core.c 190.3 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/highmem.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
37
#include <linux/capability.h>
L
Linus Torvalds 已提交
38 39
#include <linux/completion.h>
#include <linux/kernel_stat.h>
40
#include <linux/debug_locks.h>
41
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
57
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
58
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/unistd.h>
J
Jens Axboe 已提交
66
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
67
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
68
#include <linux/tick.h>
P
Peter Zijlstra 已提交
69 70
#include <linux/debugfs.h>
#include <linux/ctype.h>
71
#include <linux/ftrace.h>
72
#include <linux/slab.h>
73
#include <linux/init_task.h>
A
Al Viro 已提交
74
#include <linux/binfmts.h>
75
#include <linux/context_tracking.h>
76
#include <linux/compiler.h>
L
Linus Torvalds 已提交
77

78
#include <asm/switch_to.h>
79
#include <asm/tlb.h>
80
#include <asm/irq_regs.h>
81
#include <asm/mutex.h>
G
Glauber Costa 已提交
82 83 84
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
85

86
#include "sched.h"
87
#include "../workqueue_internal.h"
88
#include "../smpboot.h"
89

90
#define CREATE_TRACE_POINTS
91
#include <trace/events/sched.h>
92

93
void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
94
{
95 96
	unsigned long delta;
	ktime_t soft, hard, now;
97

98 99 100 101 102 103
	for (;;) {
		if (hrtimer_active(period_timer))
			break;

		now = hrtimer_cb_get_time(period_timer);
		hrtimer_forward(period_timer, now, period);
104

105 106 107 108 109 110 111 112
		soft = hrtimer_get_softexpires(period_timer);
		hard = hrtimer_get_expires(period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(period_timer, soft, delta,
					 HRTIMER_MODE_ABS_PINNED, 0);
	}
}

113 114
DEFINE_MUTEX(sched_domains_mutex);
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
115

116
static void update_rq_clock_task(struct rq *rq, s64 delta);
117

118
void update_rq_clock(struct rq *rq)
119
{
120
	s64 delta;
121

122
	if (rq->skip_clock_update > 0)
123
		return;
124

125 126 127
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
128 129
}

I
Ingo Molnar 已提交
130 131 132
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
133 134 135 136

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
137
const_debug unsigned int sysctl_sched_features =
138
#include "features.h"
P
Peter Zijlstra 已提交
139 140 141 142 143 144 145 146
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

147
static const char * const sched_feat_names[] = {
148
#include "features.h"
P
Peter Zijlstra 已提交
149 150 151 152
};

#undef SCHED_FEAT

L
Li Zefan 已提交
153
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
154 155 156
{
	int i;

157
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
L
Li Zefan 已提交
158 159 160
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
161
	}
L
Li Zefan 已提交
162
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
163

L
Li Zefan 已提交
164
	return 0;
P
Peter Zijlstra 已提交
165 166
}

167 168
#ifdef HAVE_JUMP_LABEL

169 170
#define jump_label_key__true  STATIC_KEY_INIT_TRUE
#define jump_label_key__false STATIC_KEY_INIT_FALSE
171 172 173 174

#define SCHED_FEAT(name, enabled)	\
	jump_label_key__##enabled ,

175
struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
176 177 178 179 180 181 182
#include "features.h"
};

#undef SCHED_FEAT

static void sched_feat_disable(int i)
{
183 184
	if (static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_dec(&sched_feat_keys[i]);
185 186 187 188
}

static void sched_feat_enable(int i)
{
189 190
	if (!static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_inc(&sched_feat_keys[i]);
191 192 193 194 195 196
}
#else
static void sched_feat_disable(int i) { };
static void sched_feat_enable(int i) { };
#endif /* HAVE_JUMP_LABEL */

197
static int sched_feat_set(char *cmp)
P
Peter Zijlstra 已提交
198 199
{
	int i;
200
	int neg = 0;
P
Peter Zijlstra 已提交
201

H
Hillf Danton 已提交
202
	if (strncmp(cmp, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
203 204 205 206
		neg = 1;
		cmp += 3;
	}

207
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
208
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
209
			if (neg) {
P
Peter Zijlstra 已提交
210
				sysctl_sched_features &= ~(1UL << i);
211 212
				sched_feat_disable(i);
			} else {
P
Peter Zijlstra 已提交
213
				sysctl_sched_features |= (1UL << i);
214 215
				sched_feat_enable(i);
			}
P
Peter Zijlstra 已提交
216 217 218 219
			break;
		}
	}

220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
	return i;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
	cmp = strstrip(buf);

	i = sched_feat_set(cmp);
241
	if (i == __SCHED_FEAT_NR)
P
Peter Zijlstra 已提交
242 243
		return -EINVAL;

244
	*ppos += cnt;
P
Peter Zijlstra 已提交
245 246 247 248

	return cnt;
}

L
Li Zefan 已提交
249 250 251 252 253
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

254
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
255 256 257 258 259
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
260 261 262 263 264 265 266 267 268 269
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);
270
#endif /* CONFIG_SCHED_DEBUG */
I
Ingo Molnar 已提交
271

272 273 274 275 276 277
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

278 279 280 281 282 283 284 285
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
286
/*
P
Peter Zijlstra 已提交
287
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
288 289
 * default: 1s
 */
P
Peter Zijlstra 已提交
290
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
291

292
__read_mostly int scheduler_running;
293

P
Peter Zijlstra 已提交
294 295 296 297 298
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
299

300
/*
301
 * __task_rq_lock - lock the rq @p resides on.
302
 */
303
static inline struct rq *__task_rq_lock(struct task_struct *p)
304 305
	__acquires(rq->lock)
{
306 307
	struct rq *rq;

308 309
	lockdep_assert_held(&p->pi_lock);

310
	for (;;) {
311
		rq = task_rq(p);
312
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
313
		if (likely(rq == task_rq(p)))
314
			return rq;
315
		raw_spin_unlock(&rq->lock);
316 317 318
	}
}

L
Linus Torvalds 已提交
319
/*
320
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
L
Linus Torvalds 已提交
321
 */
322
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
323
	__acquires(p->pi_lock)
L
Linus Torvalds 已提交
324 325
	__acquires(rq->lock)
{
326
	struct rq *rq;
L
Linus Torvalds 已提交
327

328
	for (;;) {
329
		raw_spin_lock_irqsave(&p->pi_lock, *flags);
330
		rq = task_rq(p);
331
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
332
		if (likely(rq == task_rq(p)))
333
			return rq;
334 335
		raw_spin_unlock(&rq->lock);
		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
336 337 338
	}
}

A
Alexey Dobriyan 已提交
339
static void __task_rq_unlock(struct rq *rq)
340 341
	__releases(rq->lock)
{
342
	raw_spin_unlock(&rq->lock);
343 344
}

345 346
static inline void
task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
347
	__releases(rq->lock)
348
	__releases(p->pi_lock)
L
Linus Torvalds 已提交
349
{
350 351
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
352 353 354
}

/*
355
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
356
 */
A
Alexey Dobriyan 已提交
357
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
358 359
	__acquires(rq->lock)
{
360
	struct rq *rq;
L
Linus Torvalds 已提交
361 362 363

	local_irq_disable();
	rq = this_rq();
364
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
365 366 367 368

	return rq;
}

P
Peter Zijlstra 已提交
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

390
	raw_spin_lock(&rq->lock);
391
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
392
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
393
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
394 395 396 397

	return HRTIMER_NORESTART;
}

398
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
399 400 401 402 403 404 405 406 407

static int __hrtick_restart(struct rq *rq)
{
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = hrtimer_get_softexpires(timer);

	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
}

408 409 410 411
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
412
{
413
	struct rq *rq = arg;
414

415
	raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
416
	__hrtick_restart(rq);
417
	rq->hrtick_csd_pending = 0;
418
	raw_spin_unlock(&rq->lock);
419 420
}

421 422 423 424 425
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
426
void hrtick_start(struct rq *rq, u64 delay)
427
{
428 429
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
430

431
	hrtimer_set_expires(timer, time);
432 433

	if (rq == this_rq()) {
P
Peter Zijlstra 已提交
434
		__hrtick_restart(rq);
435
	} else if (!rq->hrtick_csd_pending) {
436
		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
437 438
		rq->hrtick_csd_pending = 1;
	}
439 440 441 442 443 444 445 446 447 448 449 450 451 452
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
453
		hrtick_clear(cpu_rq(cpu));
454 455 456 457 458 459
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

460
static __init void init_hrtick(void)
461 462 463
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
464 465 466 467 468 469
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
470
void hrtick_start(struct rq *rq, u64 delay)
471
{
472
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
473
			HRTIMER_MODE_REL_PINNED, 0);
474
}
475

A
Andrew Morton 已提交
476
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
477 478
{
}
479
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
480

481
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
482
{
483 484
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
485

486 487 488 489
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
490

491 492
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
493
}
A
Andrew Morton 已提交
494
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
495 496 497 498 499 500 501 502
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

503 504 505
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
506
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
507

508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
/*
 * cmpxchg based fetch_or, macro so it works for different integer types
 */
#define fetch_or(ptr, val)						\
({	typeof(*(ptr)) __old, __val = *(ptr);				\
 	for (;;) {							\
 		__old = cmpxchg((ptr), __val, __val | (val));		\
 		if (__old == __val)					\
 			break;						\
 		__val = __old;						\
 	}								\
 	__old;								\
})

#ifdef TIF_POLLING_NRFLAG
/*
 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
 * this avoids any races wrt polling state changes and thereby avoids
 * spurious IPIs.
 */
static bool set_nr_and_not_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
}
#else
static bool set_nr_and_not_polling(struct task_struct *p)
{
	set_tsk_need_resched(p);
	return true;
}
#endif

I
Ingo Molnar 已提交
541 542 543 544 545 546 547
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
548
void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
549 550 551
{
	int cpu;

552
	lockdep_assert_held(&task_rq(p)->lock);
I
Ingo Molnar 已提交
553

554
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
555 556 557
		return;

	cpu = task_cpu(p);
558

559
	if (cpu == smp_processor_id()) {
560
		set_tsk_need_resched(p);
561
		set_preempt_need_resched();
I
Ingo Molnar 已提交
562
		return;
563
	}
I
Ingo Molnar 已提交
564

565
	if (set_nr_and_not_polling(p))
I
Ingo Molnar 已提交
566 567 568
		smp_send_reschedule(cpu);
}

569
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
570 571 572 573
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

574
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
575 576
		return;
	resched_task(cpu_curr(cpu));
577
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
578
}
579

580
#ifdef CONFIG_SMP
581
#ifdef CONFIG_NO_HZ_COMMON
582 583 584 585 586 587 588 589
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
590
int get_nohz_timer_target(int pinned)
591 592 593 594 595
{
	int cpu = smp_processor_id();
	int i;
	struct sched_domain *sd;

596 597 598
	if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
		return cpu;

599
	rcu_read_lock();
600
	for_each_domain(cpu, sd) {
601 602 603 604 605 606
		for_each_cpu(i, sched_domain_span(sd)) {
			if (!idle_cpu(i)) {
				cpu = i;
				goto unlock;
			}
		}
607
	}
608 609
unlock:
	rcu_read_unlock();
610 611
	return cpu;
}
612 613 614 615 616 617 618 619 620 621
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
622
static void wake_up_idle_cpu(int cpu)
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;
638 639

	/*
640 641 642
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
643
	 */
644
	set_tsk_need_resched(rq->idle);
645

646 647 648 649
	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
650 651
}

652
static bool wake_up_full_nohz_cpu(int cpu)
653
{
654
	if (tick_nohz_full_cpu(cpu)) {
655 656 657 658 659 660 661 662 663 664 665
		if (cpu != smp_processor_id() ||
		    tick_nohz_tick_stopped())
			smp_send_reschedule(cpu);
		return true;
	}

	return false;
}

void wake_up_nohz_cpu(int cpu)
{
666
	if (!wake_up_full_nohz_cpu(cpu))
667 668 669
		wake_up_idle_cpu(cpu);
}

670
static inline bool got_nohz_idle_kick(void)
671
{
672
	int cpu = smp_processor_id();
673 674 675 676 677 678 679 680 681 682 683 684 685

	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
		return false;

	if (idle_cpu(cpu) && !need_resched())
		return true;

	/*
	 * We can't run Idle Load Balance on this CPU for this time so we
	 * cancel it and clear NOHZ_BALANCE_KICK
	 */
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
	return false;
686 687
}

688
#else /* CONFIG_NO_HZ_COMMON */
689

690
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
691
{
692
	return false;
P
Peter Zijlstra 已提交
693 694
}

695
#endif /* CONFIG_NO_HZ_COMMON */
696

697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
#ifdef CONFIG_NO_HZ_FULL
bool sched_can_stop_tick(void)
{
       struct rq *rq;

       rq = this_rq();

       /* Make sure rq->nr_running update is visible after the IPI */
       smp_rmb();

       /* More than one running task need preemption */
       if (rq->nr_running > 1)
               return false;

       return true;
}
#endif /* CONFIG_NO_HZ_FULL */
714

715
void sched_avg_update(struct rq *rq)
716
{
717 718
	s64 period = sched_avg_period();

719
	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
720 721 722 723 724 725
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
726 727 728
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
729 730
}

731
#endif /* CONFIG_SMP */
732

733 734
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
735
/*
736 737 738 739
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
740
 */
741
int walk_tg_tree_from(struct task_group *from,
742
			     tg_visitor down, tg_visitor up, void *data)
743 744
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
745
	int ret;
746

747 748
	parent = from;

749
down:
P
Peter Zijlstra 已提交
750 751
	ret = (*down)(parent, data);
	if (ret)
752
		goto out;
753 754 755 756 757 758 759
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
760
	ret = (*up)(parent, data);
761 762
	if (ret || parent == from)
		goto out;
763 764 765 766 767

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
768
out:
P
Peter Zijlstra 已提交
769
	return ret;
770 771
}

772
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
773
{
774
	return 0;
P
Peter Zijlstra 已提交
775
}
776 777
#endif

778 779
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
780 781 782
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
783 784 785 786
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
787
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
788
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
789 790
		return;
	}
791

792
	load->weight = scale_load(prio_to_weight[prio]);
N
Nikhil Rao 已提交
793
	load->inv_weight = prio_to_wmult[prio];
794 795
}

796
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
797
{
798
	update_rq_clock(rq);
799
	sched_info_queued(rq, p);
800
	p->sched_class->enqueue_task(rq, p, flags);
801 802
}

803
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
804
{
805
	update_rq_clock(rq);
806
	sched_info_dequeued(rq, p);
807
	p->sched_class->dequeue_task(rq, p, flags);
808 809
}

810
void activate_task(struct rq *rq, struct task_struct *p, int flags)
811 812 813 814
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

815
	enqueue_task(rq, p, flags);
816 817
}

818
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
819 820 821 822
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

823
	dequeue_task(rq, p, flags);
824 825
}

826
static void update_rq_clock_task(struct rq *rq, s64 delta)
827
{
828 829 830 831 832 833 834 835
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
836
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
858 859
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
860
	if (static_key_false((&paravirt_steal_rq_enabled))) {
861 862 863 864 865 866 867 868 869 870 871
		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		rq->prev_steal_time_rq += steal;
		delta -= steal;
	}
#endif

872 873
	rq->clock_task += delta;

874
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
875
	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
876 877
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
878 879
}

880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

910
/*
I
Ingo Molnar 已提交
911
 * __normal_prio - return the priority that is based on the static prio
912 913 914
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
915
	return p->static_prio;
916 917
}

918 919 920 921 922 923 924
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
925
static inline int normal_prio(struct task_struct *p)
926 927 928
{
	int prio;

929 930 931
	if (task_has_dl_policy(p))
		prio = MAX_DL_PRIO-1;
	else if (task_has_rt_policy(p))
932 933 934 935 936 937 938 939 940 941 942 943 944
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
945
static int effective_prio(struct task_struct *p)
946 947 948 949 950 951 952 953 954 955 956 957
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
958 959 960
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
961 962
 *
 * Return: 1 if the task is currently executing. 0 otherwise.
L
Linus Torvalds 已提交
963
 */
964
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
965 966 967 968
{
	return cpu_curr(task_cpu(p)) == p;
}

969 970
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
971
				       int oldprio)
972 973 974
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
975 976
			prev_class->switched_from(rq, p);
		p->sched_class->switched_to(rq, p);
977
	} else if (oldprio != p->prio || dl_task(p))
P
Peter Zijlstra 已提交
978
		p->sched_class->prio_changed(rq, p, oldprio);
979 980
}

981
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
				resched_task(rq->curr);
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
P
Peter Zijlstra 已提交
1002
	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1003 1004 1005
		rq->skip_clock_update = 1;
}

L
Linus Torvalds 已提交
1006
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1007
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1008
{
1009 1010 1011 1012 1013
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
1014
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1015
			!(task_preempt_count(p) & PREEMPT_ACTIVE));
1016 1017

#ifdef CONFIG_LOCKDEP
1018 1019 1020 1021 1022
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
P
Peter Zijlstra 已提交
1023
	 * see task_group().
1024 1025 1026 1027
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
1028 1029 1030
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
1031 1032
#endif

1033
	trace_sched_migrate_task(p, new_cpu);
1034

1035
	if (task_cpu(p) != new_cpu) {
1036 1037
		if (p->sched_class->migrate_task_rq)
			p->sched_class->migrate_task_rq(p, new_cpu);
1038
		p->se.nr_migrations++;
1039
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1040
	}
I
Ingo Molnar 已提交
1041 1042

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1043 1044
}

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
static void __migrate_swap_task(struct task_struct *p, int cpu)
{
	if (p->on_rq) {
		struct rq *src_rq, *dst_rq;

		src_rq = task_rq(p);
		dst_rq = cpu_rq(cpu);

		deactivate_task(src_rq, p, 0);
		set_task_cpu(p, cpu);
		activate_task(dst_rq, p, 0);
		check_preempt_curr(dst_rq, p, 0);
	} else {
		/*
		 * Task isn't running anymore; make it appear like we migrated
		 * it before it went to sleep. This means on wakeup we make the
		 * previous cpu our targer instead of where it really is.
		 */
		p->wake_cpu = cpu;
	}
}

struct migration_swap_arg {
	struct task_struct *src_task, *dst_task;
	int src_cpu, dst_cpu;
};

static int migrate_swap_stop(void *data)
{
	struct migration_swap_arg *arg = data;
	struct rq *src_rq, *dst_rq;
	int ret = -EAGAIN;

	src_rq = cpu_rq(arg->src_cpu);
	dst_rq = cpu_rq(arg->dst_cpu);

1081 1082
	double_raw_lock(&arg->src_task->pi_lock,
			&arg->dst_task->pi_lock);
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
	double_rq_lock(src_rq, dst_rq);
	if (task_cpu(arg->dst_task) != arg->dst_cpu)
		goto unlock;

	if (task_cpu(arg->src_task) != arg->src_cpu)
		goto unlock;

	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
		goto unlock;

	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
		goto unlock;

	__migrate_swap_task(arg->src_task, arg->dst_cpu);
	__migrate_swap_task(arg->dst_task, arg->src_cpu);

	ret = 0;

unlock:
	double_rq_unlock(src_rq, dst_rq);
1103 1104
	raw_spin_unlock(&arg->dst_task->pi_lock);
	raw_spin_unlock(&arg->src_task->pi_lock);
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126

	return ret;
}

/*
 * Cross migrate two tasks
 */
int migrate_swap(struct task_struct *cur, struct task_struct *p)
{
	struct migration_swap_arg arg;
	int ret = -EINVAL;

	arg = (struct migration_swap_arg){
		.src_task = cur,
		.src_cpu = task_cpu(cur),
		.dst_task = p,
		.dst_cpu = task_cpu(p),
	};

	if (arg.src_cpu == arg.dst_cpu)
		goto out;

1127 1128 1129 1130
	/*
	 * These three tests are all lockless; this is OK since all of them
	 * will be re-checked with proper locks held further down the line.
	 */
1131 1132 1133 1134 1135 1136 1137 1138 1139
	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
		goto out;

	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
		goto out;

	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
		goto out;

1140
	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1141 1142 1143 1144 1145 1146
	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);

out:
	return ret;
}

1147
struct migration_arg {
1148
	struct task_struct *task;
L
Linus Torvalds 已提交
1149
	int dest_cpu;
1150
};
L
Linus Torvalds 已提交
1151

1152 1153
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
1154 1155 1156
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1157 1158 1159 1160 1161 1162 1163
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1164 1165 1166 1167 1168 1169
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1170
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1171 1172
{
	unsigned long flags;
I
Ingo Molnar 已提交
1173
	int running, on_rq;
R
Roland McGrath 已提交
1174
	unsigned long ncsw;
1175
	struct rq *rq;
L
Linus Torvalds 已提交
1176

1177 1178 1179 1180 1181 1182 1183 1184
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1185

1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1197 1198 1199
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1200
			cpu_relax();
R
Roland McGrath 已提交
1201
		}
1202

1203 1204 1205 1206 1207 1208
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1209
		trace_sched_wait_task(p);
1210
		running = task_running(rq, p);
P
Peter Zijlstra 已提交
1211
		on_rq = p->on_rq;
R
Roland McGrath 已提交
1212
		ncsw = 0;
1213
		if (!match_state || p->state == match_state)
1214
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1215
		task_rq_unlock(rq, p, &flags);
1216

R
Roland McGrath 已提交
1217 1218 1219 1220 1221 1222
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1233

1234 1235 1236 1237 1238
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1239
		 * So if it was still runnable (but just not actively
1240 1241 1242 1243
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
1244 1245 1246 1247
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1248 1249
			continue;
		}
1250

1251 1252 1253 1254 1255 1256 1257
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1258 1259

	return ncsw;
L
Linus Torvalds 已提交
1260 1261 1262 1263 1264 1265 1266 1267 1268
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1269
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1270 1271 1272 1273 1274
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1275
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1276 1277 1278 1279 1280 1281 1282 1283 1284
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1285
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
1286
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1287

1288
#ifdef CONFIG_SMP
1289
/*
1290
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1291
 */
1292 1293
static int select_fallback_rq(int cpu, struct task_struct *p)
{
1294 1295
	int nid = cpu_to_node(cpu);
	const struct cpumask *nodemask = NULL;
1296 1297
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1298

1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
	/*
	 * If the node that the cpu is on has been offlined, cpu_to_node()
	 * will return -1. There is no cpu on the node, and we should
	 * select the cpu on the other node.
	 */
	if (nid != -1) {
		nodemask = cpumask_of_node(nid);

		/* Look for allowed, online CPU in same node. */
		for_each_cpu(dest_cpu, nodemask) {
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
				return dest_cpu;
		}
1316
	}
1317

1318 1319
	for (;;) {
		/* Any allowed, online CPU? */
1320
		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1321 1322 1323 1324 1325 1326
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			goto out;
		}
1327

1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
		switch (state) {
		case cpuset:
			/* No more Mr. Nice Guy. */
			cpuset_cpus_allowed_fallback(p);
			state = possible;
			break;

		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk_sched("process %d (%s) no longer affine to cpu%d\n",
					task_pid_nr(p), p->comm, cpu);
		}
1357 1358 1359 1360 1361
	}

	return dest_cpu;
}

1362
/*
1363
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1364
 */
1365
static inline
1366
int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1367
{
1368
	cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1380
	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
P
Peter Zijlstra 已提交
1381
		     !cpu_online(cpu)))
1382
		cpu = select_fallback_rq(task_cpu(p), p);
1383 1384

	return cpu;
1385
}
1386 1387 1388 1389 1390 1391

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1392 1393
#endif

P
Peter Zijlstra 已提交
1394
static void
1395
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1396
{
P
Peter Zijlstra 已提交
1397
#ifdef CONFIG_SCHEDSTATS
1398 1399
	struct rq *rq = this_rq();

P
Peter Zijlstra 已提交
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
#ifdef CONFIG_SMP
	int this_cpu = smp_processor_id();

	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	} else {
		struct sched_domain *sd;

		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1410
		rcu_read_lock();
P
Peter Zijlstra 已提交
1411 1412 1413 1414 1415 1416
		for_each_domain(this_cpu, sd) {
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
1417
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1418
	}
1419 1420 1421 1422

	if (wake_flags & WF_MIGRATED)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);

P
Peter Zijlstra 已提交
1423 1424 1425
#endif /* CONFIG_SMP */

	schedstat_inc(rq, ttwu_count);
T
Tejun Heo 已提交
1426
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1427 1428

	if (wake_flags & WF_SYNC)
T
Tejun Heo 已提交
1429
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1430 1431 1432 1433 1434 1435

#endif /* CONFIG_SCHEDSTATS */
}

static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
{
T
Tejun Heo 已提交
1436
	activate_task(rq, p, en_flags);
P
Peter Zijlstra 已提交
1437
	p->on_rq = 1;
1438 1439 1440 1441

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1442 1443
}

1444 1445 1446
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1447
static void
1448
ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
T
Tejun Heo 已提交
1449 1450
{
	check_preempt_curr(rq, p, wake_flags);
1451
	trace_sched_wakeup(p, true);
T
Tejun Heo 已提交
1452 1453 1454 1455 1456 1457

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);

1458
	if (rq->idle_stamp) {
1459
		u64 delta = rq_clock(rq) - rq->idle_stamp;
1460
		u64 max = 2*rq->max_idle_balance_cost;
T
Tejun Heo 已提交
1461

1462 1463 1464
		update_avg(&rq->avg_idle, delta);

		if (rq->avg_idle > max)
T
Tejun Heo 已提交
1465
			rq->avg_idle = max;
1466

T
Tejun Heo 已提交
1467 1468 1469 1470 1471
		rq->idle_stamp = 0;
	}
#endif
}

1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
static void
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
{
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
#endif

	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
	ttwu_do_wakeup(rq, p, wake_flags);
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
	if (p->on_rq) {
1497 1498
		/* check_preempt_curr() may use rq clock */
		update_rq_clock(rq);
1499 1500 1501 1502 1503 1504 1505 1506
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;
}

1507
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1508
static void sched_ttwu_pending(void)
1509 1510
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1511 1512
	struct llist_node *llist = llist_del_all(&rq->wake_list);
	struct task_struct *p;
1513 1514 1515

	raw_spin_lock(&rq->lock);

P
Peter Zijlstra 已提交
1516 1517 1518
	while (llist) {
		p = llist_entry(llist, struct task_struct, wake_entry);
		llist = llist_next(llist);
1519 1520 1521 1522 1523 1524 1525 1526
		ttwu_do_activate(rq, p, 0);
	}

	raw_spin_unlock(&rq->lock);
}

void scheduler_ipi(void)
{
1527 1528 1529 1530 1531
	/*
	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
	 * TIF_NEED_RESCHED remotely (for the first time) will also send
	 * this IPI.
	 */
1532
	preempt_fold_need_resched();
1533

1534 1535 1536
	if (llist_empty(&this_rq()->wake_list)
			&& !tick_nohz_full_cpu(smp_processor_id())
			&& !got_nohz_idle_kick())
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
1553
	tick_nohz_full_check();
P
Peter Zijlstra 已提交
1554
	sched_ttwu_pending();
1555 1556 1557 1558

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1559
	if (unlikely(got_nohz_idle_kick())) {
1560
		this_rq()->idle_balance = 1;
1561
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1562
	}
1563
	irq_exit();
1564 1565 1566 1567
}

static void ttwu_queue_remote(struct task_struct *p, int cpu)
{
P
Peter Zijlstra 已提交
1568
	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1569 1570
		smp_send_reschedule(cpu);
}
1571

1572
bool cpus_share_cache(int this_cpu, int that_cpu)
1573 1574 1575
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1576
#endif /* CONFIG_SMP */
1577

1578 1579 1580 1581
static void ttwu_queue(struct task_struct *p, int cpu)
{
	struct rq *rq = cpu_rq(cpu);

1582
#if defined(CONFIG_SMP)
1583
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1584
		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1585 1586 1587 1588 1589
		ttwu_queue_remote(p, cpu);
		return;
	}
#endif

1590 1591 1592
	raw_spin_lock(&rq->lock);
	ttwu_do_activate(rq, p, 0);
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
1593 1594 1595
}

/**
L
Linus Torvalds 已提交
1596
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1597
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1598
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1599
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1600 1601 1602 1603 1604 1605 1606
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
1607
 * Return: %true if @p was woken up, %false if it was already running.
T
Tejun Heo 已提交
1608
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
1609
 */
1610 1611
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1612 1613
{
	unsigned long flags;
1614
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1615

1616 1617 1618 1619 1620 1621 1622
	/*
	 * If we are going to wake up a thread waiting for CONDITION we
	 * need to ensure that CONDITION=1 done by the caller can not be
	 * reordered with p->state check below. This pairs with mb() in
	 * set_current_state() the waiting thread does.
	 */
	smp_mb__before_spinlock();
1623
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
1624
	if (!(p->state & state))
L
Linus Torvalds 已提交
1625 1626
		goto out;

1627
	success = 1; /* we're going to change ->state */
L
Linus Torvalds 已提交
1628 1629
	cpu = task_cpu(p);

1630 1631
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
1632 1633

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1634
	/*
1635 1636
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
P
Peter Zijlstra 已提交
1637
	 */
1638
	while (p->on_cpu)
1639
		cpu_relax();
1640
	/*
1641
	 * Pairs with the smp_wmb() in finish_lock_switch().
1642
	 */
1643
	smp_rmb();
L
Linus Torvalds 已提交
1644

1645
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
1646
	p->state = TASK_WAKING;
1647

1648
	if (p->sched_class->task_waking)
1649
		p->sched_class->task_waking(p);
1650

1651
	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1652 1653
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
1654
		set_task_cpu(p, cpu);
1655
	}
L
Linus Torvalds 已提交
1656 1657
#endif /* CONFIG_SMP */

1658 1659
	ttwu_queue(p, cpu);
stat:
1660
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
1661
out:
1662
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
1663 1664 1665 1666

	return success;
}

T
Tejun Heo 已提交
1667 1668 1669 1670
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
1671
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
1672
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1673
 * the current task.
T
Tejun Heo 已提交
1674 1675 1676 1677 1678
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

1679 1680 1681 1682
	if (WARN_ON_ONCE(rq != this_rq()) ||
	    WARN_ON_ONCE(p == current))
		return;

T
Tejun Heo 已提交
1683 1684
	lockdep_assert_held(&rq->lock);

1685 1686 1687 1688 1689 1690
	if (!raw_spin_trylock(&p->pi_lock)) {
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
	}

T
Tejun Heo 已提交
1691
	if (!(p->state & TASK_NORMAL))
1692
		goto out;
T
Tejun Heo 已提交
1693

P
Peter Zijlstra 已提交
1694
	if (!p->on_rq)
P
Peter Zijlstra 已提交
1695 1696
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

1697
	ttwu_do_wakeup(rq, p, 0);
1698
	ttwu_stat(p, smp_processor_id(), 0);
1699 1700
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
1701 1702
}

1703 1704 1705 1706 1707
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
1708 1709 1710
 * processes.
 *
 * Return: 1 if the process was woken up, 0 if it was already running.
1711 1712 1713 1714
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
1715
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1716
{
1717 1718
	WARN_ON(task_is_stopped_or_traced(p));
	return try_to_wake_up(p, TASK_NORMAL, 0);
L
Linus Torvalds 已提交
1719 1720 1721
}
EXPORT_SYMBOL(wake_up_process);

1722
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1723 1724 1725 1726 1727 1728 1729
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1730 1731 1732
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
1733
static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
1734
{
P
Peter Zijlstra 已提交
1735 1736 1737
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
1738 1739
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1740
	p->se.prev_sum_exec_runtime	= 0;
1741
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
1742
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
1743
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
1744 1745

#ifdef CONFIG_SCHEDSTATS
1746
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
1747
#endif
N
Nick Piggin 已提交
1748

1749 1750 1751 1752
	RB_CLEAR_NODE(&p->dl.rb_node);
	hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	p->dl.dl_runtime = p->dl.runtime = 0;
	p->dl.dl_deadline = p->dl.deadline = 0;
1753
	p->dl.dl_period = 0;
1754 1755
	p->dl.flags = 0;

P
Peter Zijlstra 已提交
1756
	INIT_LIST_HEAD(&p->rt.run_list);
N
Nick Piggin 已提交
1757

1758 1759 1760
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
1761 1762 1763

#ifdef CONFIG_NUMA_BALANCING
	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1764
		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1765 1766 1767
		p->mm->numa_scan_seq = 0;
	}

1768 1769 1770 1771 1772
	if (clone_flags & CLONE_VM)
		p->numa_preferred_nid = current->numa_preferred_nid;
	else
		p->numa_preferred_nid = -1;

1773 1774
	p->node_stamp = 0ULL;
	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1775
	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1776
	p->numa_work.next = &p->numa_work;
1777 1778
	p->numa_faults_memory = NULL;
	p->numa_faults_buffer_memory = NULL;
1779 1780
	p->last_task_numa_placement = 0;
	p->last_sum_exec_runtime = 0;
1781 1782 1783

	INIT_LIST_HEAD(&p->numa_entry);
	p->numa_group = NULL;
1784
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
1785 1786
}

1787
#ifdef CONFIG_NUMA_BALANCING
1788
#ifdef CONFIG_SCHED_DEBUG
1789 1790 1791 1792 1793 1794 1795
void set_numabalancing_state(bool enabled)
{
	if (enabled)
		sched_feat_set("NUMA");
	else
		sched_feat_set("NO_NUMA");
}
1796 1797 1798 1799 1800 1801
#else
__read_mostly bool numabalancing_enabled;

void set_numabalancing_state(bool enabled)
{
	numabalancing_enabled = enabled;
I
Ingo Molnar 已提交
1802
}
1803
#endif /* CONFIG_SCHED_DEBUG */
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826

#ifdef CONFIG_PROC_SYSCTL
int sysctl_numa_balancing(struct ctl_table *table, int write,
			 void __user *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table t;
	int err;
	int state = numabalancing_enabled;

	if (write && !capable(CAP_SYS_ADMIN))
		return -EPERM;

	t = *table;
	t.data = &state;
	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
	if (err < 0)
		return err;
	if (write)
		set_numabalancing_state(state);
	return err;
}
#endif
#endif
I
Ingo Molnar 已提交
1827 1828 1829 1830

/*
 * fork()/clone()-time setup:
 */
1831
int sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
1832
{
1833
	unsigned long flags;
I
Ingo Molnar 已提交
1834 1835
	int cpu = get_cpu();

1836
	__sched_fork(clone_flags, p);
1837
	/*
1838
	 * We mark the process as running here. This guarantees that
1839 1840 1841
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
1842
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1843

1844 1845 1846 1847 1848
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

1849 1850 1851 1852
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
1853
		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1854
			p->policy = SCHED_NORMAL;
1855
			p->static_prio = NICE_TO_PRIO(0);
1856 1857 1858 1859 1860 1861
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
1862

1863 1864 1865 1866 1867 1868
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
1869

1870 1871 1872 1873 1874 1875
	if (dl_prio(p->prio)) {
		put_cpu();
		return -EAGAIN;
	} else if (rt_prio(p->prio)) {
		p->sched_class = &rt_sched_class;
	} else {
H
Hiroshi Shimamoto 已提交
1876
		p->sched_class = &fair_sched_class;
1877
	}
1878

P
Peter Zijlstra 已提交
1879 1880 1881
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

1882 1883 1884 1885 1886 1887 1888
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
1889
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1890
	set_task_cpu(p, cpu);
1891
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1892

1893
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1894
	if (likely(sched_info_on()))
1895
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1896
#endif
P
Peter Zijlstra 已提交
1897 1898
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
1899
#endif
1900
	init_task_preempt_count(p);
1901
#ifdef CONFIG_SMP
1902
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1903
	RB_CLEAR_NODE(&p->pushable_dl_tasks);
1904
#endif
1905

N
Nick Piggin 已提交
1906
	put_cpu();
1907
	return 0;
L
Linus Torvalds 已提交
1908 1909
}

1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 20;

	/*
	 * Doing this here saves a lot of checks in all
	 * the calling paths, and returning zero seems
	 * safe for them anyway.
	 */
	if (period == 0)
		return 0;

	return div64_u64(runtime << 20, period);
}

#ifdef CONFIG_SMP
inline struct dl_bw *dl_bw_of(int i)
{
	return &cpu_rq(i)->rd->dl_bw;
}

1932
static inline int dl_bw_cpus(int i)
1933
{
1934 1935 1936 1937 1938 1939 1940
	struct root_domain *rd = cpu_rq(i)->rd;
	int cpus = 0;

	for_each_cpu_and(i, rd->span, cpu_active_mask)
		cpus++;

	return cpus;
1941 1942 1943 1944 1945 1946 1947
}
#else
inline struct dl_bw *dl_bw_of(int i)
{
	return &cpu_rq(i)->dl.dl_bw;
}

1948
static inline int dl_bw_cpus(int i)
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
{
	return 1;
}
#endif

static inline
void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
{
	dl_b->total_bw -= tsk_bw;
}

static inline
void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
{
	dl_b->total_bw += tsk_bw;
}

static inline
bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
{
	return dl_b->bw != -1 &&
	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
}

/*
 * We must be sure that accepting a new task (or allowing changing the
 * parameters of an existing one) is consistent with the bandwidth
 * constraints. If yes, this function also accordingly updates the currently
 * allocated bandwidth to reflect the new situation.
 *
 * This function is called while holding p's rq->lock.
 */
static int dl_overflow(struct task_struct *p, int policy,
		       const struct sched_attr *attr)
{

	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1986
	u64 period = attr->sched_period ?: attr->sched_deadline;
1987 1988
	u64 runtime = attr->sched_runtime;
	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
1989
	int cpus, err = -1;
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

	if (new_bw == p->dl.dl_bw)
		return 0;

	/*
	 * Either if a task, enters, leave, or stays -deadline but changes
	 * its parameters, we may need to update accordingly the total
	 * allocated bandwidth of the container.
	 */
	raw_spin_lock(&dl_b->lock);
2000
	cpus = dl_bw_cpus(task_cpu(p));
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
	if (dl_policy(policy) && !task_has_dl_policy(p) &&
	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
		__dl_add(dl_b, new_bw);
		err = 0;
	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
		__dl_clear(dl_b, p->dl.dl_bw);
		__dl_add(dl_b, new_bw);
		err = 0;
	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
		__dl_clear(dl_b, p->dl.dl_bw);
		err = 0;
	}
	raw_spin_unlock(&dl_b->lock);

	return err;
}

extern void init_dl_bw(struct dl_bw *dl_b);

L
Linus Torvalds 已提交
2021 2022 2023 2024 2025 2026 2027
/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2028
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
2029 2030
{
	unsigned long flags;
I
Ingo Molnar 已提交
2031
	struct rq *rq;
2032

2033
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2034 2035 2036 2037 2038 2039
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 */
2040
	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2041 2042
#endif

2043 2044
	/* Initialize new task's runnable average */
	init_task_runnable_average(p);
2045
	rq = __task_rq_lock(p);
P
Peter Zijlstra 已提交
2046
	activate_task(rq, p, 0);
P
Peter Zijlstra 已提交
2047
	p->on_rq = 1;
2048
	trace_sched_wakeup_new(p, true);
P
Peter Zijlstra 已提交
2049
	check_preempt_curr(rq, p, WF_FORK);
2050
#ifdef CONFIG_SMP
2051 2052
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2053
#endif
2054
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
2055 2056
}

2057 2058 2059
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2060
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2061
 * @notifier: notifier struct to register
2062 2063 2064 2065 2066 2067 2068 2069 2070
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2071
 * @notifier: notifier struct to unregister
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;

2085
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2086 2087 2088 2089 2090 2091 2092 2093 2094
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;

2095
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2096 2097 2098
		notifier->ops->sched_out(notifier, next);
}

2099
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2111
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2112

2113 2114 2115
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2116
 * @prev: the current task that is being switched out
2117 2118 2119 2120 2121 2122 2123 2124 2125
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2126 2127 2128
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2129
{
2130
	trace_sched_switch(prev, next);
2131
	sched_info_switch(rq, prev, next);
2132
	perf_event_task_sched_out(prev, next);
2133
	fire_sched_out_preempt_notifiers(prev, next);
2134 2135 2136 2137
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2138 2139
/**
 * finish_task_switch - clean up after a task-switch
2140
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2141 2142
 * @prev: the thread we just switched away from.
 *
2143 2144 2145 2146
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2147 2148
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2149
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2150 2151 2152
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2153
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2154 2155 2156
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2157
	long prev_state;
L
Linus Torvalds 已提交
2158 2159 2160 2161 2162

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2163
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2164 2165
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2166
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2167 2168 2169 2170 2171
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2172
	prev_state = prev->state;
2173
	vtime_task_switch(prev);
2174
	finish_arch_switch(prev);
2175
	perf_event_task_sched_in(prev, current);
2176
	finish_lock_switch(rq, prev);
2177
	finish_arch_post_lock_switch();
S
Steven Rostedt 已提交
2178

2179
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2180 2181
	if (mm)
		mmdrop(mm);
2182
	if (unlikely(prev_state == TASK_DEAD)) {
2183 2184 2185
		if (prev->sched_class->task_dead)
			prev->sched_class->task_dead(prev);

2186 2187 2188
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2189
		 */
2190
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2191
		put_task_struct(prev);
2192
	}
2193 2194

	tick_nohz_task_switch(current);
L
Linus Torvalds 已提交
2195 2196
}

2197 2198 2199 2200 2201 2202 2203 2204
#ifdef CONFIG_SMP

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

2205
		raw_spin_lock_irqsave(&rq->lock, flags);
2206 2207
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
2208
		raw_spin_unlock_irqrestore(&rq->lock, flags);
2209 2210 2211 2212 2213 2214

		rq->post_schedule = 0;
	}
}

#else
2215

2216 2217
static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
2218 2219
}

2220 2221
#endif

L
Linus Torvalds 已提交
2222 2223 2224 2225
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2226
asmlinkage __visible void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2227 2228
	__releases(rq->lock)
{
2229 2230
	struct rq *rq = this_rq();

2231
	finish_task_switch(rq, prev);
2232

2233 2234 2235 2236 2237
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2238

2239 2240 2241 2242
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2243
	if (current->set_child_tid)
2244
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2245 2246 2247 2248 2249 2250
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2251
static inline void
2252
context_switch(struct rq *rq, struct task_struct *prev,
2253
	       struct task_struct *next)
L
Linus Torvalds 已提交
2254
{
I
Ingo Molnar 已提交
2255
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2256

2257
	prepare_task_switch(rq, prev, next);
2258

I
Ingo Molnar 已提交
2259 2260
	mm = next->mm;
	oldmm = prev->active_mm;
2261 2262 2263 2264 2265
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2266
	arch_start_context_switch(prev);
2267

2268
	if (!mm) {
L
Linus Torvalds 已提交
2269 2270 2271 2272 2273 2274
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2275
	if (!prev->mm) {
L
Linus Torvalds 已提交
2276 2277 2278
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2279 2280 2281 2282 2283 2284 2285
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2286
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2287
#endif
L
Linus Torvalds 已提交
2288

2289
	context_tracking_task_switch(prev, next);
L
Linus Torvalds 已提交
2290 2291 2292
	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2293 2294 2295 2296 2297 2298 2299
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2300 2301 2302
}

/*
2303
 * nr_running and nr_context_switches:
L
Linus Torvalds 已提交
2304 2305
 *
 * externally visible scheduler statistics: current number of runnable
2306
 * threads, total number of context switches performed since bootup.
L
Linus Torvalds 已提交
2307 2308 2309 2310 2311 2312 2313 2314 2315
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2316
}
L
Linus Torvalds 已提交
2317 2318

unsigned long long nr_context_switches(void)
2319
{
2320 2321
	int i;
	unsigned long long sum = 0;
2322

2323
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2324
		sum += cpu_rq(i)->nr_switches;
2325

L
Linus Torvalds 已提交
2326 2327
	return sum;
}
2328

L
Linus Torvalds 已提交
2329 2330 2331
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2332

2333
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2334
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2335

L
Linus Torvalds 已提交
2336 2337
	return sum;
}
2338

2339
unsigned long nr_iowait_cpu(int cpu)
2340
{
2341
	struct rq *this = cpu_rq(cpu);
2342 2343
	return atomic_read(&this->nr_iowait);
}
2344

I
Ingo Molnar 已提交
2345
#ifdef CONFIG_SMP
2346

2347
/*
P
Peter Zijlstra 已提交
2348 2349
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2350
 */
P
Peter Zijlstra 已提交
2351
void sched_exec(void)
2352
{
P
Peter Zijlstra 已提交
2353
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2354
	unsigned long flags;
2355
	int dest_cpu;
2356

2357
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2358
	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2359 2360
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2361

2362
	if (likely(cpu_active(dest_cpu))) {
2363
		struct migration_arg arg = { p, dest_cpu };
2364

2365 2366
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2367 2368
		return;
	}
2369
unlock:
2370
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2371
}
I
Ingo Molnar 已提交
2372

L
Linus Torvalds 已提交
2373 2374 2375
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2376
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
2377 2378

EXPORT_PER_CPU_SYMBOL(kstat);
2379
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
2380 2381

/*
2382
 * Return any ns on the sched_clock that have not yet been accounted in
2383
 * @p in case that task is currently running.
2384 2385
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
2386
 */
2387 2388 2389 2390 2391 2392
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
2393
		ns = rq_clock_task(rq) - p->se.exec_start;
2394 2395 2396 2397 2398 2399 2400
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

2401
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
2402 2403
{
	unsigned long flags;
2404
	struct rq *rq;
2405
	u64 ns = 0;
2406

2407
	rq = task_rq_lock(p, &flags);
2408
	ns = do_task_delta_exec(p, rq);
2409
	task_rq_unlock(rq, p, &flags);
2410

2411 2412
	return ns;
}
2413

2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438
#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
	/*
	 * 64-bit doesn't need locks to atomically read a 64bit value.
	 * So we have a optimization chance when the task's delta_exec is 0.
	 * Reading ->on_cpu is racy, but this is ok.
	 *
	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
	 * If we race with it entering cpu, unaccounted time is 0. This is
	 * indistinguishable from the read occurring a few cycles earlier.
	 */
	if (!p->on_cpu)
		return p->se.sum_exec_runtime;
#endif

2439 2440
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2441
	task_rq_unlock(rq, p, &flags);
2442 2443 2444

	return ns;
}
2445

2446 2447 2448 2449 2450 2451 2452 2453
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2454
	struct task_struct *curr = rq->curr;
2455 2456

	sched_clock_tick();
I
Ingo Molnar 已提交
2457

2458
	raw_spin_lock(&rq->lock);
2459
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
2460
	curr->sched_class->task_tick(rq, curr, 0);
2461
	update_cpu_load_active(rq);
2462
	raw_spin_unlock(&rq->lock);
2463

2464
	perf_event_task_tick();
2465

2466
#ifdef CONFIG_SMP
2467
	rq->idle_balance = idle_cpu(cpu);
2468
	trigger_load_balance(rq);
2469
#endif
2470
	rq_last_tick_reset(rq);
L
Linus Torvalds 已提交
2471 2472
}

2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483
#ifdef CONFIG_NO_HZ_FULL
/**
 * scheduler_tick_max_deferment
 *
 * Keep at least one tick per second when a single
 * active task is running because the scheduler doesn't
 * yet completely support full dynticks environment.
 *
 * This makes sure that uptime, CFS vruntime, load
 * balancing, etc... continue to move forward, even
 * with a very low granularity.
2484 2485
 *
 * Return: Maximum deferment in nanoseconds.
2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496
 */
u64 scheduler_tick_max_deferment(void)
{
	struct rq *rq = this_rq();
	unsigned long next, now = ACCESS_ONCE(jiffies);

	next = rq->last_sched_tick + HZ;

	if (time_before_eq(next, now))
		return 0;

2497
	return jiffies_to_nsecs(next - now);
L
Linus Torvalds 已提交
2498
}
2499
#endif
L
Linus Torvalds 已提交
2500

2501
notrace unsigned long get_parent_ip(unsigned long addr)
2502 2503 2504 2505 2506 2507 2508 2509
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
2510

2511 2512 2513
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

2514
void __kprobes preempt_count_add(int val)
L
Linus Torvalds 已提交
2515
{
2516
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2517 2518 2519
	/*
	 * Underflow?
	 */
2520 2521
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
2522
#endif
2523
	__preempt_count_add(val);
2524
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2525 2526 2527
	/*
	 * Spinlock count overflowing soon?
	 */
2528 2529
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
2530
#endif
2531 2532 2533 2534 2535 2536 2537
	if (preempt_count() == val) {
		unsigned long ip = get_parent_ip(CALLER_ADDR1);
#ifdef CONFIG_DEBUG_PREEMPT
		current->preempt_disable_ip = ip;
#endif
		trace_preempt_off(CALLER_ADDR0, ip);
	}
L
Linus Torvalds 已提交
2538
}
2539
EXPORT_SYMBOL(preempt_count_add);
L
Linus Torvalds 已提交
2540

2541
void __kprobes preempt_count_sub(int val)
L
Linus Torvalds 已提交
2542
{
2543
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2544 2545 2546
	/*
	 * Underflow?
	 */
2547
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2548
		return;
L
Linus Torvalds 已提交
2549 2550 2551
	/*
	 * Is the spinlock portion underflowing?
	 */
2552 2553 2554
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
2555
#endif
2556

2557 2558
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2559
	__preempt_count_sub(val);
L
Linus Torvalds 已提交
2560
}
2561
EXPORT_SYMBOL(preempt_count_sub);
L
Linus Torvalds 已提交
2562 2563 2564 2565

#endif

/*
I
Ingo Molnar 已提交
2566
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
2567
 */
I
Ingo Molnar 已提交
2568
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
2569
{
2570 2571 2572
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
2573 2574
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
2575

I
Ingo Molnar 已提交
2576
	debug_show_held_locks(prev);
2577
	print_modules();
I
Ingo Molnar 已提交
2578 2579
	if (irqs_disabled())
		print_irqtrace_events(prev);
2580 2581 2582 2583 2584 2585 2586
#ifdef CONFIG_DEBUG_PREEMPT
	if (in_atomic_preempt_off()) {
		pr_err("Preemption disabled at:");
		print_ip_sym(current->preempt_disable_ip);
		pr_cont("\n");
	}
#endif
2587
	dump_stack();
2588
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
I
Ingo Molnar 已提交
2589
}
L
Linus Torvalds 已提交
2590

I
Ingo Molnar 已提交
2591 2592 2593 2594 2595
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
2596
	/*
I
Ingo Molnar 已提交
2597
	 * Test if we are atomic. Since do_exit() needs to call into
2598 2599
	 * schedule() atomically, we ignore that path. Otherwise whine
	 * if we are scheduling when we should not.
L
Linus Torvalds 已提交
2600
	 */
2601
	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
I
Ingo Molnar 已提交
2602
		__schedule_bug(prev);
2603
	rcu_sleep_check();
I
Ingo Molnar 已提交
2604

L
Linus Torvalds 已提交
2605 2606
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

2607
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
2608 2609 2610 2611 2612 2613
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
2614
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
2615
{
2616
	const struct sched_class *class = &fair_sched_class;
I
Ingo Molnar 已提交
2617
	struct task_struct *p;
L
Linus Torvalds 已提交
2618 2619

	/*
I
Ingo Molnar 已提交
2620 2621
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
2622
	 */
2623
	if (likely(prev->sched_class == class &&
2624
		   rq->nr_running == rq->cfs.h_nr_running)) {
2625
		p = fair_sched_class.pick_next_task(rq, prev);
2626 2627 2628 2629 2630 2631 2632 2633
		if (unlikely(p == RETRY_TASK))
			goto again;

		/* assumes fair_sched_class->next == idle_sched_class */
		if (unlikely(!p))
			p = idle_sched_class.pick_next_task(rq, prev);

		return p;
L
Linus Torvalds 已提交
2634 2635
	}

2636
again:
2637
	for_each_class(class) {
2638
		p = class->pick_next_task(rq, prev);
2639 2640 2641
		if (p) {
			if (unlikely(p == RETRY_TASK))
				goto again;
I
Ingo Molnar 已提交
2642
			return p;
2643
		}
I
Ingo Molnar 已提交
2644
	}
2645 2646

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
2647
}
L
Linus Torvalds 已提交
2648

I
Ingo Molnar 已提交
2649
/*
2650
 * __schedule() is the main scheduler function.
2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684
 *
 * The main means of driving the scheduler and thus entering this function are:
 *
 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 *      paths. For example, see arch/x86/entry_64.S.
 *
 *      To drive preemption between tasks, the scheduler sets the flag in timer
 *      interrupt handler scheduler_tick().
 *
 *   3. Wakeups don't really cause entry into schedule(). They add a
 *      task to the run-queue and that's it.
 *
 *      Now, if the new task added to the run-queue preempts the current
 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 *      called on the nearest possible occasion:
 *
 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
 *
 *         - in syscall or exception context, at the next outmost
 *           preempt_enable(). (this might be as soon as the wake_up()'s
 *           spin_unlock()!)
 *
 *         - in IRQ context, return from interrupt-handler to
 *           preemptible context
 *
 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
 *         then at the next:
 *
 *          - cond_resched() call
 *          - explicit schedule() call
 *          - return from syscall or exception to user-space
 *          - return from interrupt-handler to user-space
I
Ingo Molnar 已提交
2685
 */
2686
static void __sched __schedule(void)
I
Ingo Molnar 已提交
2687 2688
{
	struct task_struct *prev, *next;
2689
	unsigned long *switch_count;
I
Ingo Molnar 已提交
2690
	struct rq *rq;
2691
	int cpu;
I
Ingo Molnar 已提交
2692

2693 2694
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
2695 2696
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
2697
	rcu_note_context_switch(cpu);
I
Ingo Molnar 已提交
2698 2699 2700
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
2701

2702
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
2703
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
2704

2705 2706 2707 2708 2709 2710
	/*
	 * Make sure that signal_pending_state()->signal_pending() below
	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
	 * done by the caller to avoid the race with signal_wake_up().
	 */
	smp_mb__before_spinlock();
2711
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
2712

2713
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
2714
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
2715
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
2716
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
2717
		} else {
2718 2719 2720
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

T
Tejun Heo 已提交
2721
			/*
2722 2723 2724
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
2725 2726 2727 2728 2729 2730 2731 2732 2733
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
		}
I
Ingo Molnar 已提交
2734
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
2735 2736
	}

2737 2738 2739 2740
	if (prev->on_rq || rq->skip_clock_update < 0)
		update_rq_clock(rq);

	next = pick_next_task(rq, prev);
2741
	clear_tsk_need_resched(prev);
2742
	clear_preempt_need_resched();
2743
	rq->skip_clock_update = 0;
L
Linus Torvalds 已提交
2744 2745 2746 2747 2748 2749

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
2750
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
2751
		/*
2752 2753 2754 2755
		 * The context switch have flipped the stack from under us
		 * and restored the local variables which were saved when
		 * this task called schedule() in the past. prev == current
		 * is still correct, but it can be moved to another cpu/rq.
P
Peter Zijlstra 已提交
2756 2757 2758
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
2759
	} else
2760
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
2761

2762
	post_schedule(rq);
L
Linus Torvalds 已提交
2763

2764
	sched_preempt_enable_no_resched();
2765
	if (need_resched())
L
Linus Torvalds 已提交
2766 2767
		goto need_resched;
}
2768

2769 2770
static inline void sched_submit_work(struct task_struct *tsk)
{
2771
	if (!tsk->state || tsk_is_pi_blocked(tsk))
2772 2773 2774 2775 2776 2777 2778 2779 2780
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

2781
asmlinkage __visible void __sched schedule(void)
2782
{
2783 2784 2785
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
2786 2787
	__schedule();
}
L
Linus Torvalds 已提交
2788 2789
EXPORT_SYMBOL(schedule);

2790
#ifdef CONFIG_CONTEXT_TRACKING
2791
asmlinkage __visible void __sched schedule_user(void)
2792 2793 2794 2795 2796 2797 2798
{
	/*
	 * If we come here after a random call to set_need_resched(),
	 * or we have been woken up remotely but the IPI has not yet arrived,
	 * we haven't yet exited the RCU idle mode. Do it here manually until
	 * we find a better solution.
	 */
2799
	user_exit();
2800
	schedule();
2801
	user_enter();
2802 2803 2804
}
#endif

2805 2806 2807 2808 2809 2810 2811
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
2812
	sched_preempt_enable_no_resched();
2813 2814 2815 2816
	schedule();
	preempt_disable();
}

L
Linus Torvalds 已提交
2817 2818
#ifdef CONFIG_PREEMPT
/*
2819
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
2820
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
2821 2822
 * occur there and call schedule directly.
 */
2823
asmlinkage __visible void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
2824 2825 2826
{
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
2827
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
2828
	 */
2829
	if (likely(!preemptible()))
L
Linus Torvalds 已提交
2830 2831
		return;

2832
	do {
2833
		__preempt_count_add(PREEMPT_ACTIVE);
2834
		__schedule();
2835
		__preempt_count_sub(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
2836

2837 2838 2839 2840 2841
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
2842
	} while (need_resched());
L
Linus Torvalds 已提交
2843 2844
}
EXPORT_SYMBOL(preempt_schedule);
2845
#endif /* CONFIG_PREEMPT */
L
Linus Torvalds 已提交
2846 2847

/*
2848
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
2849 2850 2851 2852
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
2853
asmlinkage __visible void __sched preempt_schedule_irq(void)
L
Linus Torvalds 已提交
2854
{
2855
	enum ctx_state prev_state;
2856

2857
	/* Catch callers which need to be fixed */
2858
	BUG_ON(preempt_count() || !irqs_disabled());
L
Linus Torvalds 已提交
2859

2860 2861
	prev_state = exception_enter();

2862
	do {
2863
		__preempt_count_add(PREEMPT_ACTIVE);
2864
		local_irq_enable();
2865
		__schedule();
2866
		local_irq_disable();
2867
		__preempt_count_sub(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
2868

2869 2870 2871 2872 2873
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
2874
	} while (need_resched());
2875 2876

	exception_exit(prev_state);
L
Linus Torvalds 已提交
2877 2878
}

P
Peter Zijlstra 已提交
2879
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
2880
			  void *key)
L
Linus Torvalds 已提交
2881
{
P
Peter Zijlstra 已提交
2882
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
2883 2884 2885
}
EXPORT_SYMBOL(default_wake_function);

2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
2896 2897
 * Used by the rt_mutex code to implement priority inheritance
 * logic. Call site only calls if the priority of the task changed.
2898
 */
2899
void rt_mutex_setprio(struct task_struct *p, int prio)
2900
{
2901
	int oldprio, on_rq, running, enqueue_flag = 0;
2902
	struct rq *rq;
2903
	const struct sched_class *prev_class;
2904

2905
	BUG_ON(prio > MAX_PRIO);
2906

2907
	rq = __task_rq_lock(p);
2908

2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

2927
	trace_sched_pi_setprio(p, prio);
2928
	p->pi_top_task = rt_mutex_get_top_task(p);
2929
	oldprio = p->prio;
2930
	prev_class = p->sched_class;
P
Peter Zijlstra 已提交
2931
	on_rq = p->on_rq;
2932
	running = task_current(rq, p);
2933
	if (on_rq)
2934
		dequeue_task(rq, p, 0);
2935 2936
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
2937

2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954
	/*
	 * Boosting condition are:
	 * 1. -rt task is running and holds mutex A
	 *      --> -dl task blocks on mutex A
	 *
	 * 2. -dl task is running and holds mutex A
	 *      --> -dl task blocks on mutex A and could preempt the
	 *          running task
	 */
	if (dl_prio(prio)) {
		if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
			dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
			p->dl.dl_boosted = 1;
			p->dl.dl_throttled = 0;
			enqueue_flag = ENQUEUE_REPLENISH;
		} else
			p->dl.dl_boosted = 0;
2955
		p->sched_class = &dl_sched_class;
2956 2957 2958 2959 2960
	} else if (rt_prio(prio)) {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
		if (oldprio < prio)
			enqueue_flag = ENQUEUE_HEAD;
I
Ingo Molnar 已提交
2961
		p->sched_class = &rt_sched_class;
2962 2963 2964
	} else {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
I
Ingo Molnar 已提交
2965
		p->sched_class = &fair_sched_class;
2966
	}
I
Ingo Molnar 已提交
2967

2968 2969
	p->prio = prio;

2970 2971
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
2972
	if (on_rq)
2973
		enqueue_task(rq, p, enqueue_flag);
2974

P
Peter Zijlstra 已提交
2975
	check_class_changed(rq, p, prev_class, oldprio);
2976
out_unlock:
2977
	__task_rq_unlock(rq);
2978 2979
}
#endif
2980

2981
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
2982
{
I
Ingo Molnar 已提交
2983
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
2984
	unsigned long flags;
2985
	struct rq *rq;
L
Linus Torvalds 已提交
2986

2987
	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
L
Linus Torvalds 已提交
2988 2989 2990 2991 2992 2993 2994 2995 2996 2997
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
2998
	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
L
Linus Torvalds 已提交
2999
	 */
3000
	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3001 3002 3003
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
P
Peter Zijlstra 已提交
3004
	on_rq = p->on_rq;
3005
	if (on_rq)
3006
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
3007 3008

	p->static_prio = NICE_TO_PRIO(nice);
3009
	set_load_weight(p);
3010 3011 3012
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3013

I
Ingo Molnar 已提交
3014
	if (on_rq) {
3015
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
3016
		/*
3017 3018
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3019
		 */
3020
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
3021 3022 3023
			resched_task(rq->curr);
	}
out_unlock:
3024
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3025 3026 3027
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3028 3029 3030 3031 3032
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3033
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3034
{
3035
	/* convert nice value [19,-20] to rlimit style value [1,40] */
3036
	int nice_rlim = nice_to_rlimit(nice);
3037

3038
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3039 3040 3041
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3042 3043 3044 3045 3046 3047 3048 3049 3050
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3051
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3052
{
3053
	long nice, retval;
L
Linus Torvalds 已提交
3054 3055 3056 3057 3058 3059

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
3060
	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3061
	nice = task_nice(current) + increment;
L
Linus Torvalds 已提交
3062

3063
	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
M
Matt Mackall 已提交
3064 3065 3066
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
3081
 * Return: The priority value as seen by users in /proc.
L
Linus Torvalds 已提交
3082 3083 3084
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3085
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3086 3087 3088 3089 3090 3091 3092
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
3093 3094
 *
 * Return: 1 if the CPU is currently idle. 0 otherwise.
L
Linus Torvalds 已提交
3095 3096 3097
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3112 3113 3114 3115 3116
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
3117 3118
 *
 * Return: The idle task for the cpu @cpu.
L
Linus Torvalds 已提交
3119
 */
3120
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3121 3122 3123 3124 3125 3126 3127
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
3128 3129
 *
 * The task of @pid, if found. %NULL otherwise.
L
Linus Torvalds 已提交
3130
 */
A
Alexey Dobriyan 已提交
3131
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
3132
{
3133
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
3134 3135
}

3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
/*
 * This function initializes the sched_dl_entity of a newly becoming
 * SCHED_DEADLINE task.
 *
 * Only the static values are considered here, the actual runtime and the
 * absolute deadline will be properly calculated when the task is enqueued
 * for the first time with its new policy.
 */
static void
__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	init_dl_task_timer(dl_se);
	dl_se->dl_runtime = attr->sched_runtime;
	dl_se->dl_deadline = attr->sched_deadline;
3152
	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3153
	dl_se->flags = attr->sched_flags;
3154
	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3155 3156
	dl_se->dl_throttled = 0;
	dl_se->dl_new = 1;
3157
	dl_se->dl_yielded = 0;
3158 3159
}

3160 3161
static void __setscheduler_params(struct task_struct *p,
		const struct sched_attr *attr)
L
Linus Torvalds 已提交
3162
{
3163 3164
	int policy = attr->sched_policy;

3165 3166 3167
	if (policy == -1) /* setparam */
		policy = p->policy;

L
Linus Torvalds 已提交
3168
	p->policy = policy;
3169

3170 3171
	if (dl_policy(policy))
		__setparam_dl(p, attr);
3172
	else if (fair_policy(policy))
3173 3174
		p->static_prio = NICE_TO_PRIO(attr->sched_nice);

3175 3176 3177 3178 3179 3180
	/*
	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
	 * !rt_policy. Always setting this ensures that things like
	 * getparam()/getattr() don't report silly values for !rt tasks.
	 */
	p->rt_priority = attr->sched_priority;
3181
	p->normal_prio = normal_prio(p);
3182 3183
	set_load_weight(p);
}
3184

3185 3186 3187 3188 3189
/* Actually do priority change: must hold pi & rq lock. */
static void __setscheduler(struct rq *rq, struct task_struct *p,
			   const struct sched_attr *attr)
{
	__setscheduler_params(p, attr);
3190

3191 3192 3193 3194 3195 3196
	/*
	 * If we get here, there was no pi waiters boosting the
	 * task. It is safe to use the normal prio.
	 */
	p->prio = normal_prio(p);

3197 3198 3199
	if (dl_prio(p->prio))
		p->sched_class = &dl_sched_class;
	else if (rt_prio(p->prio))
3200 3201 3202
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
3203
}
3204 3205 3206 3207 3208 3209 3210 3211 3212

static void
__getparam_dl(struct task_struct *p, struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	attr->sched_priority = p->rt_priority;
	attr->sched_runtime = dl_se->dl_runtime;
	attr->sched_deadline = dl_se->dl_deadline;
3213
	attr->sched_period = dl_se->dl_period;
3214 3215 3216 3217 3218 3219
	attr->sched_flags = dl_se->flags;
}

/*
 * This function validates the new parameters of a -deadline task.
 * We ask for the deadline not being zero, and greater or equal
3220
 * than the runtime, as well as the period of being zero or
3221
 * greater than deadline. Furthermore, we have to be sure that
3222 3223 3224 3225
 * user parameters are above the internal resolution of 1us (we
 * check sched_runtime only since it is always the smaller one) and
 * below 2^63 ns (we have to check both sched_deadline and
 * sched_period, as the latter can be zero).
3226 3227 3228 3229
 */
static bool
__checkparam_dl(const struct sched_attr *attr)
{
3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255
	/* deadline != 0 */
	if (attr->sched_deadline == 0)
		return false;

	/*
	 * Since we truncate DL_SCALE bits, make sure we're at least
	 * that big.
	 */
	if (attr->sched_runtime < (1ULL << DL_SCALE))
		return false;

	/*
	 * Since we use the MSB for wrap-around and sign issues, make
	 * sure it's not set (mind that period can be equal to zero).
	 */
	if (attr->sched_deadline & (1ULL << 63) ||
	    attr->sched_period & (1ULL << 63))
		return false;

	/* runtime <= deadline <= period (if period != 0) */
	if ((attr->sched_period != 0 &&
	     attr->sched_period < attr->sched_deadline) ||
	    attr->sched_deadline < attr->sched_runtime)
		return false;

	return true;
3256 3257
}

3258 3259 3260 3261 3262 3263 3264 3265 3266 3267
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
3268 3269
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
3270 3271 3272 3273
	rcu_read_unlock();
	return match;
}

3274 3275 3276
static int __sched_setscheduler(struct task_struct *p,
				const struct sched_attr *attr,
				bool user)
L
Linus Torvalds 已提交
3277
{
3278 3279
	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
		      MAX_RT_PRIO - 1 - attr->sched_priority;
3280
	int retval, oldprio, oldpolicy = -1, on_rq, running;
3281
	int policy = attr->sched_policy;
L
Linus Torvalds 已提交
3282
	unsigned long flags;
3283
	const struct sched_class *prev_class;
3284
	struct rq *rq;
3285
	int reset_on_fork;
L
Linus Torvalds 已提交
3286

3287 3288
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
3289 3290
recheck:
	/* double check policy once rq lock held */
3291 3292
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
3293
		policy = oldpolicy = p->policy;
3294
	} else {
3295
		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3296

3297 3298
		if (policy != SCHED_DEADLINE &&
				policy != SCHED_FIFO && policy != SCHED_RR &&
3299 3300 3301 3302 3303
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

3304 3305 3306
	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
		return -EINVAL;

L
Linus Torvalds 已提交
3307 3308
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
3309 3310
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
3311
	 */
3312
	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3313
	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
3314
		return -EINVAL;
3315 3316
	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
	    (rt_policy(policy) != (attr->sched_priority != 0)))
L
Linus Torvalds 已提交
3317 3318
		return -EINVAL;

3319 3320 3321
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
3322
	if (user && !capable(CAP_SYS_NICE)) {
3323
		if (fair_policy(policy)) {
3324
			if (attr->sched_nice < task_nice(p) &&
3325
			    !can_nice(p, attr->sched_nice))
3326 3327 3328
				return -EPERM;
		}

3329
		if (rt_policy(policy)) {
3330 3331
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
3332 3333 3334 3335 3336 3337

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
3338 3339
			if (attr->sched_priority > p->rt_priority &&
			    attr->sched_priority > rlim_rtprio)
3340 3341
				return -EPERM;
		}
3342

3343 3344 3345 3346 3347 3348 3349 3350 3351
		 /*
		  * Can't set/change SCHED_DEADLINE policy at all for now
		  * (safest behavior); in the future we would like to allow
		  * unprivileged DL tasks to increase their relative deadline
		  * or reduce their runtime (both ways reducing utilization)
		  */
		if (dl_policy(policy))
			return -EPERM;

I
Ingo Molnar 已提交
3352
		/*
3353 3354
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
3355
		 */
3356
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3357
			if (!can_nice(p, task_nice(p)))
3358 3359
				return -EPERM;
		}
3360

3361
		/* can't change other user's priorities */
3362
		if (!check_same_owner(p))
3363
			return -EPERM;
3364 3365 3366 3367

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
3368
	}
L
Linus Torvalds 已提交
3369

3370
	if (user) {
3371
		retval = security_task_setscheduler(p);
3372 3373 3374 3375
		if (retval)
			return retval;
	}

3376 3377 3378
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
3379
	 *
L
Lucas De Marchi 已提交
3380
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
3381 3382
	 * runqueue lock must be held.
	 */
3383
	rq = task_rq_lock(p, &flags);
3384

3385 3386 3387 3388
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
3389
		task_rq_unlock(rq, p, &flags);
3390 3391 3392
		return -EINVAL;
	}

3393
	/*
3394 3395
	 * If not changing anything there's no need to proceed further,
	 * but store a possible modification of reset_on_fork.
3396
	 */
3397
	if (unlikely(policy == p->policy)) {
3398
		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3399 3400 3401
			goto change;
		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
			goto change;
3402 3403
		if (dl_policy(policy))
			goto change;
3404

3405
		p->sched_reset_on_fork = reset_on_fork;
3406
		task_rq_unlock(rq, p, &flags);
3407 3408
		return 0;
	}
3409
change:
3410

3411
	if (user) {
3412
#ifdef CONFIG_RT_GROUP_SCHED
3413 3414 3415 3416 3417
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3418 3419
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
3420
			task_rq_unlock(rq, p, &flags);
3421 3422 3423
			return -EPERM;
		}
#endif
3424 3425 3426 3427 3428 3429 3430 3431 3432
#ifdef CONFIG_SMP
		if (dl_bandwidth_enabled() && dl_policy(policy)) {
			cpumask_t *span = rq->rd->span;

			/*
			 * Don't allow tasks with an affinity mask smaller than
			 * the entire root_domain to become SCHED_DEADLINE. We
			 * will also fail if there's no bandwidth available.
			 */
3433 3434
			if (!cpumask_subset(span, &p->cpus_allowed) ||
			    rq->rd->dl_bw.bw == 0) {
3435 3436 3437 3438 3439 3440
				task_rq_unlock(rq, p, &flags);
				return -EPERM;
			}
		}
#endif
	}
3441

L
Linus Torvalds 已提交
3442 3443 3444
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
3445
		task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3446 3447
		goto recheck;
	}
3448 3449 3450 3451 3452 3453

	/*
	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
	 * is available.
	 */
3454
	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3455 3456 3457 3458
		task_rq_unlock(rq, p, &flags);
		return -EBUSY;
	}

3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476
	p->sched_reset_on_fork = reset_on_fork;
	oldprio = p->prio;

	/*
	 * Special case for priority boosted tasks.
	 *
	 * If the new priority is lower or equal (user space view)
	 * than the current (boosted) priority, we just store the new
	 * normal parameters and do not touch the scheduler class and
	 * the runqueue. This will be done when the task deboost
	 * itself.
	 */
	if (rt_mutex_check_prio(p, newprio)) {
		__setscheduler_params(p, attr);
		task_rq_unlock(rq, p, &flags);
		return 0;
	}

P
Peter Zijlstra 已提交
3477
	on_rq = p->on_rq;
3478
	running = task_current(rq, p);
3479
	if (on_rq)
3480
		dequeue_task(rq, p, 0);
3481 3482
	if (running)
		p->sched_class->put_prev_task(rq, p);
3483

3484
	prev_class = p->sched_class;
3485
	__setscheduler(rq, p, attr);
3486

3487 3488
	if (running)
		p->sched_class->set_curr_task(rq);
3489 3490 3491 3492 3493 3494 3495
	if (on_rq) {
		/*
		 * We enqueue to tail when the priority of a task is
		 * increased (user space view).
		 */
		enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
	}
3496

P
Peter Zijlstra 已提交
3497
	check_class_changed(rq, p, prev_class, oldprio);
3498
	task_rq_unlock(rq, p, &flags);
3499

3500 3501
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
3502 3503
	return 0;
}
3504

3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524
static int _sched_setscheduler(struct task_struct *p, int policy,
			       const struct sched_param *param, bool check)
{
	struct sched_attr attr = {
		.sched_policy   = policy,
		.sched_priority = param->sched_priority,
		.sched_nice	= PRIO_TO_NICE(p->static_prio),
	};

	/*
	 * Fixup the legacy SCHED_RESET_ON_FORK hack
	 */
	if (policy & SCHED_RESET_ON_FORK) {
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
		policy &= ~SCHED_RESET_ON_FORK;
		attr.sched_policy = policy;
	}

	return __sched_setscheduler(p, &attr, check);
}
3525 3526 3527 3528 3529 3530
/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
3531 3532
 * Return: 0 on success. An error code otherwise.
 *
3533 3534 3535
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
3536
		       const struct sched_param *param)
3537
{
3538
	return _sched_setscheduler(p, policy, param, true);
3539
}
L
Linus Torvalds 已提交
3540 3541
EXPORT_SYMBOL_GPL(sched_setscheduler);

3542 3543 3544 3545 3546 3547
int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
{
	return __sched_setscheduler(p, attr, true);
}
EXPORT_SYMBOL_GPL(sched_setattr);

3548 3549 3550 3551 3552 3553 3554 3555 3556 3557
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
3558 3559
 *
 * Return: 0 on success. An error code otherwise.
3560 3561
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3562
			       const struct sched_param *param)
3563
{
3564
	return _sched_setscheduler(p, policy, param, false);
3565 3566
}

I
Ingo Molnar 已提交
3567 3568
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
3569 3570 3571
{
	struct sched_param lparam;
	struct task_struct *p;
3572
	int retval;
L
Linus Torvalds 已提交
3573 3574 3575 3576 3577

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
3578 3579 3580

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
3581
	p = find_process_by_pid(pid);
3582 3583 3584
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
3585

L
Linus Torvalds 已提交
3586 3587 3588
	return retval;
}

3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650
/*
 * Mimics kernel/events/core.c perf_copy_attr().
 */
static int sched_copy_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr)
{
	u32 size;
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = SCHED_ATTR_SIZE_VER0;

	if (size < SCHED_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
	 */
	if (size > sizeof(*attr)) {
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;

		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;

		for (; addr < end; addr++) {
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
		size = sizeof(*attr);
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * XXX: do we want to be lenient like existing syscalls; or do we want
	 * to be strict and return an error on out-of-bounds values?
	 */
3651
	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3652

3653
	return 0;
3654 3655 3656

err_size:
	put_user(sizeof(*attr), &uattr->size);
3657
	return -E2BIG;
3658 3659
}

L
Linus Torvalds 已提交
3660 3661 3662 3663 3664
/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
3665 3666
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
3667
 */
3668 3669
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
3670
{
3671 3672 3673 3674
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
3675 3676 3677 3678 3679 3680 3681
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
3682 3683
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
3684
 */
3685
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
3686 3687 3688 3689
{
	return do_sched_setscheduler(pid, -1, param);
}

3690 3691 3692
/**
 * sys_sched_setattr - same as above, but with extended sched_attr
 * @pid: the pid in question.
J
Juri Lelli 已提交
3693
 * @uattr: structure containing the extended parameters.
3694
 * @flags: for future extension.
3695
 */
3696 3697
SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
			       unsigned int, flags)
3698 3699 3700 3701 3702
{
	struct sched_attr attr;
	struct task_struct *p;
	int retval;

3703
	if (!uattr || pid < 0 || flags)
3704 3705
		return -EINVAL;

3706 3707 3708
	retval = sched_copy_attr(uattr, &attr);
	if (retval)
		return retval;
3709

3710 3711
	if (attr.sched_policy < 0)
		return -EINVAL;
3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722

	rcu_read_lock();
	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (p != NULL)
		retval = sched_setattr(p, &attr);
	rcu_read_unlock();

	return retval;
}

L
Linus Torvalds 已提交
3723 3724 3725
/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
3726 3727 3728
 *
 * Return: On success, the policy of the thread. Otherwise, a negative error
 * code.
L
Linus Torvalds 已提交
3729
 */
3730
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
3731
{
3732
	struct task_struct *p;
3733
	int retval;
L
Linus Torvalds 已提交
3734 3735

	if (pid < 0)
3736
		return -EINVAL;
L
Linus Torvalds 已提交
3737 3738

	retval = -ESRCH;
3739
	rcu_read_lock();
L
Linus Torvalds 已提交
3740 3741 3742 3743
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
3744 3745
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
3746
	}
3747
	rcu_read_unlock();
L
Linus Torvalds 已提交
3748 3749 3750 3751
	return retval;
}

/**
3752
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
3753 3754
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
3755 3756 3757
 *
 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
 * code.
L
Linus Torvalds 已提交
3758
 */
3759
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
3760
{
3761
	struct sched_param lp = { .sched_priority = 0 };
3762
	struct task_struct *p;
3763
	int retval;
L
Linus Torvalds 已提交
3764 3765

	if (!param || pid < 0)
3766
		return -EINVAL;
L
Linus Torvalds 已提交
3767

3768
	rcu_read_lock();
L
Linus Torvalds 已提交
3769 3770 3771 3772 3773 3774 3775 3776 3777
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

3778 3779
	if (task_has_rt_policy(p))
		lp.sched_priority = p->rt_priority;
3780
	rcu_read_unlock();
L
Linus Torvalds 已提交
3781 3782 3783 3784 3785 3786 3787 3788 3789

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
3790
	rcu_read_unlock();
L
Linus Torvalds 已提交
3791 3792 3793
	return retval;
}

3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816
static int sched_read_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr,
			   unsigned int usize)
{
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, usize))
		return -EFAULT;

	/*
	 * If we're handed a smaller struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. old
	 * user-space does not get uncomplete information.
	 */
	if (usize < sizeof(*attr)) {
		unsigned char *addr;
		unsigned char *end;

		addr = (void *)attr + usize;
		end  = (void *)attr + sizeof(*attr);

		for (; addr < end; addr++) {
			if (*addr)
3817
				return -EFBIG;
3818 3819 3820 3821 3822
		}

		attr->size = usize;
	}

3823
	ret = copy_to_user(uattr, attr, attr->size);
3824 3825 3826
	if (ret)
		return -EFAULT;

3827
	return 0;
3828 3829 3830
}

/**
3831
 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3832
 * @pid: the pid in question.
J
Juri Lelli 已提交
3833
 * @uattr: structure containing the extended parameters.
3834
 * @size: sizeof(attr) for fwd/bwd comp.
3835
 * @flags: for future extension.
3836
 */
3837 3838
SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
		unsigned int, size, unsigned int, flags)
3839 3840 3841 3842 3843 3844 3845 3846
{
	struct sched_attr attr = {
		.size = sizeof(struct sched_attr),
	};
	struct task_struct *p;
	int retval;

	if (!uattr || pid < 0 || size > PAGE_SIZE ||
3847
	    size < SCHED_ATTR_SIZE_VER0 || flags)
3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860
		return -EINVAL;

	rcu_read_lock();
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	attr.sched_policy = p->policy;
3861 3862
	if (p->sched_reset_on_fork)
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3863 3864 3865
	if (task_has_dl_policy(p))
		__getparam_dl(p, &attr);
	else if (task_has_rt_policy(p))
3866 3867
		attr.sched_priority = p->rt_priority;
	else
3868
		attr.sched_nice = task_nice(p);
3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879

	rcu_read_unlock();

	retval = sched_read_attr(uattr, &attr, size);
	return retval;

out_unlock:
	rcu_read_unlock();
	return retval;
}

3880
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
3881
{
3882
	cpumask_var_t cpus_allowed, new_mask;
3883 3884
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
3885

3886
	rcu_read_lock();
L
Linus Torvalds 已提交
3887 3888 3889

	p = find_process_by_pid(pid);
	if (!p) {
3890
		rcu_read_unlock();
L
Linus Torvalds 已提交
3891 3892 3893
		return -ESRCH;
	}

3894
	/* Prevent p going away */
L
Linus Torvalds 已提交
3895
	get_task_struct(p);
3896
	rcu_read_unlock();
L
Linus Torvalds 已提交
3897

3898 3899 3900 3901
	if (p->flags & PF_NO_SETAFFINITY) {
		retval = -EINVAL;
		goto out_put_task;
	}
3902 3903 3904 3905 3906 3907 3908 3909
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
3910
	retval = -EPERM;
E
Eric W. Biederman 已提交
3911 3912 3913 3914 3915 3916 3917 3918
	if (!check_same_owner(p)) {
		rcu_read_lock();
		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
			rcu_read_unlock();
			goto out_unlock;
		}
		rcu_read_unlock();
	}
L
Linus Torvalds 已提交
3919

3920
	retval = security_task_setscheduler(p);
3921 3922 3923
	if (retval)
		goto out_unlock;

3924 3925 3926 3927

	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);

3928 3929 3930 3931 3932 3933 3934 3935 3936 3937
	/*
	 * Since bandwidth control happens on root_domain basis,
	 * if admission test is enabled, we only admit -deadline
	 * tasks allowed to run on all the CPUs in the task's
	 * root_domain.
	 */
#ifdef CONFIG_SMP
	if (task_has_dl_policy(p)) {
		const struct cpumask *span = task_rq(p)->rd->span;

3938
		if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
3939 3940 3941 3942 3943
			retval = -EBUSY;
			goto out_unlock;
		}
	}
#endif
P
Peter Zijlstra 已提交
3944
again:
3945
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
3946

P
Paul Menage 已提交
3947
	if (!retval) {
3948 3949
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
3950 3951 3952 3953 3954
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
3955
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
3956 3957 3958
			goto again;
		}
	}
L
Linus Torvalds 已提交
3959
out_unlock:
3960 3961 3962 3963
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
3964 3965 3966 3967 3968
	put_task_struct(p);
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3969
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
3970
{
3971 3972 3973 3974 3975
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
3976 3977 3978 3979 3980 3981 3982 3983
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
3984 3985
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
3986
 */
3987 3988
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
3989
{
3990
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
3991 3992
	int retval;

3993 3994
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
3995

3996 3997 3998 3999 4000
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4001 4002
}

4003
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4004
{
4005
	struct task_struct *p;
4006
	unsigned long flags;
L
Linus Torvalds 已提交
4007 4008
	int retval;

4009
	rcu_read_lock();
L
Linus Torvalds 已提交
4010 4011 4012 4013 4014 4015

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4016 4017 4018 4019
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4020
	raw_spin_lock_irqsave(&p->pi_lock, flags);
4021
	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4022
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4023 4024

out_unlock:
4025
	rcu_read_unlock();
L
Linus Torvalds 已提交
4026

4027
	return retval;
L
Linus Torvalds 已提交
4028 4029 4030 4031 4032 4033 4034
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4035 4036
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4037
 */
4038 4039
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4040 4041
{
	int ret;
4042
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4043

A
Anton Blanchard 已提交
4044
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4045 4046
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4047 4048
		return -EINVAL;

4049 4050
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4051

4052 4053
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4054
		size_t retlen = min_t(size_t, len, cpumask_size());
4055 4056

		if (copy_to_user(user_mask_ptr, mask, retlen))
4057 4058
			ret = -EFAULT;
		else
4059
			ret = retlen;
4060 4061
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4062

4063
	return ret;
L
Linus Torvalds 已提交
4064 4065 4066 4067 4068
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4069 4070
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
4071 4072
 *
 * Return: 0.
L
Linus Torvalds 已提交
4073
 */
4074
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4075
{
4076
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4077

4078
	schedstat_inc(rq, yld_count);
4079
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4080 4081 4082 4083 4084 4085

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4086
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4087
	do_raw_spin_unlock(&rq->lock);
4088
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
4089 4090 4091 4092 4093 4094

	schedule();

	return 0;
}

A
Andrew Morton 已提交
4095
static void __cond_resched(void)
L
Linus Torvalds 已提交
4096
{
4097
	__preempt_count_add(PREEMPT_ACTIVE);
4098
	__schedule();
4099
	__preempt_count_sub(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4100 4101
}

4102
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4103
{
P
Peter Zijlstra 已提交
4104
	if (should_resched()) {
L
Linus Torvalds 已提交
4105 4106 4107 4108 4109
		__cond_resched();
		return 1;
	}
	return 0;
}
4110
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4111 4112

/*
4113
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4114 4115
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4116
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4117 4118 4119
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4120
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4121
{
P
Peter Zijlstra 已提交
4122
	int resched = should_resched();
J
Jan Kara 已提交
4123 4124
	int ret = 0;

4125 4126
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
4127
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4128
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4129
		if (resched)
N
Nick Piggin 已提交
4130 4131 4132
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
4133
		ret = 1;
L
Linus Torvalds 已提交
4134 4135
		spin_lock(lock);
	}
J
Jan Kara 已提交
4136
	return ret;
L
Linus Torvalds 已提交
4137
}
4138
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4139

4140
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4141 4142 4143
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
4144
	if (should_resched()) {
4145
		local_bh_enable();
L
Linus Torvalds 已提交
4146 4147 4148 4149 4150 4151
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
4152
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4153 4154 4155 4156

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
 * 	yield();
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
4175 4176 4177 4178 4179 4180 4181 4182
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

4183 4184 4185 4186
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
4187 4188
 * @p: target task
 * @preempt: whether task preemption is allowed or not
4189 4190 4191 4192
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
4193
 * Return:
4194 4195 4196
 *	true (>0) if we indeed boosted the target task.
 *	false (0) if we failed to boost the target.
 *	-ESRCH if there's no task to yield to.
4197
 */
4198
int __sched yield_to(struct task_struct *p, bool preempt)
4199 4200 4201 4202
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
4203
	int yielded = 0;
4204 4205 4206 4207 4208 4209

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
4210 4211 4212 4213 4214 4215 4216 4217 4218
	/*
	 * If we're the only runnable task on the rq and target rq also
	 * has only one task, there's absolutely no point in yielding.
	 */
	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
		yielded = -ESRCH;
		goto out_irq;
	}

4219
	double_rq_lock(rq, p_rq);
4220
	if (task_rq(p) != p_rq) {
4221 4222 4223 4224 4225
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
4226
		goto out_unlock;
4227 4228

	if (curr->sched_class != p->sched_class)
4229
		goto out_unlock;
4230 4231

	if (task_running(p_rq, p) || p->state)
4232
		goto out_unlock;
4233 4234

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4235
	if (yielded) {
4236
		schedstat_inc(rq, yld_count);
4237 4238 4239 4240 4241 4242 4243
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
			resched_task(p_rq->curr);
	}
4244

4245
out_unlock:
4246
	double_rq_unlock(rq, p_rq);
4247
out_irq:
4248 4249
	local_irq_restore(flags);

4250
	if (yielded > 0)
4251 4252 4253 4254 4255 4256
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
4257
/*
I
Ingo Molnar 已提交
4258
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4259 4260 4261 4262
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
4263
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4264

4265
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4266
	atomic_inc(&rq->nr_iowait);
4267
	blk_flush_plug(current);
4268
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4269
	schedule();
4270
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4271
	atomic_dec(&rq->nr_iowait);
4272
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4273 4274 4275 4276 4277
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4278
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4279 4280
	long ret;

4281
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4282
	atomic_inc(&rq->nr_iowait);
4283
	blk_flush_plug(current);
4284
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4285
	ret = schedule_timeout(timeout);
4286
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4287
	atomic_dec(&rq->nr_iowait);
4288
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4289 4290 4291 4292 4293 4294 4295
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
4296 4297 4298
 * Return: On success, this syscall returns the maximum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
4299
 */
4300
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
4301 4302 4303 4304 4305 4306 4307 4308
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
4309
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
4310
	case SCHED_NORMAL:
4311
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4312
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4313 4314 4315 4316 4317 4318 4319 4320 4321 4322
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
4323 4324 4325
 * Return: On success, this syscall returns the minimum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
4326
 */
4327
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
4328 4329 4330 4331 4332 4333 4334 4335
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
4336
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
4337
	case SCHED_NORMAL:
4338
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4339
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
4352 4353 4354
 *
 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
 * an error code.
L
Linus Torvalds 已提交
4355
 */
4356
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4357
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
4358
{
4359
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4360
	unsigned int time_slice;
4361 4362
	unsigned long flags;
	struct rq *rq;
4363
	int retval;
L
Linus Torvalds 已提交
4364 4365 4366
	struct timespec t;

	if (pid < 0)
4367
		return -EINVAL;
L
Linus Torvalds 已提交
4368 4369

	retval = -ESRCH;
4370
	rcu_read_lock();
L
Linus Torvalds 已提交
4371 4372 4373 4374 4375 4376 4377 4378
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4379
	rq = task_rq_lock(p, &flags);
4380 4381 4382
	time_slice = 0;
	if (p->sched_class->get_rr_interval)
		time_slice = p->sched_class->get_rr_interval(rq, p);
4383
	task_rq_unlock(rq, p, &flags);
D
Dmitry Adamushko 已提交
4384

4385
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
4386
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4387 4388
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4389

L
Linus Torvalds 已提交
4390
out_unlock:
4391
	rcu_read_unlock();
L
Linus Torvalds 已提交
4392 4393 4394
	return retval;
}

4395
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4396

4397
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4398 4399
{
	unsigned long free = 0;
4400
	int ppid;
4401
	unsigned state;
L
Linus Torvalds 已提交
4402 4403

	state = p->state ? __ffs(p->state) + 1 : 0;
4404
	printk(KERN_INFO "%-15.15s %c", p->comm,
4405
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4406
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4407
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4408
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4409
	else
P
Peter Zijlstra 已提交
4410
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4411 4412
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4413
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4414
	else
P
Peter Zijlstra 已提交
4415
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4416 4417
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
4418
	free = stack_not_used(p);
L
Linus Torvalds 已提交
4419
#endif
4420 4421 4422
	rcu_read_lock();
	ppid = task_pid_nr(rcu_dereference(p->real_parent));
	rcu_read_unlock();
P
Peter Zijlstra 已提交
4423
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4424
		task_pid_nr(p), ppid,
4425
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
4426

4427
	print_worker_info(KERN_INFO, p);
4428
	show_stack(p, NULL);
L
Linus Torvalds 已提交
4429 4430
}

I
Ingo Molnar 已提交
4431
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4432
{
4433
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4434

4435
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
4436 4437
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4438
#else
P
Peter Zijlstra 已提交
4439 4440
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4441
#endif
4442
	rcu_read_lock();
L
Linus Torvalds 已提交
4443 4444 4445
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
4446
		 * console might take a lot of time:
L
Linus Torvalds 已提交
4447 4448
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4449
		if (!state_filter || (p->state & state_filter))
4450
			sched_show_task(p);
L
Linus Torvalds 已提交
4451 4452
	} while_each_thread(g, p);

4453 4454
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4455 4456 4457
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
4458
	rcu_read_unlock();
I
Ingo Molnar 已提交
4459 4460 4461
	/*
	 * Only show locks if all tasks are dumped:
	 */
4462
	if (!state_filter)
I
Ingo Molnar 已提交
4463
		debug_show_all_locks();
L
Linus Torvalds 已提交
4464 4465
}

4466
void init_idle_bootup_task(struct task_struct *idle)
I
Ingo Molnar 已提交
4467
{
I
Ingo Molnar 已提交
4468
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4469 4470
}

4471 4472 4473 4474 4475 4476 4477 4478
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4479
void init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4480
{
4481
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4482 4483
	unsigned long flags;

4484
	raw_spin_lock_irqsave(&rq->lock, flags);
4485

4486
	__sched_fork(0, idle);
4487
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
4488 4489
	idle->se.exec_start = sched_clock();

4490
	do_set_cpus_allowed(idle, cpumask_of(cpu));
4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
4502
	__set_task_cpu(idle, cpu);
4503
	rcu_read_unlock();
L
Linus Torvalds 已提交
4504 4505

	rq->curr = rq->idle = idle;
4506
	idle->on_rq = 1;
P
Peter Zijlstra 已提交
4507 4508
#if defined(CONFIG_SMP)
	idle->on_cpu = 1;
4509
#endif
4510
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
4511 4512

	/* Set the preempt count _outside_ the spinlocks! */
4513
	init_idle_preempt_count(idle, cpu);
4514

I
Ingo Molnar 已提交
4515 4516 4517 4518
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
4519
	ftrace_graph_init_idle_task(idle, cpu);
4520
	vtime_init_idle(idle, cpu);
4521 4522 4523
#if defined(CONFIG_SMP)
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
4524 4525
}

L
Linus Torvalds 已提交
4526
#ifdef CONFIG_SMP
4527 4528 4529 4530
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
	if (p->sched_class && p->sched_class->set_cpus_allowed)
		p->sched_class->set_cpus_allowed(p, new_mask);
4531 4532

	cpumask_copy(&p->cpus_allowed, new_mask);
4533
	p->nr_cpus_allowed = cpumask_weight(new_mask);
4534 4535
}

L
Linus Torvalds 已提交
4536 4537 4538
/*
 * This is how migration works:
 *
4539 4540 4541 4542 4543 4544
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
4545
 *    it and puts it into the right queue.
4546 4547
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
4548 4549 4550 4551 4552 4553 4554 4555
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
4556
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
4557 4558
 * call is not atomic; no spinlocks may be held.
 */
4559
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
4560 4561
{
	unsigned long flags;
4562
	struct rq *rq;
4563
	unsigned int dest_cpu;
4564
	int ret = 0;
L
Linus Torvalds 已提交
4565 4566

	rq = task_rq_lock(p, &flags);
4567

4568 4569 4570
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

4571
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
4572 4573 4574 4575
		ret = -EINVAL;
		goto out;
	}

4576
	do_set_cpus_allowed(p, new_mask);
4577

L
Linus Torvalds 已提交
4578
	/* Can the task run on the task's current CPU? If so, we're done */
4579
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
4580 4581
		goto out;

4582
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4583
	if (p->on_rq) {
4584
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
4585
		/* Need help from migration thread: drop lock and wait. */
4586
		task_rq_unlock(rq, p, &flags);
4587
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
4588 4589 4590 4591
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
4592
	task_rq_unlock(rq, p, &flags);
4593

L
Linus Torvalds 已提交
4594 4595
	return ret;
}
4596
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
4597 4598

/*
I
Ingo Molnar 已提交
4599
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
4600 4601 4602 4603 4604 4605
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4606 4607
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4608
 */
4609
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4610
{
4611
	struct rq *rq_dest, *rq_src;
4612
	int ret = 0;
L
Linus Torvalds 已提交
4613

4614
	if (unlikely(!cpu_active(dest_cpu)))
4615
		return ret;
L
Linus Torvalds 已提交
4616 4617 4618 4619

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

4620
	raw_spin_lock(&p->pi_lock);
L
Linus Torvalds 已提交
4621 4622 4623
	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
4624
		goto done;
L
Linus Torvalds 已提交
4625
	/* Affinity changed (again). */
4626
	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
L
Linus Torvalds 已提交
4627
		goto fail;
L
Linus Torvalds 已提交
4628

4629 4630 4631 4632
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
P
Peter Zijlstra 已提交
4633
	if (p->on_rq) {
4634
		dequeue_task(rq_src, p, 0);
4635
		set_task_cpu(p, dest_cpu);
4636
		enqueue_task(rq_dest, p, 0);
4637
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
4638
	}
L
Linus Torvalds 已提交
4639
done:
4640
	ret = 1;
L
Linus Torvalds 已提交
4641
fail:
L
Linus Torvalds 已提交
4642
	double_rq_unlock(rq_src, rq_dest);
4643
	raw_spin_unlock(&p->pi_lock);
4644
	return ret;
L
Linus Torvalds 已提交
4645 4646
}

4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661
#ifdef CONFIG_NUMA_BALANCING
/* Migrate current task p to target_cpu */
int migrate_task_to(struct task_struct *p, int target_cpu)
{
	struct migration_arg arg = { p, target_cpu };
	int curr_cpu = task_cpu(p);

	if (curr_cpu == target_cpu)
		return 0;

	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
		return -EINVAL;

	/* TODO: This is not properly updating schedstats */

4662
	trace_sched_move_numa(p, curr_cpu, target_cpu);
4663 4664
	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
}
4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692

/*
 * Requeue a task on a given node and accurately track the number of NUMA
 * tasks on the runqueues
 */
void sched_setnuma(struct task_struct *p, int nid)
{
	struct rq *rq;
	unsigned long flags;
	bool on_rq, running;

	rq = task_rq_lock(p, &flags);
	on_rq = p->on_rq;
	running = task_current(rq, p);

	if (on_rq)
		dequeue_task(rq, p, 0);
	if (running)
		p->sched_class->put_prev_task(rq, p);

	p->numa_preferred_nid = nid;

	if (running)
		p->sched_class->set_curr_task(rq);
	if (on_rq)
		enqueue_task(rq, p, 0);
	task_rq_unlock(rq, p, &flags);
}
4693 4694
#endif

L
Linus Torvalds 已提交
4695
/*
4696 4697 4698
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
4699
 */
4700
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
4701
{
4702
	struct migration_arg *arg = data;
4703

4704 4705 4706 4707
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
4708
	local_irq_disable();
4709
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4710
	local_irq_enable();
L
Linus Torvalds 已提交
4711
	return 0;
4712 4713
}

L
Linus Torvalds 已提交
4714
#ifdef CONFIG_HOTPLUG_CPU
4715

4716
/*
4717 4718
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
4719
 */
4720
void idle_task_exit(void)
L
Linus Torvalds 已提交
4721
{
4722
	struct mm_struct *mm = current->active_mm;
4723

4724
	BUG_ON(cpu_online(smp_processor_id()));
4725

4726
	if (mm != &init_mm) {
4727
		switch_mm(mm, &init_mm, current);
4728 4729
		finish_arch_post_lock_switch();
	}
4730
	mmdrop(mm);
L
Linus Torvalds 已提交
4731 4732 4733
}

/*
4734 4735 4736 4737 4738
 * Since this CPU is going 'away' for a while, fold any nr_active delta
 * we might have. Assumes we're called after migrate_tasks() so that the
 * nr_active count is stable.
 *
 * Also see the comment "Global load-average calculations".
L
Linus Torvalds 已提交
4739
 */
4740
static void calc_load_migrate(struct rq *rq)
L
Linus Torvalds 已提交
4741
{
4742 4743 4744
	long delta = calc_load_fold_active(rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
4745 4746
}

4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762
static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
{
}

static const struct sched_class fake_sched_class = {
	.put_prev_task = put_prev_task_fake,
};

static struct task_struct fake_task = {
	/*
	 * Avoid pull_{rt,dl}_task()
	 */
	.prio = MAX_PRIO + 1,
	.sched_class = &fake_sched_class,
};

4763
/*
4764 4765 4766 4767 4768 4769
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
4770
 */
4771
static void migrate_tasks(unsigned int dead_cpu)
L
Linus Torvalds 已提交
4772
{
4773
	struct rq *rq = cpu_rq(dead_cpu);
4774 4775
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
4776 4777

	/*
4778 4779 4780 4781 4782 4783 4784
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
4785
	 */
4786
	rq->stop = NULL;
4787

4788 4789 4790 4791 4792 4793 4794
	/*
	 * put_prev_task() and pick_next_task() sched
	 * class method both need to have an up-to-date
	 * value of rq->clock[_task]
	 */
	update_rq_clock(rq);

I
Ingo Molnar 已提交
4795
	for ( ; ; ) {
4796 4797 4798 4799 4800
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
4801
			break;
4802

4803
		next = pick_next_task(rq, &fake_task);
4804
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
4805
		next->sched_class->put_prev_task(rq, next);
4806

4807 4808 4809 4810 4811 4812 4813
		/* Find suitable destination for @next, with force if needed. */
		dest_cpu = select_fallback_rq(dead_cpu, next);
		raw_spin_unlock(&rq->lock);

		__migrate_task(next, dead_cpu, dest_cpu);

		raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
4814
	}
4815

4816
	rq->stop = stop;
4817
}
4818

L
Linus Torvalds 已提交
4819 4820
#endif /* CONFIG_HOTPLUG_CPU */

4821 4822 4823
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
4824 4825
	{
		.procname	= "sched_domain",
4826
		.mode		= 0555,
4827
	},
4828
	{}
4829 4830 4831
};

static struct ctl_table sd_ctl_root[] = {
4832 4833
	{
		.procname	= "kernel",
4834
		.mode		= 0555,
4835 4836
		.child		= sd_ctl_dir,
	},
4837
	{}
4838 4839 4840 4841 4842
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
4843
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4844 4845 4846 4847

	return entry;
}

4848 4849
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
4850
	struct ctl_table *entry;
4851

4852 4853 4854
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
4855
	 * will always be set. In the lowest directory the names are
4856 4857 4858
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
4859 4860
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
4861 4862 4863
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
4864 4865 4866 4867 4868

	kfree(*tablep);
	*tablep = NULL;
}

4869
static int min_load_idx = 0;
4870
static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4871

4872
static void
4873
set_table_entry(struct ctl_table *entry,
4874
		const char *procname, void *data, int maxlen,
4875 4876
		umode_t mode, proc_handler *proc_handler,
		bool load_idx)
4877 4878 4879 4880 4881 4882
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
4883 4884 4885 4886 4887

	if (load_idx) {
		entry->extra1 = &min_load_idx;
		entry->extra2 = &max_load_idx;
	}
4888 4889 4890 4891 4892
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
4893
	struct ctl_table *table = sd_alloc_ctl_entry(14);
4894

4895 4896 4897
	if (table == NULL)
		return NULL;

4898
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4899
		sizeof(long), 0644, proc_doulongvec_minmax, false);
4900
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4901
		sizeof(long), 0644, proc_doulongvec_minmax, false);
4902
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4903
		sizeof(int), 0644, proc_dointvec_minmax, true);
4904
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4905
		sizeof(int), 0644, proc_dointvec_minmax, true);
4906
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4907
		sizeof(int), 0644, proc_dointvec_minmax, true);
4908
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4909
		sizeof(int), 0644, proc_dointvec_minmax, true);
4910
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4911
		sizeof(int), 0644, proc_dointvec_minmax, true);
4912
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4913
		sizeof(int), 0644, proc_dointvec_minmax, false);
4914
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4915
		sizeof(int), 0644, proc_dointvec_minmax, false);
4916
	set_table_entry(&table[9], "cache_nice_tries",
4917
		&sd->cache_nice_tries,
4918
		sizeof(int), 0644, proc_dointvec_minmax, false);
4919
	set_table_entry(&table[10], "flags", &sd->flags,
4920
		sizeof(int), 0644, proc_dointvec_minmax, false);
4921 4922 4923 4924
	set_table_entry(&table[11], "max_newidle_lb_cost",
		&sd->max_newidle_lb_cost,
		sizeof(long), 0644, proc_doulongvec_minmax, false);
	set_table_entry(&table[12], "name", sd->name,
4925
		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4926
	/* &table[13] is terminator */
4927 4928 4929 4930

	return table;
}

4931
static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4932 4933 4934 4935 4936 4937 4938 4939 4940
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4941 4942
	if (table == NULL)
		return NULL;
4943 4944 4945 4946 4947

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
4948
		entry->mode = 0555;
4949 4950 4951 4952 4953 4954 4955 4956
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
4957
static void register_sched_domain_sysctl(void)
4958
{
4959
	int i, cpu_num = num_possible_cpus();
4960 4961 4962
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

4963 4964 4965
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

4966 4967 4968
	if (entry == NULL)
		return;

4969
	for_each_possible_cpu(i) {
4970 4971
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
4972
		entry->mode = 0555;
4973
		entry->child = sd_alloc_ctl_cpu_table(i);
4974
		entry++;
4975
	}
4976 4977

	WARN_ON(sd_sysctl_header);
4978 4979
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
4980

4981
/* may be called multiple times per register */
4982 4983
static void unregister_sched_domain_sysctl(void)
{
4984 4985
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
4986
	sd_sysctl_header = NULL;
4987 4988
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
4989
}
4990
#else
4991 4992 4993 4994
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
4995 4996 4997 4998
{
}
#endif

4999 5000 5001 5002 5003
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5004
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5024
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5025 5026 5027 5028
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5029 5030 5031 5032
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5033
static int
5034
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5035
{
5036
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5037
	unsigned long flags;
5038
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5039

5040
	switch (action & ~CPU_TASKS_FROZEN) {
5041

L
Linus Torvalds 已提交
5042
	case CPU_UP_PREPARE:
5043
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5044
		break;
5045

L
Linus Torvalds 已提交
5046
	case CPU_ONLINE:
5047
		/* Update our root-domain */
5048
		raw_spin_lock_irqsave(&rq->lock, flags);
5049
		if (rq->rd) {
5050
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5051 5052

			set_rq_online(rq);
5053
		}
5054
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5055
		break;
5056

L
Linus Torvalds 已提交
5057
#ifdef CONFIG_HOTPLUG_CPU
5058
	case CPU_DYING:
5059
		sched_ttwu_pending();
G
Gregory Haskins 已提交
5060
		/* Update our root-domain */
5061
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5062
		if (rq->rd) {
5063
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5064
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5065
		}
5066 5067
		migrate_tasks(cpu);
		BUG_ON(rq->nr_running != 1); /* the migration thread */
5068
		raw_spin_unlock_irqrestore(&rq->lock, flags);
5069
		break;
5070

5071
	case CPU_DEAD:
5072
		calc_load_migrate(rq);
G
Gregory Haskins 已提交
5073
		break;
L
Linus Torvalds 已提交
5074 5075
#endif
	}
5076 5077 5078

	update_max_interval();

L
Linus Torvalds 已提交
5079 5080 5081
	return NOTIFY_OK;
}

5082 5083 5084
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5085
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5086
 */
5087
static struct notifier_block migration_notifier = {
L
Linus Torvalds 已提交
5088
	.notifier_call = migration_call,
5089
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
5090 5091
};

5092 5093 5094 5095 5096 5097 5098
static void __cpuinit set_cpu_rq_start_time(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
	rq->age_stamp = sched_clock_cpu(cpu);
}

5099
static int sched_cpu_active(struct notifier_block *nfb,
5100 5101 5102
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
5103 5104 5105
	case CPU_STARTING:
		set_cpu_rq_start_time();
		return NOTIFY_OK;
5106 5107 5108 5109 5110 5111 5112 5113
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

5114
static int sched_cpu_inactive(struct notifier_block *nfb,
5115 5116
					unsigned long action, void *hcpu)
{
5117 5118 5119
	unsigned long flags;
	long cpu = (long)hcpu;

5120 5121
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137
		set_cpu_active(cpu, false);

		/* explicitly allow suspend */
		if (!(action & CPU_TASKS_FROZEN)) {
			struct dl_bw *dl_b = dl_bw_of(cpu);
			bool overflow;
			int cpus;

			raw_spin_lock_irqsave(&dl_b->lock, flags);
			cpus = dl_bw_cpus(cpu);
			overflow = __dl_overflow(dl_b, cpus, 0, 0);
			raw_spin_unlock_irqrestore(&dl_b->lock, flags);

			if (overflow)
				return notifier_from_errno(-EBUSY);
		}
5138 5139
		return NOTIFY_OK;
	}
5140 5141

	return NOTIFY_DONE;
5142 5143
}

5144
static int __init migration_init(void)
L
Linus Torvalds 已提交
5145 5146
{
	void *cpu = (void *)(long)smp_processor_id();
5147
	int err;
5148

5149
	/* Initialize migration for the boot CPU */
5150 5151
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5152 5153
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5154

5155 5156 5157 5158
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

5159
	return 0;
L
Linus Torvalds 已提交
5160
}
5161
early_initcall(migration_init);
L
Linus Torvalds 已提交
5162 5163 5164
#endif

#ifdef CONFIG_SMP
5165

5166 5167
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

5168
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5169

5170
static __read_mostly int sched_debug_enabled;
5171

5172
static int __init sched_debug_setup(char *str)
5173
{
5174
	sched_debug_enabled = 1;
5175 5176 5177

	return 0;
}
5178 5179 5180 5181 5182 5183
early_param("sched_debug", sched_debug_setup);

static inline bool sched_debug(void)
{
	return sched_debug_enabled;
}
5184

5185
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5186
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5187
{
I
Ingo Molnar 已提交
5188
	struct sched_group *group = sd->groups;
5189
	char str[256];
L
Linus Torvalds 已提交
5190

R
Rusty Russell 已提交
5191
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5192
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5193 5194 5195 5196

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5197
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5198
		if (sd->parent)
P
Peter Zijlstra 已提交
5199 5200
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5201
		return -1;
N
Nick Piggin 已提交
5202 5203
	}

P
Peter Zijlstra 已提交
5204
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
5205

5206
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5207 5208
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5209
	}
5210
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5211 5212
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5213
	}
L
Linus Torvalds 已提交
5214

I
Ingo Molnar 已提交
5215
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5216
	do {
I
Ingo Molnar 已提交
5217
		if (!group) {
P
Peter Zijlstra 已提交
5218 5219
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5220 5221 5222
			break;
		}

5223
		/*
5224 5225
		 * Even though we initialize ->capacity to something semi-sane,
		 * we leave capacity_orig unset. This allows us to detect if
5226 5227
		 * domain iteration is still funny without causing /0 traps.
		 */
5228
		if (!group->sgc->capacity_orig) {
P
Peter Zijlstra 已提交
5229
			printk(KERN_CONT "\n");
5230
			printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
I
Ingo Molnar 已提交
5231 5232
			break;
		}
L
Linus Torvalds 已提交
5233

5234
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5235 5236
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
5237 5238
			break;
		}
L
Linus Torvalds 已提交
5239

5240 5241
		if (!(sd->flags & SD_OVERLAP) &&
		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5242 5243
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
5244 5245
			break;
		}
L
Linus Torvalds 已提交
5246

5247
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
5248

R
Rusty Russell 已提交
5249
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5250

P
Peter Zijlstra 已提交
5251
		printk(KERN_CONT " %s", str);
5252
		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5253 5254
			printk(KERN_CONT " (cpu_capacity = %d)",
				group->sgc->capacity);
5255
		}
L
Linus Torvalds 已提交
5256

I
Ingo Molnar 已提交
5257 5258
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
5259
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5260

5261
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
5262
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5263

5264 5265
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
5266 5267
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
5268 5269
	return 0;
}
L
Linus Torvalds 已提交
5270

I
Ingo Molnar 已提交
5271 5272 5273
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5274

5275
	if (!sched_debug_enabled)
5276 5277
		return;

I
Ingo Molnar 已提交
5278 5279 5280 5281
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5282

I
Ingo Molnar 已提交
5283 5284 5285
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
5286
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
I
Ingo Molnar 已提交
5287
			break;
L
Linus Torvalds 已提交
5288 5289
		level++;
		sd = sd->parent;
5290
		if (!sd)
I
Ingo Molnar 已提交
5291 5292
			break;
	}
L
Linus Torvalds 已提交
5293
}
5294
#else /* !CONFIG_SCHED_DEBUG */
5295
# define sched_domain_debug(sd, cpu) do { } while (0)
5296 5297 5298 5299
static inline bool sched_debug(void)
{
	return false;
}
5300
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
5301

5302
static int sd_degenerate(struct sched_domain *sd)
5303
{
5304
	if (cpumask_weight(sched_domain_span(sd)) == 1)
5305 5306 5307 5308 5309 5310
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5311
			 SD_BALANCE_EXEC |
5312
			 SD_SHARE_CPUCAPACITY |
5313 5314
			 SD_SHARE_PKG_RESOURCES |
			 SD_SHARE_POWERDOMAIN)) {
5315 5316 5317 5318 5319
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
5320
	if (sd->flags & (SD_WAKE_AFFINE))
5321 5322 5323 5324 5325
		return 0;

	return 1;
}

5326 5327
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5328 5329 5330 5331 5332 5333
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

5334
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5335 5336 5337 5338 5339 5340 5341
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5342
				SD_BALANCE_EXEC |
5343
				SD_SHARE_CPUCAPACITY |
5344
				SD_SHARE_PKG_RESOURCES |
5345 5346
				SD_PREFER_SIBLING |
				SD_SHARE_POWERDOMAIN);
5347 5348
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
5349 5350 5351 5352 5353 5354 5355
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

5356
static void free_rootdomain(struct rcu_head *rcu)
5357
{
5358
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5359

5360
	cpupri_cleanup(&rd->cpupri);
5361
	cpudl_cleanup(&rd->cpudl);
5362
	free_cpumask_var(rd->dlo_mask);
5363 5364 5365 5366 5367 5368
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
5369 5370
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
5371
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
5372 5373
	unsigned long flags;

5374
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5375 5376

	if (rq->rd) {
I
Ingo Molnar 已提交
5377
		old_rd = rq->rd;
G
Gregory Haskins 已提交
5378

5379
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5380
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5381

5382
		cpumask_clear_cpu(rq->cpu, old_rd->span);
5383

I
Ingo Molnar 已提交
5384
		/*
5385
		 * If we dont want to free the old_rd yet then
I
Ingo Molnar 已提交
5386 5387 5388 5389 5390
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
5391 5392 5393 5394 5395
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

5396
	cpumask_set_cpu(rq->cpu, rd->span);
5397
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5398
		set_rq_online(rq);
G
Gregory Haskins 已提交
5399

5400
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
5401 5402

	if (old_rd)
5403
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
5404 5405
}

5406
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
5407 5408 5409
{
	memset(rd, 0, sizeof(*rd));

5410
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5411
		goto out;
5412
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5413
		goto free_span;
5414
	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5415
		goto free_online;
5416 5417
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
		goto free_dlo_mask;
5418

5419
	init_dl_bw(&rd->dl_bw);
5420 5421
	if (cpudl_init(&rd->cpudl) != 0)
		goto free_dlo_mask;
5422

5423
	if (cpupri_init(&rd->cpupri) != 0)
5424
		goto free_rto_mask;
5425
	return 0;
5426

5427 5428
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
5429 5430
free_dlo_mask:
	free_cpumask_var(rd->dlo_mask);
5431 5432 5433 5434
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
5435
out:
5436
	return -ENOMEM;
G
Gregory Haskins 已提交
5437 5438
}

5439 5440 5441 5442 5443 5444
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
struct root_domain def_root_domain;

G
Gregory Haskins 已提交
5445 5446
static void init_defrootdomain(void)
{
5447
	init_rootdomain(&def_root_domain);
5448

G
Gregory Haskins 已提交
5449 5450 5451
	atomic_set(&def_root_domain.refcount, 1);
}

5452
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
5453 5454 5455 5456 5457 5458 5459
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

5460
	if (init_rootdomain(rd) != 0) {
5461 5462 5463
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
5464 5465 5466 5467

	return rd;
}

5468
static void free_sched_groups(struct sched_group *sg, int free_sgc)
5469 5470 5471 5472 5473 5474 5475 5476 5477 5478
{
	struct sched_group *tmp, *first;

	if (!sg)
		return;

	first = sg;
	do {
		tmp = sg->next;

5479 5480
		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
			kfree(sg->sgc);
5481 5482 5483 5484 5485 5486

		kfree(sg);
		sg = tmp;
	} while (sg != first);
}

5487 5488 5489
static void free_sched_domain(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5490 5491 5492 5493 5494 5495 5496 5497

	/*
	 * If its an overlapping domain it has private groups, iterate and
	 * nuke them all.
	 */
	if (sd->flags & SD_OVERLAP) {
		free_sched_groups(sd->groups, 1);
	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5498
		kfree(sd->groups->sgc);
5499
		kfree(sd->groups);
5500
	}
5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514
	kfree(sd);
}

static void destroy_sched_domain(struct sched_domain *sd, int cpu)
{
	call_rcu(&sd->rcu, free_sched_domain);
}

static void destroy_sched_domains(struct sched_domain *sd, int cpu)
{
	for (; sd; sd = sd->parent)
		destroy_sched_domain(sd, cpu);
}

5515 5516 5517 5518 5519 5520 5521
/*
 * Keep a special pointer to the highest sched_domain that has
 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 * allows us to avoid some pointer chasing select_idle_sibling().
 *
 * Also keep a unique ID per domain (we use the first cpu number in
 * the cpumask of the domain), this allows us to quickly tell if
5522
 * two cpus are in the same cache domain, see cpus_share_cache().
5523 5524
 */
DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5525
DEFINE_PER_CPU(int, sd_llc_size);
5526
DEFINE_PER_CPU(int, sd_llc_id);
5527
DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5528 5529
DEFINE_PER_CPU(struct sched_domain *, sd_busy);
DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5530 5531 5532 5533

static void update_top_cache_domain(int cpu)
{
	struct sched_domain *sd;
5534
	struct sched_domain *busy_sd = NULL;
5535
	int id = cpu;
5536
	int size = 1;
5537 5538

	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5539
	if (sd) {
5540
		id = cpumask_first(sched_domain_span(sd));
5541
		size = cpumask_weight(sched_domain_span(sd));
5542
		busy_sd = sd->parent; /* sd_busy */
5543
	}
5544
	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5545 5546

	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5547
	per_cpu(sd_llc_size, cpu) = size;
5548
	per_cpu(sd_llc_id, cpu) = id;
5549 5550 5551

	sd = lowest_flag_domain(cpu, SD_NUMA);
	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5552 5553 5554

	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5555 5556
}

L
Linus Torvalds 已提交
5557
/*
I
Ingo Molnar 已提交
5558
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
5559 5560
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
5561 5562
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
5563
{
5564
	struct rq *rq = cpu_rq(cpu);
5565 5566 5567
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
5568
	for (tmp = sd; tmp; ) {
5569 5570 5571
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5572

5573
		if (sd_parent_degenerate(tmp, parent)) {
5574
			tmp->parent = parent->parent;
5575 5576
			if (parent->parent)
				parent->parent->child = tmp;
5577 5578 5579 5580 5581 5582 5583
			/*
			 * Transfer SD_PREFER_SIBLING down in case of a
			 * degenerate parent; the spans match for this
			 * so the property transfers.
			 */
			if (parent->flags & SD_PREFER_SIBLING)
				tmp->flags |= SD_PREFER_SIBLING;
5584
			destroy_sched_domain(parent, cpu);
5585 5586
		} else
			tmp = tmp->parent;
5587 5588
	}

5589
	if (sd && sd_degenerate(sd)) {
5590
		tmp = sd;
5591
		sd = sd->parent;
5592
		destroy_sched_domain(tmp, cpu);
5593 5594 5595
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5596

5597
	sched_domain_debug(sd, cpu);
L
Linus Torvalds 已提交
5598

G
Gregory Haskins 已提交
5599
	rq_attach_root(rq, rd);
5600
	tmp = rq->sd;
N
Nick Piggin 已提交
5601
	rcu_assign_pointer(rq->sd, sd);
5602
	destroy_sched_domains(tmp, cpu);
5603 5604

	update_top_cache_domain(cpu);
L
Linus Torvalds 已提交
5605 5606 5607
}

/* cpus with isolated domains */
5608
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
5609 5610 5611 5612

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
5613
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
5614
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
5615 5616 5617
	return 1;
}

I
Ingo Molnar 已提交
5618
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5619

5620
struct s_data {
5621
	struct sched_domain ** __percpu sd;
5622 5623 5624
	struct root_domain	*rd;
};

5625 5626
enum s_alloc {
	sa_rootdomain,
5627
	sa_sd,
5628
	sa_sd_storage,
5629 5630 5631
	sa_none,
};

P
Peter Zijlstra 已提交
5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669
/*
 * Build an iteration mask that can exclude certain CPUs from the upwards
 * domain traversal.
 *
 * Asymmetric node setups can result in situations where the domain tree is of
 * unequal depth, make sure to skip domains that already cover the entire
 * range.
 *
 * In that case build_sched_domains() will have terminated the iteration early
 * and our sibling sd spans will be empty. Domains should always include the
 * cpu they're built on, so check that.
 *
 */
static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
{
	const struct cpumask *span = sched_domain_span(sd);
	struct sd_data *sdd = sd->private;
	struct sched_domain *sibling;
	int i;

	for_each_cpu(i, span) {
		sibling = *per_cpu_ptr(sdd->sd, i);
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
			continue;

		cpumask_set_cpu(i, sched_group_mask(sg));
	}
}

/*
 * Return the canonical balance cpu for this group, this is the first cpu
 * of this group that's also in the iteration mask.
 */
int group_balance_cpu(struct sched_group *sg)
{
	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
}

5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687
static int
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered = sched_domains_tmpmask;
	struct sd_data *sdd = sd->private;
	struct sched_domain *child;
	int i;

	cpumask_clear(covered);

	for_each_cpu(i, span) {
		struct cpumask *sg_span;

		if (cpumask_test_cpu(i, covered))
			continue;

P
Peter Zijlstra 已提交
5688 5689 5690 5691 5692 5693
		child = *per_cpu_ptr(sdd->sd, i);

		/* See the comment near build_group_mask(). */
		if (!cpumask_test_cpu(i, sched_domain_span(child)))
			continue;

5694
		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5695
				GFP_KERNEL, cpu_to_node(cpu));
5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708

		if (!sg)
			goto fail;

		sg_span = sched_group_cpus(sg);
		if (child->child) {
			child = child->child;
			cpumask_copy(sg_span, sched_domain_span(child));
		} else
			cpumask_set_cpu(i, sg_span);

		cpumask_or(covered, covered, sg_span);

5709 5710
		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
		if (atomic_inc_return(&sg->sgc->ref) == 1)
P
Peter Zijlstra 已提交
5711 5712
			build_group_mask(sd, sg);

5713
		/*
5714
		 * Initialize sgc->capacity such that even if we mess up the
5715 5716 5717
		 * domains and no possible iteration will get us here, we won't
		 * die on a /0 trap.
		 */
5718
		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
5719
		sg->sgc->capacity_orig = sg->sgc->capacity;
5720

P
Peter Zijlstra 已提交
5721 5722 5723 5724 5725
		/*
		 * Make sure the first group of this domain contains the
		 * canonical balance cpu. Otherwise the sched_domain iteration
		 * breaks. See update_sg_lb_stats().
		 */
P
Peter Zijlstra 已提交
5726
		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
P
Peter Zijlstra 已提交
5727
		    group_balance_cpu(sg) == cpu)
5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746
			groups = sg;

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
		last->next = first;
	}
	sd->groups = groups;

	return 0;

fail:
	free_sched_groups(first, 0);

	return -ENOMEM;
}

5747
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
5748
{
5749 5750
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
5751

5752 5753
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
5754

5755
	if (sg) {
5756
		*sg = *per_cpu_ptr(sdd->sg, cpu);
5757 5758
		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
5759
	}
5760 5761

	return cpu;
5762 5763
}

5764
/*
5765 5766
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
5767
 * and ->cpu_capacity to 0.
5768 5769
 *
 * Assumes the sched_domain tree is fully constructed
5770
 */
5771 5772
static int
build_sched_groups(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5773
{
5774 5775 5776
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
5777
	struct cpumask *covered;
5778
	int i;
5779

5780 5781 5782
	get_group(cpu, sdd, &sd->groups);
	atomic_inc(&sd->groups->ref);

5783
	if (cpu != cpumask_first(span))
5784 5785
		return 0;

5786 5787 5788
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

5789
	cpumask_clear(covered);
5790

5791 5792
	for_each_cpu(i, span) {
		struct sched_group *sg;
5793
		int group, j;
5794

5795 5796
		if (cpumask_test_cpu(i, covered))
			continue;
5797

5798
		group = get_group(i, sdd, &sg);
P
Peter Zijlstra 已提交
5799
		cpumask_setall(sched_group_mask(sg));
5800

5801 5802 5803
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
5804

5805 5806 5807
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
5808

5809 5810 5811 5812 5813 5814 5815
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
5816 5817

	return 0;
5818
}
5819

5820
/*
5821
 * Initialize sched groups cpu_capacity.
5822
 *
5823
 * cpu_capacity indicates the capacity of sched group, which is used while
5824
 * distributing the load between different sched groups in a sched domain.
5825 5826 5827 5828
 * Typically cpu_capacity for all the groups in a sched domain will be same
 * unless there are asymmetries in the topology. If there are asymmetries,
 * group having more cpu_capacity will pickup more load compared to the
 * group having less cpu_capacity.
5829
 */
5830
static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
5831
{
5832
	struct sched_group *sg = sd->groups;
5833

5834
	WARN_ON(!sg);
5835 5836 5837 5838 5839

	do {
		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
		sg = sg->next;
	} while (sg != sd->groups);
5840

P
Peter Zijlstra 已提交
5841
	if (cpu != group_balance_cpu(sg))
5842
		return;
5843

5844 5845
	update_group_capacity(sd, cpu);
	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
5846 5847
}

5848 5849 5850 5851 5852
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

5853
static int default_relax_domain_level = -1;
5854
int sched_domain_level_max;
5855 5856 5857

static int __init setup_relax_domain_level(char *str)
{
5858 5859
	if (kstrtoint(str, 0, &default_relax_domain_level))
		pr_warn("Unable to set relax_domain_level\n");
5860

5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
5879
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5880 5881
	} else {
		/* turn on idle balance on this domain */
5882
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5883 5884 5885
	}
}

5886 5887 5888
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

5889 5890 5891 5892 5893
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
5894 5895
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
5896 5897
	case sa_sd:
		free_percpu(d->sd); /* fall through */
5898
	case sa_sd_storage:
5899
		__sdt_free(cpu_map); /* fall through */
5900 5901 5902 5903
	case sa_none:
		break;
	}
}
5904

5905 5906 5907
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
5908 5909
	memset(d, 0, sizeof(*d));

5910 5911
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
5912 5913 5914
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
5915
	d->rd = alloc_rootdomain();
5916
	if (!d->rd)
5917
		return sa_sd;
5918 5919
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
5920

5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

5933
	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5934
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5935

5936 5937
	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
5938 5939
}

5940 5941 5942 5943 5944
#ifdef CONFIG_NUMA
static int sched_domains_numa_levels;
static int *sched_domains_numa_distance;
static struct cpumask ***sched_domains_numa_masks;
static int sched_domains_curr_level;
5945
#endif
5946

5947 5948 5949
/*
 * SD_flags allowed in topology descriptions.
 *
5950
 * SD_SHARE_CPUCAPACITY      - describes SMT topologies
5951 5952
 * SD_SHARE_PKG_RESOURCES - describes shared caches
 * SD_NUMA                - describes NUMA topologies
5953
 * SD_SHARE_POWERDOMAIN   - describes shared power domain
5954 5955 5956 5957 5958
 *
 * Odd one out:
 * SD_ASYM_PACKING        - describes SMT quirks
 */
#define TOPOLOGY_SD_FLAGS		\
5959
	(SD_SHARE_CPUCAPACITY |		\
5960 5961
	 SD_SHARE_PKG_RESOURCES |	\
	 SD_NUMA |			\
5962 5963
	 SD_ASYM_PACKING |		\
	 SD_SHARE_POWERDOMAIN)
5964 5965

static struct sched_domain *
5966
sd_init(struct sched_domain_topology_level *tl, int cpu)
5967 5968
{
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984
	int sd_weight, sd_flags = 0;

#ifdef CONFIG_NUMA
	/*
	 * Ugly hack to pass state to sd_numa_mask()...
	 */
	sched_domains_curr_level = tl->numa_level;
#endif

	sd_weight = cpumask_weight(tl->mask(cpu));

	if (tl->sd_flags)
		sd_flags = (*tl->sd_flags)();
	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
			"wrong sd_flags in topology description\n"))
		sd_flags &= ~TOPOLOGY_SD_FLAGS;
5985 5986 5987 5988 5989

	*sd = (struct sched_domain){
		.min_interval		= sd_weight,
		.max_interval		= 2*sd_weight,
		.busy_factor		= 32,
5990
		.imbalance_pct		= 125,
5991 5992 5993 5994

		.cache_nice_tries	= 0,
		.busy_idx		= 0,
		.idle_idx		= 0,
5995 5996 5997 5998 5999 6000
		.newidle_idx		= 0,
		.wake_idx		= 0,
		.forkexec_idx		= 0,

		.flags			= 1*SD_LOAD_BALANCE
					| 1*SD_BALANCE_NEWIDLE
6001 6002
					| 1*SD_BALANCE_EXEC
					| 1*SD_BALANCE_FORK
6003
					| 0*SD_BALANCE_WAKE
6004
					| 1*SD_WAKE_AFFINE
6005
					| 0*SD_SHARE_CPUCAPACITY
6006
					| 0*SD_SHARE_PKG_RESOURCES
6007
					| 0*SD_SERIALIZE
6008
					| 0*SD_PREFER_SIBLING
6009 6010
					| 0*SD_NUMA
					| sd_flags
6011
					,
6012

6013 6014
		.last_balance		= jiffies,
		.balance_interval	= sd_weight,
6015
		.smt_gain		= 0,
6016 6017
		.max_newidle_lb_cost	= 0,
		.next_decay_max_lb_cost	= jiffies,
6018 6019 6020
#ifdef CONFIG_SCHED_DEBUG
		.name			= tl->name,
#endif
6021 6022 6023
	};

	/*
6024
	 * Convert topological properties into behaviour.
6025
	 */
6026

6027
	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057
		sd->imbalance_pct = 110;
		sd->smt_gain = 1178; /* ~15% */

	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
		sd->imbalance_pct = 117;
		sd->cache_nice_tries = 1;
		sd->busy_idx = 2;

#ifdef CONFIG_NUMA
	} else if (sd->flags & SD_NUMA) {
		sd->cache_nice_tries = 2;
		sd->busy_idx = 3;
		sd->idle_idx = 2;

		sd->flags |= SD_SERIALIZE;
		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
			sd->flags &= ~(SD_BALANCE_EXEC |
				       SD_BALANCE_FORK |
				       SD_WAKE_AFFINE);
		}

#endif
	} else {
		sd->flags |= SD_PREFER_SIBLING;
		sd->cache_nice_tries = 1;
		sd->busy_idx = 2;
		sd->idle_idx = 1;
	}

	sd->private = &tl->data;
6058 6059 6060 6061

	return sd;
}

6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087
/*
 * Topology list, bottom-up.
 */
static struct sched_domain_topology_level default_topology[] = {
#ifdef CONFIG_SCHED_SMT
	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
#endif
#ifdef CONFIG_SCHED_MC
	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
#endif
	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
	{ NULL, },
};

struct sched_domain_topology_level *sched_domain_topology = default_topology;

#define for_each_sd_topology(tl)			\
	for (tl = sched_domain_topology; tl->mask; tl++)

void set_sched_topology(struct sched_domain_topology_level *tl)
{
	sched_domain_topology = tl;
}

#ifdef CONFIG_NUMA

6088 6089 6090 6091 6092
static const struct cpumask *sd_numa_mask(int cpu)
{
	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
}

6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128
static void sched_numa_warn(const char *str)
{
	static int done = false;
	int i,j;

	if (done)
		return;

	done = true;

	printk(KERN_WARNING "ERROR: %s\n\n", str);

	for (i = 0; i < nr_node_ids; i++) {
		printk(KERN_WARNING "  ");
		for (j = 0; j < nr_node_ids; j++)
			printk(KERN_CONT "%02d ", node_distance(i,j));
		printk(KERN_CONT "\n");
	}
	printk(KERN_WARNING "\n");
}

static bool find_numa_distance(int distance)
{
	int i;

	if (distance == node_distance(0, 0))
		return true;

	for (i = 0; i < sched_domains_numa_levels; i++) {
		if (sched_domains_numa_distance[i] == distance)
			return true;
	}

	return false;
}

6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149
static void sched_init_numa(void)
{
	int next_distance, curr_distance = node_distance(0, 0);
	struct sched_domain_topology_level *tl;
	int level = 0;
	int i, j, k;

	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
	if (!sched_domains_numa_distance)
		return;

	/*
	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
	 * unique distances in the node_distance() table.
	 *
	 * Assumes node_distance(0,j) includes all distances in
	 * node_distance(i,j) in order to avoid cubic time.
	 */
	next_distance = curr_distance;
	for (i = 0; i < nr_node_ids; i++) {
		for (j = 0; j < nr_node_ids; j++) {
6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173
			for (k = 0; k < nr_node_ids; k++) {
				int distance = node_distance(i, k);

				if (distance > curr_distance &&
				    (distance < next_distance ||
				     next_distance == curr_distance))
					next_distance = distance;

				/*
				 * While not a strong assumption it would be nice to know
				 * about cases where if node A is connected to B, B is not
				 * equally connected to A.
				 */
				if (sched_debug() && node_distance(k, i) != distance)
					sched_numa_warn("Node-distance not symmetric");

				if (sched_debug() && i && !find_numa_distance(distance))
					sched_numa_warn("Node-0 not representative");
			}
			if (next_distance != curr_distance) {
				sched_domains_numa_distance[level++] = next_distance;
				sched_domains_numa_levels = level;
				curr_distance = next_distance;
			} else break;
6174
		}
6175 6176 6177 6178 6179 6180

		/*
		 * In case of sched_debug() we verify the above assumption.
		 */
		if (!sched_debug())
			break;
6181 6182 6183 6184 6185
	}
	/*
	 * 'level' contains the number of unique distances, excluding the
	 * identity distance node_distance(i,i).
	 *
V
Viresh Kumar 已提交
6186
	 * The sched_domains_numa_distance[] array includes the actual distance
6187 6188 6189
	 * numbers.
	 */

6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200
	/*
	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
	 * the array will contain less then 'level' members. This could be
	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
	 * in other functions.
	 *
	 * We reset it to 'level' at the end of this function.
	 */
	sched_domains_numa_levels = 0;

6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215
	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
	if (!sched_domains_numa_masks)
		return;

	/*
	 * Now for each level, construct a mask per node which contains all
	 * cpus of nodes that are that many hops away from us.
	 */
	for (i = 0; i < level; i++) {
		sched_domains_numa_masks[i] =
			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
		if (!sched_domains_numa_masks[i])
			return;

		for (j = 0; j < nr_node_ids; j++) {
6216
			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6217 6218 6219 6220 6221 6222
			if (!mask)
				return;

			sched_domains_numa_masks[i][j] = mask;

			for (k = 0; k < nr_node_ids; k++) {
6223
				if (node_distance(j, k) > sched_domains_numa_distance[i])
6224 6225 6226 6227 6228 6229 6230
					continue;

				cpumask_or(mask, mask, cpumask_of_node(k));
			}
		}
	}

6231 6232 6233
	/* Compute default topology size */
	for (i = 0; sched_domain_topology[i].mask; i++);

6234
	tl = kzalloc((i + level + 1) *
6235 6236 6237 6238 6239 6240 6241
			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
	if (!tl)
		return;

	/*
	 * Copy the default topology bits..
	 */
6242 6243
	for (i = 0; sched_domain_topology[i].mask; i++)
		tl[i] = sched_domain_topology[i];
6244 6245 6246 6247 6248 6249 6250

	/*
	 * .. and append 'j' levels of NUMA goodness.
	 */
	for (j = 0; j < level; i++, j++) {
		tl[i] = (struct sched_domain_topology_level){
			.mask = sd_numa_mask,
6251
			.sd_flags = cpu_numa_flags,
6252 6253
			.flags = SDTL_OVERLAP,
			.numa_level = j,
6254
			SD_INIT_NAME(NUMA)
6255 6256 6257 6258
		};
	}

	sched_domain_topology = tl;
6259 6260

	sched_domains_numa_levels = level;
6261
}
6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308

static void sched_domains_numa_masks_set(int cpu)
{
	int i, j;
	int node = cpu_to_node(cpu);

	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++) {
			if (node_distance(j, node) <= sched_domains_numa_distance[i])
				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
		}
	}
}

static void sched_domains_numa_masks_clear(int cpu)
{
	int i, j;
	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++)
			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
	}
}

/*
 * Update sched_domains_numa_masks[level][node] array when new cpus
 * are onlined.
 */
static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	int cpu = (long)hcpu;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
		sched_domains_numa_masks_set(cpu);
		break;

	case CPU_DEAD:
		sched_domains_numa_masks_clear(cpu);
		break;

	default:
		return NOTIFY_DONE;
	}

	return NOTIFY_OK;
6309 6310 6311 6312 6313
}
#else
static inline void sched_init_numa(void)
{
}
6314 6315 6316 6317 6318 6319 6320

static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	return 0;
}
6321 6322
#endif /* CONFIG_NUMA */

6323 6324 6325 6326 6327
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

6328
	for_each_sd_topology(tl) {
6329 6330 6331 6332 6333 6334 6335 6336 6337 6338
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

6339 6340
		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
		if (!sdd->sgc)
6341 6342
			return -ENOMEM;

6343 6344 6345
		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_group *sg;
6346
			struct sched_group_capacity *sgc;
6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359

		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

6360 6361
			sg->next = sg;

6362
			*per_cpu_ptr(sdd->sg, j) = sg;
6363

6364
			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6365
					GFP_KERNEL, cpu_to_node(j));
6366
			if (!sgc)
6367 6368
				return -ENOMEM;

6369
			*per_cpu_ptr(sdd->sgc, j) = sgc;
6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

6381
	for_each_sd_topology(tl) {
6382 6383 6384
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395
			struct sched_domain *sd;

			if (sdd->sd) {
				sd = *per_cpu_ptr(sdd->sd, j);
				if (sd && (sd->flags & SD_OVERLAP))
					free_sched_groups(sd->groups, 0);
				kfree(*per_cpu_ptr(sdd->sd, j));
			}

			if (sdd->sg)
				kfree(*per_cpu_ptr(sdd->sg, j));
6396 6397
			if (sdd->sgc)
				kfree(*per_cpu_ptr(sdd->sgc, j));
6398 6399
		}
		free_percpu(sdd->sd);
6400
		sdd->sd = NULL;
6401
		free_percpu(sdd->sg);
6402
		sdd->sg = NULL;
6403 6404
		free_percpu(sdd->sgc);
		sdd->sgc = NULL;
6405 6406 6407
	}
}

6408
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6409 6410
		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
		struct sched_domain *child, int cpu)
6411
{
6412
	struct sched_domain *sd = sd_init(tl, cpu);
6413
	if (!sd)
6414
		return child;
6415 6416

	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6417 6418 6419
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6420
		child->parent = sd;
6421
		sd->child = child;
6422
	}
6423
	set_domain_attribute(sd, attr);
6424 6425 6426 6427

	return sd;
}

6428 6429 6430 6431
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
6432 6433
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
6434
{
6435
	enum s_alloc alloc_state;
6436
	struct sched_domain *sd;
6437
	struct s_data d;
6438
	int i, ret = -ENOMEM;
6439

6440 6441 6442
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
6443

6444
	/* Set up domains for cpus specified by the cpu_map. */
6445
	for_each_cpu(i, cpu_map) {
6446 6447
		struct sched_domain_topology_level *tl;

6448
		sd = NULL;
6449
		for_each_sd_topology(tl) {
6450
			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6451 6452
			if (tl == sched_domain_topology)
				*per_cpu_ptr(d.sd, i) = sd;
6453 6454
			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
				sd->flags |= SD_OVERLAP;
6455 6456
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
				break;
6457
		}
6458 6459 6460 6461 6462 6463
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6464 6465 6466 6467 6468 6469 6470
			if (sd->flags & SD_OVERLAP) {
				if (build_overlap_sched_groups(sd, i))
					goto error;
			} else {
				if (build_sched_groups(sd, i))
					goto error;
			}
6471
		}
6472
	}
6473

6474
	/* Calculate CPU capacity for physical packages and nodes */
6475 6476 6477
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
6478

6479 6480
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
6481
			init_sched_groups_capacity(i, sd);
6482
		}
6483
	}
6484

L
Linus Torvalds 已提交
6485
	/* Attach the domains */
6486
	rcu_read_lock();
6487
	for_each_cpu(i, cpu_map) {
6488
		sd = *per_cpu_ptr(d.sd, i);
6489
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
6490
	}
6491
	rcu_read_unlock();
6492

6493
	ret = 0;
6494
error:
6495
	__free_domain_allocs(&d, alloc_state, cpu_map);
6496
	return ret;
L
Linus Torvalds 已提交
6497
}
P
Paul Jackson 已提交
6498

6499
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
6500
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
6501 6502
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
6503 6504 6505

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
6506 6507
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
6508
 */
6509
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
6510

6511 6512 6513 6514 6515
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
6516
int __weak arch_update_cpu_topology(void)
6517
{
6518
	return 0;
6519 6520
}

6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

6546
/*
I
Ingo Molnar 已提交
6547
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6548 6549
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6550
 */
6551
static int init_sched_domains(const struct cpumask *cpu_map)
6552
{
6553 6554
	int err;

6555
	arch_update_cpu_topology();
P
Paul Jackson 已提交
6556
	ndoms_cur = 1;
6557
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
6558
	if (!doms_cur)
6559 6560
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6561
	err = build_sched_domains(doms_cur[0], NULL);
6562
	register_sched_domain_sysctl();
6563 6564

	return err;
6565 6566 6567 6568 6569 6570
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6571
static void detach_destroy_domains(const struct cpumask *cpu_map)
6572 6573 6574
{
	int i;

6575
	rcu_read_lock();
6576
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
6577
		cpu_attach_domain(NULL, &def_root_domain, i);
6578
	rcu_read_unlock();
6579 6580
}

6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
6597 6598
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
6599
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
6600 6601 6602
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
6603
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
6604 6605 6606
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
6607 6608 6609
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
6610 6611 6612 6613 6614 6615
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
6616
 *
6617
 * If doms_new == NULL it will be replaced with cpu_online_mask.
6618 6619
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
6620
 *
P
Paul Jackson 已提交
6621 6622
 * Call with hotplug lock held
 */
6623
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6624
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
6625
{
6626
	int i, j, n;
6627
	int new_topology;
P
Paul Jackson 已提交
6628

6629
	mutex_lock(&sched_domains_mutex);
6630

6631 6632 6633
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

6634 6635 6636
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

6637
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
6638 6639 6640

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
6641
		for (j = 0; j < n && !new_topology; j++) {
6642
			if (cpumask_equal(doms_cur[i], doms_new[j])
6643
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
6644 6645 6646
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
6647
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
6648 6649 6650 6651
match1:
		;
	}

6652
	n = ndoms_cur;
6653
	if (doms_new == NULL) {
6654
		n = 0;
6655
		doms_new = &fallback_doms;
6656
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6657
		WARN_ON_ONCE(dattr_new);
6658 6659
	}

P
Paul Jackson 已提交
6660 6661
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
6662
		for (j = 0; j < n && !new_topology; j++) {
6663
			if (cpumask_equal(doms_new[i], doms_cur[j])
6664
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
6665 6666 6667
				goto match2;
		}
		/* no match - add a new doms_new */
6668
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
6669 6670 6671 6672 6673
match2:
		;
	}

	/* Remember the new sched domains */
6674 6675
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
6676
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
6677
	doms_cur = doms_new;
6678
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
6679
	ndoms_cur = ndoms_new;
6680 6681

	register_sched_domain_sysctl();
6682

6683
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
6684 6685
}

6686 6687
static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */

L
Linus Torvalds 已提交
6688
/*
6689 6690 6691
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
6692 6693 6694
 *
 * If we come here as part of a suspend/resume, don't touch cpusets because we
 * want to restore it back to its original state upon resume anyway.
L
Linus Torvalds 已提交
6695
 */
6696 6697
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
6698
{
6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720
	switch (action) {
	case CPU_ONLINE_FROZEN:
	case CPU_DOWN_FAILED_FROZEN:

		/*
		 * num_cpus_frozen tracks how many CPUs are involved in suspend
		 * resume sequence. As long as this is not the last online
		 * operation in the resume sequence, just build a single sched
		 * domain, ignoring cpusets.
		 */
		num_cpus_frozen--;
		if (likely(num_cpus_frozen)) {
			partition_sched_domains(1, NULL, NULL);
			break;
		}

		/*
		 * This is the last CPU online operation. So fall through and
		 * restore the original sched domains by considering the
		 * cpuset configurations.
		 */

6721
	case CPU_ONLINE:
6722
	case CPU_DOWN_FAILED:
6723
		cpuset_update_active_cpus(true);
6724
		break;
6725 6726 6727
	default:
		return NOTIFY_DONE;
	}
6728
	return NOTIFY_OK;
6729
}
6730

6731 6732
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
6733
{
6734
	switch (action) {
6735
	case CPU_DOWN_PREPARE:
6736
		cpuset_update_active_cpus(false);
6737 6738 6739 6740 6741
		break;
	case CPU_DOWN_PREPARE_FROZEN:
		num_cpus_frozen++;
		partition_sched_domains(1, NULL, NULL);
		break;
6742 6743 6744
	default:
		return NOTIFY_DONE;
	}
6745
	return NOTIFY_OK;
6746 6747
}

L
Linus Torvalds 已提交
6748 6749
void __init sched_init_smp(void)
{
6750 6751 6752
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6753
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6754

6755 6756
	sched_init_numa();

6757 6758 6759 6760 6761
	/*
	 * There's no userspace yet to cause hotplug operations; hence all the
	 * cpu masks are stable and all blatant races in the below code cannot
	 * happen.
	 */
6762
	mutex_lock(&sched_domains_mutex);
6763
	init_sched_domains(cpu_active_mask);
6764 6765 6766
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6767
	mutex_unlock(&sched_domains_mutex);
6768

6769
	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6770 6771
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6772

6773
	init_hrtick();
6774 6775

	/* Move init over to a non-isolated CPU */
6776
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6777
		BUG();
I
Ingo Molnar 已提交
6778
	sched_init_granularity();
6779
	free_cpumask_var(non_isolated_cpus);
6780

6781
	init_sched_rt_class();
6782
	init_sched_dl_class();
L
Linus Torvalds 已提交
6783 6784 6785 6786
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6787
	sched_init_granularity();
L
Linus Torvalds 已提交
6788 6789 6790
}
#endif /* CONFIG_SMP */

6791 6792
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
6793 6794 6795 6796 6797 6798 6799
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

6800
#ifdef CONFIG_CGROUP_SCHED
6801 6802 6803 6804
/*
 * Default task group.
 * Every task in system belongs to this group at bootup.
 */
6805
struct task_group root_task_group;
6806
LIST_HEAD(task_groups);
6807
#endif
P
Peter Zijlstra 已提交
6808

6809
DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
P
Peter Zijlstra 已提交
6810

L
Linus Torvalds 已提交
6811 6812
void __init sched_init(void)
{
I
Ingo Molnar 已提交
6813
	int i, j;
6814 6815 6816 6817 6818 6819 6820
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6821
#endif
6822
#ifdef CONFIG_CPUMASK_OFFSTACK
6823
	alloc_size += num_possible_cpus() * cpumask_size();
6824 6825
#endif
	if (alloc_size) {
6826
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6827 6828

#ifdef CONFIG_FAIR_GROUP_SCHED
6829
		root_task_group.se = (struct sched_entity **)ptr;
6830 6831
		ptr += nr_cpu_ids * sizeof(void **);

6832
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6833
		ptr += nr_cpu_ids * sizeof(void **);
6834

6835
#endif /* CONFIG_FAIR_GROUP_SCHED */
6836
#ifdef CONFIG_RT_GROUP_SCHED
6837
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6838 6839
		ptr += nr_cpu_ids * sizeof(void **);

6840
		root_task_group.rt_rq = (struct rt_rq **)ptr;
6841 6842
		ptr += nr_cpu_ids * sizeof(void **);

6843
#endif /* CONFIG_RT_GROUP_SCHED */
6844 6845
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
6846
			per_cpu(load_balance_mask, i) = (void *)ptr;
6847 6848 6849
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
6850
	}
I
Ingo Molnar 已提交
6851

6852 6853 6854
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());
	init_dl_bandwidth(&def_dl_bandwidth,
6855
			global_rt_period(), global_rt_runtime());
6856

G
Gregory Haskins 已提交
6857 6858 6859 6860
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

6861
#ifdef CONFIG_RT_GROUP_SCHED
6862
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6863
			global_rt_period(), global_rt_runtime());
6864
#endif /* CONFIG_RT_GROUP_SCHED */
6865

D
Dhaval Giani 已提交
6866
#ifdef CONFIG_CGROUP_SCHED
6867 6868
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
6869
	INIT_LIST_HEAD(&root_task_group.siblings);
6870
	autogroup_init(&init_task);
6871

D
Dhaval Giani 已提交
6872
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
6873

6874
	for_each_possible_cpu(i) {
6875
		struct rq *rq;
L
Linus Torvalds 已提交
6876 6877

		rq = cpu_rq(i);
6878
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
6879
		rq->nr_running = 0;
6880 6881
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
6882
		init_cfs_rq(&rq->cfs);
P
Peter Zijlstra 已提交
6883
		init_rt_rq(&rq->rt, rq);
6884
		init_dl_rq(&rq->dl, rq);
I
Ingo Molnar 已提交
6885
#ifdef CONFIG_FAIR_GROUP_SCHED
6886
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
6887
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
6888
		/*
6889
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
6890 6891 6892 6893
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
6894
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
6895 6896 6897
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
6898
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
6899 6900 6901
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
6902
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
6903
		 *
6904 6905
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
6906
		 */
6907
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6908
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
6909 6910 6911
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6912
#ifdef CONFIG_RT_GROUP_SCHED
6913
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
6914
#endif
L
Linus Torvalds 已提交
6915

I
Ingo Molnar 已提交
6916 6917
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
6918 6919 6920

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
6921
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6922
		rq->sd = NULL;
G
Gregory Haskins 已提交
6923
		rq->rd = NULL;
6924
		rq->cpu_capacity = SCHED_CAPACITY_SCALE;
6925
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
6926
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6927
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6928
		rq->push_cpu = 0;
6929
		rq->cpu = i;
6930
		rq->online = 0;
6931 6932
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
6933
		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6934 6935 6936

		INIT_LIST_HEAD(&rq->cfs_tasks);

6937
		rq_attach_root(rq, &def_root_domain);
6938
#ifdef CONFIG_NO_HZ_COMMON
6939
		rq->nohz_flags = 0;
6940
#endif
6941 6942 6943
#ifdef CONFIG_NO_HZ_FULL
		rq->last_sched_tick = 0;
#endif
L
Linus Torvalds 已提交
6944
#endif
P
Peter Zijlstra 已提交
6945
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
6946 6947 6948
		atomic_set(&rq->nr_iowait, 0);
	}

6949
	set_load_weight(&init_task);
6950

6951 6952 6953 6954
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

L
Linus Torvalds 已提交
6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
6968 6969 6970

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
6971 6972 6973 6974
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
6975

6976
#ifdef CONFIG_SMP
6977
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
R
Rusty Russell 已提交
6978 6979 6980
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6981
	idle_thread_set_boot_cpu();
6982
	set_cpu_rq_start_time();
6983 6984
#endif
	init_sched_fair_class();
6985

6986
	scheduler_running = 1;
L
Linus Torvalds 已提交
6987 6988
}

6989
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6990 6991
static inline int preempt_count_equals(int preempt_offset)
{
6992
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6993

A
Arnd Bergmann 已提交
6994
	return (nested == preempt_offset);
6995 6996
}

6997
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
6998 6999 7000
{
	static unsigned long prev_jiffy;	/* ratelimiting */

7001
	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7002 7003
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
	     !is_idle_task(current)) ||
7004
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
7005 7006 7007 7008 7009
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
7010 7011 7012 7013 7014 7015 7016
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
7017 7018 7019 7020

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
7021 7022 7023 7024 7025 7026 7027
#ifdef CONFIG_DEBUG_PREEMPT
	if (!preempt_count_equals(preempt_offset)) {
		pr_err("Preemption disabled at:");
		print_ip_sym(current->preempt_disable_ip);
		pr_cont("\n");
	}
#endif
I
Ingo Molnar 已提交
7028
	dump_stack();
L
Linus Torvalds 已提交
7029 7030 7031 7032 7033
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7034 7035
static void normalize_task(struct rq *rq, struct task_struct *p)
{
P
Peter Zijlstra 已提交
7036
	const struct sched_class *prev_class = p->sched_class;
7037 7038 7039
	struct sched_attr attr = {
		.sched_policy = SCHED_NORMAL,
	};
P
Peter Zijlstra 已提交
7040
	int old_prio = p->prio;
7041
	int on_rq;
7042

P
Peter Zijlstra 已提交
7043
	on_rq = p->on_rq;
7044
	if (on_rq)
7045
		dequeue_task(rq, p, 0);
7046
	__setscheduler(rq, p, &attr);
7047
	if (on_rq) {
7048
		enqueue_task(rq, p, 0);
7049 7050
		resched_task(rq->curr);
	}
P
Peter Zijlstra 已提交
7051 7052

	check_class_changed(rq, p, prev_class, old_prio);
7053 7054
}

L
Linus Torvalds 已提交
7055 7056
void normalize_rt_tasks(void)
{
7057
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7058
	unsigned long flags;
7059
	struct rq *rq;
L
Linus Torvalds 已提交
7060

7061
	read_lock_irqsave(&tasklist_lock, flags);
7062
	do_each_thread(g, p) {
7063 7064 7065 7066 7067 7068
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
7069 7070
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
7071 7072 7073
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
7074
#endif
I
Ingo Molnar 已提交
7075

7076
		if (!dl_task(p) && !rt_task(p)) {
I
Ingo Molnar 已提交
7077 7078 7079 7080
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
7081
			if (task_nice(p) < 0 && p->mm)
I
Ingo Molnar 已提交
7082
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7083
			continue;
I
Ingo Molnar 已提交
7084
		}
L
Linus Torvalds 已提交
7085

7086
		raw_spin_lock(&p->pi_lock);
7087
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7088

7089
		normalize_task(rq, p);
7090

7091
		__task_rq_unlock(rq);
7092
		raw_spin_unlock(&p->pi_lock);
7093 7094
	} while_each_thread(g, p);

7095
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7096 7097 7098
}

#endif /* CONFIG_MAGIC_SYSRQ */
7099

7100
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7101
/*
7102
 * These functions are only useful for the IA64 MCA handling, or kdb.
7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7116 7117
 *
 * Return: The current task for @cpu.
7118
 */
7119
struct task_struct *curr_task(int cpu)
7120 7121 7122 7123
{
	return cpu_curr(cpu);
}

7124 7125 7126
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
7127 7128 7129 7130 7131 7132
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7133 7134
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7135 7136 7137 7138 7139 7140 7141
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7142
void set_curr_task(int cpu, struct task_struct *p)
7143 7144 7145 7146 7147
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7148

D
Dhaval Giani 已提交
7149
#ifdef CONFIG_CGROUP_SCHED
7150 7151 7152
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

7153 7154 7155 7156
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
7157
	autogroup_free(tg);
7158 7159 7160 7161
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
7162
struct task_group *sched_create_group(struct task_group *parent)
7163 7164 7165 7166 7167 7168 7169
{
	struct task_group *tg;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

7170
	if (!alloc_fair_sched_group(tg, parent))
7171 7172
		goto err;

7173
	if (!alloc_rt_sched_group(tg, parent))
7174 7175
		goto err;

7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186
	return tg;

err:
	free_sched_group(tg);
	return ERR_PTR(-ENOMEM);
}

void sched_online_group(struct task_group *tg, struct task_group *parent)
{
	unsigned long flags;

7187
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7188
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
7189 7190 7191 7192 7193

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
7194
	list_add_rcu(&tg->siblings, &parent->children);
7195
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7196 7197
}

7198
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
7199
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7200 7201
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
7202
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
7203 7204
}

7205
/* Destroy runqueue etc associated with a task group */
7206
void sched_destroy_group(struct task_group *tg)
7207 7208 7209 7210 7211 7212
{
	/* wait for possible concurrent references to cfs_rqs complete */
	call_rcu(&tg->rcu, free_sched_group_rcu);
}

void sched_offline_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7213
{
7214
	unsigned long flags;
7215
	int i;
S
Srivatsa Vaddagiri 已提交
7216

7217 7218
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
7219
		unregister_fair_sched_group(tg, i);
7220 7221

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7222
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
7223
	list_del_rcu(&tg->siblings);
7224
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7225 7226
}

7227
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7228 7229 7230
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7231 7232
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7233
{
P
Peter Zijlstra 已提交
7234
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
7235 7236 7237 7238 7239 7240
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

7241
	running = task_current(rq, tsk);
P
Peter Zijlstra 已提交
7242
	on_rq = tsk->on_rq;
S
Srivatsa Vaddagiri 已提交
7243

7244
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
7245
		dequeue_task(rq, tsk, 0);
7246 7247
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7248

7249
	tg = container_of(task_css_check(tsk, cpu_cgrp_id,
P
Peter Zijlstra 已提交
7250 7251 7252 7253 7254
				lockdep_is_held(&tsk->sighand->siglock)),
			  struct task_group, css);
	tg = autogroup_task_group(tsk, tg);
	tsk->sched_task_group = tg;

P
Peter Zijlstra 已提交
7255
#ifdef CONFIG_FAIR_GROUP_SCHED
7256 7257 7258
	if (tsk->sched_class->task_move_group)
		tsk->sched_class->task_move_group(tsk, on_rq);
	else
P
Peter Zijlstra 已提交
7259
#endif
7260
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
7261

7262 7263 7264
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
7265
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
7266

7267
	task_rq_unlock(rq, tsk, &flags);
S
Srivatsa Vaddagiri 已提交
7268
}
D
Dhaval Giani 已提交
7269
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
7270

7271 7272 7273 7274 7275
#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
P
Peter Zijlstra 已提交
7276

P
Peter Zijlstra 已提交
7277 7278
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
7279
{
P
Peter Zijlstra 已提交
7280
	struct task_struct *g, *p;
7281

P
Peter Zijlstra 已提交
7282
	do_each_thread(g, p) {
7283
		if (rt_task(p) && task_rq(p)->rt.tg == tg)
P
Peter Zijlstra 已提交
7284 7285
			return 1;
	} while_each_thread(g, p);
7286

P
Peter Zijlstra 已提交
7287 7288
	return 0;
}
7289

P
Peter Zijlstra 已提交
7290 7291 7292 7293 7294
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
7295

7296
static int tg_rt_schedulable(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
7297 7298 7299 7300 7301
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
7302

P
Peter Zijlstra 已提交
7303 7304
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
7305

P
Peter Zijlstra 已提交
7306 7307 7308
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
7309 7310
	}

7311 7312 7313 7314 7315
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
7316

7317 7318 7319
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
7320 7321
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
7322

P
Peter Zijlstra 已提交
7323
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7324

7325 7326 7327 7328 7329
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
7330

7331 7332 7333
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
7334 7335 7336
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7337

P
Peter Zijlstra 已提交
7338 7339 7340 7341
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
7342

P
Peter Zijlstra 已提交
7343
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7344
	}
P
Peter Zijlstra 已提交
7345

P
Peter Zijlstra 已提交
7346 7347 7348 7349
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
7350 7351
}

P
Peter Zijlstra 已提交
7352
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7353
{
7354 7355
	int ret;

P
Peter Zijlstra 已提交
7356 7357 7358 7359 7360 7361
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

7362 7363 7364 7365 7366
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7367 7368
}

7369
static int tg_set_rt_bandwidth(struct task_group *tg,
7370
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
7371
{
P
Peter Zijlstra 已提交
7372
	int i, err = 0;
P
Peter Zijlstra 已提交
7373 7374

	mutex_lock(&rt_constraints_mutex);
7375
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
7376 7377
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
7378
		goto unlock;
P
Peter Zijlstra 已提交
7379

7380
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7381 7382
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
7383 7384 7385 7386

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

7387
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7388
		rt_rq->rt_runtime = rt_runtime;
7389
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7390
	}
7391
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
7392
unlock:
7393
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
7394 7395 7396
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
7397 7398
}

7399
static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7400 7401 7402 7403 7404 7405 7406 7407
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

7408
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7409 7410
}

7411
static long sched_group_rt_runtime(struct task_group *tg)
P
Peter Zijlstra 已提交
7412 7413 7414
{
	u64 rt_runtime_us;

7415
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7416 7417
		return -1;

7418
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7419 7420 7421
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
7422

7423
static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7424 7425 7426 7427 7428 7429
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

7430 7431 7432
	if (rt_period == 0)
		return -EINVAL;

7433
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7434 7435
}

7436
static long sched_group_rt_period(struct task_group *tg)
7437 7438 7439 7440 7441 7442 7443
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}
7444
#endif /* CONFIG_RT_GROUP_SCHED */
7445

7446
#ifdef CONFIG_RT_GROUP_SCHED
7447 7448 7449 7450 7451
static int sched_rt_global_constraints(void)
{
	int ret = 0;

	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
7452
	read_lock(&tasklist_lock);
7453
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
7454
	read_unlock(&tasklist_lock);
7455 7456 7457 7458
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
7459

7460
static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7461 7462 7463 7464 7465 7466 7467 7468
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

7469
#else /* !CONFIG_RT_GROUP_SCHED */
7470 7471
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
7472
	unsigned long flags;
7473
	int i, ret = 0;
7474

7475
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7476 7477 7478
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

7479
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7480
		rt_rq->rt_runtime = global_rt_runtime();
7481
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7482
	}
7483
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7484

7485
	return ret;
7486
}
7487
#endif /* CONFIG_RT_GROUP_SCHED */
7488

7489 7490
static int sched_dl_global_constraints(void)
{
7491 7492
	u64 runtime = global_rt_runtime();
	u64 period = global_rt_period();
7493
	u64 new_bw = to_ratio(period, runtime);
7494
	int cpu, ret = 0;
7495
	unsigned long flags;
7496 7497 7498 7499 7500 7501 7502 7503 7504 7505

	/*
	 * Here we want to check the bandwidth not being set to some
	 * value smaller than the currently allocated bandwidth in
	 * any of the root_domains.
	 *
	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
	 * cycling on root_domains... Discussion on different/better
	 * solutions is welcome!
	 */
7506 7507
	for_each_possible_cpu(cpu) {
		struct dl_bw *dl_b = dl_bw_of(cpu);
7508

7509
		raw_spin_lock_irqsave(&dl_b->lock, flags);
7510 7511
		if (new_bw < dl_b->total_bw)
			ret = -EBUSY;
7512
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7513 7514 7515

		if (ret)
			break;
7516 7517
	}

7518
	return ret;
7519 7520
}

7521
static void sched_dl_do_global(void)
7522
{
7523 7524
	u64 new_bw = -1;
	int cpu;
7525
	unsigned long flags;
7526

7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538
	def_dl_bandwidth.dl_period = global_rt_period();
	def_dl_bandwidth.dl_runtime = global_rt_runtime();

	if (global_rt_runtime() != RUNTIME_INF)
		new_bw = to_ratio(global_rt_period(), global_rt_runtime());

	/*
	 * FIXME: As above...
	 */
	for_each_possible_cpu(cpu) {
		struct dl_bw *dl_b = dl_bw_of(cpu);

7539
		raw_spin_lock_irqsave(&dl_b->lock, flags);
7540
		dl_b->bw = new_bw;
7541
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7542
	}
7543 7544 7545 7546 7547 7548 7549
}

static int sched_rt_global_validate(void)
{
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7550 7551
	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7552 7553 7554 7555 7556 7557 7558 7559 7560
		return -EINVAL;

	return 0;
}

static void sched_rt_do_global(void)
{
	def_rt_bandwidth.rt_runtime = global_rt_runtime();
	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7561 7562
}

7563
int sched_rt_handler(struct ctl_table *table, int write,
7564
		void __user *buffer, size_t *lenp,
7565 7566 7567 7568
		loff_t *ppos)
{
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);
7569
	int ret;
7570 7571 7572 7573 7574

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

7575
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7576 7577

	if (!ret && write) {
7578 7579 7580 7581
		ret = sched_rt_global_validate();
		if (ret)
			goto undo;

7582
		ret = sched_rt_global_constraints();
7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596
		if (ret)
			goto undo;

		ret = sched_dl_global_constraints();
		if (ret)
			goto undo;

		sched_rt_do_global();
		sched_dl_do_global();
	}
	if (0) {
undo:
		sysctl_sched_rt_period = old_period;
		sysctl_sched_rt_runtime = old_runtime;
7597 7598 7599 7600 7601
	}
	mutex_unlock(&mutex);

	return ret;
}
7602

7603
int sched_rr_handler(struct ctl_table *table, int write,
7604 7605 7606 7607 7608 7609 7610 7611
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7612 7613
	/* make sure that internally we keep jiffies */
	/* also, writing zero resets timeslice to default */
7614
	if (!ret && write) {
7615 7616
		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7617 7618 7619 7620 7621
	}
	mutex_unlock(&mutex);
	return ret;
}

7622
#ifdef CONFIG_CGROUP_SCHED
7623

7624
static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7625
{
7626
	return css ? container_of(css, struct task_group, css) : NULL;
7627 7628
}

7629 7630
static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7631
{
7632 7633
	struct task_group *parent = css_tg(parent_css);
	struct task_group *tg;
7634

7635
	if (!parent) {
7636
		/* This is early initialization for the top cgroup */
7637
		return &root_task_group.css;
7638 7639
	}

7640
	tg = sched_create_group(parent);
7641 7642 7643 7644 7645 7646
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

7647
static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7648
{
7649 7650
	struct task_group *tg = css_tg(css);
	struct task_group *parent = css_tg(css_parent(css));
7651

T
Tejun Heo 已提交
7652 7653
	if (parent)
		sched_online_group(tg, parent);
7654 7655 7656
	return 0;
}

7657
static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7658
{
7659
	struct task_group *tg = css_tg(css);
7660 7661 7662 7663

	sched_destroy_group(tg);
}

7664
static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7665
{
7666
	struct task_group *tg = css_tg(css);
7667 7668 7669 7670

	sched_offline_group(tg);
}

7671
static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7672
				 struct cgroup_taskset *tset)
7673
{
7674 7675
	struct task_struct *task;

7676
	cgroup_taskset_for_each(task, tset) {
7677
#ifdef CONFIG_RT_GROUP_SCHED
7678
		if (!sched_rt_can_attach(css_tg(css), task))
7679
			return -EINVAL;
7680
#else
7681 7682 7683
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
7684
#endif
7685
	}
7686 7687
	return 0;
}
7688

7689
static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7690
			      struct cgroup_taskset *tset)
7691
{
7692 7693
	struct task_struct *task;

7694
	cgroup_taskset_for_each(task, tset)
7695
		sched_move_task(task);
7696 7697
}

7698 7699 7700
static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
			    struct cgroup_subsys_state *old_css,
			    struct task_struct *task)
7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	sched_move_task(task);
}

7713
#ifdef CONFIG_FAIR_GROUP_SCHED
7714 7715
static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
				struct cftype *cftype, u64 shareval)
7716
{
7717
	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7718 7719
}

7720 7721
static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
			       struct cftype *cft)
7722
{
7723
	struct task_group *tg = css_tg(css);
7724

7725
	return (u64) scale_load_down(tg->shares);
7726
}
7727 7728

#ifdef CONFIG_CFS_BANDWIDTH
7729 7730
static DEFINE_MUTEX(cfs_constraints_mutex);

7731 7732 7733
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

7734 7735
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

7736 7737
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
7738
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7739
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

7760 7761 7762 7763 7764
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

7765
	runtime_enabled = quota != RUNTIME_INF;
7766
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7767 7768 7769 7770 7771 7772
	/*
	 * If we need to toggle cfs_bandwidth_used, off->on must occur
	 * before making related changes, and on->off must occur afterwards
	 */
	if (runtime_enabled && !runtime_was_enabled)
		cfs_bandwidth_usage_inc();
7773 7774 7775
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
7776

P
Paul Turner 已提交
7777
	__refill_cfs_bandwidth_runtime(cfs_b);
7778 7779 7780 7781 7782 7783
	/* restart the period timer (if active) to handle new period expiry */
	if (runtime_enabled && cfs_b->timer_active) {
		/* force a reprogram */
		cfs_b->timer_active = 0;
		__start_cfs_bandwidth(cfs_b);
	}
7784 7785 7786 7787
	raw_spin_unlock_irq(&cfs_b->lock);

	for_each_possible_cpu(i) {
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7788
		struct rq *rq = cfs_rq->rq;
7789 7790

		raw_spin_lock_irq(&rq->lock);
7791
		cfs_rq->runtime_enabled = runtime_enabled;
7792
		cfs_rq->runtime_remaining = 0;
7793

7794
		if (cfs_rq->throttled)
7795
			unthrottle_cfs_rq(cfs_rq);
7796 7797
		raw_spin_unlock_irq(&rq->lock);
	}
7798 7799
	if (runtime_was_enabled && !runtime_enabled)
		cfs_bandwidth_usage_dec();
7800 7801
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
7802

7803
	return ret;
7804 7805 7806 7807 7808 7809
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

7810
	period = ktime_to_ns(tg->cfs_bandwidth.period);
7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

7823
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7824 7825
		return -1;

7826
	quota_us = tg->cfs_bandwidth.quota;
7827 7828 7829 7830 7831 7832 7833 7834 7835 7836
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
7837
	quota = tg->cfs_bandwidth.quota;
7838 7839 7840 7841 7842 7843 7844 7845

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

7846
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7847 7848 7849 7850 7851
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

7852 7853
static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
				  struct cftype *cft)
7854
{
7855
	return tg_get_cfs_quota(css_tg(css));
7856 7857
}

7858 7859
static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
				   struct cftype *cftype, s64 cfs_quota_us)
7860
{
7861
	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7862 7863
}

7864 7865
static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
				   struct cftype *cft)
7866
{
7867
	return tg_get_cfs_period(css_tg(css));
7868 7869
}

7870 7871
static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 cfs_period_us)
7872
{
7873
	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7874 7875
}

7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
7908
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7909 7910 7911 7912 7913
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
7914
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934

		quota = normalize_cfs_quota(tg, d);
		parent_quota = parent_b->hierarchal_quota;

		/*
		 * ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
	cfs_b->hierarchal_quota = quota;

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
7935
	int ret;
7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

7947 7948 7949 7950 7951
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7952
}
7953

7954
static int cpu_stats_show(struct seq_file *sf, void *v)
7955
{
7956
	struct task_group *tg = css_tg(seq_css(sf));
7957
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7958

7959 7960 7961
	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7962 7963 7964

	return 0;
}
7965
#endif /* CONFIG_CFS_BANDWIDTH */
7966
#endif /* CONFIG_FAIR_GROUP_SCHED */
7967

7968
#ifdef CONFIG_RT_GROUP_SCHED
7969 7970
static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
				struct cftype *cft, s64 val)
P
Peter Zijlstra 已提交
7971
{
7972
	return sched_group_set_rt_runtime(css_tg(css), val);
P
Peter Zijlstra 已提交
7973 7974
}

7975 7976
static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
P
Peter Zijlstra 已提交
7977
{
7978
	return sched_group_rt_runtime(css_tg(css));
P
Peter Zijlstra 已提交
7979
}
7980

7981 7982
static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 rt_period_us)
7983
{
7984
	return sched_group_set_rt_period(css_tg(css), rt_period_us);
7985 7986
}

7987 7988
static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
				   struct cftype *cft)
7989
{
7990
	return sched_group_rt_period(css_tg(css));
7991
}
7992
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
7993

7994
static struct cftype cpu_files[] = {
7995
#ifdef CONFIG_FAIR_GROUP_SCHED
7996 7997
	{
		.name = "shares",
7998 7999
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8000
	},
8001
#endif
8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
8013 8014
	{
		.name = "stat",
8015
		.seq_show = cpu_stats_show,
8016
	},
8017
#endif
8018
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8019
	{
P
Peter Zijlstra 已提交
8020
		.name = "rt_runtime_us",
8021 8022
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8023
	},
8024 8025
	{
		.name = "rt_period_us",
8026 8027
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8028
	},
8029
#endif
8030
	{ }	/* terminate */
8031 8032
};

8033
struct cgroup_subsys cpu_cgrp_subsys = {
8034 8035
	.css_alloc	= cpu_cgroup_css_alloc,
	.css_free	= cpu_cgroup_css_free,
8036 8037
	.css_online	= cpu_cgroup_css_online,
	.css_offline	= cpu_cgroup_css_offline,
8038 8039
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
8040
	.exit		= cpu_cgroup_exit,
8041
	.base_cftypes	= cpu_files,
8042 8043 8044
	.early_init	= 1,
};

8045
#endif	/* CONFIG_CGROUP_SCHED */
8046

8047 8048 8049 8050 8051
void dump_cpu_task(int cpu)
{
	pr_info("Task dump for CPU %d:\n", cpu);
	sched_show_task(cpu_curr(cpu));
}