core.c 189.8 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/highmem.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
37
#include <linux/capability.h>
L
Linus Torvalds 已提交
38 39
#include <linux/completion.h>
#include <linux/kernel_stat.h>
40
#include <linux/debug_locks.h>
41
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
57
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
58
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/unistd.h>
J
Jens Axboe 已提交
66
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
67
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
68
#include <linux/tick.h>
P
Peter Zijlstra 已提交
69 70
#include <linux/debugfs.h>
#include <linux/ctype.h>
71
#include <linux/ftrace.h>
72
#include <linux/slab.h>
73
#include <linux/init_task.h>
A
Al Viro 已提交
74
#include <linux/binfmts.h>
75
#include <linux/context_tracking.h>
L
Linus Torvalds 已提交
76

77
#include <asm/switch_to.h>
78
#include <asm/tlb.h>
79
#include <asm/irq_regs.h>
80
#include <asm/mutex.h>
G
Glauber Costa 已提交
81 82 83
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
84

85
#include "sched.h"
86
#include "../workqueue_internal.h"
87
#include "../smpboot.h"
88

89
#define CREATE_TRACE_POINTS
90
#include <trace/events/sched.h>
91

92
void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93
{
94 95
	unsigned long delta;
	ktime_t soft, hard, now;
96

97 98 99 100 101 102
	for (;;) {
		if (hrtimer_active(period_timer))
			break;

		now = hrtimer_cb_get_time(period_timer);
		hrtimer_forward(period_timer, now, period);
103

104 105 106 107 108 109 110 111
		soft = hrtimer_get_softexpires(period_timer);
		hard = hrtimer_get_expires(period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(period_timer, soft, delta,
					 HRTIMER_MODE_ABS_PINNED, 0);
	}
}

112 113
DEFINE_MUTEX(sched_domains_mutex);
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114

115
static void update_rq_clock_task(struct rq *rq, s64 delta);
116

117
void update_rq_clock(struct rq *rq)
118
{
119
	s64 delta;
120

121
	if (rq->skip_clock_update > 0)
122
		return;
123

124 125 126
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
127 128
}

I
Ingo Molnar 已提交
129 130 131
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
132 133 134 135

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
136
const_debug unsigned int sysctl_sched_features =
137
#include "features.h"
P
Peter Zijlstra 已提交
138 139 140 141 142 143 144 145
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

146
static const char * const sched_feat_names[] = {
147
#include "features.h"
P
Peter Zijlstra 已提交
148 149 150 151
};

#undef SCHED_FEAT

L
Li Zefan 已提交
152
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
153 154 155
{
	int i;

156
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
L
Li Zefan 已提交
157 158 159
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
160
	}
L
Li Zefan 已提交
161
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
162

L
Li Zefan 已提交
163
	return 0;
P
Peter Zijlstra 已提交
164 165
}

166 167
#ifdef HAVE_JUMP_LABEL

168 169
#define jump_label_key__true  STATIC_KEY_INIT_TRUE
#define jump_label_key__false STATIC_KEY_INIT_FALSE
170 171 172 173

#define SCHED_FEAT(name, enabled)	\
	jump_label_key__##enabled ,

174
struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175 176 177 178 179 180 181
#include "features.h"
};

#undef SCHED_FEAT

static void sched_feat_disable(int i)
{
182 183
	if (static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_dec(&sched_feat_keys[i]);
184 185 186 187
}

static void sched_feat_enable(int i)
{
188 189
	if (!static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_inc(&sched_feat_keys[i]);
190 191 192 193 194 195
}
#else
static void sched_feat_disable(int i) { };
static void sched_feat_enable(int i) { };
#endif /* HAVE_JUMP_LABEL */

196
static int sched_feat_set(char *cmp)
P
Peter Zijlstra 已提交
197 198
{
	int i;
199
	int neg = 0;
P
Peter Zijlstra 已提交
200

H
Hillf Danton 已提交
201
	if (strncmp(cmp, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
202 203 204 205
		neg = 1;
		cmp += 3;
	}

206
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
207
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
208
			if (neg) {
P
Peter Zijlstra 已提交
209
				sysctl_sched_features &= ~(1UL << i);
210 211
				sched_feat_disable(i);
			} else {
P
Peter Zijlstra 已提交
212
				sysctl_sched_features |= (1UL << i);
213 214
				sched_feat_enable(i);
			}
P
Peter Zijlstra 已提交
215 216 217 218
			break;
		}
	}

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
	return i;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
	cmp = strstrip(buf);

	i = sched_feat_set(cmp);
240
	if (i == __SCHED_FEAT_NR)
P
Peter Zijlstra 已提交
241 242
		return -EINVAL;

243
	*ppos += cnt;
P
Peter Zijlstra 已提交
244 245 246 247

	return cnt;
}

L
Li Zefan 已提交
248 249 250 251 252
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

253
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
254 255 256 257 258
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
259 260 261 262 263 264 265 266 267 268
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);
269
#endif /* CONFIG_SCHED_DEBUG */
I
Ingo Molnar 已提交
270

271 272 273 274 275 276
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

277 278 279 280 281 282 283 284
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
285
/*
P
Peter Zijlstra 已提交
286
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
287 288
 * default: 1s
 */
P
Peter Zijlstra 已提交
289
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
290

291
__read_mostly int scheduler_running;
292

P
Peter Zijlstra 已提交
293 294 295 296 297
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
298

299 300 301 302 303 304 305 306 307
/*
 * Maximum bandwidth available for all -deadline tasks and groups
 * (if group scheduling is configured) on each CPU.
 *
 * default: 5%
 */
unsigned int sysctl_sched_dl_period = 1000000;
int sysctl_sched_dl_runtime = 50000;

P
Peter Zijlstra 已提交
308

L
Linus Torvalds 已提交
309

310
/*
311
 * __task_rq_lock - lock the rq @p resides on.
312
 */
313
static inline struct rq *__task_rq_lock(struct task_struct *p)
314 315
	__acquires(rq->lock)
{
316 317
	struct rq *rq;

318 319
	lockdep_assert_held(&p->pi_lock);

320
	for (;;) {
321
		rq = task_rq(p);
322
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
323
		if (likely(rq == task_rq(p)))
324
			return rq;
325
		raw_spin_unlock(&rq->lock);
326 327 328
	}
}

L
Linus Torvalds 已提交
329
/*
330
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
L
Linus Torvalds 已提交
331
 */
332
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
333
	__acquires(p->pi_lock)
L
Linus Torvalds 已提交
334 335
	__acquires(rq->lock)
{
336
	struct rq *rq;
L
Linus Torvalds 已提交
337

338
	for (;;) {
339
		raw_spin_lock_irqsave(&p->pi_lock, *flags);
340
		rq = task_rq(p);
341
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
342
		if (likely(rq == task_rq(p)))
343
			return rq;
344 345
		raw_spin_unlock(&rq->lock);
		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
346 347 348
	}
}

A
Alexey Dobriyan 已提交
349
static void __task_rq_unlock(struct rq *rq)
350 351
	__releases(rq->lock)
{
352
	raw_spin_unlock(&rq->lock);
353 354
}

355 356
static inline void
task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
357
	__releases(rq->lock)
358
	__releases(p->pi_lock)
L
Linus Torvalds 已提交
359
{
360 361
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
362 363 364
}

/*
365
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
366
 */
A
Alexey Dobriyan 已提交
367
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
368 369
	__acquires(rq->lock)
{
370
	struct rq *rq;
L
Linus Torvalds 已提交
371 372 373

	local_irq_disable();
	rq = this_rq();
374
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
375 376 377 378

	return rq;
}

P
Peter Zijlstra 已提交
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

400
	raw_spin_lock(&rq->lock);
401
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
402
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
403
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
404 405 406 407

	return HRTIMER_NORESTART;
}

408
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
409 410 411 412 413 414 415 416 417

static int __hrtick_restart(struct rq *rq)
{
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = hrtimer_get_softexpires(timer);

	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
}

418 419 420 421
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
422
{
423
	struct rq *rq = arg;
424

425
	raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
426
	__hrtick_restart(rq);
427
	rq->hrtick_csd_pending = 0;
428
	raw_spin_unlock(&rq->lock);
429 430
}

431 432 433 434 435
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
436
void hrtick_start(struct rq *rq, u64 delay)
437
{
438 439
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
440

441
	hrtimer_set_expires(timer, time);
442 443

	if (rq == this_rq()) {
P
Peter Zijlstra 已提交
444
		__hrtick_restart(rq);
445
	} else if (!rq->hrtick_csd_pending) {
446
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
447 448
		rq->hrtick_csd_pending = 1;
	}
449 450 451 452 453 454 455 456 457 458 459 460 461 462
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
463
		hrtick_clear(cpu_rq(cpu));
464 465 466 467 468 469
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

470
static __init void init_hrtick(void)
471 472 473
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
474 475 476 477 478 479
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
480
void hrtick_start(struct rq *rq, u64 delay)
481
{
482
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
483
			HRTIMER_MODE_REL_PINNED, 0);
484
}
485

A
Andrew Morton 已提交
486
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
487 488
{
}
489
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
490

491
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
492
{
493 494
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
495

496 497 498 499
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
500

501 502
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
503
}
A
Andrew Morton 已提交
504
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
505 506 507 508 509 510 511 512
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

513 514 515
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
516
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
517

I
Ingo Molnar 已提交
518 519 520 521 522 523 524
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
525
void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
526 527 528
{
	int cpu;

529
	lockdep_assert_held(&task_rq(p)->lock);
I
Ingo Molnar 已提交
530

531
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
532 533
		return;

534
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
535 536

	cpu = task_cpu(p);
537 538
	if (cpu == smp_processor_id()) {
		set_preempt_need_resched();
I
Ingo Molnar 已提交
539
		return;
540
	}
I
Ingo Molnar 已提交
541 542 543 544 545 546 547

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

548
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
549 550 551 552
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

553
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
554 555
		return;
	resched_task(cpu_curr(cpu));
556
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
557
}
558

559
#ifdef CONFIG_SMP
560
#ifdef CONFIG_NO_HZ_COMMON
561 562 563 564 565 566 567 568 569 570 571 572 573 574
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
int get_nohz_timer_target(void)
{
	int cpu = smp_processor_id();
	int i;
	struct sched_domain *sd;

575
	rcu_read_lock();
576
	for_each_domain(cpu, sd) {
577 578 579 580 581 582
		for_each_cpu(i, sched_domain_span(sd)) {
			if (!idle_cpu(i)) {
				cpu = i;
				goto unlock;
			}
		}
583
	}
584 585
unlock:
	rcu_read_unlock();
586 587
	return cpu;
}
588 589 590 591 592 593 594 595 596 597
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
598
static void wake_up_idle_cpu(int cpu)
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;
614 615

	/*
616 617 618
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
619
	 */
620
	set_tsk_need_resched(rq->idle);
621

622 623 624 625
	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
626 627
}

628
static bool wake_up_full_nohz_cpu(int cpu)
629
{
630
	if (tick_nohz_full_cpu(cpu)) {
631 632 633 634 635 636 637 638 639 640 641
		if (cpu != smp_processor_id() ||
		    tick_nohz_tick_stopped())
			smp_send_reschedule(cpu);
		return true;
	}

	return false;
}

void wake_up_nohz_cpu(int cpu)
{
642
	if (!wake_up_full_nohz_cpu(cpu))
643 644 645
		wake_up_idle_cpu(cpu);
}

646
static inline bool got_nohz_idle_kick(void)
647
{
648
	int cpu = smp_processor_id();
649 650 651 652 653 654 655 656 657 658 659 660 661

	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
		return false;

	if (idle_cpu(cpu) && !need_resched())
		return true;

	/*
	 * We can't run Idle Load Balance on this CPU for this time so we
	 * cancel it and clear NOHZ_BALANCE_KICK
	 */
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
	return false;
662 663
}

664
#else /* CONFIG_NO_HZ_COMMON */
665

666
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
667
{
668
	return false;
P
Peter Zijlstra 已提交
669 670
}

671
#endif /* CONFIG_NO_HZ_COMMON */
672

673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
#ifdef CONFIG_NO_HZ_FULL
bool sched_can_stop_tick(void)
{
       struct rq *rq;

       rq = this_rq();

       /* Make sure rq->nr_running update is visible after the IPI */
       smp_rmb();

       /* More than one running task need preemption */
       if (rq->nr_running > 1)
               return false;

       return true;
}
#endif /* CONFIG_NO_HZ_FULL */
690

691
void sched_avg_update(struct rq *rq)
692
{
693 694
	s64 period = sched_avg_period();

695
	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
696 697 698 699 700 701
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
702 703 704
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
705 706
}

707
#endif /* CONFIG_SMP */
708

709 710
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
711
/*
712 713 714 715
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
716
 */
717
int walk_tg_tree_from(struct task_group *from,
718
			     tg_visitor down, tg_visitor up, void *data)
719 720
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
721
	int ret;
722

723 724
	parent = from;

725
down:
P
Peter Zijlstra 已提交
726 727
	ret = (*down)(parent, data);
	if (ret)
728
		goto out;
729 730 731 732 733 734 735
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
736
	ret = (*up)(parent, data);
737 738
	if (ret || parent == from)
		goto out;
739 740 741 742 743

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
744
out:
P
Peter Zijlstra 已提交
745
	return ret;
746 747
}

748
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
749
{
750
	return 0;
P
Peter Zijlstra 已提交
751
}
752 753
#endif

754 755
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
756 757 758
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
759 760 761 762
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
763
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
764
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
765 766
		return;
	}
767

768
	load->weight = scale_load(prio_to_weight[prio]);
N
Nikhil Rao 已提交
769
	load->inv_weight = prio_to_wmult[prio];
770 771
}

772
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
773
{
774
	update_rq_clock(rq);
775
	sched_info_queued(rq, p);
776
	p->sched_class->enqueue_task(rq, p, flags);
777 778
}

779
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
780
{
781
	update_rq_clock(rq);
782
	sched_info_dequeued(rq, p);
783
	p->sched_class->dequeue_task(rq, p, flags);
784 785
}

786
void activate_task(struct rq *rq, struct task_struct *p, int flags)
787 788 789 790
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

791
	enqueue_task(rq, p, flags);
792 793
}

794
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
795 796 797 798
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

799
	dequeue_task(rq, p, flags);
800 801
}

802
static void update_rq_clock_task(struct rq *rq, s64 delta)
803
{
804 805 806 807 808 809 810 811
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
812
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
834 835
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
836
	if (static_key_false((&paravirt_steal_rq_enabled))) {
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
		u64 st;

		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		st = steal_ticks(steal);
		steal = st * TICK_NSEC;

		rq->prev_steal_time_rq += steal;

		delta -= steal;
	}
#endif

854 855
	rq->clock_task += delta;

856 857 858 859
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
860 861
}

862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

892
/*
I
Ingo Molnar 已提交
893
 * __normal_prio - return the priority that is based on the static prio
894 895 896
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
897
	return p->static_prio;
898 899
}

900 901 902 903 904 905 906
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
907
static inline int normal_prio(struct task_struct *p)
908 909 910
{
	int prio;

911 912 913
	if (task_has_dl_policy(p))
		prio = MAX_DL_PRIO-1;
	else if (task_has_rt_policy(p))
914 915 916 917 918 919 920 921 922 923 924 925 926
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
927
static int effective_prio(struct task_struct *p)
928 929 930 931 932 933 934 935 936 937 938 939
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
940 941 942
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
943 944
 *
 * Return: 1 if the task is currently executing. 0 otherwise.
L
Linus Torvalds 已提交
945
 */
946
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
947 948 949 950
{
	return cpu_curr(task_cpu(p)) == p;
}

951 952
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
953
				       int oldprio)
954 955 956
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
957 958
			prev_class->switched_from(rq, p);
		p->sched_class->switched_to(rq, p);
959
	} else if (oldprio != p->prio || dl_task(p))
P
Peter Zijlstra 已提交
960
		p->sched_class->prio_changed(rq, p, oldprio);
961 962
}

963
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
				resched_task(rq->curr);
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
P
Peter Zijlstra 已提交
984
	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
985 986 987
		rq->skip_clock_update = 1;
}

L
Linus Torvalds 已提交
988
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
989
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
990
{
991 992 993 994 995
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
996
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
997
			!(task_preempt_count(p) & PREEMPT_ACTIVE));
998 999

#ifdef CONFIG_LOCKDEP
1000 1001 1002 1003 1004
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
P
Peter Zijlstra 已提交
1005
	 * see task_group().
1006 1007 1008 1009
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
1010 1011 1012
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
1013 1014
#endif

1015
	trace_sched_migrate_task(p, new_cpu);
1016

1017
	if (task_cpu(p) != new_cpu) {
1018 1019
		if (p->sched_class->migrate_task_rq)
			p->sched_class->migrate_task_rq(p, new_cpu);
1020
		p->se.nr_migrations++;
1021
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1022
	}
I
Ingo Molnar 已提交
1023 1024

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1025 1026
}

1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
static void __migrate_swap_task(struct task_struct *p, int cpu)
{
	if (p->on_rq) {
		struct rq *src_rq, *dst_rq;

		src_rq = task_rq(p);
		dst_rq = cpu_rq(cpu);

		deactivate_task(src_rq, p, 0);
		set_task_cpu(p, cpu);
		activate_task(dst_rq, p, 0);
		check_preempt_curr(dst_rq, p, 0);
	} else {
		/*
		 * Task isn't running anymore; make it appear like we migrated
		 * it before it went to sleep. This means on wakeup we make the
		 * previous cpu our targer instead of where it really is.
		 */
		p->wake_cpu = cpu;
	}
}

struct migration_swap_arg {
	struct task_struct *src_task, *dst_task;
	int src_cpu, dst_cpu;
};

static int migrate_swap_stop(void *data)
{
	struct migration_swap_arg *arg = data;
	struct rq *src_rq, *dst_rq;
	int ret = -EAGAIN;

	src_rq = cpu_rq(arg->src_cpu);
	dst_rq = cpu_rq(arg->dst_cpu);

1063 1064
	double_raw_lock(&arg->src_task->pi_lock,
			&arg->dst_task->pi_lock);
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
	double_rq_lock(src_rq, dst_rq);
	if (task_cpu(arg->dst_task) != arg->dst_cpu)
		goto unlock;

	if (task_cpu(arg->src_task) != arg->src_cpu)
		goto unlock;

	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
		goto unlock;

	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
		goto unlock;

	__migrate_swap_task(arg->src_task, arg->dst_cpu);
	__migrate_swap_task(arg->dst_task, arg->src_cpu);

	ret = 0;

unlock:
	double_rq_unlock(src_rq, dst_rq);
1085 1086
	raw_spin_unlock(&arg->dst_task->pi_lock);
	raw_spin_unlock(&arg->src_task->pi_lock);
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108

	return ret;
}

/*
 * Cross migrate two tasks
 */
int migrate_swap(struct task_struct *cur, struct task_struct *p)
{
	struct migration_swap_arg arg;
	int ret = -EINVAL;

	arg = (struct migration_swap_arg){
		.src_task = cur,
		.src_cpu = task_cpu(cur),
		.dst_task = p,
		.dst_cpu = task_cpu(p),
	};

	if (arg.src_cpu == arg.dst_cpu)
		goto out;

1109 1110 1111 1112
	/*
	 * These three tests are all lockless; this is OK since all of them
	 * will be re-checked with proper locks held further down the line.
	 */
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
		goto out;

	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
		goto out;

	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
		goto out;

	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);

out:
	return ret;
}

1128
struct migration_arg {
1129
	struct task_struct *task;
L
Linus Torvalds 已提交
1130
	int dest_cpu;
1131
};
L
Linus Torvalds 已提交
1132

1133 1134
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
1135 1136 1137
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1138 1139 1140 1141 1142 1143 1144
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1145 1146 1147 1148 1149 1150
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1151
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1152 1153
{
	unsigned long flags;
I
Ingo Molnar 已提交
1154
	int running, on_rq;
R
Roland McGrath 已提交
1155
	unsigned long ncsw;
1156
	struct rq *rq;
L
Linus Torvalds 已提交
1157

1158 1159 1160 1161 1162 1163 1164 1165
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1166

1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1178 1179 1180
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1181
			cpu_relax();
R
Roland McGrath 已提交
1182
		}
1183

1184 1185 1186 1187 1188 1189
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1190
		trace_sched_wait_task(p);
1191
		running = task_running(rq, p);
P
Peter Zijlstra 已提交
1192
		on_rq = p->on_rq;
R
Roland McGrath 已提交
1193
		ncsw = 0;
1194
		if (!match_state || p->state == match_state)
1195
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1196
		task_rq_unlock(rq, p, &flags);
1197

R
Roland McGrath 已提交
1198 1199 1200 1201 1202 1203
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1214

1215 1216 1217 1218 1219
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1220
		 * So if it was still runnable (but just not actively
1221 1222 1223 1224
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
1225 1226 1227 1228
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1229 1230
			continue;
		}
1231

1232 1233 1234 1235 1236 1237 1238
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1239 1240

	return ncsw;
L
Linus Torvalds 已提交
1241 1242 1243 1244 1245 1246 1247 1248 1249
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1250
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1251 1252 1253 1254 1255
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1256
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1257 1258 1259 1260 1261 1262 1263 1264 1265
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1266
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
1267
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1268

1269
#ifdef CONFIG_SMP
1270
/*
1271
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1272
 */
1273 1274
static int select_fallback_rq(int cpu, struct task_struct *p)
{
1275 1276
	int nid = cpu_to_node(cpu);
	const struct cpumask *nodemask = NULL;
1277 1278
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1279

1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
	/*
	 * If the node that the cpu is on has been offlined, cpu_to_node()
	 * will return -1. There is no cpu on the node, and we should
	 * select the cpu on the other node.
	 */
	if (nid != -1) {
		nodemask = cpumask_of_node(nid);

		/* Look for allowed, online CPU in same node. */
		for_each_cpu(dest_cpu, nodemask) {
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
				return dest_cpu;
		}
1297
	}
1298

1299 1300
	for (;;) {
		/* Any allowed, online CPU? */
1301
		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1302 1303 1304 1305 1306 1307
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			goto out;
		}
1308

1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
		switch (state) {
		case cpuset:
			/* No more Mr. Nice Guy. */
			cpuset_cpus_allowed_fallback(p);
			state = possible;
			break;

		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk_sched("process %d (%s) no longer affine to cpu%d\n",
					task_pid_nr(p), p->comm, cpu);
		}
1338 1339 1340 1341 1342
	}

	return dest_cpu;
}

1343
/*
1344
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1345
 */
1346
static inline
1347
int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1348
{
1349
	cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1361
	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
P
Peter Zijlstra 已提交
1362
		     !cpu_online(cpu)))
1363
		cpu = select_fallback_rq(task_cpu(p), p);
1364 1365

	return cpu;
1366
}
1367 1368 1369 1370 1371 1372

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1373 1374
#endif

P
Peter Zijlstra 已提交
1375
static void
1376
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1377
{
P
Peter Zijlstra 已提交
1378
#ifdef CONFIG_SCHEDSTATS
1379 1380
	struct rq *rq = this_rq();

P
Peter Zijlstra 已提交
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
#ifdef CONFIG_SMP
	int this_cpu = smp_processor_id();

	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	} else {
		struct sched_domain *sd;

		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1391
		rcu_read_lock();
P
Peter Zijlstra 已提交
1392 1393 1394 1395 1396 1397
		for_each_domain(this_cpu, sd) {
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
1398
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1399
	}
1400 1401 1402 1403

	if (wake_flags & WF_MIGRATED)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);

P
Peter Zijlstra 已提交
1404 1405 1406
#endif /* CONFIG_SMP */

	schedstat_inc(rq, ttwu_count);
T
Tejun Heo 已提交
1407
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1408 1409

	if (wake_flags & WF_SYNC)
T
Tejun Heo 已提交
1410
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1411 1412 1413 1414 1415 1416

#endif /* CONFIG_SCHEDSTATS */
}

static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
{
T
Tejun Heo 已提交
1417
	activate_task(rq, p, en_flags);
P
Peter Zijlstra 已提交
1418
	p->on_rq = 1;
1419 1420 1421 1422

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1423 1424
}

1425 1426 1427
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1428
static void
1429
ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
T
Tejun Heo 已提交
1430 1431
{
	check_preempt_curr(rq, p, wake_flags);
1432
	trace_sched_wakeup(p, true);
T
Tejun Heo 已提交
1433 1434 1435 1436 1437 1438

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);

1439
	if (rq->idle_stamp) {
1440
		u64 delta = rq_clock(rq) - rq->idle_stamp;
1441
		u64 max = 2*rq->max_idle_balance_cost;
T
Tejun Heo 已提交
1442

1443 1444 1445
		update_avg(&rq->avg_idle, delta);

		if (rq->avg_idle > max)
T
Tejun Heo 已提交
1446
			rq->avg_idle = max;
1447

T
Tejun Heo 已提交
1448 1449 1450 1451 1452
		rq->idle_stamp = 0;
	}
#endif
}

1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
static void
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
{
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
#endif

	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
	ttwu_do_wakeup(rq, p, wake_flags);
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
	if (p->on_rq) {
1478 1479
		/* check_preempt_curr() may use rq clock */
		update_rq_clock(rq);
1480 1481 1482 1483 1484 1485 1486 1487
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;
}

1488
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1489
static void sched_ttwu_pending(void)
1490 1491
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1492 1493
	struct llist_node *llist = llist_del_all(&rq->wake_list);
	struct task_struct *p;
1494 1495 1496

	raw_spin_lock(&rq->lock);

P
Peter Zijlstra 已提交
1497 1498 1499
	while (llist) {
		p = llist_entry(llist, struct task_struct, wake_entry);
		llist = llist_next(llist);
1500 1501 1502 1503 1504 1505 1506 1507
		ttwu_do_activate(rq, p, 0);
	}

	raw_spin_unlock(&rq->lock);
}

void scheduler_ipi(void)
{
1508 1509 1510 1511 1512 1513 1514 1515
	/*
	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
	 * TIF_NEED_RESCHED remotely (for the first time) will also send
	 * this IPI.
	 */
	if (tif_need_resched())
		set_preempt_need_resched();

1516 1517 1518
	if (llist_empty(&this_rq()->wake_list)
			&& !tick_nohz_full_cpu(smp_processor_id())
			&& !got_nohz_idle_kick())
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
1535
	tick_nohz_full_check();
P
Peter Zijlstra 已提交
1536
	sched_ttwu_pending();
1537 1538 1539 1540

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1541
	if (unlikely(got_nohz_idle_kick())) {
1542
		this_rq()->idle_balance = 1;
1543
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1544
	}
1545
	irq_exit();
1546 1547 1548 1549
}

static void ttwu_queue_remote(struct task_struct *p, int cpu)
{
P
Peter Zijlstra 已提交
1550
	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1551 1552
		smp_send_reschedule(cpu);
}
1553

1554
bool cpus_share_cache(int this_cpu, int that_cpu)
1555 1556 1557
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1558
#endif /* CONFIG_SMP */
1559

1560 1561 1562 1563
static void ttwu_queue(struct task_struct *p, int cpu)
{
	struct rq *rq = cpu_rq(cpu);

1564
#if defined(CONFIG_SMP)
1565
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1566
		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1567 1568 1569 1570 1571
		ttwu_queue_remote(p, cpu);
		return;
	}
#endif

1572 1573 1574
	raw_spin_lock(&rq->lock);
	ttwu_do_activate(rq, p, 0);
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
1575 1576 1577
}

/**
L
Linus Torvalds 已提交
1578
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1579
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1580
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1581
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1582 1583 1584 1585 1586 1587 1588
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
1589
 * Return: %true if @p was woken up, %false if it was already running.
T
Tejun Heo 已提交
1590
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
1591
 */
1592 1593
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1594 1595
{
	unsigned long flags;
1596
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1597

1598 1599 1600 1601 1602 1603 1604
	/*
	 * If we are going to wake up a thread waiting for CONDITION we
	 * need to ensure that CONDITION=1 done by the caller can not be
	 * reordered with p->state check below. This pairs with mb() in
	 * set_current_state() the waiting thread does.
	 */
	smp_mb__before_spinlock();
1605
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
1606
	if (!(p->state & state))
L
Linus Torvalds 已提交
1607 1608
		goto out;

1609
	success = 1; /* we're going to change ->state */
L
Linus Torvalds 已提交
1610 1611
	cpu = task_cpu(p);

1612 1613
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
1614 1615

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1616
	/*
1617 1618
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
P
Peter Zijlstra 已提交
1619
	 */
1620
	while (p->on_cpu)
1621
		cpu_relax();
1622
	/*
1623
	 * Pairs with the smp_wmb() in finish_lock_switch().
1624
	 */
1625
	smp_rmb();
L
Linus Torvalds 已提交
1626

1627
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
1628
	p->state = TASK_WAKING;
1629

1630
	if (p->sched_class->task_waking)
1631
		p->sched_class->task_waking(p);
1632

1633
	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1634 1635
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
1636
		set_task_cpu(p, cpu);
1637
	}
L
Linus Torvalds 已提交
1638 1639
#endif /* CONFIG_SMP */

1640 1641
	ttwu_queue(p, cpu);
stat:
1642
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
1643
out:
1644
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
1645 1646 1647 1648

	return success;
}

T
Tejun Heo 已提交
1649 1650 1651 1652
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
1653
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
1654
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1655
 * the current task.
T
Tejun Heo 已提交
1656 1657 1658 1659 1660
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

1661 1662 1663 1664
	if (WARN_ON_ONCE(rq != this_rq()) ||
	    WARN_ON_ONCE(p == current))
		return;

T
Tejun Heo 已提交
1665 1666
	lockdep_assert_held(&rq->lock);

1667 1668 1669 1670 1671 1672
	if (!raw_spin_trylock(&p->pi_lock)) {
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
	}

T
Tejun Heo 已提交
1673
	if (!(p->state & TASK_NORMAL))
1674
		goto out;
T
Tejun Heo 已提交
1675

P
Peter Zijlstra 已提交
1676
	if (!p->on_rq)
P
Peter Zijlstra 已提交
1677 1678
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

1679
	ttwu_do_wakeup(rq, p, 0);
1680
	ttwu_stat(p, smp_processor_id(), 0);
1681 1682
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
1683 1684
}

1685 1686 1687 1688 1689
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
1690 1691 1692
 * processes.
 *
 * Return: 1 if the process was woken up, 0 if it was already running.
1693 1694 1695 1696
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
1697
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1698
{
1699 1700
	WARN_ON(task_is_stopped_or_traced(p));
	return try_to_wake_up(p, TASK_NORMAL, 0);
L
Linus Torvalds 已提交
1701 1702 1703
}
EXPORT_SYMBOL(wake_up_process);

1704
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1705 1706 1707 1708 1709 1710 1711
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1712 1713 1714
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
1715
static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
1716
{
P
Peter Zijlstra 已提交
1717 1718 1719
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
1720 1721
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1722
	p->se.prev_sum_exec_runtime	= 0;
1723
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
1724
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
1725
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
1726 1727

#ifdef CONFIG_SCHEDSTATS
1728
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
1729
#endif
N
Nick Piggin 已提交
1730

1731 1732 1733 1734
	RB_CLEAR_NODE(&p->dl.rb_node);
	hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	p->dl.dl_runtime = p->dl.runtime = 0;
	p->dl.dl_deadline = p->dl.deadline = 0;
1735
	p->dl.dl_period = 0;
1736 1737
	p->dl.flags = 0;

P
Peter Zijlstra 已提交
1738
	INIT_LIST_HEAD(&p->rt.run_list);
N
Nick Piggin 已提交
1739

1740 1741 1742
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
1743 1744 1745

#ifdef CONFIG_NUMA_BALANCING
	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1746
		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1747 1748 1749
		p->mm->numa_scan_seq = 0;
	}

1750 1751 1752 1753 1754
	if (clone_flags & CLONE_VM)
		p->numa_preferred_nid = current->numa_preferred_nid;
	else
		p->numa_preferred_nid = -1;

1755 1756
	p->node_stamp = 0ULL;
	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1757
	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1758
	p->numa_work.next = &p->numa_work;
1759
	p->numa_faults = NULL;
1760
	p->numa_faults_buffer = NULL;
1761 1762 1763

	INIT_LIST_HEAD(&p->numa_entry);
	p->numa_group = NULL;
1764
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
1765 1766
}

1767
#ifdef CONFIG_NUMA_BALANCING
1768
#ifdef CONFIG_SCHED_DEBUG
1769 1770 1771 1772 1773 1774 1775
void set_numabalancing_state(bool enabled)
{
	if (enabled)
		sched_feat_set("NUMA");
	else
		sched_feat_set("NO_NUMA");
}
1776 1777 1778 1779 1780 1781
#else
__read_mostly bool numabalancing_enabled;

void set_numabalancing_state(bool enabled)
{
	numabalancing_enabled = enabled;
I
Ingo Molnar 已提交
1782
}
1783
#endif /* CONFIG_SCHED_DEBUG */
1784
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
1785 1786 1787 1788

/*
 * fork()/clone()-time setup:
 */
1789
int sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
1790
{
1791
	unsigned long flags;
I
Ingo Molnar 已提交
1792 1793
	int cpu = get_cpu();

1794
	__sched_fork(clone_flags, p);
1795
	/*
1796
	 * We mark the process as running here. This guarantees that
1797 1798 1799
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
1800
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1801

1802 1803 1804 1805 1806
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

1807 1808 1809 1810
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
1811
		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1812
			p->policy = SCHED_NORMAL;
1813
			p->static_prio = NICE_TO_PRIO(0);
1814 1815 1816 1817 1818 1819
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
1820

1821 1822 1823 1824 1825 1826
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
1827

1828 1829 1830 1831 1832 1833
	if (dl_prio(p->prio)) {
		put_cpu();
		return -EAGAIN;
	} else if (rt_prio(p->prio)) {
		p->sched_class = &rt_sched_class;
	} else {
H
Hiroshi Shimamoto 已提交
1834
		p->sched_class = &fair_sched_class;
1835
	}
1836

P
Peter Zijlstra 已提交
1837 1838 1839
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

1840 1841 1842 1843 1844 1845 1846
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
1847
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1848
	set_task_cpu(p, cpu);
1849
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1850

1851
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1852
	if (likely(sched_info_on()))
1853
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1854
#endif
P
Peter Zijlstra 已提交
1855 1856
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
1857
#endif
1858
	init_task_preempt_count(p);
1859
#ifdef CONFIG_SMP
1860
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1861
	RB_CLEAR_NODE(&p->pushable_dl_tasks);
1862
#endif
1863

N
Nick Piggin 已提交
1864
	put_cpu();
1865
	return 0;
L
Linus Torvalds 已提交
1866 1867
}

1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 20;

	/*
	 * Doing this here saves a lot of checks in all
	 * the calling paths, and returning zero seems
	 * safe for them anyway.
	 */
	if (period == 0)
		return 0;

	return div64_u64(runtime << 20, period);
}

#ifdef CONFIG_SMP
inline struct dl_bw *dl_bw_of(int i)
{
	return &cpu_rq(i)->rd->dl_bw;
}

static inline int __dl_span_weight(struct rq *rq)
{
	return cpumask_weight(rq->rd->span);
}
#else
inline struct dl_bw *dl_bw_of(int i)
{
	return &cpu_rq(i)->dl.dl_bw;
}

static inline int __dl_span_weight(struct rq *rq)
{
	return 1;
}
#endif

static inline
void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
{
	dl_b->total_bw -= tsk_bw;
}

static inline
void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
{
	dl_b->total_bw += tsk_bw;
}

static inline
bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
{
	return dl_b->bw != -1 &&
	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
}

/*
 * We must be sure that accepting a new task (or allowing changing the
 * parameters of an existing one) is consistent with the bandwidth
 * constraints. If yes, this function also accordingly updates the currently
 * allocated bandwidth to reflect the new situation.
 *
 * This function is called while holding p's rq->lock.
 */
static int dl_overflow(struct task_struct *p, int policy,
		       const struct sched_attr *attr)
{

	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
	u64 period = attr->sched_period;
	u64 runtime = attr->sched_runtime;
	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
	int cpus = __dl_span_weight(task_rq(p));
	int err = -1;

	if (new_bw == p->dl.dl_bw)
		return 0;

	/*
	 * Either if a task, enters, leave, or stays -deadline but changes
	 * its parameters, we may need to update accordingly the total
	 * allocated bandwidth of the container.
	 */
	raw_spin_lock(&dl_b->lock);
	if (dl_policy(policy) && !task_has_dl_policy(p) &&
	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
		__dl_add(dl_b, new_bw);
		err = 0;
	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
		__dl_clear(dl_b, p->dl.dl_bw);
		__dl_add(dl_b, new_bw);
		err = 0;
	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
		__dl_clear(dl_b, p->dl.dl_bw);
		err = 0;
	}
	raw_spin_unlock(&dl_b->lock);

	return err;
}

extern void init_dl_bw(struct dl_bw *dl_b);

L
Linus Torvalds 已提交
1973 1974 1975 1976 1977 1978 1979
/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1980
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
1981 1982
{
	unsigned long flags;
I
Ingo Molnar 已提交
1983
	struct rq *rq;
1984

1985
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1986 1987 1988 1989 1990 1991
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 */
1992
	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
1993 1994
#endif

1995 1996
	/* Initialize new task's runnable average */
	init_task_runnable_average(p);
1997
	rq = __task_rq_lock(p);
P
Peter Zijlstra 已提交
1998
	activate_task(rq, p, 0);
P
Peter Zijlstra 已提交
1999
	p->on_rq = 1;
2000
	trace_sched_wakeup_new(p, true);
P
Peter Zijlstra 已提交
2001
	check_preempt_curr(rq, p, WF_FORK);
2002
#ifdef CONFIG_SMP
2003 2004
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2005
#endif
2006
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
2007 2008
}

2009 2010 2011
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2012
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2013
 * @notifier: notifier struct to register
2014 2015 2016 2017 2018 2019 2020 2021 2022
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2023
 * @notifier: notifier struct to unregister
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;

2037
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2038 2039 2040 2041 2042 2043 2044 2045 2046
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;

2047
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2048 2049 2050
		notifier->ops->sched_out(notifier, next);
}

2051
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2063
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2064

2065 2066 2067
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2068
 * @prev: the current task that is being switched out
2069 2070 2071 2072 2073 2074 2075 2076 2077
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2078 2079 2080
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2081
{
2082
	trace_sched_switch(prev, next);
2083
	sched_info_switch(rq, prev, next);
2084
	perf_event_task_sched_out(prev, next);
2085
	fire_sched_out_preempt_notifiers(prev, next);
2086 2087 2088 2089
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2090 2091
/**
 * finish_task_switch - clean up after a task-switch
2092
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2093 2094
 * @prev: the thread we just switched away from.
 *
2095 2096 2097 2098
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2099 2100
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2101
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2102 2103 2104
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2105
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2106 2107 2108
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2109
	long prev_state;
L
Linus Torvalds 已提交
2110 2111 2112 2113 2114

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2115
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2116 2117
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2118
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2119 2120 2121 2122 2123
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2124
	prev_state = prev->state;
2125
	vtime_task_switch(prev);
2126
	finish_arch_switch(prev);
2127
	perf_event_task_sched_in(prev, current);
2128
	finish_lock_switch(rq, prev);
2129
	finish_arch_post_lock_switch();
S
Steven Rostedt 已提交
2130

2131
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2132 2133
	if (mm)
		mmdrop(mm);
2134
	if (unlikely(prev_state == TASK_DEAD)) {
2135 2136
		task_numa_free(prev);

2137 2138 2139
		if (prev->sched_class->task_dead)
			prev->sched_class->task_dead(prev);

2140 2141 2142
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2143
		 */
2144
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2145
		put_task_struct(prev);
2146
	}
2147 2148

	tick_nohz_task_switch(current);
L
Linus Torvalds 已提交
2149 2150
}

2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

2166
		raw_spin_lock_irqsave(&rq->lock, flags);
2167 2168
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
2169
		raw_spin_unlock_irqrestore(&rq->lock, flags);
2170 2171 2172 2173 2174 2175

		rq->post_schedule = 0;
	}
}

#else
2176

2177 2178 2179 2180 2181 2182
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
2183 2184
}

2185 2186
#endif

L
Linus Torvalds 已提交
2187 2188 2189 2190
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2191
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2192 2193
	__releases(rq->lock)
{
2194 2195
	struct rq *rq = this_rq();

2196
	finish_task_switch(rq, prev);
2197

2198 2199 2200 2201 2202
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2203

2204 2205 2206 2207
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2208
	if (current->set_child_tid)
2209
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2210 2211 2212 2213 2214 2215
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2216
static inline void
2217
context_switch(struct rq *rq, struct task_struct *prev,
2218
	       struct task_struct *next)
L
Linus Torvalds 已提交
2219
{
I
Ingo Molnar 已提交
2220
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2221

2222
	prepare_task_switch(rq, prev, next);
2223

I
Ingo Molnar 已提交
2224 2225
	mm = next->mm;
	oldmm = prev->active_mm;
2226 2227 2228 2229 2230
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2231
	arch_start_context_switch(prev);
2232

2233
	if (!mm) {
L
Linus Torvalds 已提交
2234 2235 2236 2237 2238 2239
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2240
	if (!prev->mm) {
L
Linus Torvalds 已提交
2241 2242 2243
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2244 2245 2246 2247 2248 2249 2250
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2251
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2252
#endif
L
Linus Torvalds 已提交
2253

2254
	context_tracking_task_switch(prev, next);
L
Linus Torvalds 已提交
2255 2256 2257
	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2258 2259 2260 2261 2262 2263 2264
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2265 2266 2267
}

/*
2268
 * nr_running and nr_context_switches:
L
Linus Torvalds 已提交
2269 2270
 *
 * externally visible scheduler statistics: current number of runnable
2271
 * threads, total number of context switches performed since bootup.
L
Linus Torvalds 已提交
2272 2273 2274 2275 2276 2277 2278 2279 2280
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2281
}
L
Linus Torvalds 已提交
2282 2283

unsigned long long nr_context_switches(void)
2284
{
2285 2286
	int i;
	unsigned long long sum = 0;
2287

2288
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2289
		sum += cpu_rq(i)->nr_switches;
2290

L
Linus Torvalds 已提交
2291 2292
	return sum;
}
2293

L
Linus Torvalds 已提交
2294 2295 2296
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2297

2298
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2299
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2300

L
Linus Torvalds 已提交
2301 2302
	return sum;
}
2303

2304
unsigned long nr_iowait_cpu(int cpu)
2305
{
2306
	struct rq *this = cpu_rq(cpu);
2307 2308
	return atomic_read(&this->nr_iowait);
}
2309

I
Ingo Molnar 已提交
2310
#ifdef CONFIG_SMP
2311

2312
/*
P
Peter Zijlstra 已提交
2313 2314
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2315
 */
P
Peter Zijlstra 已提交
2316
void sched_exec(void)
2317
{
P
Peter Zijlstra 已提交
2318
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2319
	unsigned long flags;
2320
	int dest_cpu;
2321

2322
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2323
	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2324 2325
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2326

2327
	if (likely(cpu_active(dest_cpu))) {
2328
		struct migration_arg arg = { p, dest_cpu };
2329

2330 2331
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2332 2333
		return;
	}
2334
unlock:
2335
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2336
}
I
Ingo Molnar 已提交
2337

L
Linus Torvalds 已提交
2338 2339 2340
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2341
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
2342 2343

EXPORT_PER_CPU_SYMBOL(kstat);
2344
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
2345 2346

/*
2347
 * Return any ns on the sched_clock that have not yet been accounted in
2348
 * @p in case that task is currently running.
2349 2350
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
2351
 */
2352 2353 2354 2355 2356 2357
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
2358
		ns = rq_clock_task(rq) - p->se.exec_start;
2359 2360 2361 2362 2363 2364 2365
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

2366
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
2367 2368
{
	unsigned long flags;
2369
	struct rq *rq;
2370
	u64 ns = 0;
2371

2372
	rq = task_rq_lock(p, &flags);
2373
	ns = do_task_delta_exec(p, rq);
2374
	task_rq_unlock(rq, p, &flags);
2375

2376 2377
	return ns;
}
2378

2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
	/*
	 * 64-bit doesn't need locks to atomically read a 64bit value.
	 * So we have a optimization chance when the task's delta_exec is 0.
	 * Reading ->on_cpu is racy, but this is ok.
	 *
	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
	 * If we race with it entering cpu, unaccounted time is 0. This is
	 * indistinguishable from the read occurring a few cycles earlier.
	 */
	if (!p->on_cpu)
		return p->se.sum_exec_runtime;
#endif

2404 2405
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2406
	task_rq_unlock(rq, p, &flags);
2407 2408 2409

	return ns;
}
2410

2411 2412 2413 2414 2415 2416 2417 2418
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2419
	struct task_struct *curr = rq->curr;
2420 2421

	sched_clock_tick();
I
Ingo Molnar 已提交
2422

2423
	raw_spin_lock(&rq->lock);
2424
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
2425
	curr->sched_class->task_tick(rq, curr, 0);
2426
	update_cpu_load_active(rq);
2427
	raw_spin_unlock(&rq->lock);
2428

2429
	perf_event_task_tick();
2430

2431
#ifdef CONFIG_SMP
2432
	rq->idle_balance = idle_cpu(cpu);
I
Ingo Molnar 已提交
2433
	trigger_load_balance(rq, cpu);
2434
#endif
2435
	rq_last_tick_reset(rq);
L
Linus Torvalds 已提交
2436 2437
}

2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
#ifdef CONFIG_NO_HZ_FULL
/**
 * scheduler_tick_max_deferment
 *
 * Keep at least one tick per second when a single
 * active task is running because the scheduler doesn't
 * yet completely support full dynticks environment.
 *
 * This makes sure that uptime, CFS vruntime, load
 * balancing, etc... continue to move forward, even
 * with a very low granularity.
2449 2450
 *
 * Return: Maximum deferment in nanoseconds.
2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462
 */
u64 scheduler_tick_max_deferment(void)
{
	struct rq *rq = this_rq();
	unsigned long next, now = ACCESS_ONCE(jiffies);

	next = rq->last_sched_tick + HZ;

	if (time_before_eq(next, now))
		return 0;

	return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
L
Linus Torvalds 已提交
2463
}
2464
#endif
L
Linus Torvalds 已提交
2465

2466
notrace unsigned long get_parent_ip(unsigned long addr)
2467 2468 2469 2470 2471 2472 2473 2474
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
2475

2476 2477 2478
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

2479
void __kprobes preempt_count_add(int val)
L
Linus Torvalds 已提交
2480
{
2481
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2482 2483 2484
	/*
	 * Underflow?
	 */
2485 2486
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
2487
#endif
2488
	__preempt_count_add(val);
2489
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2490 2491 2492
	/*
	 * Spinlock count overflowing soon?
	 */
2493 2494
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
2495 2496 2497
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
2498
}
2499
EXPORT_SYMBOL(preempt_count_add);
L
Linus Torvalds 已提交
2500

2501
void __kprobes preempt_count_sub(int val)
L
Linus Torvalds 已提交
2502
{
2503
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2504 2505 2506
	/*
	 * Underflow?
	 */
2507
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2508
		return;
L
Linus Torvalds 已提交
2509 2510 2511
	/*
	 * Is the spinlock portion underflowing?
	 */
2512 2513 2514
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
2515
#endif
2516

2517 2518
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2519
	__preempt_count_sub(val);
L
Linus Torvalds 已提交
2520
}
2521
EXPORT_SYMBOL(preempt_count_sub);
L
Linus Torvalds 已提交
2522 2523 2524 2525

#endif

/*
I
Ingo Molnar 已提交
2526
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
2527
 */
I
Ingo Molnar 已提交
2528
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
2529
{
2530 2531 2532
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
2533 2534
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
2535

I
Ingo Molnar 已提交
2536
	debug_show_held_locks(prev);
2537
	print_modules();
I
Ingo Molnar 已提交
2538 2539
	if (irqs_disabled())
		print_irqtrace_events(prev);
2540
	dump_stack();
2541
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
I
Ingo Molnar 已提交
2542
}
L
Linus Torvalds 已提交
2543

I
Ingo Molnar 已提交
2544 2545 2546 2547 2548
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
2549
	/*
I
Ingo Molnar 已提交
2550
	 * Test if we are atomic. Since do_exit() needs to call into
2551 2552
	 * schedule() atomically, we ignore that path. Otherwise whine
	 * if we are scheduling when we should not.
L
Linus Torvalds 已提交
2553
	 */
2554
	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
I
Ingo Molnar 已提交
2555
		__schedule_bug(prev);
2556
	rcu_sleep_check();
I
Ingo Molnar 已提交
2557

L
Linus Torvalds 已提交
2558 2559
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

2560
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
2561 2562
}

P
Peter Zijlstra 已提交
2563
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
2564
{
2565
	if (prev->on_rq || rq->skip_clock_update < 0)
2566
		update_rq_clock(rq);
P
Peter Zijlstra 已提交
2567
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
2568 2569
}

I
Ingo Molnar 已提交
2570 2571 2572 2573
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
2574
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
2575
{
2576
	const struct sched_class *class;
I
Ingo Molnar 已提交
2577
	struct task_struct *p;
L
Linus Torvalds 已提交
2578 2579

	/*
I
Ingo Molnar 已提交
2580 2581
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
2582
	 */
2583
	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2584
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
2585 2586
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
2587 2588
	}

2589
	for_each_class(class) {
2590
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
2591 2592 2593
		if (p)
			return p;
	}
2594 2595

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
2596
}
L
Linus Torvalds 已提交
2597

I
Ingo Molnar 已提交
2598
/*
2599
 * __schedule() is the main scheduler function.
2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
 *
 * The main means of driving the scheduler and thus entering this function are:
 *
 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 *      paths. For example, see arch/x86/entry_64.S.
 *
 *      To drive preemption between tasks, the scheduler sets the flag in timer
 *      interrupt handler scheduler_tick().
 *
 *   3. Wakeups don't really cause entry into schedule(). They add a
 *      task to the run-queue and that's it.
 *
 *      Now, if the new task added to the run-queue preempts the current
 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 *      called on the nearest possible occasion:
 *
 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
 *
 *         - in syscall or exception context, at the next outmost
 *           preempt_enable(). (this might be as soon as the wake_up()'s
 *           spin_unlock()!)
 *
 *         - in IRQ context, return from interrupt-handler to
 *           preemptible context
 *
 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
 *         then at the next:
 *
 *          - cond_resched() call
 *          - explicit schedule() call
 *          - return from syscall or exception to user-space
 *          - return from interrupt-handler to user-space
I
Ingo Molnar 已提交
2634
 */
2635
static void __sched __schedule(void)
I
Ingo Molnar 已提交
2636 2637
{
	struct task_struct *prev, *next;
2638
	unsigned long *switch_count;
I
Ingo Molnar 已提交
2639
	struct rq *rq;
2640
	int cpu;
I
Ingo Molnar 已提交
2641

2642 2643
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
2644 2645
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
2646
	rcu_note_context_switch(cpu);
I
Ingo Molnar 已提交
2647 2648 2649
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
2650

2651
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
2652
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
2653

2654 2655 2656 2657 2658 2659
	/*
	 * Make sure that signal_pending_state()->signal_pending() below
	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
	 * done by the caller to avoid the race with signal_wake_up().
	 */
	smp_mb__before_spinlock();
2660
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
2661

2662
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
2663
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
2664
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
2665
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
2666
		} else {
2667 2668 2669
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

T
Tejun Heo 已提交
2670
			/*
2671 2672 2673
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
2674 2675 2676 2677 2678 2679 2680 2681 2682
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
		}
I
Ingo Molnar 已提交
2683
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
2684 2685
	}

2686
	pre_schedule(rq, prev);
2687

I
Ingo Molnar 已提交
2688
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
2689 2690
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
2691
	put_prev_task(rq, prev);
2692
	next = pick_next_task(rq);
2693
	clear_tsk_need_resched(prev);
2694
	clear_preempt_need_resched();
2695
	rq->skip_clock_update = 0;
L
Linus Torvalds 已提交
2696 2697 2698 2699 2700 2701

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
2702
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
2703
		/*
2704 2705 2706 2707
		 * The context switch have flipped the stack from under us
		 * and restored the local variables which were saved when
		 * this task called schedule() in the past. prev == current
		 * is still correct, but it can be moved to another cpu/rq.
P
Peter Zijlstra 已提交
2708 2709 2710
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
2711
	} else
2712
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
2713

2714
	post_schedule(rq);
L
Linus Torvalds 已提交
2715

2716
	sched_preempt_enable_no_resched();
2717
	if (need_resched())
L
Linus Torvalds 已提交
2718 2719
		goto need_resched;
}
2720

2721 2722
static inline void sched_submit_work(struct task_struct *tsk)
{
2723
	if (!tsk->state || tsk_is_pi_blocked(tsk))
2724 2725 2726 2727 2728 2729 2730 2731 2732
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

S
Simon Kirby 已提交
2733
asmlinkage void __sched schedule(void)
2734
{
2735 2736 2737
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
2738 2739
	__schedule();
}
L
Linus Torvalds 已提交
2740 2741
EXPORT_SYMBOL(schedule);

2742
#ifdef CONFIG_CONTEXT_TRACKING
2743 2744 2745 2746 2747 2748 2749 2750
asmlinkage void __sched schedule_user(void)
{
	/*
	 * If we come here after a random call to set_need_resched(),
	 * or we have been woken up remotely but the IPI has not yet arrived,
	 * we haven't yet exited the RCU idle mode. Do it here manually until
	 * we find a better solution.
	 */
2751
	user_exit();
2752
	schedule();
2753
	user_enter();
2754 2755 2756
}
#endif

2757 2758 2759 2760 2761 2762 2763
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
2764
	sched_preempt_enable_no_resched();
2765 2766 2767 2768
	schedule();
	preempt_disable();
}

L
Linus Torvalds 已提交
2769 2770
#ifdef CONFIG_PREEMPT
/*
2771
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
2772
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
2773 2774
 * occur there and call schedule directly.
 */
2775
asmlinkage void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
2776 2777 2778
{
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
2779
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
2780
	 */
2781
	if (likely(!preemptible()))
L
Linus Torvalds 已提交
2782 2783
		return;

2784
	do {
2785
		__preempt_count_add(PREEMPT_ACTIVE);
2786
		__schedule();
2787
		__preempt_count_sub(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
2788

2789 2790 2791 2792 2793
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
2794
	} while (need_resched());
L
Linus Torvalds 已提交
2795 2796
}
EXPORT_SYMBOL(preempt_schedule);
2797
#endif /* CONFIG_PREEMPT */
L
Linus Torvalds 已提交
2798 2799

/*
2800
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
2801 2802 2803 2804 2805 2806
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
2807
	enum ctx_state prev_state;
2808

2809
	/* Catch callers which need to be fixed */
2810
	BUG_ON(preempt_count() || !irqs_disabled());
L
Linus Torvalds 已提交
2811

2812 2813
	prev_state = exception_enter();

2814
	do {
2815
		__preempt_count_add(PREEMPT_ACTIVE);
2816
		local_irq_enable();
2817
		__schedule();
2818
		local_irq_disable();
2819
		__preempt_count_sub(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
2820

2821 2822 2823 2824 2825
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
2826
	} while (need_resched());
2827 2828

	exception_exit(prev_state);
L
Linus Torvalds 已提交
2829 2830
}

P
Peter Zijlstra 已提交
2831
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
2832
			  void *key)
L
Linus Torvalds 已提交
2833
{
P
Peter Zijlstra 已提交
2834
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
2835 2836 2837
}
EXPORT_SYMBOL(default_wake_function);

2838 2839
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
2840
{
I
Ingo Molnar 已提交
2841 2842 2843 2844
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
2845

2846
	__set_current_state(state);
L
Linus Torvalds 已提交
2847

2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
2862 2863 2864
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
2865
long __sched
I
Ingo Molnar 已提交
2866
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
2867
{
2868
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
2869 2870 2871
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
2872
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
2873
{
2874
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
2875 2876 2877
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
2878
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
2879
{
2880
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
2881 2882 2883
}
EXPORT_SYMBOL(sleep_on_timeout);

2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
2896
void rt_mutex_setprio(struct task_struct *p, int prio)
2897
{
2898
	int oldprio, on_rq, running, enqueue_flag = 0;
2899
	struct rq *rq;
2900
	const struct sched_class *prev_class;
2901

2902
	BUG_ON(prio > MAX_PRIO);
2903

2904
	rq = __task_rq_lock(p);
2905

2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

2924
	trace_sched_pi_setprio(p, prio);
2925
	p->pi_top_task = rt_mutex_get_top_task(p);
2926
	oldprio = p->prio;
2927
	prev_class = p->sched_class;
P
Peter Zijlstra 已提交
2928
	on_rq = p->on_rq;
2929
	running = task_current(rq, p);
2930
	if (on_rq)
2931
		dequeue_task(rq, p, 0);
2932 2933
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
2934

2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951
	/*
	 * Boosting condition are:
	 * 1. -rt task is running and holds mutex A
	 *      --> -dl task blocks on mutex A
	 *
	 * 2. -dl task is running and holds mutex A
	 *      --> -dl task blocks on mutex A and could preempt the
	 *          running task
	 */
	if (dl_prio(prio)) {
		if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
			dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
			p->dl.dl_boosted = 1;
			p->dl.dl_throttled = 0;
			enqueue_flag = ENQUEUE_REPLENISH;
		} else
			p->dl.dl_boosted = 0;
2952
		p->sched_class = &dl_sched_class;
2953 2954 2955 2956 2957
	} else if (rt_prio(prio)) {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
		if (oldprio < prio)
			enqueue_flag = ENQUEUE_HEAD;
I
Ingo Molnar 已提交
2958
		p->sched_class = &rt_sched_class;
2959 2960 2961
	} else {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
I
Ingo Molnar 已提交
2962
		p->sched_class = &fair_sched_class;
2963
	}
I
Ingo Molnar 已提交
2964

2965 2966
	p->prio = prio;

2967 2968
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
2969
	if (on_rq)
2970
		enqueue_task(rq, p, enqueue_flag);
2971

P
Peter Zijlstra 已提交
2972
	check_class_changed(rq, p, prev_class, oldprio);
2973
out_unlock:
2974
	__task_rq_unlock(rq);
2975 2976
}
#endif
2977

2978
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
2979
{
I
Ingo Molnar 已提交
2980
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
2981
	unsigned long flags;
2982
	struct rq *rq;
L
Linus Torvalds 已提交
2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
2995
	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
L
Linus Torvalds 已提交
2996
	 */
2997
	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
2998 2999 3000
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
P
Peter Zijlstra 已提交
3001
	on_rq = p->on_rq;
3002
	if (on_rq)
3003
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
3004 3005

	p->static_prio = NICE_TO_PRIO(nice);
3006
	set_load_weight(p);
3007 3008 3009
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3010

I
Ingo Molnar 已提交
3011
	if (on_rq) {
3012
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
3013
		/*
3014 3015
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3016
		 */
3017
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
3018 3019 3020
			resched_task(rq->curr);
	}
out_unlock:
3021
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3022 3023 3024
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3025 3026 3027 3028 3029
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3030
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3031
{
3032 3033
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
3034

3035
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3036 3037 3038
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3039 3040 3041 3042 3043 3044 3045 3046 3047
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3048
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3049
{
3050
	long nice, retval;
L
Linus Torvalds 已提交
3051 3052 3053 3054 3055 3056

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
3057 3058
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
3059 3060 3061
	if (increment > 40)
		increment = 40;

3062
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
3063 3064 3065 3066 3067
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
3068 3069 3070
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
3085
 * Return: The priority value as seen by users in /proc.
L
Linus Torvalds 已提交
3086 3087 3088
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3089
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3090 3091 3092 3093 3094 3095 3096
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
3097 3098
 *
 * Return: The nice value [ -20 ... 0 ... 19 ].
L
Linus Torvalds 已提交
3099
 */
3100
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
3101 3102 3103
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
3104
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
3105 3106 3107 3108

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
3109 3110
 *
 * Return: 1 if the CPU is currently idle. 0 otherwise.
L
Linus Torvalds 已提交
3111 3112 3113
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3128 3129 3130 3131 3132
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
3133 3134
 *
 * Return: The idle task for the cpu @cpu.
L
Linus Torvalds 已提交
3135
 */
3136
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3137 3138 3139 3140 3141 3142 3143
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
3144 3145
 *
 * The task of @pid, if found. %NULL otherwise.
L
Linus Torvalds 已提交
3146
 */
A
Alexey Dobriyan 已提交
3147
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
3148
{
3149
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
3150 3151
}

3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
/*
 * This function initializes the sched_dl_entity of a newly becoming
 * SCHED_DEADLINE task.
 *
 * Only the static values are considered here, the actual runtime and the
 * absolute deadline will be properly calculated when the task is enqueued
 * for the first time with its new policy.
 */
static void
__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	init_dl_task_timer(dl_se);
	dl_se->dl_runtime = attr->sched_runtime;
	dl_se->dl_deadline = attr->sched_deadline;
3168
	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3169
	dl_se->flags = attr->sched_flags;
3170
	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3171 3172 3173 3174
	dl_se->dl_throttled = 0;
	dl_se->dl_new = 1;
}

3175 3176 3177
/* Actually do priority change: must hold pi & rq lock. */
static void __setscheduler(struct rq *rq, struct task_struct *p,
			   const struct sched_attr *attr)
L
Linus Torvalds 已提交
3178
{
3179 3180
	int policy = attr->sched_policy;

L
Linus Torvalds 已提交
3181
	p->policy = policy;
3182

3183 3184 3185
	if (dl_policy(policy))
		__setparam_dl(p, attr);
	else if (rt_policy(policy))
3186 3187 3188 3189
		p->rt_priority = attr->sched_priority;
	else
		p->static_prio = NICE_TO_PRIO(attr->sched_nice);

3190 3191
	p->normal_prio = normal_prio(p);
	p->prio = rt_mutex_getprio(p);
3192

3193 3194 3195
	if (dl_prio(p->prio))
		p->sched_class = &dl_sched_class;
	else if (rt_prio(p->prio))
3196 3197 3198
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
3199

3200
	set_load_weight(p);
L
Linus Torvalds 已提交
3201
}
3202 3203 3204 3205 3206 3207 3208 3209 3210

static void
__getparam_dl(struct task_struct *p, struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	attr->sched_priority = p->rt_priority;
	attr->sched_runtime = dl_se->dl_runtime;
	attr->sched_deadline = dl_se->dl_deadline;
3211
	attr->sched_period = dl_se->dl_period;
3212 3213 3214 3215 3216 3217
	attr->sched_flags = dl_se->flags;
}

/*
 * This function validates the new parameters of a -deadline task.
 * We ask for the deadline not being zero, and greater or equal
3218
 * than the runtime, as well as the period of being zero or
3219 3220 3221
 * greater than deadline. Furthermore, we have to be sure that
 * user parameters are above the internal resolution (1us); we
 * check sched_runtime only since it is always the smaller one.
3222 3223 3224 3225 3226
 */
static bool
__checkparam_dl(const struct sched_attr *attr)
{
	return attr && attr->sched_deadline != 0 &&
3227 3228
		(attr->sched_period == 0 ||
		(s64)(attr->sched_period   - attr->sched_deadline) >= 0) &&
3229 3230
		(s64)(attr->sched_deadline - attr->sched_runtime ) >= 0  &&
		attr->sched_runtime >= (2 << (DL_SCALE - 1));
3231 3232
}

3233 3234 3235 3236 3237 3238 3239 3240 3241 3242
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
3243 3244
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
3245 3246 3247 3248
	rcu_read_unlock();
	return match;
}

3249 3250 3251
static int __sched_setscheduler(struct task_struct *p,
				const struct sched_attr *attr,
				bool user)
L
Linus Torvalds 已提交
3252
{
3253
	int retval, oldprio, oldpolicy = -1, on_rq, running;
3254
	int policy = attr->sched_policy;
L
Linus Torvalds 已提交
3255
	unsigned long flags;
3256
	const struct sched_class *prev_class;
3257
	struct rq *rq;
3258
	int reset_on_fork;
L
Linus Torvalds 已提交
3259

3260 3261
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
3262 3263
recheck:
	/* double check policy once rq lock held */
3264 3265
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
3266
		policy = oldpolicy = p->policy;
3267 3268 3269 3270
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

3271 3272
		if (policy != SCHED_DEADLINE &&
				policy != SCHED_FIFO && policy != SCHED_RR &&
3273 3274 3275 3276 3277
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
3278 3279
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
3280 3281
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
3282
	 */
3283 3284 3285
	if (attr->sched_priority < 0 ||
	    (p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
3286
		return -EINVAL;
3287 3288
	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
	    (rt_policy(policy) != (attr->sched_priority != 0)))
L
Linus Torvalds 已提交
3289 3290
		return -EINVAL;

3291 3292 3293
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
3294
	if (user && !capable(CAP_SYS_NICE)) {
3295 3296 3297 3298 3299
		if (fair_policy(policy)) {
			if (!can_nice(p, attr->sched_nice))
				return -EPERM;
		}

3300
		if (rt_policy(policy)) {
3301 3302
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
3303 3304 3305 3306 3307 3308

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
3309 3310
			if (attr->sched_priority > p->rt_priority &&
			    attr->sched_priority > rlim_rtprio)
3311 3312
				return -EPERM;
		}
3313

I
Ingo Molnar 已提交
3314
		/*
3315 3316
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
3317
		 */
3318 3319 3320 3321
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
			if (!can_nice(p, TASK_NICE(p)))
				return -EPERM;
		}
3322

3323
		/* can't change other user's priorities */
3324
		if (!check_same_owner(p))
3325
			return -EPERM;
3326 3327 3328 3329

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
3330
	}
L
Linus Torvalds 已提交
3331

3332
	if (user) {
3333
		retval = security_task_setscheduler(p);
3334 3335 3336 3337
		if (retval)
			return retval;
	}

3338 3339 3340
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
3341
	 *
L
Lucas De Marchi 已提交
3342
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
3343 3344
	 * runqueue lock must be held.
	 */
3345
	rq = task_rq_lock(p, &flags);
3346

3347 3348 3349 3350
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
3351
		task_rq_unlock(rq, p, &flags);
3352 3353 3354
		return -EINVAL;
	}

3355 3356 3357
	/*
	 * If not changing anything there's no need to proceed further:
	 */
3358 3359 3360 3361 3362
	if (unlikely(policy == p->policy)) {
		if (fair_policy(policy) && attr->sched_nice != TASK_NICE(p))
			goto change;
		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
			goto change;
3363 3364
		if (dl_policy(policy))
			goto change;
3365

3366
		task_rq_unlock(rq, p, &flags);
3367 3368
		return 0;
	}
3369
change:
3370

3371
	if (user) {
3372
#ifdef CONFIG_RT_GROUP_SCHED
3373 3374 3375 3376 3377
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3378 3379
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
3380
			task_rq_unlock(rq, p, &flags);
3381 3382 3383
			return -EPERM;
		}
#endif
3384 3385 3386 3387 3388 3389 3390 3391 3392
#ifdef CONFIG_SMP
		if (dl_bandwidth_enabled() && dl_policy(policy)) {
			cpumask_t *span = rq->rd->span;

			/*
			 * Don't allow tasks with an affinity mask smaller than
			 * the entire root_domain to become SCHED_DEADLINE. We
			 * will also fail if there's no bandwidth available.
			 */
3393 3394
			if (!cpumask_subset(span, &p->cpus_allowed) ||
			    rq->rd->dl_bw.bw == 0) {
3395 3396 3397 3398 3399 3400
				task_rq_unlock(rq, p, &flags);
				return -EPERM;
			}
		}
#endif
	}
3401

L
Linus Torvalds 已提交
3402 3403 3404
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
3405
		task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3406 3407
		goto recheck;
	}
3408 3409 3410 3411 3412 3413

	/*
	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
	 * is available.
	 */
3414
	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3415 3416 3417 3418
		task_rq_unlock(rq, p, &flags);
		return -EBUSY;
	}

P
Peter Zijlstra 已提交
3419
	on_rq = p->on_rq;
3420
	running = task_current(rq, p);
3421
	if (on_rq)
3422
		dequeue_task(rq, p, 0);
3423 3424
	if (running)
		p->sched_class->put_prev_task(rq, p);
3425

3426 3427
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
3428
	oldprio = p->prio;
3429
	prev_class = p->sched_class;
3430
	__setscheduler(rq, p, attr);
3431

3432 3433
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
3434
	if (on_rq)
3435
		enqueue_task(rq, p, 0);
3436

P
Peter Zijlstra 已提交
3437
	check_class_changed(rq, p, prev_class, oldprio);
3438
	task_rq_unlock(rq, p, &flags);
3439

3440 3441
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
3442 3443
	return 0;
}
3444 3445 3446 3447 3448 3449 3450

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
3451 3452
 * Return: 0 on success. An error code otherwise.
 *
3453 3454 3455
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
3456
		       const struct sched_param *param)
3457
{
3458 3459 3460 3461 3462
	struct sched_attr attr = {
		.sched_policy   = policy,
		.sched_priority = param->sched_priority
	};
	return __sched_setscheduler(p, &attr, true);
3463
}
L
Linus Torvalds 已提交
3464 3465
EXPORT_SYMBOL_GPL(sched_setscheduler);

3466 3467 3468 3469 3470 3471
int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
{
	return __sched_setscheduler(p, attr, true);
}
EXPORT_SYMBOL_GPL(sched_setattr);

3472 3473 3474 3475 3476 3477 3478 3479 3480 3481
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
3482 3483
 *
 * Return: 0 on success. An error code otherwise.
3484 3485
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3486
			       const struct sched_param *param)
3487
{
3488 3489 3490 3491 3492
	struct sched_attr attr = {
		.sched_policy   = policy,
		.sched_priority = param->sched_priority
	};
	return __sched_setscheduler(p, &attr, false);
3493 3494
}

I
Ingo Molnar 已提交
3495 3496
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
3497 3498 3499
{
	struct sched_param lparam;
	struct task_struct *p;
3500
	int retval;
L
Linus Torvalds 已提交
3501 3502 3503 3504 3505

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
3506 3507 3508

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
3509
	p = find_process_by_pid(pid);
3510 3511 3512
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
3513

L
Linus Torvalds 已提交
3514 3515 3516
	return retval;
}

3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589
/*
 * Mimics kernel/events/core.c perf_copy_attr().
 */
static int sched_copy_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr)
{
	u32 size;
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = SCHED_ATTR_SIZE_VER0;

	if (size < SCHED_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
	 */
	if (size > sizeof(*attr)) {
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;

		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;

		for (; addr < end; addr++) {
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
		size = sizeof(*attr);
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * XXX: do we want to be lenient like existing syscalls; or do we want
	 * to be strict and return an error on out-of-bounds values?
	 */
	attr->sched_nice = clamp(attr->sched_nice, -20, 19);

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

L
Linus Torvalds 已提交
3590 3591 3592 3593 3594
/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
3595 3596
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
3597
 */
3598 3599
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
3600
{
3601 3602 3603 3604
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
3605 3606 3607 3608 3609 3610 3611
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
3612 3613
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
3614
 */
3615
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
3616 3617 3618 3619
{
	return do_sched_setscheduler(pid, -1, param);
}

3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646
/**
 * sys_sched_setattr - same as above, but with extended sched_attr
 * @pid: the pid in question.
 * @attr: structure containing the extended parameters.
 */
SYSCALL_DEFINE2(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr)
{
	struct sched_attr attr;
	struct task_struct *p;
	int retval;

	if (!uattr || pid < 0)
		return -EINVAL;

	if (sched_copy_attr(uattr, &attr))
		return -EFAULT;

	rcu_read_lock();
	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (p != NULL)
		retval = sched_setattr(p, &attr);
	rcu_read_unlock();

	return retval;
}

L
Linus Torvalds 已提交
3647 3648 3649
/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
3650 3651 3652
 *
 * Return: On success, the policy of the thread. Otherwise, a negative error
 * code.
L
Linus Torvalds 已提交
3653
 */
3654
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
3655
{
3656
	struct task_struct *p;
3657
	int retval;
L
Linus Torvalds 已提交
3658 3659

	if (pid < 0)
3660
		return -EINVAL;
L
Linus Torvalds 已提交
3661 3662

	retval = -ESRCH;
3663
	rcu_read_lock();
L
Linus Torvalds 已提交
3664 3665 3666 3667
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
3668 3669
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
3670
	}
3671
	rcu_read_unlock();
L
Linus Torvalds 已提交
3672 3673 3674 3675
	return retval;
}

/**
3676
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
3677 3678
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
3679 3680 3681
 *
 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
 * code.
L
Linus Torvalds 已提交
3682
 */
3683
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
3684 3685
{
	struct sched_param lp;
3686
	struct task_struct *p;
3687
	int retval;
L
Linus Torvalds 已提交
3688 3689

	if (!param || pid < 0)
3690
		return -EINVAL;
L
Linus Torvalds 已提交
3691

3692
	rcu_read_lock();
L
Linus Torvalds 已提交
3693 3694 3695 3696 3697 3698 3699 3700 3701
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

3702 3703 3704 3705
	if (task_has_dl_policy(p)) {
		retval = -EINVAL;
		goto out_unlock;
	}
L
Linus Torvalds 已提交
3706
	lp.sched_priority = p->rt_priority;
3707
	rcu_read_unlock();
L
Linus Torvalds 已提交
3708 3709 3710 3711 3712 3713 3714 3715 3716

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
3717
	rcu_read_unlock();
L
Linus Torvalds 已提交
3718 3719 3720
	return retval;
}

3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762
static int sched_read_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr,
			   unsigned int usize)
{
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, usize))
		return -EFAULT;

	/*
	 * If we're handed a smaller struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. old
	 * user-space does not get uncomplete information.
	 */
	if (usize < sizeof(*attr)) {
		unsigned char *addr;
		unsigned char *end;

		addr = (void *)attr + usize;
		end  = (void *)attr + sizeof(*attr);

		for (; addr < end; addr++) {
			if (*addr)
				goto err_size;
		}

		attr->size = usize;
	}

	ret = copy_to_user(uattr, attr, usize);
	if (ret)
		return -EFAULT;

out:
	return ret;

err_size:
	ret = -E2BIG;
	goto out;
}

/**
3763
 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
 * @pid: the pid in question.
 * @attr: structure containing the extended parameters.
 * @size: sizeof(attr) for fwd/bwd comp.
 */
SYSCALL_DEFINE3(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
		unsigned int, size)
{
	struct sched_attr attr = {
		.size = sizeof(struct sched_attr),
	};
	struct task_struct *p;
	int retval;

	if (!uattr || pid < 0 || size > PAGE_SIZE ||
	    size < SCHED_ATTR_SIZE_VER0)
		return -EINVAL;

	rcu_read_lock();
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	attr.sched_policy = p->policy;
3792 3793 3794
	if (task_has_dl_policy(p))
		__getparam_dl(p, &attr);
	else if (task_has_rt_policy(p))
3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808
		attr.sched_priority = p->rt_priority;
	else
		attr.sched_nice = TASK_NICE(p);

	rcu_read_unlock();

	retval = sched_read_attr(uattr, &attr, size);
	return retval;

out_unlock:
	rcu_read_unlock();
	return retval;
}

3809
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
3810
{
3811
	cpumask_var_t cpus_allowed, new_mask;
3812 3813
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
3814

3815
	rcu_read_lock();
L
Linus Torvalds 已提交
3816 3817 3818

	p = find_process_by_pid(pid);
	if (!p) {
3819
		rcu_read_unlock();
L
Linus Torvalds 已提交
3820 3821 3822
		return -ESRCH;
	}

3823
	/* Prevent p going away */
L
Linus Torvalds 已提交
3824
	get_task_struct(p);
3825
	rcu_read_unlock();
L
Linus Torvalds 已提交
3826

3827 3828 3829 3830
	if (p->flags & PF_NO_SETAFFINITY) {
		retval = -EINVAL;
		goto out_put_task;
	}
3831 3832 3833 3834 3835 3836 3837 3838
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
3839
	retval = -EPERM;
E
Eric W. Biederman 已提交
3840 3841 3842 3843 3844 3845 3846 3847
	if (!check_same_owner(p)) {
		rcu_read_lock();
		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
			rcu_read_unlock();
			goto out_unlock;
		}
		rcu_read_unlock();
	}
L
Linus Torvalds 已提交
3848

3849
	retval = security_task_setscheduler(p);
3850 3851 3852
	if (retval)
		goto out_unlock;

3853 3854 3855 3856

	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);

3857 3858 3859 3860 3861 3862 3863 3864 3865 3866
	/*
	 * Since bandwidth control happens on root_domain basis,
	 * if admission test is enabled, we only admit -deadline
	 * tasks allowed to run on all the CPUs in the task's
	 * root_domain.
	 */
#ifdef CONFIG_SMP
	if (task_has_dl_policy(p)) {
		const struct cpumask *span = task_rq(p)->rd->span;

3867
		if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
3868 3869 3870 3871 3872
			retval = -EBUSY;
			goto out_unlock;
		}
	}
#endif
P
Peter Zijlstra 已提交
3873
again:
3874
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
3875

P
Paul Menage 已提交
3876
	if (!retval) {
3877 3878
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
3879 3880 3881 3882 3883
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
3884
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
3885 3886 3887
			goto again;
		}
	}
L
Linus Torvalds 已提交
3888
out_unlock:
3889 3890 3891 3892
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
3893 3894 3895 3896 3897
	put_task_struct(p);
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3898
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
3899
{
3900 3901 3902 3903 3904
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
3905 3906 3907 3908 3909 3910 3911 3912
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
3913 3914
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
3915
 */
3916 3917
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
3918
{
3919
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
3920 3921
	int retval;

3922 3923
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
3924

3925 3926 3927 3928 3929
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
3930 3931
}

3932
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
3933
{
3934
	struct task_struct *p;
3935
	unsigned long flags;
L
Linus Torvalds 已提交
3936 3937
	int retval;

3938
	rcu_read_lock();
L
Linus Torvalds 已提交
3939 3940 3941 3942 3943 3944

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

3945 3946 3947 3948
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

3949
	raw_spin_lock_irqsave(&p->pi_lock, flags);
3950
	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
3951
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
3952 3953

out_unlock:
3954
	rcu_read_unlock();
L
Linus Torvalds 已提交
3955

3956
	return retval;
L
Linus Torvalds 已提交
3957 3958 3959 3960 3961 3962 3963
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3964 3965
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
3966
 */
3967 3968
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
3969 3970
{
	int ret;
3971
	cpumask_var_t mask;
L
Linus Torvalds 已提交
3972

A
Anton Blanchard 已提交
3973
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
3974 3975
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
3976 3977
		return -EINVAL;

3978 3979
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
3980

3981 3982
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
3983
		size_t retlen = min_t(size_t, len, cpumask_size());
3984 3985

		if (copy_to_user(user_mask_ptr, mask, retlen))
3986 3987
			ret = -EFAULT;
		else
3988
			ret = retlen;
3989 3990
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
3991

3992
	return ret;
L
Linus Torvalds 已提交
3993 3994 3995 3996 3997
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
3998 3999
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
4000 4001
 *
 * Return: 0.
L
Linus Torvalds 已提交
4002
 */
4003
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4004
{
4005
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4006

4007
	schedstat_inc(rq, yld_count);
4008
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4009 4010 4011 4012 4013 4014

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4015
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4016
	do_raw_spin_unlock(&rq->lock);
4017
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
4018 4019 4020 4021 4022 4023

	schedule();

	return 0;
}

A
Andrew Morton 已提交
4024
static void __cond_resched(void)
L
Linus Torvalds 已提交
4025
{
4026
	__preempt_count_add(PREEMPT_ACTIVE);
4027
	__schedule();
4028
	__preempt_count_sub(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4029 4030
}

4031
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4032
{
P
Peter Zijlstra 已提交
4033
	if (should_resched()) {
L
Linus Torvalds 已提交
4034 4035 4036 4037 4038
		__cond_resched();
		return 1;
	}
	return 0;
}
4039
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4040 4041

/*
4042
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4043 4044
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4045
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4046 4047 4048
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4049
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4050
{
P
Peter Zijlstra 已提交
4051
	int resched = should_resched();
J
Jan Kara 已提交
4052 4053
	int ret = 0;

4054 4055
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
4056
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4057
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4058
		if (resched)
N
Nick Piggin 已提交
4059 4060 4061
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
4062
		ret = 1;
L
Linus Torvalds 已提交
4063 4064
		spin_lock(lock);
	}
J
Jan Kara 已提交
4065
	return ret;
L
Linus Torvalds 已提交
4066
}
4067
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4068

4069
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4070 4071 4072
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
4073
	if (should_resched()) {
4074
		local_bh_enable();
L
Linus Torvalds 已提交
4075 4076 4077 4078 4079 4080
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
4081
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4082 4083 4084 4085

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
 * 	yield();
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
4104 4105 4106 4107 4108 4109 4110 4111
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

4112 4113 4114 4115
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
4116 4117
 * @p: target task
 * @preempt: whether task preemption is allowed or not
4118 4119 4120 4121
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
4122
 * Return:
4123 4124 4125
 *	true (>0) if we indeed boosted the target task.
 *	false (0) if we failed to boost the target.
 *	-ESRCH if there's no task to yield to.
4126 4127 4128 4129 4130 4131
 */
bool __sched yield_to(struct task_struct *p, bool preempt)
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
4132
	int yielded = 0;
4133 4134 4135 4136 4137 4138

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
4139 4140 4141 4142 4143 4144 4145 4146 4147
	/*
	 * If we're the only runnable task on the rq and target rq also
	 * has only one task, there's absolutely no point in yielding.
	 */
	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
		yielded = -ESRCH;
		goto out_irq;
	}

4148
	double_rq_lock(rq, p_rq);
4149
	if (task_rq(p) != p_rq) {
4150 4151 4152 4153 4154
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
4155
		goto out_unlock;
4156 4157

	if (curr->sched_class != p->sched_class)
4158
		goto out_unlock;
4159 4160

	if (task_running(p_rq, p) || p->state)
4161
		goto out_unlock;
4162 4163

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4164
	if (yielded) {
4165
		schedstat_inc(rq, yld_count);
4166 4167 4168 4169 4170 4171 4172
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
			resched_task(p_rq->curr);
	}
4173

4174
out_unlock:
4175
	double_rq_unlock(rq, p_rq);
4176
out_irq:
4177 4178
	local_irq_restore(flags);

4179
	if (yielded > 0)
4180 4181 4182 4183 4184 4185
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
4186
/*
I
Ingo Molnar 已提交
4187
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4188 4189 4190 4191
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
4192
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4193

4194
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4195
	atomic_inc(&rq->nr_iowait);
4196
	blk_flush_plug(current);
4197
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4198
	schedule();
4199
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4200
	atomic_dec(&rq->nr_iowait);
4201
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4202 4203 4204 4205 4206
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4207
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4208 4209
	long ret;

4210
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4211
	atomic_inc(&rq->nr_iowait);
4212
	blk_flush_plug(current);
4213
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4214
	ret = schedule_timeout(timeout);
4215
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4216
	atomic_dec(&rq->nr_iowait);
4217
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4218 4219 4220 4221 4222 4223 4224
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
4225 4226 4227
 * Return: On success, this syscall returns the maximum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
4228
 */
4229
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
4230 4231 4232 4233 4234 4235 4236 4237
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
4238
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
4239
	case SCHED_NORMAL:
4240
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4241
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4242 4243 4244 4245 4246 4247 4248 4249 4250 4251
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
4252 4253 4254
 * Return: On success, this syscall returns the minimum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
4255
 */
4256
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
4257 4258 4259 4260 4261 4262 4263 4264
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
4265
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
4266
	case SCHED_NORMAL:
4267
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4268
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
4281 4282 4283
 *
 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
 * an error code.
L
Linus Torvalds 已提交
4284
 */
4285
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4286
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
4287
{
4288
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4289
	unsigned int time_slice;
4290 4291
	unsigned long flags;
	struct rq *rq;
4292
	int retval;
L
Linus Torvalds 已提交
4293 4294 4295
	struct timespec t;

	if (pid < 0)
4296
		return -EINVAL;
L
Linus Torvalds 已提交
4297 4298

	retval = -ESRCH;
4299
	rcu_read_lock();
L
Linus Torvalds 已提交
4300 4301 4302 4303 4304 4305 4306 4307
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4308 4309
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
4310
	task_rq_unlock(rq, p, &flags);
D
Dmitry Adamushko 已提交
4311

4312
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
4313
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4314 4315
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4316

L
Linus Torvalds 已提交
4317
out_unlock:
4318
	rcu_read_unlock();
L
Linus Torvalds 已提交
4319 4320 4321
	return retval;
}

4322
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4323

4324
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4325 4326
{
	unsigned long free = 0;
4327
	int ppid;
4328
	unsigned state;
L
Linus Torvalds 已提交
4329 4330

	state = p->state ? __ffs(p->state) + 1 : 0;
4331
	printk(KERN_INFO "%-15.15s %c", p->comm,
4332
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4333
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4334
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4335
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4336
	else
P
Peter Zijlstra 已提交
4337
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4338 4339
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4340
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4341
	else
P
Peter Zijlstra 已提交
4342
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4343 4344
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
4345
	free = stack_not_used(p);
L
Linus Torvalds 已提交
4346
#endif
4347 4348 4349
	rcu_read_lock();
	ppid = task_pid_nr(rcu_dereference(p->real_parent));
	rcu_read_unlock();
P
Peter Zijlstra 已提交
4350
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4351
		task_pid_nr(p), ppid,
4352
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
4353

4354
	print_worker_info(KERN_INFO, p);
4355
	show_stack(p, NULL);
L
Linus Torvalds 已提交
4356 4357
}

I
Ingo Molnar 已提交
4358
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4359
{
4360
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4361

4362
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
4363 4364
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4365
#else
P
Peter Zijlstra 已提交
4366 4367
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4368
#endif
4369
	rcu_read_lock();
L
Linus Torvalds 已提交
4370 4371 4372
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
4373
		 * console might take a lot of time:
L
Linus Torvalds 已提交
4374 4375
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4376
		if (!state_filter || (p->state & state_filter))
4377
			sched_show_task(p);
L
Linus Torvalds 已提交
4378 4379
	} while_each_thread(g, p);

4380 4381
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4382 4383 4384
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
4385
	rcu_read_unlock();
I
Ingo Molnar 已提交
4386 4387 4388
	/*
	 * Only show locks if all tasks are dumped:
	 */
4389
	if (!state_filter)
I
Ingo Molnar 已提交
4390
		debug_show_all_locks();
L
Linus Torvalds 已提交
4391 4392
}

4393
void init_idle_bootup_task(struct task_struct *idle)
I
Ingo Molnar 已提交
4394
{
I
Ingo Molnar 已提交
4395
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4396 4397
}

4398 4399 4400 4401 4402 4403 4404 4405
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4406
void init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4407
{
4408
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4409 4410
	unsigned long flags;

4411
	raw_spin_lock_irqsave(&rq->lock, flags);
4412

4413
	__sched_fork(0, idle);
4414
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
4415 4416
	idle->se.exec_start = sched_clock();

4417
	do_set_cpus_allowed(idle, cpumask_of(cpu));
4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
4429
	__set_task_cpu(idle, cpu);
4430
	rcu_read_unlock();
L
Linus Torvalds 已提交
4431 4432

	rq->curr = rq->idle = idle;
P
Peter Zijlstra 已提交
4433 4434
#if defined(CONFIG_SMP)
	idle->on_cpu = 1;
4435
#endif
4436
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
4437 4438

	/* Set the preempt count _outside_ the spinlocks! */
4439
	init_idle_preempt_count(idle, cpu);
4440

I
Ingo Molnar 已提交
4441 4442 4443 4444
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
4445
	ftrace_graph_init_idle_task(idle, cpu);
4446
	vtime_init_idle(idle, cpu);
4447 4448 4449
#if defined(CONFIG_SMP)
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
4450 4451
}

L
Linus Torvalds 已提交
4452
#ifdef CONFIG_SMP
4453 4454 4455 4456
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
	if (p->sched_class && p->sched_class->set_cpus_allowed)
		p->sched_class->set_cpus_allowed(p, new_mask);
4457 4458

	cpumask_copy(&p->cpus_allowed, new_mask);
4459
	p->nr_cpus_allowed = cpumask_weight(new_mask);
4460 4461
}

L
Linus Torvalds 已提交
4462 4463 4464
/*
 * This is how migration works:
 *
4465 4466 4467 4468 4469 4470
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
4471
 *    it and puts it into the right queue.
4472 4473
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
4474 4475 4476 4477 4478 4479 4480 4481
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
4482
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
4483 4484
 * call is not atomic; no spinlocks may be held.
 */
4485
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
4486 4487
{
	unsigned long flags;
4488
	struct rq *rq;
4489
	unsigned int dest_cpu;
4490
	int ret = 0;
L
Linus Torvalds 已提交
4491 4492

	rq = task_rq_lock(p, &flags);
4493

4494 4495 4496
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

4497
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
4498 4499 4500 4501
		ret = -EINVAL;
		goto out;
	}

4502
	do_set_cpus_allowed(p, new_mask);
4503

L
Linus Torvalds 已提交
4504
	/* Can the task run on the task's current CPU? If so, we're done */
4505
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
4506 4507
		goto out;

4508
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4509
	if (p->on_rq) {
4510
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
4511
		/* Need help from migration thread: drop lock and wait. */
4512
		task_rq_unlock(rq, p, &flags);
4513
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
4514 4515 4516 4517
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
4518
	task_rq_unlock(rq, p, &flags);
4519

L
Linus Torvalds 已提交
4520 4521
	return ret;
}
4522
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
4523

4524 4525 4526 4527
/*
 * When dealing with a -deadline task, we have to check if moving it to
 * a new CPU is possible or not. In fact, this is only true iff there
 * is enough bandwidth available on such CPU, otherwise we want the
4528
 * whole migration procedure to fail over.
4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559
 */
static inline
bool set_task_cpu_dl(struct task_struct *p, unsigned int cpu)
{
	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
	struct dl_bw *cpu_b = dl_bw_of(cpu);
	int ret = 1;
	u64 bw;

	if (dl_b == cpu_b)
		return 1;

	raw_spin_lock(&dl_b->lock);
	raw_spin_lock(&cpu_b->lock);

	bw = cpu_b->bw * cpumask_weight(cpu_rq(cpu)->rd->span);
	if (dl_bandwidth_enabled() &&
	    bw < cpu_b->total_bw + p->dl.dl_bw) {
		ret = 0;
		goto unlock;
	}
	dl_b->total_bw -= p->dl.dl_bw;
	cpu_b->total_bw += p->dl.dl_bw;

unlock:
	raw_spin_unlock(&cpu_b->lock);
	raw_spin_unlock(&dl_b->lock);

	return ret;
}

L
Linus Torvalds 已提交
4560
/*
I
Ingo Molnar 已提交
4561
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
4562 4563 4564 4565 4566 4567
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4568 4569
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4570
 */
4571
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4572
{
4573
	struct rq *rq_dest, *rq_src;
4574
	int ret = 0;
L
Linus Torvalds 已提交
4575

4576
	if (unlikely(!cpu_active(dest_cpu)))
4577
		return ret;
L
Linus Torvalds 已提交
4578 4579 4580 4581

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

4582
	raw_spin_lock(&p->pi_lock);
L
Linus Torvalds 已提交
4583 4584 4585
	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
4586
		goto done;
L
Linus Torvalds 已提交
4587
	/* Affinity changed (again). */
4588
	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
L
Linus Torvalds 已提交
4589
		goto fail;
L
Linus Torvalds 已提交
4590

4591 4592 4593 4594 4595 4596 4597
	/*
	 * If p is -deadline, proceed only if there is enough
	 * bandwidth available on dest_cpu
	 */
	if (unlikely(dl_task(p)) && !set_task_cpu_dl(p, dest_cpu))
		goto fail;

4598 4599 4600 4601
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
P
Peter Zijlstra 已提交
4602
	if (p->on_rq) {
4603
		dequeue_task(rq_src, p, 0);
4604
		set_task_cpu(p, dest_cpu);
4605
		enqueue_task(rq_dest, p, 0);
4606
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
4607
	}
L
Linus Torvalds 已提交
4608
done:
4609
	ret = 1;
L
Linus Torvalds 已提交
4610
fail:
L
Linus Torvalds 已提交
4611
	double_rq_unlock(rq_src, rq_dest);
4612
	raw_spin_unlock(&p->pi_lock);
4613
	return ret;
L
Linus Torvalds 已提交
4614 4615
}

4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632
#ifdef CONFIG_NUMA_BALANCING
/* Migrate current task p to target_cpu */
int migrate_task_to(struct task_struct *p, int target_cpu)
{
	struct migration_arg arg = { p, target_cpu };
	int curr_cpu = task_cpu(p);

	if (curr_cpu == target_cpu)
		return 0;

	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
		return -EINVAL;

	/* TODO: This is not properly updating schedstats */

	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
}
4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660

/*
 * Requeue a task on a given node and accurately track the number of NUMA
 * tasks on the runqueues
 */
void sched_setnuma(struct task_struct *p, int nid)
{
	struct rq *rq;
	unsigned long flags;
	bool on_rq, running;

	rq = task_rq_lock(p, &flags);
	on_rq = p->on_rq;
	running = task_current(rq, p);

	if (on_rq)
		dequeue_task(rq, p, 0);
	if (running)
		p->sched_class->put_prev_task(rq, p);

	p->numa_preferred_nid = nid;

	if (running)
		p->sched_class->set_curr_task(rq);
	if (on_rq)
		enqueue_task(rq, p, 0);
	task_rq_unlock(rq, p, &flags);
}
4661 4662
#endif

L
Linus Torvalds 已提交
4663
/*
4664 4665 4666
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
4667
 */
4668
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
4669
{
4670
	struct migration_arg *arg = data;
4671

4672 4673 4674 4675
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
4676
	local_irq_disable();
4677
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4678
	local_irq_enable();
L
Linus Torvalds 已提交
4679
	return 0;
4680 4681
}

L
Linus Torvalds 已提交
4682
#ifdef CONFIG_HOTPLUG_CPU
4683

4684
/*
4685 4686
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
4687
 */
4688
void idle_task_exit(void)
L
Linus Torvalds 已提交
4689
{
4690
	struct mm_struct *mm = current->active_mm;
4691

4692
	BUG_ON(cpu_online(smp_processor_id()));
4693

4694 4695 4696
	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
L
Linus Torvalds 已提交
4697 4698 4699
}

/*
4700 4701 4702 4703 4704
 * Since this CPU is going 'away' for a while, fold any nr_active delta
 * we might have. Assumes we're called after migrate_tasks() so that the
 * nr_active count is stable.
 *
 * Also see the comment "Global load-average calculations".
L
Linus Torvalds 已提交
4705
 */
4706
static void calc_load_migrate(struct rq *rq)
L
Linus Torvalds 已提交
4707
{
4708 4709 4710
	long delta = calc_load_fold_active(rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
4711 4712
}

4713
/*
4714 4715 4716 4717 4718 4719
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
4720
 */
4721
static void migrate_tasks(unsigned int dead_cpu)
L
Linus Torvalds 已提交
4722
{
4723
	struct rq *rq = cpu_rq(dead_cpu);
4724 4725
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
4726 4727

	/*
4728 4729 4730 4731 4732 4733 4734
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
4735
	 */
4736
	rq->stop = NULL;
4737

4738 4739 4740 4741 4742 4743 4744
	/*
	 * put_prev_task() and pick_next_task() sched
	 * class method both need to have an up-to-date
	 * value of rq->clock[_task]
	 */
	update_rq_clock(rq);

I
Ingo Molnar 已提交
4745
	for ( ; ; ) {
4746 4747 4748 4749 4750
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
4751
			break;
4752

4753
		next = pick_next_task(rq);
4754
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
4755
		next->sched_class->put_prev_task(rq, next);
4756

4757 4758 4759 4760 4761 4762 4763
		/* Find suitable destination for @next, with force if needed. */
		dest_cpu = select_fallback_rq(dead_cpu, next);
		raw_spin_unlock(&rq->lock);

		__migrate_task(next, dead_cpu, dest_cpu);

		raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
4764
	}
4765

4766
	rq->stop = stop;
4767
}
4768

L
Linus Torvalds 已提交
4769 4770
#endif /* CONFIG_HOTPLUG_CPU */

4771 4772 4773
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
4774 4775
	{
		.procname	= "sched_domain",
4776
		.mode		= 0555,
4777
	},
4778
	{}
4779 4780 4781
};

static struct ctl_table sd_ctl_root[] = {
4782 4783
	{
		.procname	= "kernel",
4784
		.mode		= 0555,
4785 4786
		.child		= sd_ctl_dir,
	},
4787
	{}
4788 4789 4790 4791 4792
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
4793
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4794 4795 4796 4797

	return entry;
}

4798 4799
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
4800
	struct ctl_table *entry;
4801

4802 4803 4804
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
4805
	 * will always be set. In the lowest directory the names are
4806 4807 4808
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
4809 4810
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
4811 4812 4813
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
4814 4815 4816 4817 4818

	kfree(*tablep);
	*tablep = NULL;
}

4819
static int min_load_idx = 0;
4820
static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4821

4822
static void
4823
set_table_entry(struct ctl_table *entry,
4824
		const char *procname, void *data, int maxlen,
4825 4826
		umode_t mode, proc_handler *proc_handler,
		bool load_idx)
4827 4828 4829 4830 4831 4832
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
4833 4834 4835 4836 4837

	if (load_idx) {
		entry->extra1 = &min_load_idx;
		entry->extra2 = &max_load_idx;
	}
4838 4839 4840 4841 4842
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
4843
	struct ctl_table *table = sd_alloc_ctl_entry(13);
4844

4845 4846 4847
	if (table == NULL)
		return NULL;

4848
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4849
		sizeof(long), 0644, proc_doulongvec_minmax, false);
4850
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4851
		sizeof(long), 0644, proc_doulongvec_minmax, false);
4852
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4853
		sizeof(int), 0644, proc_dointvec_minmax, true);
4854
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4855
		sizeof(int), 0644, proc_dointvec_minmax, true);
4856
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4857
		sizeof(int), 0644, proc_dointvec_minmax, true);
4858
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4859
		sizeof(int), 0644, proc_dointvec_minmax, true);
4860
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4861
		sizeof(int), 0644, proc_dointvec_minmax, true);
4862
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4863
		sizeof(int), 0644, proc_dointvec_minmax, false);
4864
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4865
		sizeof(int), 0644, proc_dointvec_minmax, false);
4866
	set_table_entry(&table[9], "cache_nice_tries",
4867
		&sd->cache_nice_tries,
4868
		sizeof(int), 0644, proc_dointvec_minmax, false);
4869
	set_table_entry(&table[10], "flags", &sd->flags,
4870
		sizeof(int), 0644, proc_dointvec_minmax, false);
4871
	set_table_entry(&table[11], "name", sd->name,
4872
		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4873
	/* &table[12] is terminator */
4874 4875 4876 4877

	return table;
}

4878
static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4879 4880 4881 4882 4883 4884 4885 4886 4887
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4888 4889
	if (table == NULL)
		return NULL;
4890 4891 4892 4893 4894

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
4895
		entry->mode = 0555;
4896 4897 4898 4899 4900 4901 4902 4903
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
4904
static void register_sched_domain_sysctl(void)
4905
{
4906
	int i, cpu_num = num_possible_cpus();
4907 4908 4909
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

4910 4911 4912
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

4913 4914 4915
	if (entry == NULL)
		return;

4916
	for_each_possible_cpu(i) {
4917 4918
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
4919
		entry->mode = 0555;
4920
		entry->child = sd_alloc_ctl_cpu_table(i);
4921
		entry++;
4922
	}
4923 4924

	WARN_ON(sd_sysctl_header);
4925 4926
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
4927

4928
/* may be called multiple times per register */
4929 4930
static void unregister_sched_domain_sysctl(void)
{
4931 4932
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
4933
	sd_sysctl_header = NULL;
4934 4935
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
4936
}
4937
#else
4938 4939 4940 4941
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
4942 4943 4944 4945
{
}
#endif

4946 4947 4948 4949 4950
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

4951
		cpumask_set_cpu(rq->cpu, rq->rd->online);
4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

4971
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
4972 4973 4974 4975
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
4976 4977 4978 4979
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
4980
static int
4981
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
4982
{
4983
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
4984
	unsigned long flags;
4985
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4986

4987
	switch (action & ~CPU_TASKS_FROZEN) {
4988

L
Linus Torvalds 已提交
4989
	case CPU_UP_PREPARE:
4990
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
4991
		break;
4992

L
Linus Torvalds 已提交
4993
	case CPU_ONLINE:
4994
		/* Update our root-domain */
4995
		raw_spin_lock_irqsave(&rq->lock, flags);
4996
		if (rq->rd) {
4997
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4998 4999

			set_rq_online(rq);
5000
		}
5001
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5002
		break;
5003

L
Linus Torvalds 已提交
5004
#ifdef CONFIG_HOTPLUG_CPU
5005
	case CPU_DYING:
5006
		sched_ttwu_pending();
G
Gregory Haskins 已提交
5007
		/* Update our root-domain */
5008
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5009
		if (rq->rd) {
5010
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5011
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5012
		}
5013 5014
		migrate_tasks(cpu);
		BUG_ON(rq->nr_running != 1); /* the migration thread */
5015
		raw_spin_unlock_irqrestore(&rq->lock, flags);
5016
		break;
5017

5018
	case CPU_DEAD:
5019
		calc_load_migrate(rq);
G
Gregory Haskins 已提交
5020
		break;
L
Linus Torvalds 已提交
5021 5022
#endif
	}
5023 5024 5025

	update_max_interval();

L
Linus Torvalds 已提交
5026 5027 5028
	return NOTIFY_OK;
}

5029 5030 5031
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5032
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5033
 */
5034
static struct notifier_block migration_notifier = {
L
Linus Torvalds 已提交
5035
	.notifier_call = migration_call,
5036
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
5037 5038
};

5039
static int sched_cpu_active(struct notifier_block *nfb,
5040 5041 5042
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
5043
	case CPU_STARTING:
5044 5045 5046 5047 5048 5049 5050 5051
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

5052
static int sched_cpu_inactive(struct notifier_block *nfb,
5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		set_cpu_active((long)hcpu, false);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

5064
static int __init migration_init(void)
L
Linus Torvalds 已提交
5065 5066
{
	void *cpu = (void *)(long)smp_processor_id();
5067
	int err;
5068

5069
	/* Initialize migration for the boot CPU */
5070 5071
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5072 5073
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5074

5075 5076 5077 5078
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

5079
	return 0;
L
Linus Torvalds 已提交
5080
}
5081
early_initcall(migration_init);
L
Linus Torvalds 已提交
5082 5083 5084
#endif

#ifdef CONFIG_SMP
5085

5086 5087
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

5088
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5089

5090
static __read_mostly int sched_debug_enabled;
5091

5092
static int __init sched_debug_setup(char *str)
5093
{
5094
	sched_debug_enabled = 1;
5095 5096 5097

	return 0;
}
5098 5099 5100 5101 5102 5103
early_param("sched_debug", sched_debug_setup);

static inline bool sched_debug(void)
{
	return sched_debug_enabled;
}
5104

5105
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5106
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5107
{
I
Ingo Molnar 已提交
5108
	struct sched_group *group = sd->groups;
5109
	char str[256];
L
Linus Torvalds 已提交
5110

R
Rusty Russell 已提交
5111
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5112
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5113 5114 5115 5116

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5117
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5118
		if (sd->parent)
P
Peter Zijlstra 已提交
5119 5120
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5121
		return -1;
N
Nick Piggin 已提交
5122 5123
	}

P
Peter Zijlstra 已提交
5124
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
5125

5126
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5127 5128
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5129
	}
5130
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5131 5132
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5133
	}
L
Linus Torvalds 已提交
5134

I
Ingo Molnar 已提交
5135
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5136
	do {
I
Ingo Molnar 已提交
5137
		if (!group) {
P
Peter Zijlstra 已提交
5138 5139
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5140 5141 5142
			break;
		}

5143 5144 5145 5146 5147 5148
		/*
		 * Even though we initialize ->power to something semi-sane,
		 * we leave power_orig unset. This allows us to detect if
		 * domain iteration is still funny without causing /0 traps.
		 */
		if (!group->sgp->power_orig) {
P
Peter Zijlstra 已提交
5149 5150 5151
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
5152 5153
			break;
		}
L
Linus Torvalds 已提交
5154

5155
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5156 5157
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
5158 5159
			break;
		}
L
Linus Torvalds 已提交
5160

5161 5162
		if (!(sd->flags & SD_OVERLAP) &&
		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5163 5164
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
5165 5166
			break;
		}
L
Linus Torvalds 已提交
5167

5168
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
5169

R
Rusty Russell 已提交
5170
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5171

P
Peter Zijlstra 已提交
5172
		printk(KERN_CONT " %s", str);
5173
		if (group->sgp->power != SCHED_POWER_SCALE) {
P
Peter Zijlstra 已提交
5174
			printk(KERN_CONT " (cpu_power = %d)",
5175
				group->sgp->power);
5176
		}
L
Linus Torvalds 已提交
5177

I
Ingo Molnar 已提交
5178 5179
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
5180
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5181

5182
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
5183
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5184

5185 5186
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
5187 5188
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
5189 5190
	return 0;
}
L
Linus Torvalds 已提交
5191

I
Ingo Molnar 已提交
5192 5193 5194
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5195

5196
	if (!sched_debug_enabled)
5197 5198
		return;

I
Ingo Molnar 已提交
5199 5200 5201 5202
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5203

I
Ingo Molnar 已提交
5204 5205 5206
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
5207
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
I
Ingo Molnar 已提交
5208
			break;
L
Linus Torvalds 已提交
5209 5210
		level++;
		sd = sd->parent;
5211
		if (!sd)
I
Ingo Molnar 已提交
5212 5213
			break;
	}
L
Linus Torvalds 已提交
5214
}
5215
#else /* !CONFIG_SCHED_DEBUG */
5216
# define sched_domain_debug(sd, cpu) do { } while (0)
5217 5218 5219 5220
static inline bool sched_debug(void)
{
	return false;
}
5221
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
5222

5223
static int sd_degenerate(struct sched_domain *sd)
5224
{
5225
	if (cpumask_weight(sched_domain_span(sd)) == 1)
5226 5227 5228 5229 5230 5231
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5232 5233 5234
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5235 5236 5237 5238 5239
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
5240
	if (sd->flags & (SD_WAKE_AFFINE))
5241 5242 5243 5244 5245
		return 0;

	return 1;
}

5246 5247
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5248 5249 5250 5251 5252 5253
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

5254
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5255 5256 5257 5258 5259 5260 5261
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5262 5263
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
5264 5265
				SD_SHARE_PKG_RESOURCES |
				SD_PREFER_SIBLING);
5266 5267
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
5268 5269 5270 5271 5272 5273 5274
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

5275
static void free_rootdomain(struct rcu_head *rcu)
5276
{
5277
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5278

5279
	cpupri_cleanup(&rd->cpupri);
5280
	cpudl_cleanup(&rd->cpudl);
5281
	free_cpumask_var(rd->dlo_mask);
5282 5283 5284 5285 5286 5287
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
5288 5289
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
5290
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
5291 5292
	unsigned long flags;

5293
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5294 5295

	if (rq->rd) {
I
Ingo Molnar 已提交
5296
		old_rd = rq->rd;
G
Gregory Haskins 已提交
5297

5298
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5299
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5300

5301
		cpumask_clear_cpu(rq->cpu, old_rd->span);
5302

I
Ingo Molnar 已提交
5303
		/*
5304
		 * If we dont want to free the old_rd yet then
I
Ingo Molnar 已提交
5305 5306 5307 5308 5309
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
5310 5311 5312 5313 5314
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

5315
	cpumask_set_cpu(rq->cpu, rd->span);
5316
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5317
		set_rq_online(rq);
G
Gregory Haskins 已提交
5318

5319
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
5320 5321

	if (old_rd)
5322
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
5323 5324
}

5325
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
5326 5327 5328
{
	memset(rd, 0, sizeof(*rd));

5329
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5330
		goto out;
5331
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5332
		goto free_span;
5333
	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5334
		goto free_online;
5335 5336
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
		goto free_dlo_mask;
5337

5338
	init_dl_bw(&rd->dl_bw);
5339 5340
	if (cpudl_init(&rd->cpudl) != 0)
		goto free_dlo_mask;
5341

5342
	if (cpupri_init(&rd->cpupri) != 0)
5343
		goto free_rto_mask;
5344
	return 0;
5345

5346 5347
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
5348 5349
free_dlo_mask:
	free_cpumask_var(rd->dlo_mask);
5350 5351 5352 5353
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
5354
out:
5355
	return -ENOMEM;
G
Gregory Haskins 已提交
5356 5357
}

5358 5359 5360 5361 5362 5363
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
struct root_domain def_root_domain;

G
Gregory Haskins 已提交
5364 5365
static void init_defrootdomain(void)
{
5366
	init_rootdomain(&def_root_domain);
5367

G
Gregory Haskins 已提交
5368 5369 5370
	atomic_set(&def_root_domain.refcount, 1);
}

5371
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
5372 5373 5374 5375 5376 5377 5378
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

5379
	if (init_rootdomain(rd) != 0) {
5380 5381 5382
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
5383 5384 5385 5386

	return rd;
}

5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405
static void free_sched_groups(struct sched_group *sg, int free_sgp)
{
	struct sched_group *tmp, *first;

	if (!sg)
		return;

	first = sg;
	do {
		tmp = sg->next;

		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
			kfree(sg->sgp);

		kfree(sg);
		sg = tmp;
	} while (sg != first);
}

5406 5407 5408
static void free_sched_domain(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5409 5410 5411 5412 5413 5414 5415 5416

	/*
	 * If its an overlapping domain it has private groups, iterate and
	 * nuke them all.
	 */
	if (sd->flags & SD_OVERLAP) {
		free_sched_groups(sd->groups, 1);
	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5417
		kfree(sd->groups->sgp);
5418
		kfree(sd->groups);
5419
	}
5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433
	kfree(sd);
}

static void destroy_sched_domain(struct sched_domain *sd, int cpu)
{
	call_rcu(&sd->rcu, free_sched_domain);
}

static void destroy_sched_domains(struct sched_domain *sd, int cpu)
{
	for (; sd; sd = sd->parent)
		destroy_sched_domain(sd, cpu);
}

5434 5435 5436 5437 5438 5439 5440
/*
 * Keep a special pointer to the highest sched_domain that has
 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 * allows us to avoid some pointer chasing select_idle_sibling().
 *
 * Also keep a unique ID per domain (we use the first cpu number in
 * the cpumask of the domain), this allows us to quickly tell if
5441
 * two cpus are in the same cache domain, see cpus_share_cache().
5442 5443
 */
DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5444
DEFINE_PER_CPU(int, sd_llc_size);
5445
DEFINE_PER_CPU(int, sd_llc_id);
5446
DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5447 5448
DEFINE_PER_CPU(struct sched_domain *, sd_busy);
DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5449 5450 5451 5452

static void update_top_cache_domain(int cpu)
{
	struct sched_domain *sd;
5453
	struct sched_domain *busy_sd = NULL;
5454
	int id = cpu;
5455
	int size = 1;
5456 5457

	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5458
	if (sd) {
5459
		id = cpumask_first(sched_domain_span(sd));
5460
		size = cpumask_weight(sched_domain_span(sd));
5461
		busy_sd = sd->parent; /* sd_busy */
5462
	}
5463
	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5464 5465

	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5466
	per_cpu(sd_llc_size, cpu) = size;
5467
	per_cpu(sd_llc_id, cpu) = id;
5468 5469 5470

	sd = lowest_flag_domain(cpu, SD_NUMA);
	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5471 5472 5473

	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5474 5475
}

L
Linus Torvalds 已提交
5476
/*
I
Ingo Molnar 已提交
5477
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
5478 5479
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
5480 5481
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
5482
{
5483
	struct rq *rq = cpu_rq(cpu);
5484 5485 5486
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
5487
	for (tmp = sd; tmp; ) {
5488 5489 5490
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5491

5492
		if (sd_parent_degenerate(tmp, parent)) {
5493
			tmp->parent = parent->parent;
5494 5495
			if (parent->parent)
				parent->parent->child = tmp;
5496 5497 5498 5499 5500 5501 5502
			/*
			 * Transfer SD_PREFER_SIBLING down in case of a
			 * degenerate parent; the spans match for this
			 * so the property transfers.
			 */
			if (parent->flags & SD_PREFER_SIBLING)
				tmp->flags |= SD_PREFER_SIBLING;
5503
			destroy_sched_domain(parent, cpu);
5504 5505
		} else
			tmp = tmp->parent;
5506 5507
	}

5508
	if (sd && sd_degenerate(sd)) {
5509
		tmp = sd;
5510
		sd = sd->parent;
5511
		destroy_sched_domain(tmp, cpu);
5512 5513 5514
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5515

5516
	sched_domain_debug(sd, cpu);
L
Linus Torvalds 已提交
5517

G
Gregory Haskins 已提交
5518
	rq_attach_root(rq, rd);
5519
	tmp = rq->sd;
N
Nick Piggin 已提交
5520
	rcu_assign_pointer(rq->sd, sd);
5521
	destroy_sched_domains(tmp, cpu);
5522 5523

	update_top_cache_domain(cpu);
L
Linus Torvalds 已提交
5524 5525 5526
}

/* cpus with isolated domains */
5527
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
5528 5529 5530 5531

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
5532
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
5533
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
5534 5535 5536
	return 1;
}

I
Ingo Molnar 已提交
5537
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5538

5539 5540 5541 5542 5543
static const struct cpumask *cpu_cpu_mask(int cpu)
{
	return cpumask_of_node(cpu_to_node(cpu));
}

5544 5545 5546
struct sd_data {
	struct sched_domain **__percpu sd;
	struct sched_group **__percpu sg;
5547
	struct sched_group_power **__percpu sgp;
5548 5549
};

5550
struct s_data {
5551
	struct sched_domain ** __percpu sd;
5552 5553 5554
	struct root_domain	*rd;
};

5555 5556
enum s_alloc {
	sa_rootdomain,
5557
	sa_sd,
5558
	sa_sd_storage,
5559 5560 5561
	sa_none,
};

5562 5563 5564
struct sched_domain_topology_level;

typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5565 5566
typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);

5567 5568
#define SDTL_OVERLAP	0x01

5569
struct sched_domain_topology_level {
5570 5571
	sched_domain_init_f init;
	sched_domain_mask_f mask;
5572
	int		    flags;
5573
	int		    numa_level;
5574
	struct sd_data      data;
5575 5576
};

P
Peter Zijlstra 已提交
5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614
/*
 * Build an iteration mask that can exclude certain CPUs from the upwards
 * domain traversal.
 *
 * Asymmetric node setups can result in situations where the domain tree is of
 * unequal depth, make sure to skip domains that already cover the entire
 * range.
 *
 * In that case build_sched_domains() will have terminated the iteration early
 * and our sibling sd spans will be empty. Domains should always include the
 * cpu they're built on, so check that.
 *
 */
static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
{
	const struct cpumask *span = sched_domain_span(sd);
	struct sd_data *sdd = sd->private;
	struct sched_domain *sibling;
	int i;

	for_each_cpu(i, span) {
		sibling = *per_cpu_ptr(sdd->sd, i);
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
			continue;

		cpumask_set_cpu(i, sched_group_mask(sg));
	}
}

/*
 * Return the canonical balance cpu for this group, this is the first cpu
 * of this group that's also in the iteration mask.
 */
int group_balance_cpu(struct sched_group *sg)
{
	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
}

5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632
static int
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered = sched_domains_tmpmask;
	struct sd_data *sdd = sd->private;
	struct sched_domain *child;
	int i;

	cpumask_clear(covered);

	for_each_cpu(i, span) {
		struct cpumask *sg_span;

		if (cpumask_test_cpu(i, covered))
			continue;

P
Peter Zijlstra 已提交
5633 5634 5635 5636 5637 5638
		child = *per_cpu_ptr(sdd->sd, i);

		/* See the comment near build_group_mask(). */
		if (!cpumask_test_cpu(i, sched_domain_span(child)))
			continue;

5639
		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5640
				GFP_KERNEL, cpu_to_node(cpu));
5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653

		if (!sg)
			goto fail;

		sg_span = sched_group_cpus(sg);
		if (child->child) {
			child = child->child;
			cpumask_copy(sg_span, sched_domain_span(child));
		} else
			cpumask_set_cpu(i, sg_span);

		cpumask_or(covered, covered, sg_span);

P
Peter Zijlstra 已提交
5654
		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
P
Peter Zijlstra 已提交
5655 5656 5657
		if (atomic_inc_return(&sg->sgp->ref) == 1)
			build_group_mask(sd, sg);

5658 5659 5660 5661 5662 5663
		/*
		 * Initialize sgp->power such that even if we mess up the
		 * domains and no possible iteration will get us here, we won't
		 * die on a /0 trap.
		 */
		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5664
		sg->sgp->power_orig = sg->sgp->power;
5665

P
Peter Zijlstra 已提交
5666 5667 5668 5669 5670
		/*
		 * Make sure the first group of this domain contains the
		 * canonical balance cpu. Otherwise the sched_domain iteration
		 * breaks. See update_sg_lb_stats().
		 */
P
Peter Zijlstra 已提交
5671
		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
P
Peter Zijlstra 已提交
5672
		    group_balance_cpu(sg) == cpu)
5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691
			groups = sg;

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
		last->next = first;
	}
	sd->groups = groups;

	return 0;

fail:
	free_sched_groups(first, 0);

	return -ENOMEM;
}

5692
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
5693
{
5694 5695
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
5696

5697 5698
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
5699

5700
	if (sg) {
5701
		*sg = *per_cpu_ptr(sdd->sg, cpu);
5702
		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5703
		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5704
	}
5705 5706

	return cpu;
5707 5708
}

5709
/*
5710 5711 5712
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
5713 5714
 *
 * Assumes the sched_domain tree is fully constructed
5715
 */
5716 5717
static int
build_sched_groups(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5718
{
5719 5720 5721
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
5722
	struct cpumask *covered;
5723
	int i;
5724

5725 5726 5727
	get_group(cpu, sdd, &sd->groups);
	atomic_inc(&sd->groups->ref);

5728
	if (cpu != cpumask_first(span))
5729 5730
		return 0;

5731 5732 5733
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

5734
	cpumask_clear(covered);
5735

5736 5737
	for_each_cpu(i, span) {
		struct sched_group *sg;
5738
		int group, j;
5739

5740 5741
		if (cpumask_test_cpu(i, covered))
			continue;
5742

5743
		group = get_group(i, sdd, &sg);
5744
		cpumask_clear(sched_group_cpus(sg));
5745
		sg->sgp->power = 0;
P
Peter Zijlstra 已提交
5746
		cpumask_setall(sched_group_mask(sg));
5747

5748 5749 5750
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
5751

5752 5753 5754
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
5755

5756 5757 5758 5759 5760 5761 5762
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
5763 5764

	return 0;
5765
}
5766

5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
5779
	struct sched_group *sg = sd->groups;
5780

5781
	WARN_ON(!sg);
5782 5783 5784 5785 5786

	do {
		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
		sg = sg->next;
	} while (sg != sd->groups);
5787

P
Peter Zijlstra 已提交
5788
	if (cpu != group_balance_cpu(sg))
5789
		return;
5790

5791
	update_group_power(sd, cpu);
5792
	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5793 5794
}

5795 5796 5797
int __weak arch_sd_sibling_asym_packing(void)
{
       return 0*SD_ASYM_PACKING;
5798 5799
}

5800 5801 5802 5803 5804
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

5805 5806 5807 5808 5809 5810
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

5811 5812 5813 5814 5815 5816 5817 5818 5819
#define SD_INIT_FUNC(type)						\
static noinline struct sched_domain *					\
sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
{									\
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
	*sd = SD_##type##_INIT;						\
	SD_INIT_NAME(sd, type);						\
	sd->private = &tl->data;					\
	return sd;							\
5820 5821 5822 5823 5824 5825 5826 5827 5828
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif
5829 5830 5831
#ifdef CONFIG_SCHED_BOOK
 SD_INIT_FUNC(BOOK)
#endif
5832

5833
static int default_relax_domain_level = -1;
5834
int sched_domain_level_max;
5835 5836 5837

static int __init setup_relax_domain_level(char *str)
{
5838 5839
	if (kstrtoint(str, 0, &default_relax_domain_level))
		pr_warn("Unable to set relax_domain_level\n");
5840

5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
5859
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5860 5861
	} else {
		/* turn on idle balance on this domain */
5862
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5863 5864 5865
	}
}

5866 5867 5868
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

5869 5870 5871 5872 5873
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
5874 5875
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
5876 5877
	case sa_sd:
		free_percpu(d->sd); /* fall through */
5878
	case sa_sd_storage:
5879
		__sdt_free(cpu_map); /* fall through */
5880 5881 5882 5883
	case sa_none:
		break;
	}
}
5884

5885 5886 5887
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
5888 5889
	memset(d, 0, sizeof(*d));

5890 5891
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
5892 5893 5894
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
5895
	d->rd = alloc_rootdomain();
5896
	if (!d->rd)
5897
		return sa_sd;
5898 5899
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
5900

5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

5913
	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5914
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5915 5916

	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5917
		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
5918 5919
}

5920 5921
#ifdef CONFIG_SCHED_SMT
static const struct cpumask *cpu_smt_mask(int cpu)
5922
{
5923
	return topology_thread_cpumask(cpu);
5924
}
5925
#endif
5926

5927 5928 5929
/*
 * Topology list, bottom-up.
 */
5930
static struct sched_domain_topology_level default_topology[] = {
5931 5932
#ifdef CONFIG_SCHED_SMT
	{ sd_init_SIBLING, cpu_smt_mask, },
5933
#endif
5934
#ifdef CONFIG_SCHED_MC
5935
	{ sd_init_MC, cpu_coregroup_mask, },
5936
#endif
5937 5938 5939 5940
#ifdef CONFIG_SCHED_BOOK
	{ sd_init_BOOK, cpu_book_mask, },
#endif
	{ sd_init_CPU, cpu_cpu_mask, },
5941 5942 5943 5944 5945
	{ NULL, },
};

static struct sched_domain_topology_level *sched_domain_topology = default_topology;

5946 5947 5948
#define for_each_sd_topology(tl)			\
	for (tl = sched_domain_topology; tl->init; tl++)

5949 5950 5951 5952 5953 5954 5955 5956 5957
#ifdef CONFIG_NUMA

static int sched_domains_numa_levels;
static int *sched_domains_numa_distance;
static struct cpumask ***sched_domains_numa_masks;
static int sched_domains_curr_level;

static inline int sd_local_flags(int level)
{
5958
	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975
		return 0;

	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
}

static struct sched_domain *
sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
{
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
	int level = tl->numa_level;
	int sd_weight = cpumask_weight(
			sched_domains_numa_masks[level][cpu_to_node(cpu)]);

	*sd = (struct sched_domain){
		.min_interval		= sd_weight,
		.max_interval		= 2*sd_weight,
		.busy_factor		= 32,
5976
		.imbalance_pct		= 125,
5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993
		.cache_nice_tries	= 2,
		.busy_idx		= 3,
		.idle_idx		= 2,
		.newidle_idx		= 0,
		.wake_idx		= 0,
		.forkexec_idx		= 0,

		.flags			= 1*SD_LOAD_BALANCE
					| 1*SD_BALANCE_NEWIDLE
					| 0*SD_BALANCE_EXEC
					| 0*SD_BALANCE_FORK
					| 0*SD_BALANCE_WAKE
					| 0*SD_WAKE_AFFINE
					| 0*SD_SHARE_CPUPOWER
					| 0*SD_SHARE_PKG_RESOURCES
					| 1*SD_SERIALIZE
					| 0*SD_PREFER_SIBLING
5994
					| 1*SD_NUMA
5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015
					| sd_local_flags(level)
					,
		.last_balance		= jiffies,
		.balance_interval	= sd_weight,
	};
	SD_INIT_NAME(sd, NUMA);
	sd->private = &tl->data;

	/*
	 * Ugly hack to pass state to sd_numa_mask()...
	 */
	sched_domains_curr_level = tl->numa_level;

	return sd;
}

static const struct cpumask *sd_numa_mask(int cpu)
{
	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
}

6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051
static void sched_numa_warn(const char *str)
{
	static int done = false;
	int i,j;

	if (done)
		return;

	done = true;

	printk(KERN_WARNING "ERROR: %s\n\n", str);

	for (i = 0; i < nr_node_ids; i++) {
		printk(KERN_WARNING "  ");
		for (j = 0; j < nr_node_ids; j++)
			printk(KERN_CONT "%02d ", node_distance(i,j));
		printk(KERN_CONT "\n");
	}
	printk(KERN_WARNING "\n");
}

static bool find_numa_distance(int distance)
{
	int i;

	if (distance == node_distance(0, 0))
		return true;

	for (i = 0; i < sched_domains_numa_levels; i++) {
		if (sched_domains_numa_distance[i] == distance)
			return true;
	}

	return false;
}

6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072
static void sched_init_numa(void)
{
	int next_distance, curr_distance = node_distance(0, 0);
	struct sched_domain_topology_level *tl;
	int level = 0;
	int i, j, k;

	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
	if (!sched_domains_numa_distance)
		return;

	/*
	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
	 * unique distances in the node_distance() table.
	 *
	 * Assumes node_distance(0,j) includes all distances in
	 * node_distance(i,j) in order to avoid cubic time.
	 */
	next_distance = curr_distance;
	for (i = 0; i < nr_node_ids; i++) {
		for (j = 0; j < nr_node_ids; j++) {
6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096
			for (k = 0; k < nr_node_ids; k++) {
				int distance = node_distance(i, k);

				if (distance > curr_distance &&
				    (distance < next_distance ||
				     next_distance == curr_distance))
					next_distance = distance;

				/*
				 * While not a strong assumption it would be nice to know
				 * about cases where if node A is connected to B, B is not
				 * equally connected to A.
				 */
				if (sched_debug() && node_distance(k, i) != distance)
					sched_numa_warn("Node-distance not symmetric");

				if (sched_debug() && i && !find_numa_distance(distance))
					sched_numa_warn("Node-0 not representative");
			}
			if (next_distance != curr_distance) {
				sched_domains_numa_distance[level++] = next_distance;
				sched_domains_numa_levels = level;
				curr_distance = next_distance;
			} else break;
6097
		}
6098 6099 6100 6101 6102 6103

		/*
		 * In case of sched_debug() we verify the above assumption.
		 */
		if (!sched_debug())
			break;
6104 6105 6106 6107 6108
	}
	/*
	 * 'level' contains the number of unique distances, excluding the
	 * identity distance node_distance(i,i).
	 *
V
Viresh Kumar 已提交
6109
	 * The sched_domains_numa_distance[] array includes the actual distance
6110 6111 6112
	 * numbers.
	 */

6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123
	/*
	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
	 * the array will contain less then 'level' members. This could be
	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
	 * in other functions.
	 *
	 * We reset it to 'level' at the end of this function.
	 */
	sched_domains_numa_levels = 0;

6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138
	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
	if (!sched_domains_numa_masks)
		return;

	/*
	 * Now for each level, construct a mask per node which contains all
	 * cpus of nodes that are that many hops away from us.
	 */
	for (i = 0; i < level; i++) {
		sched_domains_numa_masks[i] =
			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
		if (!sched_domains_numa_masks[i])
			return;

		for (j = 0; j < nr_node_ids; j++) {
6139
			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6140 6141 6142 6143 6144 6145
			if (!mask)
				return;

			sched_domains_numa_masks[i][j] = mask;

			for (k = 0; k < nr_node_ids; k++) {
6146
				if (node_distance(j, k) > sched_domains_numa_distance[i])
6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177
					continue;

				cpumask_or(mask, mask, cpumask_of_node(k));
			}
		}
	}

	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
	if (!tl)
		return;

	/*
	 * Copy the default topology bits..
	 */
	for (i = 0; default_topology[i].init; i++)
		tl[i] = default_topology[i];

	/*
	 * .. and append 'j' levels of NUMA goodness.
	 */
	for (j = 0; j < level; i++, j++) {
		tl[i] = (struct sched_domain_topology_level){
			.init = sd_numa_init,
			.mask = sd_numa_mask,
			.flags = SDTL_OVERLAP,
			.numa_level = j,
		};
	}

	sched_domain_topology = tl;
6178 6179

	sched_domains_numa_levels = level;
6180
}
6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227

static void sched_domains_numa_masks_set(int cpu)
{
	int i, j;
	int node = cpu_to_node(cpu);

	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++) {
			if (node_distance(j, node) <= sched_domains_numa_distance[i])
				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
		}
	}
}

static void sched_domains_numa_masks_clear(int cpu)
{
	int i, j;
	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++)
			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
	}
}

/*
 * Update sched_domains_numa_masks[level][node] array when new cpus
 * are onlined.
 */
static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	int cpu = (long)hcpu;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
		sched_domains_numa_masks_set(cpu);
		break;

	case CPU_DEAD:
		sched_domains_numa_masks_clear(cpu);
		break;

	default:
		return NOTIFY_DONE;
	}

	return NOTIFY_OK;
6228 6229 6230 6231 6232
}
#else
static inline void sched_init_numa(void)
{
}
6233 6234 6235 6236 6237 6238 6239

static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	return 0;
}
6240 6241
#endif /* CONFIG_NUMA */

6242 6243 6244 6245 6246
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

6247
	for_each_sd_topology(tl) {
6248 6249 6250 6251 6252 6253 6254 6255 6256 6257
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

6258 6259 6260 6261
		sdd->sgp = alloc_percpu(struct sched_group_power *);
		if (!sdd->sgp)
			return -ENOMEM;

6262 6263 6264
		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_group *sg;
6265
			struct sched_group_power *sgp;
6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278

		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

6279 6280
			sg->next = sg;

6281
			*per_cpu_ptr(sdd->sg, j) = sg;
6282

P
Peter Zijlstra 已提交
6283
			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6284 6285 6286 6287 6288
					GFP_KERNEL, cpu_to_node(j));
			if (!sgp)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sgp, j) = sgp;
6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

6300
	for_each_sd_topology(tl) {
6301 6302 6303
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316
			struct sched_domain *sd;

			if (sdd->sd) {
				sd = *per_cpu_ptr(sdd->sd, j);
				if (sd && (sd->flags & SD_OVERLAP))
					free_sched_groups(sd->groups, 0);
				kfree(*per_cpu_ptr(sdd->sd, j));
			}

			if (sdd->sg)
				kfree(*per_cpu_ptr(sdd->sg, j));
			if (sdd->sgp)
				kfree(*per_cpu_ptr(sdd->sgp, j));
6317 6318
		}
		free_percpu(sdd->sd);
6319
		sdd->sd = NULL;
6320
		free_percpu(sdd->sg);
6321
		sdd->sg = NULL;
6322
		free_percpu(sdd->sgp);
6323
		sdd->sgp = NULL;
6324 6325 6326
	}
}

6327
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6328 6329
		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
		struct sched_domain *child, int cpu)
6330
{
6331
	struct sched_domain *sd = tl->init(tl, cpu);
6332
	if (!sd)
6333
		return child;
6334 6335

	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6336 6337 6338
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6339
		child->parent = sd;
6340
		sd->child = child;
6341
	}
6342
	set_domain_attribute(sd, attr);
6343 6344 6345 6346

	return sd;
}

6347 6348 6349 6350
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
6351 6352
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
6353
{
6354
	enum s_alloc alloc_state;
6355
	struct sched_domain *sd;
6356
	struct s_data d;
6357
	int i, ret = -ENOMEM;
6358

6359 6360 6361
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
6362

6363
	/* Set up domains for cpus specified by the cpu_map. */
6364
	for_each_cpu(i, cpu_map) {
6365 6366
		struct sched_domain_topology_level *tl;

6367
		sd = NULL;
6368
		for_each_sd_topology(tl) {
6369
			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6370 6371
			if (tl == sched_domain_topology)
				*per_cpu_ptr(d.sd, i) = sd;
6372 6373
			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
				sd->flags |= SD_OVERLAP;
6374 6375
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
				break;
6376
		}
6377 6378 6379 6380 6381 6382
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6383 6384 6385 6386 6387 6388 6389
			if (sd->flags & SD_OVERLAP) {
				if (build_overlap_sched_groups(sd, i))
					goto error;
			} else {
				if (build_sched_groups(sd, i))
					goto error;
			}
6390
		}
6391
	}
6392

L
Linus Torvalds 已提交
6393
	/* Calculate CPU power for physical packages and nodes */
6394 6395 6396
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
6397

6398 6399
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
6400
			init_sched_groups_power(i, sd);
6401
		}
6402
	}
6403

L
Linus Torvalds 已提交
6404
	/* Attach the domains */
6405
	rcu_read_lock();
6406
	for_each_cpu(i, cpu_map) {
6407
		sd = *per_cpu_ptr(d.sd, i);
6408
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
6409
	}
6410
	rcu_read_unlock();
6411

6412
	ret = 0;
6413
error:
6414
	__free_domain_allocs(&d, alloc_state, cpu_map);
6415
	return ret;
L
Linus Torvalds 已提交
6416
}
P
Paul Jackson 已提交
6417

6418
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
6419
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
6420 6421
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
6422 6423 6424

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
6425 6426
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
6427
 */
6428
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
6429

6430 6431 6432 6433 6434 6435
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
6436
{
6437
	return 0;
6438 6439
}

6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

6465
/*
I
Ingo Molnar 已提交
6466
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6467 6468
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6469
 */
6470
static int init_sched_domains(const struct cpumask *cpu_map)
6471
{
6472 6473
	int err;

6474
	arch_update_cpu_topology();
P
Paul Jackson 已提交
6475
	ndoms_cur = 1;
6476
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
6477
	if (!doms_cur)
6478 6479
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6480
	err = build_sched_domains(doms_cur[0], NULL);
6481
	register_sched_domain_sysctl();
6482 6483

	return err;
6484 6485 6486 6487 6488 6489
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6490
static void detach_destroy_domains(const struct cpumask *cpu_map)
6491 6492 6493
{
	int i;

6494
	rcu_read_lock();
6495
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
6496
		cpu_attach_domain(NULL, &def_root_domain, i);
6497
	rcu_read_unlock();
6498 6499
}

6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
6516 6517
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
6518
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
6519 6520 6521
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
6522
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
6523 6524 6525
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
6526 6527 6528
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
6529 6530 6531 6532 6533 6534
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
6535
 *
6536
 * If doms_new == NULL it will be replaced with cpu_online_mask.
6537 6538
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
6539
 *
P
Paul Jackson 已提交
6540 6541
 * Call with hotplug lock held
 */
6542
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6543
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
6544
{
6545
	int i, j, n;
6546
	int new_topology;
P
Paul Jackson 已提交
6547

6548
	mutex_lock(&sched_domains_mutex);
6549

6550 6551 6552
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

6553 6554 6555
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

6556
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
6557 6558 6559

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
6560
		for (j = 0; j < n && !new_topology; j++) {
6561
			if (cpumask_equal(doms_cur[i], doms_new[j])
6562
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
6563 6564 6565
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
6566
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
6567 6568 6569 6570
match1:
		;
	}

6571
	n = ndoms_cur;
6572
	if (doms_new == NULL) {
6573
		n = 0;
6574
		doms_new = &fallback_doms;
6575
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6576
		WARN_ON_ONCE(dattr_new);
6577 6578
	}

P
Paul Jackson 已提交
6579 6580
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
6581
		for (j = 0; j < n && !new_topology; j++) {
6582
			if (cpumask_equal(doms_new[i], doms_cur[j])
6583
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
6584 6585 6586
				goto match2;
		}
		/* no match - add a new doms_new */
6587
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
6588 6589 6590 6591 6592
match2:
		;
	}

	/* Remember the new sched domains */
6593 6594
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
6595
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
6596
	doms_cur = doms_new;
6597
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
6598
	ndoms_cur = ndoms_new;
6599 6600

	register_sched_domain_sysctl();
6601

6602
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
6603 6604
}

6605 6606
static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */

L
Linus Torvalds 已提交
6607
/*
6608 6609 6610
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
6611 6612 6613
 *
 * If we come here as part of a suspend/resume, don't touch cpusets because we
 * want to restore it back to its original state upon resume anyway.
L
Linus Torvalds 已提交
6614
 */
6615 6616
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
6617
{
6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639
	switch (action) {
	case CPU_ONLINE_FROZEN:
	case CPU_DOWN_FAILED_FROZEN:

		/*
		 * num_cpus_frozen tracks how many CPUs are involved in suspend
		 * resume sequence. As long as this is not the last online
		 * operation in the resume sequence, just build a single sched
		 * domain, ignoring cpusets.
		 */
		num_cpus_frozen--;
		if (likely(num_cpus_frozen)) {
			partition_sched_domains(1, NULL, NULL);
			break;
		}

		/*
		 * This is the last CPU online operation. So fall through and
		 * restore the original sched domains by considering the
		 * cpuset configurations.
		 */

6640
	case CPU_ONLINE:
6641
	case CPU_DOWN_FAILED:
6642
		cpuset_update_active_cpus(true);
6643
		break;
6644 6645 6646
	default:
		return NOTIFY_DONE;
	}
6647
	return NOTIFY_OK;
6648
}
6649

6650 6651
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
6652
{
6653
	switch (action) {
6654
	case CPU_DOWN_PREPARE:
6655
		cpuset_update_active_cpus(false);
6656 6657 6658 6659 6660
		break;
	case CPU_DOWN_PREPARE_FROZEN:
		num_cpus_frozen++;
		partition_sched_domains(1, NULL, NULL);
		break;
6661 6662 6663
	default:
		return NOTIFY_DONE;
	}
6664
	return NOTIFY_OK;
6665 6666
}

L
Linus Torvalds 已提交
6667 6668
void __init sched_init_smp(void)
{
6669 6670 6671
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6672
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6673

6674 6675
	sched_init_numa();

6676 6677 6678 6679 6680
	/*
	 * There's no userspace yet to cause hotplug operations; hence all the
	 * cpu masks are stable and all blatant races in the below code cannot
	 * happen.
	 */
6681
	mutex_lock(&sched_domains_mutex);
6682
	init_sched_domains(cpu_active_mask);
6683 6684 6685
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6686
	mutex_unlock(&sched_domains_mutex);
6687

6688
	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6689 6690
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6691

6692
	init_hrtick();
6693 6694

	/* Move init over to a non-isolated CPU */
6695
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6696
		BUG();
I
Ingo Molnar 已提交
6697
	sched_init_granularity();
6698
	free_cpumask_var(non_isolated_cpus);
6699

6700
	init_sched_rt_class();
6701
	init_sched_dl_class();
L
Linus Torvalds 已提交
6702 6703 6704 6705
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6706
	sched_init_granularity();
L
Linus Torvalds 已提交
6707 6708 6709
}
#endif /* CONFIG_SMP */

6710 6711
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
6712 6713 6714 6715 6716 6717 6718
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

6719
#ifdef CONFIG_CGROUP_SCHED
6720 6721 6722 6723
/*
 * Default task group.
 * Every task in system belongs to this group at bootup.
 */
6724
struct task_group root_task_group;
6725
LIST_HEAD(task_groups);
6726
#endif
P
Peter Zijlstra 已提交
6727

6728
DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
P
Peter Zijlstra 已提交
6729

L
Linus Torvalds 已提交
6730 6731
void __init sched_init(void)
{
I
Ingo Molnar 已提交
6732
	int i, j;
6733 6734 6735 6736 6737 6738 6739
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6740
#endif
6741
#ifdef CONFIG_CPUMASK_OFFSTACK
6742
	alloc_size += num_possible_cpus() * cpumask_size();
6743 6744
#endif
	if (alloc_size) {
6745
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6746 6747

#ifdef CONFIG_FAIR_GROUP_SCHED
6748
		root_task_group.se = (struct sched_entity **)ptr;
6749 6750
		ptr += nr_cpu_ids * sizeof(void **);

6751
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6752
		ptr += nr_cpu_ids * sizeof(void **);
6753

6754
#endif /* CONFIG_FAIR_GROUP_SCHED */
6755
#ifdef CONFIG_RT_GROUP_SCHED
6756
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6757 6758
		ptr += nr_cpu_ids * sizeof(void **);

6759
		root_task_group.rt_rq = (struct rt_rq **)ptr;
6760 6761
		ptr += nr_cpu_ids * sizeof(void **);

6762
#endif /* CONFIG_RT_GROUP_SCHED */
6763 6764
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
6765
			per_cpu(load_balance_mask, i) = (void *)ptr;
6766 6767 6768
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
6769
	}
I
Ingo Molnar 已提交
6770

6771 6772 6773 6774 6775
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());
	init_dl_bandwidth(&def_dl_bandwidth,
			global_dl_period(), global_dl_runtime());

G
Gregory Haskins 已提交
6776 6777 6778 6779
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

6780
#ifdef CONFIG_RT_GROUP_SCHED
6781
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6782
			global_rt_period(), global_rt_runtime());
6783
#endif /* CONFIG_RT_GROUP_SCHED */
6784

D
Dhaval Giani 已提交
6785
#ifdef CONFIG_CGROUP_SCHED
6786 6787
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
6788
	INIT_LIST_HEAD(&root_task_group.siblings);
6789
	autogroup_init(&init_task);
6790

D
Dhaval Giani 已提交
6791
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
6792

6793
	for_each_possible_cpu(i) {
6794
		struct rq *rq;
L
Linus Torvalds 已提交
6795 6796

		rq = cpu_rq(i);
6797
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
6798
		rq->nr_running = 0;
6799 6800
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
6801
		init_cfs_rq(&rq->cfs);
P
Peter Zijlstra 已提交
6802
		init_rt_rq(&rq->rt, rq);
6803
		init_dl_rq(&rq->dl, rq);
I
Ingo Molnar 已提交
6804
#ifdef CONFIG_FAIR_GROUP_SCHED
6805
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
6806
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
6807
		/*
6808
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
6809 6810 6811 6812
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
6813
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
6814 6815 6816
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
6817
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
6818 6819 6820
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
6821
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
6822
		 *
6823 6824
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
6825
		 */
6826
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6827
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
6828 6829 6830
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6831
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
6832
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6833
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
6834
#endif
L
Linus Torvalds 已提交
6835

I
Ingo Molnar 已提交
6836 6837
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
6838 6839 6840

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
6841
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6842
		rq->sd = NULL;
G
Gregory Haskins 已提交
6843
		rq->rd = NULL;
6844
		rq->cpu_power = SCHED_POWER_SCALE;
6845
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
6846
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6847
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6848
		rq->push_cpu = 0;
6849
		rq->cpu = i;
6850
		rq->online = 0;
6851 6852
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
6853
		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6854 6855 6856

		INIT_LIST_HEAD(&rq->cfs_tasks);

6857
		rq_attach_root(rq, &def_root_domain);
6858
#ifdef CONFIG_NO_HZ_COMMON
6859
		rq->nohz_flags = 0;
6860
#endif
6861 6862 6863
#ifdef CONFIG_NO_HZ_FULL
		rq->last_sched_tick = 0;
#endif
L
Linus Torvalds 已提交
6864
#endif
P
Peter Zijlstra 已提交
6865
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
6866 6867 6868
		atomic_set(&rq->nr_iowait, 0);
	}

6869
	set_load_weight(&init_task);
6870

6871 6872 6873 6874
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

L
Linus Torvalds 已提交
6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
6888 6889 6890

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
6891 6892 6893 6894
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
6895

6896
#ifdef CONFIG_SMP
6897
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
R
Rusty Russell 已提交
6898 6899 6900
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6901
	idle_thread_set_boot_cpu();
6902 6903
#endif
	init_sched_fair_class();
6904

6905
	scheduler_running = 1;
L
Linus Torvalds 已提交
6906 6907
}

6908
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6909 6910
static inline int preempt_count_equals(int preempt_offset)
{
6911
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6912

A
Arnd Bergmann 已提交
6913
	return (nested == preempt_offset);
6914 6915
}

6916
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
6917 6918 6919
{
	static unsigned long prev_jiffy;	/* ratelimiting */

6920
	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6921 6922
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
6923 6924 6925 6926 6927
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
6928 6929 6930 6931 6932 6933 6934
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
6935 6936 6937 6938 6939

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
6940 6941 6942 6943 6944
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
6945 6946
static void normalize_task(struct rq *rq, struct task_struct *p)
{
P
Peter Zijlstra 已提交
6947
	const struct sched_class *prev_class = p->sched_class;
6948 6949 6950
	struct sched_attr attr = {
		.sched_policy = SCHED_NORMAL,
	};
P
Peter Zijlstra 已提交
6951
	int old_prio = p->prio;
6952
	int on_rq;
6953

P
Peter Zijlstra 已提交
6954
	on_rq = p->on_rq;
6955
	if (on_rq)
6956
		dequeue_task(rq, p, 0);
6957
	__setscheduler(rq, p, &attr);
6958
	if (on_rq) {
6959
		enqueue_task(rq, p, 0);
6960 6961
		resched_task(rq->curr);
	}
P
Peter Zijlstra 已提交
6962 6963

	check_class_changed(rq, p, prev_class, old_prio);
6964 6965
}

L
Linus Torvalds 已提交
6966 6967
void normalize_rt_tasks(void)
{
6968
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6969
	unsigned long flags;
6970
	struct rq *rq;
L
Linus Torvalds 已提交
6971

6972
	read_lock_irqsave(&tasklist_lock, flags);
6973
	do_each_thread(g, p) {
6974 6975 6976 6977 6978 6979
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
6980 6981
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
6982 6983 6984
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
6985
#endif
I
Ingo Molnar 已提交
6986

6987
		if (!dl_task(p) && !rt_task(p)) {
I
Ingo Molnar 已提交
6988 6989 6990 6991 6992 6993
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
6994
			continue;
I
Ingo Molnar 已提交
6995
		}
L
Linus Torvalds 已提交
6996

6997
		raw_spin_lock(&p->pi_lock);
6998
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
6999

7000
		normalize_task(rq, p);
7001

7002
		__task_rq_unlock(rq);
7003
		raw_spin_unlock(&p->pi_lock);
7004 7005
	} while_each_thread(g, p);

7006
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7007 7008 7009
}

#endif /* CONFIG_MAGIC_SYSRQ */
7010

7011
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7012
/*
7013
 * These functions are only useful for the IA64 MCA handling, or kdb.
7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7027 7028
 *
 * Return: The current task for @cpu.
7029
 */
7030
struct task_struct *curr_task(int cpu)
7031 7032 7033 7034
{
	return cpu_curr(cpu);
}

7035 7036 7037
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
7038 7039 7040 7041 7042 7043
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7044 7045
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7046 7047 7048 7049 7050 7051 7052
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7053
void set_curr_task(int cpu, struct task_struct *p)
7054 7055 7056 7057 7058
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7059

D
Dhaval Giani 已提交
7060
#ifdef CONFIG_CGROUP_SCHED
7061 7062 7063
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

7064 7065 7066 7067
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
7068
	autogroup_free(tg);
7069 7070 7071 7072
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
7073
struct task_group *sched_create_group(struct task_group *parent)
7074 7075 7076 7077 7078 7079 7080
{
	struct task_group *tg;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

7081
	if (!alloc_fair_sched_group(tg, parent))
7082 7083
		goto err;

7084
	if (!alloc_rt_sched_group(tg, parent))
7085 7086
		goto err;

7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097
	return tg;

err:
	free_sched_group(tg);
	return ERR_PTR(-ENOMEM);
}

void sched_online_group(struct task_group *tg, struct task_group *parent)
{
	unsigned long flags;

7098
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7099
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
7100 7101 7102 7103 7104

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
7105
	list_add_rcu(&tg->siblings, &parent->children);
7106
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7107 7108
}

7109
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
7110
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7111 7112
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
7113
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
7114 7115
}

7116
/* Destroy runqueue etc associated with a task group */
7117
void sched_destroy_group(struct task_group *tg)
7118 7119 7120 7121 7122 7123
{
	/* wait for possible concurrent references to cfs_rqs complete */
	call_rcu(&tg->rcu, free_sched_group_rcu);
}

void sched_offline_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7124
{
7125
	unsigned long flags;
7126
	int i;
S
Srivatsa Vaddagiri 已提交
7127

7128 7129
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
7130
		unregister_fair_sched_group(tg, i);
7131 7132

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7133
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
7134
	list_del_rcu(&tg->siblings);
7135
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7136 7137
}

7138
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7139 7140 7141
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7142 7143
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7144
{
P
Peter Zijlstra 已提交
7145
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
7146 7147 7148 7149 7150 7151
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

7152
	running = task_current(rq, tsk);
P
Peter Zijlstra 已提交
7153
	on_rq = tsk->on_rq;
S
Srivatsa Vaddagiri 已提交
7154

7155
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
7156
		dequeue_task(rq, tsk, 0);
7157 7158
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7159

7160
	tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
P
Peter Zijlstra 已提交
7161 7162 7163 7164 7165
				lockdep_is_held(&tsk->sighand->siglock)),
			  struct task_group, css);
	tg = autogroup_task_group(tsk, tg);
	tsk->sched_task_group = tg;

P
Peter Zijlstra 已提交
7166
#ifdef CONFIG_FAIR_GROUP_SCHED
7167 7168 7169
	if (tsk->sched_class->task_move_group)
		tsk->sched_class->task_move_group(tsk, on_rq);
	else
P
Peter Zijlstra 已提交
7170
#endif
7171
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
7172

7173 7174 7175
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
7176
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
7177

7178
	task_rq_unlock(rq, tsk, &flags);
S
Srivatsa Vaddagiri 已提交
7179
}
D
Dhaval Giani 已提交
7180
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
7181

7182 7183 7184 7185 7186
#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
P
Peter Zijlstra 已提交
7187

P
Peter Zijlstra 已提交
7188 7189
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
7190
{
P
Peter Zijlstra 已提交
7191
	struct task_struct *g, *p;
7192

P
Peter Zijlstra 已提交
7193
	do_each_thread(g, p) {
7194
		if (rt_task(p) && task_rq(p)->rt.tg == tg)
P
Peter Zijlstra 已提交
7195 7196
			return 1;
	} while_each_thread(g, p);
7197

P
Peter Zijlstra 已提交
7198 7199
	return 0;
}
7200

P
Peter Zijlstra 已提交
7201 7202 7203 7204 7205
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
7206

7207
static int tg_rt_schedulable(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
7208 7209 7210 7211 7212
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
7213

P
Peter Zijlstra 已提交
7214 7215
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
7216

P
Peter Zijlstra 已提交
7217 7218 7219
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
7220 7221
	}

7222 7223 7224 7225 7226
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
7227

7228 7229 7230
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
7231 7232
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
7233

P
Peter Zijlstra 已提交
7234
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7235

7236 7237 7238 7239 7240
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
7241

7242 7243 7244
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
7245 7246 7247
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7248

P
Peter Zijlstra 已提交
7249 7250 7251 7252
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
7253

P
Peter Zijlstra 已提交
7254
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7255
	}
P
Peter Zijlstra 已提交
7256

P
Peter Zijlstra 已提交
7257 7258 7259 7260
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
7261 7262
}

P
Peter Zijlstra 已提交
7263
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7264
{
7265 7266
	int ret;

P
Peter Zijlstra 已提交
7267 7268 7269 7270 7271 7272
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

7273 7274 7275 7276 7277
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7278 7279
}

7280
static int tg_set_rt_bandwidth(struct task_group *tg,
7281
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
7282
{
P
Peter Zijlstra 已提交
7283
	int i, err = 0;
P
Peter Zijlstra 已提交
7284 7285

	mutex_lock(&rt_constraints_mutex);
7286
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
7287 7288
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
7289
		goto unlock;
P
Peter Zijlstra 已提交
7290

7291
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7292 7293
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
7294 7295 7296 7297

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

7298
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7299
		rt_rq->rt_runtime = rt_runtime;
7300
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7301
	}
7302
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
7303
unlock:
7304
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
7305 7306 7307
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
7308 7309
}

7310
static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7311 7312 7313 7314 7315 7316 7317 7318
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

7319
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7320 7321
}

7322
static long sched_group_rt_runtime(struct task_group *tg)
P
Peter Zijlstra 已提交
7323 7324 7325
{
	u64 rt_runtime_us;

7326
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7327 7328
		return -1;

7329
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7330 7331 7332
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
7333

7334
static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7335 7336 7337 7338 7339 7340
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

7341 7342 7343
	if (rt_period == 0)
		return -EINVAL;

7344
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7345 7346
}

7347
static long sched_group_rt_period(struct task_group *tg)
7348 7349 7350 7351 7352 7353 7354
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}
7355
#endif /* CONFIG_RT_GROUP_SCHED */
7356

7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393
/*
 * Coupling of -rt and -deadline bandwidth.
 *
 * Here we check if the new -rt bandwidth value is consistent
 * with the system settings for the bandwidth available
 * to -deadline tasks.
 *
 * IOW, we want to enforce that
 *
 *   rt_bandwidth + dl_bandwidth <= 100%
 *
 * is always true.
 */
static bool __sched_rt_dl_global_constraints(u64 rt_bw)
{
	unsigned long flags;
	u64 dl_bw;
	bool ret;

	raw_spin_lock_irqsave(&def_dl_bandwidth.dl_runtime_lock, flags);
	if (global_rt_runtime() == RUNTIME_INF ||
	    global_dl_runtime() == RUNTIME_INF) {
		ret = true;
		goto unlock;
	}

	dl_bw = to_ratio(def_dl_bandwidth.dl_period,
			 def_dl_bandwidth.dl_runtime);

	ret = rt_bw + dl_bw <= to_ratio(RUNTIME_INF, RUNTIME_INF);
unlock:
	raw_spin_unlock_irqrestore(&def_dl_bandwidth.dl_runtime_lock, flags);

	return ret;
}

#ifdef CONFIG_RT_GROUP_SCHED
7394 7395
static int sched_rt_global_constraints(void)
{
7396
	u64 runtime, period, bw;
7397 7398
	int ret = 0;

7399 7400 7401
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7402 7403 7404 7405 7406 7407 7408 7409
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
7410

7411 7412 7413 7414
	bw = to_ratio(period, runtime);
	if (!__sched_rt_dl_global_constraints(bw))
		return -EINVAL;

7415
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
7416
	read_lock(&tasklist_lock);
7417
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
7418
	read_unlock(&tasklist_lock);
7419 7420 7421 7422
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
7423

7424
static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7425 7426 7427 7428 7429 7430 7431 7432
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

7433
#else /* !CONFIG_RT_GROUP_SCHED */
7434 7435
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
7436
	unsigned long flags;
7437 7438
	int i, ret = 0;
	u64 bw;
P
Peter Zijlstra 已提交
7439

7440 7441 7442
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7443
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7444 7445 7446 7447 7448 7449
	bw = to_ratio(global_rt_period(), global_rt_runtime());
	if (!__sched_rt_dl_global_constraints(bw)) {
		ret = -EINVAL;
		goto unlock;
	}

P
Peter Zijlstra 已提交
7450 7451 7452
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

7453
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7454
		rt_rq->rt_runtime = global_rt_runtime();
7455
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7456
	}
7457
unlock:
7458
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7459

7460
	return ret;
7461
}
7462
#endif /* CONFIG_RT_GROUP_SCHED */
7463

7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543
/*
 * Coupling of -dl and -rt bandwidth.
 *
 * Here we check, while setting the system wide bandwidth available
 * for -dl tasks and groups, if the new values are consistent with
 * the system settings for the bandwidth available to -rt entities.
 *
 * IOW, we want to enforce that
 *
 *   rt_bandwidth + dl_bandwidth <= 100%
 *
 * is always true.
 */
static bool __sched_dl_rt_global_constraints(u64 dl_bw)
{
	u64 rt_bw;
	bool ret;

	raw_spin_lock(&def_rt_bandwidth.rt_runtime_lock);
	if (global_dl_runtime() == RUNTIME_INF ||
	    global_rt_runtime() == RUNTIME_INF) {
		ret = true;
		goto unlock;
	}

	rt_bw = to_ratio(ktime_to_ns(def_rt_bandwidth.rt_period),
			 def_rt_bandwidth.rt_runtime);

	ret = rt_bw + dl_bw <= to_ratio(RUNTIME_INF, RUNTIME_INF);
unlock:
	raw_spin_unlock(&def_rt_bandwidth.rt_runtime_lock);

	return ret;
}

static bool __sched_dl_global_constraints(u64 runtime, u64 period)
{
	if (!period || (runtime != RUNTIME_INF && runtime > period))
		return -EINVAL;

	return 0;
}

static int sched_dl_global_constraints(void)
{
	u64 runtime = global_dl_runtime();
	u64 period = global_dl_period();
	u64 new_bw = to_ratio(period, runtime);
	int ret, i;

	ret = __sched_dl_global_constraints(runtime, period);
	if (ret)
		return ret;

	if (!__sched_dl_rt_global_constraints(new_bw))
		return -EINVAL;

	/*
	 * Here we want to check the bandwidth not being set to some
	 * value smaller than the currently allocated bandwidth in
	 * any of the root_domains.
	 *
	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
	 * cycling on root_domains... Discussion on different/better
	 * solutions is welcome!
	 */
	for_each_possible_cpu(i) {
		struct dl_bw *dl_b = dl_bw_of(i);

		raw_spin_lock(&dl_b->lock);
		if (new_bw < dl_b->total_bw) {
			raw_spin_unlock(&dl_b->lock);
			return -EBUSY;
		}
		raw_spin_unlock(&dl_b->lock);
	}

	return 0;
}

7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562
int sched_rr_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
	/* make sure that internally we keep jiffies */
	/* also, writing zero resets timeslice to default */
	if (!ret && write) {
		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
	}
	mutex_unlock(&mutex);
	return ret;
}

7563
int sched_rt_handler(struct ctl_table *table, int write,
7564
		void __user *buffer, size_t *lenp,
7565 7566 7567 7568 7569 7570 7571 7572 7573 7574
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

7575
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
7592

7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646
int sched_dl_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);
	unsigned long flags;

	mutex_lock(&mutex);
	old_period = sysctl_sched_dl_period;
	old_runtime = sysctl_sched_dl_runtime;

	ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (!ret && write) {
		raw_spin_lock_irqsave(&def_dl_bandwidth.dl_runtime_lock,
				      flags);

		ret = sched_dl_global_constraints();
		if (ret) {
			sysctl_sched_dl_period = old_period;
			sysctl_sched_dl_runtime = old_runtime;
		} else {
			u64 new_bw;
			int i;

			def_dl_bandwidth.dl_period = global_dl_period();
			def_dl_bandwidth.dl_runtime = global_dl_runtime();
			if (global_dl_runtime() == RUNTIME_INF)
				new_bw = -1;
			else
				new_bw = to_ratio(global_dl_period(),
						  global_dl_runtime());
			/*
			 * FIXME: As above...
			 */
			for_each_possible_cpu(i) {
				struct dl_bw *dl_b = dl_bw_of(i);

				raw_spin_lock(&dl_b->lock);
				dl_b->bw = new_bw;
				raw_spin_unlock(&dl_b->lock);
			}
		}

		raw_spin_unlock_irqrestore(&def_dl_bandwidth.dl_runtime_lock,
					   flags);
	}
	mutex_unlock(&mutex);

	return ret;
}

7647
#ifdef CONFIG_CGROUP_SCHED
7648

7649
static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7650
{
7651
	return css ? container_of(css, struct task_group, css) : NULL;
7652 7653
}

7654 7655
static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7656
{
7657 7658
	struct task_group *parent = css_tg(parent_css);
	struct task_group *tg;
7659

7660
	if (!parent) {
7661
		/* This is early initialization for the top cgroup */
7662
		return &root_task_group.css;
7663 7664
	}

7665
	tg = sched_create_group(parent);
7666 7667 7668 7669 7670 7671
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

7672
static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7673
{
7674 7675
	struct task_group *tg = css_tg(css);
	struct task_group *parent = css_tg(css_parent(css));
7676

T
Tejun Heo 已提交
7677 7678
	if (parent)
		sched_online_group(tg, parent);
7679 7680 7681
	return 0;
}

7682
static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7683
{
7684
	struct task_group *tg = css_tg(css);
7685 7686 7687 7688

	sched_destroy_group(tg);
}

7689
static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7690
{
7691
	struct task_group *tg = css_tg(css);
7692 7693 7694 7695

	sched_offline_group(tg);
}

7696
static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7697
				 struct cgroup_taskset *tset)
7698
{
7699 7700
	struct task_struct *task;

7701
	cgroup_taskset_for_each(task, css, tset) {
7702
#ifdef CONFIG_RT_GROUP_SCHED
7703
		if (!sched_rt_can_attach(css_tg(css), task))
7704
			return -EINVAL;
7705
#else
7706 7707 7708
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
7709
#endif
7710
	}
7711 7712
	return 0;
}
7713

7714
static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7715
			      struct cgroup_taskset *tset)
7716
{
7717 7718
	struct task_struct *task;

7719
	cgroup_taskset_for_each(task, css, tset)
7720
		sched_move_task(task);
7721 7722
}

7723 7724 7725
static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
			    struct cgroup_subsys_state *old_css,
			    struct task_struct *task)
7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	sched_move_task(task);
}

7738
#ifdef CONFIG_FAIR_GROUP_SCHED
7739 7740
static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
				struct cftype *cftype, u64 shareval)
7741
{
7742
	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7743 7744
}

7745 7746
static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
			       struct cftype *cft)
7747
{
7748
	struct task_group *tg = css_tg(css);
7749

7750
	return (u64) scale_load_down(tg->shares);
7751
}
7752 7753

#ifdef CONFIG_CFS_BANDWIDTH
7754 7755
static DEFINE_MUTEX(cfs_constraints_mutex);

7756 7757 7758
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

7759 7760
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

7761 7762
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
7763
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7764
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

7785 7786 7787 7788 7789
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

7790
	runtime_enabled = quota != RUNTIME_INF;
7791
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7792 7793 7794 7795 7796 7797
	/*
	 * If we need to toggle cfs_bandwidth_used, off->on must occur
	 * before making related changes, and on->off must occur afterwards
	 */
	if (runtime_enabled && !runtime_was_enabled)
		cfs_bandwidth_usage_inc();
7798 7799 7800
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
7801

P
Paul Turner 已提交
7802
	__refill_cfs_bandwidth_runtime(cfs_b);
7803 7804 7805 7806 7807 7808
	/* restart the period timer (if active) to handle new period expiry */
	if (runtime_enabled && cfs_b->timer_active) {
		/* force a reprogram */
		cfs_b->timer_active = 0;
		__start_cfs_bandwidth(cfs_b);
	}
7809 7810 7811 7812
	raw_spin_unlock_irq(&cfs_b->lock);

	for_each_possible_cpu(i) {
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7813
		struct rq *rq = cfs_rq->rq;
7814 7815

		raw_spin_lock_irq(&rq->lock);
7816
		cfs_rq->runtime_enabled = runtime_enabled;
7817
		cfs_rq->runtime_remaining = 0;
7818

7819
		if (cfs_rq->throttled)
7820
			unthrottle_cfs_rq(cfs_rq);
7821 7822
		raw_spin_unlock_irq(&rq->lock);
	}
7823 7824
	if (runtime_was_enabled && !runtime_enabled)
		cfs_bandwidth_usage_dec();
7825 7826
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
7827

7828
	return ret;
7829 7830 7831 7832 7833 7834
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

7835
	period = ktime_to_ns(tg->cfs_bandwidth.period);
7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

7848
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7849 7850
		return -1;

7851
	quota_us = tg->cfs_bandwidth.quota;
7852 7853 7854 7855 7856 7857 7858 7859 7860 7861
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
7862
	quota = tg->cfs_bandwidth.quota;
7863 7864 7865 7866 7867 7868 7869 7870

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

7871
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7872 7873 7874 7875 7876
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

7877 7878
static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
				  struct cftype *cft)
7879
{
7880
	return tg_get_cfs_quota(css_tg(css));
7881 7882
}

7883 7884
static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
				   struct cftype *cftype, s64 cfs_quota_us)
7885
{
7886
	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7887 7888
}

7889 7890
static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
				   struct cftype *cft)
7891
{
7892
	return tg_get_cfs_period(css_tg(css));
7893 7894
}

7895 7896
static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 cfs_period_us)
7897
{
7898
	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7899 7900
}

7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
7933
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7934 7935 7936 7937 7938
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
7939
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959

		quota = normalize_cfs_quota(tg, d);
		parent_quota = parent_b->hierarchal_quota;

		/*
		 * ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
	cfs_b->hierarchal_quota = quota;

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
7960
	int ret;
7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

7972 7973 7974 7975 7976
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7977
}
7978

7979
static int cpu_stats_show(struct cgroup_subsys_state *css, struct cftype *cft,
7980 7981
		struct cgroup_map_cb *cb)
{
7982
	struct task_group *tg = css_tg(css);
7983
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7984 7985 7986 7987 7988 7989 7990

	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
	cb->fill(cb, "throttled_time", cfs_b->throttled_time);

	return 0;
}
7991
#endif /* CONFIG_CFS_BANDWIDTH */
7992
#endif /* CONFIG_FAIR_GROUP_SCHED */
7993

7994
#ifdef CONFIG_RT_GROUP_SCHED
7995 7996
static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
				struct cftype *cft, s64 val)
P
Peter Zijlstra 已提交
7997
{
7998
	return sched_group_set_rt_runtime(css_tg(css), val);
P
Peter Zijlstra 已提交
7999 8000
}

8001 8002
static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
P
Peter Zijlstra 已提交
8003
{
8004
	return sched_group_rt_runtime(css_tg(css));
P
Peter Zijlstra 已提交
8005
}
8006

8007 8008
static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 rt_period_us)
8009
{
8010
	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8011 8012
}

8013 8014
static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
				   struct cftype *cft)
8015
{
8016
	return sched_group_rt_period(css_tg(css));
8017
}
8018
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
8019

8020
static struct cftype cpu_files[] = {
8021
#ifdef CONFIG_FAIR_GROUP_SCHED
8022 8023
	{
		.name = "shares",
8024 8025
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8026
	},
8027
#endif
8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
8039 8040 8041 8042
	{
		.name = "stat",
		.read_map = cpu_stats_show,
	},
8043
#endif
8044
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8045
	{
P
Peter Zijlstra 已提交
8046
		.name = "rt_runtime_us",
8047 8048
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8049
	},
8050 8051
	{
		.name = "rt_period_us",
8052 8053
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8054
	},
8055
#endif
8056
	{ }	/* terminate */
8057 8058 8059
};

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
8060
	.name		= "cpu",
8061 8062
	.css_alloc	= cpu_cgroup_css_alloc,
	.css_free	= cpu_cgroup_css_free,
8063 8064
	.css_online	= cpu_cgroup_css_online,
	.css_offline	= cpu_cgroup_css_offline,
8065 8066
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
8067
	.exit		= cpu_cgroup_exit,
I
Ingo Molnar 已提交
8068
	.subsys_id	= cpu_cgroup_subsys_id,
8069
	.base_cftypes	= cpu_files,
8070 8071 8072
	.early_init	= 1,
};

8073
#endif	/* CONFIG_CGROUP_SCHED */
8074

8075 8076 8077 8078 8079
void dump_cpu_task(int cpu)
{
	pr_info("Task dump for CPU %d:\n", cpu);
	sched_show_task(cpu_curr(cpu));
}