core.c 200.2 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/highmem.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
37
#include <linux/capability.h>
L
Linus Torvalds 已提交
38 39
#include <linux/completion.h>
#include <linux/kernel_stat.h>
40
#include <linux/debug_locks.h>
41
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
57
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
58
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/unistd.h>
J
Jens Axboe 已提交
66
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
67
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
68
#include <linux/tick.h>
P
Peter Zijlstra 已提交
69 70
#include <linux/debugfs.h>
#include <linux/ctype.h>
71
#include <linux/ftrace.h>
72
#include <linux/slab.h>
73
#include <linux/init_task.h>
A
Al Viro 已提交
74
#include <linux/binfmts.h>
75
#include <linux/context_tracking.h>
76
#include <linux/compiler.h>
L
Linus Torvalds 已提交
77

78
#include <asm/switch_to.h>
79
#include <asm/tlb.h>
80
#include <asm/irq_regs.h>
81
#include <asm/mutex.h>
G
Glauber Costa 已提交
82 83 84
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
85

86
#include "sched.h"
87
#include "../workqueue_internal.h"
88
#include "../smpboot.h"
89

90
#define CREATE_TRACE_POINTS
91
#include <trace/events/sched.h>
92

93
void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
94
{
95 96
	unsigned long delta;
	ktime_t soft, hard, now;
97

98 99 100 101 102 103
	for (;;) {
		if (hrtimer_active(period_timer))
			break;

		now = hrtimer_cb_get_time(period_timer);
		hrtimer_forward(period_timer, now, period);
104

105 106 107 108 109 110 111 112
		soft = hrtimer_get_softexpires(period_timer);
		hard = hrtimer_get_expires(period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(period_timer, soft, delta,
					 HRTIMER_MODE_ABS_PINNED, 0);
	}
}

113 114
DEFINE_MUTEX(sched_domains_mutex);
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
115

116
static void update_rq_clock_task(struct rq *rq, s64 delta);
117

118
void update_rq_clock(struct rq *rq)
119
{
120
	s64 delta;
121

122 123 124
	lockdep_assert_held(&rq->lock);

	if (rq->clock_skip_update & RQCF_ACT_SKIP)
125
		return;
126

127
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
128 129
	if (delta < 0)
		return;
130 131
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
132 133
}

I
Ingo Molnar 已提交
134 135 136
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
137 138 139 140

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
141
const_debug unsigned int sysctl_sched_features =
142
#include "features.h"
P
Peter Zijlstra 已提交
143 144 145 146 147 148 149 150
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

151
static const char * const sched_feat_names[] = {
152
#include "features.h"
P
Peter Zijlstra 已提交
153 154 155 156
};

#undef SCHED_FEAT

L
Li Zefan 已提交
157
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
158 159 160
{
	int i;

161
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
L
Li Zefan 已提交
162 163 164
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
165
	}
L
Li Zefan 已提交
166
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
167

L
Li Zefan 已提交
168
	return 0;
P
Peter Zijlstra 已提交
169 170
}

171 172
#ifdef HAVE_JUMP_LABEL

173 174
#define jump_label_key__true  STATIC_KEY_INIT_TRUE
#define jump_label_key__false STATIC_KEY_INIT_FALSE
175 176 177 178

#define SCHED_FEAT(name, enabled)	\
	jump_label_key__##enabled ,

179
struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
180 181 182 183 184 185 186
#include "features.h"
};

#undef SCHED_FEAT

static void sched_feat_disable(int i)
{
187 188
	if (static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_dec(&sched_feat_keys[i]);
189 190 191 192
}

static void sched_feat_enable(int i)
{
193 194
	if (!static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_inc(&sched_feat_keys[i]);
195 196 197 198 199 200
}
#else
static void sched_feat_disable(int i) { };
static void sched_feat_enable(int i) { };
#endif /* HAVE_JUMP_LABEL */

201
static int sched_feat_set(char *cmp)
P
Peter Zijlstra 已提交
202 203
{
	int i;
204
	int neg = 0;
P
Peter Zijlstra 已提交
205

H
Hillf Danton 已提交
206
	if (strncmp(cmp, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
207 208 209 210
		neg = 1;
		cmp += 3;
	}

211
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
212
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
213
			if (neg) {
P
Peter Zijlstra 已提交
214
				sysctl_sched_features &= ~(1UL << i);
215 216
				sched_feat_disable(i);
			} else {
P
Peter Zijlstra 已提交
217
				sysctl_sched_features |= (1UL << i);
218 219
				sched_feat_enable(i);
			}
P
Peter Zijlstra 已提交
220 221 222 223
			break;
		}
	}

224 225 226 227 228 229 230 231 232 233
	return i;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp;
	int i;
234
	struct inode *inode;
235 236 237 238 239 240 241 242 243 244

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
	cmp = strstrip(buf);

245 246 247
	/* Ensure the static_key remains in a consistent state */
	inode = file_inode(filp);
	mutex_lock(&inode->i_mutex);
248
	i = sched_feat_set(cmp);
249
	mutex_unlock(&inode->i_mutex);
250
	if (i == __SCHED_FEAT_NR)
P
Peter Zijlstra 已提交
251 252
		return -EINVAL;

253
	*ppos += cnt;
P
Peter Zijlstra 已提交
254 255 256 257

	return cnt;
}

L
Li Zefan 已提交
258 259 260 261 262
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

263
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
264 265 266 267 268
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
269 270 271 272 273 274 275 276 277 278
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);
279
#endif /* CONFIG_SCHED_DEBUG */
I
Ingo Molnar 已提交
280

281 282 283 284 285 286
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

287 288 289 290 291 292 293 294
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
295
/*
P
Peter Zijlstra 已提交
296
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
297 298
 * default: 1s
 */
P
Peter Zijlstra 已提交
299
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
300

301
__read_mostly int scheduler_running;
302

P
Peter Zijlstra 已提交
303 304 305 306 307
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
308

309 310 311
/* cpus with isolated domains */
cpumask_var_t cpu_isolated_map;

L
Linus Torvalds 已提交
312
/*
313
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
314
 */
A
Alexey Dobriyan 已提交
315
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
316 317
	__acquires(rq->lock)
{
318
	struct rq *rq;
L
Linus Torvalds 已提交
319 320 321

	local_irq_disable();
	rq = this_rq();
322
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
323 324 325 326

	return rq;
}

P
Peter Zijlstra 已提交
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

348
	raw_spin_lock(&rq->lock);
349
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
350
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
351
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
352 353 354 355

	return HRTIMER_NORESTART;
}

356
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
357 358 359 360 361 362 363 364 365

static int __hrtick_restart(struct rq *rq)
{
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = hrtimer_get_softexpires(timer);

	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
}

366 367 368 369
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
370
{
371
	struct rq *rq = arg;
372

373
	raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
374
	__hrtick_restart(rq);
375
	rq->hrtick_csd_pending = 0;
376
	raw_spin_unlock(&rq->lock);
377 378
}

379 380 381 382 383
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
384
void hrtick_start(struct rq *rq, u64 delay)
385
{
386
	struct hrtimer *timer = &rq->hrtick_timer;
387 388 389 390 391 392 393 394 395
	ktime_t time;
	s64 delta;

	/*
	 * Don't schedule slices shorter than 10000ns, that just
	 * doesn't make sense and can cause timer DoS.
	 */
	delta = max_t(s64, delay, 10000LL);
	time = ktime_add_ns(timer->base->get_time(), delta);
396

397
	hrtimer_set_expires(timer, time);
398 399

	if (rq == this_rq()) {
P
Peter Zijlstra 已提交
400
		__hrtick_restart(rq);
401
	} else if (!rq->hrtick_csd_pending) {
402
		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
403 404
		rq->hrtick_csd_pending = 1;
	}
405 406 407 408 409 410 411 412 413 414 415 416 417 418
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
419
		hrtick_clear(cpu_rq(cpu));
420 421 422 423 424 425
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

426
static __init void init_hrtick(void)
427 428 429
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
430 431 432 433 434 435
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
436
void hrtick_start(struct rq *rq, u64 delay)
437
{
W
Wanpeng Li 已提交
438 439 440 441 442
	/*
	 * Don't schedule slices shorter than 10000ns, that just
	 * doesn't make sense. Rely on vruntime for fairness.
	 */
	delay = max_t(u64, delay, 10000LL);
443
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
444
			HRTIMER_MODE_REL_PINNED, 0);
445
}
446

A
Andrew Morton 已提交
447
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
448 449
{
}
450
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
451

452
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
453
{
454 455
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
456

457 458 459 460
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
461

462 463
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
464
}
A
Andrew Morton 已提交
465
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
466 467 468 469 470 471 472 473
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

474 475 476
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
477
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
478

479 480 481 482 483 484 485 486 487 488 489 490 491 492
/*
 * cmpxchg based fetch_or, macro so it works for different integer types
 */
#define fetch_or(ptr, val)						\
({	typeof(*(ptr)) __old, __val = *(ptr);				\
 	for (;;) {							\
 		__old = cmpxchg((ptr), __val, __val | (val));		\
 		if (__old == __val)					\
 			break;						\
 		__val = __old;						\
 	}								\
 	__old;								\
})

493
#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
494 495 496 497 498 499 500 501 502 503
/*
 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
 * this avoids any races wrt polling state changes and thereby avoids
 * spurious IPIs.
 */
static bool set_nr_and_not_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
}
504 505 506 507 508 509 510 511 512 513

/*
 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
 *
 * If this returns true, then the idle task promises to call
 * sched_ttwu_pending() and reschedule soon.
 */
static bool set_nr_if_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
514
	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
515 516 517 518 519 520 521 522 523 524 525 526 527 528

	for (;;) {
		if (!(val & _TIF_POLLING_NRFLAG))
			return false;
		if (val & _TIF_NEED_RESCHED)
			return true;
		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
		if (old == val)
			break;
		val = old;
	}
	return true;
}

529 530 531 532 533 534
#else
static bool set_nr_and_not_polling(struct task_struct *p)
{
	set_tsk_need_resched(p);
	return true;
}
535 536 537 538 539 540 541

#ifdef CONFIG_SMP
static bool set_nr_if_polling(struct task_struct *p)
{
	return false;
}
#endif
542 543
#endif

I
Ingo Molnar 已提交
544
/*
545
 * resched_curr - mark rq's current task 'to be rescheduled now'.
I
Ingo Molnar 已提交
546 547 548 549 550
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
551
void resched_curr(struct rq *rq)
I
Ingo Molnar 已提交
552
{
553
	struct task_struct *curr = rq->curr;
I
Ingo Molnar 已提交
554 555
	int cpu;

556
	lockdep_assert_held(&rq->lock);
I
Ingo Molnar 已提交
557

558
	if (test_tsk_need_resched(curr))
I
Ingo Molnar 已提交
559 560
		return;

561
	cpu = cpu_of(rq);
562

563
	if (cpu == smp_processor_id()) {
564
		set_tsk_need_resched(curr);
565
		set_preempt_need_resched();
I
Ingo Molnar 已提交
566
		return;
567
	}
I
Ingo Molnar 已提交
568

569
	if (set_nr_and_not_polling(curr))
I
Ingo Molnar 已提交
570
		smp_send_reschedule(cpu);
571 572
	else
		trace_sched_wake_idle_without_ipi(cpu);
I
Ingo Molnar 已提交
573 574
}

575
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
576 577 578 579
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

580
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
581
		return;
582
	resched_curr(rq);
583
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
584
}
585

586
#ifdef CONFIG_SMP
587
#ifdef CONFIG_NO_HZ_COMMON
588 589 590 591 592 593 594 595
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
596
int get_nohz_timer_target(int pinned)
597 598 599 600 601
{
	int cpu = smp_processor_id();
	int i;
	struct sched_domain *sd;

602 603 604
	if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
		return cpu;

605
	rcu_read_lock();
606
	for_each_domain(cpu, sd) {
607 608 609 610 611 612
		for_each_cpu(i, sched_domain_span(sd)) {
			if (!idle_cpu(i)) {
				cpu = i;
				goto unlock;
			}
		}
613
	}
614 615
unlock:
	rcu_read_unlock();
616 617
	return cpu;
}
618 619 620 621 622 623 624 625 626 627
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
628
static void wake_up_idle_cpu(int cpu)
629 630 631 632 633 634
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

635
	if (set_nr_and_not_polling(rq->idle))
636
		smp_send_reschedule(cpu);
637 638
	else
		trace_sched_wake_idle_without_ipi(cpu);
639 640
}

641
static bool wake_up_full_nohz_cpu(int cpu)
642
{
643 644 645 646 647 648
	/*
	 * We just need the target to call irq_exit() and re-evaluate
	 * the next tick. The nohz full kick at least implies that.
	 * If needed we can still optimize that later with an
	 * empty IRQ.
	 */
649
	if (tick_nohz_full_cpu(cpu)) {
650 651
		if (cpu != smp_processor_id() ||
		    tick_nohz_tick_stopped())
652
			tick_nohz_full_kick_cpu(cpu);
653 654 655 656 657 658 659 660
		return true;
	}

	return false;
}

void wake_up_nohz_cpu(int cpu)
{
661
	if (!wake_up_full_nohz_cpu(cpu))
662 663 664
		wake_up_idle_cpu(cpu);
}

665
static inline bool got_nohz_idle_kick(void)
666
{
667
	int cpu = smp_processor_id();
668 669 670 671 672 673 674 675 676 677 678 679 680

	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
		return false;

	if (idle_cpu(cpu) && !need_resched())
		return true;

	/*
	 * We can't run Idle Load Balance on this CPU for this time so we
	 * cancel it and clear NOHZ_BALANCE_KICK
	 */
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
	return false;
681 682
}

683
#else /* CONFIG_NO_HZ_COMMON */
684

685
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
686
{
687
	return false;
P
Peter Zijlstra 已提交
688 689
}

690
#endif /* CONFIG_NO_HZ_COMMON */
691

692 693 694
#ifdef CONFIG_NO_HZ_FULL
bool sched_can_stop_tick(void)
{
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
	/*
	 * FIFO realtime policy runs the highest priority task. Other runnable
	 * tasks are of a lower priority. The scheduler tick does nothing.
	 */
	if (current->policy == SCHED_FIFO)
		return true;

	/*
	 * Round-robin realtime tasks time slice with other tasks at the same
	 * realtime priority. Is this task the only one at this priority?
	 */
	if (current->policy == SCHED_RR) {
		struct sched_rt_entity *rt_se = &current->rt;

		return rt_se->run_list.prev == rt_se->run_list.next;
	}

712 713 714 715 716
	/*
	 * More than one running task need preemption.
	 * nr_running update is assumed to be visible
	 * after IPI is sent from wakers.
	 */
717 718
	if (this_rq()->nr_running > 1)
		return false;
719

720
	return true;
721 722
}
#endif /* CONFIG_NO_HZ_FULL */
723

724
void sched_avg_update(struct rq *rq)
725
{
726 727
	s64 period = sched_avg_period();

728
	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
729 730 731 732 733 734
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
735 736 737
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
738 739
}

740
#endif /* CONFIG_SMP */
741

742 743
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
744
/*
745 746 747 748
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
749
 */
750
int walk_tg_tree_from(struct task_group *from,
751
			     tg_visitor down, tg_visitor up, void *data)
752 753
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
754
	int ret;
755

756 757
	parent = from;

758
down:
P
Peter Zijlstra 已提交
759 760
	ret = (*down)(parent, data);
	if (ret)
761
		goto out;
762 763 764 765 766 767 768
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
769
	ret = (*up)(parent, data);
770 771
	if (ret || parent == from)
		goto out;
772 773 774 775 776

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
777
out:
P
Peter Zijlstra 已提交
778
	return ret;
779 780
}

781
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
782
{
783
	return 0;
P
Peter Zijlstra 已提交
784
}
785 786
#endif

787 788
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
789 790 791
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
792 793 794 795
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
796
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
797
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
798 799
		return;
	}
800

801
	load->weight = scale_load(prio_to_weight[prio]);
N
Nikhil Rao 已提交
802
	load->inv_weight = prio_to_wmult[prio];
803 804
}

805
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
806
{
807
	update_rq_clock(rq);
808
	sched_info_queued(rq, p);
809
	p->sched_class->enqueue_task(rq, p, flags);
810 811
}

812
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
813
{
814
	update_rq_clock(rq);
815
	sched_info_dequeued(rq, p);
816
	p->sched_class->dequeue_task(rq, p, flags);
817 818
}

819
void activate_task(struct rq *rq, struct task_struct *p, int flags)
820 821 822 823
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

824
	enqueue_task(rq, p, flags);
825 826
}

827
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
828 829 830 831
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

832
	dequeue_task(rq, p, flags);
833 834
}

835
static void update_rq_clock_task(struct rq *rq, s64 delta)
836
{
837 838 839 840 841 842 843 844
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
845
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
867 868
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
869
	if (static_key_false((&paravirt_steal_rq_enabled))) {
870 871 872 873 874 875 876 877 878 879 880
		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		rq->prev_steal_time_rq += steal;
		delta -= steal;
	}
#endif

881 882
	rq->clock_task += delta;

883
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
884
	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
885 886
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
887 888
}

889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

919
/*
I
Ingo Molnar 已提交
920
 * __normal_prio - return the priority that is based on the static prio
921 922 923
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
924
	return p->static_prio;
925 926
}

927 928 929 930 931 932 933
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
934
static inline int normal_prio(struct task_struct *p)
935 936 937
{
	int prio;

938 939 940
	if (task_has_dl_policy(p))
		prio = MAX_DL_PRIO-1;
	else if (task_has_rt_policy(p))
941 942 943 944 945 946 947 948 949 950 951 952 953
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
954
static int effective_prio(struct task_struct *p)
955 956 957 958 959 960 961 962 963 964 965 966
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
967 968 969
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
970 971
 *
 * Return: 1 if the task is currently executing. 0 otherwise.
L
Linus Torvalds 已提交
972
 */
973
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
974 975 976 977
{
	return cpu_curr(task_cpu(p)) == p;
}

978 979 980
/*
 * Can drop rq->lock because from sched_class::switched_from() methods drop it.
 */
981 982
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
983
				       int oldprio)
984 985 986
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
987
			prev_class->switched_from(rq, p);
988
		/* Possble rq->lock 'hole'.  */
P
Peter Zijlstra 已提交
989
		p->sched_class->switched_to(rq, p);
990
	} else if (oldprio != p->prio || dl_task(p))
P
Peter Zijlstra 已提交
991
		p->sched_class->prio_changed(rq, p, oldprio);
992 993
}

994
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
995 996 997 998 999 1000 1001 1002 1003 1004
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
1005
				resched_curr(rq);
1006 1007 1008 1009 1010 1011 1012 1013 1014
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
1015
	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1016
		rq_clock_skip_update(rq, true);
1017 1018
}

L
Linus Torvalds 已提交
1019
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1020
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1021
{
1022 1023 1024 1025 1026
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
1027
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
O
Oleg Nesterov 已提交
1028
			!p->on_rq);
1029 1030

#ifdef CONFIG_LOCKDEP
1031 1032 1033 1034 1035
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
P
Peter Zijlstra 已提交
1036
	 * see task_group().
1037 1038 1039 1040
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
1041 1042 1043
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
1044 1045
#endif

1046
	trace_sched_migrate_task(p, new_cpu);
1047

1048
	if (task_cpu(p) != new_cpu) {
1049 1050
		if (p->sched_class->migrate_task_rq)
			p->sched_class->migrate_task_rq(p, new_cpu);
1051
		p->se.nr_migrations++;
1052
		perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0);
1053
	}
I
Ingo Molnar 已提交
1054 1055

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1056 1057
}

1058 1059
static void __migrate_swap_task(struct task_struct *p, int cpu)
{
1060
	if (task_on_rq_queued(p)) {
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
		struct rq *src_rq, *dst_rq;

		src_rq = task_rq(p);
		dst_rq = cpu_rq(cpu);

		deactivate_task(src_rq, p, 0);
		set_task_cpu(p, cpu);
		activate_task(dst_rq, p, 0);
		check_preempt_curr(dst_rq, p, 0);
	} else {
		/*
		 * Task isn't running anymore; make it appear like we migrated
		 * it before it went to sleep. This means on wakeup we make the
		 * previous cpu our targer instead of where it really is.
		 */
		p->wake_cpu = cpu;
	}
}

struct migration_swap_arg {
	struct task_struct *src_task, *dst_task;
	int src_cpu, dst_cpu;
};

static int migrate_swap_stop(void *data)
{
	struct migration_swap_arg *arg = data;
	struct rq *src_rq, *dst_rq;
	int ret = -EAGAIN;

	src_rq = cpu_rq(arg->src_cpu);
	dst_rq = cpu_rq(arg->dst_cpu);

1094 1095
	double_raw_lock(&arg->src_task->pi_lock,
			&arg->dst_task->pi_lock);
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
	double_rq_lock(src_rq, dst_rq);
	if (task_cpu(arg->dst_task) != arg->dst_cpu)
		goto unlock;

	if (task_cpu(arg->src_task) != arg->src_cpu)
		goto unlock;

	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
		goto unlock;

	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
		goto unlock;

	__migrate_swap_task(arg->src_task, arg->dst_cpu);
	__migrate_swap_task(arg->dst_task, arg->src_cpu);

	ret = 0;

unlock:
	double_rq_unlock(src_rq, dst_rq);
1116 1117
	raw_spin_unlock(&arg->dst_task->pi_lock);
	raw_spin_unlock(&arg->src_task->pi_lock);
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139

	return ret;
}

/*
 * Cross migrate two tasks
 */
int migrate_swap(struct task_struct *cur, struct task_struct *p)
{
	struct migration_swap_arg arg;
	int ret = -EINVAL;

	arg = (struct migration_swap_arg){
		.src_task = cur,
		.src_cpu = task_cpu(cur),
		.dst_task = p,
		.dst_cpu = task_cpu(p),
	};

	if (arg.src_cpu == arg.dst_cpu)
		goto out;

1140 1141 1142 1143
	/*
	 * These three tests are all lockless; this is OK since all of them
	 * will be re-checked with proper locks held further down the line.
	 */
1144 1145 1146 1147 1148 1149 1150 1151 1152
	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
		goto out;

	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
		goto out;

	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
		goto out;

1153
	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1154 1155 1156 1157 1158 1159
	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);

out:
	return ret;
}

1160
struct migration_arg {
1161
	struct task_struct *task;
L
Linus Torvalds 已提交
1162
	int dest_cpu;
1163
};
L
Linus Torvalds 已提交
1164

1165 1166
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
1167 1168 1169
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1170 1171 1172 1173 1174 1175 1176
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1177 1178 1179 1180 1181 1182
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1183
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1184 1185
{
	unsigned long flags;
1186
	int running, queued;
R
Roland McGrath 已提交
1187
	unsigned long ncsw;
1188
	struct rq *rq;
L
Linus Torvalds 已提交
1189

1190 1191 1192 1193 1194 1195 1196 1197
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1198

1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1210 1211 1212
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1213
			cpu_relax();
R
Roland McGrath 已提交
1214
		}
1215

1216 1217 1218 1219 1220 1221
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1222
		trace_sched_wait_task(p);
1223
		running = task_running(rq, p);
1224
		queued = task_on_rq_queued(p);
R
Roland McGrath 已提交
1225
		ncsw = 0;
1226
		if (!match_state || p->state == match_state)
1227
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1228
		task_rq_unlock(rq, p, &flags);
1229

R
Roland McGrath 已提交
1230 1231 1232 1233 1234 1235
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1246

1247 1248 1249 1250 1251
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1252
		 * So if it was still runnable (but just not actively
1253 1254 1255
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
1256
		if (unlikely(queued)) {
1257 1258 1259 1260
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1261 1262
			continue;
		}
1263

1264 1265 1266 1267 1268 1269 1270
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1271 1272

	return ncsw;
L
Linus Torvalds 已提交
1273 1274 1275 1276 1277 1278 1279 1280 1281
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1282
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1283 1284 1285 1286 1287
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1288
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1289 1290 1291 1292 1293 1294 1295 1296 1297
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1298
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
1299
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1300

1301
#ifdef CONFIG_SMP
1302
/*
1303
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1304
 */
1305 1306
static int select_fallback_rq(int cpu, struct task_struct *p)
{
1307 1308
	int nid = cpu_to_node(cpu);
	const struct cpumask *nodemask = NULL;
1309 1310
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1311

1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
	/*
	 * If the node that the cpu is on has been offlined, cpu_to_node()
	 * will return -1. There is no cpu on the node, and we should
	 * select the cpu on the other node.
	 */
	if (nid != -1) {
		nodemask = cpumask_of_node(nid);

		/* Look for allowed, online CPU in same node. */
		for_each_cpu(dest_cpu, nodemask) {
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
				return dest_cpu;
		}
1329
	}
1330

1331 1332
	for (;;) {
		/* Any allowed, online CPU? */
1333
		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1334 1335 1336 1337 1338 1339
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			goto out;
		}
1340

1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
		switch (state) {
		case cpuset:
			/* No more Mr. Nice Guy. */
			cpuset_cpus_allowed_fallback(p);
			state = possible;
			break;

		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
1367
			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1368 1369
					task_pid_nr(p), p->comm, cpu);
		}
1370 1371 1372 1373 1374
	}

	return dest_cpu;
}

1375
/*
1376
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1377
 */
1378
static inline
1379
int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1380
{
1381 1382
	if (p->nr_cpus_allowed > 1)
		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1394
	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
P
Peter Zijlstra 已提交
1395
		     !cpu_online(cpu)))
1396
		cpu = select_fallback_rq(task_cpu(p), p);
1397 1398

	return cpu;
1399
}
1400 1401 1402 1403 1404 1405

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1406 1407
#endif

P
Peter Zijlstra 已提交
1408
static void
1409
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1410
{
P
Peter Zijlstra 已提交
1411
#ifdef CONFIG_SCHEDSTATS
1412 1413
	struct rq *rq = this_rq();

P
Peter Zijlstra 已提交
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
#ifdef CONFIG_SMP
	int this_cpu = smp_processor_id();

	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	} else {
		struct sched_domain *sd;

		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1424
		rcu_read_lock();
P
Peter Zijlstra 已提交
1425 1426 1427 1428 1429 1430
		for_each_domain(this_cpu, sd) {
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
1431
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1432
	}
1433 1434 1435 1436

	if (wake_flags & WF_MIGRATED)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);

P
Peter Zijlstra 已提交
1437 1438 1439
#endif /* CONFIG_SMP */

	schedstat_inc(rq, ttwu_count);
T
Tejun Heo 已提交
1440
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1441 1442

	if (wake_flags & WF_SYNC)
T
Tejun Heo 已提交
1443
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1444 1445 1446 1447 1448 1449

#endif /* CONFIG_SCHEDSTATS */
}

static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
{
T
Tejun Heo 已提交
1450
	activate_task(rq, p, en_flags);
1451
	p->on_rq = TASK_ON_RQ_QUEUED;
1452 1453 1454 1455

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1456 1457
}

1458 1459 1460
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1461
static void
1462
ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
T
Tejun Heo 已提交
1463 1464
{
	check_preempt_curr(rq, p, wake_flags);
1465
	trace_sched_wakeup(p, true);
T
Tejun Heo 已提交
1466 1467 1468 1469 1470 1471

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);

1472
	if (rq->idle_stamp) {
1473
		u64 delta = rq_clock(rq) - rq->idle_stamp;
1474
		u64 max = 2*rq->max_idle_balance_cost;
T
Tejun Heo 已提交
1475

1476 1477 1478
		update_avg(&rq->avg_idle, delta);

		if (rq->avg_idle > max)
T
Tejun Heo 已提交
1479
			rq->avg_idle = max;
1480

T
Tejun Heo 已提交
1481 1482 1483 1484 1485
		rq->idle_stamp = 0;
	}
#endif
}

1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
static void
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
{
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
#endif

	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
	ttwu_do_wakeup(rq, p, wake_flags);
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
1510
	if (task_on_rq_queued(p)) {
1511 1512
		/* check_preempt_curr() may use rq clock */
		update_rq_clock(rq);
1513 1514 1515 1516 1517 1518 1519 1520
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;
}

1521
#ifdef CONFIG_SMP
1522
void sched_ttwu_pending(void)
1523 1524
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1525 1526
	struct llist_node *llist = llist_del_all(&rq->wake_list);
	struct task_struct *p;
1527
	unsigned long flags;
1528

1529 1530 1531 1532
	if (!llist)
		return;

	raw_spin_lock_irqsave(&rq->lock, flags);
1533

P
Peter Zijlstra 已提交
1534 1535 1536
	while (llist) {
		p = llist_entry(llist, struct task_struct, wake_entry);
		llist = llist_next(llist);
1537 1538 1539
		ttwu_do_activate(rq, p, 0);
	}

1540
	raw_spin_unlock_irqrestore(&rq->lock, flags);
1541 1542 1543 1544
}

void scheduler_ipi(void)
{
1545 1546 1547 1548 1549
	/*
	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
	 * TIF_NEED_RESCHED remotely (for the first time) will also send
	 * this IPI.
	 */
1550
	preempt_fold_need_resched();
1551

1552
	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
P
Peter Zijlstra 已提交
1569
	sched_ttwu_pending();
1570 1571 1572 1573

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1574
	if (unlikely(got_nohz_idle_kick())) {
1575
		this_rq()->idle_balance = 1;
1576
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1577
	}
1578
	irq_exit();
1579 1580 1581 1582
}

static void ttwu_queue_remote(struct task_struct *p, int cpu)
{
1583 1584 1585 1586 1587 1588 1589 1590
	struct rq *rq = cpu_rq(cpu);

	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
		if (!set_nr_if_polling(rq->idle))
			smp_send_reschedule(cpu);
		else
			trace_sched_wake_idle_without_ipi(cpu);
	}
1591
}
1592

1593 1594 1595 1596 1597
void wake_up_if_idle(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

1598 1599 1600 1601
	rcu_read_lock();

	if (!is_idle_task(rcu_dereference(rq->curr)))
		goto out;
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611

	if (set_nr_if_polling(rq->idle)) {
		trace_sched_wake_idle_without_ipi(cpu);
	} else {
		raw_spin_lock_irqsave(&rq->lock, flags);
		if (is_idle_task(rq->curr))
			smp_send_reschedule(cpu);
		/* Else cpu is not in idle, do nothing here */
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}
1612 1613 1614

out:
	rcu_read_unlock();
1615 1616
}

1617
bool cpus_share_cache(int this_cpu, int that_cpu)
1618 1619 1620
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1621
#endif /* CONFIG_SMP */
1622

1623 1624 1625 1626
static void ttwu_queue(struct task_struct *p, int cpu)
{
	struct rq *rq = cpu_rq(cpu);

1627
#if defined(CONFIG_SMP)
1628
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1629
		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1630 1631 1632 1633 1634
		ttwu_queue_remote(p, cpu);
		return;
	}
#endif

1635 1636 1637
	raw_spin_lock(&rq->lock);
	ttwu_do_activate(rq, p, 0);
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
1638 1639 1640
}

/**
L
Linus Torvalds 已提交
1641
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1642
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1643
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1644
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1645 1646 1647 1648 1649 1650 1651
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
1652
 * Return: %true if @p was woken up, %false if it was already running.
T
Tejun Heo 已提交
1653
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
1654
 */
1655 1656
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1657 1658
{
	unsigned long flags;
1659
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1660

1661 1662 1663 1664 1665 1666 1667
	/*
	 * If we are going to wake up a thread waiting for CONDITION we
	 * need to ensure that CONDITION=1 done by the caller can not be
	 * reordered with p->state check below. This pairs with mb() in
	 * set_current_state() the waiting thread does.
	 */
	smp_mb__before_spinlock();
1668
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
1669
	if (!(p->state & state))
L
Linus Torvalds 已提交
1670 1671
		goto out;

1672
	success = 1; /* we're going to change ->state */
L
Linus Torvalds 已提交
1673 1674
	cpu = task_cpu(p);

1675 1676
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
1677 1678

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1679
	/*
1680 1681
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
P
Peter Zijlstra 已提交
1682
	 */
1683
	while (p->on_cpu)
1684
		cpu_relax();
1685
	/*
1686
	 * Pairs with the smp_wmb() in finish_lock_switch().
1687
	 */
1688
	smp_rmb();
L
Linus Torvalds 已提交
1689

1690
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
1691
	p->state = TASK_WAKING;
1692

1693
	if (p->sched_class->task_waking)
1694
		p->sched_class->task_waking(p);
1695

1696
	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1697 1698
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
1699
		set_task_cpu(p, cpu);
1700
	}
L
Linus Torvalds 已提交
1701 1702
#endif /* CONFIG_SMP */

1703 1704
	ttwu_queue(p, cpu);
stat:
1705
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
1706
out:
1707
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
1708 1709 1710 1711

	return success;
}

T
Tejun Heo 已提交
1712 1713 1714 1715
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
1716
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
1717
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1718
 * the current task.
T
Tejun Heo 已提交
1719 1720 1721 1722 1723
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

1724 1725 1726 1727
	if (WARN_ON_ONCE(rq != this_rq()) ||
	    WARN_ON_ONCE(p == current))
		return;

T
Tejun Heo 已提交
1728 1729
	lockdep_assert_held(&rq->lock);

1730 1731 1732 1733 1734 1735
	if (!raw_spin_trylock(&p->pi_lock)) {
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
	}

T
Tejun Heo 已提交
1736
	if (!(p->state & TASK_NORMAL))
1737
		goto out;
T
Tejun Heo 已提交
1738

1739
	if (!task_on_rq_queued(p))
P
Peter Zijlstra 已提交
1740 1741
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

1742
	ttwu_do_wakeup(rq, p, 0);
1743
	ttwu_stat(p, smp_processor_id(), 0);
1744 1745
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
1746 1747
}

1748 1749 1750 1751 1752
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
1753 1754 1755
 * processes.
 *
 * Return: 1 if the process was woken up, 0 if it was already running.
1756 1757 1758 1759
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
1760
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1761
{
1762 1763
	WARN_ON(task_is_stopped_or_traced(p));
	return try_to_wake_up(p, TASK_NORMAL, 0);
L
Linus Torvalds 已提交
1764 1765 1766
}
EXPORT_SYMBOL(wake_up_process);

1767
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1768 1769 1770 1771
{
	return try_to_wake_up(p, state, 0);
}

1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
/*
 * This function clears the sched_dl_entity static params.
 */
void __dl_clear_params(struct task_struct *p)
{
	struct sched_dl_entity *dl_se = &p->dl;

	dl_se->dl_runtime = 0;
	dl_se->dl_deadline = 0;
	dl_se->dl_period = 0;
	dl_se->flags = 0;
	dl_se->dl_bw = 0;
1784 1785 1786 1787

	dl_se->dl_throttled = 0;
	dl_se->dl_new = 1;
	dl_se->dl_yielded = 0;
1788 1789
}

L
Linus Torvalds 已提交
1790 1791 1792
/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1793 1794 1795
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
1796
static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
1797
{
P
Peter Zijlstra 已提交
1798 1799 1800
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
1801 1802
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1803
	p->se.prev_sum_exec_runtime	= 0;
1804
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
1805
	p->se.vruntime			= 0;
1806 1807 1808
#ifdef CONFIG_SMP
	p->se.avg.decay_count		= 0;
#endif
P
Peter Zijlstra 已提交
1809
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
1810 1811

#ifdef CONFIG_SCHEDSTATS
1812
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
1813
#endif
N
Nick Piggin 已提交
1814

1815
	RB_CLEAR_NODE(&p->dl.rb_node);
1816
	init_dl_task_timer(&p->dl);
1817
	__dl_clear_params(p);
1818

P
Peter Zijlstra 已提交
1819
	INIT_LIST_HEAD(&p->rt.run_list);
N
Nick Piggin 已提交
1820

1821 1822 1823
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
1824 1825 1826

#ifdef CONFIG_NUMA_BALANCING
	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1827
		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1828 1829 1830
		p->mm->numa_scan_seq = 0;
	}

1831 1832 1833 1834 1835
	if (clone_flags & CLONE_VM)
		p->numa_preferred_nid = current->numa_preferred_nid;
	else
		p->numa_preferred_nid = -1;

1836 1837
	p->node_stamp = 0ULL;
	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1838
	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1839
	p->numa_work.next = &p->numa_work;
1840
	p->numa_faults = NULL;
1841 1842
	p->last_task_numa_placement = 0;
	p->last_sum_exec_runtime = 0;
1843 1844

	p->numa_group = NULL;
1845
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
1846 1847
}

1848
#ifdef CONFIG_NUMA_BALANCING
1849
#ifdef CONFIG_SCHED_DEBUG
1850 1851 1852 1853 1854 1855 1856
void set_numabalancing_state(bool enabled)
{
	if (enabled)
		sched_feat_set("NUMA");
	else
		sched_feat_set("NO_NUMA");
}
1857 1858 1859 1860 1861 1862
#else
__read_mostly bool numabalancing_enabled;

void set_numabalancing_state(bool enabled)
{
	numabalancing_enabled = enabled;
I
Ingo Molnar 已提交
1863
}
1864
#endif /* CONFIG_SCHED_DEBUG */
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887

#ifdef CONFIG_PROC_SYSCTL
int sysctl_numa_balancing(struct ctl_table *table, int write,
			 void __user *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table t;
	int err;
	int state = numabalancing_enabled;

	if (write && !capable(CAP_SYS_ADMIN))
		return -EPERM;

	t = *table;
	t.data = &state;
	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
	if (err < 0)
		return err;
	if (write)
		set_numabalancing_state(state);
	return err;
}
#endif
#endif
I
Ingo Molnar 已提交
1888 1889 1890 1891

/*
 * fork()/clone()-time setup:
 */
1892
int sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
1893
{
1894
	unsigned long flags;
I
Ingo Molnar 已提交
1895 1896
	int cpu = get_cpu();

1897
	__sched_fork(clone_flags, p);
1898
	/*
1899
	 * We mark the process as running here. This guarantees that
1900 1901 1902
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
1903
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1904

1905 1906 1907 1908 1909
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

1910 1911 1912 1913
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
1914
		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1915
			p->policy = SCHED_NORMAL;
1916
			p->static_prio = NICE_TO_PRIO(0);
1917 1918 1919 1920 1921 1922
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
1923

1924 1925 1926 1927 1928 1929
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
1930

1931 1932 1933 1934 1935 1936
	if (dl_prio(p->prio)) {
		put_cpu();
		return -EAGAIN;
	} else if (rt_prio(p->prio)) {
		p->sched_class = &rt_sched_class;
	} else {
H
Hiroshi Shimamoto 已提交
1937
		p->sched_class = &fair_sched_class;
1938
	}
1939

P
Peter Zijlstra 已提交
1940 1941 1942
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

1943 1944 1945 1946 1947 1948 1949
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
1950
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1951
	set_task_cpu(p, cpu);
1952
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1953

1954
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1955
	if (likely(sched_info_on()))
1956
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1957
#endif
P
Peter Zijlstra 已提交
1958 1959
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
1960
#endif
1961
	init_task_preempt_count(p);
1962
#ifdef CONFIG_SMP
1963
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1964
	RB_CLEAR_NODE(&p->pushable_dl_tasks);
1965
#endif
1966

N
Nick Piggin 已提交
1967
	put_cpu();
1968
	return 0;
L
Linus Torvalds 已提交
1969 1970
}

1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 20;

	/*
	 * Doing this here saves a lot of checks in all
	 * the calling paths, and returning zero seems
	 * safe for them anyway.
	 */
	if (period == 0)
		return 0;

	return div64_u64(runtime << 20, period);
}

#ifdef CONFIG_SMP
inline struct dl_bw *dl_bw_of(int i)
{
1990 1991
	rcu_lockdep_assert(rcu_read_lock_sched_held(),
			   "sched RCU must be held");
1992 1993 1994
	return &cpu_rq(i)->rd->dl_bw;
}

1995
static inline int dl_bw_cpus(int i)
1996
{
1997 1998 1999
	struct root_domain *rd = cpu_rq(i)->rd;
	int cpus = 0;

2000 2001
	rcu_lockdep_assert(rcu_read_lock_sched_held(),
			   "sched RCU must be held");
2002 2003 2004 2005
	for_each_cpu_and(i, rd->span, cpu_active_mask)
		cpus++;

	return cpus;
2006 2007 2008 2009 2010 2011 2012
}
#else
inline struct dl_bw *dl_bw_of(int i)
{
	return &cpu_rq(i)->dl.dl_bw;
}

2013
static inline int dl_bw_cpus(int i)
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
{
	return 1;
}
#endif

/*
 * We must be sure that accepting a new task (or allowing changing the
 * parameters of an existing one) is consistent with the bandwidth
 * constraints. If yes, this function also accordingly updates the currently
 * allocated bandwidth to reflect the new situation.
 *
 * This function is called while holding p's rq->lock.
2026 2027 2028
 *
 * XXX we should delay bw change until the task's 0-lag point, see
 * __setparam_dl().
2029 2030 2031 2032 2033 2034
 */
static int dl_overflow(struct task_struct *p, int policy,
		       const struct sched_attr *attr)
{

	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2035
	u64 period = attr->sched_period ?: attr->sched_deadline;
2036 2037
	u64 runtime = attr->sched_runtime;
	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2038
	int cpus, err = -1;
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048

	if (new_bw == p->dl.dl_bw)
		return 0;

	/*
	 * Either if a task, enters, leave, or stays -deadline but changes
	 * its parameters, we may need to update accordingly the total
	 * allocated bandwidth of the container.
	 */
	raw_spin_lock(&dl_b->lock);
2049
	cpus = dl_bw_cpus(task_cpu(p));
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
	if (dl_policy(policy) && !task_has_dl_policy(p) &&
	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
		__dl_add(dl_b, new_bw);
		err = 0;
	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
		__dl_clear(dl_b, p->dl.dl_bw);
		__dl_add(dl_b, new_bw);
		err = 0;
	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
		__dl_clear(dl_b, p->dl.dl_bw);
		err = 0;
	}
	raw_spin_unlock(&dl_b->lock);

	return err;
}

extern void init_dl_bw(struct dl_bw *dl_b);

L
Linus Torvalds 已提交
2070 2071 2072 2073 2074 2075 2076
/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2077
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
2078 2079
{
	unsigned long flags;
I
Ingo Molnar 已提交
2080
	struct rq *rq;
2081

2082
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2083 2084 2085 2086 2087 2088
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 */
2089
	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2090 2091
#endif

2092 2093
	/* Initialize new task's runnable average */
	init_task_runnable_average(p);
2094
	rq = __task_rq_lock(p);
P
Peter Zijlstra 已提交
2095
	activate_task(rq, p, 0);
2096
	p->on_rq = TASK_ON_RQ_QUEUED;
2097
	trace_sched_wakeup_new(p, true);
P
Peter Zijlstra 已提交
2098
	check_preempt_curr(rq, p, WF_FORK);
2099
#ifdef CONFIG_SMP
2100 2101
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2102
#endif
2103
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
2104 2105
}

2106 2107 2108
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2109
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2110
 * @notifier: notifier struct to register
2111 2112 2113 2114 2115 2116 2117 2118 2119
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2120
 * @notifier: notifier struct to unregister
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;

2134
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2135 2136 2137 2138 2139 2140 2141 2142 2143
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;

2144
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2145 2146 2147
		notifier->ops->sched_out(notifier, next);
}

2148
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2160
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2161

2162 2163 2164
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2165
 * @prev: the current task that is being switched out
2166 2167 2168 2169 2170 2171 2172 2173 2174
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2175 2176 2177
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2178
{
2179
	trace_sched_switch(prev, next);
2180
	sched_info_switch(rq, prev, next);
2181
	perf_event_task_sched_out(prev, next);
2182
	fire_sched_out_preempt_notifiers(prev, next);
2183 2184 2185 2186
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2187 2188 2189 2190
/**
 * finish_task_switch - clean up after a task-switch
 * @prev: the thread we just switched away from.
 *
2191 2192 2193 2194
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2195 2196
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2197
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2198 2199
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
2200 2201 2202 2203 2204
 *
 * The context switch have flipped the stack from under us and restored the
 * local variables which were saved when this task called schedule() in the
 * past. prev == current is still correct but we need to recalculate this_rq
 * because prev may have moved to another CPU.
L
Linus Torvalds 已提交
2205
 */
2206
static struct rq *finish_task_switch(struct task_struct *prev)
L
Linus Torvalds 已提交
2207 2208
	__releases(rq->lock)
{
2209
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
2210
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2211
	long prev_state;
L
Linus Torvalds 已提交
2212 2213 2214 2215 2216

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2217
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2218 2219
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2220
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2221 2222 2223 2224 2225
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2226
	prev_state = prev->state;
2227
	vtime_task_switch(prev);
2228
	finish_arch_switch(prev);
2229
	perf_event_task_sched_in(prev, current);
2230
	finish_lock_switch(rq, prev);
2231
	finish_arch_post_lock_switch();
S
Steven Rostedt 已提交
2232

2233
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2234 2235
	if (mm)
		mmdrop(mm);
2236
	if (unlikely(prev_state == TASK_DEAD)) {
2237 2238 2239
		if (prev->sched_class->task_dead)
			prev->sched_class->task_dead(prev);

2240 2241 2242
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2243
		 */
2244
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2245
		put_task_struct(prev);
2246
	}
2247 2248

	tick_nohz_task_switch(current);
2249
	return rq;
L
Linus Torvalds 已提交
2250 2251
}

2252 2253 2254 2255 2256 2257 2258 2259
#ifdef CONFIG_SMP

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

2260
		raw_spin_lock_irqsave(&rq->lock, flags);
2261 2262
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
2263
		raw_spin_unlock_irqrestore(&rq->lock, flags);
2264 2265 2266 2267 2268 2269

		rq->post_schedule = 0;
	}
}

#else
2270

2271 2272
static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
2273 2274
}

2275 2276
#endif

L
Linus Torvalds 已提交
2277 2278 2279 2280
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2281
asmlinkage __visible void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2282 2283
	__releases(rq->lock)
{
2284
	struct rq *rq;
2285

2286 2287
	/* finish_task_switch() drops rq->lock and enables preemtion */
	preempt_disable();
2288
	rq = finish_task_switch(prev);
2289
	post_schedule(rq);
2290
	preempt_enable();
2291

L
Linus Torvalds 已提交
2292
	if (current->set_child_tid)
2293
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2294 2295 2296
}

/*
2297
 * context_switch - switch to the new MM and the new thread's register state.
L
Linus Torvalds 已提交
2298
 */
2299
static inline struct rq *
2300
context_switch(struct rq *rq, struct task_struct *prev,
2301
	       struct task_struct *next)
L
Linus Torvalds 已提交
2302
{
I
Ingo Molnar 已提交
2303
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2304

2305
	prepare_task_switch(rq, prev, next);
2306

I
Ingo Molnar 已提交
2307 2308
	mm = next->mm;
	oldmm = prev->active_mm;
2309 2310 2311 2312 2313
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2314
	arch_start_context_switch(prev);
2315

2316
	if (!mm) {
L
Linus Torvalds 已提交
2317 2318 2319 2320 2321 2322
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2323
	if (!prev->mm) {
L
Linus Torvalds 已提交
2324 2325 2326
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2327 2328 2329 2330 2331 2332
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
2333
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
2334

2335
	context_tracking_task_switch(prev, next);
L
Linus Torvalds 已提交
2336 2337
	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);
I
Ingo Molnar 已提交
2338
	barrier();
2339 2340

	return finish_task_switch(prev);
L
Linus Torvalds 已提交
2341 2342 2343
}

/*
2344
 * nr_running and nr_context_switches:
L
Linus Torvalds 已提交
2345 2346
 *
 * externally visible scheduler statistics: current number of runnable
2347
 * threads, total number of context switches performed since bootup.
L
Linus Torvalds 已提交
2348 2349 2350 2351 2352 2353 2354 2355 2356
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2357
}
L
Linus Torvalds 已提交
2358

2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370
/*
 * Check if only the current task is running on the cpu.
 */
bool single_task_running(void)
{
	if (cpu_rq(smp_processor_id())->nr_running == 1)
		return true;
	else
		return false;
}
EXPORT_SYMBOL(single_task_running);

L
Linus Torvalds 已提交
2371
unsigned long long nr_context_switches(void)
2372
{
2373 2374
	int i;
	unsigned long long sum = 0;
2375

2376
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2377
		sum += cpu_rq(i)->nr_switches;
2378

L
Linus Torvalds 已提交
2379 2380
	return sum;
}
2381

L
Linus Torvalds 已提交
2382 2383 2384
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2385

2386
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2387
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2388

L
Linus Torvalds 已提交
2389 2390
	return sum;
}
2391

2392
unsigned long nr_iowait_cpu(int cpu)
2393
{
2394
	struct rq *this = cpu_rq(cpu);
2395 2396
	return atomic_read(&this->nr_iowait);
}
2397

2398 2399
void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
{
2400 2401 2402
	struct rq *rq = this_rq();
	*nr_waiters = atomic_read(&rq->nr_iowait);
	*load = rq->load.weight;
2403 2404
}

I
Ingo Molnar 已提交
2405
#ifdef CONFIG_SMP
2406

2407
/*
P
Peter Zijlstra 已提交
2408 2409
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2410
 */
P
Peter Zijlstra 已提交
2411
void sched_exec(void)
2412
{
P
Peter Zijlstra 已提交
2413
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2414
	unsigned long flags;
2415
	int dest_cpu;
2416

2417
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2418
	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2419 2420
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2421

2422
	if (likely(cpu_active(dest_cpu))) {
2423
		struct migration_arg arg = { p, dest_cpu };
2424

2425 2426
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2427 2428
		return;
	}
2429
unlock:
2430
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2431
}
I
Ingo Molnar 已提交
2432

L
Linus Torvalds 已提交
2433 2434 2435
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2436
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
2437 2438

EXPORT_PER_CPU_SYMBOL(kstat);
2439
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
2440

2441 2442 2443 2444 2445 2446 2447 2448 2449
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
2450
	u64 ns;
2451

2452 2453 2454 2455 2456 2457 2458 2459 2460
#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
	/*
	 * 64-bit doesn't need locks to atomically read a 64bit value.
	 * So we have a optimization chance when the task's delta_exec is 0.
	 * Reading ->on_cpu is racy, but this is ok.
	 *
	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
	 * If we race with it entering cpu, unaccounted time is 0. This is
	 * indistinguishable from the read occurring a few cycles earlier.
2461 2462
	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
	 * been accounted, so we're correct here as well.
2463
	 */
2464
	if (!p->on_cpu || !task_on_rq_queued(p))
2465 2466 2467
		return p->se.sum_exec_runtime;
#endif

2468
	rq = task_rq_lock(p, &flags);
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
	/*
	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
	 * project cycles that may never be accounted to this
	 * thread, breaking clock_gettime().
	 */
	if (task_current(rq, p) && task_on_rq_queued(p)) {
		update_rq_clock(rq);
		p->sched_class->update_curr(rq);
	}
	ns = p->se.sum_exec_runtime;
2479
	task_rq_unlock(rq, p, &flags);
2480 2481 2482

	return ns;
}
2483

2484 2485 2486 2487 2488 2489 2490 2491
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2492
	struct task_struct *curr = rq->curr;
2493 2494

	sched_clock_tick();
I
Ingo Molnar 已提交
2495

2496
	raw_spin_lock(&rq->lock);
2497
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
2498
	curr->sched_class->task_tick(rq, curr, 0);
2499
	update_cpu_load_active(rq);
2500
	calc_global_load_tick(rq);
2501
	raw_spin_unlock(&rq->lock);
2502

2503
	perf_event_task_tick();
2504

2505
#ifdef CONFIG_SMP
2506
	rq->idle_balance = idle_cpu(cpu);
2507
	trigger_load_balance(rq);
2508
#endif
2509
	rq_last_tick_reset(rq);
L
Linus Torvalds 已提交
2510 2511
}

2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522
#ifdef CONFIG_NO_HZ_FULL
/**
 * scheduler_tick_max_deferment
 *
 * Keep at least one tick per second when a single
 * active task is running because the scheduler doesn't
 * yet completely support full dynticks environment.
 *
 * This makes sure that uptime, CFS vruntime, load
 * balancing, etc... continue to move forward, even
 * with a very low granularity.
2523 2524
 *
 * Return: Maximum deferment in nanoseconds.
2525 2526 2527 2528
 */
u64 scheduler_tick_max_deferment(void)
{
	struct rq *rq = this_rq();
2529
	unsigned long next, now = READ_ONCE(jiffies);
2530 2531 2532 2533 2534 2535

	next = rq->last_sched_tick + HZ;

	if (time_before_eq(next, now))
		return 0;

2536
	return jiffies_to_nsecs(next - now);
L
Linus Torvalds 已提交
2537
}
2538
#endif
L
Linus Torvalds 已提交
2539

2540
notrace unsigned long get_parent_ip(unsigned long addr)
2541 2542 2543 2544 2545 2546 2547 2548
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
2549

2550 2551 2552
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

2553
void preempt_count_add(int val)
L
Linus Torvalds 已提交
2554
{
2555
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2556 2557 2558
	/*
	 * Underflow?
	 */
2559 2560
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
2561
#endif
2562
	__preempt_count_add(val);
2563
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2564 2565 2566
	/*
	 * Spinlock count overflowing soon?
	 */
2567 2568
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
2569
#endif
2570 2571 2572 2573 2574 2575 2576
	if (preempt_count() == val) {
		unsigned long ip = get_parent_ip(CALLER_ADDR1);
#ifdef CONFIG_DEBUG_PREEMPT
		current->preempt_disable_ip = ip;
#endif
		trace_preempt_off(CALLER_ADDR0, ip);
	}
L
Linus Torvalds 已提交
2577
}
2578
EXPORT_SYMBOL(preempt_count_add);
2579
NOKPROBE_SYMBOL(preempt_count_add);
L
Linus Torvalds 已提交
2580

2581
void preempt_count_sub(int val)
L
Linus Torvalds 已提交
2582
{
2583
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2584 2585 2586
	/*
	 * Underflow?
	 */
2587
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2588
		return;
L
Linus Torvalds 已提交
2589 2590 2591
	/*
	 * Is the spinlock portion underflowing?
	 */
2592 2593 2594
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
2595
#endif
2596

2597 2598
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2599
	__preempt_count_sub(val);
L
Linus Torvalds 已提交
2600
}
2601
EXPORT_SYMBOL(preempt_count_sub);
2602
NOKPROBE_SYMBOL(preempt_count_sub);
L
Linus Torvalds 已提交
2603 2604 2605 2606

#endif

/*
I
Ingo Molnar 已提交
2607
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
2608
 */
I
Ingo Molnar 已提交
2609
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
2610
{
2611 2612 2613
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
2614 2615
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
2616

I
Ingo Molnar 已提交
2617
	debug_show_held_locks(prev);
2618
	print_modules();
I
Ingo Molnar 已提交
2619 2620
	if (irqs_disabled())
		print_irqtrace_events(prev);
2621 2622 2623 2624 2625 2626 2627
#ifdef CONFIG_DEBUG_PREEMPT
	if (in_atomic_preempt_off()) {
		pr_err("Preemption disabled at:");
		print_ip_sym(current->preempt_disable_ip);
		pr_cont("\n");
	}
#endif
2628
	dump_stack();
2629
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
I
Ingo Molnar 已提交
2630
}
L
Linus Torvalds 已提交
2631

I
Ingo Molnar 已提交
2632 2633 2634 2635 2636
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
2637 2638 2639
#ifdef CONFIG_SCHED_STACK_END_CHECK
	BUG_ON(unlikely(task_stack_end_corrupted(prev)));
#endif
L
Linus Torvalds 已提交
2640
	/*
I
Ingo Molnar 已提交
2641
	 * Test if we are atomic. Since do_exit() needs to call into
2642 2643
	 * schedule() atomically, we ignore that path. Otherwise whine
	 * if we are scheduling when we should not.
L
Linus Torvalds 已提交
2644
	 */
2645
	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
I
Ingo Molnar 已提交
2646
		__schedule_bug(prev);
2647
	rcu_sleep_check();
I
Ingo Molnar 已提交
2648

L
Linus Torvalds 已提交
2649 2650
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

2651
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
2652 2653 2654 2655 2656 2657
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
2658
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
2659
{
2660
	const struct sched_class *class = &fair_sched_class;
I
Ingo Molnar 已提交
2661
	struct task_struct *p;
L
Linus Torvalds 已提交
2662 2663

	/*
I
Ingo Molnar 已提交
2664 2665
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
2666
	 */
2667
	if (likely(prev->sched_class == class &&
2668
		   rq->nr_running == rq->cfs.h_nr_running)) {
2669
		p = fair_sched_class.pick_next_task(rq, prev);
2670 2671 2672 2673 2674 2675 2676 2677
		if (unlikely(p == RETRY_TASK))
			goto again;

		/* assumes fair_sched_class->next == idle_sched_class */
		if (unlikely(!p))
			p = idle_sched_class.pick_next_task(rq, prev);

		return p;
L
Linus Torvalds 已提交
2678 2679
	}

2680
again:
2681
	for_each_class(class) {
2682
		p = class->pick_next_task(rq, prev);
2683 2684 2685
		if (p) {
			if (unlikely(p == RETRY_TASK))
				goto again;
I
Ingo Molnar 已提交
2686
			return p;
2687
		}
I
Ingo Molnar 已提交
2688
	}
2689 2690

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
2691
}
L
Linus Torvalds 已提交
2692

I
Ingo Molnar 已提交
2693
/*
2694
 * __schedule() is the main scheduler function.
2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728
 *
 * The main means of driving the scheduler and thus entering this function are:
 *
 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 *      paths. For example, see arch/x86/entry_64.S.
 *
 *      To drive preemption between tasks, the scheduler sets the flag in timer
 *      interrupt handler scheduler_tick().
 *
 *   3. Wakeups don't really cause entry into schedule(). They add a
 *      task to the run-queue and that's it.
 *
 *      Now, if the new task added to the run-queue preempts the current
 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 *      called on the nearest possible occasion:
 *
 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
 *
 *         - in syscall or exception context, at the next outmost
 *           preempt_enable(). (this might be as soon as the wake_up()'s
 *           spin_unlock()!)
 *
 *         - in IRQ context, return from interrupt-handler to
 *           preemptible context
 *
 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
 *         then at the next:
 *
 *          - cond_resched() call
 *          - explicit schedule() call
 *          - return from syscall or exception to user-space
 *          - return from interrupt-handler to user-space
2729 2730 2731 2732
 *
 * WARNING: all callers must re-check need_resched() afterward and reschedule
 * accordingly in case an event triggered the need for rescheduling (such as
 * an interrupt waking up a task) while preemption was disabled in __schedule().
I
Ingo Molnar 已提交
2733
 */
2734
static void __sched __schedule(void)
I
Ingo Molnar 已提交
2735 2736
{
	struct task_struct *prev, *next;
2737
	unsigned long *switch_count;
I
Ingo Molnar 已提交
2738
	struct rq *rq;
2739
	int cpu;
I
Ingo Molnar 已提交
2740

2741
	preempt_disable();
I
Ingo Molnar 已提交
2742 2743
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
2744
	rcu_note_context_switch();
I
Ingo Molnar 已提交
2745 2746 2747
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
2748

2749
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
2750
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
2751

2752 2753 2754 2755 2756 2757
	/*
	 * Make sure that signal_pending_state()->signal_pending() below
	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
	 * done by the caller to avoid the race with signal_wake_up().
	 */
	smp_mb__before_spinlock();
2758
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
2759

2760 2761
	rq->clock_skip_update <<= 1; /* promote REQ to ACT */

2762
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
2763
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
2764
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
2765
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
2766
		} else {
2767 2768 2769
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

T
Tejun Heo 已提交
2770
			/*
2771 2772 2773
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
2774 2775 2776 2777 2778 2779 2780 2781 2782
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
		}
I
Ingo Molnar 已提交
2783
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
2784 2785
	}

2786
	if (task_on_rq_queued(prev))
2787 2788 2789
		update_rq_clock(rq);

	next = pick_next_task(rq, prev);
2790
	clear_tsk_need_resched(prev);
2791
	clear_preempt_need_resched();
2792
	rq->clock_skip_update = 0;
L
Linus Torvalds 已提交
2793 2794 2795 2796 2797 2798

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

2799 2800
		rq = context_switch(rq, prev, next); /* unlocks the rq */
		cpu = cpu_of(rq);
L
Linus Torvalds 已提交
2801
	} else
2802
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
2803

2804
	post_schedule(rq);
L
Linus Torvalds 已提交
2805

2806
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
2807
}
2808

2809 2810
static inline void sched_submit_work(struct task_struct *tsk)
{
2811
	if (!tsk->state || tsk_is_pi_blocked(tsk))
2812 2813 2814 2815 2816 2817 2818 2819 2820
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

2821
asmlinkage __visible void __sched schedule(void)
2822
{
2823 2824 2825
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
2826 2827 2828
	do {
		__schedule();
	} while (need_resched());
2829
}
L
Linus Torvalds 已提交
2830 2831
EXPORT_SYMBOL(schedule);

2832
#ifdef CONFIG_CONTEXT_TRACKING
2833
asmlinkage __visible void __sched schedule_user(void)
2834 2835 2836 2837 2838 2839
{
	/*
	 * If we come here after a random call to set_need_resched(),
	 * or we have been woken up remotely but the IPI has not yet arrived,
	 * we haven't yet exited the RCU idle mode. Do it here manually until
	 * we find a better solution.
2840 2841
	 *
	 * NB: There are buggy callers of this function.  Ideally we
2842
	 * should warn if prev_state != CONTEXT_USER, but that will trigger
2843
	 * too frequently to make sense yet.
2844
	 */
2845
	enum ctx_state prev_state = exception_enter();
2846
	schedule();
2847
	exception_exit(prev_state);
2848 2849 2850
}
#endif

2851 2852 2853 2854 2855 2856 2857
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
2858
	sched_preempt_enable_no_resched();
2859 2860 2861 2862
	schedule();
	preempt_disable();
}

2863
static void __sched notrace preempt_schedule_common(void)
2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877
{
	do {
		__preempt_count_add(PREEMPT_ACTIVE);
		__schedule();
		__preempt_count_sub(PREEMPT_ACTIVE);

		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (need_resched());
}

L
Linus Torvalds 已提交
2878 2879
#ifdef CONFIG_PREEMPT
/*
2880
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
2881
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
2882 2883
 * occur there and call schedule directly.
 */
2884
asmlinkage __visible void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
2885 2886 2887
{
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
2888
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
2889
	 */
2890
	if (likely(!preemptible()))
L
Linus Torvalds 已提交
2891 2892
		return;

2893
	preempt_schedule_common();
L
Linus Torvalds 已提交
2894
}
2895
NOKPROBE_SYMBOL(preempt_schedule);
L
Linus Torvalds 已提交
2896
EXPORT_SYMBOL(preempt_schedule);
2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937

#ifdef CONFIG_CONTEXT_TRACKING
/**
 * preempt_schedule_context - preempt_schedule called by tracing
 *
 * The tracing infrastructure uses preempt_enable_notrace to prevent
 * recursion and tracing preempt enabling caused by the tracing
 * infrastructure itself. But as tracing can happen in areas coming
 * from userspace or just about to enter userspace, a preempt enable
 * can occur before user_exit() is called. This will cause the scheduler
 * to be called when the system is still in usermode.
 *
 * To prevent this, the preempt_enable_notrace will use this function
 * instead of preempt_schedule() to exit user context if needed before
 * calling the scheduler.
 */
asmlinkage __visible void __sched notrace preempt_schedule_context(void)
{
	enum ctx_state prev_ctx;

	if (likely(!preemptible()))
		return;

	do {
		__preempt_count_add(PREEMPT_ACTIVE);
		/*
		 * Needs preempt disabled in case user_exit() is traced
		 * and the tracer calls preempt_enable_notrace() causing
		 * an infinite recursion.
		 */
		prev_ctx = exception_enter();
		__schedule();
		exception_exit(prev_ctx);

		__preempt_count_sub(PREEMPT_ACTIVE);
		barrier();
	} while (need_resched());
}
EXPORT_SYMBOL_GPL(preempt_schedule_context);
#endif /* CONFIG_CONTEXT_TRACKING */

2938
#endif /* CONFIG_PREEMPT */
L
Linus Torvalds 已提交
2939 2940

/*
2941
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
2942 2943 2944 2945
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
2946
asmlinkage __visible void __sched preempt_schedule_irq(void)
L
Linus Torvalds 已提交
2947
{
2948
	enum ctx_state prev_state;
2949

2950
	/* Catch callers which need to be fixed */
2951
	BUG_ON(preempt_count() || !irqs_disabled());
L
Linus Torvalds 已提交
2952

2953 2954
	prev_state = exception_enter();

2955
	do {
2956
		__preempt_count_add(PREEMPT_ACTIVE);
2957
		local_irq_enable();
2958
		__schedule();
2959
		local_irq_disable();
2960
		__preempt_count_sub(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
2961

2962 2963 2964 2965 2966
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
2967
	} while (need_resched());
2968 2969

	exception_exit(prev_state);
L
Linus Torvalds 已提交
2970 2971
}

P
Peter Zijlstra 已提交
2972
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
2973
			  void *key)
L
Linus Torvalds 已提交
2974
{
P
Peter Zijlstra 已提交
2975
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
2976 2977 2978
}
EXPORT_SYMBOL(default_wake_function);

2979 2980 2981 2982 2983 2984 2985 2986 2987 2988
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
2989 2990
 * Used by the rt_mutex code to implement priority inheritance
 * logic. Call site only calls if the priority of the task changed.
2991
 */
2992
void rt_mutex_setprio(struct task_struct *p, int prio)
2993
{
2994
	int oldprio, queued, running, enqueue_flag = 0;
2995
	struct rq *rq;
2996
	const struct sched_class *prev_class;
2997

2998
	BUG_ON(prio > MAX_PRIO);
2999

3000
	rq = __task_rq_lock(p);
3001

3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

3020
	trace_sched_pi_setprio(p, prio);
3021
	oldprio = p->prio;
3022
	prev_class = p->sched_class;
3023
	queued = task_on_rq_queued(p);
3024
	running = task_current(rq, p);
3025
	if (queued)
3026
		dequeue_task(rq, p, 0);
3027
	if (running)
3028
		put_prev_task(rq, p);
I
Ingo Molnar 已提交
3029

3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
	/*
	 * Boosting condition are:
	 * 1. -rt task is running and holds mutex A
	 *      --> -dl task blocks on mutex A
	 *
	 * 2. -dl task is running and holds mutex A
	 *      --> -dl task blocks on mutex A and could preempt the
	 *          running task
	 */
	if (dl_prio(prio)) {
3040 3041 3042
		struct task_struct *pi_task = rt_mutex_get_top_task(p);
		if (!dl_prio(p->normal_prio) ||
		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3043 3044 3045 3046 3047
			p->dl.dl_boosted = 1;
			p->dl.dl_throttled = 0;
			enqueue_flag = ENQUEUE_REPLENISH;
		} else
			p->dl.dl_boosted = 0;
3048
		p->sched_class = &dl_sched_class;
3049 3050 3051 3052 3053
	} else if (rt_prio(prio)) {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
		if (oldprio < prio)
			enqueue_flag = ENQUEUE_HEAD;
I
Ingo Molnar 已提交
3054
		p->sched_class = &rt_sched_class;
3055 3056 3057
	} else {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
3058 3059
		if (rt_prio(oldprio))
			p->rt.timeout = 0;
I
Ingo Molnar 已提交
3060
		p->sched_class = &fair_sched_class;
3061
	}
I
Ingo Molnar 已提交
3062

3063 3064
	p->prio = prio;

3065 3066
	if (running)
		p->sched_class->set_curr_task(rq);
3067
	if (queued)
3068
		enqueue_task(rq, p, enqueue_flag);
3069

P
Peter Zijlstra 已提交
3070
	check_class_changed(rq, p, prev_class, oldprio);
3071
out_unlock:
3072
	__task_rq_unlock(rq);
3073 3074
}
#endif
3075

3076
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3077
{
3078
	int old_prio, delta, queued;
L
Linus Torvalds 已提交
3079
	unsigned long flags;
3080
	struct rq *rq;
L
Linus Torvalds 已提交
3081

3082
	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
L
Linus Torvalds 已提交
3083 3084 3085 3086 3087 3088 3089 3090 3091 3092
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
3093
	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
L
Linus Torvalds 已提交
3094
	 */
3095
	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3096 3097 3098
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
3099 3100
	queued = task_on_rq_queued(p);
	if (queued)
3101
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
3102 3103

	p->static_prio = NICE_TO_PRIO(nice);
3104
	set_load_weight(p);
3105 3106 3107
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3108

3109
	if (queued) {
3110
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
3111
		/*
3112 3113
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3114
		 */
3115
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3116
			resched_curr(rq);
L
Linus Torvalds 已提交
3117 3118
	}
out_unlock:
3119
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3120 3121 3122
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3123 3124 3125 3126 3127
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3128
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3129
{
3130
	/* convert nice value [19,-20] to rlimit style value [1,40] */
3131
	int nice_rlim = nice_to_rlimit(nice);
3132

3133
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3134 3135 3136
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3137 3138 3139 3140 3141 3142 3143 3144 3145
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3146
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3147
{
3148
	long nice, retval;
L
Linus Torvalds 已提交
3149 3150 3151 3152 3153 3154

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
3155
	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3156
	nice = task_nice(current) + increment;
L
Linus Torvalds 已提交
3157

3158
	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
M
Matt Mackall 已提交
3159 3160 3161
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
3176
 * Return: The priority value as seen by users in /proc.
L
Linus Torvalds 已提交
3177 3178 3179
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3180
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3181 3182 3183 3184 3185 3186 3187
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
3188 3189
 *
 * Return: 1 if the CPU is currently idle. 0 otherwise.
L
Linus Torvalds 已提交
3190 3191 3192
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3207 3208 3209 3210 3211
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
3212 3213
 *
 * Return: The idle task for the cpu @cpu.
L
Linus Torvalds 已提交
3214
 */
3215
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3216 3217 3218 3219 3220 3221 3222
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
3223 3224
 *
 * The task of @pid, if found. %NULL otherwise.
L
Linus Torvalds 已提交
3225
 */
A
Alexey Dobriyan 已提交
3226
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
3227
{
3228
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
3229 3230
}

3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245
/*
 * This function initializes the sched_dl_entity of a newly becoming
 * SCHED_DEADLINE task.
 *
 * Only the static values are considered here, the actual runtime and the
 * absolute deadline will be properly calculated when the task is enqueued
 * for the first time with its new policy.
 */
static void
__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	dl_se->dl_runtime = attr->sched_runtime;
	dl_se->dl_deadline = attr->sched_deadline;
3246
	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3247
	dl_se->flags = attr->sched_flags;
3248
	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268

	/*
	 * Changing the parameters of a task is 'tricky' and we're not doing
	 * the correct thing -- also see task_dead_dl() and switched_from_dl().
	 *
	 * What we SHOULD do is delay the bandwidth release until the 0-lag
	 * point. This would include retaining the task_struct until that time
	 * and change dl_overflow() to not immediately decrement the current
	 * amount.
	 *
	 * Instead we retain the current runtime/deadline and let the new
	 * parameters take effect after the current reservation period lapses.
	 * This is safe (albeit pessimistic) because the 0-lag point is always
	 * before the current scheduling deadline.
	 *
	 * We can still have temporary overloads because we do not delay the
	 * change in bandwidth until that time; so admission control is
	 * not on the safe side. It does however guarantee tasks will never
	 * consume more than promised.
	 */
3269 3270
}

3271 3272 3273 3274 3275 3276
/*
 * sched_setparam() passes in -1 for its policy, to let the functions
 * it calls know not to change it.
 */
#define SETPARAM_POLICY	-1

3277 3278
static void __setscheduler_params(struct task_struct *p,
		const struct sched_attr *attr)
L
Linus Torvalds 已提交
3279
{
3280 3281
	int policy = attr->sched_policy;

3282
	if (policy == SETPARAM_POLICY)
3283 3284
		policy = p->policy;

L
Linus Torvalds 已提交
3285
	p->policy = policy;
3286

3287 3288
	if (dl_policy(policy))
		__setparam_dl(p, attr);
3289
	else if (fair_policy(policy))
3290 3291
		p->static_prio = NICE_TO_PRIO(attr->sched_nice);

3292 3293 3294 3295 3296 3297
	/*
	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
	 * !rt_policy. Always setting this ensures that things like
	 * getparam()/getattr() don't report silly values for !rt tasks.
	 */
	p->rt_priority = attr->sched_priority;
3298
	p->normal_prio = normal_prio(p);
3299 3300
	set_load_weight(p);
}
3301

3302 3303
/* Actually do priority change: must hold pi & rq lock. */
static void __setscheduler(struct rq *rq, struct task_struct *p,
3304
			   const struct sched_attr *attr, bool keep_boost)
3305 3306
{
	__setscheduler_params(p, attr);
3307

3308
	/*
3309 3310
	 * Keep a potential priority boosting if called from
	 * sched_setscheduler().
3311
	 */
3312 3313 3314 3315
	if (keep_boost)
		p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
	else
		p->prio = normal_prio(p);
3316

3317 3318 3319
	if (dl_prio(p->prio))
		p->sched_class = &dl_sched_class;
	else if (rt_prio(p->prio))
3320 3321 3322
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
3323
}
3324 3325 3326 3327 3328 3329 3330 3331 3332

static void
__getparam_dl(struct task_struct *p, struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	attr->sched_priority = p->rt_priority;
	attr->sched_runtime = dl_se->dl_runtime;
	attr->sched_deadline = dl_se->dl_deadline;
3333
	attr->sched_period = dl_se->dl_period;
3334 3335 3336 3337 3338 3339
	attr->sched_flags = dl_se->flags;
}

/*
 * This function validates the new parameters of a -deadline task.
 * We ask for the deadline not being zero, and greater or equal
3340
 * than the runtime, as well as the period of being zero or
3341
 * greater than deadline. Furthermore, we have to be sure that
3342 3343 3344 3345
 * user parameters are above the internal resolution of 1us (we
 * check sched_runtime only since it is always the smaller one) and
 * below 2^63 ns (we have to check both sched_deadline and
 * sched_period, as the latter can be zero).
3346 3347 3348 3349
 */
static bool
__checkparam_dl(const struct sched_attr *attr)
{
3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
	/* deadline != 0 */
	if (attr->sched_deadline == 0)
		return false;

	/*
	 * Since we truncate DL_SCALE bits, make sure we're at least
	 * that big.
	 */
	if (attr->sched_runtime < (1ULL << DL_SCALE))
		return false;

	/*
	 * Since we use the MSB for wrap-around and sign issues, make
	 * sure it's not set (mind that period can be equal to zero).
	 */
	if (attr->sched_deadline & (1ULL << 63) ||
	    attr->sched_period & (1ULL << 63))
		return false;

	/* runtime <= deadline <= period (if period != 0) */
	if ((attr->sched_period != 0 &&
	     attr->sched_period < attr->sched_deadline) ||
	    attr->sched_deadline < attr->sched_runtime)
		return false;

	return true;
3376 3377
}

3378 3379 3380 3381 3382 3383 3384 3385 3386 3387
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
3388 3389
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
3390 3391 3392 3393
	rcu_read_unlock();
	return match;
}

3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
static bool dl_param_changed(struct task_struct *p,
		const struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	if (dl_se->dl_runtime != attr->sched_runtime ||
		dl_se->dl_deadline != attr->sched_deadline ||
		dl_se->dl_period != attr->sched_period ||
		dl_se->flags != attr->sched_flags)
		return true;

	return false;
}

3408 3409 3410
static int __sched_setscheduler(struct task_struct *p,
				const struct sched_attr *attr,
				bool user)
L
Linus Torvalds 已提交
3411
{
3412 3413
	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
		      MAX_RT_PRIO - 1 - attr->sched_priority;
3414
	int retval, oldprio, oldpolicy = -1, queued, running;
3415
	int new_effective_prio, policy = attr->sched_policy;
L
Linus Torvalds 已提交
3416
	unsigned long flags;
3417
	const struct sched_class *prev_class;
3418
	struct rq *rq;
3419
	int reset_on_fork;
L
Linus Torvalds 已提交
3420

3421 3422
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
3423 3424
recheck:
	/* double check policy once rq lock held */
3425 3426
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
3427
		policy = oldpolicy = p->policy;
3428
	} else {
3429
		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3430

3431 3432
		if (policy != SCHED_DEADLINE &&
				policy != SCHED_FIFO && policy != SCHED_RR &&
3433 3434 3435 3436 3437
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

3438 3439 3440
	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
		return -EINVAL;

L
Linus Torvalds 已提交
3441 3442
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
3443 3444
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
3445
	 */
3446
	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3447
	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
3448
		return -EINVAL;
3449 3450
	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
	    (rt_policy(policy) != (attr->sched_priority != 0)))
L
Linus Torvalds 已提交
3451 3452
		return -EINVAL;

3453 3454 3455
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
3456
	if (user && !capable(CAP_SYS_NICE)) {
3457
		if (fair_policy(policy)) {
3458
			if (attr->sched_nice < task_nice(p) &&
3459
			    !can_nice(p, attr->sched_nice))
3460 3461 3462
				return -EPERM;
		}

3463
		if (rt_policy(policy)) {
3464 3465
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
3466 3467 3468 3469 3470 3471

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
3472 3473
			if (attr->sched_priority > p->rt_priority &&
			    attr->sched_priority > rlim_rtprio)
3474 3475
				return -EPERM;
		}
3476

3477 3478 3479 3480 3481 3482 3483 3484 3485
		 /*
		  * Can't set/change SCHED_DEADLINE policy at all for now
		  * (safest behavior); in the future we would like to allow
		  * unprivileged DL tasks to increase their relative deadline
		  * or reduce their runtime (both ways reducing utilization)
		  */
		if (dl_policy(policy))
			return -EPERM;

I
Ingo Molnar 已提交
3486
		/*
3487 3488
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
3489
		 */
3490
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3491
			if (!can_nice(p, task_nice(p)))
3492 3493
				return -EPERM;
		}
3494

3495
		/* can't change other user's priorities */
3496
		if (!check_same_owner(p))
3497
			return -EPERM;
3498 3499 3500 3501

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
3502
	}
L
Linus Torvalds 已提交
3503

3504
	if (user) {
3505
		retval = security_task_setscheduler(p);
3506 3507 3508 3509
		if (retval)
			return retval;
	}

3510 3511 3512
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
3513
	 *
L
Lucas De Marchi 已提交
3514
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
3515 3516
	 * runqueue lock must be held.
	 */
3517
	rq = task_rq_lock(p, &flags);
3518

3519 3520 3521 3522
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
3523
		task_rq_unlock(rq, p, &flags);
3524 3525 3526
		return -EINVAL;
	}

3527
	/*
3528 3529
	 * If not changing anything there's no need to proceed further,
	 * but store a possible modification of reset_on_fork.
3530
	 */
3531
	if (unlikely(policy == p->policy)) {
3532
		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3533 3534 3535
			goto change;
		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
			goto change;
3536
		if (dl_policy(policy) && dl_param_changed(p, attr))
3537
			goto change;
3538

3539
		p->sched_reset_on_fork = reset_on_fork;
3540
		task_rq_unlock(rq, p, &flags);
3541 3542
		return 0;
	}
3543
change:
3544

3545
	if (user) {
3546
#ifdef CONFIG_RT_GROUP_SCHED
3547 3548 3549 3550 3551
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3552 3553
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
3554
			task_rq_unlock(rq, p, &flags);
3555 3556 3557
			return -EPERM;
		}
#endif
3558 3559 3560 3561 3562 3563 3564 3565 3566
#ifdef CONFIG_SMP
		if (dl_bandwidth_enabled() && dl_policy(policy)) {
			cpumask_t *span = rq->rd->span;

			/*
			 * Don't allow tasks with an affinity mask smaller than
			 * the entire root_domain to become SCHED_DEADLINE. We
			 * will also fail if there's no bandwidth available.
			 */
3567 3568
			if (!cpumask_subset(span, &p->cpus_allowed) ||
			    rq->rd->dl_bw.bw == 0) {
3569 3570 3571 3572 3573 3574
				task_rq_unlock(rq, p, &flags);
				return -EPERM;
			}
		}
#endif
	}
3575

L
Linus Torvalds 已提交
3576 3577 3578
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
3579
		task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3580 3581
		goto recheck;
	}
3582 3583 3584 3585 3586 3587

	/*
	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
	 * is available.
	 */
3588
	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3589 3590 3591 3592
		task_rq_unlock(rq, p, &flags);
		return -EBUSY;
	}

3593 3594 3595 3596
	p->sched_reset_on_fork = reset_on_fork;
	oldprio = p->prio;

	/*
3597 3598
	 * Take priority boosted tasks into account. If the new
	 * effective priority is unchanged, we just store the new
3599 3600 3601 3602
	 * normal parameters and do not touch the scheduler class and
	 * the runqueue. This will be done when the task deboost
	 * itself.
	 */
3603 3604
	new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
	if (new_effective_prio == oldprio) {
3605 3606 3607 3608 3609
		__setscheduler_params(p, attr);
		task_rq_unlock(rq, p, &flags);
		return 0;
	}

3610
	queued = task_on_rq_queued(p);
3611
	running = task_current(rq, p);
3612
	if (queued)
3613
		dequeue_task(rq, p, 0);
3614
	if (running)
3615
		put_prev_task(rq, p);
3616

3617
	prev_class = p->sched_class;
3618
	__setscheduler(rq, p, attr, true);
3619

3620 3621
	if (running)
		p->sched_class->set_curr_task(rq);
3622
	if (queued) {
3623 3624 3625 3626 3627 3628
		/*
		 * We enqueue to tail when the priority of a task is
		 * increased (user space view).
		 */
		enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
	}
3629

P
Peter Zijlstra 已提交
3630
	check_class_changed(rq, p, prev_class, oldprio);
3631
	task_rq_unlock(rq, p, &flags);
3632

3633 3634
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
3635 3636
	return 0;
}
3637

3638 3639 3640 3641 3642 3643 3644 3645 3646
static int _sched_setscheduler(struct task_struct *p, int policy,
			       const struct sched_param *param, bool check)
{
	struct sched_attr attr = {
		.sched_policy   = policy,
		.sched_priority = param->sched_priority,
		.sched_nice	= PRIO_TO_NICE(p->static_prio),
	};

3647 3648
	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
3649 3650 3651 3652 3653 3654 3655
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
		policy &= ~SCHED_RESET_ON_FORK;
		attr.sched_policy = policy;
	}

	return __sched_setscheduler(p, &attr, check);
}
3656 3657 3658 3659 3660 3661
/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
3662 3663
 * Return: 0 on success. An error code otherwise.
 *
3664 3665 3666
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
3667
		       const struct sched_param *param)
3668
{
3669
	return _sched_setscheduler(p, policy, param, true);
3670
}
L
Linus Torvalds 已提交
3671 3672
EXPORT_SYMBOL_GPL(sched_setscheduler);

3673 3674 3675 3676 3677 3678
int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
{
	return __sched_setscheduler(p, attr, true);
}
EXPORT_SYMBOL_GPL(sched_setattr);

3679 3680 3681 3682 3683 3684 3685 3686 3687 3688
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
3689 3690
 *
 * Return: 0 on success. An error code otherwise.
3691 3692
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3693
			       const struct sched_param *param)
3694
{
3695
	return _sched_setscheduler(p, policy, param, false);
3696 3697
}

I
Ingo Molnar 已提交
3698 3699
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
3700 3701 3702
{
	struct sched_param lparam;
	struct task_struct *p;
3703
	int retval;
L
Linus Torvalds 已提交
3704 3705 3706 3707 3708

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
3709 3710 3711

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
3712
	p = find_process_by_pid(pid);
3713 3714 3715
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
3716

L
Linus Torvalds 已提交
3717 3718 3719
	return retval;
}

3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781
/*
 * Mimics kernel/events/core.c perf_copy_attr().
 */
static int sched_copy_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr)
{
	u32 size;
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = SCHED_ATTR_SIZE_VER0;

	if (size < SCHED_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
	 */
	if (size > sizeof(*attr)) {
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;

		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;

		for (; addr < end; addr++) {
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
		size = sizeof(*attr);
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * XXX: do we want to be lenient like existing syscalls; or do we want
	 * to be strict and return an error on out-of-bounds values?
	 */
3782
	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3783

3784
	return 0;
3785 3786 3787

err_size:
	put_user(sizeof(*attr), &uattr->size);
3788
	return -E2BIG;
3789 3790
}

L
Linus Torvalds 已提交
3791 3792 3793 3794 3795
/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
3796 3797
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
3798
 */
3799 3800
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
3801
{
3802 3803 3804 3805
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
3806 3807 3808 3809 3810 3811 3812
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
3813 3814
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
3815
 */
3816
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
3817
{
3818
	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
L
Linus Torvalds 已提交
3819 3820
}

3821 3822 3823
/**
 * sys_sched_setattr - same as above, but with extended sched_attr
 * @pid: the pid in question.
J
Juri Lelli 已提交
3824
 * @uattr: structure containing the extended parameters.
3825
 * @flags: for future extension.
3826
 */
3827 3828
SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
			       unsigned int, flags)
3829 3830 3831 3832 3833
{
	struct sched_attr attr;
	struct task_struct *p;
	int retval;

3834
	if (!uattr || pid < 0 || flags)
3835 3836
		return -EINVAL;

3837 3838 3839
	retval = sched_copy_attr(uattr, &attr);
	if (retval)
		return retval;
3840

3841
	if ((int)attr.sched_policy < 0)
3842
		return -EINVAL;
3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853

	rcu_read_lock();
	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (p != NULL)
		retval = sched_setattr(p, &attr);
	rcu_read_unlock();

	return retval;
}

L
Linus Torvalds 已提交
3854 3855 3856
/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
3857 3858 3859
 *
 * Return: On success, the policy of the thread. Otherwise, a negative error
 * code.
L
Linus Torvalds 已提交
3860
 */
3861
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
3862
{
3863
	struct task_struct *p;
3864
	int retval;
L
Linus Torvalds 已提交
3865 3866

	if (pid < 0)
3867
		return -EINVAL;
L
Linus Torvalds 已提交
3868 3869

	retval = -ESRCH;
3870
	rcu_read_lock();
L
Linus Torvalds 已提交
3871 3872 3873 3874
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
3875 3876
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
3877
	}
3878
	rcu_read_unlock();
L
Linus Torvalds 已提交
3879 3880 3881 3882
	return retval;
}

/**
3883
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
3884 3885
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
3886 3887 3888
 *
 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
 * code.
L
Linus Torvalds 已提交
3889
 */
3890
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
3891
{
3892
	struct sched_param lp = { .sched_priority = 0 };
3893
	struct task_struct *p;
3894
	int retval;
L
Linus Torvalds 已提交
3895 3896

	if (!param || pid < 0)
3897
		return -EINVAL;
L
Linus Torvalds 已提交
3898

3899
	rcu_read_lock();
L
Linus Torvalds 已提交
3900 3901 3902 3903 3904 3905 3906 3907 3908
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

3909 3910
	if (task_has_rt_policy(p))
		lp.sched_priority = p->rt_priority;
3911
	rcu_read_unlock();
L
Linus Torvalds 已提交
3912 3913 3914 3915 3916 3917 3918 3919 3920

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
3921
	rcu_read_unlock();
L
Linus Torvalds 已提交
3922 3923 3924
	return retval;
}

3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947
static int sched_read_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr,
			   unsigned int usize)
{
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, usize))
		return -EFAULT;

	/*
	 * If we're handed a smaller struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. old
	 * user-space does not get uncomplete information.
	 */
	if (usize < sizeof(*attr)) {
		unsigned char *addr;
		unsigned char *end;

		addr = (void *)attr + usize;
		end  = (void *)attr + sizeof(*attr);

		for (; addr < end; addr++) {
			if (*addr)
3948
				return -EFBIG;
3949 3950 3951 3952 3953
		}

		attr->size = usize;
	}

3954
	ret = copy_to_user(uattr, attr, attr->size);
3955 3956 3957
	if (ret)
		return -EFAULT;

3958
	return 0;
3959 3960 3961
}

/**
3962
 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3963
 * @pid: the pid in question.
J
Juri Lelli 已提交
3964
 * @uattr: structure containing the extended parameters.
3965
 * @size: sizeof(attr) for fwd/bwd comp.
3966
 * @flags: for future extension.
3967
 */
3968 3969
SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
		unsigned int, size, unsigned int, flags)
3970 3971 3972 3973 3974 3975 3976 3977
{
	struct sched_attr attr = {
		.size = sizeof(struct sched_attr),
	};
	struct task_struct *p;
	int retval;

	if (!uattr || pid < 0 || size > PAGE_SIZE ||
3978
	    size < SCHED_ATTR_SIZE_VER0 || flags)
3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991
		return -EINVAL;

	rcu_read_lock();
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	attr.sched_policy = p->policy;
3992 3993
	if (p->sched_reset_on_fork)
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3994 3995 3996
	if (task_has_dl_policy(p))
		__getparam_dl(p, &attr);
	else if (task_has_rt_policy(p))
3997 3998
		attr.sched_priority = p->rt_priority;
	else
3999
		attr.sched_nice = task_nice(p);
4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010

	rcu_read_unlock();

	retval = sched_read_attr(uattr, &attr, size);
	return retval;

out_unlock:
	rcu_read_unlock();
	return retval;
}

4011
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4012
{
4013
	cpumask_var_t cpus_allowed, new_mask;
4014 4015
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4016

4017
	rcu_read_lock();
L
Linus Torvalds 已提交
4018 4019 4020

	p = find_process_by_pid(pid);
	if (!p) {
4021
		rcu_read_unlock();
L
Linus Torvalds 已提交
4022 4023 4024
		return -ESRCH;
	}

4025
	/* Prevent p going away */
L
Linus Torvalds 已提交
4026
	get_task_struct(p);
4027
	rcu_read_unlock();
L
Linus Torvalds 已提交
4028

4029 4030 4031 4032
	if (p->flags & PF_NO_SETAFFINITY) {
		retval = -EINVAL;
		goto out_put_task;
	}
4033 4034 4035 4036 4037 4038 4039 4040
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4041
	retval = -EPERM;
E
Eric W. Biederman 已提交
4042 4043 4044 4045
	if (!check_same_owner(p)) {
		rcu_read_lock();
		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
			rcu_read_unlock();
4046
			goto out_free_new_mask;
E
Eric W. Biederman 已提交
4047 4048 4049
		}
		rcu_read_unlock();
	}
L
Linus Torvalds 已提交
4050

4051
	retval = security_task_setscheduler(p);
4052
	if (retval)
4053
		goto out_free_new_mask;
4054

4055 4056 4057 4058

	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);

4059 4060 4061 4062 4063 4064 4065
	/*
	 * Since bandwidth control happens on root_domain basis,
	 * if admission test is enabled, we only admit -deadline
	 * tasks allowed to run on all the CPUs in the task's
	 * root_domain.
	 */
#ifdef CONFIG_SMP
4066 4067 4068
	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
		rcu_read_lock();
		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4069
			retval = -EBUSY;
4070
			rcu_read_unlock();
4071
			goto out_free_new_mask;
4072
		}
4073
		rcu_read_unlock();
4074 4075
	}
#endif
P
Peter Zijlstra 已提交
4076
again:
4077
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
4078

P
Paul Menage 已提交
4079
	if (!retval) {
4080 4081
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4082 4083 4084 4085 4086
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4087
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4088 4089 4090
			goto again;
		}
	}
4091
out_free_new_mask:
4092 4093 4094 4095
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4096 4097 4098 4099 4100
	put_task_struct(p);
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4101
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4102
{
4103 4104 4105 4106 4107
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4108 4109 4110 4111 4112 4113 4114 4115
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
4116 4117
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4118
 */
4119 4120
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4121
{
4122
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4123 4124
	int retval;

4125 4126
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4127

4128 4129 4130 4131 4132
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4133 4134
}

4135
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4136
{
4137
	struct task_struct *p;
4138
	unsigned long flags;
L
Linus Torvalds 已提交
4139 4140
	int retval;

4141
	rcu_read_lock();
L
Linus Torvalds 已提交
4142 4143 4144 4145 4146 4147

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4148 4149 4150 4151
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4152
	raw_spin_lock_irqsave(&p->pi_lock, flags);
4153
	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4154
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4155 4156

out_unlock:
4157
	rcu_read_unlock();
L
Linus Torvalds 已提交
4158

4159
	return retval;
L
Linus Torvalds 已提交
4160 4161 4162 4163 4164 4165 4166
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4167 4168
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4169
 */
4170 4171
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4172 4173
{
	int ret;
4174
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4175

A
Anton Blanchard 已提交
4176
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4177 4178
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4179 4180
		return -EINVAL;

4181 4182
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4183

4184 4185
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4186
		size_t retlen = min_t(size_t, len, cpumask_size());
4187 4188

		if (copy_to_user(user_mask_ptr, mask, retlen))
4189 4190
			ret = -EFAULT;
		else
4191
			ret = retlen;
4192 4193
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4194

4195
	return ret;
L
Linus Torvalds 已提交
4196 4197 4198 4199 4200
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4201 4202
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
4203 4204
 *
 * Return: 0.
L
Linus Torvalds 已提交
4205
 */
4206
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4207
{
4208
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4209

4210
	schedstat_inc(rq, yld_count);
4211
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4212 4213 4214 4215 4216 4217

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4218
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4219
	do_raw_spin_unlock(&rq->lock);
4220
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
4221 4222 4223 4224 4225 4226

	schedule();

	return 0;
}

4227
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4228
{
P
Peter Zijlstra 已提交
4229
	if (should_resched()) {
4230
		preempt_schedule_common();
L
Linus Torvalds 已提交
4231 4232 4233 4234
		return 1;
	}
	return 0;
}
4235
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4236 4237

/*
4238
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4239 4240
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4241
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4242 4243 4244
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4245
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4246
{
P
Peter Zijlstra 已提交
4247
	int resched = should_resched();
J
Jan Kara 已提交
4248 4249
	int ret = 0;

4250 4251
	lockdep_assert_held(lock);

4252
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4253
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4254
		if (resched)
4255
			preempt_schedule_common();
N
Nick Piggin 已提交
4256 4257
		else
			cpu_relax();
J
Jan Kara 已提交
4258
		ret = 1;
L
Linus Torvalds 已提交
4259 4260
		spin_lock(lock);
	}
J
Jan Kara 已提交
4261
	return ret;
L
Linus Torvalds 已提交
4262
}
4263
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4264

4265
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4266 4267 4268
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
4269
	if (should_resched()) {
4270
		local_bh_enable();
4271
		preempt_schedule_common();
L
Linus Torvalds 已提交
4272 4273 4274 4275 4276
		local_bh_disable();
		return 1;
	}
	return 0;
}
4277
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4278 4279 4280 4281

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
 * 	yield();
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
4300 4301 4302 4303 4304 4305 4306 4307
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

4308 4309 4310 4311
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
4312 4313
 * @p: target task
 * @preempt: whether task preemption is allowed or not
4314 4315 4316 4317
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
4318
 * Return:
4319 4320 4321
 *	true (>0) if we indeed boosted the target task.
 *	false (0) if we failed to boost the target.
 *	-ESRCH if there's no task to yield to.
4322
 */
4323
int __sched yield_to(struct task_struct *p, bool preempt)
4324 4325 4326 4327
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
4328
	int yielded = 0;
4329 4330 4331 4332 4333 4334

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
4335 4336 4337 4338 4339 4340 4341 4342 4343
	/*
	 * If we're the only runnable task on the rq and target rq also
	 * has only one task, there's absolutely no point in yielding.
	 */
	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
		yielded = -ESRCH;
		goto out_irq;
	}

4344
	double_rq_lock(rq, p_rq);
4345
	if (task_rq(p) != p_rq) {
4346 4347 4348 4349 4350
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
4351
		goto out_unlock;
4352 4353

	if (curr->sched_class != p->sched_class)
4354
		goto out_unlock;
4355 4356

	if (task_running(p_rq, p) || p->state)
4357
		goto out_unlock;
4358 4359

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4360
	if (yielded) {
4361
		schedstat_inc(rq, yld_count);
4362 4363 4364 4365 4366
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
4367
			resched_curr(p_rq);
4368
	}
4369

4370
out_unlock:
4371
	double_rq_unlock(rq, p_rq);
4372
out_irq:
4373 4374
	local_irq_restore(flags);

4375
	if (yielded > 0)
4376 4377 4378 4379 4380 4381
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
4382
/*
I
Ingo Molnar 已提交
4383
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4384 4385 4386 4387
 * that process accounting knows that this is a task in IO wait state.
 */
long __sched io_schedule_timeout(long timeout)
{
4388 4389
	int old_iowait = current->in_iowait;
	struct rq *rq;
L
Linus Torvalds 已提交
4390 4391
	long ret;

4392 4393 4394 4395 4396 4397
	current->in_iowait = 1;
	if (old_iowait)
		blk_schedule_flush_plug(current);
	else
		blk_flush_plug(current);

4398
	delayacct_blkio_start();
4399
	rq = raw_rq();
L
Linus Torvalds 已提交
4400 4401
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
4402
	current->in_iowait = old_iowait;
L
Linus Torvalds 已提交
4403
	atomic_dec(&rq->nr_iowait);
4404
	delayacct_blkio_end();
4405

L
Linus Torvalds 已提交
4406 4407
	return ret;
}
4408
EXPORT_SYMBOL(io_schedule_timeout);
L
Linus Torvalds 已提交
4409 4410 4411 4412 4413

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
4414 4415 4416
 * Return: On success, this syscall returns the maximum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
4417
 */
4418
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
4419 4420 4421 4422 4423 4424 4425 4426
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
4427
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
4428
	case SCHED_NORMAL:
4429
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4430
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4431 4432 4433 4434 4435 4436 4437 4438 4439 4440
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
4441 4442 4443
 * Return: On success, this syscall returns the minimum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
4444
 */
4445
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
4446 4447 4448 4449 4450 4451 4452 4453
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
4454
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
4455
	case SCHED_NORMAL:
4456
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4457
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
4470 4471 4472
 *
 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
 * an error code.
L
Linus Torvalds 已提交
4473
 */
4474
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4475
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
4476
{
4477
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4478
	unsigned int time_slice;
4479 4480
	unsigned long flags;
	struct rq *rq;
4481
	int retval;
L
Linus Torvalds 已提交
4482 4483 4484
	struct timespec t;

	if (pid < 0)
4485
		return -EINVAL;
L
Linus Torvalds 已提交
4486 4487

	retval = -ESRCH;
4488
	rcu_read_lock();
L
Linus Torvalds 已提交
4489 4490 4491 4492 4493 4494 4495 4496
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4497
	rq = task_rq_lock(p, &flags);
4498 4499 4500
	time_slice = 0;
	if (p->sched_class->get_rr_interval)
		time_slice = p->sched_class->get_rr_interval(rq, p);
4501
	task_rq_unlock(rq, p, &flags);
D
Dmitry Adamushko 已提交
4502

4503
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
4504
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4505 4506
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4507

L
Linus Torvalds 已提交
4508
out_unlock:
4509
	rcu_read_unlock();
L
Linus Torvalds 已提交
4510 4511 4512
	return retval;
}

4513
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4514

4515
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4516 4517
{
	unsigned long free = 0;
4518
	int ppid;
4519
	unsigned long state = p->state;
L
Linus Torvalds 已提交
4520

4521 4522
	if (state)
		state = __ffs(state) + 1;
4523
	printk(KERN_INFO "%-15.15s %c", p->comm,
4524
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4525
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4526
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4527
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4528
	else
P
Peter Zijlstra 已提交
4529
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4530 4531
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4532
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4533
	else
P
Peter Zijlstra 已提交
4534
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4535 4536
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
4537
	free = stack_not_used(p);
L
Linus Torvalds 已提交
4538
#endif
4539
	ppid = 0;
4540
	rcu_read_lock();
4541 4542
	if (pid_alive(p))
		ppid = task_pid_nr(rcu_dereference(p->real_parent));
4543
	rcu_read_unlock();
P
Peter Zijlstra 已提交
4544
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4545
		task_pid_nr(p), ppid,
4546
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
4547

4548
	print_worker_info(KERN_INFO, p);
4549
	show_stack(p, NULL);
L
Linus Torvalds 已提交
4550 4551
}

I
Ingo Molnar 已提交
4552
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4553
{
4554
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4555

4556
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
4557 4558
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4559
#else
P
Peter Zijlstra 已提交
4560 4561
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4562
#endif
4563
	rcu_read_lock();
4564
	for_each_process_thread(g, p) {
L
Linus Torvalds 已提交
4565 4566
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
4567
		 * console might take a lot of time:
L
Linus Torvalds 已提交
4568 4569
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4570
		if (!state_filter || (p->state & state_filter))
4571
			sched_show_task(p);
4572
	}
L
Linus Torvalds 已提交
4573

4574 4575
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4576 4577 4578
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
4579
	rcu_read_unlock();
I
Ingo Molnar 已提交
4580 4581 4582
	/*
	 * Only show locks if all tasks are dumped:
	 */
4583
	if (!state_filter)
I
Ingo Molnar 已提交
4584
		debug_show_all_locks();
L
Linus Torvalds 已提交
4585 4586
}

4587
void init_idle_bootup_task(struct task_struct *idle)
I
Ingo Molnar 已提交
4588
{
I
Ingo Molnar 已提交
4589
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4590 4591
}

4592 4593 4594 4595 4596 4597 4598 4599
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4600
void init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4601
{
4602
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4603 4604
	unsigned long flags;

4605
	raw_spin_lock_irqsave(&rq->lock, flags);
4606

4607
	__sched_fork(0, idle);
4608
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
4609 4610
	idle->se.exec_start = sched_clock();

4611
	do_set_cpus_allowed(idle, cpumask_of(cpu));
4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
4623
	__set_task_cpu(idle, cpu);
4624
	rcu_read_unlock();
L
Linus Torvalds 已提交
4625 4626

	rq->curr = rq->idle = idle;
4627
	idle->on_rq = TASK_ON_RQ_QUEUED;
P
Peter Zijlstra 已提交
4628 4629
#if defined(CONFIG_SMP)
	idle->on_cpu = 1;
4630
#endif
4631
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
4632 4633

	/* Set the preempt count _outside_ the spinlocks! */
4634
	init_idle_preempt_count(idle, cpu);
4635

I
Ingo Molnar 已提交
4636 4637 4638 4639
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
4640
	ftrace_graph_init_idle_task(idle, cpu);
4641
	vtime_init_idle(idle, cpu);
4642 4643 4644
#if defined(CONFIG_SMP)
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
4645 4646
}

4647 4648 4649 4650 4651 4652 4653
int cpuset_cpumask_can_shrink(const struct cpumask *cur,
			      const struct cpumask *trial)
{
	int ret = 1, trial_cpus;
	struct dl_bw *cur_dl_b;
	unsigned long flags;

4654 4655 4656
	if (!cpumask_weight(cur))
		return ret;

4657
	rcu_read_lock_sched();
4658 4659 4660 4661 4662 4663 4664 4665
	cur_dl_b = dl_bw_of(cpumask_any(cur));
	trial_cpus = cpumask_weight(trial);

	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
	if (cur_dl_b->bw != -1 &&
	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
		ret = 0;
	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
4666
	rcu_read_unlock_sched();
4667 4668 4669 4670

	return ret;
}

4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694
int task_can_attach(struct task_struct *p,
		    const struct cpumask *cs_cpus_allowed)
{
	int ret = 0;

	/*
	 * Kthreads which disallow setaffinity shouldn't be moved
	 * to a new cpuset; we don't want to change their cpu
	 * affinity and isolating such threads by their set of
	 * allowed nodes is unnecessary.  Thus, cpusets are not
	 * applicable for such threads.  This prevents checking for
	 * success of set_cpus_allowed_ptr() on all attached tasks
	 * before cpus_allowed may be changed.
	 */
	if (p->flags & PF_NO_SETAFFINITY) {
		ret = -EINVAL;
		goto out;
	}

#ifdef CONFIG_SMP
	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
					      cs_cpus_allowed)) {
		unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
							cs_cpus_allowed);
4695
		struct dl_bw *dl_b;
4696 4697 4698 4699
		bool overflow;
		int cpus;
		unsigned long flags;

4700 4701
		rcu_read_lock_sched();
		dl_b = dl_bw_of(dest_cpu);
4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716
		raw_spin_lock_irqsave(&dl_b->lock, flags);
		cpus = dl_bw_cpus(dest_cpu);
		overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
		if (overflow)
			ret = -EBUSY;
		else {
			/*
			 * We reserve space for this task in the destination
			 * root_domain, as we can't fail after this point.
			 * We will free resources in the source root_domain
			 * later on (see set_cpus_allowed_dl()).
			 */
			__dl_add(dl_b, p->dl.dl_bw);
		}
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
4717
		rcu_read_unlock_sched();
4718 4719 4720 4721 4722 4723 4724

	}
#endif
out:
	return ret;
}

L
Linus Torvalds 已提交
4725
#ifdef CONFIG_SMP
4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752
/*
 * move_queued_task - move a queued task to new rq.
 *
 * Returns (locked) new rq. Old rq's lock is released.
 */
static struct rq *move_queued_task(struct task_struct *p, int new_cpu)
{
	struct rq *rq = task_rq(p);

	lockdep_assert_held(&rq->lock);

	dequeue_task(rq, p, 0);
	p->on_rq = TASK_ON_RQ_MIGRATING;
	set_task_cpu(p, new_cpu);
	raw_spin_unlock(&rq->lock);

	rq = cpu_rq(new_cpu);

	raw_spin_lock(&rq->lock);
	BUG_ON(task_cpu(p) != new_cpu);
	p->on_rq = TASK_ON_RQ_QUEUED;
	enqueue_task(rq, p, 0);
	check_preempt_curr(rq, p, 0);

	return rq;
}

4753 4754
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
4755
	if (p->sched_class->set_cpus_allowed)
4756
		p->sched_class->set_cpus_allowed(p, new_mask);
4757 4758

	cpumask_copy(&p->cpus_allowed, new_mask);
4759
	p->nr_cpus_allowed = cpumask_weight(new_mask);
4760 4761
}

L
Linus Torvalds 已提交
4762 4763 4764
/*
 * This is how migration works:
 *
4765 4766 4767 4768 4769 4770
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
4771
 *    it and puts it into the right queue.
4772 4773
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
4774 4775 4776 4777 4778 4779 4780 4781
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
4782
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
4783 4784
 * call is not atomic; no spinlocks may be held.
 */
4785
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
4786 4787
{
	unsigned long flags;
4788
	struct rq *rq;
4789
	unsigned int dest_cpu;
4790
	int ret = 0;
L
Linus Torvalds 已提交
4791 4792

	rq = task_rq_lock(p, &flags);
4793

4794 4795 4796
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

4797
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
4798 4799 4800 4801
		ret = -EINVAL;
		goto out;
	}

4802
	do_set_cpus_allowed(p, new_mask);
4803

L
Linus Torvalds 已提交
4804
	/* Can the task run on the task's current CPU? If so, we're done */
4805
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
4806 4807
		goto out;

4808
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4809
	if (task_running(rq, p) || p->state == TASK_WAKING) {
4810
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
4811
		/* Need help from migration thread: drop lock and wait. */
4812
		task_rq_unlock(rq, p, &flags);
4813
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
4814 4815
		tlb_migrate_finish(p->mm);
		return 0;
4816 4817
	} else if (task_on_rq_queued(p))
		rq = move_queued_task(p, dest_cpu);
L
Linus Torvalds 已提交
4818
out:
4819
	task_rq_unlock(rq, p, &flags);
4820

L
Linus Torvalds 已提交
4821 4822
	return ret;
}
4823
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
4824 4825

/*
I
Ingo Molnar 已提交
4826
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
4827 4828 4829 4830 4831 4832
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4833 4834
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4835
 */
4836
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4837
{
4838
	struct rq *rq;
4839
	int ret = 0;
L
Linus Torvalds 已提交
4840

4841
	if (unlikely(!cpu_active(dest_cpu)))
4842
		return ret;
L
Linus Torvalds 已提交
4843

4844
	rq = cpu_rq(src_cpu);
L
Linus Torvalds 已提交
4845

4846
	raw_spin_lock(&p->pi_lock);
4847
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
4848 4849
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
4850
		goto done;
4851

L
Linus Torvalds 已提交
4852
	/* Affinity changed (again). */
4853
	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
L
Linus Torvalds 已提交
4854
		goto fail;
L
Linus Torvalds 已提交
4855

4856 4857 4858 4859
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
4860 4861
	if (task_on_rq_queued(p))
		rq = move_queued_task(p, dest_cpu);
L
Linus Torvalds 已提交
4862
done:
4863
	ret = 1;
L
Linus Torvalds 已提交
4864
fail:
4865
	raw_spin_unlock(&rq->lock);
4866
	raw_spin_unlock(&p->pi_lock);
4867
	return ret;
L
Linus Torvalds 已提交
4868 4869
}

4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884
#ifdef CONFIG_NUMA_BALANCING
/* Migrate current task p to target_cpu */
int migrate_task_to(struct task_struct *p, int target_cpu)
{
	struct migration_arg arg = { p, target_cpu };
	int curr_cpu = task_cpu(p);

	if (curr_cpu == target_cpu)
		return 0;

	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
		return -EINVAL;

	/* TODO: This is not properly updating schedstats */

4885
	trace_sched_move_numa(p, curr_cpu, target_cpu);
4886 4887
	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
}
4888 4889 4890 4891 4892 4893 4894 4895 4896

/*
 * Requeue a task on a given node and accurately track the number of NUMA
 * tasks on the runqueues
 */
void sched_setnuma(struct task_struct *p, int nid)
{
	struct rq *rq;
	unsigned long flags;
4897
	bool queued, running;
4898 4899

	rq = task_rq_lock(p, &flags);
4900
	queued = task_on_rq_queued(p);
4901 4902
	running = task_current(rq, p);

4903
	if (queued)
4904 4905
		dequeue_task(rq, p, 0);
	if (running)
4906
		put_prev_task(rq, p);
4907 4908 4909 4910 4911

	p->numa_preferred_nid = nid;

	if (running)
		p->sched_class->set_curr_task(rq);
4912
	if (queued)
4913 4914 4915
		enqueue_task(rq, p, 0);
	task_rq_unlock(rq, p, &flags);
}
4916 4917
#endif

L
Linus Torvalds 已提交
4918
/*
4919 4920 4921
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
4922
 */
4923
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
4924
{
4925
	struct migration_arg *arg = data;
4926

4927 4928 4929 4930
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
4931
	local_irq_disable();
L
Lai Jiangshan 已提交
4932 4933 4934 4935 4936 4937
	/*
	 * We need to explicitly wake pending tasks before running
	 * __migrate_task() such that we will not miss enforcing cpus_allowed
	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
	 */
	sched_ttwu_pending();
4938
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4939
	local_irq_enable();
L
Linus Torvalds 已提交
4940
	return 0;
4941 4942
}

L
Linus Torvalds 已提交
4943
#ifdef CONFIG_HOTPLUG_CPU
4944

4945
/*
4946 4947
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
4948
 */
4949
void idle_task_exit(void)
L
Linus Torvalds 已提交
4950
{
4951
	struct mm_struct *mm = current->active_mm;
4952

4953
	BUG_ON(cpu_online(smp_processor_id()));
4954

4955
	if (mm != &init_mm) {
4956
		switch_mm(mm, &init_mm, current);
4957 4958
		finish_arch_post_lock_switch();
	}
4959
	mmdrop(mm);
L
Linus Torvalds 已提交
4960 4961 4962
}

/*
4963 4964 4965 4966 4967
 * Since this CPU is going 'away' for a while, fold any nr_active delta
 * we might have. Assumes we're called after migrate_tasks() so that the
 * nr_active count is stable.
 *
 * Also see the comment "Global load-average calculations".
L
Linus Torvalds 已提交
4968
 */
4969
static void calc_load_migrate(struct rq *rq)
L
Linus Torvalds 已提交
4970
{
4971 4972 4973
	long delta = calc_load_fold_active(rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
4974 4975
}

4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991
static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
{
}

static const struct sched_class fake_sched_class = {
	.put_prev_task = put_prev_task_fake,
};

static struct task_struct fake_task = {
	/*
	 * Avoid pull_{rt,dl}_task()
	 */
	.prio = MAX_PRIO + 1,
	.sched_class = &fake_sched_class,
};

4992
/*
4993 4994 4995 4996 4997 4998
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
4999
 */
5000
static void migrate_tasks(unsigned int dead_cpu)
L
Linus Torvalds 已提交
5001
{
5002
	struct rq *rq = cpu_rq(dead_cpu);
5003 5004
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
5005 5006

	/*
5007 5008 5009 5010 5011 5012 5013
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
5014
	 */
5015
	rq->stop = NULL;
5016

5017 5018 5019 5020 5021 5022 5023
	/*
	 * put_prev_task() and pick_next_task() sched
	 * class method both need to have an up-to-date
	 * value of rq->clock[_task]
	 */
	update_rq_clock(rq);

I
Ingo Molnar 已提交
5024
	for ( ; ; ) {
5025 5026 5027 5028 5029
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
5030
			break;
5031

5032
		next = pick_next_task(rq, &fake_task);
5033
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
5034
		next->sched_class->put_prev_task(rq, next);
5035

5036 5037 5038 5039 5040 5041 5042
		/* Find suitable destination for @next, with force if needed. */
		dest_cpu = select_fallback_rq(dead_cpu, next);
		raw_spin_unlock(&rq->lock);

		__migrate_task(next, dead_cpu, dest_cpu);

		raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
5043
	}
5044

5045
	rq->stop = stop;
5046
}
5047

L
Linus Torvalds 已提交
5048 5049
#endif /* CONFIG_HOTPLUG_CPU */

5050 5051 5052
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5053 5054
	{
		.procname	= "sched_domain",
5055
		.mode		= 0555,
5056
	},
5057
	{}
5058 5059 5060
};

static struct ctl_table sd_ctl_root[] = {
5061 5062
	{
		.procname	= "kernel",
5063
		.mode		= 0555,
5064 5065
		.child		= sd_ctl_dir,
	},
5066
	{}
5067 5068 5069 5070 5071
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5072
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5073 5074 5075 5076

	return entry;
}

5077 5078
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5079
	struct ctl_table *entry;
5080

5081 5082 5083
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5084
	 * will always be set. In the lowest directory the names are
5085 5086 5087
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5088 5089
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5090 5091 5092
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5093 5094 5095 5096 5097

	kfree(*tablep);
	*tablep = NULL;
}

5098
static int min_load_idx = 0;
5099
static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5100

5101
static void
5102
set_table_entry(struct ctl_table *entry,
5103
		const char *procname, void *data, int maxlen,
5104 5105
		umode_t mode, proc_handler *proc_handler,
		bool load_idx)
5106 5107 5108 5109 5110 5111
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
5112 5113 5114 5115 5116

	if (load_idx) {
		entry->extra1 = &min_load_idx;
		entry->extra2 = &max_load_idx;
	}
5117 5118 5119 5120 5121
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5122
	struct ctl_table *table = sd_alloc_ctl_entry(14);
5123

5124 5125 5126
	if (table == NULL)
		return NULL;

5127
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5128
		sizeof(long), 0644, proc_doulongvec_minmax, false);
5129
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5130
		sizeof(long), 0644, proc_doulongvec_minmax, false);
5131
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5132
		sizeof(int), 0644, proc_dointvec_minmax, true);
5133
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5134
		sizeof(int), 0644, proc_dointvec_minmax, true);
5135
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5136
		sizeof(int), 0644, proc_dointvec_minmax, true);
5137
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5138
		sizeof(int), 0644, proc_dointvec_minmax, true);
5139
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5140
		sizeof(int), 0644, proc_dointvec_minmax, true);
5141
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5142
		sizeof(int), 0644, proc_dointvec_minmax, false);
5143
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5144
		sizeof(int), 0644, proc_dointvec_minmax, false);
5145
	set_table_entry(&table[9], "cache_nice_tries",
5146
		&sd->cache_nice_tries,
5147
		sizeof(int), 0644, proc_dointvec_minmax, false);
5148
	set_table_entry(&table[10], "flags", &sd->flags,
5149
		sizeof(int), 0644, proc_dointvec_minmax, false);
5150 5151 5152 5153
	set_table_entry(&table[11], "max_newidle_lb_cost",
		&sd->max_newidle_lb_cost,
		sizeof(long), 0644, proc_doulongvec_minmax, false);
	set_table_entry(&table[12], "name", sd->name,
5154
		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5155
	/* &table[13] is terminator */
5156 5157 5158 5159

	return table;
}

5160
static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5161 5162 5163 5164 5165 5166 5167 5168 5169
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5170 5171
	if (table == NULL)
		return NULL;
5172 5173 5174 5175 5176

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5177
		entry->mode = 0555;
5178 5179 5180 5181 5182 5183 5184 5185
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5186
static void register_sched_domain_sysctl(void)
5187
{
5188
	int i, cpu_num = num_possible_cpus();
5189 5190 5191
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5192 5193 5194
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5195 5196 5197
	if (entry == NULL)
		return;

5198
	for_each_possible_cpu(i) {
5199 5200
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5201
		entry->mode = 0555;
5202
		entry->child = sd_alloc_ctl_cpu_table(i);
5203
		entry++;
5204
	}
5205 5206

	WARN_ON(sd_sysctl_header);
5207 5208
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5209

5210
/* may be called multiple times per register */
5211 5212
static void unregister_sched_domain_sysctl(void)
{
5213 5214
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5215
	sd_sysctl_header = NULL;
5216 5217
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5218
}
5219
#else
5220 5221 5222 5223
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5224 5225 5226 5227
{
}
#endif

5228 5229 5230 5231 5232
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5233
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5253
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5254 5255 5256 5257
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5258 5259 5260 5261
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5262
static int
5263
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5264
{
5265
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5266
	unsigned long flags;
5267
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5268

5269
	switch (action & ~CPU_TASKS_FROZEN) {
5270

L
Linus Torvalds 已提交
5271
	case CPU_UP_PREPARE:
5272
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5273
		break;
5274

L
Linus Torvalds 已提交
5275
	case CPU_ONLINE:
5276
		/* Update our root-domain */
5277
		raw_spin_lock_irqsave(&rq->lock, flags);
5278
		if (rq->rd) {
5279
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5280 5281

			set_rq_online(rq);
5282
		}
5283
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5284
		break;
5285

L
Linus Torvalds 已提交
5286
#ifdef CONFIG_HOTPLUG_CPU
5287
	case CPU_DYING:
5288
		sched_ttwu_pending();
G
Gregory Haskins 已提交
5289
		/* Update our root-domain */
5290
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5291
		if (rq->rd) {
5292
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5293
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5294
		}
5295 5296
		migrate_tasks(cpu);
		BUG_ON(rq->nr_running != 1); /* the migration thread */
5297
		raw_spin_unlock_irqrestore(&rq->lock, flags);
5298
		break;
5299

5300
	case CPU_DEAD:
5301
		calc_load_migrate(rq);
G
Gregory Haskins 已提交
5302
		break;
L
Linus Torvalds 已提交
5303 5304
#endif
	}
5305 5306 5307

	update_max_interval();

L
Linus Torvalds 已提交
5308 5309 5310
	return NOTIFY_OK;
}

5311 5312 5313
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5314
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5315
 */
5316
static struct notifier_block migration_notifier = {
L
Linus Torvalds 已提交
5317
	.notifier_call = migration_call,
5318
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
5319 5320
};

5321
static void set_cpu_rq_start_time(void)
5322 5323 5324 5325 5326 5327
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
	rq->age_stamp = sched_clock_cpu(cpu);
}

5328
static int sched_cpu_active(struct notifier_block *nfb,
5329 5330 5331
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
5332 5333 5334
	case CPU_STARTING:
		set_cpu_rq_start_time();
		return NOTIFY_OK;
5335 5336 5337 5338 5339 5340 5341 5342
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

5343
static int sched_cpu_inactive(struct notifier_block *nfb,
5344 5345 5346 5347
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
5348
		set_cpu_active((long)hcpu, false);
5349
		return NOTIFY_OK;
5350 5351
	default:
		return NOTIFY_DONE;
5352 5353 5354
	}
}

5355
static int __init migration_init(void)
L
Linus Torvalds 已提交
5356 5357
{
	void *cpu = (void *)(long)smp_processor_id();
5358
	int err;
5359

5360
	/* Initialize migration for the boot CPU */
5361 5362
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5363 5364
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5365

5366 5367 5368 5369
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

5370
	return 0;
L
Linus Torvalds 已提交
5371
}
5372
early_initcall(migration_init);
L
Linus Torvalds 已提交
5373 5374 5375
#endif

#ifdef CONFIG_SMP
5376

5377 5378
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

5379
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5380

5381
static __read_mostly int sched_debug_enabled;
5382

5383
static int __init sched_debug_setup(char *str)
5384
{
5385
	sched_debug_enabled = 1;
5386 5387 5388

	return 0;
}
5389 5390 5391 5392 5393 5394
early_param("sched_debug", sched_debug_setup);

static inline bool sched_debug(void)
{
	return sched_debug_enabled;
}
5395

5396
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5397
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5398
{
I
Ingo Molnar 已提交
5399
	struct sched_group *group = sd->groups;
L
Linus Torvalds 已提交
5400

5401
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5402 5403 5404 5405

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5406
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5407
		if (sd->parent)
P
Peter Zijlstra 已提交
5408 5409
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5410
		return -1;
N
Nick Piggin 已提交
5411 5412
	}

5413 5414
	printk(KERN_CONT "span %*pbl level %s\n",
	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
I
Ingo Molnar 已提交
5415

5416
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5417 5418
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5419
	}
5420
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5421 5422
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5423
	}
L
Linus Torvalds 已提交
5424

I
Ingo Molnar 已提交
5425
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5426
	do {
I
Ingo Molnar 已提交
5427
		if (!group) {
P
Peter Zijlstra 已提交
5428 5429
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5430 5431 5432
			break;
		}

5433
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5434 5435
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
5436 5437
			break;
		}
L
Linus Torvalds 已提交
5438

5439 5440
		if (!(sd->flags & SD_OVERLAP) &&
		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5441 5442
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
5443 5444
			break;
		}
L
Linus Torvalds 已提交
5445

5446
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
5447

5448 5449
		printk(KERN_CONT " %*pbl",
		       cpumask_pr_args(sched_group_cpus(group)));
5450
		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5451 5452
			printk(KERN_CONT " (cpu_capacity = %d)",
				group->sgc->capacity);
5453
		}
L
Linus Torvalds 已提交
5454

I
Ingo Molnar 已提交
5455 5456
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
5457
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5458

5459
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
5460
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5461

5462 5463
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
5464 5465
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
5466 5467
	return 0;
}
L
Linus Torvalds 已提交
5468

I
Ingo Molnar 已提交
5469 5470 5471
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5472

5473
	if (!sched_debug_enabled)
5474 5475
		return;

I
Ingo Molnar 已提交
5476 5477 5478 5479
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5480

I
Ingo Molnar 已提交
5481 5482 5483
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
5484
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
I
Ingo Molnar 已提交
5485
			break;
L
Linus Torvalds 已提交
5486 5487
		level++;
		sd = sd->parent;
5488
		if (!sd)
I
Ingo Molnar 已提交
5489 5490
			break;
	}
L
Linus Torvalds 已提交
5491
}
5492
#else /* !CONFIG_SCHED_DEBUG */
5493
# define sched_domain_debug(sd, cpu) do { } while (0)
5494 5495 5496 5497
static inline bool sched_debug(void)
{
	return false;
}
5498
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
5499

5500
static int sd_degenerate(struct sched_domain *sd)
5501
{
5502
	if (cpumask_weight(sched_domain_span(sd)) == 1)
5503 5504 5505 5506 5507 5508
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5509
			 SD_BALANCE_EXEC |
5510
			 SD_SHARE_CPUCAPACITY |
5511 5512
			 SD_SHARE_PKG_RESOURCES |
			 SD_SHARE_POWERDOMAIN)) {
5513 5514 5515 5516 5517
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
5518
	if (sd->flags & (SD_WAKE_AFFINE))
5519 5520 5521 5522 5523
		return 0;

	return 1;
}

5524 5525
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5526 5527 5528 5529 5530 5531
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

5532
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5533 5534 5535 5536 5537 5538 5539
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5540
				SD_BALANCE_EXEC |
5541
				SD_SHARE_CPUCAPACITY |
5542
				SD_SHARE_PKG_RESOURCES |
5543 5544
				SD_PREFER_SIBLING |
				SD_SHARE_POWERDOMAIN);
5545 5546
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
5547 5548 5549 5550 5551 5552 5553
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

5554
static void free_rootdomain(struct rcu_head *rcu)
5555
{
5556
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5557

5558
	cpupri_cleanup(&rd->cpupri);
5559
	cpudl_cleanup(&rd->cpudl);
5560
	free_cpumask_var(rd->dlo_mask);
5561 5562 5563 5564 5565 5566
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
5567 5568
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
5569
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
5570 5571
	unsigned long flags;

5572
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5573 5574

	if (rq->rd) {
I
Ingo Molnar 已提交
5575
		old_rd = rq->rd;
G
Gregory Haskins 已提交
5576

5577
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5578
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5579

5580
		cpumask_clear_cpu(rq->cpu, old_rd->span);
5581

I
Ingo Molnar 已提交
5582
		/*
5583
		 * If we dont want to free the old_rd yet then
I
Ingo Molnar 已提交
5584 5585 5586 5587 5588
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
5589 5590 5591 5592 5593
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

5594
	cpumask_set_cpu(rq->cpu, rd->span);
5595
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5596
		set_rq_online(rq);
G
Gregory Haskins 已提交
5597

5598
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
5599 5600

	if (old_rd)
5601
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
5602 5603
}

5604
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
5605 5606 5607
{
	memset(rd, 0, sizeof(*rd));

5608
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5609
		goto out;
5610
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5611
		goto free_span;
5612
	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5613
		goto free_online;
5614 5615
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
		goto free_dlo_mask;
5616

5617
	init_dl_bw(&rd->dl_bw);
5618 5619
	if (cpudl_init(&rd->cpudl) != 0)
		goto free_dlo_mask;
5620

5621
	if (cpupri_init(&rd->cpupri) != 0)
5622
		goto free_rto_mask;
5623
	return 0;
5624

5625 5626
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
5627 5628
free_dlo_mask:
	free_cpumask_var(rd->dlo_mask);
5629 5630 5631 5632
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
5633
out:
5634
	return -ENOMEM;
G
Gregory Haskins 已提交
5635 5636
}

5637 5638 5639 5640 5641 5642
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
struct root_domain def_root_domain;

G
Gregory Haskins 已提交
5643 5644
static void init_defrootdomain(void)
{
5645
	init_rootdomain(&def_root_domain);
5646

G
Gregory Haskins 已提交
5647 5648 5649
	atomic_set(&def_root_domain.refcount, 1);
}

5650
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
5651 5652 5653 5654 5655 5656 5657
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

5658
	if (init_rootdomain(rd) != 0) {
5659 5660 5661
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
5662 5663 5664 5665

	return rd;
}

5666
static void free_sched_groups(struct sched_group *sg, int free_sgc)
5667 5668 5669 5670 5671 5672 5673 5674 5675 5676
{
	struct sched_group *tmp, *first;

	if (!sg)
		return;

	first = sg;
	do {
		tmp = sg->next;

5677 5678
		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
			kfree(sg->sgc);
5679 5680 5681 5682 5683 5684

		kfree(sg);
		sg = tmp;
	} while (sg != first);
}

5685 5686 5687
static void free_sched_domain(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5688 5689 5690 5691 5692 5693 5694 5695

	/*
	 * If its an overlapping domain it has private groups, iterate and
	 * nuke them all.
	 */
	if (sd->flags & SD_OVERLAP) {
		free_sched_groups(sd->groups, 1);
	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5696
		kfree(sd->groups->sgc);
5697
		kfree(sd->groups);
5698
	}
5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712
	kfree(sd);
}

static void destroy_sched_domain(struct sched_domain *sd, int cpu)
{
	call_rcu(&sd->rcu, free_sched_domain);
}

static void destroy_sched_domains(struct sched_domain *sd, int cpu)
{
	for (; sd; sd = sd->parent)
		destroy_sched_domain(sd, cpu);
}

5713 5714 5715 5716 5717 5718 5719
/*
 * Keep a special pointer to the highest sched_domain that has
 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 * allows us to avoid some pointer chasing select_idle_sibling().
 *
 * Also keep a unique ID per domain (we use the first cpu number in
 * the cpumask of the domain), this allows us to quickly tell if
5720
 * two cpus are in the same cache domain, see cpus_share_cache().
5721 5722
 */
DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5723
DEFINE_PER_CPU(int, sd_llc_size);
5724
DEFINE_PER_CPU(int, sd_llc_id);
5725
DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5726 5727
DEFINE_PER_CPU(struct sched_domain *, sd_busy);
DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5728 5729 5730 5731

static void update_top_cache_domain(int cpu)
{
	struct sched_domain *sd;
5732
	struct sched_domain *busy_sd = NULL;
5733
	int id = cpu;
5734
	int size = 1;
5735 5736

	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5737
	if (sd) {
5738
		id = cpumask_first(sched_domain_span(sd));
5739
		size = cpumask_weight(sched_domain_span(sd));
5740
		busy_sd = sd->parent; /* sd_busy */
5741
	}
5742
	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5743 5744

	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5745
	per_cpu(sd_llc_size, cpu) = size;
5746
	per_cpu(sd_llc_id, cpu) = id;
5747 5748 5749

	sd = lowest_flag_domain(cpu, SD_NUMA);
	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5750 5751 5752

	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5753 5754
}

L
Linus Torvalds 已提交
5755
/*
I
Ingo Molnar 已提交
5756
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
5757 5758
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
5759 5760
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
5761
{
5762
	struct rq *rq = cpu_rq(cpu);
5763 5764 5765
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
5766
	for (tmp = sd; tmp; ) {
5767 5768 5769
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5770

5771
		if (sd_parent_degenerate(tmp, parent)) {
5772
			tmp->parent = parent->parent;
5773 5774
			if (parent->parent)
				parent->parent->child = tmp;
5775 5776 5777 5778 5779 5780 5781
			/*
			 * Transfer SD_PREFER_SIBLING down in case of a
			 * degenerate parent; the spans match for this
			 * so the property transfers.
			 */
			if (parent->flags & SD_PREFER_SIBLING)
				tmp->flags |= SD_PREFER_SIBLING;
5782
			destroy_sched_domain(parent, cpu);
5783 5784
		} else
			tmp = tmp->parent;
5785 5786
	}

5787
	if (sd && sd_degenerate(sd)) {
5788
		tmp = sd;
5789
		sd = sd->parent;
5790
		destroy_sched_domain(tmp, cpu);
5791 5792 5793
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5794

5795
	sched_domain_debug(sd, cpu);
L
Linus Torvalds 已提交
5796

G
Gregory Haskins 已提交
5797
	rq_attach_root(rq, rd);
5798
	tmp = rq->sd;
N
Nick Piggin 已提交
5799
	rcu_assign_pointer(rq->sd, sd);
5800
	destroy_sched_domains(tmp, cpu);
5801 5802

	update_top_cache_domain(cpu);
L
Linus Torvalds 已提交
5803 5804 5805 5806 5807
}

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
5808
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
5809
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
5810 5811 5812
	return 1;
}

I
Ingo Molnar 已提交
5813
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5814

5815
struct s_data {
5816
	struct sched_domain ** __percpu sd;
5817 5818 5819
	struct root_domain	*rd;
};

5820 5821
enum s_alloc {
	sa_rootdomain,
5822
	sa_sd,
5823
	sa_sd_storage,
5824 5825 5826
	sa_none,
};

P
Peter Zijlstra 已提交
5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864
/*
 * Build an iteration mask that can exclude certain CPUs from the upwards
 * domain traversal.
 *
 * Asymmetric node setups can result in situations where the domain tree is of
 * unequal depth, make sure to skip domains that already cover the entire
 * range.
 *
 * In that case build_sched_domains() will have terminated the iteration early
 * and our sibling sd spans will be empty. Domains should always include the
 * cpu they're built on, so check that.
 *
 */
static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
{
	const struct cpumask *span = sched_domain_span(sd);
	struct sd_data *sdd = sd->private;
	struct sched_domain *sibling;
	int i;

	for_each_cpu(i, span) {
		sibling = *per_cpu_ptr(sdd->sd, i);
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
			continue;

		cpumask_set_cpu(i, sched_group_mask(sg));
	}
}

/*
 * Return the canonical balance cpu for this group, this is the first cpu
 * of this group that's also in the iteration mask.
 */
int group_balance_cpu(struct sched_group *sg)
{
	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
}

5865 5866 5867 5868 5869 5870 5871
static int
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered = sched_domains_tmpmask;
	struct sd_data *sdd = sd->private;
5872
	struct sched_domain *sibling;
5873 5874 5875 5876 5877 5878 5879 5880 5881 5882
	int i;

	cpumask_clear(covered);

	for_each_cpu(i, span) {
		struct cpumask *sg_span;

		if (cpumask_test_cpu(i, covered))
			continue;

5883
		sibling = *per_cpu_ptr(sdd->sd, i);
P
Peter Zijlstra 已提交
5884 5885

		/* See the comment near build_group_mask(). */
5886
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
P
Peter Zijlstra 已提交
5887 5888
			continue;

5889
		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5890
				GFP_KERNEL, cpu_to_node(cpu));
5891 5892 5893 5894 5895

		if (!sg)
			goto fail;

		sg_span = sched_group_cpus(sg);
5896 5897 5898
		if (sibling->child)
			cpumask_copy(sg_span, sched_domain_span(sibling->child));
		else
5899 5900 5901 5902
			cpumask_set_cpu(i, sg_span);

		cpumask_or(covered, covered, sg_span);

5903 5904
		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
		if (atomic_inc_return(&sg->sgc->ref) == 1)
P
Peter Zijlstra 已提交
5905 5906
			build_group_mask(sd, sg);

5907
		/*
5908
		 * Initialize sgc->capacity such that even if we mess up the
5909 5910 5911
		 * domains and no possible iteration will get us here, we won't
		 * die on a /0 trap.
		 */
5912
		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
5913

P
Peter Zijlstra 已提交
5914 5915 5916 5917 5918
		/*
		 * Make sure the first group of this domain contains the
		 * canonical balance cpu. Otherwise the sched_domain iteration
		 * breaks. See update_sg_lb_stats().
		 */
P
Peter Zijlstra 已提交
5919
		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
P
Peter Zijlstra 已提交
5920
		    group_balance_cpu(sg) == cpu)
5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939
			groups = sg;

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
		last->next = first;
	}
	sd->groups = groups;

	return 0;

fail:
	free_sched_groups(first, 0);

	return -ENOMEM;
}

5940
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
5941
{
5942 5943
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
5944

5945 5946
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
5947

5948
	if (sg) {
5949
		*sg = *per_cpu_ptr(sdd->sg, cpu);
5950 5951
		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
5952
	}
5953 5954

	return cpu;
5955 5956
}

5957
/*
5958 5959
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
5960
 * and ->cpu_capacity to 0.
5961 5962
 *
 * Assumes the sched_domain tree is fully constructed
5963
 */
5964 5965
static int
build_sched_groups(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5966
{
5967 5968 5969
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
5970
	struct cpumask *covered;
5971
	int i;
5972

5973 5974 5975
	get_group(cpu, sdd, &sd->groups);
	atomic_inc(&sd->groups->ref);

5976
	if (cpu != cpumask_first(span))
5977 5978
		return 0;

5979 5980 5981
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

5982
	cpumask_clear(covered);
5983

5984 5985
	for_each_cpu(i, span) {
		struct sched_group *sg;
5986
		int group, j;
5987

5988 5989
		if (cpumask_test_cpu(i, covered))
			continue;
5990

5991
		group = get_group(i, sdd, &sg);
P
Peter Zijlstra 已提交
5992
		cpumask_setall(sched_group_mask(sg));
5993

5994 5995 5996
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
5997

5998 5999 6000
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
6001

6002 6003 6004 6005 6006 6007 6008
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
6009 6010

	return 0;
6011
}
6012

6013
/*
6014
 * Initialize sched groups cpu_capacity.
6015
 *
6016
 * cpu_capacity indicates the capacity of sched group, which is used while
6017
 * distributing the load between different sched groups in a sched domain.
6018 6019 6020 6021
 * Typically cpu_capacity for all the groups in a sched domain will be same
 * unless there are asymmetries in the topology. If there are asymmetries,
 * group having more cpu_capacity will pickup more load compared to the
 * group having less cpu_capacity.
6022
 */
6023
static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6024
{
6025
	struct sched_group *sg = sd->groups;
6026

6027
	WARN_ON(!sg);
6028 6029 6030 6031 6032

	do {
		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
		sg = sg->next;
	} while (sg != sd->groups);
6033

P
Peter Zijlstra 已提交
6034
	if (cpu != group_balance_cpu(sg))
6035
		return;
6036

6037 6038
	update_group_capacity(sd, cpu);
	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6039 6040
}

6041 6042 6043 6044 6045
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

6046
static int default_relax_domain_level = -1;
6047
int sched_domain_level_max;
6048 6049 6050

static int __init setup_relax_domain_level(char *str)
{
6051 6052
	if (kstrtoint(str, 0, &default_relax_domain_level))
		pr_warn("Unable to set relax_domain_level\n");
6053

6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
6072
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6073 6074
	} else {
		/* turn on idle balance on this domain */
6075
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6076 6077 6078
	}
}

6079 6080 6081
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

6082 6083 6084 6085 6086
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
6087 6088
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
6089 6090
	case sa_sd:
		free_percpu(d->sd); /* fall through */
6091
	case sa_sd_storage:
6092
		__sdt_free(cpu_map); /* fall through */
6093 6094 6095 6096
	case sa_none:
		break;
	}
}
6097

6098 6099 6100
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
6101 6102
	memset(d, 0, sizeof(*d));

6103 6104
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
6105 6106 6107
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
6108
	d->rd = alloc_rootdomain();
6109
	if (!d->rd)
6110
		return sa_sd;
6111 6112
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
6113

6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

6126
	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6127
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6128

6129 6130
	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6131 6132
}

6133 6134
#ifdef CONFIG_NUMA
static int sched_domains_numa_levels;
6135
enum numa_topology_type sched_numa_topology_type;
6136
static int *sched_domains_numa_distance;
6137
int sched_max_numa_distance;
6138 6139
static struct cpumask ***sched_domains_numa_masks;
static int sched_domains_curr_level;
6140
#endif
6141

6142 6143 6144
/*
 * SD_flags allowed in topology descriptions.
 *
6145
 * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6146 6147
 * SD_SHARE_PKG_RESOURCES - describes shared caches
 * SD_NUMA                - describes NUMA topologies
6148
 * SD_SHARE_POWERDOMAIN   - describes shared power domain
6149 6150 6151 6152 6153
 *
 * Odd one out:
 * SD_ASYM_PACKING        - describes SMT quirks
 */
#define TOPOLOGY_SD_FLAGS		\
6154
	(SD_SHARE_CPUCAPACITY |		\
6155 6156
	 SD_SHARE_PKG_RESOURCES |	\
	 SD_NUMA |			\
6157 6158
	 SD_ASYM_PACKING |		\
	 SD_SHARE_POWERDOMAIN)
6159 6160

static struct sched_domain *
6161
sd_init(struct sched_domain_topology_level *tl, int cpu)
6162 6163
{
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179
	int sd_weight, sd_flags = 0;

#ifdef CONFIG_NUMA
	/*
	 * Ugly hack to pass state to sd_numa_mask()...
	 */
	sched_domains_curr_level = tl->numa_level;
#endif

	sd_weight = cpumask_weight(tl->mask(cpu));

	if (tl->sd_flags)
		sd_flags = (*tl->sd_flags)();
	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
			"wrong sd_flags in topology description\n"))
		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6180 6181 6182 6183 6184

	*sd = (struct sched_domain){
		.min_interval		= sd_weight,
		.max_interval		= 2*sd_weight,
		.busy_factor		= 32,
6185
		.imbalance_pct		= 125,
6186 6187 6188 6189

		.cache_nice_tries	= 0,
		.busy_idx		= 0,
		.idle_idx		= 0,
6190 6191 6192 6193 6194 6195
		.newidle_idx		= 0,
		.wake_idx		= 0,
		.forkexec_idx		= 0,

		.flags			= 1*SD_LOAD_BALANCE
					| 1*SD_BALANCE_NEWIDLE
6196 6197
					| 1*SD_BALANCE_EXEC
					| 1*SD_BALANCE_FORK
6198
					| 0*SD_BALANCE_WAKE
6199
					| 1*SD_WAKE_AFFINE
6200
					| 0*SD_SHARE_CPUCAPACITY
6201
					| 0*SD_SHARE_PKG_RESOURCES
6202
					| 0*SD_SERIALIZE
6203
					| 0*SD_PREFER_SIBLING
6204 6205
					| 0*SD_NUMA
					| sd_flags
6206
					,
6207

6208 6209
		.last_balance		= jiffies,
		.balance_interval	= sd_weight,
6210
		.smt_gain		= 0,
6211 6212
		.max_newidle_lb_cost	= 0,
		.next_decay_max_lb_cost	= jiffies,
6213 6214 6215
#ifdef CONFIG_SCHED_DEBUG
		.name			= tl->name,
#endif
6216 6217 6218
	};

	/*
6219
	 * Convert topological properties into behaviour.
6220
	 */
6221

6222
	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6223
		sd->flags |= SD_PREFER_SIBLING;
6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253
		sd->imbalance_pct = 110;
		sd->smt_gain = 1178; /* ~15% */

	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
		sd->imbalance_pct = 117;
		sd->cache_nice_tries = 1;
		sd->busy_idx = 2;

#ifdef CONFIG_NUMA
	} else if (sd->flags & SD_NUMA) {
		sd->cache_nice_tries = 2;
		sd->busy_idx = 3;
		sd->idle_idx = 2;

		sd->flags |= SD_SERIALIZE;
		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
			sd->flags &= ~(SD_BALANCE_EXEC |
				       SD_BALANCE_FORK |
				       SD_WAKE_AFFINE);
		}

#endif
	} else {
		sd->flags |= SD_PREFER_SIBLING;
		sd->cache_nice_tries = 1;
		sd->busy_idx = 2;
		sd->idle_idx = 1;
	}

	sd->private = &tl->data;
6254 6255 6256 6257

	return sd;
}

6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283
/*
 * Topology list, bottom-up.
 */
static struct sched_domain_topology_level default_topology[] = {
#ifdef CONFIG_SCHED_SMT
	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
#endif
#ifdef CONFIG_SCHED_MC
	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
#endif
	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
	{ NULL, },
};

struct sched_domain_topology_level *sched_domain_topology = default_topology;

#define for_each_sd_topology(tl)			\
	for (tl = sched_domain_topology; tl->mask; tl++)

void set_sched_topology(struct sched_domain_topology_level *tl)
{
	sched_domain_topology = tl;
}

#ifdef CONFIG_NUMA

6284 6285 6286 6287 6288
static const struct cpumask *sd_numa_mask(int cpu)
{
	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
}

6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309
static void sched_numa_warn(const char *str)
{
	static int done = false;
	int i,j;

	if (done)
		return;

	done = true;

	printk(KERN_WARNING "ERROR: %s\n\n", str);

	for (i = 0; i < nr_node_ids; i++) {
		printk(KERN_WARNING "  ");
		for (j = 0; j < nr_node_ids; j++)
			printk(KERN_CONT "%02d ", node_distance(i,j));
		printk(KERN_CONT "\n");
	}
	printk(KERN_WARNING "\n");
}

6310
bool find_numa_distance(int distance)
6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324
{
	int i;

	if (distance == node_distance(0, 0))
		return true;

	for (i = 0; i < sched_domains_numa_levels; i++) {
		if (sched_domains_numa_distance[i] == distance)
			return true;
	}

	return false;
}

6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374
/*
 * A system can have three types of NUMA topology:
 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
 *
 * The difference between a glueless mesh topology and a backplane
 * topology lies in whether communication between not directly
 * connected nodes goes through intermediary nodes (where programs
 * could run), or through backplane controllers. This affects
 * placement of programs.
 *
 * The type of topology can be discerned with the following tests:
 * - If the maximum distance between any nodes is 1 hop, the system
 *   is directly connected.
 * - If for two nodes A and B, located N > 1 hops away from each other,
 *   there is an intermediary node C, which is < N hops away from both
 *   nodes A and B, the system is a glueless mesh.
 */
static void init_numa_topology_type(void)
{
	int a, b, c, n;

	n = sched_max_numa_distance;

	if (n <= 1)
		sched_numa_topology_type = NUMA_DIRECT;

	for_each_online_node(a) {
		for_each_online_node(b) {
			/* Find two nodes furthest removed from each other. */
			if (node_distance(a, b) < n)
				continue;

			/* Is there an intermediary node between a and b? */
			for_each_online_node(c) {
				if (node_distance(a, c) < n &&
				    node_distance(b, c) < n) {
					sched_numa_topology_type =
							NUMA_GLUELESS_MESH;
					return;
				}
			}

			sched_numa_topology_type = NUMA_BACKPLANE;
			return;
		}
	}
}

6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395
static void sched_init_numa(void)
{
	int next_distance, curr_distance = node_distance(0, 0);
	struct sched_domain_topology_level *tl;
	int level = 0;
	int i, j, k;

	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
	if (!sched_domains_numa_distance)
		return;

	/*
	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
	 * unique distances in the node_distance() table.
	 *
	 * Assumes node_distance(0,j) includes all distances in
	 * node_distance(i,j) in order to avoid cubic time.
	 */
	next_distance = curr_distance;
	for (i = 0; i < nr_node_ids; i++) {
		for (j = 0; j < nr_node_ids; j++) {
6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419
			for (k = 0; k < nr_node_ids; k++) {
				int distance = node_distance(i, k);

				if (distance > curr_distance &&
				    (distance < next_distance ||
				     next_distance == curr_distance))
					next_distance = distance;

				/*
				 * While not a strong assumption it would be nice to know
				 * about cases where if node A is connected to B, B is not
				 * equally connected to A.
				 */
				if (sched_debug() && node_distance(k, i) != distance)
					sched_numa_warn("Node-distance not symmetric");

				if (sched_debug() && i && !find_numa_distance(distance))
					sched_numa_warn("Node-0 not representative");
			}
			if (next_distance != curr_distance) {
				sched_domains_numa_distance[level++] = next_distance;
				sched_domains_numa_levels = level;
				curr_distance = next_distance;
			} else break;
6420
		}
6421 6422 6423 6424 6425 6426

		/*
		 * In case of sched_debug() we verify the above assumption.
		 */
		if (!sched_debug())
			break;
6427
	}
6428 6429 6430 6431

	if (!level)
		return;

6432 6433 6434 6435
	/*
	 * 'level' contains the number of unique distances, excluding the
	 * identity distance node_distance(i,i).
	 *
V
Viresh Kumar 已提交
6436
	 * The sched_domains_numa_distance[] array includes the actual distance
6437 6438 6439
	 * numbers.
	 */

6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450
	/*
	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
	 * the array will contain less then 'level' members. This could be
	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
	 * in other functions.
	 *
	 * We reset it to 'level' at the end of this function.
	 */
	sched_domains_numa_levels = 0;

6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465
	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
	if (!sched_domains_numa_masks)
		return;

	/*
	 * Now for each level, construct a mask per node which contains all
	 * cpus of nodes that are that many hops away from us.
	 */
	for (i = 0; i < level; i++) {
		sched_domains_numa_masks[i] =
			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
		if (!sched_domains_numa_masks[i])
			return;

		for (j = 0; j < nr_node_ids; j++) {
6466
			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6467 6468 6469 6470 6471 6472
			if (!mask)
				return;

			sched_domains_numa_masks[i][j] = mask;

			for (k = 0; k < nr_node_ids; k++) {
6473
				if (node_distance(j, k) > sched_domains_numa_distance[i])
6474 6475 6476 6477 6478 6479 6480
					continue;

				cpumask_or(mask, mask, cpumask_of_node(k));
			}
		}
	}

6481 6482 6483
	/* Compute default topology size */
	for (i = 0; sched_domain_topology[i].mask; i++);

6484
	tl = kzalloc((i + level + 1) *
6485 6486 6487 6488 6489 6490 6491
			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
	if (!tl)
		return;

	/*
	 * Copy the default topology bits..
	 */
6492 6493
	for (i = 0; sched_domain_topology[i].mask; i++)
		tl[i] = sched_domain_topology[i];
6494 6495 6496 6497 6498 6499 6500

	/*
	 * .. and append 'j' levels of NUMA goodness.
	 */
	for (j = 0; j < level; i++, j++) {
		tl[i] = (struct sched_domain_topology_level){
			.mask = sd_numa_mask,
6501
			.sd_flags = cpu_numa_flags,
6502 6503
			.flags = SDTL_OVERLAP,
			.numa_level = j,
6504
			SD_INIT_NAME(NUMA)
6505 6506 6507 6508
		};
	}

	sched_domain_topology = tl;
6509 6510

	sched_domains_numa_levels = level;
6511
	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6512 6513

	init_numa_topology_type();
6514
}
6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561

static void sched_domains_numa_masks_set(int cpu)
{
	int i, j;
	int node = cpu_to_node(cpu);

	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++) {
			if (node_distance(j, node) <= sched_domains_numa_distance[i])
				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
		}
	}
}

static void sched_domains_numa_masks_clear(int cpu)
{
	int i, j;
	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++)
			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
	}
}

/*
 * Update sched_domains_numa_masks[level][node] array when new cpus
 * are onlined.
 */
static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	int cpu = (long)hcpu;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
		sched_domains_numa_masks_set(cpu);
		break;

	case CPU_DEAD:
		sched_domains_numa_masks_clear(cpu);
		break;

	default:
		return NOTIFY_DONE;
	}

	return NOTIFY_OK;
6562 6563 6564 6565 6566
}
#else
static inline void sched_init_numa(void)
{
}
6567 6568 6569 6570 6571 6572 6573

static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	return 0;
}
6574 6575
#endif /* CONFIG_NUMA */

6576 6577 6578 6579 6580
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

6581
	for_each_sd_topology(tl) {
6582 6583 6584 6585 6586 6587 6588 6589 6590 6591
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

6592 6593
		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
		if (!sdd->sgc)
6594 6595
			return -ENOMEM;

6596 6597 6598
		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_group *sg;
6599
			struct sched_group_capacity *sgc;
6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612

		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

6613 6614
			sg->next = sg;

6615
			*per_cpu_ptr(sdd->sg, j) = sg;
6616

6617
			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6618
					GFP_KERNEL, cpu_to_node(j));
6619
			if (!sgc)
6620 6621
				return -ENOMEM;

6622
			*per_cpu_ptr(sdd->sgc, j) = sgc;
6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

6634
	for_each_sd_topology(tl) {
6635 6636 6637
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648
			struct sched_domain *sd;

			if (sdd->sd) {
				sd = *per_cpu_ptr(sdd->sd, j);
				if (sd && (sd->flags & SD_OVERLAP))
					free_sched_groups(sd->groups, 0);
				kfree(*per_cpu_ptr(sdd->sd, j));
			}

			if (sdd->sg)
				kfree(*per_cpu_ptr(sdd->sg, j));
6649 6650
			if (sdd->sgc)
				kfree(*per_cpu_ptr(sdd->sgc, j));
6651 6652
		}
		free_percpu(sdd->sd);
6653
		sdd->sd = NULL;
6654
		free_percpu(sdd->sg);
6655
		sdd->sg = NULL;
6656 6657
		free_percpu(sdd->sgc);
		sdd->sgc = NULL;
6658 6659 6660
	}
}

6661
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6662 6663
		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
		struct sched_domain *child, int cpu)
6664
{
6665
	struct sched_domain *sd = sd_init(tl, cpu);
6666
	if (!sd)
6667
		return child;
6668 6669

	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6670 6671 6672
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6673
		child->parent = sd;
6674
		sd->child = child;
P
Peter Zijlstra 已提交
6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688

		if (!cpumask_subset(sched_domain_span(child),
				    sched_domain_span(sd))) {
			pr_err("BUG: arch topology borken\n");
#ifdef CONFIG_SCHED_DEBUG
			pr_err("     the %s domain not a subset of the %s domain\n",
					child->name, sd->name);
#endif
			/* Fixup, ensure @sd has at least @child cpus. */
			cpumask_or(sched_domain_span(sd),
				   sched_domain_span(sd),
				   sched_domain_span(child));
		}

6689
	}
6690
	set_domain_attribute(sd, attr);
6691 6692 6693 6694

	return sd;
}

6695 6696 6697 6698
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
6699 6700
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
6701
{
6702
	enum s_alloc alloc_state;
6703
	struct sched_domain *sd;
6704
	struct s_data d;
6705
	int i, ret = -ENOMEM;
6706

6707 6708 6709
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
6710

6711
	/* Set up domains for cpus specified by the cpu_map. */
6712
	for_each_cpu(i, cpu_map) {
6713 6714
		struct sched_domain_topology_level *tl;

6715
		sd = NULL;
6716
		for_each_sd_topology(tl) {
6717
			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6718 6719
			if (tl == sched_domain_topology)
				*per_cpu_ptr(d.sd, i) = sd;
6720 6721
			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
				sd->flags |= SD_OVERLAP;
6722 6723
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
				break;
6724
		}
6725 6726 6727 6728 6729 6730
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6731 6732 6733 6734 6735 6736 6737
			if (sd->flags & SD_OVERLAP) {
				if (build_overlap_sched_groups(sd, i))
					goto error;
			} else {
				if (build_sched_groups(sd, i))
					goto error;
			}
6738
		}
6739
	}
6740

6741
	/* Calculate CPU capacity for physical packages and nodes */
6742 6743 6744
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
6745

6746 6747
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
6748
			init_sched_groups_capacity(i, sd);
6749
		}
6750
	}
6751

L
Linus Torvalds 已提交
6752
	/* Attach the domains */
6753
	rcu_read_lock();
6754
	for_each_cpu(i, cpu_map) {
6755
		sd = *per_cpu_ptr(d.sd, i);
6756
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
6757
	}
6758
	rcu_read_unlock();
6759

6760
	ret = 0;
6761
error:
6762
	__free_domain_allocs(&d, alloc_state, cpu_map);
6763
	return ret;
L
Linus Torvalds 已提交
6764
}
P
Paul Jackson 已提交
6765

6766
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
6767
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
6768 6769
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
6770 6771 6772

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
6773 6774
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
6775
 */
6776
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
6777

6778 6779 6780 6781 6782
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
6783
int __weak arch_update_cpu_topology(void)
6784
{
6785
	return 0;
6786 6787
}

6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

6813
/*
I
Ingo Molnar 已提交
6814
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6815 6816
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6817
 */
6818
static int init_sched_domains(const struct cpumask *cpu_map)
6819
{
6820 6821
	int err;

6822
	arch_update_cpu_topology();
P
Paul Jackson 已提交
6823
	ndoms_cur = 1;
6824
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
6825
	if (!doms_cur)
6826 6827
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6828
	err = build_sched_domains(doms_cur[0], NULL);
6829
	register_sched_domain_sysctl();
6830 6831

	return err;
6832 6833 6834 6835 6836 6837
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6838
static void detach_destroy_domains(const struct cpumask *cpu_map)
6839 6840 6841
{
	int i;

6842
	rcu_read_lock();
6843
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
6844
		cpu_attach_domain(NULL, &def_root_domain, i);
6845
	rcu_read_unlock();
6846 6847
}

6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
6864 6865
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
6866
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
6867 6868 6869
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
6870
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
6871 6872 6873
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
6874 6875 6876
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
6877 6878 6879 6880 6881 6882
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
6883
 *
6884
 * If doms_new == NULL it will be replaced with cpu_online_mask.
6885 6886
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
6887
 *
P
Paul Jackson 已提交
6888 6889
 * Call with hotplug lock held
 */
6890
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6891
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
6892
{
6893
	int i, j, n;
6894
	int new_topology;
P
Paul Jackson 已提交
6895

6896
	mutex_lock(&sched_domains_mutex);
6897

6898 6899 6900
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

6901 6902 6903
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

6904
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
6905 6906 6907

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
6908
		for (j = 0; j < n && !new_topology; j++) {
6909
			if (cpumask_equal(doms_cur[i], doms_new[j])
6910
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
6911 6912 6913
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
6914
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
6915 6916 6917 6918
match1:
		;
	}

6919
	n = ndoms_cur;
6920
	if (doms_new == NULL) {
6921
		n = 0;
6922
		doms_new = &fallback_doms;
6923
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6924
		WARN_ON_ONCE(dattr_new);
6925 6926
	}

P
Paul Jackson 已提交
6927 6928
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
6929
		for (j = 0; j < n && !new_topology; j++) {
6930
			if (cpumask_equal(doms_new[i], doms_cur[j])
6931
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
6932 6933 6934
				goto match2;
		}
		/* no match - add a new doms_new */
6935
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
6936 6937 6938 6939 6940
match2:
		;
	}

	/* Remember the new sched domains */
6941 6942
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
6943
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
6944
	doms_cur = doms_new;
6945
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
6946
	ndoms_cur = ndoms_new;
6947 6948

	register_sched_domain_sysctl();
6949

6950
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
6951 6952
}

6953 6954
static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */

L
Linus Torvalds 已提交
6955
/*
6956 6957 6958
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
6959 6960 6961
 *
 * If we come here as part of a suspend/resume, don't touch cpusets because we
 * want to restore it back to its original state upon resume anyway.
L
Linus Torvalds 已提交
6962
 */
6963 6964
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
6965
{
6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987
	switch (action) {
	case CPU_ONLINE_FROZEN:
	case CPU_DOWN_FAILED_FROZEN:

		/*
		 * num_cpus_frozen tracks how many CPUs are involved in suspend
		 * resume sequence. As long as this is not the last online
		 * operation in the resume sequence, just build a single sched
		 * domain, ignoring cpusets.
		 */
		num_cpus_frozen--;
		if (likely(num_cpus_frozen)) {
			partition_sched_domains(1, NULL, NULL);
			break;
		}

		/*
		 * This is the last CPU online operation. So fall through and
		 * restore the original sched domains by considering the
		 * cpuset configurations.
		 */

6988
	case CPU_ONLINE:
6989
		cpuset_update_active_cpus(true);
6990
		break;
6991 6992 6993
	default:
		return NOTIFY_DONE;
	}
6994
	return NOTIFY_OK;
6995
}
6996

6997 6998
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
6999
{
7000 7001 7002
	unsigned long flags;
	long cpu = (long)hcpu;
	struct dl_bw *dl_b;
7003 7004
	bool overflow;
	int cpus;
7005

7006
	switch (action) {
7007
	case CPU_DOWN_PREPARE:
7008 7009
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);
7010

7011 7012 7013 7014
		raw_spin_lock_irqsave(&dl_b->lock, flags);
		cpus = dl_bw_cpus(cpu);
		overflow = __dl_overflow(dl_b, cpus, 0, 0);
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7015

7016
		rcu_read_unlock_sched();
7017

7018 7019
		if (overflow)
			return notifier_from_errno(-EBUSY);
7020
		cpuset_update_active_cpus(false);
7021 7022 7023 7024 7025
		break;
	case CPU_DOWN_PREPARE_FROZEN:
		num_cpus_frozen++;
		partition_sched_domains(1, NULL, NULL);
		break;
7026 7027 7028
	default:
		return NOTIFY_DONE;
	}
7029
	return NOTIFY_OK;
7030 7031
}

L
Linus Torvalds 已提交
7032 7033
void __init sched_init_smp(void)
{
7034 7035 7036
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7037
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7038

7039 7040
	sched_init_numa();

7041 7042 7043 7044 7045
	/*
	 * There's no userspace yet to cause hotplug operations; hence all the
	 * cpu masks are stable and all blatant races in the below code cannot
	 * happen.
	 */
7046
	mutex_lock(&sched_domains_mutex);
7047
	init_sched_domains(cpu_active_mask);
7048 7049 7050
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7051
	mutex_unlock(&sched_domains_mutex);
7052

7053
	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7054 7055
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7056

7057
	init_hrtick();
7058 7059

	/* Move init over to a non-isolated CPU */
7060
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7061
		BUG();
I
Ingo Molnar 已提交
7062
	sched_init_granularity();
7063
	free_cpumask_var(non_isolated_cpus);
7064

7065
	init_sched_rt_class();
7066
	init_sched_dl_class();
L
Linus Torvalds 已提交
7067 7068 7069 7070
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7071
	sched_init_granularity();
L
Linus Torvalds 已提交
7072 7073 7074
}
#endif /* CONFIG_SMP */

7075 7076
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
7077 7078 7079 7080 7081 7082 7083
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

7084
#ifdef CONFIG_CGROUP_SCHED
7085 7086 7087 7088
/*
 * Default task group.
 * Every task in system belongs to this group at bootup.
 */
7089
struct task_group root_task_group;
7090
LIST_HEAD(task_groups);
7091
#endif
P
Peter Zijlstra 已提交
7092

7093
DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
P
Peter Zijlstra 已提交
7094

L
Linus Torvalds 已提交
7095 7096
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7097
	int i, j;
7098 7099 7100 7101 7102 7103 7104 7105 7106
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
	if (alloc_size) {
7107
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7108 7109

#ifdef CONFIG_FAIR_GROUP_SCHED
7110
		root_task_group.se = (struct sched_entity **)ptr;
7111 7112
		ptr += nr_cpu_ids * sizeof(void **);

7113
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7114
		ptr += nr_cpu_ids * sizeof(void **);
7115

7116
#endif /* CONFIG_FAIR_GROUP_SCHED */
7117
#ifdef CONFIG_RT_GROUP_SCHED
7118
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7119 7120
		ptr += nr_cpu_ids * sizeof(void **);

7121
		root_task_group.rt_rq = (struct rt_rq **)ptr;
7122 7123
		ptr += nr_cpu_ids * sizeof(void **);

7124
#endif /* CONFIG_RT_GROUP_SCHED */
7125
	}
7126
#ifdef CONFIG_CPUMASK_OFFSTACK
7127 7128 7129
	for_each_possible_cpu(i) {
		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7130
	}
7131
#endif /* CONFIG_CPUMASK_OFFSTACK */
I
Ingo Molnar 已提交
7132

7133 7134 7135
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());
	init_dl_bandwidth(&def_dl_bandwidth,
7136
			global_rt_period(), global_rt_runtime());
7137

G
Gregory Haskins 已提交
7138 7139 7140 7141
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7142
#ifdef CONFIG_RT_GROUP_SCHED
7143
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7144
			global_rt_period(), global_rt_runtime());
7145
#endif /* CONFIG_RT_GROUP_SCHED */
7146

D
Dhaval Giani 已提交
7147
#ifdef CONFIG_CGROUP_SCHED
7148 7149
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
7150
	INIT_LIST_HEAD(&root_task_group.siblings);
7151
	autogroup_init(&init_task);
7152

D
Dhaval Giani 已提交
7153
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
7154

7155
	for_each_possible_cpu(i) {
7156
		struct rq *rq;
L
Linus Torvalds 已提交
7157 7158

		rq = cpu_rq(i);
7159
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
7160
		rq->nr_running = 0;
7161 7162
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
7163
		init_cfs_rq(&rq->cfs);
7164 7165
		init_rt_rq(&rq->rt);
		init_dl_rq(&rq->dl);
I
Ingo Molnar 已提交
7166
#ifdef CONFIG_FAIR_GROUP_SCHED
7167
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
7168
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
7169
		/*
7170
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
7171 7172 7173 7174
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
7175
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
7176 7177 7178
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
7179
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
7180 7181 7182
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
7183
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
7184
		 *
7185 7186
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
7187
		 */
7188
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7189
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
7190 7191 7192
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7193
#ifdef CONFIG_RT_GROUP_SCHED
7194
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
7195
#endif
L
Linus Torvalds 已提交
7196

I
Ingo Molnar 已提交
7197 7198
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
7199 7200 7201

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
7202
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7203
		rq->sd = NULL;
G
Gregory Haskins 已提交
7204
		rq->rd = NULL;
7205
		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7206
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
7207
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7208
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7209
		rq->push_cpu = 0;
7210
		rq->cpu = i;
7211
		rq->online = 0;
7212 7213
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
7214
		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7215 7216 7217

		INIT_LIST_HEAD(&rq->cfs_tasks);

7218
		rq_attach_root(rq, &def_root_domain);
7219
#ifdef CONFIG_NO_HZ_COMMON
7220
		rq->nohz_flags = 0;
7221
#endif
7222 7223 7224
#ifdef CONFIG_NO_HZ_FULL
		rq->last_sched_tick = 0;
#endif
L
Linus Torvalds 已提交
7225
#endif
P
Peter Zijlstra 已提交
7226
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7227 7228 7229
		atomic_set(&rq->nr_iowait, 0);
	}

7230
	set_load_weight(&init_task);
7231

7232 7233 7234 7235
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

L
Linus Torvalds 已提交
7236 7237 7238 7239 7240 7241
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

7242 7243 7244 7245 7246
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;

L
Linus Torvalds 已提交
7247 7248 7249 7250 7251 7252 7253
	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
7254 7255 7256

	calc_load_update = jiffies + LOAD_FREQ;

7257
#ifdef CONFIG_SMP
7258
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
R
Rusty Russell 已提交
7259 7260 7261
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7262
	idle_thread_set_boot_cpu();
7263
	set_cpu_rq_start_time();
7264 7265
#endif
	init_sched_fair_class();
7266

7267
	scheduler_running = 1;
L
Linus Torvalds 已提交
7268 7269
}

7270
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7271 7272
static inline int preempt_count_equals(int preempt_offset)
{
7273
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7274

A
Arnd Bergmann 已提交
7275
	return (nested == preempt_offset);
7276 7277
}

7278
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7279
{
P
Peter Zijlstra 已提交
7280 7281 7282 7283 7284
	/*
	 * Blocking primitives will set (and therefore destroy) current->state,
	 * since we will exit with TASK_RUNNING make sure we enter with it,
	 * otherwise we will destroy state.
	 */
7285
	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
P
Peter Zijlstra 已提交
7286 7287 7288 7289
			"do not call blocking ops when !TASK_RUNNING; "
			"state=%lx set at [<%p>] %pS\n",
			current->state,
			(void *)current->task_state_change,
7290
			(void *)current->task_state_change);
P
Peter Zijlstra 已提交
7291

7292 7293 7294 7295 7296
	___might_sleep(file, line, preempt_offset);
}
EXPORT_SYMBOL(__might_sleep);

void ___might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7297 7298 7299
{
	static unsigned long prev_jiffy;	/* ratelimiting */

7300
	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7301 7302
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
	     !is_idle_task(current)) ||
7303
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
7304 7305 7306 7307 7308
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
7309 7310 7311 7312 7313 7314 7315
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
7316

7317 7318 7319
	if (task_stack_end_corrupted(current))
		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");

I
Ingo Molnar 已提交
7320 7321 7322
	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
7323 7324 7325 7326 7327 7328 7329
#ifdef CONFIG_DEBUG_PREEMPT
	if (!preempt_count_equals(preempt_offset)) {
		pr_err("Preemption disabled at:");
		print_ip_sym(current->preempt_disable_ip);
		pr_cont("\n");
	}
#endif
I
Ingo Molnar 已提交
7330
	dump_stack();
L
Linus Torvalds 已提交
7331
}
7332
EXPORT_SYMBOL(___might_sleep);
L
Linus Torvalds 已提交
7333 7334 7335
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7336 7337
static void normalize_task(struct rq *rq, struct task_struct *p)
{
P
Peter Zijlstra 已提交
7338
	const struct sched_class *prev_class = p->sched_class;
7339 7340 7341
	struct sched_attr attr = {
		.sched_policy = SCHED_NORMAL,
	};
P
Peter Zijlstra 已提交
7342
	int old_prio = p->prio;
7343
	int queued;
7344

7345 7346
	queued = task_on_rq_queued(p);
	if (queued)
7347
		dequeue_task(rq, p, 0);
7348
	__setscheduler(rq, p, &attr, false);
7349
	if (queued) {
7350
		enqueue_task(rq, p, 0);
7351
		resched_curr(rq);
7352
	}
P
Peter Zijlstra 已提交
7353 7354

	check_class_changed(rq, p, prev_class, old_prio);
7355 7356
}

L
Linus Torvalds 已提交
7357 7358
void normalize_rt_tasks(void)
{
7359
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7360
	unsigned long flags;
7361
	struct rq *rq;
L
Linus Torvalds 已提交
7362

7363
	read_lock(&tasklist_lock);
7364
	for_each_process_thread(g, p) {
7365 7366 7367
		/*
		 * Only normalize user tasks:
		 */
7368
		if (p->flags & PF_KTHREAD)
7369 7370
			continue;

I
Ingo Molnar 已提交
7371 7372
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
7373 7374 7375
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
7376
#endif
I
Ingo Molnar 已提交
7377

7378
		if (!dl_task(p) && !rt_task(p)) {
I
Ingo Molnar 已提交
7379 7380 7381 7382
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
7383
			if (task_nice(p) < 0)
I
Ingo Molnar 已提交
7384
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7385
			continue;
I
Ingo Molnar 已提交
7386
		}
L
Linus Torvalds 已提交
7387

7388
		rq = task_rq_lock(p, &flags);
7389
		normalize_task(rq, p);
7390
		task_rq_unlock(rq, p, &flags);
7391
	}
7392
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
7393 7394 7395
}

#endif /* CONFIG_MAGIC_SYSRQ */
7396

7397
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7398
/*
7399
 * These functions are only useful for the IA64 MCA handling, or kdb.
7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7413 7414
 *
 * Return: The current task for @cpu.
7415
 */
7416
struct task_struct *curr_task(int cpu)
7417 7418 7419 7420
{
	return cpu_curr(cpu);
}

7421 7422 7423
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
7424 7425 7426 7427 7428 7429
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7430 7431
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7432 7433 7434 7435 7436 7437 7438
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7439
void set_curr_task(int cpu, struct task_struct *p)
7440 7441 7442 7443 7444
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7445

D
Dhaval Giani 已提交
7446
#ifdef CONFIG_CGROUP_SCHED
7447 7448 7449
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

7450 7451 7452 7453
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
7454
	autogroup_free(tg);
7455 7456 7457 7458
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
7459
struct task_group *sched_create_group(struct task_group *parent)
7460 7461 7462 7463 7464 7465 7466
{
	struct task_group *tg;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

7467
	if (!alloc_fair_sched_group(tg, parent))
7468 7469
		goto err;

7470
	if (!alloc_rt_sched_group(tg, parent))
7471 7472
		goto err;

7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483
	return tg;

err:
	free_sched_group(tg);
	return ERR_PTR(-ENOMEM);
}

void sched_online_group(struct task_group *tg, struct task_group *parent)
{
	unsigned long flags;

7484
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7485
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
7486 7487 7488 7489 7490

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
7491
	list_add_rcu(&tg->siblings, &parent->children);
7492
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7493 7494
}

7495
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
7496
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7497 7498
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
7499
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
7500 7501
}

7502
/* Destroy runqueue etc associated with a task group */
7503
void sched_destroy_group(struct task_group *tg)
7504 7505 7506 7507 7508 7509
{
	/* wait for possible concurrent references to cfs_rqs complete */
	call_rcu(&tg->rcu, free_sched_group_rcu);
}

void sched_offline_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7510
{
7511
	unsigned long flags;
7512
	int i;
S
Srivatsa Vaddagiri 已提交
7513

7514 7515
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
7516
		unregister_fair_sched_group(tg, i);
7517 7518

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7519
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
7520
	list_del_rcu(&tg->siblings);
7521
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7522 7523
}

7524
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7525 7526 7527
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7528 7529
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7530
{
P
Peter Zijlstra 已提交
7531
	struct task_group *tg;
7532
	int queued, running;
S
Srivatsa Vaddagiri 已提交
7533 7534 7535 7536 7537
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

7538
	running = task_current(rq, tsk);
7539
	queued = task_on_rq_queued(tsk);
S
Srivatsa Vaddagiri 已提交
7540

7541
	if (queued)
S
Srivatsa Vaddagiri 已提交
7542
		dequeue_task(rq, tsk, 0);
7543
	if (unlikely(running))
7544
		put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7545

7546 7547 7548 7549 7550 7551
	/*
	 * All callers are synchronized by task_rq_lock(); we do not use RCU
	 * which is pointless here. Thus, we pass "true" to task_css_check()
	 * to prevent lockdep warnings.
	 */
	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
P
Peter Zijlstra 已提交
7552 7553 7554 7555
			  struct task_group, css);
	tg = autogroup_task_group(tsk, tg);
	tsk->sched_task_group = tg;

P
Peter Zijlstra 已提交
7556
#ifdef CONFIG_FAIR_GROUP_SCHED
7557
	if (tsk->sched_class->task_move_group)
7558
		tsk->sched_class->task_move_group(tsk, queued);
7559
	else
P
Peter Zijlstra 已提交
7560
#endif
7561
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
7562

7563 7564
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
7565
	if (queued)
7566
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
7567

7568
	task_rq_unlock(rq, tsk, &flags);
S
Srivatsa Vaddagiri 已提交
7569
}
D
Dhaval Giani 已提交
7570
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
7571

7572 7573 7574 7575 7576
#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
P
Peter Zijlstra 已提交
7577

P
Peter Zijlstra 已提交
7578 7579
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
7580
{
P
Peter Zijlstra 已提交
7581
	struct task_struct *g, *p;
7582

7583 7584 7585 7586 7587 7588
	/*
	 * Autogroups do not have RT tasks; see autogroup_create().
	 */
	if (task_group_is_autogroup(tg))
		return 0;

7589
	for_each_process_thread(g, p) {
7590
		if (rt_task(p) && task_group(p) == tg)
P
Peter Zijlstra 已提交
7591
			return 1;
7592
	}
7593

P
Peter Zijlstra 已提交
7594 7595
	return 0;
}
7596

P
Peter Zijlstra 已提交
7597 7598 7599 7600 7601
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
7602

7603
static int tg_rt_schedulable(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
7604 7605 7606 7607 7608
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
7609

P
Peter Zijlstra 已提交
7610 7611
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
7612

P
Peter Zijlstra 已提交
7613 7614 7615
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
7616 7617
	}

7618 7619 7620 7621 7622
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
7623

7624 7625 7626
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
7627 7628
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
7629

P
Peter Zijlstra 已提交
7630
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7631

7632 7633 7634 7635 7636
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
7637

7638 7639 7640
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
7641 7642 7643
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7644

P
Peter Zijlstra 已提交
7645 7646 7647 7648
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
7649

P
Peter Zijlstra 已提交
7650
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7651
	}
P
Peter Zijlstra 已提交
7652

P
Peter Zijlstra 已提交
7653 7654 7655 7656
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
7657 7658
}

P
Peter Zijlstra 已提交
7659
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7660
{
7661 7662
	int ret;

P
Peter Zijlstra 已提交
7663 7664 7665 7666 7667 7668
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

7669 7670 7671 7672 7673
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7674 7675
}

7676
static int tg_set_rt_bandwidth(struct task_group *tg,
7677
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
7678
{
P
Peter Zijlstra 已提交
7679
	int i, err = 0;
P
Peter Zijlstra 已提交
7680

7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691
	/*
	 * Disallowing the root group RT runtime is BAD, it would disallow the
	 * kernel creating (and or operating) RT threads.
	 */
	if (tg == &root_task_group && rt_runtime == 0)
		return -EINVAL;

	/* No period doesn't make any sense. */
	if (rt_period == 0)
		return -EINVAL;

P
Peter Zijlstra 已提交
7692
	mutex_lock(&rt_constraints_mutex);
7693
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
7694 7695
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
7696
		goto unlock;
P
Peter Zijlstra 已提交
7697

7698
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7699 7700
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
7701 7702 7703 7704

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

7705
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7706
		rt_rq->rt_runtime = rt_runtime;
7707
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7708
	}
7709
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
7710
unlock:
7711
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
7712 7713 7714
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
7715 7716
}

7717
static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7718 7719 7720 7721 7722 7723 7724 7725
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

7726
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7727 7728
}

7729
static long sched_group_rt_runtime(struct task_group *tg)
P
Peter Zijlstra 已提交
7730 7731 7732
{
	u64 rt_runtime_us;

7733
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7734 7735
		return -1;

7736
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7737 7738 7739
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
7740

7741
static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
7742 7743 7744
{
	u64 rt_runtime, rt_period;

7745
	rt_period = rt_period_us * NSEC_PER_USEC;
7746 7747
	rt_runtime = tg->rt_bandwidth.rt_runtime;

7748
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7749 7750
}

7751
static long sched_group_rt_period(struct task_group *tg)
7752 7753 7754 7755 7756 7757 7758
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}
7759
#endif /* CONFIG_RT_GROUP_SCHED */
7760

7761
#ifdef CONFIG_RT_GROUP_SCHED
7762 7763 7764 7765 7766
static int sched_rt_global_constraints(void)
{
	int ret = 0;

	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
7767
	read_lock(&tasklist_lock);
7768
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
7769
	read_unlock(&tasklist_lock);
7770 7771 7772 7773
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
7774

7775
static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7776 7777 7778 7779 7780 7781 7782 7783
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

7784
#else /* !CONFIG_RT_GROUP_SCHED */
7785 7786
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
7787
	unsigned long flags;
7788
	int i, ret = 0;
7789

7790
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7791 7792 7793
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

7794
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7795
		rt_rq->rt_runtime = global_rt_runtime();
7796
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7797
	}
7798
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7799

7800
	return ret;
7801
}
7802
#endif /* CONFIG_RT_GROUP_SCHED */
7803

7804
static int sched_dl_global_validate(void)
7805
{
7806 7807
	u64 runtime = global_rt_runtime();
	u64 period = global_rt_period();
7808
	u64 new_bw = to_ratio(period, runtime);
7809
	struct dl_bw *dl_b;
7810
	int cpu, ret = 0;
7811
	unsigned long flags;
7812 7813 7814 7815 7816 7817 7818 7819 7820 7821

	/*
	 * Here we want to check the bandwidth not being set to some
	 * value smaller than the currently allocated bandwidth in
	 * any of the root_domains.
	 *
	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
	 * cycling on root_domains... Discussion on different/better
	 * solutions is welcome!
	 */
7822
	for_each_possible_cpu(cpu) {
7823 7824
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);
7825

7826
		raw_spin_lock_irqsave(&dl_b->lock, flags);
7827 7828
		if (new_bw < dl_b->total_bw)
			ret = -EBUSY;
7829
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7830

7831 7832
		rcu_read_unlock_sched();

7833 7834
		if (ret)
			break;
7835 7836
	}

7837
	return ret;
7838 7839
}

7840
static void sched_dl_do_global(void)
7841
{
7842
	u64 new_bw = -1;
7843
	struct dl_bw *dl_b;
7844
	int cpu;
7845
	unsigned long flags;
7846

7847 7848 7849 7850 7851 7852 7853 7854 7855 7856
	def_dl_bandwidth.dl_period = global_rt_period();
	def_dl_bandwidth.dl_runtime = global_rt_runtime();

	if (global_rt_runtime() != RUNTIME_INF)
		new_bw = to_ratio(global_rt_period(), global_rt_runtime());

	/*
	 * FIXME: As above...
	 */
	for_each_possible_cpu(cpu) {
7857 7858
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);
7859

7860
		raw_spin_lock_irqsave(&dl_b->lock, flags);
7861
		dl_b->bw = new_bw;
7862
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7863 7864

		rcu_read_unlock_sched();
7865
	}
7866 7867 7868 7869 7870 7871 7872
}

static int sched_rt_global_validate(void)
{
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7873 7874
	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7875 7876 7877 7878 7879 7880 7881 7882 7883
		return -EINVAL;

	return 0;
}

static void sched_rt_do_global(void)
{
	def_rt_bandwidth.rt_runtime = global_rt_runtime();
	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7884 7885
}

7886
int sched_rt_handler(struct ctl_table *table, int write,
7887
		void __user *buffer, size_t *lenp,
7888 7889 7890 7891
		loff_t *ppos)
{
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);
7892
	int ret;
7893 7894 7895 7896 7897

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

7898
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7899 7900

	if (!ret && write) {
7901 7902 7903 7904
		ret = sched_rt_global_validate();
		if (ret)
			goto undo;

7905
		ret = sched_dl_global_validate();
7906 7907 7908
		if (ret)
			goto undo;

7909
		ret = sched_rt_global_constraints();
7910 7911 7912 7913 7914 7915 7916 7917 7918 7919
		if (ret)
			goto undo;

		sched_rt_do_global();
		sched_dl_do_global();
	}
	if (0) {
undo:
		sysctl_sched_rt_period = old_period;
		sysctl_sched_rt_runtime = old_runtime;
7920 7921 7922 7923 7924
	}
	mutex_unlock(&mutex);

	return ret;
}
7925

7926
int sched_rr_handler(struct ctl_table *table, int write,
7927 7928 7929 7930 7931 7932 7933 7934
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7935 7936
	/* make sure that internally we keep jiffies */
	/* also, writing zero resets timeslice to default */
7937
	if (!ret && write) {
7938 7939
		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7940 7941 7942 7943 7944
	}
	mutex_unlock(&mutex);
	return ret;
}

7945
#ifdef CONFIG_CGROUP_SCHED
7946

7947
static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7948
{
7949
	return css ? container_of(css, struct task_group, css) : NULL;
7950 7951
}

7952 7953
static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7954
{
7955 7956
	struct task_group *parent = css_tg(parent_css);
	struct task_group *tg;
7957

7958
	if (!parent) {
7959
		/* This is early initialization for the top cgroup */
7960
		return &root_task_group.css;
7961 7962
	}

7963
	tg = sched_create_group(parent);
7964 7965 7966 7967 7968 7969
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

7970
static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7971
{
7972
	struct task_group *tg = css_tg(css);
T
Tejun Heo 已提交
7973
	struct task_group *parent = css_tg(css->parent);
7974

T
Tejun Heo 已提交
7975 7976
	if (parent)
		sched_online_group(tg, parent);
7977 7978 7979
	return 0;
}

7980
static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7981
{
7982
	struct task_group *tg = css_tg(css);
7983 7984 7985 7986

	sched_destroy_group(tg);
}

7987
static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7988
{
7989
	struct task_group *tg = css_tg(css);
7990 7991 7992 7993

	sched_offline_group(tg);
}

7994 7995 7996 7997 7998
static void cpu_cgroup_fork(struct task_struct *task)
{
	sched_move_task(task);
}

7999
static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
8000
				 struct cgroup_taskset *tset)
8001
{
8002 8003
	struct task_struct *task;

8004
	cgroup_taskset_for_each(task, tset) {
8005
#ifdef CONFIG_RT_GROUP_SCHED
8006
		if (!sched_rt_can_attach(css_tg(css), task))
8007
			return -EINVAL;
8008
#else
8009 8010 8011
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
8012
#endif
8013
	}
8014 8015
	return 0;
}
8016

8017
static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
8018
			      struct cgroup_taskset *tset)
8019
{
8020 8021
	struct task_struct *task;

8022
	cgroup_taskset_for_each(task, tset)
8023
		sched_move_task(task);
8024 8025
}

8026 8027 8028
static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
			    struct cgroup_subsys_state *old_css,
			    struct task_struct *task)
8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	sched_move_task(task);
}

8041
#ifdef CONFIG_FAIR_GROUP_SCHED
8042 8043
static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
				struct cftype *cftype, u64 shareval)
8044
{
8045
	return sched_group_set_shares(css_tg(css), scale_load(shareval));
8046 8047
}

8048 8049
static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
			       struct cftype *cft)
8050
{
8051
	struct task_group *tg = css_tg(css);
8052

8053
	return (u64) scale_load_down(tg->shares);
8054
}
8055 8056

#ifdef CONFIG_CFS_BANDWIDTH
8057 8058
static DEFINE_MUTEX(cfs_constraints_mutex);

8059 8060 8061
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

8062 8063
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

8064 8065
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
8066
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8067
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

8088 8089 8090 8091 8092
	/*
	 * Prevent race between setting of cfs_rq->runtime_enabled and
	 * unthrottle_offline_cfs_rqs().
	 */
	get_online_cpus();
8093 8094 8095 8096 8097
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

8098
	runtime_enabled = quota != RUNTIME_INF;
8099
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8100 8101 8102 8103 8104 8105
	/*
	 * If we need to toggle cfs_bandwidth_used, off->on must occur
	 * before making related changes, and on->off must occur afterwards
	 */
	if (runtime_enabled && !runtime_was_enabled)
		cfs_bandwidth_usage_inc();
8106 8107 8108
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
8109

P
Paul Turner 已提交
8110
	__refill_cfs_bandwidth_runtime(cfs_b);
8111 8112 8113
	/* restart the period timer (if active) to handle new period expiry */
	if (runtime_enabled && cfs_b->timer_active) {
		/* force a reprogram */
8114
		__start_cfs_bandwidth(cfs_b, true);
8115
	}
8116 8117
	raw_spin_unlock_irq(&cfs_b->lock);

8118
	for_each_online_cpu(i) {
8119
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8120
		struct rq *rq = cfs_rq->rq;
8121 8122

		raw_spin_lock_irq(&rq->lock);
8123
		cfs_rq->runtime_enabled = runtime_enabled;
8124
		cfs_rq->runtime_remaining = 0;
8125

8126
		if (cfs_rq->throttled)
8127
			unthrottle_cfs_rq(cfs_rq);
8128 8129
		raw_spin_unlock_irq(&rq->lock);
	}
8130 8131
	if (runtime_was_enabled && !runtime_enabled)
		cfs_bandwidth_usage_dec();
8132 8133
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
8134
	put_online_cpus();
8135

8136
	return ret;
8137 8138 8139 8140 8141 8142
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

8143
	period = ktime_to_ns(tg->cfs_bandwidth.period);
8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

8156
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8157 8158
		return -1;

8159
	quota_us = tg->cfs_bandwidth.quota;
8160 8161 8162 8163 8164 8165 8166 8167 8168 8169
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
8170
	quota = tg->cfs_bandwidth.quota;
8171 8172 8173 8174 8175 8176 8177 8178

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

8179
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8180 8181 8182 8183 8184
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

8185 8186
static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
				  struct cftype *cft)
8187
{
8188
	return tg_get_cfs_quota(css_tg(css));
8189 8190
}

8191 8192
static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
				   struct cftype *cftype, s64 cfs_quota_us)
8193
{
8194
	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8195 8196
}

8197 8198
static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
				   struct cftype *cft)
8199
{
8200
	return tg_get_cfs_period(css_tg(css));
8201 8202
}

8203 8204
static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 cfs_period_us)
8205
{
8206
	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8207 8208
}

8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
8241
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8242 8243 8244 8245 8246
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
8247
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8248 8249

		quota = normalize_cfs_quota(tg, d);
8250
		parent_quota = parent_b->hierarchical_quota;
8251 8252 8253 8254 8255 8256 8257 8258 8259 8260

		/*
		 * ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
8261
	cfs_b->hierarchical_quota = quota;
8262 8263 8264 8265 8266 8267

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
8268
	int ret;
8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

8280 8281 8282 8283 8284
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
8285
}
8286

8287
static int cpu_stats_show(struct seq_file *sf, void *v)
8288
{
8289
	struct task_group *tg = css_tg(seq_css(sf));
8290
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8291

8292 8293 8294
	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8295 8296 8297

	return 0;
}
8298
#endif /* CONFIG_CFS_BANDWIDTH */
8299
#endif /* CONFIG_FAIR_GROUP_SCHED */
8300

8301
#ifdef CONFIG_RT_GROUP_SCHED
8302 8303
static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
				struct cftype *cft, s64 val)
P
Peter Zijlstra 已提交
8304
{
8305
	return sched_group_set_rt_runtime(css_tg(css), val);
P
Peter Zijlstra 已提交
8306 8307
}

8308 8309
static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
P
Peter Zijlstra 已提交
8310
{
8311
	return sched_group_rt_runtime(css_tg(css));
P
Peter Zijlstra 已提交
8312
}
8313

8314 8315
static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 rt_period_us)
8316
{
8317
	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8318 8319
}

8320 8321
static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
				   struct cftype *cft)
8322
{
8323
	return sched_group_rt_period(css_tg(css));
8324
}
8325
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
8326

8327
static struct cftype cpu_files[] = {
8328
#ifdef CONFIG_FAIR_GROUP_SCHED
8329 8330
	{
		.name = "shares",
8331 8332
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8333
	},
8334
#endif
8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
8346 8347
	{
		.name = "stat",
8348
		.seq_show = cpu_stats_show,
8349
	},
8350
#endif
8351
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8352
	{
P
Peter Zijlstra 已提交
8353
		.name = "rt_runtime_us",
8354 8355
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8356
	},
8357 8358
	{
		.name = "rt_period_us",
8359 8360
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8361
	},
8362
#endif
8363
	{ }	/* terminate */
8364 8365
};

8366
struct cgroup_subsys cpu_cgrp_subsys = {
8367 8368
	.css_alloc	= cpu_cgroup_css_alloc,
	.css_free	= cpu_cgroup_css_free,
8369 8370
	.css_online	= cpu_cgroup_css_online,
	.css_offline	= cpu_cgroup_css_offline,
8371
	.fork		= cpu_cgroup_fork,
8372 8373
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
8374
	.exit		= cpu_cgroup_exit,
8375
	.legacy_cftypes	= cpu_files,
8376 8377 8378
	.early_init	= 1,
};

8379
#endif	/* CONFIG_CGROUP_SCHED */
8380

8381 8382 8383 8384 8385
void dump_cpu_task(int cpu)
{
	pr_info("Task dump for CPU %d:\n", cpu);
	sched_show_task(cpu_curr(cpu));
}