core.c 205.6 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/highmem.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
37
#include <linux/capability.h>
L
Linus Torvalds 已提交
38 39
#include <linux/completion.h>
#include <linux/kernel_stat.h>
40
#include <linux/debug_locks.h>
41
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
57
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
58
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/unistd.h>
J
Jens Axboe 已提交
66
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
67
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
68
#include <linux/tick.h>
P
Peter Zijlstra 已提交
69 70
#include <linux/debugfs.h>
#include <linux/ctype.h>
71
#include <linux/ftrace.h>
72
#include <linux/slab.h>
73
#include <linux/init_task.h>
A
Al Viro 已提交
74
#include <linux/binfmts.h>
75
#include <linux/context_tracking.h>
76
#include <linux/compiler.h>
L
Linus Torvalds 已提交
77

78
#include <asm/switch_to.h>
79
#include <asm/tlb.h>
80
#include <asm/irq_regs.h>
81
#include <asm/mutex.h>
G
Glauber Costa 已提交
82 83 84
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
85

86
#include "sched.h"
87
#include "../workqueue_internal.h"
88
#include "../smpboot.h"
89

90
#define CREATE_TRACE_POINTS
91
#include <trace/events/sched.h>
92

93 94
DEFINE_MUTEX(sched_domains_mutex);
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
95

96
static void update_rq_clock_task(struct rq *rq, s64 delta);
97

98
void update_rq_clock(struct rq *rq)
99
{
100
	s64 delta;
101

102 103 104
	lockdep_assert_held(&rq->lock);

	if (rq->clock_skip_update & RQCF_ACT_SKIP)
105
		return;
106

107
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
108 109
	if (delta < 0)
		return;
110 111
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
112 113
}

I
Ingo Molnar 已提交
114 115 116
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
117 118 119 120

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
121
const_debug unsigned int sysctl_sched_features =
122
#include "features.h"
P
Peter Zijlstra 已提交
123 124 125 126 127 128 129 130
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

131
static const char * const sched_feat_names[] = {
132
#include "features.h"
P
Peter Zijlstra 已提交
133 134 135 136
};

#undef SCHED_FEAT

L
Li Zefan 已提交
137
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
138 139 140
{
	int i;

141
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
L
Li Zefan 已提交
142 143 144
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
145
	}
L
Li Zefan 已提交
146
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
147

L
Li Zefan 已提交
148
	return 0;
P
Peter Zijlstra 已提交
149 150
}

151 152
#ifdef HAVE_JUMP_LABEL

153 154
#define jump_label_key__true  STATIC_KEY_INIT_TRUE
#define jump_label_key__false STATIC_KEY_INIT_FALSE
155 156 157 158

#define SCHED_FEAT(name, enabled)	\
	jump_label_key__##enabled ,

159
struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
160 161 162 163 164 165 166
#include "features.h"
};

#undef SCHED_FEAT

static void sched_feat_disable(int i)
{
167
	static_key_disable(&sched_feat_keys[i]);
168 169 170 171
}

static void sched_feat_enable(int i)
{
172
	static_key_enable(&sched_feat_keys[i]);
173 174 175 176 177 178
}
#else
static void sched_feat_disable(int i) { };
static void sched_feat_enable(int i) { };
#endif /* HAVE_JUMP_LABEL */

179
static int sched_feat_set(char *cmp)
P
Peter Zijlstra 已提交
180 181
{
	int i;
182
	int neg = 0;
P
Peter Zijlstra 已提交
183

H
Hillf Danton 已提交
184
	if (strncmp(cmp, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
185 186 187 188
		neg = 1;
		cmp += 3;
	}

189
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
190
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
191
			if (neg) {
P
Peter Zijlstra 已提交
192
				sysctl_sched_features &= ~(1UL << i);
193 194
				sched_feat_disable(i);
			} else {
P
Peter Zijlstra 已提交
195
				sysctl_sched_features |= (1UL << i);
196 197
				sched_feat_enable(i);
			}
P
Peter Zijlstra 已提交
198 199 200 201
			break;
		}
	}

202 203 204 205 206 207 208 209 210 211
	return i;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp;
	int i;
212
	struct inode *inode;
213 214 215 216 217 218 219 220 221 222

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
	cmp = strstrip(buf);

223 224 225
	/* Ensure the static_key remains in a consistent state */
	inode = file_inode(filp);
	mutex_lock(&inode->i_mutex);
226
	i = sched_feat_set(cmp);
227
	mutex_unlock(&inode->i_mutex);
228
	if (i == __SCHED_FEAT_NR)
P
Peter Zijlstra 已提交
229 230
		return -EINVAL;

231
	*ppos += cnt;
P
Peter Zijlstra 已提交
232 233 234 235

	return cnt;
}

L
Li Zefan 已提交
236 237 238 239 240
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

241
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
242 243 244 245 246
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
247 248 249 250 251 252 253 254 255 256
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);
257
#endif /* CONFIG_SCHED_DEBUG */
I
Ingo Molnar 已提交
258

259 260 261 262 263 264
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

265 266 267 268 269 270 271 272
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
273
/*
P
Peter Zijlstra 已提交
274
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
275 276
 * default: 1s
 */
P
Peter Zijlstra 已提交
277
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
278

279
__read_mostly int scheduler_running;
280

P
Peter Zijlstra 已提交
281 282 283 284 285
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
286

287 288 289
/* cpus with isolated domains */
cpumask_var_t cpu_isolated_map;

L
Linus Torvalds 已提交
290
/*
291
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
292
 */
A
Alexey Dobriyan 已提交
293
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
294 295
	__acquires(rq->lock)
{
296
	struct rq *rq;
L
Linus Torvalds 已提交
297 298 299

	local_irq_disable();
	rq = this_rq();
300
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
301 302 303 304

	return rq;
}

P
Peter Zijlstra 已提交
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

326
	raw_spin_lock(&rq->lock);
327
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
328
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
329
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
330 331 332 333

	return HRTIMER_NORESTART;
}

334
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
335

336
static void __hrtick_restart(struct rq *rq)
P
Peter Zijlstra 已提交
337 338 339
{
	struct hrtimer *timer = &rq->hrtick_timer;

340
	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
P
Peter Zijlstra 已提交
341 342
}

343 344 345 346
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
347
{
348
	struct rq *rq = arg;
349

350
	raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
351
	__hrtick_restart(rq);
352
	rq->hrtick_csd_pending = 0;
353
	raw_spin_unlock(&rq->lock);
354 355
}

356 357 358 359 360
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
361
void hrtick_start(struct rq *rq, u64 delay)
362
{
363
	struct hrtimer *timer = &rq->hrtick_timer;
364 365 366 367 368 369 370 371 372
	ktime_t time;
	s64 delta;

	/*
	 * Don't schedule slices shorter than 10000ns, that just
	 * doesn't make sense and can cause timer DoS.
	 */
	delta = max_t(s64, delay, 10000LL);
	time = ktime_add_ns(timer->base->get_time(), delta);
373

374
	hrtimer_set_expires(timer, time);
375 376

	if (rq == this_rq()) {
P
Peter Zijlstra 已提交
377
		__hrtick_restart(rq);
378
	} else if (!rq->hrtick_csd_pending) {
379
		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
380 381
		rq->hrtick_csd_pending = 1;
	}
382 383 384 385 386 387 388 389 390 391 392 393 394 395
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
396
		hrtick_clear(cpu_rq(cpu));
397 398 399 400 401 402
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

403
static __init void init_hrtick(void)
404 405 406
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
407 408 409 410 411 412
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
413
void hrtick_start(struct rq *rq, u64 delay)
414
{
W
Wanpeng Li 已提交
415 416 417 418 419
	/*
	 * Don't schedule slices shorter than 10000ns, that just
	 * doesn't make sense. Rely on vruntime for fairness.
	 */
	delay = max_t(u64, delay, 10000LL);
420 421
	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
		      HRTIMER_MODE_REL_PINNED);
422
}
423

A
Andrew Morton 已提交
424
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
425 426
{
}
427
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
428

429
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
430
{
431 432
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
433

434 435 436 437
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
438

439 440
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
441
}
A
Andrew Morton 已提交
442
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
443 444 445 446 447 448 449 450
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

451 452 453
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
454
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
455

456 457 458 459 460 461 462 463 464 465 466 467 468 469
/*
 * cmpxchg based fetch_or, macro so it works for different integer types
 */
#define fetch_or(ptr, val)						\
({	typeof(*(ptr)) __old, __val = *(ptr);				\
 	for (;;) {							\
 		__old = cmpxchg((ptr), __val, __val | (val));		\
 		if (__old == __val)					\
 			break;						\
 		__val = __old;						\
 	}								\
 	__old;								\
})

470
#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
471 472 473 474 475 476 477 478 479 480
/*
 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
 * this avoids any races wrt polling state changes and thereby avoids
 * spurious IPIs.
 */
static bool set_nr_and_not_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
}
481 482 483 484 485 486 487 488 489 490

/*
 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
 *
 * If this returns true, then the idle task promises to call
 * sched_ttwu_pending() and reschedule soon.
 */
static bool set_nr_if_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
491
	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
492 493 494 495 496 497 498 499 500 501 502 503 504 505

	for (;;) {
		if (!(val & _TIF_POLLING_NRFLAG))
			return false;
		if (val & _TIF_NEED_RESCHED)
			return true;
		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
		if (old == val)
			break;
		val = old;
	}
	return true;
}

506 507 508 509 510 511
#else
static bool set_nr_and_not_polling(struct task_struct *p)
{
	set_tsk_need_resched(p);
	return true;
}
512 513 514 515 516 517 518

#ifdef CONFIG_SMP
static bool set_nr_if_polling(struct task_struct *p)
{
	return false;
}
#endif
519 520
#endif

521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
void wake_q_add(struct wake_q_head *head, struct task_struct *task)
{
	struct wake_q_node *node = &task->wake_q;

	/*
	 * Atomically grab the task, if ->wake_q is !nil already it means
	 * its already queued (either by us or someone else) and will get the
	 * wakeup due to that.
	 *
	 * This cmpxchg() implies a full barrier, which pairs with the write
	 * barrier implied by the wakeup in wake_up_list().
	 */
	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
		return;

	get_task_struct(task);

	/*
	 * The head is context local, there can be no concurrency.
	 */
	*head->lastp = node;
	head->lastp = &node->next;
}

void wake_up_q(struct wake_q_head *head)
{
	struct wake_q_node *node = head->first;

	while (node != WAKE_Q_TAIL) {
		struct task_struct *task;

		task = container_of(node, struct task_struct, wake_q);
		BUG_ON(!task);
		/* task can safely be re-inserted now */
		node = node->next;
		task->wake_q.next = NULL;

		/*
		 * wake_up_process() implies a wmb() to pair with the queueing
		 * in wake_q_add() so as not to miss wakeups.
		 */
		wake_up_process(task);
		put_task_struct(task);
	}
}

I
Ingo Molnar 已提交
567
/*
568
 * resched_curr - mark rq's current task 'to be rescheduled now'.
I
Ingo Molnar 已提交
569 570 571 572 573
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
574
void resched_curr(struct rq *rq)
I
Ingo Molnar 已提交
575
{
576
	struct task_struct *curr = rq->curr;
I
Ingo Molnar 已提交
577 578
	int cpu;

579
	lockdep_assert_held(&rq->lock);
I
Ingo Molnar 已提交
580

581
	if (test_tsk_need_resched(curr))
I
Ingo Molnar 已提交
582 583
		return;

584
	cpu = cpu_of(rq);
585

586
	if (cpu == smp_processor_id()) {
587
		set_tsk_need_resched(curr);
588
		set_preempt_need_resched();
I
Ingo Molnar 已提交
589
		return;
590
	}
I
Ingo Molnar 已提交
591

592
	if (set_nr_and_not_polling(curr))
I
Ingo Molnar 已提交
593
		smp_send_reschedule(cpu);
594 595
	else
		trace_sched_wake_idle_without_ipi(cpu);
I
Ingo Molnar 已提交
596 597
}

598
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
599 600 601 602
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

603
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
604
		return;
605
	resched_curr(rq);
606
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
607
}
608

609
#ifdef CONFIG_SMP
610
#ifdef CONFIG_NO_HZ_COMMON
611 612 613 614 615 616 617 618
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
619
int get_nohz_timer_target(void)
620
{
621
	int i, cpu = smp_processor_id();
622 623
	struct sched_domain *sd;

624
	if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
625 626
		return cpu;

627
	rcu_read_lock();
628
	for_each_domain(cpu, sd) {
629
		for_each_cpu(i, sched_domain_span(sd)) {
630
			if (!idle_cpu(i) && is_housekeeping_cpu(cpu)) {
631 632 633 634
				cpu = i;
				goto unlock;
			}
		}
635
	}
636 637 638

	if (!is_housekeeping_cpu(cpu))
		cpu = housekeeping_any_cpu();
639 640
unlock:
	rcu_read_unlock();
641 642
	return cpu;
}
643 644 645 646 647 648 649 650 651 652
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
653
static void wake_up_idle_cpu(int cpu)
654 655 656 657 658 659
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

660
	if (set_nr_and_not_polling(rq->idle))
661
		smp_send_reschedule(cpu);
662 663
	else
		trace_sched_wake_idle_without_ipi(cpu);
664 665
}

666
static bool wake_up_full_nohz_cpu(int cpu)
667
{
668 669 670 671 672 673
	/*
	 * We just need the target to call irq_exit() and re-evaluate
	 * the next tick. The nohz full kick at least implies that.
	 * If needed we can still optimize that later with an
	 * empty IRQ.
	 */
674
	if (tick_nohz_full_cpu(cpu)) {
675 676
		if (cpu != smp_processor_id() ||
		    tick_nohz_tick_stopped())
677
			tick_nohz_full_kick_cpu(cpu);
678 679 680 681 682 683 684 685
		return true;
	}

	return false;
}

void wake_up_nohz_cpu(int cpu)
{
686
	if (!wake_up_full_nohz_cpu(cpu))
687 688 689
		wake_up_idle_cpu(cpu);
}

690
static inline bool got_nohz_idle_kick(void)
691
{
692
	int cpu = smp_processor_id();
693 694 695 696 697 698 699 700 701 702 703 704 705

	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
		return false;

	if (idle_cpu(cpu) && !need_resched())
		return true;

	/*
	 * We can't run Idle Load Balance on this CPU for this time so we
	 * cancel it and clear NOHZ_BALANCE_KICK
	 */
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
	return false;
706 707
}

708
#else /* CONFIG_NO_HZ_COMMON */
709

710
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
711
{
712
	return false;
P
Peter Zijlstra 已提交
713 714
}

715
#endif /* CONFIG_NO_HZ_COMMON */
716

717 718 719
#ifdef CONFIG_NO_HZ_FULL
bool sched_can_stop_tick(void)
{
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
	/*
	 * FIFO realtime policy runs the highest priority task. Other runnable
	 * tasks are of a lower priority. The scheduler tick does nothing.
	 */
	if (current->policy == SCHED_FIFO)
		return true;

	/*
	 * Round-robin realtime tasks time slice with other tasks at the same
	 * realtime priority. Is this task the only one at this priority?
	 */
	if (current->policy == SCHED_RR) {
		struct sched_rt_entity *rt_se = &current->rt;

		return rt_se->run_list.prev == rt_se->run_list.next;
	}

737 738 739 740 741
	/*
	 * More than one running task need preemption.
	 * nr_running update is assumed to be visible
	 * after IPI is sent from wakers.
	 */
742 743
	if (this_rq()->nr_running > 1)
		return false;
744

745
	return true;
746 747
}
#endif /* CONFIG_NO_HZ_FULL */
748

749
void sched_avg_update(struct rq *rq)
750
{
751 752
	s64 period = sched_avg_period();

753
	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
754 755 756 757 758 759
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
760 761 762
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
763 764
}

765
#endif /* CONFIG_SMP */
766

767 768
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
769
/*
770 771 772 773
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
774
 */
775
int walk_tg_tree_from(struct task_group *from,
776
			     tg_visitor down, tg_visitor up, void *data)
777 778
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
779
	int ret;
780

781 782
	parent = from;

783
down:
P
Peter Zijlstra 已提交
784 785
	ret = (*down)(parent, data);
	if (ret)
786
		goto out;
787 788 789 790 791 792 793
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
794
	ret = (*up)(parent, data);
795 796
	if (ret || parent == from)
		goto out;
797 798 799 800 801

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
802
out:
P
Peter Zijlstra 已提交
803
	return ret;
804 805
}

806
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
807
{
808
	return 0;
P
Peter Zijlstra 已提交
809
}
810 811
#endif

812 813
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
814 815 816
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
817 818 819
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
820
	if (idle_policy(p->policy)) {
821
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
822
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
823 824
		return;
	}
825

826
	load->weight = scale_load(prio_to_weight[prio]);
N
Nikhil Rao 已提交
827
	load->inv_weight = prio_to_wmult[prio];
828 829
}

830
static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
831
{
832
	update_rq_clock(rq);
833 834
	if (!(flags & ENQUEUE_RESTORE))
		sched_info_queued(rq, p);
835
	p->sched_class->enqueue_task(rq, p, flags);
836 837
}

838
static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
839
{
840
	update_rq_clock(rq);
841 842
	if (!(flags & DEQUEUE_SAVE))
		sched_info_dequeued(rq, p);
843
	p->sched_class->dequeue_task(rq, p, flags);
844 845
}

846
void activate_task(struct rq *rq, struct task_struct *p, int flags)
847 848 849 850
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

851
	enqueue_task(rq, p, flags);
852 853
}

854
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
855 856 857 858
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

859
	dequeue_task(rq, p, flags);
860 861
}

862
static void update_rq_clock_task(struct rq *rq, s64 delta)
863
{
864 865 866 867 868 869 870 871
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
872
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
894 895
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
896
	if (static_key_false((&paravirt_steal_rq_enabled))) {
897 898 899 900 901 902 903 904 905 906 907
		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		rq->prev_steal_time_rq += steal;
		delta -= steal;
	}
#endif

908 909
	rq->clock_task += delta;

910
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
911
	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
912 913
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
914 915
}

916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

946
/*
I
Ingo Molnar 已提交
947
 * __normal_prio - return the priority that is based on the static prio
948 949 950
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
951
	return p->static_prio;
952 953
}

954 955 956 957 958 959 960
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
961
static inline int normal_prio(struct task_struct *p)
962 963 964
{
	int prio;

965 966 967
	if (task_has_dl_policy(p))
		prio = MAX_DL_PRIO-1;
	else if (task_has_rt_policy(p))
968 969 970 971 972 973 974 975 976 977 978 979 980
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
981
static int effective_prio(struct task_struct *p)
982 983 984 985 986 987 988 989 990 991 992 993
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
994 995 996
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
997 998
 *
 * Return: 1 if the task is currently executing. 0 otherwise.
L
Linus Torvalds 已提交
999
 */
1000
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1001 1002 1003 1004
{
	return cpu_curr(task_cpu(p)) == p;
}

1005
/*
1006 1007 1008 1009 1010
 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
 * use the balance_callback list if you want balancing.
 *
 * this means any call to check_class_changed() must be followed by a call to
 * balance_callback().
1011
 */
1012 1013
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
1014
				       int oldprio)
1015 1016 1017
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
1018
			prev_class->switched_from(rq, p);
1019

P
Peter Zijlstra 已提交
1020
		p->sched_class->switched_to(rq, p);
1021
	} else if (oldprio != p->prio || dl_task(p))
P
Peter Zijlstra 已提交
1022
		p->sched_class->prio_changed(rq, p, oldprio);
1023 1024
}

1025
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
1036
				resched_curr(rq);
1037 1038 1039 1040 1041 1042 1043 1044 1045
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
1046
	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1047
		rq_clock_skip_update(rq, true);
1048 1049
}

L
Linus Torvalds 已提交
1050
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
/*
 * This is how migration works:
 *
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
 */

/*
 * move_queued_task - move a queued task to new rq.
 *
 * Returns (locked) new rq. Old rq's lock is released.
 */
1070
static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
P
Peter Zijlstra 已提交
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
{
	lockdep_assert_held(&rq->lock);

	dequeue_task(rq, p, 0);
	p->on_rq = TASK_ON_RQ_MIGRATING;
	set_task_cpu(p, new_cpu);
	raw_spin_unlock(&rq->lock);

	rq = cpu_rq(new_cpu);

	raw_spin_lock(&rq->lock);
	BUG_ON(task_cpu(p) != new_cpu);
	p->on_rq = TASK_ON_RQ_QUEUED;
	enqueue_task(rq, p, 0);
	check_preempt_curr(rq, p, 0);

	return rq;
}

struct migration_arg {
	struct task_struct *task;
	int dest_cpu;
};

/*
 * Move (not current) task off this cpu, onto dest cpu. We're doing
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
 */
1104
static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
P
Peter Zijlstra 已提交
1105 1106
{
	if (unlikely(!cpu_active(dest_cpu)))
1107
		return rq;
P
Peter Zijlstra 已提交
1108 1109 1110

	/* Affinity changed (again). */
	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1111
		return rq;
P
Peter Zijlstra 已提交
1112

1113 1114 1115
	rq = move_queued_task(rq, p, dest_cpu);

	return rq;
P
Peter Zijlstra 已提交
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
}

/*
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
 */
static int migration_cpu_stop(void *data)
{
	struct migration_arg *arg = data;
1126 1127
	struct task_struct *p = arg->task;
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139

	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
	local_irq_disable();
	/*
	 * We need to explicitly wake pending tasks before running
	 * __migrate_task() such that we will not miss enforcing cpus_allowed
	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
	 */
	sched_ttwu_pending();
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152

	raw_spin_lock(&p->pi_lock);
	raw_spin_lock(&rq->lock);
	/*
	 * If task_rq(p) != rq, it cannot be migrated here, because we're
	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
	 * we're holding p->pi_lock.
	 */
	if (task_rq(p) == rq && task_on_rq_queued(p))
		rq = __migrate_task(rq, p, arg->dest_cpu);
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock(&p->pi_lock);

P
Peter Zijlstra 已提交
1153 1154 1155 1156
	local_irq_enable();
	return 0;
}

1157 1158 1159 1160 1161
/*
 * sched_class::set_cpus_allowed must do the below, but is not required to
 * actually call this function.
 */
void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
P
Peter Zijlstra 已提交
1162 1163 1164 1165 1166
{
	cpumask_copy(&p->cpus_allowed, new_mask);
	p->nr_cpus_allowed = cpumask_weight(new_mask);
}

1167 1168
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
1169 1170 1171
	struct rq *rq = task_rq(p);
	bool queued, running;

1172
	lockdep_assert_held(&p->pi_lock);
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182

	queued = task_on_rq_queued(p);
	running = task_current(rq, p);

	if (queued) {
		/*
		 * Because __kthread_bind() calls this on blocked tasks without
		 * holding rq->lock.
		 */
		lockdep_assert_held(&rq->lock);
1183
		dequeue_task(rq, p, DEQUEUE_SAVE);
1184 1185 1186 1187
	}
	if (running)
		put_prev_task(rq, p);

1188
	p->sched_class->set_cpus_allowed(p, new_mask);
1189 1190 1191 1192

	if (running)
		p->sched_class->set_curr_task(rq);
	if (queued)
1193
		enqueue_task(rq, p, ENQUEUE_RESTORE);
1194 1195
}

P
Peter Zijlstra 已提交
1196 1197 1198 1199 1200 1201 1202 1203 1204
/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely. The
 * call is not atomic; no spinlocks may be held.
 */
1205 1206
static int __set_cpus_allowed_ptr(struct task_struct *p,
				  const struct cpumask *new_mask, bool check)
P
Peter Zijlstra 已提交
1207 1208 1209 1210 1211 1212 1213 1214
{
	unsigned long flags;
	struct rq *rq;
	unsigned int dest_cpu;
	int ret = 0;

	rq = task_rq_lock(p, &flags);

1215 1216 1217 1218 1219 1220 1221 1222 1223
	/*
	 * Must re-check here, to close a race against __kthread_bind(),
	 * sched_setaffinity() is not guaranteed to observe the flag.
	 */
	if (check && (p->flags & PF_NO_SETAFFINITY)) {
		ret = -EINVAL;
		goto out;
	}

P
Peter Zijlstra 已提交
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
		ret = -EINVAL;
		goto out;
	}

	do_set_cpus_allowed(p, new_mask);

	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpumask_test_cpu(task_cpu(p), new_mask))
		goto out;

	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
	if (task_running(rq, p) || p->state == TASK_WAKING) {
		struct migration_arg arg = { p, dest_cpu };
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, p, &flags);
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
		tlb_migrate_finish(p->mm);
		return 0;
1246 1247 1248 1249 1250 1251
	} else if (task_on_rq_queued(p)) {
		/*
		 * OK, since we're going to drop the lock immediately
		 * afterwards anyway.
		 */
		lockdep_unpin_lock(&rq->lock);
1252
		rq = move_queued_task(rq, p, dest_cpu);
1253 1254
		lockdep_pin_lock(&rq->lock);
	}
P
Peter Zijlstra 已提交
1255 1256 1257 1258 1259
out:
	task_rq_unlock(rq, p, &flags);

	return ret;
}
1260 1261 1262 1263 1264

int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
{
	return __set_cpus_allowed_ptr(p, new_mask, false);
}
P
Peter Zijlstra 已提交
1265 1266
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);

I
Ingo Molnar 已提交
1267
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1268
{
1269 1270 1271 1272 1273
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
1274
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
O
Oleg Nesterov 已提交
1275
			!p->on_rq);
1276 1277

#ifdef CONFIG_LOCKDEP
1278 1279 1280 1281 1282
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
P
Peter Zijlstra 已提交
1283
	 * see task_group().
1284 1285 1286 1287
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
1288 1289 1290
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
1291 1292
#endif

1293
	trace_sched_migrate_task(p, new_cpu);
1294

1295
	if (task_cpu(p) != new_cpu) {
1296 1297
		if (p->sched_class->migrate_task_rq)
			p->sched_class->migrate_task_rq(p, new_cpu);
1298
		p->se.nr_migrations++;
1299
		perf_event_task_migrate(p);
1300
	}
I
Ingo Molnar 已提交
1301 1302

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1303 1304
}

1305 1306
static void __migrate_swap_task(struct task_struct *p, int cpu)
{
1307
	if (task_on_rq_queued(p)) {
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
		struct rq *src_rq, *dst_rq;

		src_rq = task_rq(p);
		dst_rq = cpu_rq(cpu);

		deactivate_task(src_rq, p, 0);
		set_task_cpu(p, cpu);
		activate_task(dst_rq, p, 0);
		check_preempt_curr(dst_rq, p, 0);
	} else {
		/*
		 * Task isn't running anymore; make it appear like we migrated
		 * it before it went to sleep. This means on wakeup we make the
		 * previous cpu our targer instead of where it really is.
		 */
		p->wake_cpu = cpu;
	}
}

struct migration_swap_arg {
	struct task_struct *src_task, *dst_task;
	int src_cpu, dst_cpu;
};

static int migrate_swap_stop(void *data)
{
	struct migration_swap_arg *arg = data;
	struct rq *src_rq, *dst_rq;
	int ret = -EAGAIN;

	src_rq = cpu_rq(arg->src_cpu);
	dst_rq = cpu_rq(arg->dst_cpu);

1341 1342
	double_raw_lock(&arg->src_task->pi_lock,
			&arg->dst_task->pi_lock);
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
	double_rq_lock(src_rq, dst_rq);
	if (task_cpu(arg->dst_task) != arg->dst_cpu)
		goto unlock;

	if (task_cpu(arg->src_task) != arg->src_cpu)
		goto unlock;

	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
		goto unlock;

	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
		goto unlock;

	__migrate_swap_task(arg->src_task, arg->dst_cpu);
	__migrate_swap_task(arg->dst_task, arg->src_cpu);

	ret = 0;

unlock:
	double_rq_unlock(src_rq, dst_rq);
1363 1364
	raw_spin_unlock(&arg->dst_task->pi_lock);
	raw_spin_unlock(&arg->src_task->pi_lock);
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386

	return ret;
}

/*
 * Cross migrate two tasks
 */
int migrate_swap(struct task_struct *cur, struct task_struct *p)
{
	struct migration_swap_arg arg;
	int ret = -EINVAL;

	arg = (struct migration_swap_arg){
		.src_task = cur,
		.src_cpu = task_cpu(cur),
		.dst_task = p,
		.dst_cpu = task_cpu(p),
	};

	if (arg.src_cpu == arg.dst_cpu)
		goto out;

1387 1388 1389 1390
	/*
	 * These three tests are all lockless; this is OK since all of them
	 * will be re-checked with proper locks held further down the line.
	 */
1391 1392 1393 1394 1395 1396 1397 1398 1399
	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
		goto out;

	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
		goto out;

	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
		goto out;

1400
	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1401 1402 1403 1404 1405 1406
	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);

out:
	return ret;
}

L
Linus Torvalds 已提交
1407 1408 1409
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1410 1411 1412 1413 1414 1415 1416
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1417 1418 1419 1420 1421 1422
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1423
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1424 1425
{
	unsigned long flags;
1426
	int running, queued;
R
Roland McGrath 已提交
1427
	unsigned long ncsw;
1428
	struct rq *rq;
L
Linus Torvalds 已提交
1429

1430 1431 1432 1433 1434 1435 1436 1437
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1438

1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1450 1451 1452
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1453
			cpu_relax();
R
Roland McGrath 已提交
1454
		}
1455

1456 1457 1458 1459 1460 1461
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1462
		trace_sched_wait_task(p);
1463
		running = task_running(rq, p);
1464
		queued = task_on_rq_queued(p);
R
Roland McGrath 已提交
1465
		ncsw = 0;
1466
		if (!match_state || p->state == match_state)
1467
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1468
		task_rq_unlock(rq, p, &flags);
1469

R
Roland McGrath 已提交
1470 1471 1472 1473 1474 1475
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1486

1487 1488 1489 1490 1491
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1492
		 * So if it was still runnable (but just not actively
1493 1494 1495
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
1496
		if (unlikely(queued)) {
1497 1498 1499 1500
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1501 1502
			continue;
		}
1503

1504 1505 1506 1507 1508 1509 1510
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1511 1512

	return ncsw;
L
Linus Torvalds 已提交
1513 1514 1515 1516 1517 1518 1519 1520 1521
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1522
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1523 1524 1525 1526 1527
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1528
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1529 1530 1531 1532 1533 1534 1535 1536 1537
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1538
EXPORT_SYMBOL_GPL(kick_process);
L
Linus Torvalds 已提交
1539

1540
/*
1541
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1542
 */
1543 1544
static int select_fallback_rq(int cpu, struct task_struct *p)
{
1545 1546
	int nid = cpu_to_node(cpu);
	const struct cpumask *nodemask = NULL;
1547 1548
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1549

1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
	/*
	 * If the node that the cpu is on has been offlined, cpu_to_node()
	 * will return -1. There is no cpu on the node, and we should
	 * select the cpu on the other node.
	 */
	if (nid != -1) {
		nodemask = cpumask_of_node(nid);

		/* Look for allowed, online CPU in same node. */
		for_each_cpu(dest_cpu, nodemask) {
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
				return dest_cpu;
		}
1567
	}
1568

1569 1570
	for (;;) {
		/* Any allowed, online CPU? */
1571
		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1572 1573 1574 1575 1576 1577
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			goto out;
		}
1578

1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
		switch (state) {
		case cpuset:
			/* No more Mr. Nice Guy. */
			cpuset_cpus_allowed_fallback(p);
			state = possible;
			break;

		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
1605
			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1606 1607
					task_pid_nr(p), p->comm, cpu);
		}
1608 1609 1610 1611 1612
	}

	return dest_cpu;
}

1613
/*
1614
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1615
 */
1616
static inline
1617
int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1618
{
1619 1620
	lockdep_assert_held(&p->pi_lock);

1621 1622
	if (p->nr_cpus_allowed > 1)
		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1634
	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
P
Peter Zijlstra 已提交
1635
		     !cpu_online(cpu)))
1636
		cpu = select_fallback_rq(task_cpu(p), p);
1637 1638

	return cpu;
1639
}
1640 1641 1642 1643 1644 1645

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1646 1647 1648 1649 1650 1651 1652 1653 1654

#else

static inline int __set_cpus_allowed_ptr(struct task_struct *p,
					 const struct cpumask *new_mask, bool check)
{
	return set_cpus_allowed_ptr(p, new_mask);
}

P
Peter Zijlstra 已提交
1655
#endif /* CONFIG_SMP */
1656

P
Peter Zijlstra 已提交
1657
static void
1658
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1659
{
P
Peter Zijlstra 已提交
1660
#ifdef CONFIG_SCHEDSTATS
1661 1662
	struct rq *rq = this_rq();

P
Peter Zijlstra 已提交
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
#ifdef CONFIG_SMP
	int this_cpu = smp_processor_id();

	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	} else {
		struct sched_domain *sd;

		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1673
		rcu_read_lock();
P
Peter Zijlstra 已提交
1674 1675 1676 1677 1678 1679
		for_each_domain(this_cpu, sd) {
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
1680
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1681
	}
1682 1683 1684 1685

	if (wake_flags & WF_MIGRATED)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);

P
Peter Zijlstra 已提交
1686 1687 1688
#endif /* CONFIG_SMP */

	schedstat_inc(rq, ttwu_count);
T
Tejun Heo 已提交
1689
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1690 1691

	if (wake_flags & WF_SYNC)
T
Tejun Heo 已提交
1692
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1693 1694 1695 1696

#endif /* CONFIG_SCHEDSTATS */
}

1697
static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
P
Peter Zijlstra 已提交
1698
{
T
Tejun Heo 已提交
1699
	activate_task(rq, p, en_flags);
1700
	p->on_rq = TASK_ON_RQ_QUEUED;
1701 1702 1703 1704

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1705 1706
}

1707 1708 1709
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1710
static void
1711
ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
T
Tejun Heo 已提交
1712 1713 1714
{
	check_preempt_curr(rq, p, wake_flags);
	p->state = TASK_RUNNING;
1715 1716
	trace_sched_wakeup(p);

T
Tejun Heo 已提交
1717
#ifdef CONFIG_SMP
1718 1719
	if (p->sched_class->task_woken) {
		/*
1720 1721
		 * Our task @p is fully woken up and running; so its safe to
		 * drop the rq->lock, hereafter rq is only used for statistics.
1722
		 */
1723
		lockdep_unpin_lock(&rq->lock);
T
Tejun Heo 已提交
1724
		p->sched_class->task_woken(rq, p);
1725
		lockdep_pin_lock(&rq->lock);
1726
	}
T
Tejun Heo 已提交
1727

1728
	if (rq->idle_stamp) {
1729
		u64 delta = rq_clock(rq) - rq->idle_stamp;
1730
		u64 max = 2*rq->max_idle_balance_cost;
T
Tejun Heo 已提交
1731

1732 1733 1734
		update_avg(&rq->avg_idle, delta);

		if (rq->avg_idle > max)
T
Tejun Heo 已提交
1735
			rq->avg_idle = max;
1736

T
Tejun Heo 已提交
1737 1738 1739 1740 1741
		rq->idle_stamp = 0;
	}
#endif
}

1742 1743 1744
static void
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
{
1745 1746
	lockdep_assert_held(&rq->lock);

1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
#endif

	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
	ttwu_do_wakeup(rq, p, wake_flags);
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
1768
	if (task_on_rq_queued(p)) {
1769 1770
		/* check_preempt_curr() may use rq clock */
		update_rq_clock(rq);
1771 1772 1773 1774 1775 1776 1777 1778
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;
}

1779
#ifdef CONFIG_SMP
1780
void sched_ttwu_pending(void)
1781 1782
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1783 1784
	struct llist_node *llist = llist_del_all(&rq->wake_list);
	struct task_struct *p;
1785
	unsigned long flags;
1786

1787 1788 1789 1790
	if (!llist)
		return;

	raw_spin_lock_irqsave(&rq->lock, flags);
1791
	lockdep_pin_lock(&rq->lock);
1792

P
Peter Zijlstra 已提交
1793 1794 1795
	while (llist) {
		p = llist_entry(llist, struct task_struct, wake_entry);
		llist = llist_next(llist);
1796 1797 1798
		ttwu_do_activate(rq, p, 0);
	}

1799
	lockdep_unpin_lock(&rq->lock);
1800
	raw_spin_unlock_irqrestore(&rq->lock, flags);
1801 1802 1803 1804
}

void scheduler_ipi(void)
{
1805 1806 1807 1808 1809
	/*
	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
	 * TIF_NEED_RESCHED remotely (for the first time) will also send
	 * this IPI.
	 */
1810
	preempt_fold_need_resched();
1811

1812
	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
P
Peter Zijlstra 已提交
1829
	sched_ttwu_pending();
1830 1831 1832 1833

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1834
	if (unlikely(got_nohz_idle_kick())) {
1835
		this_rq()->idle_balance = 1;
1836
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1837
	}
1838
	irq_exit();
1839 1840 1841 1842
}

static void ttwu_queue_remote(struct task_struct *p, int cpu)
{
1843 1844 1845 1846 1847 1848 1849 1850
	struct rq *rq = cpu_rq(cpu);

	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
		if (!set_nr_if_polling(rq->idle))
			smp_send_reschedule(cpu);
		else
			trace_sched_wake_idle_without_ipi(cpu);
	}
1851
}
1852

1853 1854 1855 1856 1857
void wake_up_if_idle(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

1858 1859 1860 1861
	rcu_read_lock();

	if (!is_idle_task(rcu_dereference(rq->curr)))
		goto out;
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871

	if (set_nr_if_polling(rq->idle)) {
		trace_sched_wake_idle_without_ipi(cpu);
	} else {
		raw_spin_lock_irqsave(&rq->lock, flags);
		if (is_idle_task(rq->curr))
			smp_send_reschedule(cpu);
		/* Else cpu is not in idle, do nothing here */
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}
1872 1873 1874

out:
	rcu_read_unlock();
1875 1876
}

1877
bool cpus_share_cache(int this_cpu, int that_cpu)
1878 1879 1880
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1881
#endif /* CONFIG_SMP */
1882

1883 1884 1885 1886
static void ttwu_queue(struct task_struct *p, int cpu)
{
	struct rq *rq = cpu_rq(cpu);

1887
#if defined(CONFIG_SMP)
1888
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1889
		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1890 1891 1892 1893 1894
		ttwu_queue_remote(p, cpu);
		return;
	}
#endif

1895
	raw_spin_lock(&rq->lock);
1896
	lockdep_pin_lock(&rq->lock);
1897
	ttwu_do_activate(rq, p, 0);
1898
	lockdep_unpin_lock(&rq->lock);
1899
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
1900 1901 1902
}

/**
L
Linus Torvalds 已提交
1903
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1904
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1905
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1906
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1907 1908 1909 1910 1911 1912 1913
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
1914
 * Return: %true if @p was woken up, %false if it was already running.
T
Tejun Heo 已提交
1915
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
1916
 */
1917 1918
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1919 1920
{
	unsigned long flags;
1921
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1922

1923 1924 1925 1926 1927 1928 1929
	/*
	 * If we are going to wake up a thread waiting for CONDITION we
	 * need to ensure that CONDITION=1 done by the caller can not be
	 * reordered with p->state check below. This pairs with mb() in
	 * set_current_state() the waiting thread does.
	 */
	smp_mb__before_spinlock();
1930
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
1931
	if (!(p->state & state))
L
Linus Torvalds 已提交
1932 1933
		goto out;

1934 1935
	trace_sched_waking(p);

1936
	success = 1; /* we're going to change ->state */
L
Linus Torvalds 已提交
1937 1938
	cpu = task_cpu(p);

1939 1940
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
1941 1942

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1943
	/*
1944 1945
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
P
Peter Zijlstra 已提交
1946
	 */
1947
	while (p->on_cpu)
1948
		cpu_relax();
1949
	/*
1950
	 * Pairs with the smp_wmb() in finish_lock_switch().
1951
	 */
1952
	smp_rmb();
L
Linus Torvalds 已提交
1953

1954
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
1955
	p->state = TASK_WAKING;
1956

1957
	if (p->sched_class->task_waking)
1958
		p->sched_class->task_waking(p);
1959

1960
	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1961 1962
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
1963
		set_task_cpu(p, cpu);
1964
	}
L
Linus Torvalds 已提交
1965 1966
#endif /* CONFIG_SMP */

1967 1968
	ttwu_queue(p, cpu);
stat:
1969
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
1970
out:
1971
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
1972 1973 1974 1975

	return success;
}

T
Tejun Heo 已提交
1976 1977 1978 1979
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
1980
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
1981
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1982
 * the current task.
T
Tejun Heo 已提交
1983 1984 1985 1986 1987
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

1988 1989 1990 1991
	if (WARN_ON_ONCE(rq != this_rq()) ||
	    WARN_ON_ONCE(p == current))
		return;

T
Tejun Heo 已提交
1992 1993
	lockdep_assert_held(&rq->lock);

1994
	if (!raw_spin_trylock(&p->pi_lock)) {
1995 1996 1997 1998 1999 2000 2001
		/*
		 * This is OK, because current is on_cpu, which avoids it being
		 * picked for load-balance and preemption/IRQs are still
		 * disabled avoiding further scheduler activity on it and we've
		 * not yet picked a replacement task.
		 */
		lockdep_unpin_lock(&rq->lock);
2002 2003 2004
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
2005
		lockdep_pin_lock(&rq->lock);
2006 2007
	}

T
Tejun Heo 已提交
2008
	if (!(p->state & TASK_NORMAL))
2009
		goto out;
T
Tejun Heo 已提交
2010

2011 2012
	trace_sched_waking(p);

2013
	if (!task_on_rq_queued(p))
P
Peter Zijlstra 已提交
2014 2015
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

2016
	ttwu_do_wakeup(rq, p, 0);
2017
	ttwu_stat(p, smp_processor_id(), 0);
2018 2019
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
2020 2021
}

2022 2023 2024 2025 2026
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
2027 2028 2029
 * processes.
 *
 * Return: 1 if the process was woken up, 0 if it was already running.
2030 2031 2032 2033
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2034
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2035
{
2036 2037
	WARN_ON(task_is_stopped_or_traced(p));
	return try_to_wake_up(p, TASK_NORMAL, 0);
L
Linus Torvalds 已提交
2038 2039 2040
}
EXPORT_SYMBOL(wake_up_process);

2041
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2042 2043 2044 2045
{
	return try_to_wake_up(p, state, 0);
}

2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
/*
 * This function clears the sched_dl_entity static params.
 */
void __dl_clear_params(struct task_struct *p)
{
	struct sched_dl_entity *dl_se = &p->dl;

	dl_se->dl_runtime = 0;
	dl_se->dl_deadline = 0;
	dl_se->dl_period = 0;
	dl_se->flags = 0;
	dl_se->dl_bw = 0;
2058 2059 2060 2061

	dl_se->dl_throttled = 0;
	dl_se->dl_new = 1;
	dl_se->dl_yielded = 0;
2062 2063
}

L
Linus Torvalds 已提交
2064 2065 2066
/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2067 2068 2069
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
2070
static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
2071
{
P
Peter Zijlstra 已提交
2072 2073 2074
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
2075 2076
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2077
	p->se.prev_sum_exec_runtime	= 0;
2078
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
2079
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
2080
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
2081 2082

#ifdef CONFIG_SCHEDSTATS
2083
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
2084
#endif
N
Nick Piggin 已提交
2085

2086
	RB_CLEAR_NODE(&p->dl.rb_node);
2087
	init_dl_task_timer(&p->dl);
2088
	__dl_clear_params(p);
2089

P
Peter Zijlstra 已提交
2090
	INIT_LIST_HEAD(&p->rt.run_list);
N
Nick Piggin 已提交
2091

2092 2093 2094
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
2095 2096 2097

#ifdef CONFIG_NUMA_BALANCING
	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2098
		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2099 2100 2101
		p->mm->numa_scan_seq = 0;
	}

2102 2103 2104 2105 2106
	if (clone_flags & CLONE_VM)
		p->numa_preferred_nid = current->numa_preferred_nid;
	else
		p->numa_preferred_nid = -1;

2107 2108
	p->node_stamp = 0ULL;
	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2109
	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2110
	p->numa_work.next = &p->numa_work;
2111
	p->numa_faults = NULL;
2112 2113
	p->last_task_numa_placement = 0;
	p->last_sum_exec_runtime = 0;
2114 2115

	p->numa_group = NULL;
2116
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
2117 2118
}

2119 2120
DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);

2121
#ifdef CONFIG_NUMA_BALANCING
2122

2123 2124
void set_numabalancing_state(bool enabled)
{
2125 2126 2127 2128
	if (enabled)
		static_branch_enable(&sched_numa_balancing);
	else
		static_branch_disable(&sched_numa_balancing);
2129
}
2130 2131 2132 2133 2134 2135 2136

#ifdef CONFIG_PROC_SYSCTL
int sysctl_numa_balancing(struct ctl_table *table, int write,
			 void __user *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table t;
	int err;
2137
	int state = static_branch_likely(&sched_numa_balancing);
2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152

	if (write && !capable(CAP_SYS_ADMIN))
		return -EPERM;

	t = *table;
	t.data = &state;
	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
	if (err < 0)
		return err;
	if (write)
		set_numabalancing_state(state);
	return err;
}
#endif
#endif
I
Ingo Molnar 已提交
2153 2154 2155 2156

/*
 * fork()/clone()-time setup:
 */
2157
int sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
2158
{
2159
	unsigned long flags;
I
Ingo Molnar 已提交
2160 2161
	int cpu = get_cpu();

2162
	__sched_fork(clone_flags, p);
2163
	/*
2164
	 * We mark the process as running here. This guarantees that
2165 2166 2167
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
2168
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2169

2170 2171 2172 2173 2174
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

2175 2176 2177 2178
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2179
		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2180
			p->policy = SCHED_NORMAL;
2181
			p->static_prio = NICE_TO_PRIO(0);
2182 2183 2184 2185 2186 2187
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
2188

2189 2190 2191 2192 2193 2194
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2195

2196 2197 2198 2199 2200 2201
	if (dl_prio(p->prio)) {
		put_cpu();
		return -EAGAIN;
	} else if (rt_prio(p->prio)) {
		p->sched_class = &rt_sched_class;
	} else {
H
Hiroshi Shimamoto 已提交
2202
		p->sched_class = &fair_sched_class;
2203
	}
2204

P
Peter Zijlstra 已提交
2205 2206 2207
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

2208 2209 2210 2211 2212 2213 2214
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
2215
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2216
	set_task_cpu(p, cpu);
2217
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2218

2219
#ifdef CONFIG_SCHED_INFO
I
Ingo Molnar 已提交
2220
	if (likely(sched_info_on()))
2221
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2222
#endif
P
Peter Zijlstra 已提交
2223 2224
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
2225
#endif
2226
	init_task_preempt_count(p);
2227
#ifdef CONFIG_SMP
2228
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2229
	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2230
#endif
2231

N
Nick Piggin 已提交
2232
	put_cpu();
2233
	return 0;
L
Linus Torvalds 已提交
2234 2235
}

2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 20;

	/*
	 * Doing this here saves a lot of checks in all
	 * the calling paths, and returning zero seems
	 * safe for them anyway.
	 */
	if (period == 0)
		return 0;

	return div64_u64(runtime << 20, period);
}

#ifdef CONFIG_SMP
inline struct dl_bw *dl_bw_of(int i)
{
2255 2256
	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
			 "sched RCU must be held");
2257 2258 2259
	return &cpu_rq(i)->rd->dl_bw;
}

2260
static inline int dl_bw_cpus(int i)
2261
{
2262 2263 2264
	struct root_domain *rd = cpu_rq(i)->rd;
	int cpus = 0;

2265 2266
	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
			 "sched RCU must be held");
2267 2268 2269 2270
	for_each_cpu_and(i, rd->span, cpu_active_mask)
		cpus++;

	return cpus;
2271 2272 2273 2274 2275 2276 2277
}
#else
inline struct dl_bw *dl_bw_of(int i)
{
	return &cpu_rq(i)->dl.dl_bw;
}

2278
static inline int dl_bw_cpus(int i)
2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
{
	return 1;
}
#endif

/*
 * We must be sure that accepting a new task (or allowing changing the
 * parameters of an existing one) is consistent with the bandwidth
 * constraints. If yes, this function also accordingly updates the currently
 * allocated bandwidth to reflect the new situation.
 *
 * This function is called while holding p's rq->lock.
2291 2292 2293
 *
 * XXX we should delay bw change until the task's 0-lag point, see
 * __setparam_dl().
2294 2295 2296 2297 2298 2299
 */
static int dl_overflow(struct task_struct *p, int policy,
		       const struct sched_attr *attr)
{

	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2300
	u64 period = attr->sched_period ?: attr->sched_deadline;
2301 2302
	u64 runtime = attr->sched_runtime;
	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2303
	int cpus, err = -1;
2304 2305 2306 2307 2308 2309 2310 2311 2312 2313

	if (new_bw == p->dl.dl_bw)
		return 0;

	/*
	 * Either if a task, enters, leave, or stays -deadline but changes
	 * its parameters, we may need to update accordingly the total
	 * allocated bandwidth of the container.
	 */
	raw_spin_lock(&dl_b->lock);
2314
	cpus = dl_bw_cpus(task_cpu(p));
2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
	if (dl_policy(policy) && !task_has_dl_policy(p) &&
	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
		__dl_add(dl_b, new_bw);
		err = 0;
	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
		__dl_clear(dl_b, p->dl.dl_bw);
		__dl_add(dl_b, new_bw);
		err = 0;
	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
		__dl_clear(dl_b, p->dl.dl_bw);
		err = 0;
	}
	raw_spin_unlock(&dl_b->lock);

	return err;
}

extern void init_dl_bw(struct dl_bw *dl_b);

L
Linus Torvalds 已提交
2335 2336 2337 2338 2339 2340 2341
/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2342
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
2343 2344
{
	unsigned long flags;
I
Ingo Molnar 已提交
2345
	struct rq *rq;
2346

2347
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2348 2349
	/* Initialize new task's runnable average */
	init_entity_runnable_average(&p->se);
2350 2351 2352 2353 2354 2355
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 */
2356
	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2357 2358
#endif

2359
	rq = __task_rq_lock(p);
P
Peter Zijlstra 已提交
2360
	activate_task(rq, p, 0);
2361
	p->on_rq = TASK_ON_RQ_QUEUED;
2362
	trace_sched_wakeup_new(p);
P
Peter Zijlstra 已提交
2363
	check_preempt_curr(rq, p, WF_FORK);
2364
#ifdef CONFIG_SMP
2365 2366
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2367
#endif
2368
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
2369 2370
}

2371 2372
#ifdef CONFIG_PREEMPT_NOTIFIERS

2373 2374
static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;

2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
void preempt_notifier_inc(void)
{
	static_key_slow_inc(&preempt_notifier_key);
}
EXPORT_SYMBOL_GPL(preempt_notifier_inc);

void preempt_notifier_dec(void)
{
	static_key_slow_dec(&preempt_notifier_key);
}
EXPORT_SYMBOL_GPL(preempt_notifier_dec);

2387
/**
2388
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2389
 * @notifier: notifier struct to register
2390 2391 2392
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
2393 2394 2395
	if (!static_key_false(&preempt_notifier_key))
		WARN(1, "registering preempt_notifier while notifiers disabled\n");

2396 2397 2398 2399 2400 2401
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2402
 * @notifier: notifier struct to unregister
2403
 *
2404
 * This is *not* safe to call from within a preemption notifier.
2405 2406 2407 2408 2409 2410 2411
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

2412
static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2413 2414 2415
{
	struct preempt_notifier *notifier;

2416
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2417 2418 2419
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

2420 2421 2422 2423 2424 2425
static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	if (static_key_false(&preempt_notifier_key))
		__fire_sched_in_preempt_notifiers(curr);
}

2426
static void
2427 2428
__fire_sched_out_preempt_notifiers(struct task_struct *curr,
				   struct task_struct *next)
2429 2430 2431
{
	struct preempt_notifier *notifier;

2432
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2433 2434 2435
		notifier->ops->sched_out(notifier, next);
}

2436 2437 2438 2439 2440 2441 2442 2443
static __always_inline void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	if (static_key_false(&preempt_notifier_key))
		__fire_sched_out_preempt_notifiers(curr, next);
}

2444
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2445

2446
static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2447 2448 2449
{
}

2450
static inline void
2451 2452 2453 2454 2455
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2456
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2457

2458 2459 2460
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2461
 * @prev: the current task that is being switched out
2462 2463 2464 2465 2466 2467 2468 2469 2470
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2471 2472 2473
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2474
{
2475
	sched_info_switch(rq, prev, next);
2476
	perf_event_task_sched_out(prev, next);
2477
	fire_sched_out_preempt_notifiers(prev, next);
2478 2479 2480 2481
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2482 2483 2484 2485
/**
 * finish_task_switch - clean up after a task-switch
 * @prev: the thread we just switched away from.
 *
2486 2487 2488 2489
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2490 2491
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2492
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2493 2494
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
2495 2496 2497 2498 2499
 *
 * The context switch have flipped the stack from under us and restored the
 * local variables which were saved when this task called schedule() in the
 * past. prev == current is still correct but we need to recalculate this_rq
 * because prev may have moved to another CPU.
L
Linus Torvalds 已提交
2500
 */
2501
static struct rq *finish_task_switch(struct task_struct *prev)
L
Linus Torvalds 已提交
2502 2503
	__releases(rq->lock)
{
2504
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
2505
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2506
	long prev_state;
L
Linus Torvalds 已提交
2507

2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518
	/*
	 * The previous task will have left us with a preempt_count of 2
	 * because it left us after:
	 *
	 *	schedule()
	 *	  preempt_disable();			// 1
	 *	  __schedule()
	 *	    raw_spin_lock_irq(&rq->lock)	// 2
	 *
	 * Also, see FORK_PREEMPT_COUNT.
	 */
2519 2520 2521 2522
	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
		      "corrupted preempt_count: %s/%d/0x%x\n",
		      current->comm, current->pid, preempt_count()))
		preempt_count_set(FORK_PREEMPT_COUNT);
2523

L
Linus Torvalds 已提交
2524 2525 2526 2527
	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2528
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2529 2530
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2531 2532 2533 2534 2535
	 *
	 * We must observe prev->state before clearing prev->on_cpu (in
	 * finish_lock_switch), otherwise a concurrent wakeup can get prev
	 * running on another CPU and we could rave with its RUNNING -> DEAD
	 * transition, resulting in a double drop.
L
Linus Torvalds 已提交
2536
	 */
O
Oleg Nesterov 已提交
2537
	prev_state = prev->state;
2538
	vtime_task_switch(prev);
2539
	perf_event_task_sched_in(prev, current);
2540
	finish_lock_switch(rq, prev);
2541
	finish_arch_post_lock_switch();
S
Steven Rostedt 已提交
2542

2543
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2544 2545
	if (mm)
		mmdrop(mm);
2546
	if (unlikely(prev_state == TASK_DEAD)) {
2547 2548 2549
		if (prev->sched_class->task_dead)
			prev->sched_class->task_dead(prev);

2550 2551 2552
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2553
		 */
2554
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2555
		put_task_struct(prev);
2556
	}
2557

2558
	tick_nohz_task_switch();
2559
	return rq;
L
Linus Torvalds 已提交
2560 2561
}

2562 2563 2564
#ifdef CONFIG_SMP

/* rq->lock is NOT held, but preemption is disabled */
2565
static void __balance_callback(struct rq *rq)
2566
{
2567 2568 2569
	struct callback_head *head, *next;
	void (*func)(struct rq *rq);
	unsigned long flags;
2570

2571 2572 2573 2574 2575 2576 2577 2578
	raw_spin_lock_irqsave(&rq->lock, flags);
	head = rq->balance_callback;
	rq->balance_callback = NULL;
	while (head) {
		func = (void (*)(struct rq *))head->func;
		next = head->next;
		head->next = NULL;
		head = next;
2579

2580
		func(rq);
2581
	}
2582 2583 2584 2585 2586 2587 2588
	raw_spin_unlock_irqrestore(&rq->lock, flags);
}

static inline void balance_callback(struct rq *rq)
{
	if (unlikely(rq->balance_callback))
		__balance_callback(rq);
2589 2590 2591
}

#else
2592

2593
static inline void balance_callback(struct rq *rq)
2594
{
L
Linus Torvalds 已提交
2595 2596
}

2597 2598
#endif

L
Linus Torvalds 已提交
2599 2600 2601 2602
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2603
asmlinkage __visible void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2604 2605
	__releases(rq->lock)
{
2606
	struct rq *rq;
2607

2608 2609 2610 2611 2612 2613 2614 2615 2616
	/*
	 * New tasks start with FORK_PREEMPT_COUNT, see there and
	 * finish_task_switch() for details.
	 *
	 * finish_task_switch() will drop rq->lock() and lower preempt_count
	 * and the preempt_enable() will end up enabling preemption (on
	 * PREEMPT_COUNT kernels).
	 */

2617
	rq = finish_task_switch(prev);
2618
	balance_callback(rq);
2619
	preempt_enable();
2620

L
Linus Torvalds 已提交
2621
	if (current->set_child_tid)
2622
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2623 2624 2625
}

/*
2626
 * context_switch - switch to the new MM and the new thread's register state.
L
Linus Torvalds 已提交
2627
 */
2628
static inline struct rq *
2629
context_switch(struct rq *rq, struct task_struct *prev,
2630
	       struct task_struct *next)
L
Linus Torvalds 已提交
2631
{
I
Ingo Molnar 已提交
2632
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2633

2634
	prepare_task_switch(rq, prev, next);
2635

I
Ingo Molnar 已提交
2636 2637
	mm = next->mm;
	oldmm = prev->active_mm;
2638 2639 2640 2641 2642
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2643
	arch_start_context_switch(prev);
2644

2645
	if (!mm) {
L
Linus Torvalds 已提交
2646 2647 2648 2649 2650 2651
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2652
	if (!prev->mm) {
L
Linus Torvalds 已提交
2653 2654 2655
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2656 2657 2658 2659 2660 2661
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
2662
	lockdep_unpin_lock(&rq->lock);
2663
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
2664 2665 2666

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);
I
Ingo Molnar 已提交
2667
	barrier();
2668 2669

	return finish_task_switch(prev);
L
Linus Torvalds 已提交
2670 2671 2672
}

/*
2673
 * nr_running and nr_context_switches:
L
Linus Torvalds 已提交
2674 2675
 *
 * externally visible scheduler statistics: current number of runnable
2676
 * threads, total number of context switches performed since bootup.
L
Linus Torvalds 已提交
2677 2678 2679 2680 2681 2682 2683 2684 2685
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2686
}
L
Linus Torvalds 已提交
2687

2688 2689
/*
 * Check if only the current task is running on the cpu.
2690 2691 2692 2693 2694 2695 2696 2697 2698 2699
 *
 * Caution: this function does not check that the caller has disabled
 * preemption, thus the result might have a time-of-check-to-time-of-use
 * race.  The caller is responsible to use it correctly, for example:
 *
 * - from a non-preemptable section (of course)
 *
 * - from a thread that is bound to a single CPU
 *
 * - in a loop with very short iterations (e.g. a polling loop)
2700 2701 2702
 */
bool single_task_running(void)
{
2703
	return raw_rq()->nr_running == 1;
2704 2705 2706
}
EXPORT_SYMBOL(single_task_running);

L
Linus Torvalds 已提交
2707
unsigned long long nr_context_switches(void)
2708
{
2709 2710
	int i;
	unsigned long long sum = 0;
2711

2712
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2713
		sum += cpu_rq(i)->nr_switches;
2714

L
Linus Torvalds 已提交
2715 2716
	return sum;
}
2717

L
Linus Torvalds 已提交
2718 2719 2720
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2721

2722
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2723
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2724

L
Linus Torvalds 已提交
2725 2726
	return sum;
}
2727

2728
unsigned long nr_iowait_cpu(int cpu)
2729
{
2730
	struct rq *this = cpu_rq(cpu);
2731 2732
	return atomic_read(&this->nr_iowait);
}
2733

2734 2735
void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
{
2736 2737 2738
	struct rq *rq = this_rq();
	*nr_waiters = atomic_read(&rq->nr_iowait);
	*load = rq->load.weight;
2739 2740
}

I
Ingo Molnar 已提交
2741
#ifdef CONFIG_SMP
2742

2743
/*
P
Peter Zijlstra 已提交
2744 2745
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2746
 */
P
Peter Zijlstra 已提交
2747
void sched_exec(void)
2748
{
P
Peter Zijlstra 已提交
2749
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2750
	unsigned long flags;
2751
	int dest_cpu;
2752

2753
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2754
	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2755 2756
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2757

2758
	if (likely(cpu_active(dest_cpu))) {
2759
		struct migration_arg arg = { p, dest_cpu };
2760

2761 2762
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2763 2764
		return;
	}
2765
unlock:
2766
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2767
}
I
Ingo Molnar 已提交
2768

L
Linus Torvalds 已提交
2769 2770 2771
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2772
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
2773 2774

EXPORT_PER_CPU_SYMBOL(kstat);
2775
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
2776

2777 2778 2779 2780 2781 2782 2783 2784 2785
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
2786
	u64 ns;
2787

2788 2789 2790 2791 2792 2793 2794 2795 2796
#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
	/*
	 * 64-bit doesn't need locks to atomically read a 64bit value.
	 * So we have a optimization chance when the task's delta_exec is 0.
	 * Reading ->on_cpu is racy, but this is ok.
	 *
	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
	 * If we race with it entering cpu, unaccounted time is 0. This is
	 * indistinguishable from the read occurring a few cycles earlier.
2797 2798
	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
	 * been accounted, so we're correct here as well.
2799
	 */
2800
	if (!p->on_cpu || !task_on_rq_queued(p))
2801 2802 2803
		return p->se.sum_exec_runtime;
#endif

2804
	rq = task_rq_lock(p, &flags);
2805 2806 2807 2808 2809 2810 2811 2812 2813 2814
	/*
	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
	 * project cycles that may never be accounted to this
	 * thread, breaking clock_gettime().
	 */
	if (task_current(rq, p) && task_on_rq_queued(p)) {
		update_rq_clock(rq);
		p->sched_class->update_curr(rq);
	}
	ns = p->se.sum_exec_runtime;
2815
	task_rq_unlock(rq, p, &flags);
2816 2817 2818

	return ns;
}
2819

2820 2821 2822 2823 2824 2825 2826 2827
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2828
	struct task_struct *curr = rq->curr;
2829 2830

	sched_clock_tick();
I
Ingo Molnar 已提交
2831

2832
	raw_spin_lock(&rq->lock);
2833
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
2834
	curr->sched_class->task_tick(rq, curr, 0);
2835
	update_cpu_load_active(rq);
2836
	calc_global_load_tick(rq);
2837
	raw_spin_unlock(&rq->lock);
2838

2839
	perf_event_task_tick();
2840

2841
#ifdef CONFIG_SMP
2842
	rq->idle_balance = idle_cpu(cpu);
2843
	trigger_load_balance(rq);
2844
#endif
2845
	rq_last_tick_reset(rq);
L
Linus Torvalds 已提交
2846 2847
}

2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858
#ifdef CONFIG_NO_HZ_FULL
/**
 * scheduler_tick_max_deferment
 *
 * Keep at least one tick per second when a single
 * active task is running because the scheduler doesn't
 * yet completely support full dynticks environment.
 *
 * This makes sure that uptime, CFS vruntime, load
 * balancing, etc... continue to move forward, even
 * with a very low granularity.
2859 2860
 *
 * Return: Maximum deferment in nanoseconds.
2861 2862 2863 2864
 */
u64 scheduler_tick_max_deferment(void)
{
	struct rq *rq = this_rq();
2865
	unsigned long next, now = READ_ONCE(jiffies);
2866 2867 2868 2869 2870 2871

	next = rq->last_sched_tick + HZ;

	if (time_before_eq(next, now))
		return 0;

2872
	return jiffies_to_nsecs(next - now);
L
Linus Torvalds 已提交
2873
}
2874
#endif
L
Linus Torvalds 已提交
2875

2876
notrace unsigned long get_parent_ip(unsigned long addr)
2877 2878 2879 2880 2881 2882 2883 2884
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
2885

2886 2887 2888
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

2889
void preempt_count_add(int val)
L
Linus Torvalds 已提交
2890
{
2891
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2892 2893 2894
	/*
	 * Underflow?
	 */
2895 2896
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
2897
#endif
2898
	__preempt_count_add(val);
2899
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2900 2901 2902
	/*
	 * Spinlock count overflowing soon?
	 */
2903 2904
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
2905
#endif
2906 2907 2908 2909 2910 2911 2912
	if (preempt_count() == val) {
		unsigned long ip = get_parent_ip(CALLER_ADDR1);
#ifdef CONFIG_DEBUG_PREEMPT
		current->preempt_disable_ip = ip;
#endif
		trace_preempt_off(CALLER_ADDR0, ip);
	}
L
Linus Torvalds 已提交
2913
}
2914
EXPORT_SYMBOL(preempt_count_add);
2915
NOKPROBE_SYMBOL(preempt_count_add);
L
Linus Torvalds 已提交
2916

2917
void preempt_count_sub(int val)
L
Linus Torvalds 已提交
2918
{
2919
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2920 2921 2922
	/*
	 * Underflow?
	 */
2923
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2924
		return;
L
Linus Torvalds 已提交
2925 2926 2927
	/*
	 * Is the spinlock portion underflowing?
	 */
2928 2929 2930
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
2931
#endif
2932

2933 2934
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2935
	__preempt_count_sub(val);
L
Linus Torvalds 已提交
2936
}
2937
EXPORT_SYMBOL(preempt_count_sub);
2938
NOKPROBE_SYMBOL(preempt_count_sub);
L
Linus Torvalds 已提交
2939 2940 2941 2942

#endif

/*
I
Ingo Molnar 已提交
2943
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
2944
 */
I
Ingo Molnar 已提交
2945
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
2946
{
2947 2948 2949
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
2950 2951
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
2952

I
Ingo Molnar 已提交
2953
	debug_show_held_locks(prev);
2954
	print_modules();
I
Ingo Molnar 已提交
2955 2956
	if (irqs_disabled())
		print_irqtrace_events(prev);
2957 2958 2959 2960 2961 2962 2963
#ifdef CONFIG_DEBUG_PREEMPT
	if (in_atomic_preempt_off()) {
		pr_err("Preemption disabled at:");
		print_ip_sym(current->preempt_disable_ip);
		pr_cont("\n");
	}
#endif
2964
	dump_stack();
2965
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
I
Ingo Molnar 已提交
2966
}
L
Linus Torvalds 已提交
2967

I
Ingo Molnar 已提交
2968 2969 2970 2971 2972
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
2973 2974 2975
#ifdef CONFIG_SCHED_STACK_END_CHECK
	BUG_ON(unlikely(task_stack_end_corrupted(prev)));
#endif
2976

2977
	if (unlikely(in_atomic_preempt_off())) {
I
Ingo Molnar 已提交
2978
		__schedule_bug(prev);
2979 2980
		preempt_count_set(PREEMPT_DISABLED);
	}
2981
	rcu_sleep_check();
I
Ingo Molnar 已提交
2982

L
Linus Torvalds 已提交
2983 2984
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

2985
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
2986 2987 2988 2989 2990 2991
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
2992
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
2993
{
2994
	const struct sched_class *class = &fair_sched_class;
I
Ingo Molnar 已提交
2995
	struct task_struct *p;
L
Linus Torvalds 已提交
2996 2997

	/*
I
Ingo Molnar 已提交
2998 2999
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3000
	 */
3001
	if (likely(prev->sched_class == class &&
3002
		   rq->nr_running == rq->cfs.h_nr_running)) {
3003
		p = fair_sched_class.pick_next_task(rq, prev);
3004 3005 3006 3007 3008 3009 3010 3011
		if (unlikely(p == RETRY_TASK))
			goto again;

		/* assumes fair_sched_class->next == idle_sched_class */
		if (unlikely(!p))
			p = idle_sched_class.pick_next_task(rq, prev);

		return p;
L
Linus Torvalds 已提交
3012 3013
	}

3014
again:
3015
	for_each_class(class) {
3016
		p = class->pick_next_task(rq, prev);
3017 3018 3019
		if (p) {
			if (unlikely(p == RETRY_TASK))
				goto again;
I
Ingo Molnar 已提交
3020
			return p;
3021
		}
I
Ingo Molnar 已提交
3022
	}
3023 3024

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
3025
}
L
Linus Torvalds 已提交
3026

I
Ingo Molnar 已提交
3027
/*
3028
 * __schedule() is the main scheduler function.
3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062
 *
 * The main means of driving the scheduler and thus entering this function are:
 *
 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 *      paths. For example, see arch/x86/entry_64.S.
 *
 *      To drive preemption between tasks, the scheduler sets the flag in timer
 *      interrupt handler scheduler_tick().
 *
 *   3. Wakeups don't really cause entry into schedule(). They add a
 *      task to the run-queue and that's it.
 *
 *      Now, if the new task added to the run-queue preempts the current
 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 *      called on the nearest possible occasion:
 *
 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
 *
 *         - in syscall or exception context, at the next outmost
 *           preempt_enable(). (this might be as soon as the wake_up()'s
 *           spin_unlock()!)
 *
 *         - in IRQ context, return from interrupt-handler to
 *           preemptible context
 *
 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
 *         then at the next:
 *
 *          - cond_resched() call
 *          - explicit schedule() call
 *          - return from syscall or exception to user-space
 *          - return from interrupt-handler to user-space
3063
 *
3064
 * WARNING: must be called with preemption disabled!
I
Ingo Molnar 已提交
3065
 */
3066
static void __sched notrace __schedule(bool preempt)
I
Ingo Molnar 已提交
3067 3068
{
	struct task_struct *prev, *next;
3069
	unsigned long *switch_count;
I
Ingo Molnar 已提交
3070
	struct rq *rq;
3071
	int cpu;
I
Ingo Molnar 已提交
3072 3073 3074

	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
3075
	rcu_note_context_switch();
I
Ingo Molnar 已提交
3076 3077
	prev = rq->curr;

3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088
	/*
	 * do_exit() calls schedule() with preemption disabled as an exception;
	 * however we must fix that up, otherwise the next task will see an
	 * inconsistent (higher) preempt count.
	 *
	 * It also avoids the below schedule_debug() test from complaining
	 * about this.
	 */
	if (unlikely(prev->state == TASK_DEAD))
		preempt_enable_no_resched_notrace();

I
Ingo Molnar 已提交
3089
	schedule_debug(prev);
L
Linus Torvalds 已提交
3090

3091
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
3092
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
3093

3094 3095 3096 3097 3098 3099
	/*
	 * Make sure that signal_pending_state()->signal_pending() below
	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
	 * done by the caller to avoid the race with signal_wake_up().
	 */
	smp_mb__before_spinlock();
3100
	raw_spin_lock_irq(&rq->lock);
3101
	lockdep_pin_lock(&rq->lock);
L
Linus Torvalds 已提交
3102

3103 3104
	rq->clock_skip_update <<= 1; /* promote REQ to ACT */

3105
	switch_count = &prev->nivcsw;
3106
	if (!preempt && prev->state) {
T
Tejun Heo 已提交
3107
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
3108
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
3109
		} else {
3110 3111 3112
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

T
Tejun Heo 已提交
3113
			/*
3114 3115 3116
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
3117 3118 3119 3120 3121 3122 3123 3124 3125
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
		}
I
Ingo Molnar 已提交
3126
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3127 3128
	}

3129
	if (task_on_rq_queued(prev))
3130 3131 3132
		update_rq_clock(rq);

	next = pick_next_task(rq, prev);
3133
	clear_tsk_need_resched(prev);
3134
	clear_preempt_need_resched();
3135
	rq->clock_skip_update = 0;
L
Linus Torvalds 已提交
3136 3137 3138 3139 3140 3141

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

3142
		trace_sched_switch(preempt, prev, next);
3143 3144
		rq = context_switch(rq, prev, next); /* unlocks the rq */
		cpu = cpu_of(rq);
3145 3146
	} else {
		lockdep_unpin_lock(&rq->lock);
3147
		raw_spin_unlock_irq(&rq->lock);
3148
	}
L
Linus Torvalds 已提交
3149

3150
	balance_callback(rq);
L
Linus Torvalds 已提交
3151
}
3152

3153 3154
static inline void sched_submit_work(struct task_struct *tsk)
{
3155
	if (!tsk->state || tsk_is_pi_blocked(tsk))
3156 3157 3158 3159 3160 3161 3162 3163 3164
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

3165
asmlinkage __visible void __sched schedule(void)
3166
{
3167 3168 3169
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
3170
	do {
3171
		preempt_disable();
3172
		__schedule(false);
3173
		sched_preempt_enable_no_resched();
3174
	} while (need_resched());
3175
}
L
Linus Torvalds 已提交
3176 3177
EXPORT_SYMBOL(schedule);

3178
#ifdef CONFIG_CONTEXT_TRACKING
3179
asmlinkage __visible void __sched schedule_user(void)
3180 3181 3182 3183 3184 3185
{
	/*
	 * If we come here after a random call to set_need_resched(),
	 * or we have been woken up remotely but the IPI has not yet arrived,
	 * we haven't yet exited the RCU idle mode. Do it here manually until
	 * we find a better solution.
3186 3187
	 *
	 * NB: There are buggy callers of this function.  Ideally we
3188
	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3189
	 * too frequently to make sense yet.
3190
	 */
3191
	enum ctx_state prev_state = exception_enter();
3192
	schedule();
3193
	exception_exit(prev_state);
3194 3195 3196
}
#endif

3197 3198 3199 3200 3201 3202 3203
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
3204
	sched_preempt_enable_no_resched();
3205 3206 3207 3208
	schedule();
	preempt_disable();
}

3209
static void __sched notrace preempt_schedule_common(void)
3210 3211
{
	do {
3212
		preempt_disable_notrace();
3213
		__schedule(true);
3214
		preempt_enable_no_resched_notrace();
3215 3216 3217 3218 3219 3220 3221 3222

		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
	} while (need_resched());
}

L
Linus Torvalds 已提交
3223 3224
#ifdef CONFIG_PREEMPT
/*
3225
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3226
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3227 3228
 * occur there and call schedule directly.
 */
3229
asmlinkage __visible void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
3230 3231 3232
{
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3233
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3234
	 */
3235
	if (likely(!preemptible()))
L
Linus Torvalds 已提交
3236 3237
		return;

3238
	preempt_schedule_common();
L
Linus Torvalds 已提交
3239
}
3240
NOKPROBE_SYMBOL(preempt_schedule);
L
Linus Torvalds 已提交
3241
EXPORT_SYMBOL(preempt_schedule);
3242 3243

/**
3244
 * preempt_schedule_notrace - preempt_schedule called by tracing
3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256
 *
 * The tracing infrastructure uses preempt_enable_notrace to prevent
 * recursion and tracing preempt enabling caused by the tracing
 * infrastructure itself. But as tracing can happen in areas coming
 * from userspace or just about to enter userspace, a preempt enable
 * can occur before user_exit() is called. This will cause the scheduler
 * to be called when the system is still in usermode.
 *
 * To prevent this, the preempt_enable_notrace will use this function
 * instead of preempt_schedule() to exit user context if needed before
 * calling the scheduler.
 */
3257
asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3258 3259 3260 3261 3262 3263 3264
{
	enum ctx_state prev_ctx;

	if (likely(!preemptible()))
		return;

	do {
3265
		preempt_disable_notrace();
3266 3267 3268 3269 3270 3271
		/*
		 * Needs preempt disabled in case user_exit() is traced
		 * and the tracer calls preempt_enable_notrace() causing
		 * an infinite recursion.
		 */
		prev_ctx = exception_enter();
3272
		__schedule(true);
3273 3274
		exception_exit(prev_ctx);

3275
		preempt_enable_no_resched_notrace();
3276 3277
	} while (need_resched());
}
3278
EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3279

3280
#endif /* CONFIG_PREEMPT */
L
Linus Torvalds 已提交
3281 3282

/*
3283
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3284 3285 3286 3287
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
3288
asmlinkage __visible void __sched preempt_schedule_irq(void)
L
Linus Torvalds 已提交
3289
{
3290
	enum ctx_state prev_state;
3291

3292
	/* Catch callers which need to be fixed */
3293
	BUG_ON(preempt_count() || !irqs_disabled());
L
Linus Torvalds 已提交
3294

3295 3296
	prev_state = exception_enter();

3297
	do {
3298
		preempt_disable();
3299
		local_irq_enable();
3300
		__schedule(true);
3301
		local_irq_disable();
3302
		sched_preempt_enable_no_resched();
3303
	} while (need_resched());
3304 3305

	exception_exit(prev_state);
L
Linus Torvalds 已提交
3306 3307
}

P
Peter Zijlstra 已提交
3308
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3309
			  void *key)
L
Linus Torvalds 已提交
3310
{
P
Peter Zijlstra 已提交
3311
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3312 3313 3314
}
EXPORT_SYMBOL(default_wake_function);

3315 3316 3317 3318 3319 3320 3321 3322 3323 3324
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
3325 3326
 * Used by the rt_mutex code to implement priority inheritance
 * logic. Call site only calls if the priority of the task changed.
3327
 */
3328
void rt_mutex_setprio(struct task_struct *p, int prio)
3329
{
3330
	int oldprio, queued, running, enqueue_flag = ENQUEUE_RESTORE;
3331
	struct rq *rq;
3332
	const struct sched_class *prev_class;
3333

3334
	BUG_ON(prio > MAX_PRIO);
3335

3336
	rq = __task_rq_lock(p);
3337

3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

3356
	trace_sched_pi_setprio(p, prio);
3357
	oldprio = p->prio;
3358
	prev_class = p->sched_class;
3359
	queued = task_on_rq_queued(p);
3360
	running = task_current(rq, p);
3361
	if (queued)
3362
		dequeue_task(rq, p, DEQUEUE_SAVE);
3363
	if (running)
3364
		put_prev_task(rq, p);
I
Ingo Molnar 已提交
3365

3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
	/*
	 * Boosting condition are:
	 * 1. -rt task is running and holds mutex A
	 *      --> -dl task blocks on mutex A
	 *
	 * 2. -dl task is running and holds mutex A
	 *      --> -dl task blocks on mutex A and could preempt the
	 *          running task
	 */
	if (dl_prio(prio)) {
3376 3377 3378
		struct task_struct *pi_task = rt_mutex_get_top_task(p);
		if (!dl_prio(p->normal_prio) ||
		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3379
			p->dl.dl_boosted = 1;
3380
			enqueue_flag |= ENQUEUE_REPLENISH;
3381 3382
		} else
			p->dl.dl_boosted = 0;
3383
		p->sched_class = &dl_sched_class;
3384 3385 3386 3387
	} else if (rt_prio(prio)) {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
		if (oldprio < prio)
3388
			enqueue_flag |= ENQUEUE_HEAD;
I
Ingo Molnar 已提交
3389
		p->sched_class = &rt_sched_class;
3390 3391 3392
	} else {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
3393 3394
		if (rt_prio(oldprio))
			p->rt.timeout = 0;
I
Ingo Molnar 已提交
3395
		p->sched_class = &fair_sched_class;
3396
	}
I
Ingo Molnar 已提交
3397

3398 3399
	p->prio = prio;

3400 3401
	if (running)
		p->sched_class->set_curr_task(rq);
3402
	if (queued)
3403
		enqueue_task(rq, p, enqueue_flag);
3404

P
Peter Zijlstra 已提交
3405
	check_class_changed(rq, p, prev_class, oldprio);
3406
out_unlock:
3407
	preempt_disable(); /* avoid rq from going away on us */
3408
	__task_rq_unlock(rq);
3409 3410 3411

	balance_callback(rq);
	preempt_enable();
3412 3413
}
#endif
3414

3415
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3416
{
3417
	int old_prio, delta, queued;
L
Linus Torvalds 已提交
3418
	unsigned long flags;
3419
	struct rq *rq;
L
Linus Torvalds 已提交
3420

3421
	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
L
Linus Torvalds 已提交
3422 3423 3424 3425 3426 3427 3428 3429 3430 3431
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
3432
	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
L
Linus Torvalds 已提交
3433
	 */
3434
	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3435 3436 3437
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
3438 3439
	queued = task_on_rq_queued(p);
	if (queued)
3440
		dequeue_task(rq, p, DEQUEUE_SAVE);
L
Linus Torvalds 已提交
3441 3442

	p->static_prio = NICE_TO_PRIO(nice);
3443
	set_load_weight(p);
3444 3445 3446
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3447

3448
	if (queued) {
3449
		enqueue_task(rq, p, ENQUEUE_RESTORE);
L
Linus Torvalds 已提交
3450
		/*
3451 3452
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3453
		 */
3454
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3455
			resched_curr(rq);
L
Linus Torvalds 已提交
3456 3457
	}
out_unlock:
3458
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3459 3460 3461
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3462 3463 3464 3465 3466
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3467
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3468
{
3469
	/* convert nice value [19,-20] to rlimit style value [1,40] */
3470
	int nice_rlim = nice_to_rlimit(nice);
3471

3472
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3473 3474 3475
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3476 3477 3478 3479 3480 3481 3482 3483 3484
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3485
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3486
{
3487
	long nice, retval;
L
Linus Torvalds 已提交
3488 3489 3490 3491 3492 3493

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
3494
	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3495
	nice = task_nice(current) + increment;
L
Linus Torvalds 已提交
3496

3497
	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
M
Matt Mackall 已提交
3498 3499 3500
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
3515
 * Return: The priority value as seen by users in /proc.
L
Linus Torvalds 已提交
3516 3517 3518
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3519
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3520 3521 3522 3523 3524 3525 3526
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
3527 3528
 *
 * Return: 1 if the CPU is currently idle. 0 otherwise.
L
Linus Torvalds 已提交
3529 3530 3531
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3546 3547 3548 3549 3550
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
3551 3552
 *
 * Return: The idle task for the cpu @cpu.
L
Linus Torvalds 已提交
3553
 */
3554
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3555 3556 3557 3558 3559 3560 3561
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
3562 3563
 *
 * The task of @pid, if found. %NULL otherwise.
L
Linus Torvalds 已提交
3564
 */
A
Alexey Dobriyan 已提交
3565
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
3566
{
3567
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
3568 3569
}

3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584
/*
 * This function initializes the sched_dl_entity of a newly becoming
 * SCHED_DEADLINE task.
 *
 * Only the static values are considered here, the actual runtime and the
 * absolute deadline will be properly calculated when the task is enqueued
 * for the first time with its new policy.
 */
static void
__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	dl_se->dl_runtime = attr->sched_runtime;
	dl_se->dl_deadline = attr->sched_deadline;
3585
	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3586
	dl_se->flags = attr->sched_flags;
3587
	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607

	/*
	 * Changing the parameters of a task is 'tricky' and we're not doing
	 * the correct thing -- also see task_dead_dl() and switched_from_dl().
	 *
	 * What we SHOULD do is delay the bandwidth release until the 0-lag
	 * point. This would include retaining the task_struct until that time
	 * and change dl_overflow() to not immediately decrement the current
	 * amount.
	 *
	 * Instead we retain the current runtime/deadline and let the new
	 * parameters take effect after the current reservation period lapses.
	 * This is safe (albeit pessimistic) because the 0-lag point is always
	 * before the current scheduling deadline.
	 *
	 * We can still have temporary overloads because we do not delay the
	 * change in bandwidth until that time; so admission control is
	 * not on the safe side. It does however guarantee tasks will never
	 * consume more than promised.
	 */
3608 3609
}

3610 3611 3612 3613 3614 3615
/*
 * sched_setparam() passes in -1 for its policy, to let the functions
 * it calls know not to change it.
 */
#define SETPARAM_POLICY	-1

3616 3617
static void __setscheduler_params(struct task_struct *p,
		const struct sched_attr *attr)
L
Linus Torvalds 已提交
3618
{
3619 3620
	int policy = attr->sched_policy;

3621
	if (policy == SETPARAM_POLICY)
3622 3623
		policy = p->policy;

L
Linus Torvalds 已提交
3624
	p->policy = policy;
3625

3626 3627
	if (dl_policy(policy))
		__setparam_dl(p, attr);
3628
	else if (fair_policy(policy))
3629 3630
		p->static_prio = NICE_TO_PRIO(attr->sched_nice);

3631 3632 3633 3634 3635 3636
	/*
	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
	 * !rt_policy. Always setting this ensures that things like
	 * getparam()/getattr() don't report silly values for !rt tasks.
	 */
	p->rt_priority = attr->sched_priority;
3637
	p->normal_prio = normal_prio(p);
3638 3639
	set_load_weight(p);
}
3640

3641 3642
/* Actually do priority change: must hold pi & rq lock. */
static void __setscheduler(struct rq *rq, struct task_struct *p,
3643
			   const struct sched_attr *attr, bool keep_boost)
3644 3645
{
	__setscheduler_params(p, attr);
3646

3647
	/*
3648 3649
	 * Keep a potential priority boosting if called from
	 * sched_setscheduler().
3650
	 */
3651 3652 3653 3654
	if (keep_boost)
		p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
	else
		p->prio = normal_prio(p);
3655

3656 3657 3658
	if (dl_prio(p->prio))
		p->sched_class = &dl_sched_class;
	else if (rt_prio(p->prio))
3659 3660 3661
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
3662
}
3663 3664 3665 3666 3667 3668 3669 3670 3671

static void
__getparam_dl(struct task_struct *p, struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	attr->sched_priority = p->rt_priority;
	attr->sched_runtime = dl_se->dl_runtime;
	attr->sched_deadline = dl_se->dl_deadline;
3672
	attr->sched_period = dl_se->dl_period;
3673 3674 3675 3676 3677 3678
	attr->sched_flags = dl_se->flags;
}

/*
 * This function validates the new parameters of a -deadline task.
 * We ask for the deadline not being zero, and greater or equal
3679
 * than the runtime, as well as the period of being zero or
3680
 * greater than deadline. Furthermore, we have to be sure that
3681 3682 3683 3684
 * user parameters are above the internal resolution of 1us (we
 * check sched_runtime only since it is always the smaller one) and
 * below 2^63 ns (we have to check both sched_deadline and
 * sched_period, as the latter can be zero).
3685 3686 3687 3688
 */
static bool
__checkparam_dl(const struct sched_attr *attr)
{
3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714
	/* deadline != 0 */
	if (attr->sched_deadline == 0)
		return false;

	/*
	 * Since we truncate DL_SCALE bits, make sure we're at least
	 * that big.
	 */
	if (attr->sched_runtime < (1ULL << DL_SCALE))
		return false;

	/*
	 * Since we use the MSB for wrap-around and sign issues, make
	 * sure it's not set (mind that period can be equal to zero).
	 */
	if (attr->sched_deadline & (1ULL << 63) ||
	    attr->sched_period & (1ULL << 63))
		return false;

	/* runtime <= deadline <= period (if period != 0) */
	if ((attr->sched_period != 0 &&
	     attr->sched_period < attr->sched_deadline) ||
	    attr->sched_deadline < attr->sched_runtime)
		return false;

	return true;
3715 3716
}

3717 3718 3719 3720 3721 3722 3723 3724 3725 3726
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
3727 3728
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
3729 3730 3731 3732
	rcu_read_unlock();
	return match;
}

3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746
static bool dl_param_changed(struct task_struct *p,
		const struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	if (dl_se->dl_runtime != attr->sched_runtime ||
		dl_se->dl_deadline != attr->sched_deadline ||
		dl_se->dl_period != attr->sched_period ||
		dl_se->flags != attr->sched_flags)
		return true;

	return false;
}

3747 3748
static int __sched_setscheduler(struct task_struct *p,
				const struct sched_attr *attr,
3749
				bool user, bool pi)
L
Linus Torvalds 已提交
3750
{
3751 3752
	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
		      MAX_RT_PRIO - 1 - attr->sched_priority;
3753
	int retval, oldprio, oldpolicy = -1, queued, running;
3754
	int new_effective_prio, policy = attr->sched_policy;
L
Linus Torvalds 已提交
3755
	unsigned long flags;
3756
	const struct sched_class *prev_class;
3757
	struct rq *rq;
3758
	int reset_on_fork;
L
Linus Torvalds 已提交
3759

3760 3761
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
3762 3763
recheck:
	/* double check policy once rq lock held */
3764 3765
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
3766
		policy = oldpolicy = p->policy;
3767
	} else {
3768
		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3769

3770
		if (!valid_policy(policy))
3771 3772 3773
			return -EINVAL;
	}

3774 3775 3776
	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
		return -EINVAL;

L
Linus Torvalds 已提交
3777 3778
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
3779 3780
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
3781
	 */
3782
	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3783
	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
3784
		return -EINVAL;
3785 3786
	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
	    (rt_policy(policy) != (attr->sched_priority != 0)))
L
Linus Torvalds 已提交
3787 3788
		return -EINVAL;

3789 3790 3791
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
3792
	if (user && !capable(CAP_SYS_NICE)) {
3793
		if (fair_policy(policy)) {
3794
			if (attr->sched_nice < task_nice(p) &&
3795
			    !can_nice(p, attr->sched_nice))
3796 3797 3798
				return -EPERM;
		}

3799
		if (rt_policy(policy)) {
3800 3801
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
3802 3803 3804 3805 3806 3807

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
3808 3809
			if (attr->sched_priority > p->rt_priority &&
			    attr->sched_priority > rlim_rtprio)
3810 3811
				return -EPERM;
		}
3812

3813 3814 3815 3816 3817 3818 3819 3820 3821
		 /*
		  * Can't set/change SCHED_DEADLINE policy at all for now
		  * (safest behavior); in the future we would like to allow
		  * unprivileged DL tasks to increase their relative deadline
		  * or reduce their runtime (both ways reducing utilization)
		  */
		if (dl_policy(policy))
			return -EPERM;

I
Ingo Molnar 已提交
3822
		/*
3823 3824
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
3825
		 */
3826
		if (idle_policy(p->policy) && !idle_policy(policy)) {
3827
			if (!can_nice(p, task_nice(p)))
3828 3829
				return -EPERM;
		}
3830

3831
		/* can't change other user's priorities */
3832
		if (!check_same_owner(p))
3833
			return -EPERM;
3834 3835 3836 3837

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
3838
	}
L
Linus Torvalds 已提交
3839

3840
	if (user) {
3841
		retval = security_task_setscheduler(p);
3842 3843 3844 3845
		if (retval)
			return retval;
	}

3846 3847 3848
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
3849
	 *
L
Lucas De Marchi 已提交
3850
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
3851 3852
	 * runqueue lock must be held.
	 */
3853
	rq = task_rq_lock(p, &flags);
3854

3855 3856 3857 3858
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
3859
		task_rq_unlock(rq, p, &flags);
3860 3861 3862
		return -EINVAL;
	}

3863
	/*
3864 3865
	 * If not changing anything there's no need to proceed further,
	 * but store a possible modification of reset_on_fork.
3866
	 */
3867
	if (unlikely(policy == p->policy)) {
3868
		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3869 3870 3871
			goto change;
		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
			goto change;
3872
		if (dl_policy(policy) && dl_param_changed(p, attr))
3873
			goto change;
3874

3875
		p->sched_reset_on_fork = reset_on_fork;
3876
		task_rq_unlock(rq, p, &flags);
3877 3878
		return 0;
	}
3879
change:
3880

3881
	if (user) {
3882
#ifdef CONFIG_RT_GROUP_SCHED
3883 3884 3885 3886 3887
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3888 3889
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
3890
			task_rq_unlock(rq, p, &flags);
3891 3892 3893
			return -EPERM;
		}
#endif
3894 3895 3896 3897 3898 3899 3900 3901 3902
#ifdef CONFIG_SMP
		if (dl_bandwidth_enabled() && dl_policy(policy)) {
			cpumask_t *span = rq->rd->span;

			/*
			 * Don't allow tasks with an affinity mask smaller than
			 * the entire root_domain to become SCHED_DEADLINE. We
			 * will also fail if there's no bandwidth available.
			 */
3903 3904
			if (!cpumask_subset(span, &p->cpus_allowed) ||
			    rq->rd->dl_bw.bw == 0) {
3905 3906 3907 3908 3909 3910
				task_rq_unlock(rq, p, &flags);
				return -EPERM;
			}
		}
#endif
	}
3911

L
Linus Torvalds 已提交
3912 3913 3914
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
3915
		task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3916 3917
		goto recheck;
	}
3918 3919 3920 3921 3922 3923

	/*
	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
	 * is available.
	 */
3924
	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3925 3926 3927 3928
		task_rq_unlock(rq, p, &flags);
		return -EBUSY;
	}

3929 3930 3931
	p->sched_reset_on_fork = reset_on_fork;
	oldprio = p->prio;

3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945
	if (pi) {
		/*
		 * Take priority boosted tasks into account. If the new
		 * effective priority is unchanged, we just store the new
		 * normal parameters and do not touch the scheduler class and
		 * the runqueue. This will be done when the task deboost
		 * itself.
		 */
		new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
		if (new_effective_prio == oldprio) {
			__setscheduler_params(p, attr);
			task_rq_unlock(rq, p, &flags);
			return 0;
		}
3946 3947
	}

3948
	queued = task_on_rq_queued(p);
3949
	running = task_current(rq, p);
3950
	if (queued)
3951
		dequeue_task(rq, p, DEQUEUE_SAVE);
3952
	if (running)
3953
		put_prev_task(rq, p);
3954

3955
	prev_class = p->sched_class;
3956
	__setscheduler(rq, p, attr, pi);
3957

3958 3959
	if (running)
		p->sched_class->set_curr_task(rq);
3960
	if (queued) {
3961
		int enqueue_flags = ENQUEUE_RESTORE;
3962 3963 3964 3965
		/*
		 * We enqueue to tail when the priority of a task is
		 * increased (user space view).
		 */
3966 3967 3968 3969
		if (oldprio <= p->prio)
			enqueue_flags |= ENQUEUE_HEAD;

		enqueue_task(rq, p, enqueue_flags);
3970
	}
3971

P
Peter Zijlstra 已提交
3972
	check_class_changed(rq, p, prev_class, oldprio);
3973
	preempt_disable(); /* avoid rq from going away on us */
3974
	task_rq_unlock(rq, p, &flags);
3975

3976 3977
	if (pi)
		rt_mutex_adjust_pi(p);
3978

3979 3980 3981 3982 3983
	/*
	 * Run balance callbacks after we've adjusted the PI chain.
	 */
	balance_callback(rq);
	preempt_enable();
3984

L
Linus Torvalds 已提交
3985 3986
	return 0;
}
3987

3988 3989 3990 3991 3992 3993 3994 3995 3996
static int _sched_setscheduler(struct task_struct *p, int policy,
			       const struct sched_param *param, bool check)
{
	struct sched_attr attr = {
		.sched_policy   = policy,
		.sched_priority = param->sched_priority,
		.sched_nice	= PRIO_TO_NICE(p->static_prio),
	};

3997 3998
	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
3999 4000 4001 4002 4003
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
		policy &= ~SCHED_RESET_ON_FORK;
		attr.sched_policy = policy;
	}

4004
	return __sched_setscheduler(p, &attr, check, true);
4005
}
4006 4007 4008 4009 4010 4011
/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
4012 4013
 * Return: 0 on success. An error code otherwise.
 *
4014 4015 4016
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
4017
		       const struct sched_param *param)
4018
{
4019
	return _sched_setscheduler(p, policy, param, true);
4020
}
L
Linus Torvalds 已提交
4021 4022
EXPORT_SYMBOL_GPL(sched_setscheduler);

4023 4024
int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
{
4025
	return __sched_setscheduler(p, attr, true, true);
4026 4027 4028
}
EXPORT_SYMBOL_GPL(sched_setattr);

4029 4030 4031 4032 4033 4034 4035 4036 4037 4038
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
4039 4040
 *
 * Return: 0 on success. An error code otherwise.
4041 4042
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4043
			       const struct sched_param *param)
4044
{
4045
	return _sched_setscheduler(p, policy, param, false);
4046 4047
}

I
Ingo Molnar 已提交
4048 4049
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4050 4051 4052
{
	struct sched_param lparam;
	struct task_struct *p;
4053
	int retval;
L
Linus Torvalds 已提交
4054 4055 4056 4057 4058

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4059 4060 4061

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4062
	p = find_process_by_pid(pid);
4063 4064 4065
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4066

L
Linus Torvalds 已提交
4067 4068 4069
	return retval;
}

4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131
/*
 * Mimics kernel/events/core.c perf_copy_attr().
 */
static int sched_copy_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr)
{
	u32 size;
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = SCHED_ATTR_SIZE_VER0;

	if (size < SCHED_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
	 */
	if (size > sizeof(*attr)) {
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;

		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;

		for (; addr < end; addr++) {
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
		size = sizeof(*attr);
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * XXX: do we want to be lenient like existing syscalls; or do we want
	 * to be strict and return an error on out-of-bounds values?
	 */
4132
	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4133

4134
	return 0;
4135 4136 4137

err_size:
	put_user(sizeof(*attr), &uattr->size);
4138
	return -E2BIG;
4139 4140
}

L
Linus Torvalds 已提交
4141 4142 4143 4144 4145
/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4146 4147
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4148
 */
4149 4150
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
4151
{
4152 4153 4154 4155
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4156 4157 4158 4159 4160 4161 4162
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
4163 4164
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4165
 */
4166
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4167
{
4168
	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
L
Linus Torvalds 已提交
4169 4170
}

4171 4172 4173
/**
 * sys_sched_setattr - same as above, but with extended sched_attr
 * @pid: the pid in question.
J
Juri Lelli 已提交
4174
 * @uattr: structure containing the extended parameters.
4175
 * @flags: for future extension.
4176
 */
4177 4178
SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
			       unsigned int, flags)
4179 4180 4181 4182 4183
{
	struct sched_attr attr;
	struct task_struct *p;
	int retval;

4184
	if (!uattr || pid < 0 || flags)
4185 4186
		return -EINVAL;

4187 4188 4189
	retval = sched_copy_attr(uattr, &attr);
	if (retval)
		return retval;
4190

4191
	if ((int)attr.sched_policy < 0)
4192
		return -EINVAL;
4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203

	rcu_read_lock();
	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (p != NULL)
		retval = sched_setattr(p, &attr);
	rcu_read_unlock();

	return retval;
}

L
Linus Torvalds 已提交
4204 4205 4206
/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
4207 4208 4209
 *
 * Return: On success, the policy of the thread. Otherwise, a negative error
 * code.
L
Linus Torvalds 已提交
4210
 */
4211
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4212
{
4213
	struct task_struct *p;
4214
	int retval;
L
Linus Torvalds 已提交
4215 4216

	if (pid < 0)
4217
		return -EINVAL;
L
Linus Torvalds 已提交
4218 4219

	retval = -ESRCH;
4220
	rcu_read_lock();
L
Linus Torvalds 已提交
4221 4222 4223 4224
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4225 4226
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4227
	}
4228
	rcu_read_unlock();
L
Linus Torvalds 已提交
4229 4230 4231 4232
	return retval;
}

/**
4233
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4234 4235
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
4236 4237 4238
 *
 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
 * code.
L
Linus Torvalds 已提交
4239
 */
4240
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4241
{
4242
	struct sched_param lp = { .sched_priority = 0 };
4243
	struct task_struct *p;
4244
	int retval;
L
Linus Torvalds 已提交
4245 4246

	if (!param || pid < 0)
4247
		return -EINVAL;
L
Linus Torvalds 已提交
4248

4249
	rcu_read_lock();
L
Linus Torvalds 已提交
4250 4251 4252 4253 4254 4255 4256 4257 4258
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4259 4260
	if (task_has_rt_policy(p))
		lp.sched_priority = p->rt_priority;
4261
	rcu_read_unlock();
L
Linus Torvalds 已提交
4262 4263 4264 4265 4266 4267 4268 4269 4270

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4271
	rcu_read_unlock();
L
Linus Torvalds 已提交
4272 4273 4274
	return retval;
}

4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297
static int sched_read_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr,
			   unsigned int usize)
{
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, usize))
		return -EFAULT;

	/*
	 * If we're handed a smaller struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. old
	 * user-space does not get uncomplete information.
	 */
	if (usize < sizeof(*attr)) {
		unsigned char *addr;
		unsigned char *end;

		addr = (void *)attr + usize;
		end  = (void *)attr + sizeof(*attr);

		for (; addr < end; addr++) {
			if (*addr)
4298
				return -EFBIG;
4299 4300 4301 4302 4303
		}

		attr->size = usize;
	}

4304
	ret = copy_to_user(uattr, attr, attr->size);
4305 4306 4307
	if (ret)
		return -EFAULT;

4308
	return 0;
4309 4310 4311
}

/**
4312
 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4313
 * @pid: the pid in question.
J
Juri Lelli 已提交
4314
 * @uattr: structure containing the extended parameters.
4315
 * @size: sizeof(attr) for fwd/bwd comp.
4316
 * @flags: for future extension.
4317
 */
4318 4319
SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
		unsigned int, size, unsigned int, flags)
4320 4321 4322 4323 4324 4325 4326 4327
{
	struct sched_attr attr = {
		.size = sizeof(struct sched_attr),
	};
	struct task_struct *p;
	int retval;

	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4328
	    size < SCHED_ATTR_SIZE_VER0 || flags)
4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341
		return -EINVAL;

	rcu_read_lock();
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	attr.sched_policy = p->policy;
4342 4343
	if (p->sched_reset_on_fork)
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4344 4345 4346
	if (task_has_dl_policy(p))
		__getparam_dl(p, &attr);
	else if (task_has_rt_policy(p))
4347 4348
		attr.sched_priority = p->rt_priority;
	else
4349
		attr.sched_nice = task_nice(p);
4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360

	rcu_read_unlock();

	retval = sched_read_attr(uattr, &attr, size);
	return retval;

out_unlock:
	rcu_read_unlock();
	return retval;
}

4361
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4362
{
4363
	cpumask_var_t cpus_allowed, new_mask;
4364 4365
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4366

4367
	rcu_read_lock();
L
Linus Torvalds 已提交
4368 4369 4370

	p = find_process_by_pid(pid);
	if (!p) {
4371
		rcu_read_unlock();
L
Linus Torvalds 已提交
4372 4373 4374
		return -ESRCH;
	}

4375
	/* Prevent p going away */
L
Linus Torvalds 已提交
4376
	get_task_struct(p);
4377
	rcu_read_unlock();
L
Linus Torvalds 已提交
4378

4379 4380 4381 4382
	if (p->flags & PF_NO_SETAFFINITY) {
		retval = -EINVAL;
		goto out_put_task;
	}
4383 4384 4385 4386 4387 4388 4389 4390
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4391
	retval = -EPERM;
E
Eric W. Biederman 已提交
4392 4393 4394 4395
	if (!check_same_owner(p)) {
		rcu_read_lock();
		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
			rcu_read_unlock();
4396
			goto out_free_new_mask;
E
Eric W. Biederman 已提交
4397 4398 4399
		}
		rcu_read_unlock();
	}
L
Linus Torvalds 已提交
4400

4401
	retval = security_task_setscheduler(p);
4402
	if (retval)
4403
		goto out_free_new_mask;
4404

4405 4406 4407 4408

	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);

4409 4410 4411 4412 4413 4414 4415
	/*
	 * Since bandwidth control happens on root_domain basis,
	 * if admission test is enabled, we only admit -deadline
	 * tasks allowed to run on all the CPUs in the task's
	 * root_domain.
	 */
#ifdef CONFIG_SMP
4416 4417 4418
	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
		rcu_read_lock();
		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4419
			retval = -EBUSY;
4420
			rcu_read_unlock();
4421
			goto out_free_new_mask;
4422
		}
4423
		rcu_read_unlock();
4424 4425
	}
#endif
P
Peter Zijlstra 已提交
4426
again:
4427
	retval = __set_cpus_allowed_ptr(p, new_mask, true);
L
Linus Torvalds 已提交
4428

P
Paul Menage 已提交
4429
	if (!retval) {
4430 4431
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4432 4433 4434 4435 4436
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4437
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4438 4439 4440
			goto again;
		}
	}
4441
out_free_new_mask:
4442 4443 4444 4445
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4446 4447 4448 4449 4450
	put_task_struct(p);
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4451
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4452
{
4453 4454 4455 4456 4457
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4458 4459 4460 4461 4462 4463 4464 4465
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
4466 4467
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4468
 */
4469 4470
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4471
{
4472
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4473 4474
	int retval;

4475 4476
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4477

4478 4479 4480 4481 4482
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4483 4484
}

4485
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4486
{
4487
	struct task_struct *p;
4488
	unsigned long flags;
L
Linus Torvalds 已提交
4489 4490
	int retval;

4491
	rcu_read_lock();
L
Linus Torvalds 已提交
4492 4493 4494 4495 4496 4497

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4498 4499 4500 4501
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4502
	raw_spin_lock_irqsave(&p->pi_lock, flags);
4503
	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4504
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4505 4506

out_unlock:
4507
	rcu_read_unlock();
L
Linus Torvalds 已提交
4508

4509
	return retval;
L
Linus Torvalds 已提交
4510 4511 4512 4513 4514 4515 4516
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4517 4518
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4519
 */
4520 4521
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4522 4523
{
	int ret;
4524
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4525

A
Anton Blanchard 已提交
4526
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4527 4528
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4529 4530
		return -EINVAL;

4531 4532
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4533

4534 4535
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4536
		size_t retlen = min_t(size_t, len, cpumask_size());
4537 4538

		if (copy_to_user(user_mask_ptr, mask, retlen))
4539 4540
			ret = -EFAULT;
		else
4541
			ret = retlen;
4542 4543
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4544

4545
	return ret;
L
Linus Torvalds 已提交
4546 4547 4548 4549 4550
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4551 4552
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
4553 4554
 *
 * Return: 0.
L
Linus Torvalds 已提交
4555
 */
4556
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4557
{
4558
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4559

4560
	schedstat_inc(rq, yld_count);
4561
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4562 4563 4564 4565 4566 4567

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4568
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4569
	do_raw_spin_unlock(&rq->lock);
4570
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
4571 4572 4573 4574 4575 4576

	schedule();

	return 0;
}

4577
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4578
{
4579
	if (should_resched(0)) {
4580
		preempt_schedule_common();
L
Linus Torvalds 已提交
4581 4582 4583 4584
		return 1;
	}
	return 0;
}
4585
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4586 4587

/*
4588
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4589 4590
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4591
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4592 4593 4594
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4595
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4596
{
4597
	int resched = should_resched(PREEMPT_LOCK_OFFSET);
J
Jan Kara 已提交
4598 4599
	int ret = 0;

4600 4601
	lockdep_assert_held(lock);

4602
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4603
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4604
		if (resched)
4605
			preempt_schedule_common();
N
Nick Piggin 已提交
4606 4607
		else
			cpu_relax();
J
Jan Kara 已提交
4608
		ret = 1;
L
Linus Torvalds 已提交
4609 4610
		spin_lock(lock);
	}
J
Jan Kara 已提交
4611
	return ret;
L
Linus Torvalds 已提交
4612
}
4613
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4614

4615
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4616 4617 4618
{
	BUG_ON(!in_softirq());

4619
	if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4620
		local_bh_enable();
4621
		preempt_schedule_common();
L
Linus Torvalds 已提交
4622 4623 4624 4625 4626
		local_bh_disable();
		return 1;
	}
	return 0;
}
4627
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4628 4629 4630 4631

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
 * 	yield();
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
4650 4651 4652 4653 4654 4655 4656 4657
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

4658 4659 4660 4661
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
4662 4663
 * @p: target task
 * @preempt: whether task preemption is allowed or not
4664 4665 4666 4667
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
4668
 * Return:
4669 4670 4671
 *	true (>0) if we indeed boosted the target task.
 *	false (0) if we failed to boost the target.
 *	-ESRCH if there's no task to yield to.
4672
 */
4673
int __sched yield_to(struct task_struct *p, bool preempt)
4674 4675 4676 4677
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
4678
	int yielded = 0;
4679 4680 4681 4682 4683 4684

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
4685 4686 4687 4688 4689 4690 4691 4692 4693
	/*
	 * If we're the only runnable task on the rq and target rq also
	 * has only one task, there's absolutely no point in yielding.
	 */
	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
		yielded = -ESRCH;
		goto out_irq;
	}

4694
	double_rq_lock(rq, p_rq);
4695
	if (task_rq(p) != p_rq) {
4696 4697 4698 4699 4700
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
4701
		goto out_unlock;
4702 4703

	if (curr->sched_class != p->sched_class)
4704
		goto out_unlock;
4705 4706

	if (task_running(p_rq, p) || p->state)
4707
		goto out_unlock;
4708 4709

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4710
	if (yielded) {
4711
		schedstat_inc(rq, yld_count);
4712 4713 4714 4715 4716
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
4717
			resched_curr(p_rq);
4718
	}
4719

4720
out_unlock:
4721
	double_rq_unlock(rq, p_rq);
4722
out_irq:
4723 4724
	local_irq_restore(flags);

4725
	if (yielded > 0)
4726 4727 4728 4729 4730 4731
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
4732
/*
I
Ingo Molnar 已提交
4733
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4734 4735 4736 4737
 * that process accounting knows that this is a task in IO wait state.
 */
long __sched io_schedule_timeout(long timeout)
{
4738 4739
	int old_iowait = current->in_iowait;
	struct rq *rq;
L
Linus Torvalds 已提交
4740 4741
	long ret;

4742
	current->in_iowait = 1;
4743
	blk_schedule_flush_plug(current);
4744

4745
	delayacct_blkio_start();
4746
	rq = raw_rq();
L
Linus Torvalds 已提交
4747 4748
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
4749
	current->in_iowait = old_iowait;
L
Linus Torvalds 已提交
4750
	atomic_dec(&rq->nr_iowait);
4751
	delayacct_blkio_end();
4752

L
Linus Torvalds 已提交
4753 4754
	return ret;
}
4755
EXPORT_SYMBOL(io_schedule_timeout);
L
Linus Torvalds 已提交
4756 4757 4758 4759 4760

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
4761 4762 4763
 * Return: On success, this syscall returns the maximum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
4764
 */
4765
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
4766 4767 4768 4769 4770 4771 4772 4773
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
4774
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
4775
	case SCHED_NORMAL:
4776
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4777
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4778 4779 4780 4781 4782 4783 4784 4785 4786 4787
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
4788 4789 4790
 * Return: On success, this syscall returns the minimum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
4791
 */
4792
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
4793 4794 4795 4796 4797 4798 4799 4800
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
4801
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
4802
	case SCHED_NORMAL:
4803
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4804
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
4817 4818 4819
 *
 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
 * an error code.
L
Linus Torvalds 已提交
4820
 */
4821
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4822
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
4823
{
4824
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4825
	unsigned int time_slice;
4826 4827
	unsigned long flags;
	struct rq *rq;
4828
	int retval;
L
Linus Torvalds 已提交
4829 4830 4831
	struct timespec t;

	if (pid < 0)
4832
		return -EINVAL;
L
Linus Torvalds 已提交
4833 4834

	retval = -ESRCH;
4835
	rcu_read_lock();
L
Linus Torvalds 已提交
4836 4837 4838 4839 4840 4841 4842 4843
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4844
	rq = task_rq_lock(p, &flags);
4845 4846 4847
	time_slice = 0;
	if (p->sched_class->get_rr_interval)
		time_slice = p->sched_class->get_rr_interval(rq, p);
4848
	task_rq_unlock(rq, p, &flags);
D
Dmitry Adamushko 已提交
4849

4850
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
4851
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4852 4853
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4854

L
Linus Torvalds 已提交
4855
out_unlock:
4856
	rcu_read_unlock();
L
Linus Torvalds 已提交
4857 4858 4859
	return retval;
}

4860
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4861

4862
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4863 4864
{
	unsigned long free = 0;
4865
	int ppid;
4866
	unsigned long state = p->state;
L
Linus Torvalds 已提交
4867

4868 4869
	if (state)
		state = __ffs(state) + 1;
4870
	printk(KERN_INFO "%-15.15s %c", p->comm,
4871
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4872
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4873
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4874
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4875
	else
P
Peter Zijlstra 已提交
4876
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4877 4878
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4879
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4880
	else
P
Peter Zijlstra 已提交
4881
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4882 4883
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
4884
	free = stack_not_used(p);
L
Linus Torvalds 已提交
4885
#endif
4886
	ppid = 0;
4887
	rcu_read_lock();
4888 4889
	if (pid_alive(p))
		ppid = task_pid_nr(rcu_dereference(p->real_parent));
4890
	rcu_read_unlock();
P
Peter Zijlstra 已提交
4891
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4892
		task_pid_nr(p), ppid,
4893
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
4894

4895
	print_worker_info(KERN_INFO, p);
4896
	show_stack(p, NULL);
L
Linus Torvalds 已提交
4897 4898
}

I
Ingo Molnar 已提交
4899
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4900
{
4901
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4902

4903
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
4904 4905
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4906
#else
P
Peter Zijlstra 已提交
4907 4908
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4909
#endif
4910
	rcu_read_lock();
4911
	for_each_process_thread(g, p) {
L
Linus Torvalds 已提交
4912 4913
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
4914
		 * console might take a lot of time:
L
Linus Torvalds 已提交
4915 4916
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4917
		if (!state_filter || (p->state & state_filter))
4918
			sched_show_task(p);
4919
	}
L
Linus Torvalds 已提交
4920

4921 4922
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4923 4924 4925
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
4926
	rcu_read_unlock();
I
Ingo Molnar 已提交
4927 4928 4929
	/*
	 * Only show locks if all tasks are dumped:
	 */
4930
	if (!state_filter)
I
Ingo Molnar 已提交
4931
		debug_show_all_locks();
L
Linus Torvalds 已提交
4932 4933
}

4934
void init_idle_bootup_task(struct task_struct *idle)
I
Ingo Molnar 已提交
4935
{
I
Ingo Molnar 已提交
4936
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4937 4938
}

4939 4940 4941 4942 4943 4944 4945 4946
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4947
void init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4948
{
4949
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4950 4951
	unsigned long flags;

4952 4953
	raw_spin_lock_irqsave(&idle->pi_lock, flags);
	raw_spin_lock(&rq->lock);
4954

4955
	__sched_fork(0, idle);
4956
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
4957 4958
	idle->se.exec_start = sched_clock();

4959 4960 4961 4962 4963 4964 4965 4966 4967
#ifdef CONFIG_SMP
	/*
	 * Its possible that init_idle() gets called multiple times on a task,
	 * in that case do_set_cpus_allowed() will not do the right thing.
	 *
	 * And since this is boot we can forgo the serialization.
	 */
	set_cpus_allowed_common(idle, cpumask_of(cpu));
#endif
4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
4979
	__set_task_cpu(idle, cpu);
4980
	rcu_read_unlock();
L
Linus Torvalds 已提交
4981 4982

	rq->curr = rq->idle = idle;
4983
	idle->on_rq = TASK_ON_RQ_QUEUED;
4984
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
4985
	idle->on_cpu = 1;
4986
#endif
4987 4988
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
L
Linus Torvalds 已提交
4989 4990

	/* Set the preempt count _outside_ the spinlocks! */
4991
	init_idle_preempt_count(idle, cpu);
4992

I
Ingo Molnar 已提交
4993 4994 4995 4996
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
4997
	ftrace_graph_init_idle_task(idle, cpu);
4998
	vtime_init_idle(idle, cpu);
4999
#ifdef CONFIG_SMP
5000 5001
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
5002 5003
}

5004 5005 5006 5007 5008 5009 5010
int cpuset_cpumask_can_shrink(const struct cpumask *cur,
			      const struct cpumask *trial)
{
	int ret = 1, trial_cpus;
	struct dl_bw *cur_dl_b;
	unsigned long flags;

5011 5012 5013
	if (!cpumask_weight(cur))
		return ret;

5014
	rcu_read_lock_sched();
5015 5016 5017 5018 5019 5020 5021 5022
	cur_dl_b = dl_bw_of(cpumask_any(cur));
	trial_cpus = cpumask_weight(trial);

	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
	if (cur_dl_b->bw != -1 &&
	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
		ret = 0;
	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5023
	rcu_read_unlock_sched();
5024 5025 5026 5027

	return ret;
}

5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051
int task_can_attach(struct task_struct *p,
		    const struct cpumask *cs_cpus_allowed)
{
	int ret = 0;

	/*
	 * Kthreads which disallow setaffinity shouldn't be moved
	 * to a new cpuset; we don't want to change their cpu
	 * affinity and isolating such threads by their set of
	 * allowed nodes is unnecessary.  Thus, cpusets are not
	 * applicable for such threads.  This prevents checking for
	 * success of set_cpus_allowed_ptr() on all attached tasks
	 * before cpus_allowed may be changed.
	 */
	if (p->flags & PF_NO_SETAFFINITY) {
		ret = -EINVAL;
		goto out;
	}

#ifdef CONFIG_SMP
	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
					      cs_cpus_allowed)) {
		unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
							cs_cpus_allowed);
5052
		struct dl_bw *dl_b;
5053 5054 5055 5056
		bool overflow;
		int cpus;
		unsigned long flags;

5057 5058
		rcu_read_lock_sched();
		dl_b = dl_bw_of(dest_cpu);
5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073
		raw_spin_lock_irqsave(&dl_b->lock, flags);
		cpus = dl_bw_cpus(dest_cpu);
		overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
		if (overflow)
			ret = -EBUSY;
		else {
			/*
			 * We reserve space for this task in the destination
			 * root_domain, as we can't fail after this point.
			 * We will free resources in the source root_domain
			 * later on (see set_cpus_allowed_dl()).
			 */
			__dl_add(dl_b, p->dl.dl_bw);
		}
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5074
		rcu_read_unlock_sched();
5075 5076 5077 5078 5079 5080 5081

	}
#endif
out:
	return ret;
}

L
Linus Torvalds 已提交
5082 5083
#ifdef CONFIG_SMP

5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098
#ifdef CONFIG_NUMA_BALANCING
/* Migrate current task p to target_cpu */
int migrate_task_to(struct task_struct *p, int target_cpu)
{
	struct migration_arg arg = { p, target_cpu };
	int curr_cpu = task_cpu(p);

	if (curr_cpu == target_cpu)
		return 0;

	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
		return -EINVAL;

	/* TODO: This is not properly updating schedstats */

5099
	trace_sched_move_numa(p, curr_cpu, target_cpu);
5100 5101
	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
}
5102 5103 5104 5105 5106 5107 5108 5109 5110

/*
 * Requeue a task on a given node and accurately track the number of NUMA
 * tasks on the runqueues
 */
void sched_setnuma(struct task_struct *p, int nid)
{
	struct rq *rq;
	unsigned long flags;
5111
	bool queued, running;
5112 5113

	rq = task_rq_lock(p, &flags);
5114
	queued = task_on_rq_queued(p);
5115 5116
	running = task_current(rq, p);

5117
	if (queued)
5118
		dequeue_task(rq, p, DEQUEUE_SAVE);
5119
	if (running)
5120
		put_prev_task(rq, p);
5121 5122 5123 5124 5125

	p->numa_preferred_nid = nid;

	if (running)
		p->sched_class->set_curr_task(rq);
5126
	if (queued)
5127
		enqueue_task(rq, p, ENQUEUE_RESTORE);
5128 5129
	task_rq_unlock(rq, p, &flags);
}
P
Peter Zijlstra 已提交
5130
#endif /* CONFIG_NUMA_BALANCING */
5131

L
Linus Torvalds 已提交
5132
#ifdef CONFIG_HOTPLUG_CPU
5133
/*
5134 5135
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
5136
 */
5137
void idle_task_exit(void)
L
Linus Torvalds 已提交
5138
{
5139
	struct mm_struct *mm = current->active_mm;
5140

5141
	BUG_ON(cpu_online(smp_processor_id()));
5142

5143
	if (mm != &init_mm) {
5144
		switch_mm(mm, &init_mm, current);
5145 5146
		finish_arch_post_lock_switch();
	}
5147
	mmdrop(mm);
L
Linus Torvalds 已提交
5148 5149 5150
}

/*
5151 5152 5153 5154 5155
 * Since this CPU is going 'away' for a while, fold any nr_active delta
 * we might have. Assumes we're called after migrate_tasks() so that the
 * nr_active count is stable.
 *
 * Also see the comment "Global load-average calculations".
L
Linus Torvalds 已提交
5156
 */
5157
static void calc_load_migrate(struct rq *rq)
L
Linus Torvalds 已提交
5158
{
5159 5160 5161
	long delta = calc_load_fold_active(rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
5162 5163
}

5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179
static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
{
}

static const struct sched_class fake_sched_class = {
	.put_prev_task = put_prev_task_fake,
};

static struct task_struct fake_task = {
	/*
	 * Avoid pull_{rt,dl}_task()
	 */
	.prio = MAX_PRIO + 1,
	.sched_class = &fake_sched_class,
};

5180
/*
5181 5182 5183 5184 5185 5186
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
5187
 */
5188
static void migrate_tasks(struct rq *dead_rq)
L
Linus Torvalds 已提交
5189
{
5190
	struct rq *rq = dead_rq;
5191 5192
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
5193 5194

	/*
5195 5196 5197 5198 5199 5200 5201
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
5202
	 */
5203
	rq->stop = NULL;
5204

5205 5206 5207 5208 5209 5210 5211
	/*
	 * put_prev_task() and pick_next_task() sched
	 * class method both need to have an up-to-date
	 * value of rq->clock[_task]
	 */
	update_rq_clock(rq);

5212
	for (;;) {
5213 5214 5215 5216 5217
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
5218
			break;
5219

5220
		/*
W
Wanpeng Li 已提交
5221
		 * pick_next_task assumes pinned rq->lock.
5222 5223
		 */
		lockdep_pin_lock(&rq->lock);
5224
		next = pick_next_task(rq, &fake_task);
5225
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
5226
		next->sched_class->put_prev_task(rq, next);
5227

W
Wanpeng Li 已提交
5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251
		/*
		 * Rules for changing task_struct::cpus_allowed are holding
		 * both pi_lock and rq->lock, such that holding either
		 * stabilizes the mask.
		 *
		 * Drop rq->lock is not quite as disastrous as it usually is
		 * because !cpu_active at this point, which means load-balance
		 * will not interfere. Also, stop-machine.
		 */
		lockdep_unpin_lock(&rq->lock);
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&next->pi_lock);
		raw_spin_lock(&rq->lock);

		/*
		 * Since we're inside stop-machine, _nothing_ should have
		 * changed the task, WARN if weird stuff happened, because in
		 * that case the above rq->lock drop is a fail too.
		 */
		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
			raw_spin_unlock(&next->pi_lock);
			continue;
		}

5252
		/* Find suitable destination for @next, with force if needed. */
5253
		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5254

5255 5256 5257 5258 5259 5260
		rq = __migrate_task(rq, next, dest_cpu);
		if (rq != dead_rq) {
			raw_spin_unlock(&rq->lock);
			rq = dead_rq;
			raw_spin_lock(&rq->lock);
		}
W
Wanpeng Li 已提交
5261
		raw_spin_unlock(&next->pi_lock);
L
Linus Torvalds 已提交
5262
	}
5263

5264
	rq->stop = stop;
5265
}
L
Linus Torvalds 已提交
5266 5267
#endif /* CONFIG_HOTPLUG_CPU */

5268 5269 5270
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5271 5272
	{
		.procname	= "sched_domain",
5273
		.mode		= 0555,
5274
	},
5275
	{}
5276 5277 5278
};

static struct ctl_table sd_ctl_root[] = {
5279 5280
	{
		.procname	= "kernel",
5281
		.mode		= 0555,
5282 5283
		.child		= sd_ctl_dir,
	},
5284
	{}
5285 5286 5287 5288 5289
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5290
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5291 5292 5293 5294

	return entry;
}

5295 5296
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5297
	struct ctl_table *entry;
5298

5299 5300 5301
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5302
	 * will always be set. In the lowest directory the names are
5303 5304 5305
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5306 5307
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5308 5309 5310
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5311 5312 5313 5314 5315

	kfree(*tablep);
	*tablep = NULL;
}

5316
static int min_load_idx = 0;
5317
static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5318

5319
static void
5320
set_table_entry(struct ctl_table *entry,
5321
		const char *procname, void *data, int maxlen,
5322 5323
		umode_t mode, proc_handler *proc_handler,
		bool load_idx)
5324 5325 5326 5327 5328 5329
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
5330 5331 5332 5333 5334

	if (load_idx) {
		entry->extra1 = &min_load_idx;
		entry->extra2 = &max_load_idx;
	}
5335 5336 5337 5338 5339
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5340
	struct ctl_table *table = sd_alloc_ctl_entry(14);
5341

5342 5343 5344
	if (table == NULL)
		return NULL;

5345
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5346
		sizeof(long), 0644, proc_doulongvec_minmax, false);
5347
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5348
		sizeof(long), 0644, proc_doulongvec_minmax, false);
5349
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5350
		sizeof(int), 0644, proc_dointvec_minmax, true);
5351
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5352
		sizeof(int), 0644, proc_dointvec_minmax, true);
5353
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5354
		sizeof(int), 0644, proc_dointvec_minmax, true);
5355
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5356
		sizeof(int), 0644, proc_dointvec_minmax, true);
5357
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5358
		sizeof(int), 0644, proc_dointvec_minmax, true);
5359
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5360
		sizeof(int), 0644, proc_dointvec_minmax, false);
5361
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5362
		sizeof(int), 0644, proc_dointvec_minmax, false);
5363
	set_table_entry(&table[9], "cache_nice_tries",
5364
		&sd->cache_nice_tries,
5365
		sizeof(int), 0644, proc_dointvec_minmax, false);
5366
	set_table_entry(&table[10], "flags", &sd->flags,
5367
		sizeof(int), 0644, proc_dointvec_minmax, false);
5368 5369 5370 5371
	set_table_entry(&table[11], "max_newidle_lb_cost",
		&sd->max_newidle_lb_cost,
		sizeof(long), 0644, proc_doulongvec_minmax, false);
	set_table_entry(&table[12], "name", sd->name,
5372
		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5373
	/* &table[13] is terminator */
5374 5375 5376 5377

	return table;
}

5378
static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5379 5380 5381 5382 5383 5384 5385 5386 5387
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5388 5389
	if (table == NULL)
		return NULL;
5390 5391 5392 5393 5394

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5395
		entry->mode = 0555;
5396 5397 5398 5399 5400 5401 5402 5403
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5404
static void register_sched_domain_sysctl(void)
5405
{
5406
	int i, cpu_num = num_possible_cpus();
5407 5408 5409
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5410 5411 5412
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5413 5414 5415
	if (entry == NULL)
		return;

5416
	for_each_possible_cpu(i) {
5417 5418
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5419
		entry->mode = 0555;
5420
		entry->child = sd_alloc_ctl_cpu_table(i);
5421
		entry++;
5422
	}
5423 5424

	WARN_ON(sd_sysctl_header);
5425 5426
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5427

5428
/* may be called multiple times per register */
5429 5430
static void unregister_sched_domain_sysctl(void)
{
5431
	unregister_sysctl_table(sd_sysctl_header);
5432
	sd_sysctl_header = NULL;
5433 5434
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5435
}
5436
#else
5437 5438 5439 5440
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5441 5442
{
}
P
Peter Zijlstra 已提交
5443
#endif /* CONFIG_SCHED_DEBUG && CONFIG_SYSCTL */
5444

5445 5446 5447 5448 5449
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5450
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5470
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5471 5472 5473 5474
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5475 5476 5477 5478
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5479
static int
5480
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5481
{
5482
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5483
	unsigned long flags;
5484
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5485

5486
	switch (action & ~CPU_TASKS_FROZEN) {
5487

L
Linus Torvalds 已提交
5488
	case CPU_UP_PREPARE:
5489
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5490
		break;
5491

L
Linus Torvalds 已提交
5492
	case CPU_ONLINE:
5493
		/* Update our root-domain */
5494
		raw_spin_lock_irqsave(&rq->lock, flags);
5495
		if (rq->rd) {
5496
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5497 5498

			set_rq_online(rq);
5499
		}
5500
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5501
		break;
5502

L
Linus Torvalds 已提交
5503
#ifdef CONFIG_HOTPLUG_CPU
5504
	case CPU_DYING:
5505
		sched_ttwu_pending();
G
Gregory Haskins 已提交
5506
		/* Update our root-domain */
5507
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5508
		if (rq->rd) {
5509
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5510
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5511
		}
5512
		migrate_tasks(rq);
5513
		BUG_ON(rq->nr_running != 1); /* the migration thread */
5514
		raw_spin_unlock_irqrestore(&rq->lock, flags);
5515
		break;
5516

5517
	case CPU_DEAD:
5518
		calc_load_migrate(rq);
G
Gregory Haskins 已提交
5519
		break;
L
Linus Torvalds 已提交
5520 5521
#endif
	}
5522 5523 5524

	update_max_interval();

L
Linus Torvalds 已提交
5525 5526 5527
	return NOTIFY_OK;
}

5528 5529 5530
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5531
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5532
 */
5533
static struct notifier_block migration_notifier = {
L
Linus Torvalds 已提交
5534
	.notifier_call = migration_call,
5535
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
5536 5537
};

5538
static void set_cpu_rq_start_time(void)
5539 5540 5541 5542 5543 5544
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
	rq->age_stamp = sched_clock_cpu(cpu);
}

5545
static int sched_cpu_active(struct notifier_block *nfb,
5546 5547 5548
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
5549 5550 5551
	case CPU_STARTING:
		set_cpu_rq_start_time();
		return NOTIFY_OK;
5552 5553 5554 5555 5556 5557 5558 5559
	case CPU_ONLINE:
		/*
		 * At this point a starting CPU has marked itself as online via
		 * set_cpu_online(). But it might not yet have marked itself
		 * as active, which is essential from here on.
		 *
		 * Thus, fall-through and help the starting CPU along.
		 */
5560 5561 5562 5563 5564 5565 5566 5567
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

5568
static int sched_cpu_inactive(struct notifier_block *nfb,
5569 5570 5571 5572
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
5573
		set_cpu_active((long)hcpu, false);
5574
		return NOTIFY_OK;
5575 5576
	default:
		return NOTIFY_DONE;
5577 5578 5579
	}
}

5580
static int __init migration_init(void)
L
Linus Torvalds 已提交
5581 5582
{
	void *cpu = (void *)(long)smp_processor_id();
5583
	int err;
5584

5585
	/* Initialize migration for the boot CPU */
5586 5587
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5588 5589
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5590

5591 5592 5593 5594
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

5595
	return 0;
L
Linus Torvalds 已提交
5596
}
5597
early_initcall(migration_init);
5598

5599 5600
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

5601
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5602

5603
static __read_mostly int sched_debug_enabled;
5604

5605
static int __init sched_debug_setup(char *str)
5606
{
5607
	sched_debug_enabled = 1;
5608 5609 5610

	return 0;
}
5611 5612 5613 5614 5615 5616
early_param("sched_debug", sched_debug_setup);

static inline bool sched_debug(void)
{
	return sched_debug_enabled;
}
5617

5618
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5619
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5620
{
I
Ingo Molnar 已提交
5621
	struct sched_group *group = sd->groups;
L
Linus Torvalds 已提交
5622

5623
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5624 5625 5626 5627

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5628
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5629
		if (sd->parent)
P
Peter Zijlstra 已提交
5630 5631
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5632
		return -1;
N
Nick Piggin 已提交
5633 5634
	}

5635 5636
	printk(KERN_CONT "span %*pbl level %s\n",
	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
I
Ingo Molnar 已提交
5637

5638
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5639 5640
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5641
	}
5642
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5643 5644
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5645
	}
L
Linus Torvalds 已提交
5646

I
Ingo Molnar 已提交
5647
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5648
	do {
I
Ingo Molnar 已提交
5649
		if (!group) {
P
Peter Zijlstra 已提交
5650 5651
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5652 5653 5654
			break;
		}

5655
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5656 5657
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
5658 5659
			break;
		}
L
Linus Torvalds 已提交
5660

5661 5662
		if (!(sd->flags & SD_OVERLAP) &&
		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5663 5664
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
5665 5666
			break;
		}
L
Linus Torvalds 已提交
5667

5668
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
5669

5670 5671
		printk(KERN_CONT " %*pbl",
		       cpumask_pr_args(sched_group_cpus(group)));
5672
		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5673 5674
			printk(KERN_CONT " (cpu_capacity = %d)",
				group->sgc->capacity);
5675
		}
L
Linus Torvalds 已提交
5676

I
Ingo Molnar 已提交
5677 5678
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
5679
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5680

5681
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
5682
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5683

5684 5685
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
5686 5687
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
5688 5689
	return 0;
}
L
Linus Torvalds 已提交
5690

I
Ingo Molnar 已提交
5691 5692 5693
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5694

5695
	if (!sched_debug_enabled)
5696 5697
		return;

I
Ingo Molnar 已提交
5698 5699 5700 5701
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5702

I
Ingo Molnar 已提交
5703 5704 5705
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
5706
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
I
Ingo Molnar 已提交
5707
			break;
L
Linus Torvalds 已提交
5708 5709
		level++;
		sd = sd->parent;
5710
		if (!sd)
I
Ingo Molnar 已提交
5711 5712
			break;
	}
L
Linus Torvalds 已提交
5713
}
5714
#else /* !CONFIG_SCHED_DEBUG */
5715
# define sched_domain_debug(sd, cpu) do { } while (0)
5716 5717 5718 5719
static inline bool sched_debug(void)
{
	return false;
}
5720
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
5721

5722
static int sd_degenerate(struct sched_domain *sd)
5723
{
5724
	if (cpumask_weight(sched_domain_span(sd)) == 1)
5725 5726 5727 5728 5729 5730
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5731
			 SD_BALANCE_EXEC |
5732
			 SD_SHARE_CPUCAPACITY |
5733 5734
			 SD_SHARE_PKG_RESOURCES |
			 SD_SHARE_POWERDOMAIN)) {
5735 5736 5737 5738 5739
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
5740
	if (sd->flags & (SD_WAKE_AFFINE))
5741 5742 5743 5744 5745
		return 0;

	return 1;
}

5746 5747
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5748 5749 5750 5751 5752 5753
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

5754
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5755 5756 5757 5758 5759 5760 5761
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5762
				SD_BALANCE_EXEC |
5763
				SD_SHARE_CPUCAPACITY |
5764
				SD_SHARE_PKG_RESOURCES |
5765 5766
				SD_PREFER_SIBLING |
				SD_SHARE_POWERDOMAIN);
5767 5768
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
5769 5770 5771 5772 5773 5774 5775
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

5776
static void free_rootdomain(struct rcu_head *rcu)
5777
{
5778
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5779

5780
	cpupri_cleanup(&rd->cpupri);
5781
	cpudl_cleanup(&rd->cpudl);
5782
	free_cpumask_var(rd->dlo_mask);
5783 5784 5785 5786 5787 5788
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
5789 5790
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
5791
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
5792 5793
	unsigned long flags;

5794
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5795 5796

	if (rq->rd) {
I
Ingo Molnar 已提交
5797
		old_rd = rq->rd;
G
Gregory Haskins 已提交
5798

5799
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5800
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5801

5802
		cpumask_clear_cpu(rq->cpu, old_rd->span);
5803

I
Ingo Molnar 已提交
5804
		/*
5805
		 * If we dont want to free the old_rd yet then
I
Ingo Molnar 已提交
5806 5807 5808 5809 5810
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
5811 5812 5813 5814 5815
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

5816
	cpumask_set_cpu(rq->cpu, rd->span);
5817
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5818
		set_rq_online(rq);
G
Gregory Haskins 已提交
5819

5820
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
5821 5822

	if (old_rd)
5823
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
5824 5825
}

5826
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
5827 5828 5829
{
	memset(rd, 0, sizeof(*rd));

5830
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5831
		goto out;
5832
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5833
		goto free_span;
5834
	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5835
		goto free_online;
5836 5837
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
		goto free_dlo_mask;
5838

5839
	init_dl_bw(&rd->dl_bw);
5840 5841
	if (cpudl_init(&rd->cpudl) != 0)
		goto free_dlo_mask;
5842

5843
	if (cpupri_init(&rd->cpupri) != 0)
5844
		goto free_rto_mask;
5845
	return 0;
5846

5847 5848
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
5849 5850
free_dlo_mask:
	free_cpumask_var(rd->dlo_mask);
5851 5852 5853 5854
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
5855
out:
5856
	return -ENOMEM;
G
Gregory Haskins 已提交
5857 5858
}

5859 5860 5861 5862 5863 5864
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
struct root_domain def_root_domain;

G
Gregory Haskins 已提交
5865 5866
static void init_defrootdomain(void)
{
5867
	init_rootdomain(&def_root_domain);
5868

G
Gregory Haskins 已提交
5869 5870 5871
	atomic_set(&def_root_domain.refcount, 1);
}

5872
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
5873 5874 5875 5876 5877 5878 5879
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

5880
	if (init_rootdomain(rd) != 0) {
5881 5882 5883
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
5884 5885 5886 5887

	return rd;
}

5888
static void free_sched_groups(struct sched_group *sg, int free_sgc)
5889 5890 5891 5892 5893 5894 5895 5896 5897 5898
{
	struct sched_group *tmp, *first;

	if (!sg)
		return;

	first = sg;
	do {
		tmp = sg->next;

5899 5900
		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
			kfree(sg->sgc);
5901 5902 5903 5904 5905 5906

		kfree(sg);
		sg = tmp;
	} while (sg != first);
}

5907 5908 5909
static void free_sched_domain(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5910 5911 5912 5913 5914 5915 5916 5917

	/*
	 * If its an overlapping domain it has private groups, iterate and
	 * nuke them all.
	 */
	if (sd->flags & SD_OVERLAP) {
		free_sched_groups(sd->groups, 1);
	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5918
		kfree(sd->groups->sgc);
5919
		kfree(sd->groups);
5920
	}
5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934
	kfree(sd);
}

static void destroy_sched_domain(struct sched_domain *sd, int cpu)
{
	call_rcu(&sd->rcu, free_sched_domain);
}

static void destroy_sched_domains(struct sched_domain *sd, int cpu)
{
	for (; sd; sd = sd->parent)
		destroy_sched_domain(sd, cpu);
}

5935 5936 5937 5938 5939 5940 5941
/*
 * Keep a special pointer to the highest sched_domain that has
 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 * allows us to avoid some pointer chasing select_idle_sibling().
 *
 * Also keep a unique ID per domain (we use the first cpu number in
 * the cpumask of the domain), this allows us to quickly tell if
5942
 * two cpus are in the same cache domain, see cpus_share_cache().
5943 5944
 */
DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5945
DEFINE_PER_CPU(int, sd_llc_size);
5946
DEFINE_PER_CPU(int, sd_llc_id);
5947
DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5948 5949
DEFINE_PER_CPU(struct sched_domain *, sd_busy);
DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5950 5951 5952 5953

static void update_top_cache_domain(int cpu)
{
	struct sched_domain *sd;
5954
	struct sched_domain *busy_sd = NULL;
5955
	int id = cpu;
5956
	int size = 1;
5957 5958

	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5959
	if (sd) {
5960
		id = cpumask_first(sched_domain_span(sd));
5961
		size = cpumask_weight(sched_domain_span(sd));
5962
		busy_sd = sd->parent; /* sd_busy */
5963
	}
5964
	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5965 5966

	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5967
	per_cpu(sd_llc_size, cpu) = size;
5968
	per_cpu(sd_llc_id, cpu) = id;
5969 5970 5971

	sd = lowest_flag_domain(cpu, SD_NUMA);
	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5972 5973 5974

	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5975 5976
}

L
Linus Torvalds 已提交
5977
/*
I
Ingo Molnar 已提交
5978
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
5979 5980
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
5981 5982
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
5983
{
5984
	struct rq *rq = cpu_rq(cpu);
5985 5986 5987
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
5988
	for (tmp = sd; tmp; ) {
5989 5990 5991
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5992

5993
		if (sd_parent_degenerate(tmp, parent)) {
5994
			tmp->parent = parent->parent;
5995 5996
			if (parent->parent)
				parent->parent->child = tmp;
5997 5998 5999 6000 6001 6002 6003
			/*
			 * Transfer SD_PREFER_SIBLING down in case of a
			 * degenerate parent; the spans match for this
			 * so the property transfers.
			 */
			if (parent->flags & SD_PREFER_SIBLING)
				tmp->flags |= SD_PREFER_SIBLING;
6004
			destroy_sched_domain(parent, cpu);
6005 6006
		} else
			tmp = tmp->parent;
6007 6008
	}

6009
	if (sd && sd_degenerate(sd)) {
6010
		tmp = sd;
6011
		sd = sd->parent;
6012
		destroy_sched_domain(tmp, cpu);
6013 6014 6015
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6016

6017
	sched_domain_debug(sd, cpu);
L
Linus Torvalds 已提交
6018

G
Gregory Haskins 已提交
6019
	rq_attach_root(rq, rd);
6020
	tmp = rq->sd;
N
Nick Piggin 已提交
6021
	rcu_assign_pointer(rq->sd, sd);
6022
	destroy_sched_domains(tmp, cpu);
6023 6024

	update_top_cache_domain(cpu);
L
Linus Torvalds 已提交
6025 6026 6027 6028 6029
}

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
6030
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
6031
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
6032 6033 6034
	return 1;
}

I
Ingo Molnar 已提交
6035
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6036

6037
struct s_data {
6038
	struct sched_domain ** __percpu sd;
6039 6040 6041
	struct root_domain	*rd;
};

6042 6043
enum s_alloc {
	sa_rootdomain,
6044
	sa_sd,
6045
	sa_sd_storage,
6046 6047 6048
	sa_none,
};

P
Peter Zijlstra 已提交
6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086
/*
 * Build an iteration mask that can exclude certain CPUs from the upwards
 * domain traversal.
 *
 * Asymmetric node setups can result in situations where the domain tree is of
 * unequal depth, make sure to skip domains that already cover the entire
 * range.
 *
 * In that case build_sched_domains() will have terminated the iteration early
 * and our sibling sd spans will be empty. Domains should always include the
 * cpu they're built on, so check that.
 *
 */
static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
{
	const struct cpumask *span = sched_domain_span(sd);
	struct sd_data *sdd = sd->private;
	struct sched_domain *sibling;
	int i;

	for_each_cpu(i, span) {
		sibling = *per_cpu_ptr(sdd->sd, i);
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
			continue;

		cpumask_set_cpu(i, sched_group_mask(sg));
	}
}

/*
 * Return the canonical balance cpu for this group, this is the first cpu
 * of this group that's also in the iteration mask.
 */
int group_balance_cpu(struct sched_group *sg)
{
	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
}

6087 6088 6089 6090 6091 6092 6093
static int
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered = sched_domains_tmpmask;
	struct sd_data *sdd = sd->private;
6094
	struct sched_domain *sibling;
6095 6096 6097 6098 6099 6100 6101 6102 6103 6104
	int i;

	cpumask_clear(covered);

	for_each_cpu(i, span) {
		struct cpumask *sg_span;

		if (cpumask_test_cpu(i, covered))
			continue;

6105
		sibling = *per_cpu_ptr(sdd->sd, i);
P
Peter Zijlstra 已提交
6106 6107

		/* See the comment near build_group_mask(). */
6108
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
P
Peter Zijlstra 已提交
6109 6110
			continue;

6111
		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6112
				GFP_KERNEL, cpu_to_node(cpu));
6113 6114 6115 6116 6117

		if (!sg)
			goto fail;

		sg_span = sched_group_cpus(sg);
6118 6119 6120
		if (sibling->child)
			cpumask_copy(sg_span, sched_domain_span(sibling->child));
		else
6121 6122 6123 6124
			cpumask_set_cpu(i, sg_span);

		cpumask_or(covered, covered, sg_span);

6125 6126
		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
		if (atomic_inc_return(&sg->sgc->ref) == 1)
P
Peter Zijlstra 已提交
6127 6128
			build_group_mask(sd, sg);

6129
		/*
6130
		 * Initialize sgc->capacity such that even if we mess up the
6131 6132 6133
		 * domains and no possible iteration will get us here, we won't
		 * die on a /0 trap.
		 */
6134
		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6135

P
Peter Zijlstra 已提交
6136 6137 6138 6139 6140
		/*
		 * Make sure the first group of this domain contains the
		 * canonical balance cpu. Otherwise the sched_domain iteration
		 * breaks. See update_sg_lb_stats().
		 */
P
Peter Zijlstra 已提交
6141
		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
P
Peter Zijlstra 已提交
6142
		    group_balance_cpu(sg) == cpu)
6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161
			groups = sg;

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
		last->next = first;
	}
	sd->groups = groups;

	return 0;

fail:
	free_sched_groups(first, 0);

	return -ENOMEM;
}

6162
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
6163
{
6164 6165
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
6166

6167 6168
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
6169

6170
	if (sg) {
6171
		*sg = *per_cpu_ptr(sdd->sg, cpu);
6172 6173
		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6174
	}
6175 6176

	return cpu;
6177 6178
}

6179
/*
6180 6181
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
6182
 * and ->cpu_capacity to 0.
6183 6184
 *
 * Assumes the sched_domain tree is fully constructed
6185
 */
6186 6187
static int
build_sched_groups(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
6188
{
6189 6190 6191
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
6192
	struct cpumask *covered;
6193
	int i;
6194

6195 6196 6197
	get_group(cpu, sdd, &sd->groups);
	atomic_inc(&sd->groups->ref);

6198
	if (cpu != cpumask_first(span))
6199 6200
		return 0;

6201 6202 6203
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

6204
	cpumask_clear(covered);
6205

6206 6207
	for_each_cpu(i, span) {
		struct sched_group *sg;
6208
		int group, j;
6209

6210 6211
		if (cpumask_test_cpu(i, covered))
			continue;
6212

6213
		group = get_group(i, sdd, &sg);
P
Peter Zijlstra 已提交
6214
		cpumask_setall(sched_group_mask(sg));
6215

6216 6217 6218
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
6219

6220 6221 6222
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
6223

6224 6225 6226 6227 6228 6229 6230
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
6231 6232

	return 0;
6233
}
6234

6235
/*
6236
 * Initialize sched groups cpu_capacity.
6237
 *
6238
 * cpu_capacity indicates the capacity of sched group, which is used while
6239
 * distributing the load between different sched groups in a sched domain.
6240 6241 6242 6243
 * Typically cpu_capacity for all the groups in a sched domain will be same
 * unless there are asymmetries in the topology. If there are asymmetries,
 * group having more cpu_capacity will pickup more load compared to the
 * group having less cpu_capacity.
6244
 */
6245
static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6246
{
6247
	struct sched_group *sg = sd->groups;
6248

6249
	WARN_ON(!sg);
6250 6251 6252 6253 6254

	do {
		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
		sg = sg->next;
	} while (sg != sd->groups);
6255

P
Peter Zijlstra 已提交
6256
	if (cpu != group_balance_cpu(sg))
6257
		return;
6258

6259 6260
	update_group_capacity(sd, cpu);
	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6261 6262
}

6263 6264 6265 6266 6267
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

6268
static int default_relax_domain_level = -1;
6269
int sched_domain_level_max;
6270 6271 6272

static int __init setup_relax_domain_level(char *str)
{
6273 6274
	if (kstrtoint(str, 0, &default_relax_domain_level))
		pr_warn("Unable to set relax_domain_level\n");
6275

6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
6294
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6295 6296
	} else {
		/* turn on idle balance on this domain */
6297
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6298 6299 6300
	}
}

6301 6302 6303
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

6304 6305 6306 6307 6308
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
6309 6310
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
6311 6312
	case sa_sd:
		free_percpu(d->sd); /* fall through */
6313
	case sa_sd_storage:
6314
		__sdt_free(cpu_map); /* fall through */
6315 6316 6317 6318
	case sa_none:
		break;
	}
}
6319

6320 6321 6322
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
6323 6324
	memset(d, 0, sizeof(*d));

6325 6326
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
6327 6328 6329
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
6330
	d->rd = alloc_rootdomain();
6331
	if (!d->rd)
6332
		return sa_sd;
6333 6334
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
6335

6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

6348
	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6349
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6350

6351 6352
	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6353 6354
}

6355 6356
#ifdef CONFIG_NUMA
static int sched_domains_numa_levels;
6357
enum numa_topology_type sched_numa_topology_type;
6358
static int *sched_domains_numa_distance;
6359
int sched_max_numa_distance;
6360 6361
static struct cpumask ***sched_domains_numa_masks;
static int sched_domains_curr_level;
6362
#endif
6363

6364 6365 6366
/*
 * SD_flags allowed in topology descriptions.
 *
6367
 * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6368 6369
 * SD_SHARE_PKG_RESOURCES - describes shared caches
 * SD_NUMA                - describes NUMA topologies
6370
 * SD_SHARE_POWERDOMAIN   - describes shared power domain
6371 6372 6373 6374 6375
 *
 * Odd one out:
 * SD_ASYM_PACKING        - describes SMT quirks
 */
#define TOPOLOGY_SD_FLAGS		\
6376
	(SD_SHARE_CPUCAPACITY |		\
6377 6378
	 SD_SHARE_PKG_RESOURCES |	\
	 SD_NUMA |			\
6379 6380
	 SD_ASYM_PACKING |		\
	 SD_SHARE_POWERDOMAIN)
6381 6382

static struct sched_domain *
6383
sd_init(struct sched_domain_topology_level *tl, int cpu)
6384 6385
{
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401
	int sd_weight, sd_flags = 0;

#ifdef CONFIG_NUMA
	/*
	 * Ugly hack to pass state to sd_numa_mask()...
	 */
	sched_domains_curr_level = tl->numa_level;
#endif

	sd_weight = cpumask_weight(tl->mask(cpu));

	if (tl->sd_flags)
		sd_flags = (*tl->sd_flags)();
	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
			"wrong sd_flags in topology description\n"))
		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6402 6403 6404 6405 6406

	*sd = (struct sched_domain){
		.min_interval		= sd_weight,
		.max_interval		= 2*sd_weight,
		.busy_factor		= 32,
6407
		.imbalance_pct		= 125,
6408 6409 6410 6411

		.cache_nice_tries	= 0,
		.busy_idx		= 0,
		.idle_idx		= 0,
6412 6413 6414 6415 6416 6417
		.newidle_idx		= 0,
		.wake_idx		= 0,
		.forkexec_idx		= 0,

		.flags			= 1*SD_LOAD_BALANCE
					| 1*SD_BALANCE_NEWIDLE
6418 6419
					| 1*SD_BALANCE_EXEC
					| 1*SD_BALANCE_FORK
6420
					| 0*SD_BALANCE_WAKE
6421
					| 1*SD_WAKE_AFFINE
6422
					| 0*SD_SHARE_CPUCAPACITY
6423
					| 0*SD_SHARE_PKG_RESOURCES
6424
					| 0*SD_SERIALIZE
6425
					| 0*SD_PREFER_SIBLING
6426 6427
					| 0*SD_NUMA
					| sd_flags
6428
					,
6429

6430 6431
		.last_balance		= jiffies,
		.balance_interval	= sd_weight,
6432
		.smt_gain		= 0,
6433 6434
		.max_newidle_lb_cost	= 0,
		.next_decay_max_lb_cost	= jiffies,
6435 6436 6437
#ifdef CONFIG_SCHED_DEBUG
		.name			= tl->name,
#endif
6438 6439 6440
	};

	/*
6441
	 * Convert topological properties into behaviour.
6442
	 */
6443

6444
	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6445
		sd->flags |= SD_PREFER_SIBLING;
6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475
		sd->imbalance_pct = 110;
		sd->smt_gain = 1178; /* ~15% */

	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
		sd->imbalance_pct = 117;
		sd->cache_nice_tries = 1;
		sd->busy_idx = 2;

#ifdef CONFIG_NUMA
	} else if (sd->flags & SD_NUMA) {
		sd->cache_nice_tries = 2;
		sd->busy_idx = 3;
		sd->idle_idx = 2;

		sd->flags |= SD_SERIALIZE;
		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
			sd->flags &= ~(SD_BALANCE_EXEC |
				       SD_BALANCE_FORK |
				       SD_WAKE_AFFINE);
		}

#endif
	} else {
		sd->flags |= SD_PREFER_SIBLING;
		sd->cache_nice_tries = 1;
		sd->busy_idx = 2;
		sd->idle_idx = 1;
	}

	sd->private = &tl->data;
6476 6477 6478 6479

	return sd;
}

6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493
/*
 * Topology list, bottom-up.
 */
static struct sched_domain_topology_level default_topology[] = {
#ifdef CONFIG_SCHED_SMT
	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
#endif
#ifdef CONFIG_SCHED_MC
	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
#endif
	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
	{ NULL, },
};

6494 6495
static struct sched_domain_topology_level *sched_domain_topology =
	default_topology;
6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506

#define for_each_sd_topology(tl)			\
	for (tl = sched_domain_topology; tl->mask; tl++)

void set_sched_topology(struct sched_domain_topology_level *tl)
{
	sched_domain_topology = tl;
}

#ifdef CONFIG_NUMA

6507 6508 6509 6510 6511
static const struct cpumask *sd_numa_mask(int cpu)
{
	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
}

6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532
static void sched_numa_warn(const char *str)
{
	static int done = false;
	int i,j;

	if (done)
		return;

	done = true;

	printk(KERN_WARNING "ERROR: %s\n\n", str);

	for (i = 0; i < nr_node_ids; i++) {
		printk(KERN_WARNING "  ");
		for (j = 0; j < nr_node_ids; j++)
			printk(KERN_CONT "%02d ", node_distance(i,j));
		printk(KERN_CONT "\n");
	}
	printk(KERN_WARNING "\n");
}

6533
bool find_numa_distance(int distance)
6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547
{
	int i;

	if (distance == node_distance(0, 0))
		return true;

	for (i = 0; i < sched_domains_numa_levels; i++) {
		if (sched_domains_numa_distance[i] == distance)
			return true;
	}

	return false;
}

6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572
/*
 * A system can have three types of NUMA topology:
 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
 *
 * The difference between a glueless mesh topology and a backplane
 * topology lies in whether communication between not directly
 * connected nodes goes through intermediary nodes (where programs
 * could run), or through backplane controllers. This affects
 * placement of programs.
 *
 * The type of topology can be discerned with the following tests:
 * - If the maximum distance between any nodes is 1 hop, the system
 *   is directly connected.
 * - If for two nodes A and B, located N > 1 hops away from each other,
 *   there is an intermediary node C, which is < N hops away from both
 *   nodes A and B, the system is a glueless mesh.
 */
static void init_numa_topology_type(void)
{
	int a, b, c, n;

	n = sched_max_numa_distance;

6573
	if (sched_domains_numa_levels <= 1) {
6574
		sched_numa_topology_type = NUMA_DIRECT;
6575 6576
		return;
	}
6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599

	for_each_online_node(a) {
		for_each_online_node(b) {
			/* Find two nodes furthest removed from each other. */
			if (node_distance(a, b) < n)
				continue;

			/* Is there an intermediary node between a and b? */
			for_each_online_node(c) {
				if (node_distance(a, c) < n &&
				    node_distance(b, c) < n) {
					sched_numa_topology_type =
							NUMA_GLUELESS_MESH;
					return;
				}
			}

			sched_numa_topology_type = NUMA_BACKPLANE;
			return;
		}
	}
}

6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620
static void sched_init_numa(void)
{
	int next_distance, curr_distance = node_distance(0, 0);
	struct sched_domain_topology_level *tl;
	int level = 0;
	int i, j, k;

	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
	if (!sched_domains_numa_distance)
		return;

	/*
	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
	 * unique distances in the node_distance() table.
	 *
	 * Assumes node_distance(0,j) includes all distances in
	 * node_distance(i,j) in order to avoid cubic time.
	 */
	next_distance = curr_distance;
	for (i = 0; i < nr_node_ids; i++) {
		for (j = 0; j < nr_node_ids; j++) {
6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644
			for (k = 0; k < nr_node_ids; k++) {
				int distance = node_distance(i, k);

				if (distance > curr_distance &&
				    (distance < next_distance ||
				     next_distance == curr_distance))
					next_distance = distance;

				/*
				 * While not a strong assumption it would be nice to know
				 * about cases where if node A is connected to B, B is not
				 * equally connected to A.
				 */
				if (sched_debug() && node_distance(k, i) != distance)
					sched_numa_warn("Node-distance not symmetric");

				if (sched_debug() && i && !find_numa_distance(distance))
					sched_numa_warn("Node-0 not representative");
			}
			if (next_distance != curr_distance) {
				sched_domains_numa_distance[level++] = next_distance;
				sched_domains_numa_levels = level;
				curr_distance = next_distance;
			} else break;
6645
		}
6646 6647 6648 6649 6650 6651

		/*
		 * In case of sched_debug() we verify the above assumption.
		 */
		if (!sched_debug())
			break;
6652
	}
6653 6654 6655 6656

	if (!level)
		return;

6657 6658 6659 6660
	/*
	 * 'level' contains the number of unique distances, excluding the
	 * identity distance node_distance(i,i).
	 *
V
Viresh Kumar 已提交
6661
	 * The sched_domains_numa_distance[] array includes the actual distance
6662 6663 6664
	 * numbers.
	 */

6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675
	/*
	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
	 * the array will contain less then 'level' members. This could be
	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
	 * in other functions.
	 *
	 * We reset it to 'level' at the end of this function.
	 */
	sched_domains_numa_levels = 0;

6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690
	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
	if (!sched_domains_numa_masks)
		return;

	/*
	 * Now for each level, construct a mask per node which contains all
	 * cpus of nodes that are that many hops away from us.
	 */
	for (i = 0; i < level; i++) {
		sched_domains_numa_masks[i] =
			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
		if (!sched_domains_numa_masks[i])
			return;

		for (j = 0; j < nr_node_ids; j++) {
6691
			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6692 6693 6694 6695 6696 6697
			if (!mask)
				return;

			sched_domains_numa_masks[i][j] = mask;

			for (k = 0; k < nr_node_ids; k++) {
6698
				if (node_distance(j, k) > sched_domains_numa_distance[i])
6699 6700 6701 6702 6703 6704 6705
					continue;

				cpumask_or(mask, mask, cpumask_of_node(k));
			}
		}
	}

6706 6707 6708
	/* Compute default topology size */
	for (i = 0; sched_domain_topology[i].mask; i++);

6709
	tl = kzalloc((i + level + 1) *
6710 6711 6712 6713 6714 6715 6716
			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
	if (!tl)
		return;

	/*
	 * Copy the default topology bits..
	 */
6717 6718
	for (i = 0; sched_domain_topology[i].mask; i++)
		tl[i] = sched_domain_topology[i];
6719 6720 6721 6722 6723 6724 6725

	/*
	 * .. and append 'j' levels of NUMA goodness.
	 */
	for (j = 0; j < level; i++, j++) {
		tl[i] = (struct sched_domain_topology_level){
			.mask = sd_numa_mask,
6726
			.sd_flags = cpu_numa_flags,
6727 6728
			.flags = SDTL_OVERLAP,
			.numa_level = j,
6729
			SD_INIT_NAME(NUMA)
6730 6731 6732 6733
		};
	}

	sched_domain_topology = tl;
6734 6735

	sched_domains_numa_levels = level;
6736
	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6737 6738

	init_numa_topology_type();
6739
}
6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786

static void sched_domains_numa_masks_set(int cpu)
{
	int i, j;
	int node = cpu_to_node(cpu);

	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++) {
			if (node_distance(j, node) <= sched_domains_numa_distance[i])
				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
		}
	}
}

static void sched_domains_numa_masks_clear(int cpu)
{
	int i, j;
	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++)
			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
	}
}

/*
 * Update sched_domains_numa_masks[level][node] array when new cpus
 * are onlined.
 */
static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	int cpu = (long)hcpu;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
		sched_domains_numa_masks_set(cpu);
		break;

	case CPU_DEAD:
		sched_domains_numa_masks_clear(cpu);
		break;

	default:
		return NOTIFY_DONE;
	}

	return NOTIFY_OK;
6787 6788 6789 6790 6791
}
#else
static inline void sched_init_numa(void)
{
}
6792 6793 6794 6795 6796 6797 6798

static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	return 0;
}
6799 6800
#endif /* CONFIG_NUMA */

6801 6802 6803 6804 6805
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

6806
	for_each_sd_topology(tl) {
6807 6808 6809 6810 6811 6812 6813 6814 6815 6816
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

6817 6818
		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
		if (!sdd->sgc)
6819 6820
			return -ENOMEM;

6821 6822 6823
		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_group *sg;
6824
			struct sched_group_capacity *sgc;
6825

P
Peter Zijlstra 已提交
6826
			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

6838 6839
			sg->next = sg;

6840
			*per_cpu_ptr(sdd->sg, j) = sg;
6841

6842
			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6843
					GFP_KERNEL, cpu_to_node(j));
6844
			if (!sgc)
6845 6846
				return -ENOMEM;

6847
			*per_cpu_ptr(sdd->sgc, j) = sgc;
6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

6859
	for_each_sd_topology(tl) {
6860 6861 6862
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873
			struct sched_domain *sd;

			if (sdd->sd) {
				sd = *per_cpu_ptr(sdd->sd, j);
				if (sd && (sd->flags & SD_OVERLAP))
					free_sched_groups(sd->groups, 0);
				kfree(*per_cpu_ptr(sdd->sd, j));
			}

			if (sdd->sg)
				kfree(*per_cpu_ptr(sdd->sg, j));
6874 6875
			if (sdd->sgc)
				kfree(*per_cpu_ptr(sdd->sgc, j));
6876 6877
		}
		free_percpu(sdd->sd);
6878
		sdd->sd = NULL;
6879
		free_percpu(sdd->sg);
6880
		sdd->sg = NULL;
6881 6882
		free_percpu(sdd->sgc);
		sdd->sgc = NULL;
6883 6884 6885
	}
}

6886
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6887 6888
		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
		struct sched_domain *child, int cpu)
6889
{
6890
	struct sched_domain *sd = sd_init(tl, cpu);
6891
	if (!sd)
6892
		return child;
6893 6894

	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6895 6896 6897
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6898
		child->parent = sd;
6899
		sd->child = child;
P
Peter Zijlstra 已提交
6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913

		if (!cpumask_subset(sched_domain_span(child),
				    sched_domain_span(sd))) {
			pr_err("BUG: arch topology borken\n");
#ifdef CONFIG_SCHED_DEBUG
			pr_err("     the %s domain not a subset of the %s domain\n",
					child->name, sd->name);
#endif
			/* Fixup, ensure @sd has at least @child cpus. */
			cpumask_or(sched_domain_span(sd),
				   sched_domain_span(sd),
				   sched_domain_span(child));
		}

6914
	}
6915
	set_domain_attribute(sd, attr);
6916 6917 6918 6919

	return sd;
}

6920 6921 6922 6923
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
6924 6925
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
6926
{
6927
	enum s_alloc alloc_state;
6928
	struct sched_domain *sd;
6929
	struct s_data d;
6930
	int i, ret = -ENOMEM;
6931

6932 6933 6934
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
6935

6936
	/* Set up domains for cpus specified by the cpu_map. */
6937
	for_each_cpu(i, cpu_map) {
6938 6939
		struct sched_domain_topology_level *tl;

6940
		sd = NULL;
6941
		for_each_sd_topology(tl) {
6942
			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6943 6944
			if (tl == sched_domain_topology)
				*per_cpu_ptr(d.sd, i) = sd;
6945 6946
			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
				sd->flags |= SD_OVERLAP;
6947 6948
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
				break;
6949
		}
6950 6951 6952 6953 6954 6955
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6956 6957 6958 6959 6960 6961 6962
			if (sd->flags & SD_OVERLAP) {
				if (build_overlap_sched_groups(sd, i))
					goto error;
			} else {
				if (build_sched_groups(sd, i))
					goto error;
			}
6963
		}
6964
	}
6965

6966
	/* Calculate CPU capacity for physical packages and nodes */
6967 6968 6969
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
6970

6971 6972
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
6973
			init_sched_groups_capacity(i, sd);
6974
		}
6975
	}
6976

L
Linus Torvalds 已提交
6977
	/* Attach the domains */
6978
	rcu_read_lock();
6979
	for_each_cpu(i, cpu_map) {
6980
		sd = *per_cpu_ptr(d.sd, i);
6981
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
6982
	}
6983
	rcu_read_unlock();
6984

6985
	ret = 0;
6986
error:
6987
	__free_domain_allocs(&d, alloc_state, cpu_map);
6988
	return ret;
L
Linus Torvalds 已提交
6989
}
P
Paul Jackson 已提交
6990

6991
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
6992
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
6993 6994
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
6995 6996 6997

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
6998 6999
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
7000
 */
7001
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
7002

7003 7004 7005 7006 7007
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
7008
int __weak arch_update_cpu_topology(void)
7009
{
7010
	return 0;
7011 7012
}

7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

7038
/*
I
Ingo Molnar 已提交
7039
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7040 7041
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7042
 */
7043
static int init_sched_domains(const struct cpumask *cpu_map)
7044
{
7045 7046
	int err;

7047
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7048
	ndoms_cur = 1;
7049
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
7050
	if (!doms_cur)
7051 7052
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7053
	err = build_sched_domains(doms_cur[0], NULL);
7054
	register_sched_domain_sysctl();
7055 7056

	return err;
7057 7058 7059 7060 7061 7062
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7063
static void detach_destroy_domains(const struct cpumask *cpu_map)
7064 7065 7066
{
	int i;

7067
	rcu_read_lock();
7068
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
7069
		cpu_attach_domain(NULL, &def_root_domain, i);
7070
	rcu_read_unlock();
7071 7072
}

7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7089 7090
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7091
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7092 7093 7094
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
7095
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7096 7097 7098
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7099 7100 7101
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
7102 7103 7104 7105 7106 7107
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
7108
 *
7109
 * If doms_new == NULL it will be replaced with cpu_online_mask.
7110 7111
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
7112
 *
P
Paul Jackson 已提交
7113 7114
 * Call with hotplug lock held
 */
7115
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7116
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7117
{
7118
	int i, j, n;
7119
	int new_topology;
P
Paul Jackson 已提交
7120

7121
	mutex_lock(&sched_domains_mutex);
7122

7123 7124 7125
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7126 7127 7128
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

7129
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
7130 7131 7132

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
7133
		for (j = 0; j < n && !new_topology; j++) {
7134
			if (cpumask_equal(doms_cur[i], doms_new[j])
7135
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7136 7137 7138
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
7139
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
7140 7141 7142 7143
match1:
		;
	}

7144
	n = ndoms_cur;
7145
	if (doms_new == NULL) {
7146
		n = 0;
7147
		doms_new = &fallback_doms;
7148
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7149
		WARN_ON_ONCE(dattr_new);
7150 7151
	}

P
Paul Jackson 已提交
7152 7153
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
7154
		for (j = 0; j < n && !new_topology; j++) {
7155
			if (cpumask_equal(doms_new[i], doms_cur[j])
7156
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7157 7158 7159
				goto match2;
		}
		/* no match - add a new doms_new */
7160
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7161 7162 7163 7164 7165
match2:
		;
	}

	/* Remember the new sched domains */
7166 7167
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
7168
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7169
	doms_cur = doms_new;
7170
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7171
	ndoms_cur = ndoms_new;
7172 7173

	register_sched_domain_sysctl();
7174

7175
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7176 7177
}

7178 7179
static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */

L
Linus Torvalds 已提交
7180
/*
7181 7182 7183
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
7184 7185 7186
 *
 * If we come here as part of a suspend/resume, don't touch cpusets because we
 * want to restore it back to its original state upon resume anyway.
L
Linus Torvalds 已提交
7187
 */
7188 7189
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
7190
{
7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212
	switch (action) {
	case CPU_ONLINE_FROZEN:
	case CPU_DOWN_FAILED_FROZEN:

		/*
		 * num_cpus_frozen tracks how many CPUs are involved in suspend
		 * resume sequence. As long as this is not the last online
		 * operation in the resume sequence, just build a single sched
		 * domain, ignoring cpusets.
		 */
		num_cpus_frozen--;
		if (likely(num_cpus_frozen)) {
			partition_sched_domains(1, NULL, NULL);
			break;
		}

		/*
		 * This is the last CPU online operation. So fall through and
		 * restore the original sched domains by considering the
		 * cpuset configurations.
		 */

7213
	case CPU_ONLINE:
7214
		cpuset_update_active_cpus(true);
7215
		break;
7216 7217 7218
	default:
		return NOTIFY_DONE;
	}
7219
	return NOTIFY_OK;
7220
}
7221

7222 7223
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
7224
{
7225 7226 7227
	unsigned long flags;
	long cpu = (long)hcpu;
	struct dl_bw *dl_b;
7228 7229
	bool overflow;
	int cpus;
7230

7231
	switch (action) {
7232
	case CPU_DOWN_PREPARE:
7233 7234
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);
7235

7236 7237 7238 7239
		raw_spin_lock_irqsave(&dl_b->lock, flags);
		cpus = dl_bw_cpus(cpu);
		overflow = __dl_overflow(dl_b, cpus, 0, 0);
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7240

7241
		rcu_read_unlock_sched();
7242

7243 7244
		if (overflow)
			return notifier_from_errno(-EBUSY);
7245
		cpuset_update_active_cpus(false);
7246 7247 7248 7249 7250
		break;
	case CPU_DOWN_PREPARE_FROZEN:
		num_cpus_frozen++;
		partition_sched_domains(1, NULL, NULL);
		break;
7251 7252 7253
	default:
		return NOTIFY_DONE;
	}
7254
	return NOTIFY_OK;
7255 7256
}

L
Linus Torvalds 已提交
7257 7258
void __init sched_init_smp(void)
{
7259 7260 7261
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7262
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7263

7264 7265 7266
	/* nohz_full won't take effect without isolating the cpus. */
	tick_nohz_full_add_cpus_to(cpu_isolated_map);

7267 7268
	sched_init_numa();

7269 7270 7271 7272 7273
	/*
	 * There's no userspace yet to cause hotplug operations; hence all the
	 * cpu masks are stable and all blatant races in the below code cannot
	 * happen.
	 */
7274
	mutex_lock(&sched_domains_mutex);
7275
	init_sched_domains(cpu_active_mask);
7276 7277 7278
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7279
	mutex_unlock(&sched_domains_mutex);
7280

7281
	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7282 7283
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7284

7285
	init_hrtick();
7286 7287

	/* Move init over to a non-isolated CPU */
7288
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7289
		BUG();
I
Ingo Molnar 已提交
7290
	sched_init_granularity();
7291
	free_cpumask_var(non_isolated_cpus);
7292

7293
	init_sched_rt_class();
7294
	init_sched_dl_class();
L
Linus Torvalds 已提交
7295 7296 7297 7298
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7299
	sched_init_granularity();
L
Linus Torvalds 已提交
7300 7301 7302 7303 7304 7305 7306 7307 7308 7309
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

7310
#ifdef CONFIG_CGROUP_SCHED
7311 7312 7313 7314
/*
 * Default task group.
 * Every task in system belongs to this group at bootup.
 */
7315
struct task_group root_task_group;
7316
LIST_HEAD(task_groups);
7317
#endif
P
Peter Zijlstra 已提交
7318

7319
DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
P
Peter Zijlstra 已提交
7320

L
Linus Torvalds 已提交
7321 7322
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7323
	int i, j;
7324 7325 7326 7327 7328 7329 7330 7331 7332
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
	if (alloc_size) {
7333
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7334 7335

#ifdef CONFIG_FAIR_GROUP_SCHED
7336
		root_task_group.se = (struct sched_entity **)ptr;
7337 7338
		ptr += nr_cpu_ids * sizeof(void **);

7339
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7340
		ptr += nr_cpu_ids * sizeof(void **);
7341

7342
#endif /* CONFIG_FAIR_GROUP_SCHED */
7343
#ifdef CONFIG_RT_GROUP_SCHED
7344
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7345 7346
		ptr += nr_cpu_ids * sizeof(void **);

7347
		root_task_group.rt_rq = (struct rt_rq **)ptr;
7348 7349
		ptr += nr_cpu_ids * sizeof(void **);

7350
#endif /* CONFIG_RT_GROUP_SCHED */
7351
	}
7352
#ifdef CONFIG_CPUMASK_OFFSTACK
7353 7354 7355
	for_each_possible_cpu(i) {
		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7356
	}
7357
#endif /* CONFIG_CPUMASK_OFFSTACK */
I
Ingo Molnar 已提交
7358

7359 7360 7361
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());
	init_dl_bandwidth(&def_dl_bandwidth,
7362
			global_rt_period(), global_rt_runtime());
7363

G
Gregory Haskins 已提交
7364 7365 7366 7367
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7368
#ifdef CONFIG_RT_GROUP_SCHED
7369
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7370
			global_rt_period(), global_rt_runtime());
7371
#endif /* CONFIG_RT_GROUP_SCHED */
7372

D
Dhaval Giani 已提交
7373
#ifdef CONFIG_CGROUP_SCHED
7374 7375
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
7376
	INIT_LIST_HEAD(&root_task_group.siblings);
7377
	autogroup_init(&init_task);
7378

D
Dhaval Giani 已提交
7379
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
7380

7381
	for_each_possible_cpu(i) {
7382
		struct rq *rq;
L
Linus Torvalds 已提交
7383 7384

		rq = cpu_rq(i);
7385
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
7386
		rq->nr_running = 0;
7387 7388
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
7389
		init_cfs_rq(&rq->cfs);
7390 7391
		init_rt_rq(&rq->rt);
		init_dl_rq(&rq->dl);
I
Ingo Molnar 已提交
7392
#ifdef CONFIG_FAIR_GROUP_SCHED
7393
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
7394
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
7395
		/*
7396
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
7397 7398 7399 7400
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
7401
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
7402 7403 7404
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
7405
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
7406 7407 7408
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
7409
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
7410
		 *
7411 7412
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
7413
		 */
7414
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7415
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
7416 7417 7418
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7419
#ifdef CONFIG_RT_GROUP_SCHED
7420
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
7421
#endif
L
Linus Torvalds 已提交
7422

I
Ingo Molnar 已提交
7423 7424
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
7425 7426 7427

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
7428
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7429
		rq->sd = NULL;
G
Gregory Haskins 已提交
7430
		rq->rd = NULL;
7431
		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7432
		rq->balance_callback = NULL;
L
Linus Torvalds 已提交
7433
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7434
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7435
		rq->push_cpu = 0;
7436
		rq->cpu = i;
7437
		rq->online = 0;
7438 7439
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
7440
		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7441 7442 7443

		INIT_LIST_HEAD(&rq->cfs_tasks);

7444
		rq_attach_root(rq, &def_root_domain);
7445
#ifdef CONFIG_NO_HZ_COMMON
7446
		rq->nohz_flags = 0;
7447
#endif
7448 7449 7450
#ifdef CONFIG_NO_HZ_FULL
		rq->last_sched_tick = 0;
#endif
L
Linus Torvalds 已提交
7451
#endif
P
Peter Zijlstra 已提交
7452
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7453 7454 7455
		atomic_set(&rq->nr_iowait, 0);
	}

7456
	set_load_weight(&init_task);
7457

7458 7459 7460 7461
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

L
Linus Torvalds 已提交
7462 7463 7464 7465 7466 7467
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

7468 7469 7470 7471 7472
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;

L
Linus Torvalds 已提交
7473 7474 7475 7476 7477 7478 7479
	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
7480 7481 7482

	calc_load_update = jiffies + LOAD_FREQ;

7483
#ifdef CONFIG_SMP
7484
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
R
Rusty Russell 已提交
7485 7486 7487
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7488
	idle_thread_set_boot_cpu();
7489
	set_cpu_rq_start_time();
7490 7491
#endif
	init_sched_fair_class();
7492

7493
	scheduler_running = 1;
L
Linus Torvalds 已提交
7494 7495
}

7496
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7497 7498
static inline int preempt_count_equals(int preempt_offset)
{
7499
	int nested = preempt_count() + rcu_preempt_depth();
7500

A
Arnd Bergmann 已提交
7501
	return (nested == preempt_offset);
7502 7503
}

7504
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7505
{
P
Peter Zijlstra 已提交
7506 7507 7508 7509 7510
	/*
	 * Blocking primitives will set (and therefore destroy) current->state,
	 * since we will exit with TASK_RUNNING make sure we enter with it,
	 * otherwise we will destroy state.
	 */
7511
	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
P
Peter Zijlstra 已提交
7512 7513 7514 7515
			"do not call blocking ops when !TASK_RUNNING; "
			"state=%lx set at [<%p>] %pS\n",
			current->state,
			(void *)current->task_state_change,
7516
			(void *)current->task_state_change);
P
Peter Zijlstra 已提交
7517

7518 7519 7520 7521 7522
	___might_sleep(file, line, preempt_offset);
}
EXPORT_SYMBOL(__might_sleep);

void ___might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7523 7524 7525
{
	static unsigned long prev_jiffy;	/* ratelimiting */

7526
	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7527 7528
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
	     !is_idle_task(current)) ||
7529
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
7530 7531 7532 7533 7534
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
7535 7536 7537 7538 7539 7540 7541
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
7542

7543 7544 7545
	if (task_stack_end_corrupted(current))
		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");

I
Ingo Molnar 已提交
7546 7547 7548
	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
7549 7550 7551 7552 7553 7554 7555
#ifdef CONFIG_DEBUG_PREEMPT
	if (!preempt_count_equals(preempt_offset)) {
		pr_err("Preemption disabled at:");
		print_ip_sym(current->preempt_disable_ip);
		pr_cont("\n");
	}
#endif
I
Ingo Molnar 已提交
7556
	dump_stack();
L
Linus Torvalds 已提交
7557
}
7558
EXPORT_SYMBOL(___might_sleep);
L
Linus Torvalds 已提交
7559 7560 7561
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7562
void normalize_rt_tasks(void)
7563
{
7564
	struct task_struct *g, *p;
7565 7566 7567
	struct sched_attr attr = {
		.sched_policy = SCHED_NORMAL,
	};
L
Linus Torvalds 已提交
7568

7569
	read_lock(&tasklist_lock);
7570
	for_each_process_thread(g, p) {
7571 7572 7573
		/*
		 * Only normalize user tasks:
		 */
7574
		if (p->flags & PF_KTHREAD)
7575 7576
			continue;

I
Ingo Molnar 已提交
7577 7578
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
7579 7580 7581
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
7582
#endif
I
Ingo Molnar 已提交
7583

7584
		if (!dl_task(p) && !rt_task(p)) {
I
Ingo Molnar 已提交
7585 7586 7587 7588
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
7589
			if (task_nice(p) < 0)
I
Ingo Molnar 已提交
7590
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7591
			continue;
I
Ingo Molnar 已提交
7592
		}
L
Linus Torvalds 已提交
7593

7594
		__sched_setscheduler(p, &attr, false, false);
7595
	}
7596
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
7597 7598 7599
}

#endif /* CONFIG_MAGIC_SYSRQ */
7600

7601
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7602
/*
7603
 * These functions are only useful for the IA64 MCA handling, or kdb.
7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7617 7618
 *
 * Return: The current task for @cpu.
7619
 */
7620
struct task_struct *curr_task(int cpu)
7621 7622 7623 7624
{
	return cpu_curr(cpu);
}

7625 7626 7627
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
7628 7629 7630 7631 7632 7633
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7634 7635
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7636 7637 7638 7639 7640 7641 7642
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7643
void set_curr_task(int cpu, struct task_struct *p)
7644 7645 7646 7647 7648
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7649

D
Dhaval Giani 已提交
7650
#ifdef CONFIG_CGROUP_SCHED
7651 7652 7653
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

7654 7655 7656 7657
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
7658
	autogroup_free(tg);
7659 7660 7661 7662
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
7663
struct task_group *sched_create_group(struct task_group *parent)
7664 7665 7666 7667 7668 7669 7670
{
	struct task_group *tg;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

7671
	if (!alloc_fair_sched_group(tg, parent))
7672 7673
		goto err;

7674
	if (!alloc_rt_sched_group(tg, parent))
7675 7676
		goto err;

7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687
	return tg;

err:
	free_sched_group(tg);
	return ERR_PTR(-ENOMEM);
}

void sched_online_group(struct task_group *tg, struct task_group *parent)
{
	unsigned long flags;

7688
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7689
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
7690 7691 7692 7693 7694

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
7695
	list_add_rcu(&tg->siblings, &parent->children);
7696
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7697 7698
}

7699
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
7700
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7701 7702
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
7703
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
7704 7705
}

7706
/* Destroy runqueue etc associated with a task group */
7707
void sched_destroy_group(struct task_group *tg)
7708 7709 7710 7711 7712 7713
{
	/* wait for possible concurrent references to cfs_rqs complete */
	call_rcu(&tg->rcu, free_sched_group_rcu);
}

void sched_offline_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7714
{
7715
	unsigned long flags;
7716
	int i;
S
Srivatsa Vaddagiri 已提交
7717

7718 7719
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
7720
		unregister_fair_sched_group(tg, i);
7721 7722

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7723
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
7724
	list_del_rcu(&tg->siblings);
7725
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7726 7727
}

7728
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7729 7730 7731
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7732 7733
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7734
{
P
Peter Zijlstra 已提交
7735
	struct task_group *tg;
7736
	int queued, running;
S
Srivatsa Vaddagiri 已提交
7737 7738 7739 7740 7741
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

7742
	running = task_current(rq, tsk);
7743
	queued = task_on_rq_queued(tsk);
S
Srivatsa Vaddagiri 已提交
7744

7745
	if (queued)
7746
		dequeue_task(rq, tsk, DEQUEUE_SAVE);
7747
	if (unlikely(running))
7748
		put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7749

7750 7751 7752 7753 7754 7755
	/*
	 * All callers are synchronized by task_rq_lock(); we do not use RCU
	 * which is pointless here. Thus, we pass "true" to task_css_check()
	 * to prevent lockdep warnings.
	 */
	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
P
Peter Zijlstra 已提交
7756 7757 7758 7759
			  struct task_group, css);
	tg = autogroup_task_group(tsk, tg);
	tsk->sched_task_group = tg;

P
Peter Zijlstra 已提交
7760
#ifdef CONFIG_FAIR_GROUP_SCHED
7761
	if (tsk->sched_class->task_move_group)
7762
		tsk->sched_class->task_move_group(tsk);
7763
	else
P
Peter Zijlstra 已提交
7764
#endif
7765
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
7766

7767 7768
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
7769
	if (queued)
7770
		enqueue_task(rq, tsk, ENQUEUE_RESTORE);
S
Srivatsa Vaddagiri 已提交
7771

7772
	task_rq_unlock(rq, tsk, &flags);
S
Srivatsa Vaddagiri 已提交
7773
}
D
Dhaval Giani 已提交
7774
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
7775

7776 7777 7778 7779 7780
#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
P
Peter Zijlstra 已提交
7781

P
Peter Zijlstra 已提交
7782 7783
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
7784
{
P
Peter Zijlstra 已提交
7785
	struct task_struct *g, *p;
7786

7787 7788 7789 7790 7791 7792
	/*
	 * Autogroups do not have RT tasks; see autogroup_create().
	 */
	if (task_group_is_autogroup(tg))
		return 0;

7793
	for_each_process_thread(g, p) {
7794
		if (rt_task(p) && task_group(p) == tg)
P
Peter Zijlstra 已提交
7795
			return 1;
7796
	}
7797

P
Peter Zijlstra 已提交
7798 7799
	return 0;
}
7800

P
Peter Zijlstra 已提交
7801 7802 7803 7804 7805
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
7806

7807
static int tg_rt_schedulable(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
7808 7809 7810 7811 7812
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
7813

P
Peter Zijlstra 已提交
7814 7815
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
7816

P
Peter Zijlstra 已提交
7817 7818 7819
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
7820 7821
	}

7822 7823 7824 7825 7826
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
7827

7828 7829 7830
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
7831 7832
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
7833

P
Peter Zijlstra 已提交
7834
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7835

7836 7837 7838 7839 7840
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
7841

7842 7843 7844
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
7845 7846 7847
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7848

P
Peter Zijlstra 已提交
7849 7850 7851 7852
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
7853

P
Peter Zijlstra 已提交
7854
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7855
	}
P
Peter Zijlstra 已提交
7856

P
Peter Zijlstra 已提交
7857 7858 7859 7860
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
7861 7862
}

P
Peter Zijlstra 已提交
7863
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7864
{
7865 7866
	int ret;

P
Peter Zijlstra 已提交
7867 7868 7869 7870 7871 7872
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

7873 7874 7875 7876 7877
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7878 7879
}

7880
static int tg_set_rt_bandwidth(struct task_group *tg,
7881
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
7882
{
P
Peter Zijlstra 已提交
7883
	int i, err = 0;
P
Peter Zijlstra 已提交
7884

7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895
	/*
	 * Disallowing the root group RT runtime is BAD, it would disallow the
	 * kernel creating (and or operating) RT threads.
	 */
	if (tg == &root_task_group && rt_runtime == 0)
		return -EINVAL;

	/* No period doesn't make any sense. */
	if (rt_period == 0)
		return -EINVAL;

P
Peter Zijlstra 已提交
7896
	mutex_lock(&rt_constraints_mutex);
7897
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
7898 7899
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
7900
		goto unlock;
P
Peter Zijlstra 已提交
7901

7902
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7903 7904
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
7905 7906 7907 7908

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

7909
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7910
		rt_rq->rt_runtime = rt_runtime;
7911
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7912
	}
7913
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
7914
unlock:
7915
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
7916 7917 7918
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
7919 7920
}

7921
static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7922 7923 7924 7925 7926 7927 7928 7929
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

7930
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7931 7932
}

7933
static long sched_group_rt_runtime(struct task_group *tg)
P
Peter Zijlstra 已提交
7934 7935 7936
{
	u64 rt_runtime_us;

7937
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7938 7939
		return -1;

7940
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7941 7942 7943
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
7944

7945
static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
7946 7947 7948
{
	u64 rt_runtime, rt_period;

7949
	rt_period = rt_period_us * NSEC_PER_USEC;
7950 7951
	rt_runtime = tg->rt_bandwidth.rt_runtime;

7952
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7953 7954
}

7955
static long sched_group_rt_period(struct task_group *tg)
7956 7957 7958 7959 7960 7961 7962
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}
7963
#endif /* CONFIG_RT_GROUP_SCHED */
7964

7965
#ifdef CONFIG_RT_GROUP_SCHED
7966 7967 7968 7969 7970
static int sched_rt_global_constraints(void)
{
	int ret = 0;

	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
7971
	read_lock(&tasklist_lock);
7972
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
7973
	read_unlock(&tasklist_lock);
7974 7975 7976 7977
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
7978

7979
static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7980 7981 7982 7983 7984 7985 7986 7987
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

7988
#else /* !CONFIG_RT_GROUP_SCHED */
7989 7990
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
7991
	unsigned long flags;
7992
	int i, ret = 0;
7993

7994
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7995 7996 7997
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

7998
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7999
		rt_rq->rt_runtime = global_rt_runtime();
8000
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8001
	}
8002
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8003

8004
	return ret;
8005
}
8006
#endif /* CONFIG_RT_GROUP_SCHED */
8007

8008
static int sched_dl_global_validate(void)
8009
{
8010 8011
	u64 runtime = global_rt_runtime();
	u64 period = global_rt_period();
8012
	u64 new_bw = to_ratio(period, runtime);
8013
	struct dl_bw *dl_b;
8014
	int cpu, ret = 0;
8015
	unsigned long flags;
8016 8017 8018 8019 8020 8021 8022 8023 8024 8025

	/*
	 * Here we want to check the bandwidth not being set to some
	 * value smaller than the currently allocated bandwidth in
	 * any of the root_domains.
	 *
	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
	 * cycling on root_domains... Discussion on different/better
	 * solutions is welcome!
	 */
8026
	for_each_possible_cpu(cpu) {
8027 8028
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);
8029

8030
		raw_spin_lock_irqsave(&dl_b->lock, flags);
8031 8032
		if (new_bw < dl_b->total_bw)
			ret = -EBUSY;
8033
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8034

8035 8036
		rcu_read_unlock_sched();

8037 8038
		if (ret)
			break;
8039 8040
	}

8041
	return ret;
8042 8043
}

8044
static void sched_dl_do_global(void)
8045
{
8046
	u64 new_bw = -1;
8047
	struct dl_bw *dl_b;
8048
	int cpu;
8049
	unsigned long flags;
8050

8051 8052 8053 8054 8055 8056 8057 8058 8059 8060
	def_dl_bandwidth.dl_period = global_rt_period();
	def_dl_bandwidth.dl_runtime = global_rt_runtime();

	if (global_rt_runtime() != RUNTIME_INF)
		new_bw = to_ratio(global_rt_period(), global_rt_runtime());

	/*
	 * FIXME: As above...
	 */
	for_each_possible_cpu(cpu) {
8061 8062
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);
8063

8064
		raw_spin_lock_irqsave(&dl_b->lock, flags);
8065
		dl_b->bw = new_bw;
8066
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8067 8068

		rcu_read_unlock_sched();
8069
	}
8070 8071 8072 8073 8074 8075 8076
}

static int sched_rt_global_validate(void)
{
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8077 8078
	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
8079 8080 8081 8082 8083 8084 8085 8086 8087
		return -EINVAL;

	return 0;
}

static void sched_rt_do_global(void)
{
	def_rt_bandwidth.rt_runtime = global_rt_runtime();
	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
8088 8089
}

8090
int sched_rt_handler(struct ctl_table *table, int write,
8091
		void __user *buffer, size_t *lenp,
8092 8093 8094 8095
		loff_t *ppos)
{
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);
8096
	int ret;
8097 8098 8099 8100 8101

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

8102
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8103 8104

	if (!ret && write) {
8105 8106 8107 8108
		ret = sched_rt_global_validate();
		if (ret)
			goto undo;

8109
		ret = sched_dl_global_validate();
8110 8111 8112
		if (ret)
			goto undo;

8113
		ret = sched_rt_global_constraints();
8114 8115 8116 8117 8118 8119 8120 8121 8122 8123
		if (ret)
			goto undo;

		sched_rt_do_global();
		sched_dl_do_global();
	}
	if (0) {
undo:
		sysctl_sched_rt_period = old_period;
		sysctl_sched_rt_runtime = old_runtime;
8124 8125 8126 8127 8128
	}
	mutex_unlock(&mutex);

	return ret;
}
8129

8130
int sched_rr_handler(struct ctl_table *table, int write,
8131 8132 8133 8134 8135 8136 8137 8138
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8139 8140
	/* make sure that internally we keep jiffies */
	/* also, writing zero resets timeslice to default */
8141
	if (!ret && write) {
8142 8143
		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8144 8145 8146 8147 8148
	}
	mutex_unlock(&mutex);
	return ret;
}

8149
#ifdef CONFIG_CGROUP_SCHED
8150

8151
static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8152
{
8153
	return css ? container_of(css, struct task_group, css) : NULL;
8154 8155
}

8156 8157
static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8158
{
8159 8160
	struct task_group *parent = css_tg(parent_css);
	struct task_group *tg;
8161

8162
	if (!parent) {
8163
		/* This is early initialization for the top cgroup */
8164
		return &root_task_group.css;
8165 8166
	}

8167
	tg = sched_create_group(parent);
8168 8169 8170 8171 8172 8173
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

8174
static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
8175
{
8176
	struct task_group *tg = css_tg(css);
T
Tejun Heo 已提交
8177
	struct task_group *parent = css_tg(css->parent);
8178

T
Tejun Heo 已提交
8179 8180
	if (parent)
		sched_online_group(tg, parent);
8181 8182 8183
	return 0;
}

8184
static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8185
{
8186
	struct task_group *tg = css_tg(css);
8187 8188 8189 8190

	sched_destroy_group(tg);
}

8191
static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
8192
{
8193
	struct task_group *tg = css_tg(css);
8194 8195 8196 8197

	sched_offline_group(tg);
}

8198
static void cpu_cgroup_fork(struct task_struct *task, void *private)
8199 8200 8201 8202
{
	sched_move_task(task);
}

8203
static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
8204
				 struct cgroup_taskset *tset)
8205
{
8206 8207
	struct task_struct *task;

8208
	cgroup_taskset_for_each(task, tset) {
8209
#ifdef CONFIG_RT_GROUP_SCHED
8210
		if (!sched_rt_can_attach(css_tg(css), task))
8211
			return -EINVAL;
8212
#else
8213 8214 8215
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
8216
#endif
8217
	}
8218 8219
	return 0;
}
8220

8221
static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
8222
			      struct cgroup_taskset *tset)
8223
{
8224 8225
	struct task_struct *task;

8226
	cgroup_taskset_for_each(task, tset)
8227
		sched_move_task(task);
8228 8229
}

8230 8231 8232
static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
			    struct cgroup_subsys_state *old_css,
			    struct task_struct *task)
8233 8234 8235 8236
{
	sched_move_task(task);
}

8237
#ifdef CONFIG_FAIR_GROUP_SCHED
8238 8239
static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
				struct cftype *cftype, u64 shareval)
8240
{
8241
	return sched_group_set_shares(css_tg(css), scale_load(shareval));
8242 8243
}

8244 8245
static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
			       struct cftype *cft)
8246
{
8247
	struct task_group *tg = css_tg(css);
8248

8249
	return (u64) scale_load_down(tg->shares);
8250
}
8251 8252

#ifdef CONFIG_CFS_BANDWIDTH
8253 8254
static DEFINE_MUTEX(cfs_constraints_mutex);

8255 8256 8257
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

8258 8259
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

8260 8261
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
8262
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8263
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

8284 8285 8286 8287 8288
	/*
	 * Prevent race between setting of cfs_rq->runtime_enabled and
	 * unthrottle_offline_cfs_rqs().
	 */
	get_online_cpus();
8289 8290 8291 8292 8293
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

8294
	runtime_enabled = quota != RUNTIME_INF;
8295
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8296 8297 8298 8299 8300 8301
	/*
	 * If we need to toggle cfs_bandwidth_used, off->on must occur
	 * before making related changes, and on->off must occur afterwards
	 */
	if (runtime_enabled && !runtime_was_enabled)
		cfs_bandwidth_usage_inc();
8302 8303 8304
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
8305

P
Paul Turner 已提交
8306
	__refill_cfs_bandwidth_runtime(cfs_b);
8307
	/* restart the period timer (if active) to handle new period expiry */
P
Peter Zijlstra 已提交
8308 8309
	if (runtime_enabled)
		start_cfs_bandwidth(cfs_b);
8310 8311
	raw_spin_unlock_irq(&cfs_b->lock);

8312
	for_each_online_cpu(i) {
8313
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8314
		struct rq *rq = cfs_rq->rq;
8315 8316

		raw_spin_lock_irq(&rq->lock);
8317
		cfs_rq->runtime_enabled = runtime_enabled;
8318
		cfs_rq->runtime_remaining = 0;
8319

8320
		if (cfs_rq->throttled)
8321
			unthrottle_cfs_rq(cfs_rq);
8322 8323
		raw_spin_unlock_irq(&rq->lock);
	}
8324 8325
	if (runtime_was_enabled && !runtime_enabled)
		cfs_bandwidth_usage_dec();
8326 8327
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
8328
	put_online_cpus();
8329

8330
	return ret;
8331 8332 8333 8334 8335 8336
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

8337
	period = ktime_to_ns(tg->cfs_bandwidth.period);
8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

8350
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8351 8352
		return -1;

8353
	quota_us = tg->cfs_bandwidth.quota;
8354 8355 8356 8357 8358 8359 8360 8361 8362 8363
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
8364
	quota = tg->cfs_bandwidth.quota;
8365 8366 8367 8368 8369 8370 8371 8372

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

8373
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8374 8375 8376 8377 8378
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

8379 8380
static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
				  struct cftype *cft)
8381
{
8382
	return tg_get_cfs_quota(css_tg(css));
8383 8384
}

8385 8386
static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
				   struct cftype *cftype, s64 cfs_quota_us)
8387
{
8388
	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8389 8390
}

8391 8392
static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
				   struct cftype *cft)
8393
{
8394
	return tg_get_cfs_period(css_tg(css));
8395 8396
}

8397 8398
static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 cfs_period_us)
8399
{
8400
	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8401 8402
}

8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
8435
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8436 8437 8438 8439 8440
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
8441
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8442 8443

		quota = normalize_cfs_quota(tg, d);
8444
		parent_quota = parent_b->hierarchical_quota;
8445 8446 8447 8448 8449 8450 8451 8452 8453 8454

		/*
		 * ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
8455
	cfs_b->hierarchical_quota = quota;
8456 8457 8458 8459 8460 8461

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
8462
	int ret;
8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

8474 8475 8476 8477 8478
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
8479
}
8480

8481
static int cpu_stats_show(struct seq_file *sf, void *v)
8482
{
8483
	struct task_group *tg = css_tg(seq_css(sf));
8484
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8485

8486 8487 8488
	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8489 8490 8491

	return 0;
}
8492
#endif /* CONFIG_CFS_BANDWIDTH */
8493
#endif /* CONFIG_FAIR_GROUP_SCHED */
8494

8495
#ifdef CONFIG_RT_GROUP_SCHED
8496 8497
static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
				struct cftype *cft, s64 val)
P
Peter Zijlstra 已提交
8498
{
8499
	return sched_group_set_rt_runtime(css_tg(css), val);
P
Peter Zijlstra 已提交
8500 8501
}

8502 8503
static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
P
Peter Zijlstra 已提交
8504
{
8505
	return sched_group_rt_runtime(css_tg(css));
P
Peter Zijlstra 已提交
8506
}
8507

8508 8509
static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 rt_period_us)
8510
{
8511
	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8512 8513
}

8514 8515
static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
				   struct cftype *cft)
8516
{
8517
	return sched_group_rt_period(css_tg(css));
8518
}
8519
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
8520

8521
static struct cftype cpu_files[] = {
8522
#ifdef CONFIG_FAIR_GROUP_SCHED
8523 8524
	{
		.name = "shares",
8525 8526
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8527
	},
8528
#endif
8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
8540 8541
	{
		.name = "stat",
8542
		.seq_show = cpu_stats_show,
8543
	},
8544
#endif
8545
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8546
	{
P
Peter Zijlstra 已提交
8547
		.name = "rt_runtime_us",
8548 8549
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8550
	},
8551 8552
	{
		.name = "rt_period_us",
8553 8554
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8555
	},
8556
#endif
8557
	{ }	/* terminate */
8558 8559
};

8560
struct cgroup_subsys cpu_cgrp_subsys = {
8561 8562
	.css_alloc	= cpu_cgroup_css_alloc,
	.css_free	= cpu_cgroup_css_free,
8563 8564
	.css_online	= cpu_cgroup_css_online,
	.css_offline	= cpu_cgroup_css_offline,
8565
	.fork		= cpu_cgroup_fork,
8566 8567
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
8568
	.exit		= cpu_cgroup_exit,
8569
	.legacy_cftypes	= cpu_files,
8570 8571 8572
	.early_init	= 1,
};

8573
#endif	/* CONFIG_CGROUP_SCHED */
8574

8575 8576 8577 8578 8579
void dump_cpu_task(int cpu)
{
	pr_info("Task dump for CPU %d:\n", cpu);
	sched_show_task(cpu_curr(cpu));
}