DOWN_PREPARE_FROZEN:
		num_cpus_frozen++;
		partition_sched_domains(1, NULL, NULL);
		break;
6754 6755 6756
	default:
		return NOTIFY_DONE;
	}
6757
	return NOTIFY_OK;
6758 6759
}

L
Linus Torvalds 已提交
6760 6761
void __init sched_init_smp(void)
{
6762 6763 6764
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6765
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6766

6767 6768
	sched_init_numa();

6769
	get_online_cpus();
6770
	mutex_lock(&sched_domains_mutex);
6771
	init_sched_domains(cpu_active_mask);
6772 6773 6774
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6775
	mutex_unlock(&sched_domains_mutex);
6776
	put_online_cpus();
6777

6778
	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6779 6780
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6781 6782 6783 6784

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

6785
	init_hrtick();
6786 6787

	/* Move init over to a non-isolated CPU */
6788
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6789
		BUG();
I
Ingo Molnar 已提交
6790
	sched_init_granularity();
6791
	free_cpumask_var(non_isolated_cpus);
6792

6793
	init_sched_rt_class();
L
Linus Torvalds 已提交
6794 6795 6796 6797
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6798
	sched_init_granularity();
L
Linus Torvalds 已提交
6799 6800 6801
}
#endif /* CONFIG_SMP */

6802 6803
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
6804 6805 6806 6807 6808 6809 6810
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

6811 6812
#ifdef CONFIG_CGROUP_SCHED
struct task_group root_task_group;
6813
LIST_HEAD(task_groups);
6814
#endif
P
Peter Zijlstra 已提交
6815

6816
DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
P
Peter Zijlstra 已提交
6817

L
Linus Torvalds 已提交
6818 6819
void __init sched_init(void)
{
I
Ingo Molnar 已提交
6820
	int i, j;
6821 6822 6823 6824 6825 6826 6827
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6828
#endif
6829
#ifdef CONFIG_CPUMASK_OFFSTACK
6830
	alloc_size += num_possible_cpus() * cpumask_size();
6831 6832
#endif
	if (alloc_size) {
6833
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6834 6835

#ifdef CONFIG_FAIR_GROUP_SCHED
6836
		root_task_group.se = (struct sched_entity **)ptr;
6837 6838
		ptr += nr_cpu_ids * sizeof(void **);

6839
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6840
		ptr += nr_cpu_ids * sizeof(void **);
6841

6842
#endif /* CONFIG_FAIR_GROUP_SCHED */
6843
#ifdef CONFIG_RT_GROUP_SCHED
6844
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6845 6846
		ptr += nr_cpu_ids * sizeof(void **);

6847
		root_task_group.rt_rq = (struct rt_rq **)ptr;
6848 6849
		ptr += nr_cpu_ids * sizeof(void **);

6850
#endif /* CONFIG_RT_GROUP_SCHED */
6851 6852 6853 6854 6855 6856
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
6857
	}
I
Ingo Molnar 已提交
6858

G
Gregory Haskins 已提交
6859 6860 6861 6862
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

6863 6864 6865 6866
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
6867
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6868
			global_rt_period(), global_rt_runtime());
6869
#endif /* CONFIG_RT_GROUP_SCHED */
6870

D
Dhaval Giani 已提交
6871
#ifdef CONFIG_CGROUP_SCHED
6872 6873
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
6874
	INIT_LIST_HEAD(&root_task_group.siblings);
6875
	autogroup_init(&init_task);
6876

D
Dhaval Giani 已提交
6877
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
6878

6879 6880 6881 6882 6883 6884
#ifdef CONFIG_CGROUP_CPUACCT
	root_cpuacct.cpustat = &kernel_cpustat;
	root_cpuacct.cpuusage = alloc_percpu(u64);
	/* Too early, not expected to fail */
	BUG_ON(!root_cpuacct.cpuusage);
#endif
6885
	for_each_possible_cpu(i) {
6886
		struct rq *rq;
L
Linus Torvalds 已提交
6887 6888

		rq = cpu_rq(i);
6889
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
6890
		rq->nr_running = 0;
6891 6892
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
6893
		init_cfs_rq(&rq->cfs);
P
Peter Zijlstra 已提交
6894
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
6895
#ifdef CONFIG_FAIR_GROUP_SCHED
6896
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
6897
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
6898
		/*
6899
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
6900 6901 6902 6903
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
6904
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
6905 6906 6907
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
6908
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
6909 6910 6911
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
6912
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
6913
		 *
6914 6915
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
6916
		 */
6917
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6918
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
6919 6920 6921
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6922
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
6923
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6924
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
6925
#endif
L
Linus Torvalds 已提交
6926

I
Ingo Molnar 已提交
6927 6928
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
6929 6930 6931

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
6932
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6933
		rq->sd = NULL;
G
Gregory Haskins 已提交
6934
		rq->rd = NULL;
6935
		rq->cpu_power = SCHED_POWER_SCALE;
6936
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
6937
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6938
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6939
		rq->push_cpu = 0;
6940
		rq->cpu = i;
6941
		rq->online = 0;
6942 6943
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
6944 6945 6946

		INIT_LIST_HEAD(&rq->cfs_tasks);

6947
		rq_attach_root(rq, &def_root_domain);
6948
#ifdef CONFIG_NO_HZ
6949
		rq->nohz_flags = 0;
6950
#endif
L
Linus Torvalds 已提交
6951
#endif
P
Peter Zijlstra 已提交
6952
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
6953 6954 6955
		atomic_set(&rq->nr_iowait, 0);
	}

6956
	set_load_weight(&init_task);
6957

6958 6959 6960 6961
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

6962
#ifdef CONFIG_RT_MUTEXES
6963
	plist_head_init(&init_task.pi_waiters);
6964 6965
#endif

L
Linus Torvalds 已提交
6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
6979 6980 6981

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
6982 6983 6984 6985
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
6986

6987
#ifdef CONFIG_SMP
6988
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
R
Rusty Russell 已提交
6989 6990 6991
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6992
	idle_thread_set_boot_cpu();
6993 6994
#endif
	init_sched_fair_class();
6995

6996
	scheduler_running = 1;
L
Linus Torvalds 已提交
6997 6998
}

6999
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7000 7001
static inline int preempt_count_equals(int preempt_offset)
{
7002
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7003

A
Arnd Bergmann 已提交
7004
	return (nested == preempt_offset);
7005 7006
}

7007
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7008 7009 7010
{
	static unsigned long prev_jiffy;	/* ratelimiting */

7011
	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7012 7013
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
7014 7015 7016 7017 7018
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
7019 7020 7021 7022 7023 7024 7025
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
7026 7027 7028 7029 7030

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
7031 7032 7033 7034 7035
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7036 7037
static void normalize_task(struct rq *rq, struct task_struct *p)
{
P
Peter Zijlstra 已提交
7038 7039
	const struct sched_class *prev_class = p->sched_class;
	int old_prio = p->prio;
7040
	int on_rq;
7041

P
Peter Zijlstra 已提交
7042
	on_rq = p->on_rq;
7043
	if (on_rq)
7044
		dequeue_task(rq, p, 0);
7045 7046
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
7047
		enqueue_task(rq, p, 0);
7048 7049
		resched_task(rq->curr);
	}
P
Peter Zijlstra 已提交
7050 7051

	check_class_changed(rq, p, prev_class, old_prio);
7052 7053
}

L
Linus Torvalds 已提交
7054 7055
void normalize_rt_tasks(void)
{
7056
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7057
	unsigned long flags;
7058
	struct rq *rq;
L
Linus Torvalds 已提交
7059

7060
	read_lock_irqsave(&tasklist_lock, flags);
7061
	do_each_thread(g, p) {
7062 7063 7064 7065 7066 7067
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
7068 7069
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
7070 7071 7072
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
7073
#endif
I
Ingo Molnar 已提交
7074 7075 7076 7077 7078 7079 7080 7081

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7082
			continue;
I
Ingo Molnar 已提交
7083
		}
L
Linus Torvalds 已提交
7084

7085
		raw_spin_lock(&p->pi_lock);
7086
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7087

7088
		normalize_task(rq, p);
7089

7090
		__task_rq_unlock(rq);
7091
		raw_spin_unlock(&p->pi_lock);
7092 7093
	} while_each_thread(g, p);

7094
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7095 7096 7097
}

#endif /* CONFIG_MAGIC_SYSRQ */
7098

7099
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7100
/*
7101
 * These functions are only useful for the IA64 MCA handling, or kdb.
7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7116
struct task_struct *curr_task(int cpu)
7117 7118 7119 7120
{
	return cpu_curr(cpu);
}

7121 7122 7123
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
7124 7125 7126 7127 7128 7129
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7130 7131
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7132 7133 7134 7135 7136 7137 7138
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7139
void set_curr_task(int cpu, struct task_struct *p)
7140 7141 7142 7143 7144
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7145

D
Dhaval Giani 已提交
7146
#ifdef CONFIG_CGROUP_SCHED
7147 7148 7149
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

7150 7151 7152 7153
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
7154
	autogroup_free(tg);
7155 7156 7157 7158
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
7159
struct task_group *sched_create_group(struct task_group *parent)
7160 7161 7162 7163 7164 7165 7166 7167
{
	struct task_group *tg;
	unsigned long flags;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

7168
	if (!alloc_fair_sched_group(tg, parent))
7169 7170
		goto err;

7171
	if (!alloc_rt_sched_group(tg, parent))
7172 7173
		goto err;

7174
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7175
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
7176 7177 7178 7179 7180

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
7181
	list_add_rcu(&tg->siblings, &parent->children);
7182
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7183

7184
	return tg;
S
Srivatsa Vaddagiri 已提交
7185 7186

err:
P
Peter Zijlstra 已提交
7187
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
7188 7189 7190
	return ERR_PTR(-ENOMEM);
}

7191
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
7192
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7193 7194
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
7195
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
7196 7197
}

7198
/* Destroy runqueue etc associated with a task group */
7199
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7200
{
7201
	unsigned long flags;
7202
	int i;
S
Srivatsa Vaddagiri 已提交
7203

7204 7205
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
7206
		unregister_fair_sched_group(tg, i);
7207 7208

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7209
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
7210
	list_del_rcu(&tg->siblings);
7211
	spin_unlock_irqrestore(&task_group_lock, flags);
7212 7213

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
7214
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
7215 7216
}

7217
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7218 7219 7220
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7221 7222
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7223
{
P
Peter Zijlstra 已提交
7224
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
7225 7226 7227 7228 7229 7230
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

7231
	running = task_current(rq, tsk);
P
Peter Zijlstra 已提交
7232
	on_rq = tsk->on_rq;
S
Srivatsa Vaddagiri 已提交
7233

7234
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
7235
		dequeue_task(rq, tsk, 0);
7236 7237
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7238

P
Peter Zijlstra 已提交
7239 7240 7241 7242 7243 7244
	tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
				lockdep_is_held(&tsk->sighand->siglock)),
			  struct task_group, css);
	tg = autogroup_task_group(tsk, tg);
	tsk->sched_task_group = tg;

P
Peter Zijlstra 已提交
7245
#ifdef CONFIG_FAIR_GROUP_SCHED
7246 7247 7248
	if (tsk->sched_class->task_move_group)
		tsk->sched_class->task_move_group(tsk, on_rq);
	else
P
Peter Zijlstra 已提交
7249
#endif
7250
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
7251

7252 7253 7254
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
7255
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
7256

7257
	task_rq_unlock(rq, tsk, &flags);
S
Srivatsa Vaddagiri 已提交
7258
}
D
Dhaval Giani 已提交
7259
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
7260

7261
#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
P
Peter Zijlstra 已提交
7262 7263 7264
static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7265
		return 1ULL << 20;
P
Peter Zijlstra 已提交
7266

P
Peter Zijlstra 已提交
7267
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
7268
}
7269 7270 7271 7272 7273 7274 7275
#endif

#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
P
Peter Zijlstra 已提交
7276

P
Peter Zijlstra 已提交
7277 7278
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
7279
{
P
Peter Zijlstra 已提交
7280
	struct task_struct *g, *p;
7281

P
Peter Zijlstra 已提交
7282
	do_each_thread(g, p) {
7283
		if (rt_task(p) && task_rq(p)->rt.tg == tg)
P
Peter Zijlstra 已提交
7284 7285
			return 1;
	} while_each_thread(g, p);
7286

P
Peter Zijlstra 已提交
7287 7288
	return 0;
}
7289

P
Peter Zijlstra 已提交
7290 7291 7292 7293 7294
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
7295

7296
static int tg_rt_schedulable(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
7297 7298 7299 7300 7301
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
7302

P
Peter Zijlstra 已提交
7303 7304
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
7305

P
Peter Zijlstra 已提交
7306 7307 7308
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
7309 7310
	}

7311 7312 7313 7314 7315
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
7316

7317 7318 7319
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
7320 7321
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
7322

P
Peter Zijlstra 已提交
7323
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7324

7325 7326 7327 7328 7329
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
7330

7331 7332 7333
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
7334 7335 7336
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7337

P
Peter Zijlstra 已提交
7338 7339 7340 7341
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
7342

P
Peter Zijlstra 已提交
7343
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7344
	}
P
Peter Zijlstra 已提交
7345

P
Peter Zijlstra 已提交
7346 7347 7348 7349
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
7350 7351
}

P
Peter Zijlstra 已提交
7352
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7353
{
7354 7355
	int ret;

P
Peter Zijlstra 已提交
7356 7357 7358 7359 7360 7361
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

7362 7363 7364 7365 7366
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7367 7368
}

7369
static int tg_set_rt_bandwidth(struct task_group *tg,
7370
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
7371
{
P
Peter Zijlstra 已提交
7372
	int i, err = 0;
P
Peter Zijlstra 已提交
7373 7374

	mutex_lock(&rt_constraints_mutex);
7375
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
7376 7377
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
7378
		goto unlock;
P
Peter Zijlstra 已提交
7379

7380
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7381 7382
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
7383 7384 7385 7386

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

7387
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7388
		rt_rq->rt_runtime = rt_runtime;
7389
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7390
	}
7391
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
7392
unlock:
7393
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
7394 7395 7396
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
7397 7398
}

7399 7400 7401 7402 7403 7404 7405 7406 7407
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

7408
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7409 7410
}

P
Peter Zijlstra 已提交
7411 7412 7413 7414
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

7415
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7416 7417
		return -1;

7418
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7419 7420 7421
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
7422 7423 7424 7425 7426 7427 7428 7429

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

7430 7431 7432
	if (rt_period == 0)
		return -EINVAL;

7433
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
7447
	u64 runtime, period;
7448 7449
	int ret = 0;

7450 7451 7452
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7453 7454 7455 7456 7457 7458 7459 7460
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
7461

7462
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
7463
	read_lock(&tasklist_lock);
7464
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
7465
	read_unlock(&tasklist_lock);
7466 7467 7468 7469
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
7470 7471 7472 7473 7474 7475 7476 7477 7478 7479

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

7480
#else /* !CONFIG_RT_GROUP_SCHED */
7481 7482
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
7483 7484 7485
	unsigned long flags;
	int i;

7486 7487 7488
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7489 7490 7491 7492 7493 7494 7495
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

7496
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7497 7498 7499
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

7500
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7501
		rt_rq->rt_runtime = global_rt_runtime();
7502
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7503
	}
7504
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7505

7506 7507
	return 0;
}
7508
#endif /* CONFIG_RT_GROUP_SCHED */
7509 7510

int sched_rt_handler(struct ctl_table *table, int write,
7511
		void __user *buffer, size_t *lenp,
7512 7513 7514 7515 7516 7517 7518 7519 7520 7521
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

7522
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
7539

7540
#ifdef CONFIG_CGROUP_SCHED
7541 7542

/* return corresponding task_group object of a cgroup */
7543
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7544
{
7545 7546
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
7547 7548
}

7549
static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp)
7550
{
7551
	struct task_group *tg, *parent;
7552

7553
	if (!cgrp->parent) {
7554
		/* This is early initialization for the top cgroup */
7555
		return &root_task_group.css;
7556 7557
	}

7558 7559
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
7560 7561 7562 7563 7564 7565
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

7566
static void cpu_cgroup_css_free(struct cgroup *cgrp)
7567
{
7568
	struct task_group *tg = cgroup_tg(cgrp);
7569 7570 7571 7572

	sched_destroy_group(tg);
}

7573
static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7574
				 struct cgroup_taskset *tset)
7575
{
7576 7577 7578
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset) {
7579
#ifdef CONFIG_RT_GROUP_SCHED
7580 7581
		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
			return -EINVAL;
7582
#else
7583 7584 7585
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
7586
#endif
7587
	}
7588 7589
	return 0;
}
7590

7591
static void cpu_cgroup_attach(struct cgroup *cgrp,
7592
			      struct cgroup_taskset *tset)
7593
{
7594 7595 7596 7597
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset)
		sched_move_task(task);
7598 7599
}

7600
static void
7601 7602
cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
		struct task_struct *task)
7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	sched_move_task(task);
}

7615
#ifdef CONFIG_FAIR_GROUP_SCHED
7616
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7617
				u64 shareval)
7618
{
7619
	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7620 7621
}

7622
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7623
{
7624
	struct task_group *tg = cgroup_tg(cgrp);
7625

7626
	return (u64) scale_load_down(tg->shares);
7627
}
7628 7629

#ifdef CONFIG_CFS_BANDWIDTH
7630 7631
static DEFINE_MUTEX(cfs_constraints_mutex);

7632 7633 7634
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

7635 7636
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

7637 7638
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
7639
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7640
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

7661 7662 7663 7664 7665
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

7666
	runtime_enabled = quota != RUNTIME_INF;
7667 7668
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7669 7670 7671
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
7672

P
Paul Turner 已提交
7673
	__refill_cfs_bandwidth_runtime(cfs_b);
7674 7675 7676 7677 7678 7679
	/* restart the period timer (if active) to handle new period expiry */
	if (runtime_enabled && cfs_b->timer_active) {
		/* force a reprogram */
		cfs_b->timer_active = 0;
		__start_cfs_bandwidth(cfs_b);
	}
7680 7681 7682 7683
	raw_spin_unlock_irq(&cfs_b->lock);

	for_each_possible_cpu(i) {
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7684
		struct rq *rq = cfs_rq->rq;
7685 7686

		raw_spin_lock_irq(&rq->lock);
7687
		cfs_rq->runtime_enabled = runtime_enabled;
7688
		cfs_rq->runtime_remaining = 0;
7689

7690
		if (cfs_rq->throttled)
7691
			unthrottle_cfs_rq(cfs_rq);
7692 7693
		raw_spin_unlock_irq(&rq->lock);
	}
7694 7695
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
7696

7697
	return ret;
7698 7699 7700 7701 7702 7703
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

7704
	period = ktime_to_ns(tg->cfs_bandwidth.period);
7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

7717
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7718 7719
		return -1;

7720
	quota_us = tg->cfs_bandwidth.quota;
7721 7722 7723 7724 7725 7726 7727 7728 7729 7730
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
7731
	quota = tg->cfs_bandwidth.quota;
7732 7733 7734 7735 7736 7737 7738 7739

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

7740
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
{
	return tg_get_cfs_quota(cgroup_tg(cgrp));
}

static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
				s64 cfs_quota_us)
{
	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
}

static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
{
	return tg_get_cfs_period(cgroup_tg(cgrp));
}

static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
				u64 cfs_period_us)
{
	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
}

7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
7800
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7801 7802 7803 7804 7805
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
7806
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826

		quota = normalize_cfs_quota(tg, d);
		parent_quota = parent_b->hierarchal_quota;

		/*
		 * ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
	cfs_b->hierarchal_quota = quota;

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
7827
	int ret;
7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

7839 7840 7841 7842 7843
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7844
}
7845 7846 7847 7848 7849

static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct task_group *tg = cgroup_tg(cgrp);
7850
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7851 7852 7853 7854 7855 7856 7857

	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
	cb->fill(cb, "throttled_time", cfs_b->throttled_time);

	return 0;
}
7858
#endif /* CONFIG_CFS_BANDWIDTH */
7859
#endif /* CONFIG_FAIR_GROUP_SCHED */
7860

7861
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
7862
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7863
				s64 val)
P
Peter Zijlstra 已提交
7864
{
7865
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
7866 7867
}

7868
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
7869
{
7870
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
7871
}
7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
7883
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
7884

7885
static struct cftype cpu_files[] = {
7886
#ifdef CONFIG_FAIR_GROUP_SCHED
7887 7888
	{
		.name = "shares",
7889 7890
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
7891
	},
7892
#endif
7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
7904 7905 7906 7907
	{
		.name = "stat",
		.read_map = cpu_stats_show,
	},
7908
#endif
7909
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7910
	{
P
Peter Zijlstra 已提交
7911
		.name = "rt_runtime_us",
7912 7913
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
7914
	},
7915 7916
	{
		.name = "rt_period_us",
7917 7918
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
7919
	},
7920
#endif
7921
	{ }	/* terminate */
7922 7923 7924
};

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
7925
	.name		= "cpu",
7926 7927
	.css_alloc	= cpu_cgroup_css_alloc,
	.css_free	= cpu_cgroup_css_free,
7928 7929
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
7930
	.exit		= cpu_cgroup_exit,
I
Ingo Molnar 已提交
7931
	.subsys_id	= cpu_cgroup_subsys_id,
7932
	.base_cftypes	= cpu_files,
7933 7934 7935
	.early_init	= 1,
};

7936
#endif	/* CONFIG_CGROUP_SCHED */
7937 7938 7939 7940 7941 7942 7943 7944 7945 7946

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

7947 7948
struct cpuacct root_cpuacct;

7949
/* create a new cpu accounting group */
7950
static struct cgroup_subsys_state *cpuacct_css_alloc(struct cgroup *cgrp)
7951
{
7952
	struct cpuacct *ca;
7953

7954 7955 7956 7957
	if (!cgrp->parent)
		return &root_cpuacct.css;

	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7958
	if (!ca)
7959
		goto out;
7960 7961

	ca->cpuusage = alloc_percpu(u64);
7962 7963 7964
	if (!ca->cpuusage)
		goto out_free_ca;

7965 7966 7967
	ca->cpustat = alloc_percpu(struct kernel_cpustat);
	if (!ca->cpustat)
		goto out_free_cpuusage;
7968

7969
	return &ca->css;
7970

7971
out_free_cpuusage:
7972 7973 7974 7975 7976
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
7977 7978 7979
}

/* destroy an existing cpu accounting group */
7980
static void cpuacct_css_free(struct cgroup *cgrp)
7981
{
7982
	struct cpuacct *ca = cgroup_ca(cgrp);
7983

7984
	free_percpu(ca->cpustat);
7985 7986 7987 7988
	free_percpu(ca->cpuusage);
	kfree(ca);
}

7989 7990
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
7991
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
7992 7993 7994 7995 7996 7997
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
7998
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
7999
	data = *cpuusage;
8000
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8001 8002 8003 8004 8005 8006 8007 8008 8009
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
8010
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8011 8012 8013 8014 8015

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
8016
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8017
	*cpuusage = val;
8018
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8019 8020 8021 8022 8023
#else
	*cpuusage = val;
#endif
}

8024
/* return total cpu usage (in nanoseconds) of a group */
8025
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8026
{
8027
	struct cpuacct *ca = cgroup_ca(cgrp);
8028 8029 8030
	u64 totalcpuusage = 0;
	int i;

8031 8032
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
8033 8034 8035 8036

	return totalcpuusage;
}

8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

8049 8050
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
8051 8052 8053 8054 8055

out:
	return err;
}

8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

8071 8072 8073 8074 8075 8076
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8077
			      struct cgroup_map_cb *cb)
8078 8079
{
	struct cpuacct *ca = cgroup_ca(cgrp);
8080 8081
	int cpu;
	s64 val = 0;
8082

8083 8084 8085 8086
	for_each_online_cpu(cpu) {
		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
		val += kcpustat->cpustat[CPUTIME_USER];
		val += kcpustat->cpustat[CPUTIME_NICE];
8087
	}
8088 8089
	val = cputime64_to_clock_t(val);
	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8090

8091 8092 8093 8094 8095 8096
	val = 0;
	for_each_online_cpu(cpu) {
		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
		val += kcpustat->cpustat[CPUTIME_SYSTEM];
		val += kcpustat->cpustat[CPUTIME_IRQ];
		val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8097
	}
8098 8099 8100 8101

	val = cputime64_to_clock_t(val);
	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);

8102 8103 8104
	return 0;
}

8105 8106 8107
static struct cftype files[] = {
	{
		.name = "usage",
8108 8109
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
8110
	},
8111 8112 8113 8114
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
8115 8116 8117 8118
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
8119
	{ }	/* terminate */
8120 8121 8122 8123 8124 8125 8126
};

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
8127
void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8128 8129
{
	struct cpuacct *ca;
8130
	int cpu;
8131

L
Li Zefan 已提交
8132
	if (unlikely(!cpuacct_subsys.active))
8133 8134
		return;

8135
	cpu = task_cpu(tsk);
8136 8137 8138

	rcu_read_lock();

8139 8140
	ca = task_ca(tsk);

8141
	for (; ca; ca = parent_ca(ca)) {
8142
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8143 8144
		*cpuusage += cputime;
	}
8145 8146

	rcu_read_unlock();
8147 8148 8149 8150
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
8151 8152
	.css_alloc = cpuacct_css_alloc,
	.css_free = cpuacct_css_free,
8153
	.subsys_id = cpuacct_subsys_id,
8154
	.base_cftypes = files,
8155 8156
};
#endif	/* CONFIG_CGROUP_CPUACCT */
8157 8158 8159 8160 8161 8162

void dump_cpu_task(int cpu)
{
	pr_info("Task dump for CPU %d:\n", cpu);
	sched_show_task(cpu_curr(cpu));
}