core.c 204.2 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/highmem.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
37
#include <linux/capability.h>
L
Linus Torvalds 已提交
38 39
#include <linux/completion.h>
#include <linux/kernel_stat.h>
40
#include <linux/debug_locks.h>
41
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
57
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
58
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/unistd.h>
J
Jens Axboe 已提交
66
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
67
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
68
#include <linux/tick.h>
P
Peter Zijlstra 已提交
69 70
#include <linux/debugfs.h>
#include <linux/ctype.h>
71
#include <linux/ftrace.h>
72
#include <linux/slab.h>
73
#include <linux/init_task.h>
A
Al Viro 已提交
74
#include <linux/binfmts.h>
75
#include <linux/context_tracking.h>
76
#include <linux/compiler.h>
L
Linus Torvalds 已提交
77

78
#include <asm/switch_to.h>
79
#include <asm/tlb.h>
80
#include <asm/irq_regs.h>
81
#include <asm/mutex.h>
G
Glauber Costa 已提交
82 83 84
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
85

86
#include "sched.h"
87
#include "../workqueue_internal.h"
88
#include "../smpboot.h"
89

90
#define CREATE_TRACE_POINTS
91
#include <trace/events/sched.h>
92

93 94
DEFINE_MUTEX(sched_domains_mutex);
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
95

96
static void update_rq_clock_task(struct rq *rq, s64 delta);
97

98
void update_rq_clock(struct rq *rq)
99
{
100
	s64 delta;
101

102 103 104
	lockdep_assert_held(&rq->lock);

	if (rq->clock_skip_update & RQCF_ACT_SKIP)
105
		return;
106

107
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
108 109
	if (delta < 0)
		return;
110 111
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
112 113
}

I
Ingo Molnar 已提交
114 115 116
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
117 118 119 120

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
121
const_debug unsigned int sysctl_sched_features =
122
#include "features.h"
P
Peter Zijlstra 已提交
123 124 125 126 127 128 129 130
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

131
static const char * const sched_feat_names[] = {
132
#include "features.h"
P
Peter Zijlstra 已提交
133 134 135 136
};

#undef SCHED_FEAT

L
Li Zefan 已提交
137
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
138 139 140
{
	int i;

141
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
L
Li Zefan 已提交
142 143 144
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
145
	}
L
Li Zefan 已提交
146
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
147

L
Li Zefan 已提交
148
	return 0;
P
Peter Zijlstra 已提交
149 150
}

151 152
#ifdef HAVE_JUMP_LABEL

153 154
#define jump_label_key__true  STATIC_KEY_INIT_TRUE
#define jump_label_key__false STATIC_KEY_INIT_FALSE
155 156 157 158

#define SCHED_FEAT(name, enabled)	\
	jump_label_key__##enabled ,

159
struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
160 161 162 163 164 165 166
#include "features.h"
};

#undef SCHED_FEAT

static void sched_feat_disable(int i)
{
167
	static_key_disable(&sched_feat_keys[i]);
168 169 170 171
}

static void sched_feat_enable(int i)
{
172
	static_key_enable(&sched_feat_keys[i]);
173 174 175 176 177 178
}
#else
static void sched_feat_disable(int i) { };
static void sched_feat_enable(int i) { };
#endif /* HAVE_JUMP_LABEL */

179
static int sched_feat_set(char *cmp)
P
Peter Zijlstra 已提交
180 181
{
	int i;
182
	int neg = 0;
P
Peter Zijlstra 已提交
183

H
Hillf Danton 已提交
184
	if (strncmp(cmp, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
185 186 187 188
		neg = 1;
		cmp += 3;
	}

189
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
190
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
191
			if (neg) {
P
Peter Zijlstra 已提交
192
				sysctl_sched_features &= ~(1UL << i);
193 194
				sched_feat_disable(i);
			} else {
P
Peter Zijlstra 已提交
195
				sysctl_sched_features |= (1UL << i);
196 197
				sched_feat_enable(i);
			}
P
Peter Zijlstra 已提交
198 199 200 201
			break;
		}
	}

202 203 204 205 206 207 208 209 210 211
	return i;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp;
	int i;
212
	struct inode *inode;
213 214 215 216 217 218 219 220 221 222

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
	cmp = strstrip(buf);

223 224 225
	/* Ensure the static_key remains in a consistent state */
	inode = file_inode(filp);
	mutex_lock(&inode->i_mutex);
226
	i = sched_feat_set(cmp);
227
	mutex_unlock(&inode->i_mutex);
228
	if (i == __SCHED_FEAT_NR)
P
Peter Zijlstra 已提交
229 230
		return -EINVAL;

231
	*ppos += cnt;
P
Peter Zijlstra 已提交
232 233 234 235

	return cnt;
}

L
Li Zefan 已提交
236 237 238 239 240
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

241
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
242 243 244 245 246
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
247 248 249 250 251 252 253 254 255 256
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);
257
#endif /* CONFIG_SCHED_DEBUG */
I
Ingo Molnar 已提交
258

259 260 261 262 263 264
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

265 266 267 268 269 270 271 272
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
273
/*
P
Peter Zijlstra 已提交
274
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
275 276
 * default: 1s
 */
P
Peter Zijlstra 已提交
277
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
278

279
__read_mostly int scheduler_running;
280

P
Peter Zijlstra 已提交
281 282 283 284 285
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
286

287 288 289
/* cpus with isolated domains */
cpumask_var_t cpu_isolated_map;

L
Linus Torvalds 已提交
290
/*
291
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
292
 */
A
Alexey Dobriyan 已提交
293
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
294 295
	__acquires(rq->lock)
{
296
	struct rq *rq;
L
Linus Torvalds 已提交
297 298 299

	local_irq_disable();
	rq = this_rq();
300
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
301 302 303 304

	return rq;
}

P
Peter Zijlstra 已提交
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

326
	raw_spin_lock(&rq->lock);
327
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
328
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
329
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
330 331 332 333

	return HRTIMER_NORESTART;
}

334
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
335

336
static void __hrtick_restart(struct rq *rq)
P
Peter Zijlstra 已提交
337 338 339
{
	struct hrtimer *timer = &rq->hrtick_timer;

340
	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
P
Peter Zijlstra 已提交
341 342
}

343 344 345 346
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
347
{
348
	struct rq *rq = arg;
349

350
	raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
351
	__hrtick_restart(rq);
352
	rq->hrtick_csd_pending = 0;
353
	raw_spin_unlock(&rq->lock);
354 355
}

356 357 358 359 360
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
361
void hrtick_start(struct rq *rq, u64 delay)
362
{
363
	struct hrtimer *timer = &rq->hrtick_timer;
364 365 366 367 368 369 370 371 372
	ktime_t time;
	s64 delta;

	/*
	 * Don't schedule slices shorter than 10000ns, that just
	 * doesn't make sense and can cause timer DoS.
	 */
	delta = max_t(s64, delay, 10000LL);
	time = ktime_add_ns(timer->base->get_time(), delta);
373

374
	hrtimer_set_expires(timer, time);
375 376

	if (rq == this_rq()) {
P
Peter Zijlstra 已提交
377
		__hrtick_restart(rq);
378
	} else if (!rq->hrtick_csd_pending) {
379
		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
380 381
		rq->hrtick_csd_pending = 1;
	}
382 383 384 385 386 387 388 389 390 391 392 393 394 395
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
396
		hrtick_clear(cpu_rq(cpu));
397 398 399 400 401 402
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

403
static __init void init_hrtick(void)
404 405 406
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
407 408 409 410 411 412
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
413
void hrtick_start(struct rq *rq, u64 delay)
414
{
W
Wanpeng Li 已提交
415 416 417 418 419
	/*
	 * Don't schedule slices shorter than 10000ns, that just
	 * doesn't make sense. Rely on vruntime for fairness.
	 */
	delay = max_t(u64, delay, 10000LL);
420 421
	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
		      HRTIMER_MODE_REL_PINNED);
422
}
423

A
Andrew Morton 已提交
424
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
425 426
{
}
427
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
428

429
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
430
{
431 432
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
433

434 435 436 437
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
438

439 440
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
441
}
A
Andrew Morton 已提交
442
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
443 444 445 446 447 448 449 450
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

451 452 453
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
454
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
455

456 457 458 459 460 461 462 463 464 465 466 467 468 469
/*
 * cmpxchg based fetch_or, macro so it works for different integer types
 */
#define fetch_or(ptr, val)						\
({	typeof(*(ptr)) __old, __val = *(ptr);				\
 	for (;;) {							\
 		__old = cmpxchg((ptr), __val, __val | (val));		\
 		if (__old == __val)					\
 			break;						\
 		__val = __old;						\
 	}								\
 	__old;								\
})

470
#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
471 472 473 474 475 476 477 478 479 480
/*
 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
 * this avoids any races wrt polling state changes and thereby avoids
 * spurious IPIs.
 */
static bool set_nr_and_not_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
}
481 482 483 484 485 486 487 488 489 490

/*
 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
 *
 * If this returns true, then the idle task promises to call
 * sched_ttwu_pending() and reschedule soon.
 */
static bool set_nr_if_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
491
	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
492 493 494 495 496 497 498 499 500 501 502 503 504 505

	for (;;) {
		if (!(val & _TIF_POLLING_NRFLAG))
			return false;
		if (val & _TIF_NEED_RESCHED)
			return true;
		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
		if (old == val)
			break;
		val = old;
	}
	return true;
}

506 507 508 509 510 511
#else
static bool set_nr_and_not_polling(struct task_struct *p)
{
	set_tsk_need_resched(p);
	return true;
}
512 513 514 515 516 517 518

#ifdef CONFIG_SMP
static bool set_nr_if_polling(struct task_struct *p)
{
	return false;
}
#endif
519 520
#endif

521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
void wake_q_add(struct wake_q_head *head, struct task_struct *task)
{
	struct wake_q_node *node = &task->wake_q;

	/*
	 * Atomically grab the task, if ->wake_q is !nil already it means
	 * its already queued (either by us or someone else) and will get the
	 * wakeup due to that.
	 *
	 * This cmpxchg() implies a full barrier, which pairs with the write
	 * barrier implied by the wakeup in wake_up_list().
	 */
	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
		return;

	get_task_struct(task);

	/*
	 * The head is context local, there can be no concurrency.
	 */
	*head->lastp = node;
	head->lastp = &node->next;
}

void wake_up_q(struct wake_q_head *head)
{
	struct wake_q_node *node = head->first;

	while (node != WAKE_Q_TAIL) {
		struct task_struct *task;

		task = container_of(node, struct task_struct, wake_q);
		BUG_ON(!task);
		/* task can safely be re-inserted now */
		node = node->next;
		task->wake_q.next = NULL;

		/*
		 * wake_up_process() implies a wmb() to pair with the queueing
		 * in wake_q_add() so as not to miss wakeups.
		 */
		wake_up_process(task);
		put_task_struct(task);
	}
}

I
Ingo Molnar 已提交
567
/*
568
 * resched_curr - mark rq's current task 'to be rescheduled now'.
I
Ingo Molnar 已提交
569 570 571 572 573
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
574
void resched_curr(struct rq *rq)
I
Ingo Molnar 已提交
575
{
576
	struct task_struct *curr = rq->curr;
I
Ingo Molnar 已提交
577 578
	int cpu;

579
	lockdep_assert_held(&rq->lock);
I
Ingo Molnar 已提交
580

581
	if (test_tsk_need_resched(curr))
I
Ingo Molnar 已提交
582 583
		return;

584
	cpu = cpu_of(rq);
585

586
	if (cpu == smp_processor_id()) {
587
		set_tsk_need_resched(curr);
588
		set_preempt_need_resched();
I
Ingo Molnar 已提交
589
		return;
590
	}
I
Ingo Molnar 已提交
591

592
	if (set_nr_and_not_polling(curr))
I
Ingo Molnar 已提交
593
		smp_send_reschedule(cpu);
594 595
	else
		trace_sched_wake_idle_without_ipi(cpu);
I
Ingo Molnar 已提交
596 597
}

598
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
599 600 601 602
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

603
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
604
		return;
605
	resched_curr(rq);
606
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
607
}
608

609
#ifdef CONFIG_SMP
610
#ifdef CONFIG_NO_HZ_COMMON
611 612 613 614 615 616 617 618
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
619
int get_nohz_timer_target(void)
620
{
621
	int i, cpu = smp_processor_id();
622 623
	struct sched_domain *sd;

624
	if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
625 626
		return cpu;

627
	rcu_read_lock();
628
	for_each_domain(cpu, sd) {
629
		for_each_cpu(i, sched_domain_span(sd)) {
630
			if (!idle_cpu(i) && is_housekeeping_cpu(cpu)) {
631 632 633 634
				cpu = i;
				goto unlock;
			}
		}
635
	}
636 637 638

	if (!is_housekeeping_cpu(cpu))
		cpu = housekeeping_any_cpu();
639 640
unlock:
	rcu_read_unlock();
641 642
	return cpu;
}
643 644 645 646 647 648 649 650 651 652
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
653
static void wake_up_idle_cpu(int cpu)
654 655 656 657 658 659
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

660
	if (set_nr_and_not_polling(rq->idle))
661
		smp_send_reschedule(cpu);
662 663
	else
		trace_sched_wake_idle_without_ipi(cpu);
664 665
}

666
static bool wake_up_full_nohz_cpu(int cpu)
667
{
668 669 670 671 672 673
	/*
	 * We just need the target to call irq_exit() and re-evaluate
	 * the next tick. The nohz full kick at least implies that.
	 * If needed we can still optimize that later with an
	 * empty IRQ.
	 */
674
	if (tick_nohz_full_cpu(cpu)) {
675 676
		if (cpu != smp_processor_id() ||
		    tick_nohz_tick_stopped())
677
			tick_nohz_full_kick_cpu(cpu);
678 679 680 681 682 683 684 685
		return true;
	}

	return false;
}

void wake_up_nohz_cpu(int cpu)
{
686
	if (!wake_up_full_nohz_cpu(cpu))
687 688 689
		wake_up_idle_cpu(cpu);
}

690
static inline bool got_nohz_idle_kick(void)
691
{
692
	int cpu = smp_processor_id();
693 694 695 696 697 698 699 700 701 702 703 704 705

	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
		return false;

	if (idle_cpu(cpu) && !need_resched())
		return true;

	/*
	 * We can't run Idle Load Balance on this CPU for this time so we
	 * cancel it and clear NOHZ_BALANCE_KICK
	 */
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
	return false;
706 707
}

708
#else /* CONFIG_NO_HZ_COMMON */
709

710
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
711
{
712
	return false;
P
Peter Zijlstra 已提交
713 714
}

715
#endif /* CONFIG_NO_HZ_COMMON */
716

717 718 719
#ifdef CONFIG_NO_HZ_FULL
bool sched_can_stop_tick(void)
{
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
	/*
	 * FIFO realtime policy runs the highest priority task. Other runnable
	 * tasks are of a lower priority. The scheduler tick does nothing.
	 */
	if (current->policy == SCHED_FIFO)
		return true;

	/*
	 * Round-robin realtime tasks time slice with other tasks at the same
	 * realtime priority. Is this task the only one at this priority?
	 */
	if (current->policy == SCHED_RR) {
		struct sched_rt_entity *rt_se = &current->rt;

		return rt_se->run_list.prev == rt_se->run_list.next;
	}

737 738 739 740 741
	/*
	 * More than one running task need preemption.
	 * nr_running update is assumed to be visible
	 * after IPI is sent from wakers.
	 */
742 743
	if (this_rq()->nr_running > 1)
		return false;
744

745
	return true;
746 747
}
#endif /* CONFIG_NO_HZ_FULL */
748

749
void sched_avg_update(struct rq *rq)
750
{
751 752
	s64 period = sched_avg_period();

753
	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
754 755 756 757 758 759
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
760 761 762
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
763 764
}

765
#endif /* CONFIG_SMP */
766

767 768
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
769
/*
770 771 772 773
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
774
 */
775
int walk_tg_tree_from(struct task_group *from,
776
			     tg_visitor down, tg_visitor up, void *data)
777 778
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
779
	int ret;
780

781 782
	parent = from;

783
down:
P
Peter Zijlstra 已提交
784 785
	ret = (*down)(parent, data);
	if (ret)
786
		goto out;
787 788 789 790 791 792 793
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
794
	ret = (*up)(parent, data);
795 796
	if (ret || parent == from)
		goto out;
797 798 799 800 801

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
802
out:
P
Peter Zijlstra 已提交
803
	return ret;
804 805
}

806
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
807
{
808
	return 0;
P
Peter Zijlstra 已提交
809
}
810 811
#endif

812 813
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
814 815 816
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
817 818 819 820
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
821
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
822
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
823 824
		return;
	}
825

826
	load->weight = scale_load(prio_to_weight[prio]);
N
Nikhil Rao 已提交
827
	load->inv_weight = prio_to_wmult[prio];
828 829
}

830
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
831
{
832
	update_rq_clock(rq);
833
	sched_info_queued(rq, p);
834
	p->sched_class->enqueue_task(rq, p, flags);
835 836
}

837
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
838
{
839
	update_rq_clock(rq);
840
	sched_info_dequeued(rq, p);
841
	p->sched_class->dequeue_task(rq, p, flags);
842 843
}

844
void activate_task(struct rq *rq, struct task_struct *p, int flags)
845 846 847 848
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

849
	enqueue_task(rq, p, flags);
850 851
}

852
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
853 854 855 856
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

857
	dequeue_task(rq, p, flags);
858 859
}

860
static void update_rq_clock_task(struct rq *rq, s64 delta)
861
{
862 863 864 865 866 867 868 869
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
870
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
892 893
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
894
	if (static_key_false((&paravirt_steal_rq_enabled))) {
895 896 897 898 899 900 901 902 903 904 905
		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		rq->prev_steal_time_rq += steal;
		delta -= steal;
	}
#endif

906 907
	rq->clock_task += delta;

908
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
909
	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
910 911
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
912 913
}

914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

944
/*
I
Ingo Molnar 已提交
945
 * __normal_prio - return the priority that is based on the static prio
946 947 948
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
949
	return p->static_prio;
950 951
}

952 953 954 955 956 957 958
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
959
static inline int normal_prio(struct task_struct *p)
960 961 962
{
	int prio;

963 964 965
	if (task_has_dl_policy(p))
		prio = MAX_DL_PRIO-1;
	else if (task_has_rt_policy(p))
966 967 968 969 970 971 972 973 974 975 976 977 978
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
979
static int effective_prio(struct task_struct *p)
980 981 982 983 984 985 986 987 988 989 990 991
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
992 993 994
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
995 996
 *
 * Return: 1 if the task is currently executing. 0 otherwise.
L
Linus Torvalds 已提交
997
 */
998
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
999 1000 1001 1002
{
	return cpu_curr(task_cpu(p)) == p;
}

1003
/*
1004 1005 1006 1007 1008
 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
 * use the balance_callback list if you want balancing.
 *
 * this means any call to check_class_changed() must be followed by a call to
 * balance_callback().
1009
 */
1010 1011
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
1012
				       int oldprio)
1013 1014 1015
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
1016
			prev_class->switched_from(rq, p);
1017

P
Peter Zijlstra 已提交
1018
		p->sched_class->switched_to(rq, p);
1019
	} else if (oldprio != p->prio || dl_task(p))
P
Peter Zijlstra 已提交
1020
		p->sched_class->prio_changed(rq, p, oldprio);
1021 1022
}

1023
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
1034
				resched_curr(rq);
1035 1036 1037 1038 1039 1040 1041 1042 1043
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
1044
	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1045
		rq_clock_skip_update(rq, true);
1046 1047
}

L
Linus Torvalds 已提交
1048
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
/*
 * This is how migration works:
 *
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
 */

/*
 * move_queued_task - move a queued task to new rq.
 *
 * Returns (locked) new rq. Old rq's lock is released.
 */
1068
static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
P
Peter Zijlstra 已提交
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
{
	lockdep_assert_held(&rq->lock);

	dequeue_task(rq, p, 0);
	p->on_rq = TASK_ON_RQ_MIGRATING;
	set_task_cpu(p, new_cpu);
	raw_spin_unlock(&rq->lock);

	rq = cpu_rq(new_cpu);

	raw_spin_lock(&rq->lock);
	BUG_ON(task_cpu(p) != new_cpu);
	p->on_rq = TASK_ON_RQ_QUEUED;
	enqueue_task(rq, p, 0);
	check_preempt_curr(rq, p, 0);

	return rq;
}

struct migration_arg {
	struct task_struct *task;
	int dest_cpu;
};

/*
 * Move (not current) task off this cpu, onto dest cpu. We're doing
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
 */
1102
static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
P
Peter Zijlstra 已提交
1103 1104
{
	if (unlikely(!cpu_active(dest_cpu)))
1105
		return rq;
P
Peter Zijlstra 已提交
1106 1107 1108

	/* Affinity changed (again). */
	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1109
		return rq;
P
Peter Zijlstra 已提交
1110

1111 1112 1113
	rq = move_queued_task(rq, p, dest_cpu);

	return rq;
P
Peter Zijlstra 已提交
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
}

/*
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
 */
static int migration_cpu_stop(void *data)
{
	struct migration_arg *arg = data;
1124 1125
	struct task_struct *p = arg->task;
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137

	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
	local_irq_disable();
	/*
	 * We need to explicitly wake pending tasks before running
	 * __migrate_task() such that we will not miss enforcing cpus_allowed
	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
	 */
	sched_ttwu_pending();
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150

	raw_spin_lock(&p->pi_lock);
	raw_spin_lock(&rq->lock);
	/*
	 * If task_rq(p) != rq, it cannot be migrated here, because we're
	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
	 * we're holding p->pi_lock.
	 */
	if (task_rq(p) == rq && task_on_rq_queued(p))
		rq = __migrate_task(rq, p, arg->dest_cpu);
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock(&p->pi_lock);

P
Peter Zijlstra 已提交
1151 1152 1153 1154
	local_irq_enable();
	return 0;
}

1155 1156 1157 1158 1159
/*
 * sched_class::set_cpus_allowed must do the below, but is not required to
 * actually call this function.
 */
void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
P
Peter Zijlstra 已提交
1160 1161 1162 1163 1164
{
	cpumask_copy(&p->cpus_allowed, new_mask);
	p->nr_cpus_allowed = cpumask_weight(new_mask);
}

1165 1166
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
1167 1168 1169
	struct rq *rq = task_rq(p);
	bool queued, running;

1170
	lockdep_assert_held(&p->pi_lock);
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185

	queued = task_on_rq_queued(p);
	running = task_current(rq, p);

	if (queued) {
		/*
		 * Because __kthread_bind() calls this on blocked tasks without
		 * holding rq->lock.
		 */
		lockdep_assert_held(&rq->lock);
		dequeue_task(rq, p, 0);
	}
	if (running)
		put_prev_task(rq, p);

1186
	p->sched_class->set_cpus_allowed(p, new_mask);
1187 1188 1189 1190 1191

	if (running)
		p->sched_class->set_curr_task(rq);
	if (queued)
		enqueue_task(rq, p, 0);
1192 1193
}

P
Peter Zijlstra 已提交
1194 1195 1196 1197 1198 1199 1200 1201 1202
/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely. The
 * call is not atomic; no spinlocks may be held.
 */
1203 1204
static int __set_cpus_allowed_ptr(struct task_struct *p,
				  const struct cpumask *new_mask, bool check)
P
Peter Zijlstra 已提交
1205 1206 1207 1208 1209 1210 1211 1212
{
	unsigned long flags;
	struct rq *rq;
	unsigned int dest_cpu;
	int ret = 0;

	rq = task_rq_lock(p, &flags);

1213 1214 1215 1216 1217 1218 1219 1220 1221
	/*
	 * Must re-check here, to close a race against __kthread_bind(),
	 * sched_setaffinity() is not guaranteed to observe the flag.
	 */
	if (check && (p->flags & PF_NO_SETAFFINITY)) {
		ret = -EINVAL;
		goto out;
	}

P
Peter Zijlstra 已提交
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
		ret = -EINVAL;
		goto out;
	}

	do_set_cpus_allowed(p, new_mask);

	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpumask_test_cpu(task_cpu(p), new_mask))
		goto out;

	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
	if (task_running(rq, p) || p->state == TASK_WAKING) {
		struct migration_arg arg = { p, dest_cpu };
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, p, &flags);
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
		tlb_migrate_finish(p->mm);
		return 0;
1244 1245 1246 1247 1248 1249
	} else if (task_on_rq_queued(p)) {
		/*
		 * OK, since we're going to drop the lock immediately
		 * afterwards anyway.
		 */
		lockdep_unpin_lock(&rq->lock);
1250
		rq = move_queued_task(rq, p, dest_cpu);
1251 1252
		lockdep_pin_lock(&rq->lock);
	}
P
Peter Zijlstra 已提交
1253 1254 1255 1256 1257
out:
	task_rq_unlock(rq, p, &flags);

	return ret;
}
1258 1259 1260 1261 1262

int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
{
	return __set_cpus_allowed_ptr(p, new_mask, false);
}
P
Peter Zijlstra 已提交
1263 1264
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);

I
Ingo Molnar 已提交
1265
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1266
{
1267 1268 1269 1270 1271
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
1272
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
O
Oleg Nesterov 已提交
1273
			!p->on_rq);
1274 1275

#ifdef CONFIG_LOCKDEP
1276 1277 1278 1279 1280
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
P
Peter Zijlstra 已提交
1281
	 * see task_group().
1282 1283 1284 1285
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
1286 1287 1288
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
1289 1290
#endif

1291
	trace_sched_migrate_task(p, new_cpu);
1292

1293
	if (task_cpu(p) != new_cpu) {
1294 1295
		if (p->sched_class->migrate_task_rq)
			p->sched_class->migrate_task_rq(p, new_cpu);
1296
		p->se.nr_migrations++;
1297
		perf_event_task_migrate(p);
1298
	}
I
Ingo Molnar 已提交
1299 1300

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1301 1302
}

1303 1304
static void __migrate_swap_task(struct task_struct *p, int cpu)
{
1305
	if (task_on_rq_queued(p)) {
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
		struct rq *src_rq, *dst_rq;

		src_rq = task_rq(p);
		dst_rq = cpu_rq(cpu);

		deactivate_task(src_rq, p, 0);
		set_task_cpu(p, cpu);
		activate_task(dst_rq, p, 0);
		check_preempt_curr(dst_rq, p, 0);
	} else {
		/*
		 * Task isn't running anymore; make it appear like we migrated
		 * it before it went to sleep. This means on wakeup we make the
		 * previous cpu our targer instead of where it really is.
		 */
		p->wake_cpu = cpu;
	}
}

struct migration_swap_arg {
	struct task_struct *src_task, *dst_task;
	int src_cpu, dst_cpu;
};

static int migrate_swap_stop(void *data)
{
	struct migration_swap_arg *arg = data;
	struct rq *src_rq, *dst_rq;
	int ret = -EAGAIN;

	src_rq = cpu_rq(arg->src_cpu);
	dst_rq = cpu_rq(arg->dst_cpu);

1339 1340
	double_raw_lock(&arg->src_task->pi_lock,
			&arg->dst_task->pi_lock);
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
	double_rq_lock(src_rq, dst_rq);
	if (task_cpu(arg->dst_task) != arg->dst_cpu)
		goto unlock;

	if (task_cpu(arg->src_task) != arg->src_cpu)
		goto unlock;

	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
		goto unlock;

	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
		goto unlock;

	__migrate_swap_task(arg->src_task, arg->dst_cpu);
	__migrate_swap_task(arg->dst_task, arg->src_cpu);

	ret = 0;

unlock:
	double_rq_unlock(src_rq, dst_rq);
1361 1362
	raw_spin_unlock(&arg->dst_task->pi_lock);
	raw_spin_unlock(&arg->src_task->pi_lock);
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384

	return ret;
}

/*
 * Cross migrate two tasks
 */
int migrate_swap(struct task_struct *cur, struct task_struct *p)
{
	struct migration_swap_arg arg;
	int ret = -EINVAL;

	arg = (struct migration_swap_arg){
		.src_task = cur,
		.src_cpu = task_cpu(cur),
		.dst_task = p,
		.dst_cpu = task_cpu(p),
	};

	if (arg.src_cpu == arg.dst_cpu)
		goto out;

1385 1386 1387 1388
	/*
	 * These three tests are all lockless; this is OK since all of them
	 * will be re-checked with proper locks held further down the line.
	 */
1389 1390 1391 1392 1393 1394 1395 1396 1397
	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
		goto out;

	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
		goto out;

	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
		goto out;

1398
	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1399 1400 1401 1402 1403 1404
	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);

out:
	return ret;
}

L
Linus Torvalds 已提交
1405 1406 1407
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1408 1409 1410 1411 1412 1413 1414
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1415 1416 1417 1418 1419 1420
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1421
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1422 1423
{
	unsigned long flags;
1424
	int running, queued;
R
Roland McGrath 已提交
1425
	unsigned long ncsw;
1426
	struct rq *rq;
L
Linus Torvalds 已提交
1427

1428 1429 1430 1431 1432 1433 1434 1435
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1436

1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1448 1449 1450
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1451
			cpu_relax();
R
Roland McGrath 已提交
1452
		}
1453

1454 1455 1456 1457 1458 1459
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1460
		trace_sched_wait_task(p);
1461
		running = task_running(rq, p);
1462
		queued = task_on_rq_queued(p);
R
Roland McGrath 已提交
1463
		ncsw = 0;
1464
		if (!match_state || p->state == match_state)
1465
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1466
		task_rq_unlock(rq, p, &flags);
1467

R
Roland McGrath 已提交
1468 1469 1470 1471 1472 1473
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1484

1485 1486 1487 1488 1489
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1490
		 * So if it was still runnable (but just not actively
1491 1492 1493
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
1494
		if (unlikely(queued)) {
1495 1496 1497 1498
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1499 1500
			continue;
		}
1501

1502 1503 1504 1505 1506 1507 1508
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1509 1510

	return ncsw;
L
Linus Torvalds 已提交
1511 1512 1513 1514 1515 1516 1517 1518 1519
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1520
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1521 1522 1523 1524 1525
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1526
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1527 1528 1529 1530 1531 1532 1533 1534 1535
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1536
EXPORT_SYMBOL_GPL(kick_process);
L
Linus Torvalds 已提交
1537

1538
/*
1539
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1540
 */
1541 1542
static int select_fallback_rq(int cpu, struct task_struct *p)
{
1543 1544
	int nid = cpu_to_node(cpu);
	const struct cpumask *nodemask = NULL;
1545 1546
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1547

1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
	/*
	 * If the node that the cpu is on has been offlined, cpu_to_node()
	 * will return -1. There is no cpu on the node, and we should
	 * select the cpu on the other node.
	 */
	if (nid != -1) {
		nodemask = cpumask_of_node(nid);

		/* Look for allowed, online CPU in same node. */
		for_each_cpu(dest_cpu, nodemask) {
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
				return dest_cpu;
		}
1565
	}
1566

1567 1568
	for (;;) {
		/* Any allowed, online CPU? */
1569
		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1570 1571 1572 1573 1574 1575
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			goto out;
		}
1576

1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
		switch (state) {
		case cpuset:
			/* No more Mr. Nice Guy. */
			cpuset_cpus_allowed_fallback(p);
			state = possible;
			break;

		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
1603
			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1604 1605
					task_pid_nr(p), p->comm, cpu);
		}
1606 1607 1608 1609 1610
	}

	return dest_cpu;
}

1611
/*
1612
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1613
 */
1614
static inline
1615
int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1616
{
1617 1618
	lockdep_assert_held(&p->pi_lock);

1619 1620
	if (p->nr_cpus_allowed > 1)
		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1632
	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
P
Peter Zijlstra 已提交
1633
		     !cpu_online(cpu)))
1634
		cpu = select_fallback_rq(task_cpu(p), p);
1635 1636

	return cpu;
1637
}
1638 1639 1640 1641 1642 1643

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1644 1645 1646 1647 1648 1649 1650 1651 1652

#else

static inline int __set_cpus_allowed_ptr(struct task_struct *p,
					 const struct cpumask *new_mask, bool check)
{
	return set_cpus_allowed_ptr(p, new_mask);
}

P
Peter Zijlstra 已提交
1653
#endif /* CONFIG_SMP */
1654

P
Peter Zijlstra 已提交
1655
static void
1656
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1657
{
P
Peter Zijlstra 已提交
1658
#ifdef CONFIG_SCHEDSTATS
1659 1660
	struct rq *rq = this_rq();

P
Peter Zijlstra 已提交
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
#ifdef CONFIG_SMP
	int this_cpu = smp_processor_id();

	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	} else {
		struct sched_domain *sd;

		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1671
		rcu_read_lock();
P
Peter Zijlstra 已提交
1672 1673 1674 1675 1676 1677
		for_each_domain(this_cpu, sd) {
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
1678
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1679
	}
1680 1681 1682 1683

	if (wake_flags & WF_MIGRATED)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);

P
Peter Zijlstra 已提交
1684 1685 1686
#endif /* CONFIG_SMP */

	schedstat_inc(rq, ttwu_count);
T
Tejun Heo 已提交
1687
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1688 1689

	if (wake_flags & WF_SYNC)
T
Tejun Heo 已提交
1690
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1691 1692 1693 1694 1695 1696

#endif /* CONFIG_SCHEDSTATS */
}

static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
{
T
Tejun Heo 已提交
1697
	activate_task(rq, p, en_flags);
1698
	p->on_rq = TASK_ON_RQ_QUEUED;
1699 1700 1701 1702

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1703 1704
}

1705 1706 1707
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1708
static void
1709
ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
T
Tejun Heo 已提交
1710 1711 1712
{
	check_preempt_curr(rq, p, wake_flags);
	p->state = TASK_RUNNING;
1713 1714
	trace_sched_wakeup(p);

T
Tejun Heo 已提交
1715
#ifdef CONFIG_SMP
1716 1717
	if (p->sched_class->task_woken) {
		/*
1718 1719
		 * Our task @p is fully woken up and running; so its safe to
		 * drop the rq->lock, hereafter rq is only used for statistics.
1720
		 */
1721
		lockdep_unpin_lock(&rq->lock);
T
Tejun Heo 已提交
1722
		p->sched_class->task_woken(rq, p);
1723
		lockdep_pin_lock(&rq->lock);
1724
	}
T
Tejun Heo 已提交
1725

1726
	if (rq->idle_stamp) {
1727
		u64 delta = rq_clock(rq) - rq->idle_stamp;
1728
		u64 max = 2*rq->max_idle_balance_cost;
T
Tejun Heo 已提交
1729

1730 1731 1732
		update_avg(&rq->avg_idle, delta);

		if (rq->avg_idle > max)
T
Tejun Heo 已提交
1733
			rq->avg_idle = max;
1734

T
Tejun Heo 已提交
1735 1736 1737 1738 1739
		rq->idle_stamp = 0;
	}
#endif
}

1740 1741 1742
static void
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
{
1743 1744
	lockdep_assert_held(&rq->lock);

1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
#endif

	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
	ttwu_do_wakeup(rq, p, wake_flags);
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
1766
	if (task_on_rq_queued(p)) {
1767 1768
		/* check_preempt_curr() may use rq clock */
		update_rq_clock(rq);
1769 1770 1771 1772 1773 1774 1775 1776
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;
}

1777
#ifdef CONFIG_SMP
1778
void sched_ttwu_pending(void)
1779 1780
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1781 1782
	struct llist_node *llist = llist_del_all(&rq->wake_list);
	struct task_struct *p;
1783
	unsigned long flags;
1784

1785 1786 1787 1788
	if (!llist)
		return;

	raw_spin_lock_irqsave(&rq->lock, flags);
1789
	lockdep_pin_lock(&rq->lock);
1790

P
Peter Zijlstra 已提交
1791 1792 1793
	while (llist) {
		p = llist_entry(llist, struct task_struct, wake_entry);
		llist = llist_next(llist);
1794 1795 1796
		ttwu_do_activate(rq, p, 0);
	}

1797
	lockdep_unpin_lock(&rq->lock);
1798
	raw_spin_unlock_irqrestore(&rq->lock, flags);
1799 1800 1801 1802
}

void scheduler_ipi(void)
{
1803 1804 1805 1806 1807
	/*
	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
	 * TIF_NEED_RESCHED remotely (for the first time) will also send
	 * this IPI.
	 */
1808
	preempt_fold_need_resched();
1809

1810
	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
P
Peter Zijlstra 已提交
1827
	sched_ttwu_pending();
1828 1829 1830 1831

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1832
	if (unlikely(got_nohz_idle_kick())) {
1833
		this_rq()->idle_balance = 1;
1834
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1835
	}
1836
	irq_exit();
1837 1838 1839 1840
}

static void ttwu_queue_remote(struct task_struct *p, int cpu)
{
1841 1842 1843 1844 1845 1846 1847 1848
	struct rq *rq = cpu_rq(cpu);

	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
		if (!set_nr_if_polling(rq->idle))
			smp_send_reschedule(cpu);
		else
			trace_sched_wake_idle_without_ipi(cpu);
	}
1849
}
1850

1851 1852 1853 1854 1855
void wake_up_if_idle(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

1856 1857 1858 1859
	rcu_read_lock();

	if (!is_idle_task(rcu_dereference(rq->curr)))
		goto out;
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869

	if (set_nr_if_polling(rq->idle)) {
		trace_sched_wake_idle_without_ipi(cpu);
	} else {
		raw_spin_lock_irqsave(&rq->lock, flags);
		if (is_idle_task(rq->curr))
			smp_send_reschedule(cpu);
		/* Else cpu is not in idle, do nothing here */
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}
1870 1871 1872

out:
	rcu_read_unlock();
1873 1874
}

1875
bool cpus_share_cache(int this_cpu, int that_cpu)
1876 1877 1878
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1879
#endif /* CONFIG_SMP */
1880

1881 1882 1883 1884
static void ttwu_queue(struct task_struct *p, int cpu)
{
	struct rq *rq = cpu_rq(cpu);

1885
#if defined(CONFIG_SMP)
1886
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1887
		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1888 1889 1890 1891 1892
		ttwu_queue_remote(p, cpu);
		return;
	}
#endif

1893
	raw_spin_lock(&rq->lock);
1894
	lockdep_pin_lock(&rq->lock);
1895
	ttwu_do_activate(rq, p, 0);
1896
	lockdep_unpin_lock(&rq->lock);
1897
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
1898 1899 1900
}

/**
L
Linus Torvalds 已提交
1901
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1902
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1903
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1904
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1905 1906 1907 1908 1909 1910 1911
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
1912
 * Return: %true if @p was woken up, %false if it was already running.
T
Tejun Heo 已提交
1913
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
1914
 */
1915 1916
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1917 1918
{
	unsigned long flags;
1919
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1920

1921 1922 1923 1924 1925 1926 1927
	/*
	 * If we are going to wake up a thread waiting for CONDITION we
	 * need to ensure that CONDITION=1 done by the caller can not be
	 * reordered with p->state check below. This pairs with mb() in
	 * set_current_state() the waiting thread does.
	 */
	smp_mb__before_spinlock();
1928
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
1929
	if (!(p->state & state))
L
Linus Torvalds 已提交
1930 1931
		goto out;

1932 1933
	trace_sched_waking(p);

1934
	success = 1; /* we're going to change ->state */
L
Linus Torvalds 已提交
1935 1936
	cpu = task_cpu(p);

1937 1938
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
1939 1940

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1941
	/*
1942 1943
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
P
Peter Zijlstra 已提交
1944
	 */
1945
	while (p->on_cpu)
1946
		cpu_relax();
1947
	/*
1948
	 * Pairs with the smp_wmb() in finish_lock_switch().
1949
	 */
1950
	smp_rmb();
L
Linus Torvalds 已提交
1951

1952
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
1953
	p->state = TASK_WAKING;
1954

1955
	if (p->sched_class->task_waking)
1956
		p->sched_class->task_waking(p);
1957

1958
	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1959 1960
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
1961
		set_task_cpu(p, cpu);
1962
	}
L
Linus Torvalds 已提交
1963 1964
#endif /* CONFIG_SMP */

1965 1966
	ttwu_queue(p, cpu);
stat:
1967
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
1968
out:
1969
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
1970 1971 1972 1973

	return success;
}

T
Tejun Heo 已提交
1974 1975 1976 1977
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
1978
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
1979
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1980
 * the current task.
T
Tejun Heo 已提交
1981 1982 1983 1984 1985
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

1986 1987 1988 1989
	if (WARN_ON_ONCE(rq != this_rq()) ||
	    WARN_ON_ONCE(p == current))
		return;

T
Tejun Heo 已提交
1990 1991
	lockdep_assert_held(&rq->lock);

1992
	if (!raw_spin_trylock(&p->pi_lock)) {
1993 1994 1995 1996 1997 1998 1999
		/*
		 * This is OK, because current is on_cpu, which avoids it being
		 * picked for load-balance and preemption/IRQs are still
		 * disabled avoiding further scheduler activity on it and we've
		 * not yet picked a replacement task.
		 */
		lockdep_unpin_lock(&rq->lock);
2000 2001 2002
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
2003
		lockdep_pin_lock(&rq->lock);
2004 2005
	}

T
Tejun Heo 已提交
2006
	if (!(p->state & TASK_NORMAL))
2007
		goto out;
T
Tejun Heo 已提交
2008

2009 2010
	trace_sched_waking(p);

2011
	if (!task_on_rq_queued(p))
P
Peter Zijlstra 已提交
2012 2013
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

2014
	ttwu_do_wakeup(rq, p, 0);
2015
	ttwu_stat(p, smp_processor_id(), 0);
2016 2017
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
2018 2019
}

2020 2021 2022 2023 2024
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
2025 2026 2027
 * processes.
 *
 * Return: 1 if the process was woken up, 0 if it was already running.
2028 2029 2030 2031
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2032
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2033
{
2034 2035
	WARN_ON(task_is_stopped_or_traced(p));
	return try_to_wake_up(p, TASK_NORMAL, 0);
L
Linus Torvalds 已提交
2036 2037 2038
}
EXPORT_SYMBOL(wake_up_process);

2039
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2040 2041 2042 2043
{
	return try_to_wake_up(p, state, 0);
}

2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
/*
 * This function clears the sched_dl_entity static params.
 */
void __dl_clear_params(struct task_struct *p)
{
	struct sched_dl_entity *dl_se = &p->dl;

	dl_se->dl_runtime = 0;
	dl_se->dl_deadline = 0;
	dl_se->dl_period = 0;
	dl_se->flags = 0;
	dl_se->dl_bw = 0;
2056 2057 2058 2059

	dl_se->dl_throttled = 0;
	dl_se->dl_new = 1;
	dl_se->dl_yielded = 0;
2060 2061
}

L
Linus Torvalds 已提交
2062 2063 2064
/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2065 2066 2067
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
2068
static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
2069
{
P
Peter Zijlstra 已提交
2070 2071 2072
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
2073 2074
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2075
	p->se.prev_sum_exec_runtime	= 0;
2076
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
2077
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
2078
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
2079 2080

#ifdef CONFIG_SCHEDSTATS
2081
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
2082
#endif
N
Nick Piggin 已提交
2083

2084
	RB_CLEAR_NODE(&p->dl.rb_node);
2085
	init_dl_task_timer(&p->dl);
2086
	__dl_clear_params(p);
2087

P
Peter Zijlstra 已提交
2088
	INIT_LIST_HEAD(&p->rt.run_list);
N
Nick Piggin 已提交
2089

2090 2091 2092
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
2093 2094 2095

#ifdef CONFIG_NUMA_BALANCING
	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2096
		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2097 2098 2099
		p->mm->numa_scan_seq = 0;
	}

2100 2101 2102 2103 2104
	if (clone_flags & CLONE_VM)
		p->numa_preferred_nid = current->numa_preferred_nid;
	else
		p->numa_preferred_nid = -1;

2105 2106
	p->node_stamp = 0ULL;
	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2107
	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2108
	p->numa_work.next = &p->numa_work;
2109
	p->numa_faults = NULL;
2110 2111
	p->last_task_numa_placement = 0;
	p->last_sum_exec_runtime = 0;
2112 2113

	p->numa_group = NULL;
2114
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
2115 2116
}

2117
#ifdef CONFIG_NUMA_BALANCING
2118 2119
__read_mostly bool sched_numa_balancing;

2120 2121
void set_numabalancing_state(bool enabled)
{
2122 2123
	sched_numa_balancing = enabled;
}
2124 2125 2126 2127 2128 2129 2130

#ifdef CONFIG_PROC_SYSCTL
int sysctl_numa_balancing(struct ctl_table *table, int write,
			 void __user *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table t;
	int err;
2131
	int state = sched_numa_balancing;
2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146

	if (write && !capable(CAP_SYS_ADMIN))
		return -EPERM;

	t = *table;
	t.data = &state;
	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
	if (err < 0)
		return err;
	if (write)
		set_numabalancing_state(state);
	return err;
}
#endif
#endif
I
Ingo Molnar 已提交
2147 2148 2149 2150

/*
 * fork()/clone()-time setup:
 */
2151
int sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
2152
{
2153
	unsigned long flags;
I
Ingo Molnar 已提交
2154 2155
	int cpu = get_cpu();

2156
	__sched_fork(clone_flags, p);
2157
	/*
2158
	 * We mark the process as running here. This guarantees that
2159 2160 2161
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
2162
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2163

2164 2165 2166 2167 2168
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

2169 2170 2171 2172
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2173
		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2174
			p->policy = SCHED_NORMAL;
2175
			p->static_prio = NICE_TO_PRIO(0);
2176 2177 2178 2179 2180 2181
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
2182

2183 2184 2185 2186 2187 2188
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2189

2190 2191 2192 2193 2194 2195
	if (dl_prio(p->prio)) {
		put_cpu();
		return -EAGAIN;
	} else if (rt_prio(p->prio)) {
		p->sched_class = &rt_sched_class;
	} else {
H
Hiroshi Shimamoto 已提交
2196
		p->sched_class = &fair_sched_class;
2197
	}
2198

P
Peter Zijlstra 已提交
2199 2200 2201
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

2202 2203 2204 2205 2206 2207 2208
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
2209
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2210
	set_task_cpu(p, cpu);
2211
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2212

2213
#ifdef CONFIG_SCHED_INFO
I
Ingo Molnar 已提交
2214
	if (likely(sched_info_on()))
2215
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2216
#endif
P
Peter Zijlstra 已提交
2217 2218
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
2219
#endif
2220
	init_task_preempt_count(p);
2221
#ifdef CONFIG_SMP
2222
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2223
	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2224
#endif
2225

N
Nick Piggin 已提交
2226
	put_cpu();
2227
	return 0;
L
Linus Torvalds 已提交
2228 2229
}

2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 20;

	/*
	 * Doing this here saves a lot of checks in all
	 * the calling paths, and returning zero seems
	 * safe for them anyway.
	 */
	if (period == 0)
		return 0;

	return div64_u64(runtime << 20, period);
}

#ifdef CONFIG_SMP
inline struct dl_bw *dl_bw_of(int i)
{
2249 2250
	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
			 "sched RCU must be held");
2251 2252 2253
	return &cpu_rq(i)->rd->dl_bw;
}

2254
static inline int dl_bw_cpus(int i)
2255
{
2256 2257 2258
	struct root_domain *rd = cpu_rq(i)->rd;
	int cpus = 0;

2259 2260
	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
			 "sched RCU must be held");
2261 2262 2263 2264
	for_each_cpu_and(i, rd->span, cpu_active_mask)
		cpus++;

	return cpus;
2265 2266 2267 2268 2269 2270 2271
}
#else
inline struct dl_bw *dl_bw_of(int i)
{
	return &cpu_rq(i)->dl.dl_bw;
}

2272
static inline int dl_bw_cpus(int i)
2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
{
	return 1;
}
#endif

/*
 * We must be sure that accepting a new task (or allowing changing the
 * parameters of an existing one) is consistent with the bandwidth
 * constraints. If yes, this function also accordingly updates the currently
 * allocated bandwidth to reflect the new situation.
 *
 * This function is called while holding p's rq->lock.
2285 2286 2287
 *
 * XXX we should delay bw change until the task's 0-lag point, see
 * __setparam_dl().
2288 2289 2290 2291 2292 2293
 */
static int dl_overflow(struct task_struct *p, int policy,
		       const struct sched_attr *attr)
{

	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2294
	u64 period = attr->sched_period ?: attr->sched_deadline;
2295 2296
	u64 runtime = attr->sched_runtime;
	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2297
	int cpus, err = -1;
2298 2299 2300 2301 2302 2303 2304 2305 2306 2307

	if (new_bw == p->dl.dl_bw)
		return 0;

	/*
	 * Either if a task, enters, leave, or stays -deadline but changes
	 * its parameters, we may need to update accordingly the total
	 * allocated bandwidth of the container.
	 */
	raw_spin_lock(&dl_b->lock);
2308
	cpus = dl_bw_cpus(task_cpu(p));
2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328
	if (dl_policy(policy) && !task_has_dl_policy(p) &&
	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
		__dl_add(dl_b, new_bw);
		err = 0;
	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
		__dl_clear(dl_b, p->dl.dl_bw);
		__dl_add(dl_b, new_bw);
		err = 0;
	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
		__dl_clear(dl_b, p->dl.dl_bw);
		err = 0;
	}
	raw_spin_unlock(&dl_b->lock);

	return err;
}

extern void init_dl_bw(struct dl_bw *dl_b);

L
Linus Torvalds 已提交
2329 2330 2331 2332 2333 2334 2335
/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2336
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
2337 2338
{
	unsigned long flags;
I
Ingo Molnar 已提交
2339
	struct rq *rq;
2340

2341
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2342 2343 2344 2345 2346 2347
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 */
2348
	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2349 2350
#endif

2351
	/* Initialize new task's runnable average */
2352
	init_entity_runnable_average(&p->se);
2353
	rq = __task_rq_lock(p);
P
Peter Zijlstra 已提交
2354
	activate_task(rq, p, 0);
2355
	p->on_rq = TASK_ON_RQ_QUEUED;
2356
	trace_sched_wakeup_new(p);
P
Peter Zijlstra 已提交
2357
	check_preempt_curr(rq, p, WF_FORK);
2358
#ifdef CONFIG_SMP
2359 2360
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2361
#endif
2362
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
2363 2364
}

2365 2366
#ifdef CONFIG_PREEMPT_NOTIFIERS

2367 2368
static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;

2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
void preempt_notifier_inc(void)
{
	static_key_slow_inc(&preempt_notifier_key);
}
EXPORT_SYMBOL_GPL(preempt_notifier_inc);

void preempt_notifier_dec(void)
{
	static_key_slow_dec(&preempt_notifier_key);
}
EXPORT_SYMBOL_GPL(preempt_notifier_dec);

2381
/**
2382
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2383
 * @notifier: notifier struct to register
2384 2385 2386
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
2387 2388 2389
	if (!static_key_false(&preempt_notifier_key))
		WARN(1, "registering preempt_notifier while notifiers disabled\n");

2390 2391 2392 2393 2394 2395
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2396
 * @notifier: notifier struct to unregister
2397
 *
2398
 * This is *not* safe to call from within a preemption notifier.
2399 2400 2401 2402 2403 2404 2405
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

2406
static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2407 2408 2409
{
	struct preempt_notifier *notifier;

2410
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2411 2412 2413
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

2414 2415 2416 2417 2418 2419
static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	if (static_key_false(&preempt_notifier_key))
		__fire_sched_in_preempt_notifiers(curr);
}

2420
static void
2421 2422
__fire_sched_out_preempt_notifiers(struct task_struct *curr,
				   struct task_struct *next)
2423 2424 2425
{
	struct preempt_notifier *notifier;

2426
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2427 2428 2429
		notifier->ops->sched_out(notifier, next);
}

2430 2431 2432 2433 2434 2435 2436 2437
static __always_inline void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	if (static_key_false(&preempt_notifier_key))
		__fire_sched_out_preempt_notifiers(curr, next);
}

2438
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2439

2440
static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2441 2442 2443
{
}

2444
static inline void
2445 2446 2447 2448 2449
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2450
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2451

2452 2453 2454
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2455
 * @prev: the current task that is being switched out
2456 2457 2458 2459 2460 2461 2462 2463 2464
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2465 2466 2467
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2468
{
2469
	trace_sched_switch(prev, next);
2470
	sched_info_switch(rq, prev, next);
2471
	perf_event_task_sched_out(prev, next);
2472
	fire_sched_out_preempt_notifiers(prev, next);
2473 2474 2475 2476
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2477 2478 2479 2480
/**
 * finish_task_switch - clean up after a task-switch
 * @prev: the thread we just switched away from.
 *
2481 2482 2483 2484
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2485 2486
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2487
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2488 2489
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
2490 2491 2492 2493 2494
 *
 * The context switch have flipped the stack from under us and restored the
 * local variables which were saved when this task called schedule() in the
 * past. prev == current is still correct but we need to recalculate this_rq
 * because prev may have moved to another CPU.
L
Linus Torvalds 已提交
2495
 */
2496
static struct rq *finish_task_switch(struct task_struct *prev)
L
Linus Torvalds 已提交
2497 2498
	__releases(rq->lock)
{
2499
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
2500
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2501
	long prev_state;
L
Linus Torvalds 已提交
2502 2503 2504 2505 2506

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2507
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2508 2509
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2510
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2511 2512 2513 2514 2515
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2516
	prev_state = prev->state;
2517
	vtime_task_switch(prev);
2518
	perf_event_task_sched_in(prev, current);
2519
	finish_lock_switch(rq, prev);
2520
	finish_arch_post_lock_switch();
S
Steven Rostedt 已提交
2521

2522
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2523 2524
	if (mm)
		mmdrop(mm);
2525
	if (unlikely(prev_state == TASK_DEAD)) {
2526 2527 2528
		if (prev->sched_class->task_dead)
			prev->sched_class->task_dead(prev);

2529 2530 2531
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2532
		 */
2533
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2534
		put_task_struct(prev);
2535
	}
2536

2537
	tick_nohz_task_switch();
2538
	return rq;
L
Linus Torvalds 已提交
2539 2540
}

2541 2542 2543
#ifdef CONFIG_SMP

/* rq->lock is NOT held, but preemption is disabled */
2544
static void __balance_callback(struct rq *rq)
2545
{
2546 2547 2548
	struct callback_head *head, *next;
	void (*func)(struct rq *rq);
	unsigned long flags;
2549

2550 2551 2552 2553 2554 2555 2556 2557
	raw_spin_lock_irqsave(&rq->lock, flags);
	head = rq->balance_callback;
	rq->balance_callback = NULL;
	while (head) {
		func = (void (*)(struct rq *))head->func;
		next = head->next;
		head->next = NULL;
		head = next;
2558

2559
		func(rq);
2560
	}
2561 2562 2563 2564 2565 2566 2567
	raw_spin_unlock_irqrestore(&rq->lock, flags);
}

static inline void balance_callback(struct rq *rq)
{
	if (unlikely(rq->balance_callback))
		__balance_callback(rq);
2568 2569 2570
}

#else
2571

2572
static inline void balance_callback(struct rq *rq)
2573
{
L
Linus Torvalds 已提交
2574 2575
}

2576 2577
#endif

L
Linus Torvalds 已提交
2578 2579 2580 2581
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2582
asmlinkage __visible void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2583 2584
	__releases(rq->lock)
{
2585
	struct rq *rq;
2586

2587 2588
	/* finish_task_switch() drops rq->lock and enables preemtion */
	preempt_disable();
2589
	rq = finish_task_switch(prev);
2590
	balance_callback(rq);
2591
	preempt_enable();
2592

L
Linus Torvalds 已提交
2593
	if (current->set_child_tid)
2594
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2595 2596 2597
}

/*
2598
 * context_switch - switch to the new MM and the new thread's register state.
L
Linus Torvalds 已提交
2599
 */
2600
static inline struct rq *
2601
context_switch(struct rq *rq, struct task_struct *prev,
2602
	       struct task_struct *next)
L
Linus Torvalds 已提交
2603
{
I
Ingo Molnar 已提交
2604
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2605

2606
	prepare_task_switch(rq, prev, next);
2607

I
Ingo Molnar 已提交
2608 2609
	mm = next->mm;
	oldmm = prev->active_mm;
2610 2611 2612 2613 2614
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2615
	arch_start_context_switch(prev);
2616

2617
	if (!mm) {
L
Linus Torvalds 已提交
2618 2619 2620 2621 2622 2623
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2624
	if (!prev->mm) {
L
Linus Torvalds 已提交
2625 2626 2627
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2628 2629 2630 2631 2632 2633
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
2634
	lockdep_unpin_lock(&rq->lock);
2635
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
2636 2637 2638

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);
I
Ingo Molnar 已提交
2639
	barrier();
2640 2641

	return finish_task_switch(prev);
L
Linus Torvalds 已提交
2642 2643 2644
}

/*
2645
 * nr_running and nr_context_switches:
L
Linus Torvalds 已提交
2646 2647
 *
 * externally visible scheduler statistics: current number of runnable
2648
 * threads, total number of context switches performed since bootup.
L
Linus Torvalds 已提交
2649 2650 2651 2652 2653 2654 2655 2656 2657
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2658
}
L
Linus Torvalds 已提交
2659

2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
/*
 * Check if only the current task is running on the cpu.
 */
bool single_task_running(void)
{
	if (cpu_rq(smp_processor_id())->nr_running == 1)
		return true;
	else
		return false;
}
EXPORT_SYMBOL(single_task_running);

L
Linus Torvalds 已提交
2672
unsigned long long nr_context_switches(void)
2673
{
2674 2675
	int i;
	unsigned long long sum = 0;
2676

2677
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2678
		sum += cpu_rq(i)->nr_switches;
2679

L
Linus Torvalds 已提交
2680 2681
	return sum;
}
2682

L
Linus Torvalds 已提交
2683 2684 2685
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2686

2687
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2688
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2689

L
Linus Torvalds 已提交
2690 2691
	return sum;
}
2692

2693
unsigned long nr_iowait_cpu(int cpu)
2694
{
2695
	struct rq *this = cpu_rq(cpu);
2696 2697
	return atomic_read(&this->nr_iowait);
}
2698

2699 2700
void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
{
2701 2702 2703
	struct rq *rq = this_rq();
	*nr_waiters = atomic_read(&rq->nr_iowait);
	*load = rq->load.weight;
2704 2705
}

I
Ingo Molnar 已提交
2706
#ifdef CONFIG_SMP
2707

2708
/*
P
Peter Zijlstra 已提交
2709 2710
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2711
 */
P
Peter Zijlstra 已提交
2712
void sched_exec(void)
2713
{
P
Peter Zijlstra 已提交
2714
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2715
	unsigned long flags;
2716
	int dest_cpu;
2717

2718
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2719
	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2720 2721
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2722

2723
	if (likely(cpu_active(dest_cpu))) {
2724
		struct migration_arg arg = { p, dest_cpu };
2725

2726 2727
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2728 2729
		return;
	}
2730
unlock:
2731
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2732
}
I
Ingo Molnar 已提交
2733

L
Linus Torvalds 已提交
2734 2735 2736
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2737
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
2738 2739

EXPORT_PER_CPU_SYMBOL(kstat);
2740
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
2741

2742 2743 2744 2745 2746 2747 2748 2749 2750
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
2751
	u64 ns;
2752

2753 2754 2755 2756 2757 2758 2759 2760 2761
#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
	/*
	 * 64-bit doesn't need locks to atomically read a 64bit value.
	 * So we have a optimization chance when the task's delta_exec is 0.
	 * Reading ->on_cpu is racy, but this is ok.
	 *
	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
	 * If we race with it entering cpu, unaccounted time is 0. This is
	 * indistinguishable from the read occurring a few cycles earlier.
2762 2763
	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
	 * been accounted, so we're correct here as well.
2764
	 */
2765
	if (!p->on_cpu || !task_on_rq_queued(p))
2766 2767 2768
		return p->se.sum_exec_runtime;
#endif

2769
	rq = task_rq_lock(p, &flags);
2770 2771 2772 2773 2774 2775 2776 2777 2778 2779
	/*
	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
	 * project cycles that may never be accounted to this
	 * thread, breaking clock_gettime().
	 */
	if (task_current(rq, p) && task_on_rq_queued(p)) {
		update_rq_clock(rq);
		p->sched_class->update_curr(rq);
	}
	ns = p->se.sum_exec_runtime;
2780
	task_rq_unlock(rq, p, &flags);
2781 2782 2783

	return ns;
}
2784

2785 2786 2787 2788 2789 2790 2791 2792
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2793
	struct task_struct *curr = rq->curr;
2794 2795

	sched_clock_tick();
I
Ingo Molnar 已提交
2796

2797
	raw_spin_lock(&rq->lock);
2798
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
2799
	curr->sched_class->task_tick(rq, curr, 0);
2800
	update_cpu_load_active(rq);
2801
	calc_global_load_tick(rq);
2802
	raw_spin_unlock(&rq->lock);
2803

2804
	perf_event_task_tick();
2805

2806
#ifdef CONFIG_SMP
2807
	rq->idle_balance = idle_cpu(cpu);
2808
	trigger_load_balance(rq);
2809
#endif
2810
	rq_last_tick_reset(rq);
L
Linus Torvalds 已提交
2811 2812
}

2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
#ifdef CONFIG_NO_HZ_FULL
/**
 * scheduler_tick_max_deferment
 *
 * Keep at least one tick per second when a single
 * active task is running because the scheduler doesn't
 * yet completely support full dynticks environment.
 *
 * This makes sure that uptime, CFS vruntime, load
 * balancing, etc... continue to move forward, even
 * with a very low granularity.
2824 2825
 *
 * Return: Maximum deferment in nanoseconds.
2826 2827 2828 2829
 */
u64 scheduler_tick_max_deferment(void)
{
	struct rq *rq = this_rq();
2830
	unsigned long next, now = READ_ONCE(jiffies);
2831 2832 2833 2834 2835 2836

	next = rq->last_sched_tick + HZ;

	if (time_before_eq(next, now))
		return 0;

2837
	return jiffies_to_nsecs(next - now);
L
Linus Torvalds 已提交
2838
}
2839
#endif
L
Linus Torvalds 已提交
2840

2841
notrace unsigned long get_parent_ip(unsigned long addr)
2842 2843 2844 2845 2846 2847 2848 2849
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
2850

2851 2852 2853
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

2854
void preempt_count_add(int val)
L
Linus Torvalds 已提交
2855
{
2856
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2857 2858 2859
	/*
	 * Underflow?
	 */
2860 2861
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
2862
#endif
2863
	__preempt_count_add(val);
2864
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2865 2866 2867
	/*
	 * Spinlock count overflowing soon?
	 */
2868 2869
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
2870
#endif
2871 2872 2873 2874 2875 2876 2877
	if (preempt_count() == val) {
		unsigned long ip = get_parent_ip(CALLER_ADDR1);
#ifdef CONFIG_DEBUG_PREEMPT
		current->preempt_disable_ip = ip;
#endif
		trace_preempt_off(CALLER_ADDR0, ip);
	}
L
Linus Torvalds 已提交
2878
}
2879
EXPORT_SYMBOL(preempt_count_add);
2880
NOKPROBE_SYMBOL(preempt_count_add);
L
Linus Torvalds 已提交
2881

2882
void preempt_count_sub(int val)
L
Linus Torvalds 已提交
2883
{
2884
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2885 2886 2887
	/*
	 * Underflow?
	 */
2888
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2889
		return;
L
Linus Torvalds 已提交
2890 2891 2892
	/*
	 * Is the spinlock portion underflowing?
	 */
2893 2894 2895
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
2896
#endif
2897

2898 2899
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2900
	__preempt_count_sub(val);
L
Linus Torvalds 已提交
2901
}
2902
EXPORT_SYMBOL(preempt_count_sub);
2903
NOKPROBE_SYMBOL(preempt_count_sub);
L
Linus Torvalds 已提交
2904 2905 2906 2907

#endif

/*
I
Ingo Molnar 已提交
2908
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
2909
 */
I
Ingo Molnar 已提交
2910
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
2911
{
2912 2913 2914
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
2915 2916
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
2917

I
Ingo Molnar 已提交
2918
	debug_show_held_locks(prev);
2919
	print_modules();
I
Ingo Molnar 已提交
2920 2921
	if (irqs_disabled())
		print_irqtrace_events(prev);
2922 2923 2924 2925 2926 2927 2928
#ifdef CONFIG_DEBUG_PREEMPT
	if (in_atomic_preempt_off()) {
		pr_err("Preemption disabled at:");
		print_ip_sym(current->preempt_disable_ip);
		pr_cont("\n");
	}
#endif
2929
	dump_stack();
2930
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
I
Ingo Molnar 已提交
2931
}
L
Linus Torvalds 已提交
2932

I
Ingo Molnar 已提交
2933 2934 2935 2936 2937
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
2938 2939 2940
#ifdef CONFIG_SCHED_STACK_END_CHECK
	BUG_ON(unlikely(task_stack_end_corrupted(prev)));
#endif
L
Linus Torvalds 已提交
2941
	/*
I
Ingo Molnar 已提交
2942
	 * Test if we are atomic. Since do_exit() needs to call into
2943 2944
	 * schedule() atomically, we ignore that path. Otherwise whine
	 * if we are scheduling when we should not.
L
Linus Torvalds 已提交
2945
	 */
2946
	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
I
Ingo Molnar 已提交
2947
		__schedule_bug(prev);
2948
	rcu_sleep_check();
I
Ingo Molnar 已提交
2949

L
Linus Torvalds 已提交
2950 2951
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

2952
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
2953 2954 2955 2956 2957 2958
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
2959
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
2960
{
2961
	const struct sched_class *class = &fair_sched_class;
I
Ingo Molnar 已提交
2962
	struct task_struct *p;
L
Linus Torvalds 已提交
2963 2964

	/*
I
Ingo Molnar 已提交
2965 2966
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
2967
	 */
2968
	if (likely(prev->sched_class == class &&
2969
		   rq->nr_running == rq->cfs.h_nr_running)) {
2970
		p = fair_sched_class.pick_next_task(rq, prev);
2971 2972 2973 2974 2975 2976 2977 2978
		if (unlikely(p == RETRY_TASK))
			goto again;

		/* assumes fair_sched_class->next == idle_sched_class */
		if (unlikely(!p))
			p = idle_sched_class.pick_next_task(rq, prev);

		return p;
L
Linus Torvalds 已提交
2979 2980
	}

2981
again:
2982
	for_each_class(class) {
2983
		p = class->pick_next_task(rq, prev);
2984 2985 2986
		if (p) {
			if (unlikely(p == RETRY_TASK))
				goto again;
I
Ingo Molnar 已提交
2987
			return p;
2988
		}
I
Ingo Molnar 已提交
2989
	}
2990 2991

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
2992
}
L
Linus Torvalds 已提交
2993

I
Ingo Molnar 已提交
2994
/*
2995
 * __schedule() is the main scheduler function.
2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029
 *
 * The main means of driving the scheduler and thus entering this function are:
 *
 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 *      paths. For example, see arch/x86/entry_64.S.
 *
 *      To drive preemption between tasks, the scheduler sets the flag in timer
 *      interrupt handler scheduler_tick().
 *
 *   3. Wakeups don't really cause entry into schedule(). They add a
 *      task to the run-queue and that's it.
 *
 *      Now, if the new task added to the run-queue preempts the current
 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 *      called on the nearest possible occasion:
 *
 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
 *
 *         - in syscall or exception context, at the next outmost
 *           preempt_enable(). (this might be as soon as the wake_up()'s
 *           spin_unlock()!)
 *
 *         - in IRQ context, return from interrupt-handler to
 *           preemptible context
 *
 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
 *         then at the next:
 *
 *          - cond_resched() call
 *          - explicit schedule() call
 *          - return from syscall or exception to user-space
 *          - return from interrupt-handler to user-space
3030
 *
3031
 * WARNING: must be called with preemption disabled!
I
Ingo Molnar 已提交
3032
 */
3033
static void __sched __schedule(void)
I
Ingo Molnar 已提交
3034 3035
{
	struct task_struct *prev, *next;
3036
	unsigned long *switch_count;
I
Ingo Molnar 已提交
3037
	struct rq *rq;
3038
	int cpu;
I
Ingo Molnar 已提交
3039 3040 3041

	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
3042
	rcu_note_context_switch();
I
Ingo Molnar 已提交
3043 3044 3045
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
3046

3047
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
3048
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
3049

3050 3051 3052 3053 3054 3055
	/*
	 * Make sure that signal_pending_state()->signal_pending() below
	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
	 * done by the caller to avoid the race with signal_wake_up().
	 */
	smp_mb__before_spinlock();
3056
	raw_spin_lock_irq(&rq->lock);
3057
	lockdep_pin_lock(&rq->lock);
L
Linus Torvalds 已提交
3058

3059 3060
	rq->clock_skip_update <<= 1; /* promote REQ to ACT */

3061
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
3062
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
3063
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
3064
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
3065
		} else {
3066 3067 3068
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

T
Tejun Heo 已提交
3069
			/*
3070 3071 3072
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
3073 3074 3075 3076 3077 3078 3079 3080 3081
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
		}
I
Ingo Molnar 已提交
3082
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3083 3084
	}

3085
	if (task_on_rq_queued(prev))
3086 3087 3088
		update_rq_clock(rq);

	next = pick_next_task(rq, prev);
3089
	clear_tsk_need_resched(prev);
3090
	clear_preempt_need_resched();
3091
	rq->clock_skip_update = 0;
L
Linus Torvalds 已提交
3092 3093 3094 3095 3096 3097

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

3098 3099
		rq = context_switch(rq, prev, next); /* unlocks the rq */
		cpu = cpu_of(rq);
3100 3101
	} else {
		lockdep_unpin_lock(&rq->lock);
3102
		raw_spin_unlock_irq(&rq->lock);
3103
	}
L
Linus Torvalds 已提交
3104

3105
	balance_callback(rq);
L
Linus Torvalds 已提交
3106
}
3107

3108 3109
static inline void sched_submit_work(struct task_struct *tsk)
{
3110
	if (!tsk->state || tsk_is_pi_blocked(tsk))
3111 3112 3113 3114 3115 3116 3117 3118 3119
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

3120
asmlinkage __visible void __sched schedule(void)
3121
{
3122 3123 3124
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
3125
	do {
3126
		preempt_disable();
3127
		__schedule();
3128
		sched_preempt_enable_no_resched();
3129
	} while (need_resched());
3130
}
L
Linus Torvalds 已提交
3131 3132
EXPORT_SYMBOL(schedule);

3133
#ifdef CONFIG_CONTEXT_TRACKING
3134
asmlinkage __visible void __sched schedule_user(void)
3135 3136 3137 3138 3139 3140
{
	/*
	 * If we come here after a random call to set_need_resched(),
	 * or we have been woken up remotely but the IPI has not yet arrived,
	 * we haven't yet exited the RCU idle mode. Do it here manually until
	 * we find a better solution.
3141 3142
	 *
	 * NB: There are buggy callers of this function.  Ideally we
3143
	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3144
	 * too frequently to make sense yet.
3145
	 */
3146
	enum ctx_state prev_state = exception_enter();
3147
	schedule();
3148
	exception_exit(prev_state);
3149 3150 3151
}
#endif

3152 3153 3154 3155 3156 3157 3158
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
3159
	sched_preempt_enable_no_resched();
3160 3161 3162 3163
	schedule();
	preempt_disable();
}

3164
static void __sched notrace preempt_schedule_common(void)
3165 3166
{
	do {
3167
		preempt_active_enter();
3168
		__schedule();
3169
		preempt_active_exit();
3170 3171 3172 3173 3174 3175 3176 3177

		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
	} while (need_resched());
}

L
Linus Torvalds 已提交
3178 3179
#ifdef CONFIG_PREEMPT
/*
3180
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3181
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3182 3183
 * occur there and call schedule directly.
 */
3184
asmlinkage __visible void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
3185 3186 3187
{
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3188
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3189
	 */
3190
	if (likely(!preemptible()))
L
Linus Torvalds 已提交
3191 3192
		return;

3193
	preempt_schedule_common();
L
Linus Torvalds 已提交
3194
}
3195
NOKPROBE_SYMBOL(preempt_schedule);
L
Linus Torvalds 已提交
3196
EXPORT_SYMBOL(preempt_schedule);
3197 3198

/**
3199
 * preempt_schedule_notrace - preempt_schedule called by tracing
3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211
 *
 * The tracing infrastructure uses preempt_enable_notrace to prevent
 * recursion and tracing preempt enabling caused by the tracing
 * infrastructure itself. But as tracing can happen in areas coming
 * from userspace or just about to enter userspace, a preempt enable
 * can occur before user_exit() is called. This will cause the scheduler
 * to be called when the system is still in usermode.
 *
 * To prevent this, the preempt_enable_notrace will use this function
 * instead of preempt_schedule() to exit user context if needed before
 * calling the scheduler.
 */
3212
asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3213 3214 3215 3216 3217 3218 3219
{
	enum ctx_state prev_ctx;

	if (likely(!preemptible()))
		return;

	do {
3220 3221 3222 3223 3224 3225 3226
		/*
		 * Use raw __prempt_count() ops that don't call function.
		 * We can't call functions before disabling preemption which
		 * disarm preemption tracing recursions.
		 */
		__preempt_count_add(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
		barrier();
3227 3228 3229 3230 3231 3232 3233 3234 3235 3236
		/*
		 * Needs preempt disabled in case user_exit() is traced
		 * and the tracer calls preempt_enable_notrace() causing
		 * an infinite recursion.
		 */
		prev_ctx = exception_enter();
		__schedule();
		exception_exit(prev_ctx);

		barrier();
3237
		__preempt_count_sub(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
3238 3239
	} while (need_resched());
}
3240
EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3241

3242
#endif /* CONFIG_PREEMPT */
L
Linus Torvalds 已提交
3243 3244

/*
3245
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3246 3247 3248 3249
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
3250
asmlinkage __visible void __sched preempt_schedule_irq(void)
L
Linus Torvalds 已提交
3251
{
3252
	enum ctx_state prev_state;
3253

3254
	/* Catch callers which need to be fixed */
3255
	BUG_ON(preempt_count() || !irqs_disabled());
L
Linus Torvalds 已提交
3256

3257 3258
	prev_state = exception_enter();

3259
	do {
3260
		preempt_active_enter();
3261
		local_irq_enable();
3262
		__schedule();
3263
		local_irq_disable();
3264
		preempt_active_exit();
3265
	} while (need_resched());
3266 3267

	exception_exit(prev_state);
L
Linus Torvalds 已提交
3268 3269
}

P
Peter Zijlstra 已提交
3270
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3271
			  void *key)
L
Linus Torvalds 已提交
3272
{
P
Peter Zijlstra 已提交
3273
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3274 3275 3276
}
EXPORT_SYMBOL(default_wake_function);

3277 3278 3279 3280 3281 3282 3283 3284 3285 3286
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
3287 3288
 * Used by the rt_mutex code to implement priority inheritance
 * logic. Call site only calls if the priority of the task changed.
3289
 */
3290
void rt_mutex_setprio(struct task_struct *p, int prio)
3291
{
3292
	int oldprio, queued, running, enqueue_flag = 0;
3293
	struct rq *rq;
3294
	const struct sched_class *prev_class;
3295

3296
	BUG_ON(prio > MAX_PRIO);
3297

3298
	rq = __task_rq_lock(p);
3299

3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

3318
	trace_sched_pi_setprio(p, prio);
3319
	oldprio = p->prio;
3320
	prev_class = p->sched_class;
3321
	queued = task_on_rq_queued(p);
3322
	running = task_current(rq, p);
3323
	if (queued)
3324
		dequeue_task(rq, p, 0);
3325
	if (running)
3326
		put_prev_task(rq, p);
I
Ingo Molnar 已提交
3327

3328 3329 3330 3331 3332 3333 3334 3335 3336 3337
	/*
	 * Boosting condition are:
	 * 1. -rt task is running and holds mutex A
	 *      --> -dl task blocks on mutex A
	 *
	 * 2. -dl task is running and holds mutex A
	 *      --> -dl task blocks on mutex A and could preempt the
	 *          running task
	 */
	if (dl_prio(prio)) {
3338 3339 3340
		struct task_struct *pi_task = rt_mutex_get_top_task(p);
		if (!dl_prio(p->normal_prio) ||
		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3341 3342 3343 3344
			p->dl.dl_boosted = 1;
			enqueue_flag = ENQUEUE_REPLENISH;
		} else
			p->dl.dl_boosted = 0;
3345
		p->sched_class = &dl_sched_class;
3346 3347 3348 3349 3350
	} else if (rt_prio(prio)) {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
		if (oldprio < prio)
			enqueue_flag = ENQUEUE_HEAD;
I
Ingo Molnar 已提交
3351
		p->sched_class = &rt_sched_class;
3352 3353 3354
	} else {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
3355 3356
		if (rt_prio(oldprio))
			p->rt.timeout = 0;
I
Ingo Molnar 已提交
3357
		p->sched_class = &fair_sched_class;
3358
	}
I
Ingo Molnar 已提交
3359

3360 3361
	p->prio = prio;

3362 3363
	if (running)
		p->sched_class->set_curr_task(rq);
3364
	if (queued)
3365
		enqueue_task(rq, p, enqueue_flag);
3366

P
Peter Zijlstra 已提交
3367
	check_class_changed(rq, p, prev_class, oldprio);
3368
out_unlock:
3369
	preempt_disable(); /* avoid rq from going away on us */
3370
	__task_rq_unlock(rq);
3371 3372 3373

	balance_callback(rq);
	preempt_enable();
3374 3375
}
#endif
3376

3377
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3378
{
3379
	int old_prio, delta, queued;
L
Linus Torvalds 已提交
3380
	unsigned long flags;
3381
	struct rq *rq;
L
Linus Torvalds 已提交
3382

3383
	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
L
Linus Torvalds 已提交
3384 3385 3386 3387 3388 3389 3390 3391 3392 3393
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
3394
	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
L
Linus Torvalds 已提交
3395
	 */
3396
	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3397 3398 3399
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
3400 3401
	queued = task_on_rq_queued(p);
	if (queued)
3402
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
3403 3404

	p->static_prio = NICE_TO_PRIO(nice);
3405
	set_load_weight(p);
3406 3407 3408
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3409

3410
	if (queued) {
3411
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
3412
		/*
3413 3414
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3415
		 */
3416
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3417
			resched_curr(rq);
L
Linus Torvalds 已提交
3418 3419
	}
out_unlock:
3420
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3421 3422 3423
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3424 3425 3426 3427 3428
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3429
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3430
{
3431
	/* convert nice value [19,-20] to rlimit style value [1,40] */
3432
	int nice_rlim = nice_to_rlimit(nice);
3433

3434
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3435 3436 3437
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3438 3439 3440 3441 3442 3443 3444 3445 3446
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3447
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3448
{
3449
	long nice, retval;
L
Linus Torvalds 已提交
3450 3451 3452 3453 3454 3455

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
3456
	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3457
	nice = task_nice(current) + increment;
L
Linus Torvalds 已提交
3458

3459
	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
M
Matt Mackall 已提交
3460 3461 3462
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
3477
 * Return: The priority value as seen by users in /proc.
L
Linus Torvalds 已提交
3478 3479 3480
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3481
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3482 3483 3484 3485 3486 3487 3488
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
3489 3490
 *
 * Return: 1 if the CPU is currently idle. 0 otherwise.
L
Linus Torvalds 已提交
3491 3492 3493
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3508 3509 3510 3511 3512
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
3513 3514
 *
 * Return: The idle task for the cpu @cpu.
L
Linus Torvalds 已提交
3515
 */
3516
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3517 3518 3519 3520 3521 3522 3523
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
3524 3525
 *
 * The task of @pid, if found. %NULL otherwise.
L
Linus Torvalds 已提交
3526
 */
A
Alexey Dobriyan 已提交
3527
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
3528
{
3529
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
3530 3531
}

3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546
/*
 * This function initializes the sched_dl_entity of a newly becoming
 * SCHED_DEADLINE task.
 *
 * Only the static values are considered here, the actual runtime and the
 * absolute deadline will be properly calculated when the task is enqueued
 * for the first time with its new policy.
 */
static void
__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	dl_se->dl_runtime = attr->sched_runtime;
	dl_se->dl_deadline = attr->sched_deadline;
3547
	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3548
	dl_se->flags = attr->sched_flags;
3549
	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569

	/*
	 * Changing the parameters of a task is 'tricky' and we're not doing
	 * the correct thing -- also see task_dead_dl() and switched_from_dl().
	 *
	 * What we SHOULD do is delay the bandwidth release until the 0-lag
	 * point. This would include retaining the task_struct until that time
	 * and change dl_overflow() to not immediately decrement the current
	 * amount.
	 *
	 * Instead we retain the current runtime/deadline and let the new
	 * parameters take effect after the current reservation period lapses.
	 * This is safe (albeit pessimistic) because the 0-lag point is always
	 * before the current scheduling deadline.
	 *
	 * We can still have temporary overloads because we do not delay the
	 * change in bandwidth until that time; so admission control is
	 * not on the safe side. It does however guarantee tasks will never
	 * consume more than promised.
	 */
3570 3571
}

3572 3573 3574 3575 3576 3577
/*
 * sched_setparam() passes in -1 for its policy, to let the functions
 * it calls know not to change it.
 */
#define SETPARAM_POLICY	-1

3578 3579
static void __setscheduler_params(struct task_struct *p,
		const struct sched_attr *attr)
L
Linus Torvalds 已提交
3580
{
3581 3582
	int policy = attr->sched_policy;

3583
	if (policy == SETPARAM_POLICY)
3584 3585
		policy = p->policy;

L
Linus Torvalds 已提交
3586
	p->policy = policy;
3587

3588 3589
	if (dl_policy(policy))
		__setparam_dl(p, attr);
3590
	else if (fair_policy(policy))
3591 3592
		p->static_prio = NICE_TO_PRIO(attr->sched_nice);

3593 3594 3595 3596 3597 3598
	/*
	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
	 * !rt_policy. Always setting this ensures that things like
	 * getparam()/getattr() don't report silly values for !rt tasks.
	 */
	p->rt_priority = attr->sched_priority;
3599
	p->normal_prio = normal_prio(p);
3600 3601
	set_load_weight(p);
}
3602

3603 3604
/* Actually do priority change: must hold pi & rq lock. */
static void __setscheduler(struct rq *rq, struct task_struct *p,
3605
			   const struct sched_attr *attr, bool keep_boost)
3606 3607
{
	__setscheduler_params(p, attr);
3608

3609
	/*
3610 3611
	 * Keep a potential priority boosting if called from
	 * sched_setscheduler().
3612
	 */
3613 3614 3615 3616
	if (keep_boost)
		p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
	else
		p->prio = normal_prio(p);
3617

3618 3619 3620
	if (dl_prio(p->prio))
		p->sched_class = &dl_sched_class;
	else if (rt_prio(p->prio))
3621 3622 3623
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
3624
}
3625 3626 3627 3628 3629 3630 3631 3632 3633

static void
__getparam_dl(struct task_struct *p, struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	attr->sched_priority = p->rt_priority;
	attr->sched_runtime = dl_se->dl_runtime;
	attr->sched_deadline = dl_se->dl_deadline;
3634
	attr->sched_period = dl_se->dl_period;
3635 3636 3637 3638 3639 3640
	attr->sched_flags = dl_se->flags;
}

/*
 * This function validates the new parameters of a -deadline task.
 * We ask for the deadline not being zero, and greater or equal
3641
 * than the runtime, as well as the period of being zero or
3642
 * greater than deadline. Furthermore, we have to be sure that
3643 3644 3645 3646
 * user parameters are above the internal resolution of 1us (we
 * check sched_runtime only since it is always the smaller one) and
 * below 2^63 ns (we have to check both sched_deadline and
 * sched_period, as the latter can be zero).
3647 3648 3649 3650
 */
static bool
__checkparam_dl(const struct sched_attr *attr)
{
3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676
	/* deadline != 0 */
	if (attr->sched_deadline == 0)
		return false;

	/*
	 * Since we truncate DL_SCALE bits, make sure we're at least
	 * that big.
	 */
	if (attr->sched_runtime < (1ULL << DL_SCALE))
		return false;

	/*
	 * Since we use the MSB for wrap-around and sign issues, make
	 * sure it's not set (mind that period can be equal to zero).
	 */
	if (attr->sched_deadline & (1ULL << 63) ||
	    attr->sched_period & (1ULL << 63))
		return false;

	/* runtime <= deadline <= period (if period != 0) */
	if ((attr->sched_period != 0 &&
	     attr->sched_period < attr->sched_deadline) ||
	    attr->sched_deadline < attr->sched_runtime)
		return false;

	return true;
3677 3678
}

3679 3680 3681 3682 3683 3684 3685 3686 3687 3688
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
3689 3690
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
3691 3692 3693 3694
	rcu_read_unlock();
	return match;
}

3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708
static bool dl_param_changed(struct task_struct *p,
		const struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	if (dl_se->dl_runtime != attr->sched_runtime ||
		dl_se->dl_deadline != attr->sched_deadline ||
		dl_se->dl_period != attr->sched_period ||
		dl_se->flags != attr->sched_flags)
		return true;

	return false;
}

3709 3710
static int __sched_setscheduler(struct task_struct *p,
				const struct sched_attr *attr,
3711
				bool user, bool pi)
L
Linus Torvalds 已提交
3712
{
3713 3714
	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
		      MAX_RT_PRIO - 1 - attr->sched_priority;
3715
	int retval, oldprio, oldpolicy = -1, queued, running;
3716
	int new_effective_prio, policy = attr->sched_policy;
L
Linus Torvalds 已提交
3717
	unsigned long flags;
3718
	const struct sched_class *prev_class;
3719
	struct rq *rq;
3720
	int reset_on_fork;
L
Linus Torvalds 已提交
3721

3722 3723
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
3724 3725
recheck:
	/* double check policy once rq lock held */
3726 3727
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
3728
		policy = oldpolicy = p->policy;
3729
	} else {
3730
		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3731

3732 3733
		if (policy != SCHED_DEADLINE &&
				policy != SCHED_FIFO && policy != SCHED_RR &&
3734 3735 3736 3737 3738
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

3739 3740 3741
	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
		return -EINVAL;

L
Linus Torvalds 已提交
3742 3743
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
3744 3745
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
3746
	 */
3747
	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3748
	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
3749
		return -EINVAL;
3750 3751
	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
	    (rt_policy(policy) != (attr->sched_priority != 0)))
L
Linus Torvalds 已提交
3752 3753
		return -EINVAL;

3754 3755 3756
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
3757
	if (user && !capable(CAP_SYS_NICE)) {
3758
		if (fair_policy(policy)) {
3759
			if (attr->sched_nice < task_nice(p) &&
3760
			    !can_nice(p, attr->sched_nice))
3761 3762 3763
				return -EPERM;
		}

3764
		if (rt_policy(policy)) {
3765 3766
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
3767 3768 3769 3770 3771 3772

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
3773 3774
			if (attr->sched_priority > p->rt_priority &&
			    attr->sched_priority > rlim_rtprio)
3775 3776
				return -EPERM;
		}
3777

3778 3779 3780 3781 3782 3783 3784 3785 3786
		 /*
		  * Can't set/change SCHED_DEADLINE policy at all for now
		  * (safest behavior); in the future we would like to allow
		  * unprivileged DL tasks to increase their relative deadline
		  * or reduce their runtime (both ways reducing utilization)
		  */
		if (dl_policy(policy))
			return -EPERM;

I
Ingo Molnar 已提交
3787
		/*
3788 3789
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
3790
		 */
3791
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3792
			if (!can_nice(p, task_nice(p)))
3793 3794
				return -EPERM;
		}
3795

3796
		/* can't change other user's priorities */
3797
		if (!check_same_owner(p))
3798
			return -EPERM;
3799 3800 3801 3802

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
3803
	}
L
Linus Torvalds 已提交
3804

3805
	if (user) {
3806
		retval = security_task_setscheduler(p);
3807 3808 3809 3810
		if (retval)
			return retval;
	}

3811 3812 3813
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
3814
	 *
L
Lucas De Marchi 已提交
3815
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
3816 3817
	 * runqueue lock must be held.
	 */
3818
	rq = task_rq_lock(p, &flags);
3819

3820 3821 3822 3823
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
3824
		task_rq_unlock(rq, p, &flags);
3825 3826 3827
		return -EINVAL;
	}

3828
	/*
3829 3830
	 * If not changing anything there's no need to proceed further,
	 * but store a possible modification of reset_on_fork.
3831
	 */
3832
	if (unlikely(policy == p->policy)) {
3833
		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3834 3835 3836
			goto change;
		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
			goto change;
3837
		if (dl_policy(policy) && dl_param_changed(p, attr))
3838
			goto change;
3839

3840
		p->sched_reset_on_fork = reset_on_fork;
3841
		task_rq_unlock(rq, p, &flags);
3842 3843
		return 0;
	}
3844
change:
3845

3846
	if (user) {
3847
#ifdef CONFIG_RT_GROUP_SCHED
3848 3849 3850 3851 3852
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3853 3854
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
3855
			task_rq_unlock(rq, p, &flags);
3856 3857 3858
			return -EPERM;
		}
#endif
3859 3860 3861 3862 3863 3864 3865 3866 3867
#ifdef CONFIG_SMP
		if (dl_bandwidth_enabled() && dl_policy(policy)) {
			cpumask_t *span = rq->rd->span;

			/*
			 * Don't allow tasks with an affinity mask smaller than
			 * the entire root_domain to become SCHED_DEADLINE. We
			 * will also fail if there's no bandwidth available.
			 */
3868 3869
			if (!cpumask_subset(span, &p->cpus_allowed) ||
			    rq->rd->dl_bw.bw == 0) {
3870 3871 3872 3873 3874 3875
				task_rq_unlock(rq, p, &flags);
				return -EPERM;
			}
		}
#endif
	}
3876

L
Linus Torvalds 已提交
3877 3878 3879
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
3880
		task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3881 3882
		goto recheck;
	}
3883 3884 3885 3886 3887 3888

	/*
	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
	 * is available.
	 */
3889
	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3890 3891 3892 3893
		task_rq_unlock(rq, p, &flags);
		return -EBUSY;
	}

3894 3895 3896
	p->sched_reset_on_fork = reset_on_fork;
	oldprio = p->prio;

3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910
	if (pi) {
		/*
		 * Take priority boosted tasks into account. If the new
		 * effective priority is unchanged, we just store the new
		 * normal parameters and do not touch the scheduler class and
		 * the runqueue. This will be done when the task deboost
		 * itself.
		 */
		new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
		if (new_effective_prio == oldprio) {
			__setscheduler_params(p, attr);
			task_rq_unlock(rq, p, &flags);
			return 0;
		}
3911 3912
	}

3913
	queued = task_on_rq_queued(p);
3914
	running = task_current(rq, p);
3915
	if (queued)
3916
		dequeue_task(rq, p, 0);
3917
	if (running)
3918
		put_prev_task(rq, p);
3919

3920
	prev_class = p->sched_class;
3921
	__setscheduler(rq, p, attr, pi);
3922

3923 3924
	if (running)
		p->sched_class->set_curr_task(rq);
3925
	if (queued) {
3926 3927 3928 3929 3930 3931
		/*
		 * We enqueue to tail when the priority of a task is
		 * increased (user space view).
		 */
		enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
	}
3932

P
Peter Zijlstra 已提交
3933
	check_class_changed(rq, p, prev_class, oldprio);
3934
	preempt_disable(); /* avoid rq from going away on us */
3935
	task_rq_unlock(rq, p, &flags);
3936

3937 3938
	if (pi)
		rt_mutex_adjust_pi(p);
3939

3940 3941 3942 3943 3944
	/*
	 * Run balance callbacks after we've adjusted the PI chain.
	 */
	balance_callback(rq);
	preempt_enable();
3945

L
Linus Torvalds 已提交
3946 3947
	return 0;
}
3948

3949 3950 3951 3952 3953 3954 3955 3956 3957
static int _sched_setscheduler(struct task_struct *p, int policy,
			       const struct sched_param *param, bool check)
{
	struct sched_attr attr = {
		.sched_policy   = policy,
		.sched_priority = param->sched_priority,
		.sched_nice	= PRIO_TO_NICE(p->static_prio),
	};

3958 3959
	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
3960 3961 3962 3963 3964
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
		policy &= ~SCHED_RESET_ON_FORK;
		attr.sched_policy = policy;
	}

3965
	return __sched_setscheduler(p, &attr, check, true);
3966
}
3967 3968 3969 3970 3971 3972
/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
3973 3974
 * Return: 0 on success. An error code otherwise.
 *
3975 3976 3977
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
3978
		       const struct sched_param *param)
3979
{
3980
	return _sched_setscheduler(p, policy, param, true);
3981
}
L
Linus Torvalds 已提交
3982 3983
EXPORT_SYMBOL_GPL(sched_setscheduler);

3984 3985
int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
{
3986
	return __sched_setscheduler(p, attr, true, true);
3987 3988 3989
}
EXPORT_SYMBOL_GPL(sched_setattr);

3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
4000 4001
 *
 * Return: 0 on success. An error code otherwise.
4002 4003
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4004
			       const struct sched_param *param)
4005
{
4006
	return _sched_setscheduler(p, policy, param, false);
4007 4008
}

I
Ingo Molnar 已提交
4009 4010
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4011 4012 4013
{
	struct sched_param lparam;
	struct task_struct *p;
4014
	int retval;
L
Linus Torvalds 已提交
4015 4016 4017 4018 4019

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4020 4021 4022

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4023
	p = find_process_by_pid(pid);
4024 4025 4026
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4027

L
Linus Torvalds 已提交
4028 4029 4030
	return retval;
}

4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092
/*
 * Mimics kernel/events/core.c perf_copy_attr().
 */
static int sched_copy_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr)
{
	u32 size;
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = SCHED_ATTR_SIZE_VER0;

	if (size < SCHED_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
	 */
	if (size > sizeof(*attr)) {
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;

		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;

		for (; addr < end; addr++) {
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
		size = sizeof(*attr);
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * XXX: do we want to be lenient like existing syscalls; or do we want
	 * to be strict and return an error on out-of-bounds values?
	 */
4093
	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4094

4095
	return 0;
4096 4097 4098

err_size:
	put_user(sizeof(*attr), &uattr->size);
4099
	return -E2BIG;
4100 4101
}

L
Linus Torvalds 已提交
4102 4103 4104 4105 4106
/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4107 4108
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4109
 */
4110 4111
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
4112
{
4113 4114 4115 4116
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4117 4118 4119 4120 4121 4122 4123
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
4124 4125
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4126
 */
4127
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4128
{
4129
	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
L
Linus Torvalds 已提交
4130 4131
}

4132 4133 4134
/**
 * sys_sched_setattr - same as above, but with extended sched_attr
 * @pid: the pid in question.
J
Juri Lelli 已提交
4135
 * @uattr: structure containing the extended parameters.
4136
 * @flags: for future extension.
4137
 */
4138 4139
SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
			       unsigned int, flags)
4140 4141 4142 4143 4144
{
	struct sched_attr attr;
	struct task_struct *p;
	int retval;

4145
	if (!uattr || pid < 0 || flags)
4146 4147
		return -EINVAL;

4148 4149 4150
	retval = sched_copy_attr(uattr, &attr);
	if (retval)
		return retval;
4151

4152
	if ((int)attr.sched_policy < 0)
4153
		return -EINVAL;
4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164

	rcu_read_lock();
	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (p != NULL)
		retval = sched_setattr(p, &attr);
	rcu_read_unlock();

	return retval;
}

L
Linus Torvalds 已提交
4165 4166 4167
/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
4168 4169 4170
 *
 * Return: On success, the policy of the thread. Otherwise, a negative error
 * code.
L
Linus Torvalds 已提交
4171
 */
4172
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4173
{
4174
	struct task_struct *p;
4175
	int retval;
L
Linus Torvalds 已提交
4176 4177

	if (pid < 0)
4178
		return -EINVAL;
L
Linus Torvalds 已提交
4179 4180

	retval = -ESRCH;
4181
	rcu_read_lock();
L
Linus Torvalds 已提交
4182 4183 4184 4185
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4186 4187
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4188
	}
4189
	rcu_read_unlock();
L
Linus Torvalds 已提交
4190 4191 4192 4193
	return retval;
}

/**
4194
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4195 4196
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
4197 4198 4199
 *
 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
 * code.
L
Linus Torvalds 已提交
4200
 */
4201
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4202
{
4203
	struct sched_param lp = { .sched_priority = 0 };
4204
	struct task_struct *p;
4205
	int retval;
L
Linus Torvalds 已提交
4206 4207

	if (!param || pid < 0)
4208
		return -EINVAL;
L
Linus Torvalds 已提交
4209

4210
	rcu_read_lock();
L
Linus Torvalds 已提交
4211 4212 4213 4214 4215 4216 4217 4218 4219
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4220 4221
	if (task_has_rt_policy(p))
		lp.sched_priority = p->rt_priority;
4222
	rcu_read_unlock();
L
Linus Torvalds 已提交
4223 4224 4225 4226 4227 4228 4229 4230 4231

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4232
	rcu_read_unlock();
L
Linus Torvalds 已提交
4233 4234 4235
	return retval;
}

4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258
static int sched_read_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr,
			   unsigned int usize)
{
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, usize))
		return -EFAULT;

	/*
	 * If we're handed a smaller struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. old
	 * user-space does not get uncomplete information.
	 */
	if (usize < sizeof(*attr)) {
		unsigned char *addr;
		unsigned char *end;

		addr = (void *)attr + usize;
		end  = (void *)attr + sizeof(*attr);

		for (; addr < end; addr++) {
			if (*addr)
4259
				return -EFBIG;
4260 4261 4262 4263 4264
		}

		attr->size = usize;
	}

4265
	ret = copy_to_user(uattr, attr, attr->size);
4266 4267 4268
	if (ret)
		return -EFAULT;

4269
	return 0;
4270 4271 4272
}

/**
4273
 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4274
 * @pid: the pid in question.
J
Juri Lelli 已提交
4275
 * @uattr: structure containing the extended parameters.
4276
 * @size: sizeof(attr) for fwd/bwd comp.
4277
 * @flags: for future extension.
4278
 */
4279 4280
SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
		unsigned int, size, unsigned int, flags)
4281 4282 4283 4284 4285 4286 4287 4288
{
	struct sched_attr attr = {
		.size = sizeof(struct sched_attr),
	};
	struct task_struct *p;
	int retval;

	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4289
	    size < SCHED_ATTR_SIZE_VER0 || flags)
4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302
		return -EINVAL;

	rcu_read_lock();
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	attr.sched_policy = p->policy;
4303 4304
	if (p->sched_reset_on_fork)
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4305 4306 4307
	if (task_has_dl_policy(p))
		__getparam_dl(p, &attr);
	else if (task_has_rt_policy(p))
4308 4309
		attr.sched_priority = p->rt_priority;
	else
4310
		attr.sched_nice = task_nice(p);
4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321

	rcu_read_unlock();

	retval = sched_read_attr(uattr, &attr, size);
	return retval;

out_unlock:
	rcu_read_unlock();
	return retval;
}

4322
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4323
{
4324
	cpumask_var_t cpus_allowed, new_mask;
4325 4326
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4327

4328
	rcu_read_lock();
L
Linus Torvalds 已提交
4329 4330 4331

	p = find_process_by_pid(pid);
	if (!p) {
4332
		rcu_read_unlock();
L
Linus Torvalds 已提交
4333 4334 4335
		return -ESRCH;
	}

4336
	/* Prevent p going away */
L
Linus Torvalds 已提交
4337
	get_task_struct(p);
4338
	rcu_read_unlock();
L
Linus Torvalds 已提交
4339

4340 4341 4342 4343
	if (p->flags & PF_NO_SETAFFINITY) {
		retval = -EINVAL;
		goto out_put_task;
	}
4344 4345 4346 4347 4348 4349 4350 4351
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4352
	retval = -EPERM;
E
Eric W. Biederman 已提交
4353 4354 4355 4356
	if (!check_same_owner(p)) {
		rcu_read_lock();
		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
			rcu_read_unlock();
4357
			goto out_free_new_mask;
E
Eric W. Biederman 已提交
4358 4359 4360
		}
		rcu_read_unlock();
	}
L
Linus Torvalds 已提交
4361

4362
	retval = security_task_setscheduler(p);
4363
	if (retval)
4364
		goto out_free_new_mask;
4365

4366 4367 4368 4369

	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);

4370 4371 4372 4373 4374 4375 4376
	/*
	 * Since bandwidth control happens on root_domain basis,
	 * if admission test is enabled, we only admit -deadline
	 * tasks allowed to run on all the CPUs in the task's
	 * root_domain.
	 */
#ifdef CONFIG_SMP
4377 4378 4379
	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
		rcu_read_lock();
		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4380
			retval = -EBUSY;
4381
			rcu_read_unlock();
4382
			goto out_free_new_mask;
4383
		}
4384
		rcu_read_unlock();
4385 4386
	}
#endif
P
Peter Zijlstra 已提交
4387
again:
4388
	retval = __set_cpus_allowed_ptr(p, new_mask, true);
L
Linus Torvalds 已提交
4389

P
Paul Menage 已提交
4390
	if (!retval) {
4391 4392
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4393 4394 4395 4396 4397
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4398
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4399 4400 4401
			goto again;
		}
	}
4402
out_free_new_mask:
4403 4404 4405 4406
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4407 4408 4409 4410 4411
	put_task_struct(p);
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4412
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4413
{
4414 4415 4416 4417 4418
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4419 4420 4421 4422 4423 4424 4425 4426
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
4427 4428
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4429
 */
4430 4431
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4432
{
4433
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4434 4435
	int retval;

4436 4437
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4438

4439 4440 4441 4442 4443
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4444 4445
}

4446
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4447
{
4448
	struct task_struct *p;
4449
	unsigned long flags;
L
Linus Torvalds 已提交
4450 4451
	int retval;

4452
	rcu_read_lock();
L
Linus Torvalds 已提交
4453 4454 4455 4456 4457 4458

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4459 4460 4461 4462
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4463
	raw_spin_lock_irqsave(&p->pi_lock, flags);
4464
	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4465
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4466 4467

out_unlock:
4468
	rcu_read_unlock();
L
Linus Torvalds 已提交
4469

4470
	return retval;
L
Linus Torvalds 已提交
4471 4472 4473 4474 4475 4476 4477
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4478 4479
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4480
 */
4481 4482
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4483 4484
{
	int ret;
4485
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4486

A
Anton Blanchard 已提交
4487
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4488 4489
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4490 4491
		return -EINVAL;

4492 4493
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4494

4495 4496
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4497
		size_t retlen = min_t(size_t, len, cpumask_size());
4498 4499

		if (copy_to_user(user_mask_ptr, mask, retlen))
4500 4501
			ret = -EFAULT;
		else
4502
			ret = retlen;
4503 4504
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4505

4506
	return ret;
L
Linus Torvalds 已提交
4507 4508 4509 4510 4511
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4512 4513
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
4514 4515
 *
 * Return: 0.
L
Linus Torvalds 已提交
4516
 */
4517
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4518
{
4519
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4520

4521
	schedstat_inc(rq, yld_count);
4522
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4523 4524 4525 4526 4527 4528

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4529
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4530
	do_raw_spin_unlock(&rq->lock);
4531
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
4532 4533 4534 4535 4536 4537

	schedule();

	return 0;
}

4538
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4539
{
4540
	if (should_resched(0)) {
4541
		preempt_schedule_common();
L
Linus Torvalds 已提交
4542 4543 4544 4545
		return 1;
	}
	return 0;
}
4546
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4547 4548

/*
4549
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4550 4551
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4552
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4553 4554 4555
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4556
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4557
{
4558
	int resched = should_resched(PREEMPT_LOCK_OFFSET);
J
Jan Kara 已提交
4559 4560
	int ret = 0;

4561 4562
	lockdep_assert_held(lock);

4563
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4564
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4565
		if (resched)
4566
			preempt_schedule_common();
N
Nick Piggin 已提交
4567 4568
		else
			cpu_relax();
J
Jan Kara 已提交
4569
		ret = 1;
L
Linus Torvalds 已提交
4570 4571
		spin_lock(lock);
	}
J
Jan Kara 已提交
4572
	return ret;
L
Linus Torvalds 已提交
4573
}
4574
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4575

4576
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4577 4578 4579
{
	BUG_ON(!in_softirq());

4580
	if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4581
		local_bh_enable();
4582
		preempt_schedule_common();
L
Linus Torvalds 已提交
4583 4584 4585 4586 4587
		local_bh_disable();
		return 1;
	}
	return 0;
}
4588
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4589 4590 4591 4592

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
 * 	yield();
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
4611 4612 4613 4614 4615 4616 4617 4618
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

4619 4620 4621 4622
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
4623 4624
 * @p: target task
 * @preempt: whether task preemption is allowed or not
4625 4626 4627 4628
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
4629
 * Return:
4630 4631 4632
 *	true (>0) if we indeed boosted the target task.
 *	false (0) if we failed to boost the target.
 *	-ESRCH if there's no task to yield to.
4633
 */
4634
int __sched yield_to(struct task_struct *p, bool preempt)
4635 4636 4637 4638
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
4639
	int yielded = 0;
4640 4641 4642 4643 4644 4645

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
4646 4647 4648 4649 4650 4651 4652 4653 4654
	/*
	 * If we're the only runnable task on the rq and target rq also
	 * has only one task, there's absolutely no point in yielding.
	 */
	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
		yielded = -ESRCH;
		goto out_irq;
	}

4655
	double_rq_lock(rq, p_rq);
4656
	if (task_rq(p) != p_rq) {
4657 4658 4659 4660 4661
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
4662
		goto out_unlock;
4663 4664

	if (curr->sched_class != p->sched_class)
4665
		goto out_unlock;
4666 4667

	if (task_running(p_rq, p) || p->state)
4668
		goto out_unlock;
4669 4670

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4671
	if (yielded) {
4672
		schedstat_inc(rq, yld_count);
4673 4674 4675 4676 4677
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
4678
			resched_curr(p_rq);
4679
	}
4680

4681
out_unlock:
4682
	double_rq_unlock(rq, p_rq);
4683
out_irq:
4684 4685
	local_irq_restore(flags);

4686
	if (yielded > 0)
4687 4688 4689 4690 4691 4692
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
4693
/*
I
Ingo Molnar 已提交
4694
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4695 4696 4697 4698
 * that process accounting knows that this is a task in IO wait state.
 */
long __sched io_schedule_timeout(long timeout)
{
4699 4700
	int old_iowait = current->in_iowait;
	struct rq *rq;
L
Linus Torvalds 已提交
4701 4702
	long ret;

4703
	current->in_iowait = 1;
4704
	blk_schedule_flush_plug(current);
4705

4706
	delayacct_blkio_start();
4707
	rq = raw_rq();
L
Linus Torvalds 已提交
4708 4709
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
4710
	current->in_iowait = old_iowait;
L
Linus Torvalds 已提交
4711
	atomic_dec(&rq->nr_iowait);
4712
	delayacct_blkio_end();
4713

L
Linus Torvalds 已提交
4714 4715
	return ret;
}
4716
EXPORT_SYMBOL(io_schedule_timeout);
L
Linus Torvalds 已提交
4717 4718 4719 4720 4721

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
4722 4723 4724
 * Return: On success, this syscall returns the maximum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
4725
 */
4726
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
4727 4728 4729 4730 4731 4732 4733 4734
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
4735
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
4736
	case SCHED_NORMAL:
4737
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4738
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4739 4740 4741 4742 4743 4744 4745 4746 4747 4748
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
4749 4750 4751
 * Return: On success, this syscall returns the minimum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
4752
 */
4753
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
4754 4755 4756 4757 4758 4759 4760 4761
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
4762
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
4763
	case SCHED_NORMAL:
4764
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4765
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
4778 4779 4780
 *
 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
 * an error code.
L
Linus Torvalds 已提交
4781
 */
4782
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4783
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
4784
{
4785
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4786
	unsigned int time_slice;
4787 4788
	unsigned long flags;
	struct rq *rq;
4789
	int retval;
L
Linus Torvalds 已提交
4790 4791 4792
	struct timespec t;

	if (pid < 0)
4793
		return -EINVAL;
L
Linus Torvalds 已提交
4794 4795

	retval = -ESRCH;
4796
	rcu_read_lock();
L
Linus Torvalds 已提交
4797 4798 4799 4800 4801 4802 4803 4804
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4805
	rq = task_rq_lock(p, &flags);
4806 4807 4808
	time_slice = 0;
	if (p->sched_class->get_rr_interval)
		time_slice = p->sched_class->get_rr_interval(rq, p);
4809
	task_rq_unlock(rq, p, &flags);
D
Dmitry Adamushko 已提交
4810

4811
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
4812
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4813 4814
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4815

L
Linus Torvalds 已提交
4816
out_unlock:
4817
	rcu_read_unlock();
L
Linus Torvalds 已提交
4818 4819 4820
	return retval;
}

4821
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4822

4823
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4824 4825
{
	unsigned long free = 0;
4826
	int ppid;
4827
	unsigned long state = p->state;
L
Linus Torvalds 已提交
4828

4829 4830
	if (state)
		state = __ffs(state) + 1;
4831
	printk(KERN_INFO "%-15.15s %c", p->comm,
4832
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4833
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4834
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4835
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4836
	else
P
Peter Zijlstra 已提交
4837
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4838 4839
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4840
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4841
	else
P
Peter Zijlstra 已提交
4842
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4843 4844
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
4845
	free = stack_not_used(p);
L
Linus Torvalds 已提交
4846
#endif
4847
	ppid = 0;
4848
	rcu_read_lock();
4849 4850
	if (pid_alive(p))
		ppid = task_pid_nr(rcu_dereference(p->real_parent));
4851
	rcu_read_unlock();
P
Peter Zijlstra 已提交
4852
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4853
		task_pid_nr(p), ppid,
4854
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
4855

4856
	print_worker_info(KERN_INFO, p);
4857
	show_stack(p, NULL);
L
Linus Torvalds 已提交
4858 4859
}

I
Ingo Molnar 已提交
4860
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4861
{
4862
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4863

4864
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
4865 4866
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4867
#else
P
Peter Zijlstra 已提交
4868 4869
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4870
#endif
4871
	rcu_read_lock();
4872
	for_each_process_thread(g, p) {
L
Linus Torvalds 已提交
4873 4874
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
4875
		 * console might take a lot of time:
L
Linus Torvalds 已提交
4876 4877
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4878
		if (!state_filter || (p->state & state_filter))
4879
			sched_show_task(p);
4880
	}
L
Linus Torvalds 已提交
4881

4882 4883
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4884 4885 4886
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
4887
	rcu_read_unlock();
I
Ingo Molnar 已提交
4888 4889 4890
	/*
	 * Only show locks if all tasks are dumped:
	 */
4891
	if (!state_filter)
I
Ingo Molnar 已提交
4892
		debug_show_all_locks();
L
Linus Torvalds 已提交
4893 4894
}

4895
void init_idle_bootup_task(struct task_struct *idle)
I
Ingo Molnar 已提交
4896
{
I
Ingo Molnar 已提交
4897
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4898 4899
}

4900 4901 4902 4903 4904 4905 4906 4907
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4908
void init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4909
{
4910
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4911 4912
	unsigned long flags;

4913 4914
	raw_spin_lock_irqsave(&idle->pi_lock, flags);
	raw_spin_lock(&rq->lock);
4915

4916
	__sched_fork(0, idle);
4917
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
4918 4919
	idle->se.exec_start = sched_clock();

4920
	do_set_cpus_allowed(idle, cpumask_of(cpu));
4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
4932
	__set_task_cpu(idle, cpu);
4933
	rcu_read_unlock();
L
Linus Torvalds 已提交
4934 4935

	rq->curr = rq->idle = idle;
4936
	idle->on_rq = TASK_ON_RQ_QUEUED;
P
Peter Zijlstra 已提交
4937 4938
#if defined(CONFIG_SMP)
	idle->on_cpu = 1;
4939
#endif
4940 4941
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
L
Linus Torvalds 已提交
4942 4943

	/* Set the preempt count _outside_ the spinlocks! */
4944
	init_idle_preempt_count(idle, cpu);
4945

I
Ingo Molnar 已提交
4946 4947 4948 4949
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
4950
	ftrace_graph_init_idle_task(idle, cpu);
4951
	vtime_init_idle(idle, cpu);
4952 4953 4954
#if defined(CONFIG_SMP)
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
4955 4956
}

4957 4958 4959 4960 4961 4962 4963
int cpuset_cpumask_can_shrink(const struct cpumask *cur,
			      const struct cpumask *trial)
{
	int ret = 1, trial_cpus;
	struct dl_bw *cur_dl_b;
	unsigned long flags;

4964 4965 4966
	if (!cpumask_weight(cur))
		return ret;

4967
	rcu_read_lock_sched();
4968 4969 4970 4971 4972 4973 4974 4975
	cur_dl_b = dl_bw_of(cpumask_any(cur));
	trial_cpus = cpumask_weight(trial);

	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
	if (cur_dl_b->bw != -1 &&
	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
		ret = 0;
	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
4976
	rcu_read_unlock_sched();
4977 4978 4979 4980

	return ret;
}

4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004
int task_can_attach(struct task_struct *p,
		    const struct cpumask *cs_cpus_allowed)
{
	int ret = 0;

	/*
	 * Kthreads which disallow setaffinity shouldn't be moved
	 * to a new cpuset; we don't want to change their cpu
	 * affinity and isolating such threads by their set of
	 * allowed nodes is unnecessary.  Thus, cpusets are not
	 * applicable for such threads.  This prevents checking for
	 * success of set_cpus_allowed_ptr() on all attached tasks
	 * before cpus_allowed may be changed.
	 */
	if (p->flags & PF_NO_SETAFFINITY) {
		ret = -EINVAL;
		goto out;
	}

#ifdef CONFIG_SMP
	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
					      cs_cpus_allowed)) {
		unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
							cs_cpus_allowed);
5005
		struct dl_bw *dl_b;
5006 5007 5008 5009
		bool overflow;
		int cpus;
		unsigned long flags;

5010 5011
		rcu_read_lock_sched();
		dl_b = dl_bw_of(dest_cpu);
5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026
		raw_spin_lock_irqsave(&dl_b->lock, flags);
		cpus = dl_bw_cpus(dest_cpu);
		overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
		if (overflow)
			ret = -EBUSY;
		else {
			/*
			 * We reserve space for this task in the destination
			 * root_domain, as we can't fail after this point.
			 * We will free resources in the source root_domain
			 * later on (see set_cpus_allowed_dl()).
			 */
			__dl_add(dl_b, p->dl.dl_bw);
		}
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5027
		rcu_read_unlock_sched();
5028 5029 5030 5031 5032 5033 5034

	}
#endif
out:
	return ret;
}

L
Linus Torvalds 已提交
5035 5036
#ifdef CONFIG_SMP

5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051
#ifdef CONFIG_NUMA_BALANCING
/* Migrate current task p to target_cpu */
int migrate_task_to(struct task_struct *p, int target_cpu)
{
	struct migration_arg arg = { p, target_cpu };
	int curr_cpu = task_cpu(p);

	if (curr_cpu == target_cpu)
		return 0;

	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
		return -EINVAL;

	/* TODO: This is not properly updating schedstats */

5052
	trace_sched_move_numa(p, curr_cpu, target_cpu);
5053 5054
	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
}
5055 5056 5057 5058 5059 5060 5061 5062 5063

/*
 * Requeue a task on a given node and accurately track the number of NUMA
 * tasks on the runqueues
 */
void sched_setnuma(struct task_struct *p, int nid)
{
	struct rq *rq;
	unsigned long flags;
5064
	bool queued, running;
5065 5066

	rq = task_rq_lock(p, &flags);
5067
	queued = task_on_rq_queued(p);
5068 5069
	running = task_current(rq, p);

5070
	if (queued)
5071 5072
		dequeue_task(rq, p, 0);
	if (running)
5073
		put_prev_task(rq, p);
5074 5075 5076 5077 5078

	p->numa_preferred_nid = nid;

	if (running)
		p->sched_class->set_curr_task(rq);
5079
	if (queued)
5080 5081 5082
		enqueue_task(rq, p, 0);
	task_rq_unlock(rq, p, &flags);
}
P
Peter Zijlstra 已提交
5083
#endif /* CONFIG_NUMA_BALANCING */
5084

L
Linus Torvalds 已提交
5085
#ifdef CONFIG_HOTPLUG_CPU
5086
/*
5087 5088
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
5089
 */
5090
void idle_task_exit(void)
L
Linus Torvalds 已提交
5091
{
5092
	struct mm_struct *mm = current->active_mm;
5093

5094
	BUG_ON(cpu_online(smp_processor_id()));
5095

5096
	if (mm != &init_mm) {
5097
		switch_mm(mm, &init_mm, current);
5098 5099
		finish_arch_post_lock_switch();
	}
5100
	mmdrop(mm);
L
Linus Torvalds 已提交
5101 5102 5103
}

/*
5104 5105 5106 5107 5108
 * Since this CPU is going 'away' for a while, fold any nr_active delta
 * we might have. Assumes we're called after migrate_tasks() so that the
 * nr_active count is stable.
 *
 * Also see the comment "Global load-average calculations".
L
Linus Torvalds 已提交
5109
 */
5110
static void calc_load_migrate(struct rq *rq)
L
Linus Torvalds 已提交
5111
{
5112 5113 5114
	long delta = calc_load_fold_active(rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
5115 5116
}

5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132
static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
{
}

static const struct sched_class fake_sched_class = {
	.put_prev_task = put_prev_task_fake,
};

static struct task_struct fake_task = {
	/*
	 * Avoid pull_{rt,dl}_task()
	 */
	.prio = MAX_PRIO + 1,
	.sched_class = &fake_sched_class,
};

5133
/*
5134 5135 5136 5137 5138 5139
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
5140
 */
5141
static void migrate_tasks(struct rq *dead_rq)
L
Linus Torvalds 已提交
5142
{
5143
	struct rq *rq = dead_rq;
5144 5145
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
5146 5147

	/*
5148 5149 5150 5151 5152 5153 5154
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
5155
	 */
5156
	rq->stop = NULL;
5157

5158 5159 5160 5161 5162 5163 5164
	/*
	 * put_prev_task() and pick_next_task() sched
	 * class method both need to have an up-to-date
	 * value of rq->clock[_task]
	 */
	update_rq_clock(rq);

5165
	for (;;) {
5166 5167 5168 5169 5170
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
5171
			break;
5172

5173
		/*
W
Wanpeng Li 已提交
5174
		 * pick_next_task assumes pinned rq->lock.
5175 5176
		 */
		lockdep_pin_lock(&rq->lock);
5177
		next = pick_next_task(rq, &fake_task);
5178
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
5179
		next->sched_class->put_prev_task(rq, next);
5180

W
Wanpeng Li 已提交
5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204
		/*
		 * Rules for changing task_struct::cpus_allowed are holding
		 * both pi_lock and rq->lock, such that holding either
		 * stabilizes the mask.
		 *
		 * Drop rq->lock is not quite as disastrous as it usually is
		 * because !cpu_active at this point, which means load-balance
		 * will not interfere. Also, stop-machine.
		 */
		lockdep_unpin_lock(&rq->lock);
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&next->pi_lock);
		raw_spin_lock(&rq->lock);

		/*
		 * Since we're inside stop-machine, _nothing_ should have
		 * changed the task, WARN if weird stuff happened, because in
		 * that case the above rq->lock drop is a fail too.
		 */
		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
			raw_spin_unlock(&next->pi_lock);
			continue;
		}

5205
		/* Find suitable destination for @next, with force if needed. */
5206
		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5207

5208 5209 5210 5211 5212 5213
		rq = __migrate_task(rq, next, dest_cpu);
		if (rq != dead_rq) {
			raw_spin_unlock(&rq->lock);
			rq = dead_rq;
			raw_spin_lock(&rq->lock);
		}
W
Wanpeng Li 已提交
5214
		raw_spin_unlock(&next->pi_lock);
L
Linus Torvalds 已提交
5215
	}
5216

5217
	rq->stop = stop;
5218
}
L
Linus Torvalds 已提交
5219 5220
#endif /* CONFIG_HOTPLUG_CPU */

5221 5222 5223
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5224 5225
	{
		.procname	= "sched_domain",
5226
		.mode		= 0555,
5227
	},
5228
	{}
5229 5230 5231
};

static struct ctl_table sd_ctl_root[] = {
5232 5233
	{
		.procname	= "kernel",
5234
		.mode		= 0555,
5235 5236
		.child		= sd_ctl_dir,
	},
5237
	{}
5238 5239 5240 5241 5242
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5243
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5244 5245 5246 5247

	return entry;
}

5248 5249
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5250
	struct ctl_table *entry;
5251

5252 5253 5254
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5255
	 * will always be set. In the lowest directory the names are
5256 5257 5258
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5259 5260
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5261 5262 5263
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5264 5265 5266 5267 5268

	kfree(*tablep);
	*tablep = NULL;
}

5269
static int min_load_idx = 0;
5270
static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5271

5272
static void
5273
set_table_entry(struct ctl_table *entry,
5274
		const char *procname, void *data, int maxlen,
5275 5276
		umode_t mode, proc_handler *proc_handler,
		bool load_idx)
5277 5278 5279 5280 5281 5282
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
5283 5284 5285 5286 5287

	if (load_idx) {
		entry->extra1 = &min_load_idx;
		entry->extra2 = &max_load_idx;
	}
5288 5289 5290 5291 5292
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5293
	struct ctl_table *table = sd_alloc_ctl_entry(14);
5294

5295 5296 5297
	if (table == NULL)
		return NULL;

5298
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5299
		sizeof(long), 0644, proc_doulongvec_minmax, false);
5300
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5301
		sizeof(long), 0644, proc_doulongvec_minmax, false);
5302
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5303
		sizeof(int), 0644, proc_dointvec_minmax, true);
5304
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5305
		sizeof(int), 0644, proc_dointvec_minmax, true);
5306
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5307
		sizeof(int), 0644, proc_dointvec_minmax, true);
5308
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5309
		sizeof(int), 0644, proc_dointvec_minmax, true);
5310
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5311
		sizeof(int), 0644, proc_dointvec_minmax, true);
5312
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5313
		sizeof(int), 0644, proc_dointvec_minmax, false);
5314
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5315
		sizeof(int), 0644, proc_dointvec_minmax, false);
5316
	set_table_entry(&table[9], "cache_nice_tries",
5317
		&sd->cache_nice_tries,
5318
		sizeof(int), 0644, proc_dointvec_minmax, false);
5319
	set_table_entry(&table[10], "flags", &sd->flags,
5320
		sizeof(int), 0644, proc_dointvec_minmax, false);
5321 5322 5323 5324
	set_table_entry(&table[11], "max_newidle_lb_cost",
		&sd->max_newidle_lb_cost,
		sizeof(long), 0644, proc_doulongvec_minmax, false);
	set_table_entry(&table[12], "name", sd->name,
5325
		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5326
	/* &table[13] is terminator */
5327 5328 5329 5330

	return table;
}

5331
static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5332 5333 5334 5335 5336 5337 5338 5339 5340
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5341 5342
	if (table == NULL)
		return NULL;
5343 5344 5345 5346 5347

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5348
		entry->mode = 0555;
5349 5350 5351 5352 5353 5354 5355 5356
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5357
static void register_sched_domain_sysctl(void)
5358
{
5359
	int i, cpu_num = num_possible_cpus();
5360 5361 5362
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5363 5364 5365
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5366 5367 5368
	if (entry == NULL)
		return;

5369
	for_each_possible_cpu(i) {
5370 5371
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5372
		entry->mode = 0555;
5373
		entry->child = sd_alloc_ctl_cpu_table(i);
5374
		entry++;
5375
	}
5376 5377

	WARN_ON(sd_sysctl_header);
5378 5379
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5380

5381
/* may be called multiple times per register */
5382 5383
static void unregister_sched_domain_sysctl(void)
{
5384
	unregister_sysctl_table(sd_sysctl_header);
5385
	sd_sysctl_header = NULL;
5386 5387
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5388
}
5389
#else
5390 5391 5392 5393
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5394 5395
{
}
P
Peter Zijlstra 已提交
5396
#endif /* CONFIG_SCHED_DEBUG && CONFIG_SYSCTL */
5397

5398 5399 5400 5401 5402
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5403
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5423
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5424 5425 5426 5427
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5428 5429 5430 5431
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5432
static int
5433
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5434
{
5435
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5436
	unsigned long flags;
5437
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5438

5439
	switch (action & ~CPU_TASKS_FROZEN) {
5440

L
Linus Torvalds 已提交
5441
	case CPU_UP_PREPARE:
5442
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5443
		break;
5444

L
Linus Torvalds 已提交
5445
	case CPU_ONLINE:
5446
		/* Update our root-domain */
5447
		raw_spin_lock_irqsave(&rq->lock, flags);
5448
		if (rq->rd) {
5449
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5450 5451

			set_rq_online(rq);
5452
		}
5453
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5454
		break;
5455

L
Linus Torvalds 已提交
5456
#ifdef CONFIG_HOTPLUG_CPU
5457
	case CPU_DYING:
5458
		sched_ttwu_pending();
G
Gregory Haskins 已提交
5459
		/* Update our root-domain */
5460
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5461
		if (rq->rd) {
5462
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5463
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5464
		}
5465
		migrate_tasks(rq);
5466
		BUG_ON(rq->nr_running != 1); /* the migration thread */
5467
		raw_spin_unlock_irqrestore(&rq->lock, flags);
5468
		break;
5469

5470
	case CPU_DEAD:
5471
		calc_load_migrate(rq);
G
Gregory Haskins 已提交
5472
		break;
L
Linus Torvalds 已提交
5473 5474
#endif
	}
5475 5476 5477

	update_max_interval();

L
Linus Torvalds 已提交
5478 5479 5480
	return NOTIFY_OK;
}

5481 5482 5483
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5484
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5485
 */
5486
static struct notifier_block migration_notifier = {
L
Linus Torvalds 已提交
5487
	.notifier_call = migration_call,
5488
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
5489 5490
};

5491
static void set_cpu_rq_start_time(void)
5492 5493 5494 5495 5496 5497
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
	rq->age_stamp = sched_clock_cpu(cpu);
}

5498
static int sched_cpu_active(struct notifier_block *nfb,
5499 5500 5501
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
5502 5503 5504
	case CPU_STARTING:
		set_cpu_rq_start_time();
		return NOTIFY_OK;
5505 5506 5507 5508 5509 5510 5511 5512
	case CPU_ONLINE:
		/*
		 * At this point a starting CPU has marked itself as online via
		 * set_cpu_online(). But it might not yet have marked itself
		 * as active, which is essential from here on.
		 *
		 * Thus, fall-through and help the starting CPU along.
		 */
5513 5514 5515 5516 5517 5518 5519 5520
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

5521
static int sched_cpu_inactive(struct notifier_block *nfb,
5522 5523 5524 5525
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
5526
		set_cpu_active((long)hcpu, false);
5527
		return NOTIFY_OK;
5528 5529
	default:
		return NOTIFY_DONE;
5530 5531 5532
	}
}

5533
static int __init migration_init(void)
L
Linus Torvalds 已提交
5534 5535
{
	void *cpu = (void *)(long)smp_processor_id();
5536
	int err;
5537

5538
	/* Initialize migration for the boot CPU */
5539 5540
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5541 5542
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5543

5544 5545 5546 5547
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

5548
	return 0;
L
Linus Torvalds 已提交
5549
}
5550
early_initcall(migration_init);
5551

5552 5553
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

5554
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5555

5556
static __read_mostly int sched_debug_enabled;
5557

5558
static int __init sched_debug_setup(char *str)
5559
{
5560
	sched_debug_enabled = 1;
5561 5562 5563

	return 0;
}
5564 5565 5566 5567 5568 5569
early_param("sched_debug", sched_debug_setup);

static inline bool sched_debug(void)
{
	return sched_debug_enabled;
}
5570

5571
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5572
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5573
{
I
Ingo Molnar 已提交
5574
	struct sched_group *group = sd->groups;
L
Linus Torvalds 已提交
5575

5576
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5577 5578 5579 5580

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5581
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5582
		if (sd->parent)
P
Peter Zijlstra 已提交
5583 5584
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5585
		return -1;
N
Nick Piggin 已提交
5586 5587
	}

5588 5589
	printk(KERN_CONT "span %*pbl level %s\n",
	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
I
Ingo Molnar 已提交
5590

5591
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5592 5593
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5594
	}
5595
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5596 5597
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5598
	}
L
Linus Torvalds 已提交
5599

I
Ingo Molnar 已提交
5600
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5601
	do {
I
Ingo Molnar 已提交
5602
		if (!group) {
P
Peter Zijlstra 已提交
5603 5604
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5605 5606 5607
			break;
		}

5608
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5609 5610
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
5611 5612
			break;
		}
L
Linus Torvalds 已提交
5613

5614 5615
		if (!(sd->flags & SD_OVERLAP) &&
		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5616 5617
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
5618 5619
			break;
		}
L
Linus Torvalds 已提交
5620

5621
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
5622

5623 5624
		printk(KERN_CONT " %*pbl",
		       cpumask_pr_args(sched_group_cpus(group)));
5625
		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5626 5627
			printk(KERN_CONT " (cpu_capacity = %d)",
				group->sgc->capacity);
5628
		}
L
Linus Torvalds 已提交
5629

I
Ingo Molnar 已提交
5630 5631
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
5632
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5633

5634
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
5635
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5636

5637 5638
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
5639 5640
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
5641 5642
	return 0;
}
L
Linus Torvalds 已提交
5643

I
Ingo Molnar 已提交
5644 5645 5646
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5647

5648
	if (!sched_debug_enabled)
5649 5650
		return;

I
Ingo Molnar 已提交
5651 5652 5653 5654
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5655

I
Ingo Molnar 已提交
5656 5657 5658
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
5659
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
I
Ingo Molnar 已提交
5660
			break;
L
Linus Torvalds 已提交
5661 5662
		level++;
		sd = sd->parent;
5663
		if (!sd)
I
Ingo Molnar 已提交
5664 5665
			break;
	}
L
Linus Torvalds 已提交
5666
}
5667
#else /* !CONFIG_SCHED_DEBUG */
5668
# define sched_domain_debug(sd, cpu) do { } while (0)
5669 5670 5671 5672
static inline bool sched_debug(void)
{
	return false;
}
5673
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
5674

5675
static int sd_degenerate(struct sched_domain *sd)
5676
{
5677
	if (cpumask_weight(sched_domain_span(sd)) == 1)
5678 5679 5680 5681 5682 5683
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5684
			 SD_BALANCE_EXEC |
5685
			 SD_SHARE_CPUCAPACITY |
5686 5687
			 SD_SHARE_PKG_RESOURCES |
			 SD_SHARE_POWERDOMAIN)) {
5688 5689 5690 5691 5692
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
5693
	if (sd->flags & (SD_WAKE_AFFINE))
5694 5695 5696 5697 5698
		return 0;

	return 1;
}

5699 5700
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5701 5702 5703 5704 5705 5706
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

5707
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5708 5709 5710 5711 5712 5713 5714
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5715
				SD_BALANCE_EXEC |
5716
				SD_SHARE_CPUCAPACITY |
5717
				SD_SHARE_PKG_RESOURCES |
5718 5719
				SD_PREFER_SIBLING |
				SD_SHARE_POWERDOMAIN);
5720 5721
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
5722 5723 5724 5725 5726 5727 5728
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

5729
static void free_rootdomain(struct rcu_head *rcu)
5730
{
5731
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5732

5733
	cpupri_cleanup(&rd->cpupri);
5734
	cpudl_cleanup(&rd->cpudl);
5735
	free_cpumask_var(rd->dlo_mask);
5736 5737 5738 5739 5740 5741
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
5742 5743
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
5744
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
5745 5746
	unsigned long flags;

5747
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5748 5749

	if (rq->rd) {
I
Ingo Molnar 已提交
5750
		old_rd = rq->rd;
G
Gregory Haskins 已提交
5751

5752
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5753
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5754

5755
		cpumask_clear_cpu(rq->cpu, old_rd->span);
5756

I
Ingo Molnar 已提交
5757
		/*
5758
		 * If we dont want to free the old_rd yet then
I
Ingo Molnar 已提交
5759 5760 5761 5762 5763
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
5764 5765 5766 5767 5768
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

5769
	cpumask_set_cpu(rq->cpu, rd->span);
5770
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5771
		set_rq_online(rq);
G
Gregory Haskins 已提交
5772

5773
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
5774 5775

	if (old_rd)
5776
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
5777 5778
}

5779
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
5780 5781 5782
{
	memset(rd, 0, sizeof(*rd));

5783
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5784
		goto out;
5785
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5786
		goto free_span;
5787
	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5788
		goto free_online;
5789 5790
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
		goto free_dlo_mask;
5791

5792
	init_dl_bw(&rd->dl_bw);
5793 5794
	if (cpudl_init(&rd->cpudl) != 0)
		goto free_dlo_mask;
5795

5796
	if (cpupri_init(&rd->cpupri) != 0)
5797
		goto free_rto_mask;
5798
	return 0;
5799

5800 5801
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
5802 5803
free_dlo_mask:
	free_cpumask_var(rd->dlo_mask);
5804 5805 5806 5807
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
5808
out:
5809
	return -ENOMEM;
G
Gregory Haskins 已提交
5810 5811
}

5812 5813 5814 5815 5816 5817
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
struct root_domain def_root_domain;

G
Gregory Haskins 已提交
5818 5819
static void init_defrootdomain(void)
{
5820
	init_rootdomain(&def_root_domain);
5821

G
Gregory Haskins 已提交
5822 5823 5824
	atomic_set(&def_root_domain.refcount, 1);
}

5825
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
5826 5827 5828 5829 5830 5831 5832
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

5833
	if (init_rootdomain(rd) != 0) {
5834 5835 5836
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
5837 5838 5839 5840

	return rd;
}

5841
static void free_sched_groups(struct sched_group *sg, int free_sgc)
5842 5843 5844 5845 5846 5847 5848 5849 5850 5851
{
	struct sched_group *tmp, *first;

	if (!sg)
		return;

	first = sg;
	do {
		tmp = sg->next;

5852 5853
		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
			kfree(sg->sgc);
5854 5855 5856 5857 5858 5859

		kfree(sg);
		sg = tmp;
	} while (sg != first);
}

5860 5861 5862
static void free_sched_domain(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5863 5864 5865 5866 5867 5868 5869 5870

	/*
	 * If its an overlapping domain it has private groups, iterate and
	 * nuke them all.
	 */
	if (sd->flags & SD_OVERLAP) {
		free_sched_groups(sd->groups, 1);
	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5871
		kfree(sd->groups->sgc);
5872
		kfree(sd->groups);
5873
	}
5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887
	kfree(sd);
}

static void destroy_sched_domain(struct sched_domain *sd, int cpu)
{
	call_rcu(&sd->rcu, free_sched_domain);
}

static void destroy_sched_domains(struct sched_domain *sd, int cpu)
{
	for (; sd; sd = sd->parent)
		destroy_sched_domain(sd, cpu);
}

5888 5889 5890 5891 5892 5893 5894
/*
 * Keep a special pointer to the highest sched_domain that has
 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 * allows us to avoid some pointer chasing select_idle_sibling().
 *
 * Also keep a unique ID per domain (we use the first cpu number in
 * the cpumask of the domain), this allows us to quickly tell if
5895
 * two cpus are in the same cache domain, see cpus_share_cache().
5896 5897
 */
DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5898
DEFINE_PER_CPU(int, sd_llc_size);
5899
DEFINE_PER_CPU(int, sd_llc_id);
5900
DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5901 5902
DEFINE_PER_CPU(struct sched_domain *, sd_busy);
DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5903 5904 5905 5906

static void update_top_cache_domain(int cpu)
{
	struct sched_domain *sd;
5907
	struct sched_domain *busy_sd = NULL;
5908
	int id = cpu;
5909
	int size = 1;
5910 5911

	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5912
	if (sd) {
5913
		id = cpumask_first(sched_domain_span(sd));
5914
		size = cpumask_weight(sched_domain_span(sd));
5915
		busy_sd = sd->parent; /* sd_busy */
5916
	}
5917
	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5918 5919

	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5920
	per_cpu(sd_llc_size, cpu) = size;
5921
	per_cpu(sd_llc_id, cpu) = id;
5922 5923 5924

	sd = lowest_flag_domain(cpu, SD_NUMA);
	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5925 5926 5927

	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5928 5929
}

L
Linus Torvalds 已提交
5930
/*
I
Ingo Molnar 已提交
5931
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
5932 5933
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
5934 5935
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
5936
{
5937
	struct rq *rq = cpu_rq(cpu);
5938 5939 5940
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
5941
	for (tmp = sd; tmp; ) {
5942 5943 5944
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5945

5946
		if (sd_parent_degenerate(tmp, parent)) {
5947
			tmp->parent = parent->parent;
5948 5949
			if (parent->parent)
				parent->parent->child = tmp;
5950 5951 5952 5953 5954 5955 5956
			/*
			 * Transfer SD_PREFER_SIBLING down in case of a
			 * degenerate parent; the spans match for this
			 * so the property transfers.
			 */
			if (parent->flags & SD_PREFER_SIBLING)
				tmp->flags |= SD_PREFER_SIBLING;
5957
			destroy_sched_domain(parent, cpu);
5958 5959
		} else
			tmp = tmp->parent;
5960 5961
	}

5962
	if (sd && sd_degenerate(sd)) {
5963
		tmp = sd;
5964
		sd = sd->parent;
5965
		destroy_sched_domain(tmp, cpu);
5966 5967 5968
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5969

5970
	sched_domain_debug(sd, cpu);
L
Linus Torvalds 已提交
5971

G
Gregory Haskins 已提交
5972
	rq_attach_root(rq, rd);
5973
	tmp = rq->sd;
N
Nick Piggin 已提交
5974
	rcu_assign_pointer(rq->sd, sd);
5975
	destroy_sched_domains(tmp, cpu);
5976 5977

	update_top_cache_domain(cpu);
L
Linus Torvalds 已提交
5978 5979 5980 5981 5982
}

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
5983
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
5984
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
5985 5986 5987
	return 1;
}

I
Ingo Molnar 已提交
5988
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5989

5990
struct s_data {
5991
	struct sched_domain ** __percpu sd;
5992 5993 5994
	struct root_domain	*rd;
};

5995 5996
enum s_alloc {
	sa_rootdomain,
5997
	sa_sd,
5998
	sa_sd_storage,
5999 6000 6001
	sa_none,
};

P
Peter Zijlstra 已提交
6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039
/*
 * Build an iteration mask that can exclude certain CPUs from the upwards
 * domain traversal.
 *
 * Asymmetric node setups can result in situations where the domain tree is of
 * unequal depth, make sure to skip domains that already cover the entire
 * range.
 *
 * In that case build_sched_domains() will have terminated the iteration early
 * and our sibling sd spans will be empty. Domains should always include the
 * cpu they're built on, so check that.
 *
 */
static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
{
	const struct cpumask *span = sched_domain_span(sd);
	struct sd_data *sdd = sd->private;
	struct sched_domain *sibling;
	int i;

	for_each_cpu(i, span) {
		sibling = *per_cpu_ptr(sdd->sd, i);
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
			continue;

		cpumask_set_cpu(i, sched_group_mask(sg));
	}
}

/*
 * Return the canonical balance cpu for this group, this is the first cpu
 * of this group that's also in the iteration mask.
 */
int group_balance_cpu(struct sched_group *sg)
{
	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
}

6040 6041 6042 6043 6044 6045 6046
static int
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered = sched_domains_tmpmask;
	struct sd_data *sdd = sd->private;
6047
	struct sched_domain *sibling;
6048 6049 6050 6051 6052 6053 6054 6055 6056 6057
	int i;

	cpumask_clear(covered);

	for_each_cpu(i, span) {
		struct cpumask *sg_span;

		if (cpumask_test_cpu(i, covered))
			continue;

6058
		sibling = *per_cpu_ptr(sdd->sd, i);
P
Peter Zijlstra 已提交
6059 6060

		/* See the comment near build_group_mask(). */
6061
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
P
Peter Zijlstra 已提交
6062 6063
			continue;

6064
		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6065
				GFP_KERNEL, cpu_to_node(cpu));
6066 6067 6068 6069 6070

		if (!sg)
			goto fail;

		sg_span = sched_group_cpus(sg);
6071 6072 6073
		if (sibling->child)
			cpumask_copy(sg_span, sched_domain_span(sibling->child));
		else
6074 6075 6076 6077
			cpumask_set_cpu(i, sg_span);

		cpumask_or(covered, covered, sg_span);

6078 6079
		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
		if (atomic_inc_return(&sg->sgc->ref) == 1)
P
Peter Zijlstra 已提交
6080 6081
			build_group_mask(sd, sg);

6082
		/*
6083
		 * Initialize sgc->capacity such that even if we mess up the
6084 6085 6086
		 * domains and no possible iteration will get us here, we won't
		 * die on a /0 trap.
		 */
6087
		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6088

P
Peter Zijlstra 已提交
6089 6090 6091 6092 6093
		/*
		 * Make sure the first group of this domain contains the
		 * canonical balance cpu. Otherwise the sched_domain iteration
		 * breaks. See update_sg_lb_stats().
		 */
P
Peter Zijlstra 已提交
6094
		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
P
Peter Zijlstra 已提交
6095
		    group_balance_cpu(sg) == cpu)
6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114
			groups = sg;

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
		last->next = first;
	}
	sd->groups = groups;

	return 0;

fail:
	free_sched_groups(first, 0);

	return -ENOMEM;
}

6115
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
6116
{
6117 6118
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
6119

6120 6121
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
6122

6123
	if (sg) {
6124
		*sg = *per_cpu_ptr(sdd->sg, cpu);
6125 6126
		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6127
	}
6128 6129

	return cpu;
6130 6131
}

6132
/*
6133 6134
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
6135
 * and ->cpu_capacity to 0.
6136 6137
 *
 * Assumes the sched_domain tree is fully constructed
6138
 */
6139 6140
static int
build_sched_groups(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
6141
{
6142 6143 6144
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
6145
	struct cpumask *covered;
6146
	int i;
6147

6148 6149 6150
	get_group(cpu, sdd, &sd->groups);
	atomic_inc(&sd->groups->ref);

6151
	if (cpu != cpumask_first(span))
6152 6153
		return 0;

6154 6155 6156
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

6157
	cpumask_clear(covered);
6158

6159 6160
	for_each_cpu(i, span) {
		struct sched_group *sg;
6161
		int group, j;
6162

6163 6164
		if (cpumask_test_cpu(i, covered))
			continue;
6165

6166
		group = get_group(i, sdd, &sg);
P
Peter Zijlstra 已提交
6167
		cpumask_setall(sched_group_mask(sg));
6168

6169 6170 6171
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
6172

6173 6174 6175
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
6176

6177 6178 6179 6180 6181 6182 6183
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
6184 6185

	return 0;
6186
}
6187

6188
/*
6189
 * Initialize sched groups cpu_capacity.
6190
 *
6191
 * cpu_capacity indicates the capacity of sched group, which is used while
6192
 * distributing the load between different sched groups in a sched domain.
6193 6194 6195 6196
 * Typically cpu_capacity for all the groups in a sched domain will be same
 * unless there are asymmetries in the topology. If there are asymmetries,
 * group having more cpu_capacity will pickup more load compared to the
 * group having less cpu_capacity.
6197
 */
6198
static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6199
{
6200
	struct sched_group *sg = sd->groups;
6201

6202
	WARN_ON(!sg);
6203 6204 6205 6206 6207

	do {
		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
		sg = sg->next;
	} while (sg != sd->groups);
6208

P
Peter Zijlstra 已提交
6209
	if (cpu != group_balance_cpu(sg))
6210
		return;
6211

6212 6213
	update_group_capacity(sd, cpu);
	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6214 6215
}

6216 6217 6218 6219 6220
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

6221
static int default_relax_domain_level = -1;
6222
int sched_domain_level_max;
6223 6224 6225

static int __init setup_relax_domain_level(char *str)
{
6226 6227
	if (kstrtoint(str, 0, &default_relax_domain_level))
		pr_warn("Unable to set relax_domain_level\n");
6228

6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
6247
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6248 6249
	} else {
		/* turn on idle balance on this domain */
6250
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6251 6252 6253
	}
}

6254 6255 6256
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

6257 6258 6259 6260 6261
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
6262 6263
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
6264 6265
	case sa_sd:
		free_percpu(d->sd); /* fall through */
6266
	case sa_sd_storage:
6267
		__sdt_free(cpu_map); /* fall through */
6268 6269 6270 6271
	case sa_none:
		break;
	}
}
6272

6273 6274 6275
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
6276 6277
	memset(d, 0, sizeof(*d));

6278 6279
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
6280 6281 6282
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
6283
	d->rd = alloc_rootdomain();
6284
	if (!d->rd)
6285
		return sa_sd;
6286 6287
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
6288

6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

6301
	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6302
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6303

6304 6305
	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6306 6307
}

6308 6309
#ifdef CONFIG_NUMA
static int sched_domains_numa_levels;
6310
enum numa_topology_type sched_numa_topology_type;
6311
static int *sched_domains_numa_distance;
6312
int sched_max_numa_distance;
6313 6314
static struct cpumask ***sched_domains_numa_masks;
static int sched_domains_curr_level;
6315
#endif
6316

6317 6318 6319
/*
 * SD_flags allowed in topology descriptions.
 *
6320
 * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6321 6322
 * SD_SHARE_PKG_RESOURCES - describes shared caches
 * SD_NUMA                - describes NUMA topologies
6323
 * SD_SHARE_POWERDOMAIN   - describes shared power domain
6324 6325 6326 6327 6328
 *
 * Odd one out:
 * SD_ASYM_PACKING        - describes SMT quirks
 */
#define TOPOLOGY_SD_FLAGS		\
6329
	(SD_SHARE_CPUCAPACITY |		\
6330 6331
	 SD_SHARE_PKG_RESOURCES |	\
	 SD_NUMA |			\
6332 6333
	 SD_ASYM_PACKING |		\
	 SD_SHARE_POWERDOMAIN)
6334 6335

static struct sched_domain *
6336
sd_init(struct sched_domain_topology_level *tl, int cpu)
6337 6338
{
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354
	int sd_weight, sd_flags = 0;

#ifdef CONFIG_NUMA
	/*
	 * Ugly hack to pass state to sd_numa_mask()...
	 */
	sched_domains_curr_level = tl->numa_level;
#endif

	sd_weight = cpumask_weight(tl->mask(cpu));

	if (tl->sd_flags)
		sd_flags = (*tl->sd_flags)();
	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
			"wrong sd_flags in topology description\n"))
		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6355 6356 6357 6358 6359

	*sd = (struct sched_domain){
		.min_interval		= sd_weight,
		.max_interval		= 2*sd_weight,
		.busy_factor		= 32,
6360
		.imbalance_pct		= 125,
6361 6362 6363 6364

		.cache_nice_tries	= 0,
		.busy_idx		= 0,
		.idle_idx		= 0,
6365 6366 6367 6368 6369 6370
		.newidle_idx		= 0,
		.wake_idx		= 0,
		.forkexec_idx		= 0,

		.flags			= 1*SD_LOAD_BALANCE
					| 1*SD_BALANCE_NEWIDLE
6371 6372
					| 1*SD_BALANCE_EXEC
					| 1*SD_BALANCE_FORK
6373
					| 0*SD_BALANCE_WAKE
6374
					| 1*SD_WAKE_AFFINE
6375
					| 0*SD_SHARE_CPUCAPACITY
6376
					| 0*SD_SHARE_PKG_RESOURCES
6377
					| 0*SD_SERIALIZE
6378
					| 0*SD_PREFER_SIBLING
6379 6380
					| 0*SD_NUMA
					| sd_flags
6381
					,
6382

6383 6384
		.last_balance		= jiffies,
		.balance_interval	= sd_weight,
6385
		.smt_gain		= 0,
6386 6387
		.max_newidle_lb_cost	= 0,
		.next_decay_max_lb_cost	= jiffies,
6388 6389 6390
#ifdef CONFIG_SCHED_DEBUG
		.name			= tl->name,
#endif
6391 6392 6393
	};

	/*
6394
	 * Convert topological properties into behaviour.
6395
	 */
6396

6397
	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6398
		sd->flags |= SD_PREFER_SIBLING;
6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428
		sd->imbalance_pct = 110;
		sd->smt_gain = 1178; /* ~15% */

	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
		sd->imbalance_pct = 117;
		sd->cache_nice_tries = 1;
		sd->busy_idx = 2;

#ifdef CONFIG_NUMA
	} else if (sd->flags & SD_NUMA) {
		sd->cache_nice_tries = 2;
		sd->busy_idx = 3;
		sd->idle_idx = 2;

		sd->flags |= SD_SERIALIZE;
		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
			sd->flags &= ~(SD_BALANCE_EXEC |
				       SD_BALANCE_FORK |
				       SD_WAKE_AFFINE);
		}

#endif
	} else {
		sd->flags |= SD_PREFER_SIBLING;
		sd->cache_nice_tries = 1;
		sd->busy_idx = 2;
		sd->idle_idx = 1;
	}

	sd->private = &tl->data;
6429 6430 6431 6432

	return sd;
}

6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458
/*
 * Topology list, bottom-up.
 */
static struct sched_domain_topology_level default_topology[] = {
#ifdef CONFIG_SCHED_SMT
	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
#endif
#ifdef CONFIG_SCHED_MC
	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
#endif
	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
	{ NULL, },
};

struct sched_domain_topology_level *sched_domain_topology = default_topology;

#define for_each_sd_topology(tl)			\
	for (tl = sched_domain_topology; tl->mask; tl++)

void set_sched_topology(struct sched_domain_topology_level *tl)
{
	sched_domain_topology = tl;
}

#ifdef CONFIG_NUMA

6459 6460 6461 6462 6463
static const struct cpumask *sd_numa_mask(int cpu)
{
	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
}

6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484
static void sched_numa_warn(const char *str)
{
	static int done = false;
	int i,j;

	if (done)
		return;

	done = true;

	printk(KERN_WARNING "ERROR: %s\n\n", str);

	for (i = 0; i < nr_node_ids; i++) {
		printk(KERN_WARNING "  ");
		for (j = 0; j < nr_node_ids; j++)
			printk(KERN_CONT "%02d ", node_distance(i,j));
		printk(KERN_CONT "\n");
	}
	printk(KERN_WARNING "\n");
}

6485
bool find_numa_distance(int distance)
6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499
{
	int i;

	if (distance == node_distance(0, 0))
		return true;

	for (i = 0; i < sched_domains_numa_levels; i++) {
		if (sched_domains_numa_distance[i] == distance)
			return true;
	}

	return false;
}

6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524
/*
 * A system can have three types of NUMA topology:
 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
 *
 * The difference between a glueless mesh topology and a backplane
 * topology lies in whether communication between not directly
 * connected nodes goes through intermediary nodes (where programs
 * could run), or through backplane controllers. This affects
 * placement of programs.
 *
 * The type of topology can be discerned with the following tests:
 * - If the maximum distance between any nodes is 1 hop, the system
 *   is directly connected.
 * - If for two nodes A and B, located N > 1 hops away from each other,
 *   there is an intermediary node C, which is < N hops away from both
 *   nodes A and B, the system is a glueless mesh.
 */
static void init_numa_topology_type(void)
{
	int a, b, c, n;

	n = sched_max_numa_distance;

6525
	if (sched_domains_numa_levels <= 1) {
6526
		sched_numa_topology_type = NUMA_DIRECT;
6527 6528
		return;
	}
6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551

	for_each_online_node(a) {
		for_each_online_node(b) {
			/* Find two nodes furthest removed from each other. */
			if (node_distance(a, b) < n)
				continue;

			/* Is there an intermediary node between a and b? */
			for_each_online_node(c) {
				if (node_distance(a, c) < n &&
				    node_distance(b, c) < n) {
					sched_numa_topology_type =
							NUMA_GLUELESS_MESH;
					return;
				}
			}

			sched_numa_topology_type = NUMA_BACKPLANE;
			return;
		}
	}
}

6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572
static void sched_init_numa(void)
{
	int next_distance, curr_distance = node_distance(0, 0);
	struct sched_domain_topology_level *tl;
	int level = 0;
	int i, j, k;

	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
	if (!sched_domains_numa_distance)
		return;

	/*
	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
	 * unique distances in the node_distance() table.
	 *
	 * Assumes node_distance(0,j) includes all distances in
	 * node_distance(i,j) in order to avoid cubic time.
	 */
	next_distance = curr_distance;
	for (i = 0; i < nr_node_ids; i++) {
		for (j = 0; j < nr_node_ids; j++) {
6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596
			for (k = 0; k < nr_node_ids; k++) {
				int distance = node_distance(i, k);

				if (distance > curr_distance &&
				    (distance < next_distance ||
				     next_distance == curr_distance))
					next_distance = distance;

				/*
				 * While not a strong assumption it would be nice to know
				 * about cases where if node A is connected to B, B is not
				 * equally connected to A.
				 */
				if (sched_debug() && node_distance(k, i) != distance)
					sched_numa_warn("Node-distance not symmetric");

				if (sched_debug() && i && !find_numa_distance(distance))
					sched_numa_warn("Node-0 not representative");
			}
			if (next_distance != curr_distance) {
				sched_domains_numa_distance[level++] = next_distance;
				sched_domains_numa_levels = level;
				curr_distance = next_distance;
			} else break;
6597
		}
6598 6599 6600 6601 6602 6603

		/*
		 * In case of sched_debug() we verify the above assumption.
		 */
		if (!sched_debug())
			break;
6604
	}
6605 6606 6607 6608

	if (!level)
		return;

6609 6610 6611 6612
	/*
	 * 'level' contains the number of unique distances, excluding the
	 * identity distance node_distance(i,i).
	 *
V
Viresh Kumar 已提交
6613
	 * The sched_domains_numa_distance[] array includes the actual distance
6614 6615 6616
	 * numbers.
	 */

6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627
	/*
	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
	 * the array will contain less then 'level' members. This could be
	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
	 * in other functions.
	 *
	 * We reset it to 'level' at the end of this function.
	 */
	sched_domains_numa_levels = 0;

6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642
	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
	if (!sched_domains_numa_masks)
		return;

	/*
	 * Now for each level, construct a mask per node which contains all
	 * cpus of nodes that are that many hops away from us.
	 */
	for (i = 0; i < level; i++) {
		sched_domains_numa_masks[i] =
			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
		if (!sched_domains_numa_masks[i])
			return;

		for (j = 0; j < nr_node_ids; j++) {
6643
			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6644 6645 6646 6647 6648 6649
			if (!mask)
				return;

			sched_domains_numa_masks[i][j] = mask;

			for (k = 0; k < nr_node_ids; k++) {
6650
				if (node_distance(j, k) > sched_domains_numa_distance[i])
6651 6652 6653 6654 6655 6656 6657
					continue;

				cpumask_or(mask, mask, cpumask_of_node(k));
			}
		}
	}

6658 6659 6660
	/* Compute default topology size */
	for (i = 0; sched_domain_topology[i].mask; i++);

6661
	tl = kzalloc((i + level + 1) *
6662 6663 6664 6665 6666 6667 6668
			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
	if (!tl)
		return;

	/*
	 * Copy the default topology bits..
	 */
6669 6670
	for (i = 0; sched_domain_topology[i].mask; i++)
		tl[i] = sched_domain_topology[i];
6671 6672 6673 6674 6675 6676 6677

	/*
	 * .. and append 'j' levels of NUMA goodness.
	 */
	for (j = 0; j < level; i++, j++) {
		tl[i] = (struct sched_domain_topology_level){
			.mask = sd_numa_mask,
6678
			.sd_flags = cpu_numa_flags,
6679 6680
			.flags = SDTL_OVERLAP,
			.numa_level = j,
6681
			SD_INIT_NAME(NUMA)
6682 6683 6684 6685
		};
	}

	sched_domain_topology = tl;
6686 6687

	sched_domains_numa_levels = level;
6688
	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6689 6690

	init_numa_topology_type();
6691
}
6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738

static void sched_domains_numa_masks_set(int cpu)
{
	int i, j;
	int node = cpu_to_node(cpu);

	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++) {
			if (node_distance(j, node) <= sched_domains_numa_distance[i])
				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
		}
	}
}

static void sched_domains_numa_masks_clear(int cpu)
{
	int i, j;
	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++)
			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
	}
}

/*
 * Update sched_domains_numa_masks[level][node] array when new cpus
 * are onlined.
 */
static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	int cpu = (long)hcpu;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
		sched_domains_numa_masks_set(cpu);
		break;

	case CPU_DEAD:
		sched_domains_numa_masks_clear(cpu);
		break;

	default:
		return NOTIFY_DONE;
	}

	return NOTIFY_OK;
6739 6740 6741 6742 6743
}
#else
static inline void sched_init_numa(void)
{
}
6744 6745 6746 6747 6748 6749 6750

static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	return 0;
}
6751 6752
#endif /* CONFIG_NUMA */

6753 6754 6755 6756 6757
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

6758
	for_each_sd_topology(tl) {
6759 6760 6761 6762 6763 6764 6765 6766 6767 6768
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

6769 6770
		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
		if (!sdd->sgc)
6771 6772
			return -ENOMEM;

6773 6774 6775
		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_group *sg;
6776
			struct sched_group_capacity *sgc;
6777

P
Peter Zijlstra 已提交
6778
			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

6790 6791
			sg->next = sg;

6792
			*per_cpu_ptr(sdd->sg, j) = sg;
6793

6794
			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6795
					GFP_KERNEL, cpu_to_node(j));
6796
			if (!sgc)
6797 6798
				return -ENOMEM;

6799
			*per_cpu_ptr(sdd->sgc, j) = sgc;
6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

6811
	for_each_sd_topology(tl) {
6812 6813 6814
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825
			struct sched_domain *sd;

			if (sdd->sd) {
				sd = *per_cpu_ptr(sdd->sd, j);
				if (sd && (sd->flags & SD_OVERLAP))
					free_sched_groups(sd->groups, 0);
				kfree(*per_cpu_ptr(sdd->sd, j));
			}

			if (sdd->sg)
				kfree(*per_cpu_ptr(sdd->sg, j));
6826 6827
			if (sdd->sgc)
				kfree(*per_cpu_ptr(sdd->sgc, j));
6828 6829
		}
		free_percpu(sdd->sd);
6830
		sdd->sd = NULL;
6831
		free_percpu(sdd->sg);
6832
		sdd->sg = NULL;
6833 6834
		free_percpu(sdd->sgc);
		sdd->sgc = NULL;
6835 6836 6837
	}
}

6838
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6839 6840
		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
		struct sched_domain *child, int cpu)
6841
{
6842
	struct sched_domain *sd = sd_init(tl, cpu);
6843
	if (!sd)
6844
		return child;
6845 6846

	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6847 6848 6849
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6850
		child->parent = sd;
6851
		sd->child = child;
P
Peter Zijlstra 已提交
6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865

		if (!cpumask_subset(sched_domain_span(child),
				    sched_domain_span(sd))) {
			pr_err("BUG: arch topology borken\n");
#ifdef CONFIG_SCHED_DEBUG
			pr_err("     the %s domain not a subset of the %s domain\n",
					child->name, sd->name);
#endif
			/* Fixup, ensure @sd has at least @child cpus. */
			cpumask_or(sched_domain_span(sd),
				   sched_domain_span(sd),
				   sched_domain_span(child));
		}

6866
	}
6867
	set_domain_attribute(sd, attr);
6868 6869 6870 6871

	return sd;
}

6872 6873 6874 6875
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
6876 6877
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
6878
{
6879
	enum s_alloc alloc_state;
6880
	struct sched_domain *sd;
6881
	struct s_data d;
6882
	int i, ret = -ENOMEM;
6883

6884 6885 6886
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
6887

6888
	/* Set up domains for cpus specified by the cpu_map. */
6889
	for_each_cpu(i, cpu_map) {
6890 6891
		struct sched_domain_topology_level *tl;

6892
		sd = NULL;
6893
		for_each_sd_topology(tl) {
6894
			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6895 6896
			if (tl == sched_domain_topology)
				*per_cpu_ptr(d.sd, i) = sd;
6897 6898
			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
				sd->flags |= SD_OVERLAP;
6899 6900
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
				break;
6901
		}
6902 6903 6904 6905 6906 6907
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6908 6909 6910 6911 6912 6913 6914
			if (sd->flags & SD_OVERLAP) {
				if (build_overlap_sched_groups(sd, i))
					goto error;
			} else {
				if (build_sched_groups(sd, i))
					goto error;
			}
6915
		}
6916
	}
6917

6918
	/* Calculate CPU capacity for physical packages and nodes */
6919 6920 6921
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
6922

6923 6924
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
6925
			init_sched_groups_capacity(i, sd);
6926
		}
6927
	}
6928

L
Linus Torvalds 已提交
6929
	/* Attach the domains */
6930
	rcu_read_lock();
6931
	for_each_cpu(i, cpu_map) {
6932
		sd = *per_cpu_ptr(d.sd, i);
6933
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
6934
	}
6935
	rcu_read_unlock();
6936

6937
	ret = 0;
6938
error:
6939
	__free_domain_allocs(&d, alloc_state, cpu_map);
6940
	return ret;
L
Linus Torvalds 已提交
6941
}
P
Paul Jackson 已提交
6942

6943
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
6944
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
6945 6946
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
6947 6948 6949

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
6950 6951
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
6952
 */
6953
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
6954

6955 6956 6957 6958 6959
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
6960
int __weak arch_update_cpu_topology(void)
6961
{
6962
	return 0;
6963 6964
}

6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

6990
/*
I
Ingo Molnar 已提交
6991
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6992 6993
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6994
 */
6995
static int init_sched_domains(const struct cpumask *cpu_map)
6996
{
6997 6998
	int err;

6999
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7000
	ndoms_cur = 1;
7001
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
7002
	if (!doms_cur)
7003 7004
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7005
	err = build_sched_domains(doms_cur[0], NULL);
7006
	register_sched_domain_sysctl();
7007 7008

	return err;
7009 7010 7011 7012 7013 7014
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7015
static void detach_destroy_domains(const struct cpumask *cpu_map)
7016 7017 7018
{
	int i;

7019
	rcu_read_lock();
7020
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
7021
		cpu_attach_domain(NULL, &def_root_domain, i);
7022
	rcu_read_unlock();
7023 7024
}

7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7041 7042
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7043
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7044 7045 7046
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
7047
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7048 7049 7050
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7051 7052 7053
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
7054 7055 7056 7057 7058 7059
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
7060
 *
7061
 * If doms_new == NULL it will be replaced with cpu_online_mask.
7062 7063
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
7064
 *
P
Paul Jackson 已提交
7065 7066
 * Call with hotplug lock held
 */
7067
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7068
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7069
{
7070
	int i, j, n;
7071
	int new_topology;
P
Paul Jackson 已提交
7072

7073
	mutex_lock(&sched_domains_mutex);
7074

7075 7076 7077
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7078 7079 7080
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

7081
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
7082 7083 7084

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
7085
		for (j = 0; j < n && !new_topology; j++) {
7086
			if (cpumask_equal(doms_cur[i], doms_new[j])
7087
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7088 7089 7090
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
7091
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
7092 7093 7094 7095
match1:
		;
	}

7096
	n = ndoms_cur;
7097
	if (doms_new == NULL) {
7098
		n = 0;
7099
		doms_new = &fallback_doms;
7100
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7101
		WARN_ON_ONCE(dattr_new);
7102 7103
	}

P
Paul Jackson 已提交
7104 7105
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
7106
		for (j = 0; j < n && !new_topology; j++) {
7107
			if (cpumask_equal(doms_new[i], doms_cur[j])
7108
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7109 7110 7111
				goto match2;
		}
		/* no match - add a new doms_new */
7112
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7113 7114 7115 7116 7117
match2:
		;
	}

	/* Remember the new sched domains */
7118 7119
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
7120
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7121
	doms_cur = doms_new;
7122
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7123
	ndoms_cur = ndoms_new;
7124 7125

	register_sched_domain_sysctl();
7126

7127
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7128 7129
}

7130 7131
static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */

L
Linus Torvalds 已提交
7132
/*
7133 7134 7135
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
7136 7137 7138
 *
 * If we come here as part of a suspend/resume, don't touch cpusets because we
 * want to restore it back to its original state upon resume anyway.
L
Linus Torvalds 已提交
7139
 */
7140 7141
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
7142
{
7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164
	switch (action) {
	case CPU_ONLINE_FROZEN:
	case CPU_DOWN_FAILED_FROZEN:

		/*
		 * num_cpus_frozen tracks how many CPUs are involved in suspend
		 * resume sequence. As long as this is not the last online
		 * operation in the resume sequence, just build a single sched
		 * domain, ignoring cpusets.
		 */
		num_cpus_frozen--;
		if (likely(num_cpus_frozen)) {
			partition_sched_domains(1, NULL, NULL);
			break;
		}

		/*
		 * This is the last CPU online operation. So fall through and
		 * restore the original sched domains by considering the
		 * cpuset configurations.
		 */

7165
	case CPU_ONLINE:
7166
		cpuset_update_active_cpus(true);
7167
		break;
7168 7169 7170
	default:
		return NOTIFY_DONE;
	}
7171
	return NOTIFY_OK;
7172
}
7173

7174 7175
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
7176
{
7177 7178 7179
	unsigned long flags;
	long cpu = (long)hcpu;
	struct dl_bw *dl_b;
7180 7181
	bool overflow;
	int cpus;
7182

7183
	switch (action) {
7184
	case CPU_DOWN_PREPARE:
7185 7186
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);
7187

7188 7189 7190 7191
		raw_spin_lock_irqsave(&dl_b->lock, flags);
		cpus = dl_bw_cpus(cpu);
		overflow = __dl_overflow(dl_b, cpus, 0, 0);
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7192

7193
		rcu_read_unlock_sched();
7194

7195 7196
		if (overflow)
			return notifier_from_errno(-EBUSY);
7197
		cpuset_update_active_cpus(false);
7198 7199 7200 7201 7202
		break;
	case CPU_DOWN_PREPARE_FROZEN:
		num_cpus_frozen++;
		partition_sched_domains(1, NULL, NULL);
		break;
7203 7204 7205
	default:
		return NOTIFY_DONE;
	}
7206
	return NOTIFY_OK;
7207 7208
}

L
Linus Torvalds 已提交
7209 7210
void __init sched_init_smp(void)
{
7211 7212 7213
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7214
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7215

7216 7217 7218
	/* nohz_full won't take effect without isolating the cpus. */
	tick_nohz_full_add_cpus_to(cpu_isolated_map);

7219 7220
	sched_init_numa();

7221 7222 7223 7224 7225
	/*
	 * There's no userspace yet to cause hotplug operations; hence all the
	 * cpu masks are stable and all blatant races in the below code cannot
	 * happen.
	 */
7226
	mutex_lock(&sched_domains_mutex);
7227
	init_sched_domains(cpu_active_mask);
7228 7229 7230
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7231
	mutex_unlock(&sched_domains_mutex);
7232

7233
	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7234 7235
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7236

7237
	init_hrtick();
7238 7239

	/* Move init over to a non-isolated CPU */
7240
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7241
		BUG();
I
Ingo Molnar 已提交
7242
	sched_init_granularity();
7243
	free_cpumask_var(non_isolated_cpus);
7244

7245
	init_sched_rt_class();
7246
	init_sched_dl_class();
L
Linus Torvalds 已提交
7247 7248 7249 7250
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7251
	sched_init_granularity();
L
Linus Torvalds 已提交
7252 7253 7254 7255 7256 7257 7258 7259 7260 7261
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

7262
#ifdef CONFIG_CGROUP_SCHED
7263 7264 7265 7266
/*
 * Default task group.
 * Every task in system belongs to this group at bootup.
 */
7267
struct task_group root_task_group;
7268
LIST_HEAD(task_groups);
7269
#endif
P
Peter Zijlstra 已提交
7270

7271
DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
P
Peter Zijlstra 已提交
7272

L
Linus Torvalds 已提交
7273 7274
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7275
	int i, j;
7276 7277 7278 7279 7280 7281 7282 7283 7284
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
	if (alloc_size) {
7285
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7286 7287

#ifdef CONFIG_FAIR_GROUP_SCHED
7288
		root_task_group.se = (struct sched_entity **)ptr;
7289 7290
		ptr += nr_cpu_ids * sizeof(void **);

7291
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7292
		ptr += nr_cpu_ids * sizeof(void **);
7293

7294
#endif /* CONFIG_FAIR_GROUP_SCHED */
7295
#ifdef CONFIG_RT_GROUP_SCHED
7296
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7297 7298
		ptr += nr_cpu_ids * sizeof(void **);

7299
		root_task_group.rt_rq = (struct rt_rq **)ptr;
7300 7301
		ptr += nr_cpu_ids * sizeof(void **);

7302
#endif /* CONFIG_RT_GROUP_SCHED */
7303
	}
7304
#ifdef CONFIG_CPUMASK_OFFSTACK
7305 7306 7307
	for_each_possible_cpu(i) {
		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7308
	}
7309
#endif /* CONFIG_CPUMASK_OFFSTACK */
I
Ingo Molnar 已提交
7310

7311 7312 7313
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());
	init_dl_bandwidth(&def_dl_bandwidth,
7314
			global_rt_period(), global_rt_runtime());
7315

G
Gregory Haskins 已提交
7316 7317 7318 7319
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7320
#ifdef CONFIG_RT_GROUP_SCHED
7321
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7322
			global_rt_period(), global_rt_runtime());
7323
#endif /* CONFIG_RT_GROUP_SCHED */
7324

D
Dhaval Giani 已提交
7325
#ifdef CONFIG_CGROUP_SCHED
7326 7327
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
7328
	INIT_LIST_HEAD(&root_task_group.siblings);
7329
	autogroup_init(&init_task);
7330

D
Dhaval Giani 已提交
7331
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
7332

7333
	for_each_possible_cpu(i) {
7334
		struct rq *rq;
L
Linus Torvalds 已提交
7335 7336

		rq = cpu_rq(i);
7337
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
7338
		rq->nr_running = 0;
7339 7340
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
7341
		init_cfs_rq(&rq->cfs);
7342 7343
		init_rt_rq(&rq->rt);
		init_dl_rq(&rq->dl);
I
Ingo Molnar 已提交
7344
#ifdef CONFIG_FAIR_GROUP_SCHED
7345
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
7346
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
7347
		/*
7348
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
7349 7350 7351 7352
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
7353
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
7354 7355 7356
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
7357
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
7358 7359 7360
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
7361
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
7362
		 *
7363 7364
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
7365
		 */
7366
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7367
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
7368 7369 7370
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7371
#ifdef CONFIG_RT_GROUP_SCHED
7372
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
7373
#endif
L
Linus Torvalds 已提交
7374

I
Ingo Molnar 已提交
7375 7376
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
7377 7378 7379

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
7380
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7381
		rq->sd = NULL;
G
Gregory Haskins 已提交
7382
		rq->rd = NULL;
7383
		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7384
		rq->balance_callback = NULL;
L
Linus Torvalds 已提交
7385
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7386
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7387
		rq->push_cpu = 0;
7388
		rq->cpu = i;
7389
		rq->online = 0;
7390 7391
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
7392
		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7393 7394 7395

		INIT_LIST_HEAD(&rq->cfs_tasks);

7396
		rq_attach_root(rq, &def_root_domain);
7397
#ifdef CONFIG_NO_HZ_COMMON
7398
		rq->nohz_flags = 0;
7399
#endif
7400 7401 7402
#ifdef CONFIG_NO_HZ_FULL
		rq->last_sched_tick = 0;
#endif
L
Linus Torvalds 已提交
7403
#endif
P
Peter Zijlstra 已提交
7404
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7405 7406 7407
		atomic_set(&rq->nr_iowait, 0);
	}

7408
	set_load_weight(&init_task);
7409

7410 7411 7412 7413
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

L
Linus Torvalds 已提交
7414 7415 7416 7417 7418 7419
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

7420 7421 7422 7423 7424
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;

L
Linus Torvalds 已提交
7425 7426 7427 7428 7429 7430 7431
	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
7432 7433 7434

	calc_load_update = jiffies + LOAD_FREQ;

7435
#ifdef CONFIG_SMP
7436
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
R
Rusty Russell 已提交
7437 7438 7439
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7440
	idle_thread_set_boot_cpu();
7441
	set_cpu_rq_start_time();
7442 7443
#endif
	init_sched_fair_class();
7444

7445
	scheduler_running = 1;
L
Linus Torvalds 已提交
7446 7447
}

7448
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7449 7450
static inline int preempt_count_equals(int preempt_offset)
{
7451
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7452

A
Arnd Bergmann 已提交
7453
	return (nested == preempt_offset);
7454 7455
}

7456
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7457
{
P
Peter Zijlstra 已提交
7458 7459 7460 7461 7462
	/*
	 * Blocking primitives will set (and therefore destroy) current->state,
	 * since we will exit with TASK_RUNNING make sure we enter with it,
	 * otherwise we will destroy state.
	 */
7463
	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
P
Peter Zijlstra 已提交
7464 7465 7466 7467
			"do not call blocking ops when !TASK_RUNNING; "
			"state=%lx set at [<%p>] %pS\n",
			current->state,
			(void *)current->task_state_change,
7468
			(void *)current->task_state_change);
P
Peter Zijlstra 已提交
7469

7470 7471 7472 7473 7474
	___might_sleep(file, line, preempt_offset);
}
EXPORT_SYMBOL(__might_sleep);

void ___might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7475 7476 7477
{
	static unsigned long prev_jiffy;	/* ratelimiting */

7478
	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7479 7480
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
	     !is_idle_task(current)) ||
7481
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
7482 7483 7484 7485 7486
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
7487 7488 7489 7490 7491 7492 7493
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
7494

7495 7496 7497
	if (task_stack_end_corrupted(current))
		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");

I
Ingo Molnar 已提交
7498 7499 7500
	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
7501 7502 7503 7504 7505 7506 7507
#ifdef CONFIG_DEBUG_PREEMPT
	if (!preempt_count_equals(preempt_offset)) {
		pr_err("Preemption disabled at:");
		print_ip_sym(current->preempt_disable_ip);
		pr_cont("\n");
	}
#endif
I
Ingo Molnar 已提交
7508
	dump_stack();
L
Linus Torvalds 已提交
7509
}
7510
EXPORT_SYMBOL(___might_sleep);
L
Linus Torvalds 已提交
7511 7512 7513
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7514
void normalize_rt_tasks(void)
7515
{
7516
	struct task_struct *g, *p;
7517 7518 7519
	struct sched_attr attr = {
		.sched_policy = SCHED_NORMAL,
	};
L
Linus Torvalds 已提交
7520

7521
	read_lock(&tasklist_lock);
7522
	for_each_process_thread(g, p) {
7523 7524 7525
		/*
		 * Only normalize user tasks:
		 */
7526
		if (p->flags & PF_KTHREAD)
7527 7528
			continue;

I
Ingo Molnar 已提交
7529 7530
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
7531 7532 7533
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
7534
#endif
I
Ingo Molnar 已提交
7535

7536
		if (!dl_task(p) && !rt_task(p)) {
I
Ingo Molnar 已提交
7537 7538 7539 7540
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
7541
			if (task_nice(p) < 0)
I
Ingo Molnar 已提交
7542
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7543
			continue;
I
Ingo Molnar 已提交
7544
		}
L
Linus Torvalds 已提交
7545

7546
		__sched_setscheduler(p, &attr, false, false);
7547
	}
7548
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
7549 7550 7551
}

#endif /* CONFIG_MAGIC_SYSRQ */
7552

7553
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7554
/*
7555
 * These functions are only useful for the IA64 MCA handling, or kdb.
7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7569 7570
 *
 * Return: The current task for @cpu.
7571
 */
7572
struct task_struct *curr_task(int cpu)
7573 7574 7575 7576
{
	return cpu_curr(cpu);
}

7577 7578 7579
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
7580 7581 7582 7583 7584 7585
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7586 7587
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7588 7589 7590 7591 7592 7593 7594
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7595
void set_curr_task(int cpu, struct task_struct *p)
7596 7597 7598 7599 7600
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7601

D
Dhaval Giani 已提交
7602
#ifdef CONFIG_CGROUP_SCHED
7603 7604 7605
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

7606 7607 7608 7609
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
7610
	autogroup_free(tg);
7611 7612 7613 7614
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
7615
struct task_group *sched_create_group(struct task_group *parent)
7616 7617 7618 7619 7620 7621 7622
{
	struct task_group *tg;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

7623
	if (!alloc_fair_sched_group(tg, parent))
7624 7625
		goto err;

7626
	if (!alloc_rt_sched_group(tg, parent))
7627 7628
		goto err;

7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639
	return tg;

err:
	free_sched_group(tg);
	return ERR_PTR(-ENOMEM);
}

void sched_online_group(struct task_group *tg, struct task_group *parent)
{
	unsigned long flags;

7640
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7641
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
7642 7643 7644 7645 7646

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
7647
	list_add_rcu(&tg->siblings, &parent->children);
7648
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7649 7650
}

7651
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
7652
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7653 7654
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
7655
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
7656 7657
}

7658
/* Destroy runqueue etc associated with a task group */
7659
void sched_destroy_group(struct task_group *tg)
7660 7661 7662 7663 7664 7665
{
	/* wait for possible concurrent references to cfs_rqs complete */
	call_rcu(&tg->rcu, free_sched_group_rcu);
}

void sched_offline_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7666
{
7667
	unsigned long flags;
7668
	int i;
S
Srivatsa Vaddagiri 已提交
7669

7670 7671
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
7672
		unregister_fair_sched_group(tg, i);
7673 7674

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7675
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
7676
	list_del_rcu(&tg->siblings);
7677
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7678 7679
}

7680
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7681 7682 7683
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7684 7685
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7686
{
P
Peter Zijlstra 已提交
7687
	struct task_group *tg;
7688
	int queued, running;
S
Srivatsa Vaddagiri 已提交
7689 7690 7691 7692 7693
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

7694
	running = task_current(rq, tsk);
7695
	queued = task_on_rq_queued(tsk);
S
Srivatsa Vaddagiri 已提交
7696

7697
	if (queued)
S
Srivatsa Vaddagiri 已提交
7698
		dequeue_task(rq, tsk, 0);
7699
	if (unlikely(running))
7700
		put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7701

7702 7703 7704 7705 7706 7707
	/*
	 * All callers are synchronized by task_rq_lock(); we do not use RCU
	 * which is pointless here. Thus, we pass "true" to task_css_check()
	 * to prevent lockdep warnings.
	 */
	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
P
Peter Zijlstra 已提交
7708 7709 7710 7711
			  struct task_group, css);
	tg = autogroup_task_group(tsk, tg);
	tsk->sched_task_group = tg;

P
Peter Zijlstra 已提交
7712
#ifdef CONFIG_FAIR_GROUP_SCHED
7713
	if (tsk->sched_class->task_move_group)
7714
		tsk->sched_class->task_move_group(tsk);
7715
	else
P
Peter Zijlstra 已提交
7716
#endif
7717
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
7718

7719 7720
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
7721
	if (queued)
7722
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
7723

7724
	task_rq_unlock(rq, tsk, &flags);
S
Srivatsa Vaddagiri 已提交
7725
}
D
Dhaval Giani 已提交
7726
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
7727

7728 7729 7730 7731 7732
#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
P
Peter Zijlstra 已提交
7733

P
Peter Zijlstra 已提交
7734 7735
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
7736
{
P
Peter Zijlstra 已提交
7737
	struct task_struct *g, *p;
7738

7739 7740 7741 7742 7743 7744
	/*
	 * Autogroups do not have RT tasks; see autogroup_create().
	 */
	if (task_group_is_autogroup(tg))
		return 0;

7745
	for_each_process_thread(g, p) {
7746
		if (rt_task(p) && task_group(p) == tg)
P
Peter Zijlstra 已提交
7747
			return 1;
7748
	}
7749

P
Peter Zijlstra 已提交
7750 7751
	return 0;
}
7752

P
Peter Zijlstra 已提交
7753 7754 7755 7756 7757
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
7758

7759
static int tg_rt_schedulable(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
7760 7761 7762 7763 7764
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
7765

P
Peter Zijlstra 已提交
7766 7767
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
7768

P
Peter Zijlstra 已提交
7769 7770 7771
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
7772 7773
	}

7774 7775 7776 7777 7778
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
7779

7780 7781 7782
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
7783 7784
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
7785

P
Peter Zijlstra 已提交
7786
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7787

7788 7789 7790 7791 7792
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
7793

7794 7795 7796
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
7797 7798 7799
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7800

P
Peter Zijlstra 已提交
7801 7802 7803 7804
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
7805

P
Peter Zijlstra 已提交
7806
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7807
	}
P
Peter Zijlstra 已提交
7808

P
Peter Zijlstra 已提交
7809 7810 7811 7812
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
7813 7814
}

P
Peter Zijlstra 已提交
7815
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7816
{
7817 7818
	int ret;

P
Peter Zijlstra 已提交
7819 7820 7821 7822 7823 7824
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

7825 7826 7827 7828 7829
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7830 7831
}

7832
static int tg_set_rt_bandwidth(struct task_group *tg,
7833
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
7834
{
P
Peter Zijlstra 已提交
7835
	int i, err = 0;
P
Peter Zijlstra 已提交
7836

7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847
	/*
	 * Disallowing the root group RT runtime is BAD, it would disallow the
	 * kernel creating (and or operating) RT threads.
	 */
	if (tg == &root_task_group && rt_runtime == 0)
		return -EINVAL;

	/* No period doesn't make any sense. */
	if (rt_period == 0)
		return -EINVAL;

P
Peter Zijlstra 已提交
7848
	mutex_lock(&rt_constraints_mutex);
7849
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
7850 7851
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
7852
		goto unlock;
P
Peter Zijlstra 已提交
7853

7854
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7855 7856
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
7857 7858 7859 7860

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

7861
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7862
		rt_rq->rt_runtime = rt_runtime;
7863
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7864
	}
7865
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
7866
unlock:
7867
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
7868 7869 7870
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
7871 7872
}

7873
static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7874 7875 7876 7877 7878 7879 7880 7881
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

7882
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7883 7884
}

7885
static long sched_group_rt_runtime(struct task_group *tg)
P
Peter Zijlstra 已提交
7886 7887 7888
{
	u64 rt_runtime_us;

7889
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7890 7891
		return -1;

7892
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7893 7894 7895
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
7896

7897
static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
7898 7899 7900
{
	u64 rt_runtime, rt_period;

7901
	rt_period = rt_period_us * NSEC_PER_USEC;
7902 7903
	rt_runtime = tg->rt_bandwidth.rt_runtime;

7904
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7905 7906
}

7907
static long sched_group_rt_period(struct task_group *tg)
7908 7909 7910 7911 7912 7913 7914
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}
7915
#endif /* CONFIG_RT_GROUP_SCHED */
7916

7917
#ifdef CONFIG_RT_GROUP_SCHED
7918 7919 7920 7921 7922
static int sched_rt_global_constraints(void)
{
	int ret = 0;

	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
7923
	read_lock(&tasklist_lock);
7924
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
7925
	read_unlock(&tasklist_lock);
7926 7927 7928 7929
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
7930

7931
static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7932 7933 7934 7935 7936 7937 7938 7939
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

7940
#else /* !CONFIG_RT_GROUP_SCHED */
7941 7942
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
7943
	unsigned long flags;
7944
	int i, ret = 0;
7945

7946
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7947 7948 7949
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

7950
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7951
		rt_rq->rt_runtime = global_rt_runtime();
7952
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7953
	}
7954
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7955

7956
	return ret;
7957
}
7958
#endif /* CONFIG_RT_GROUP_SCHED */
7959

7960
static int sched_dl_global_validate(void)
7961
{
7962 7963
	u64 runtime = global_rt_runtime();
	u64 period = global_rt_period();
7964
	u64 new_bw = to_ratio(period, runtime);
7965
	struct dl_bw *dl_b;
7966
	int cpu, ret = 0;
7967
	unsigned long flags;
7968 7969 7970 7971 7972 7973 7974 7975 7976 7977

	/*
	 * Here we want to check the bandwidth not being set to some
	 * value smaller than the currently allocated bandwidth in
	 * any of the root_domains.
	 *
	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
	 * cycling on root_domains... Discussion on different/better
	 * solutions is welcome!
	 */
7978
	for_each_possible_cpu(cpu) {
7979 7980
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);
7981

7982
		raw_spin_lock_irqsave(&dl_b->lock, flags);
7983 7984
		if (new_bw < dl_b->total_bw)
			ret = -EBUSY;
7985
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7986

7987 7988
		rcu_read_unlock_sched();

7989 7990
		if (ret)
			break;
7991 7992
	}

7993
	return ret;
7994 7995
}

7996
static void sched_dl_do_global(void)
7997
{
7998
	u64 new_bw = -1;
7999
	struct dl_bw *dl_b;
8000
	int cpu;
8001
	unsigned long flags;
8002

8003 8004 8005 8006 8007 8008 8009 8010 8011 8012
	def_dl_bandwidth.dl_period = global_rt_period();
	def_dl_bandwidth.dl_runtime = global_rt_runtime();

	if (global_rt_runtime() != RUNTIME_INF)
		new_bw = to_ratio(global_rt_period(), global_rt_runtime());

	/*
	 * FIXME: As above...
	 */
	for_each_possible_cpu(cpu) {
8013 8014
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);
8015

8016
		raw_spin_lock_irqsave(&dl_b->lock, flags);
8017
		dl_b->bw = new_bw;
8018
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8019 8020

		rcu_read_unlock_sched();
8021
	}
8022 8023 8024 8025 8026 8027 8028
}

static int sched_rt_global_validate(void)
{
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8029 8030
	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
8031 8032 8033 8034 8035 8036 8037 8038 8039
		return -EINVAL;

	return 0;
}

static void sched_rt_do_global(void)
{
	def_rt_bandwidth.rt_runtime = global_rt_runtime();
	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
8040 8041
}

8042
int sched_rt_handler(struct ctl_table *table, int write,
8043
		void __user *buffer, size_t *lenp,
8044 8045 8046 8047
		loff_t *ppos)
{
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);
8048
	int ret;
8049 8050 8051 8052 8053

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

8054
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8055 8056

	if (!ret && write) {
8057 8058 8059 8060
		ret = sched_rt_global_validate();
		if (ret)
			goto undo;

8061
		ret = sched_dl_global_validate();
8062 8063 8064
		if (ret)
			goto undo;

8065
		ret = sched_rt_global_constraints();
8066 8067 8068 8069 8070 8071 8072 8073 8074 8075
		if (ret)
			goto undo;

		sched_rt_do_global();
		sched_dl_do_global();
	}
	if (0) {
undo:
		sysctl_sched_rt_period = old_period;
		sysctl_sched_rt_runtime = old_runtime;
8076 8077 8078 8079 8080
	}
	mutex_unlock(&mutex);

	return ret;
}
8081

8082
int sched_rr_handler(struct ctl_table *table, int write,
8083 8084 8085 8086 8087 8088 8089 8090
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8091 8092
	/* make sure that internally we keep jiffies */
	/* also, writing zero resets timeslice to default */
8093
	if (!ret && write) {
8094 8095
		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8096 8097 8098 8099 8100
	}
	mutex_unlock(&mutex);
	return ret;
}

8101
#ifdef CONFIG_CGROUP_SCHED
8102

8103
static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8104
{
8105
	return css ? container_of(css, struct task_group, css) : NULL;
8106 8107
}

8108 8109
static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8110
{
8111 8112
	struct task_group *parent = css_tg(parent_css);
	struct task_group *tg;
8113

8114
	if (!parent) {
8115
		/* This is early initialization for the top cgroup */
8116
		return &root_task_group.css;
8117 8118
	}

8119
	tg = sched_create_group(parent);
8120 8121 8122 8123 8124 8125
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

8126
static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
8127
{
8128
	struct task_group *tg = css_tg(css);
T
Tejun Heo 已提交
8129
	struct task_group *parent = css_tg(css->parent);
8130

T
Tejun Heo 已提交
8131 8132
	if (parent)
		sched_online_group(tg, parent);
8133 8134 8135
	return 0;
}

8136
static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8137
{
8138
	struct task_group *tg = css_tg(css);
8139 8140 8141 8142

	sched_destroy_group(tg);
}

8143
static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
8144
{
8145
	struct task_group *tg = css_tg(css);
8146 8147 8148 8149

	sched_offline_group(tg);
}

8150
static void cpu_cgroup_fork(struct task_struct *task, void *private)
8151 8152 8153 8154
{
	sched_move_task(task);
}

8155
static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
8156
				 struct cgroup_taskset *tset)
8157
{
8158 8159
	struct task_struct *task;

8160
	cgroup_taskset_for_each(task, tset) {
8161
#ifdef CONFIG_RT_GROUP_SCHED
8162
		if (!sched_rt_can_attach(css_tg(css), task))
8163
			return -EINVAL;
8164
#else
8165 8166 8167
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
8168
#endif
8169
	}
8170 8171
	return 0;
}
8172

8173
static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
8174
			      struct cgroup_taskset *tset)
8175
{
8176 8177
	struct task_struct *task;

8178
	cgroup_taskset_for_each(task, tset)
8179
		sched_move_task(task);
8180 8181
}

8182 8183 8184
static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
			    struct cgroup_subsys_state *old_css,
			    struct task_struct *task)
8185 8186 8187 8188
{
	sched_move_task(task);
}

8189
#ifdef CONFIG_FAIR_GROUP_SCHED
8190 8191
static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
				struct cftype *cftype, u64 shareval)
8192
{
8193
	return sched_group_set_shares(css_tg(css), scale_load(shareval));
8194 8195
}

8196 8197
static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
			       struct cftype *cft)
8198
{
8199
	struct task_group *tg = css_tg(css);
8200

8201
	return (u64) scale_load_down(tg->shares);
8202
}
8203 8204

#ifdef CONFIG_CFS_BANDWIDTH
8205 8206
static DEFINE_MUTEX(cfs_constraints_mutex);

8207 8208 8209
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

8210 8211
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

8212 8213
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
8214
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8215
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

8236 8237 8238 8239 8240
	/*
	 * Prevent race between setting of cfs_rq->runtime_enabled and
	 * unthrottle_offline_cfs_rqs().
	 */
	get_online_cpus();
8241 8242 8243 8244 8245
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

8246
	runtime_enabled = quota != RUNTIME_INF;
8247
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8248 8249 8250 8251 8252 8253
	/*
	 * If we need to toggle cfs_bandwidth_used, off->on must occur
	 * before making related changes, and on->off must occur afterwards
	 */
	if (runtime_enabled && !runtime_was_enabled)
		cfs_bandwidth_usage_inc();
8254 8255 8256
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
8257

P
Paul Turner 已提交
8258
	__refill_cfs_bandwidth_runtime(cfs_b);
8259
	/* restart the period timer (if active) to handle new period expiry */
P
Peter Zijlstra 已提交
8260 8261
	if (runtime_enabled)
		start_cfs_bandwidth(cfs_b);
8262 8263
	raw_spin_unlock_irq(&cfs_b->lock);

8264
	for_each_online_cpu(i) {
8265
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8266
		struct rq *rq = cfs_rq->rq;
8267 8268

		raw_spin_lock_irq(&rq->lock);
8269
		cfs_rq->runtime_enabled = runtime_enabled;
8270
		cfs_rq->runtime_remaining = 0;
8271

8272
		if (cfs_rq->throttled)
8273
			unthrottle_cfs_rq(cfs_rq);
8274 8275
		raw_spin_unlock_irq(&rq->lock);
	}
8276 8277
	if (runtime_was_enabled && !runtime_enabled)
		cfs_bandwidth_usage_dec();
8278 8279
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
8280
	put_online_cpus();
8281

8282
	return ret;
8283 8284 8285 8286 8287 8288
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

8289
	period = ktime_to_ns(tg->cfs_bandwidth.period);
8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

8302
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8303 8304
		return -1;

8305
	quota_us = tg->cfs_bandwidth.quota;
8306 8307 8308 8309 8310 8311 8312 8313 8314 8315
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
8316
	quota = tg->cfs_bandwidth.quota;
8317 8318 8319 8320 8321 8322 8323 8324

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

8325
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8326 8327 8328 8329 8330
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

8331 8332
static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
				  struct cftype *cft)
8333
{
8334
	return tg_get_cfs_quota(css_tg(css));
8335 8336
}

8337 8338
static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
				   struct cftype *cftype, s64 cfs_quota_us)
8339
{
8340
	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8341 8342
}

8343 8344
static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
				   struct cftype *cft)
8345
{
8346
	return tg_get_cfs_period(css_tg(css));
8347 8348
}

8349 8350
static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 cfs_period_us)
8351
{
8352
	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8353 8354
}

8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
8387
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8388 8389 8390 8391 8392
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
8393
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8394 8395

		quota = normalize_cfs_quota(tg, d);
8396
		parent_quota = parent_b->hierarchical_quota;
8397 8398 8399 8400 8401 8402 8403 8404 8405 8406

		/*
		 * ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
8407
	cfs_b->hierarchical_quota = quota;
8408 8409 8410 8411 8412 8413

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
8414
	int ret;
8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

8426 8427 8428 8429 8430
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
8431
}
8432

8433
static int cpu_stats_show(struct seq_file *sf, void *v)
8434
{
8435
	struct task_group *tg = css_tg(seq_css(sf));
8436
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8437

8438 8439 8440
	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8441 8442 8443

	return 0;
}
8444
#endif /* CONFIG_CFS_BANDWIDTH */
8445
#endif /* CONFIG_FAIR_GROUP_SCHED */
8446

8447
#ifdef CONFIG_RT_GROUP_SCHED
8448 8449
static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
				struct cftype *cft, s64 val)
P
Peter Zijlstra 已提交
8450
{
8451
	return sched_group_set_rt_runtime(css_tg(css), val);
P
Peter Zijlstra 已提交
8452 8453
}

8454 8455
static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
P
Peter Zijlstra 已提交
8456
{
8457
	return sched_group_rt_runtime(css_tg(css));
P
Peter Zijlstra 已提交
8458
}
8459

8460 8461
static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 rt_period_us)
8462
{
8463
	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8464 8465
}

8466 8467
static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
				   struct cftype *cft)
8468
{
8469
	return sched_group_rt_period(css_tg(css));
8470
}
8471
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
8472

8473
static struct cftype cpu_files[] = {
8474
#ifdef CONFIG_FAIR_GROUP_SCHED
8475 8476
	{
		.name = "shares",
8477 8478
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8479
	},
8480
#endif
8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
8492 8493
	{
		.name = "stat",
8494
		.seq_show = cpu_stats_show,
8495
	},
8496
#endif
8497
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8498
	{
P
Peter Zijlstra 已提交
8499
		.name = "rt_runtime_us",
8500 8501
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8502
	},
8503 8504
	{
		.name = "rt_period_us",
8505 8506
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8507
	},
8508
#endif
8509
	{ }	/* terminate */
8510 8511
};

8512
struct cgroup_subsys cpu_cgrp_subsys = {
8513 8514
	.css_alloc	= cpu_cgroup_css_alloc,
	.css_free	= cpu_cgroup_css_free,
8515 8516
	.css_online	= cpu_cgroup_css_online,
	.css_offline	= cpu_cgroup_css_offline,
8517
	.fork		= cpu_cgroup_fork,
8518 8519
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
8520
	.exit		= cpu_cgroup_exit,
8521
	.legacy_cftypes	= cpu_files,
8522 8523 8524
	.early_init	= 1,
};

8525
#endif	/* CONFIG_CGROUP_SCHED */
8526

8527 8528 8529 8530 8531
void dump_cpu_task(int cpu)
{
	pr_info("Task dump for CPU %d:\n", cpu);
	sched_show_task(cpu_curr(cpu));
}