core.c 204.3 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/highmem.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
37
#include <linux/capability.h>
L
Linus Torvalds 已提交
38 39
#include <linux/completion.h>
#include <linux/kernel_stat.h>
40
#include <linux/debug_locks.h>
41
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
57
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
58
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/unistd.h>
J
Jens Axboe 已提交
66
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
67
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
68
#include <linux/tick.h>
P
Peter Zijlstra 已提交
69 70
#include <linux/debugfs.h>
#include <linux/ctype.h>
71
#include <linux/ftrace.h>
72
#include <linux/slab.h>
73
#include <linux/init_task.h>
A
Al Viro 已提交
74
#include <linux/binfmts.h>
75
#include <linux/context_tracking.h>
76
#include <linux/compiler.h>
L
Linus Torvalds 已提交
77

78
#include <asm/switch_to.h>
79
#include <asm/tlb.h>
80
#include <asm/irq_regs.h>
81
#include <asm/mutex.h>
G
Glauber Costa 已提交
82 83 84
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
85

86
#include "sched.h"
87
#include "../workqueue_internal.h"
88
#include "../smpboot.h"
89

90
#define CREATE_TRACE_POINTS
91
#include <trace/events/sched.h>
92

93 94
DEFINE_MUTEX(sched_domains_mutex);
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
95

96
static void update_rq_clock_task(struct rq *rq, s64 delta);
97

98
void update_rq_clock(struct rq *rq)
99
{
100
	s64 delta;
101

102 103 104
	lockdep_assert_held(&rq->lock);

	if (rq->clock_skip_update & RQCF_ACT_SKIP)
105
		return;
106

107
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
108 109
	if (delta < 0)
		return;
110 111
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
112 113
}

I
Ingo Molnar 已提交
114 115 116
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
117 118 119 120

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
121
const_debug unsigned int sysctl_sched_features =
122
#include "features.h"
P
Peter Zijlstra 已提交
123 124 125 126 127 128 129 130
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

131
static const char * const sched_feat_names[] = {
132
#include "features.h"
P
Peter Zijlstra 已提交
133 134 135 136
};

#undef SCHED_FEAT

L
Li Zefan 已提交
137
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
138 139 140
{
	int i;

141
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
L
Li Zefan 已提交
142 143 144
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
145
	}
L
Li Zefan 已提交
146
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
147

L
Li Zefan 已提交
148
	return 0;
P
Peter Zijlstra 已提交
149 150
}

151 152
#ifdef HAVE_JUMP_LABEL

153 154
#define jump_label_key__true  STATIC_KEY_INIT_TRUE
#define jump_label_key__false STATIC_KEY_INIT_FALSE
155 156 157 158

#define SCHED_FEAT(name, enabled)	\
	jump_label_key__##enabled ,

159
struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
160 161 162 163 164 165 166
#include "features.h"
};

#undef SCHED_FEAT

static void sched_feat_disable(int i)
{
167
	static_key_disable(&sched_feat_keys[i]);
168 169 170 171
}

static void sched_feat_enable(int i)
{
172
	static_key_enable(&sched_feat_keys[i]);
173 174 175 176 177 178
}
#else
static void sched_feat_disable(int i) { };
static void sched_feat_enable(int i) { };
#endif /* HAVE_JUMP_LABEL */

179
static int sched_feat_set(char *cmp)
P
Peter Zijlstra 已提交
180 181
{
	int i;
182
	int neg = 0;
P
Peter Zijlstra 已提交
183

H
Hillf Danton 已提交
184
	if (strncmp(cmp, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
185 186 187 188
		neg = 1;
		cmp += 3;
	}

189
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
190
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
191
			if (neg) {
P
Peter Zijlstra 已提交
192
				sysctl_sched_features &= ~(1UL << i);
193 194
				sched_feat_disable(i);
			} else {
P
Peter Zijlstra 已提交
195
				sysctl_sched_features |= (1UL << i);
196 197
				sched_feat_enable(i);
			}
P
Peter Zijlstra 已提交
198 199 200 201
			break;
		}
	}

202 203 204 205 206 207 208 209 210 211
	return i;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp;
	int i;
212
	struct inode *inode;
213 214 215 216 217 218 219 220 221 222

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
	cmp = strstrip(buf);

223 224 225
	/* Ensure the static_key remains in a consistent state */
	inode = file_inode(filp);
	mutex_lock(&inode->i_mutex);
226
	i = sched_feat_set(cmp);
227
	mutex_unlock(&inode->i_mutex);
228
	if (i == __SCHED_FEAT_NR)
P
Peter Zijlstra 已提交
229 230
		return -EINVAL;

231
	*ppos += cnt;
P
Peter Zijlstra 已提交
232 233 234 235

	return cnt;
}

L
Li Zefan 已提交
236 237 238 239 240
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

241
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
242 243 244 245 246
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
247 248 249 250 251 252 253 254 255 256
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);
257
#endif /* CONFIG_SCHED_DEBUG */
I
Ingo Molnar 已提交
258

259 260 261 262 263 264
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

265 266 267 268 269 270 271 272
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
273
/*
P
Peter Zijlstra 已提交
274
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
275 276
 * default: 1s
 */
P
Peter Zijlstra 已提交
277
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
278

279
__read_mostly int scheduler_running;
280

P
Peter Zijlstra 已提交
281 282 283 284 285
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
286

287 288 289
/* cpus with isolated domains */
cpumask_var_t cpu_isolated_map;

L
Linus Torvalds 已提交
290
/*
291
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
292
 */
A
Alexey Dobriyan 已提交
293
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
294 295
	__acquires(rq->lock)
{
296
	struct rq *rq;
L
Linus Torvalds 已提交
297 298 299

	local_irq_disable();
	rq = this_rq();
300
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
301 302 303 304

	return rq;
}

P
Peter Zijlstra 已提交
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

326
	raw_spin_lock(&rq->lock);
327
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
328
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
329
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
330 331 332 333

	return HRTIMER_NORESTART;
}

334
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
335

336
static void __hrtick_restart(struct rq *rq)
P
Peter Zijlstra 已提交
337 338 339
{
	struct hrtimer *timer = &rq->hrtick_timer;

340
	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
P
Peter Zijlstra 已提交
341 342
}

343 344 345 346
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
347
{
348
	struct rq *rq = arg;
349

350
	raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
351
	__hrtick_restart(rq);
352
	rq->hrtick_csd_pending = 0;
353
	raw_spin_unlock(&rq->lock);
354 355
}

356 357 358 359 360
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
361
void hrtick_start(struct rq *rq, u64 delay)
362
{
363
	struct hrtimer *timer = &rq->hrtick_timer;
364 365 366 367 368 369 370 371 372
	ktime_t time;
	s64 delta;

	/*
	 * Don't schedule slices shorter than 10000ns, that just
	 * doesn't make sense and can cause timer DoS.
	 */
	delta = max_t(s64, delay, 10000LL);
	time = ktime_add_ns(timer->base->get_time(), delta);
373

374
	hrtimer_set_expires(timer, time);
375 376

	if (rq == this_rq()) {
P
Peter Zijlstra 已提交
377
		__hrtick_restart(rq);
378
	} else if (!rq->hrtick_csd_pending) {
379
		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
380 381
		rq->hrtick_csd_pending = 1;
	}
382 383 384 385 386 387 388 389 390 391 392 393 394 395
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
396
		hrtick_clear(cpu_rq(cpu));
397 398 399 400 401 402
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

403
static __init void init_hrtick(void)
404 405 406
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
407 408 409 410 411 412
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
413
void hrtick_start(struct rq *rq, u64 delay)
414
{
W
Wanpeng Li 已提交
415 416 417 418 419
	/*
	 * Don't schedule slices shorter than 10000ns, that just
	 * doesn't make sense. Rely on vruntime for fairness.
	 */
	delay = max_t(u64, delay, 10000LL);
420 421
	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
		      HRTIMER_MODE_REL_PINNED);
422
}
423

A
Andrew Morton 已提交
424
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
425 426
{
}
427
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
428

429
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
430
{
431 432
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
433

434 435 436 437
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
438

439 440
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
441
}
A
Andrew Morton 已提交
442
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
443 444 445 446 447 448 449 450
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

451 452 453
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
454
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
455

456 457 458 459 460 461 462 463 464 465 466 467 468 469
/*
 * cmpxchg based fetch_or, macro so it works for different integer types
 */
#define fetch_or(ptr, val)						\
({	typeof(*(ptr)) __old, __val = *(ptr);				\
 	for (;;) {							\
 		__old = cmpxchg((ptr), __val, __val | (val));		\
 		if (__old == __val)					\
 			break;						\
 		__val = __old;						\
 	}								\
 	__old;								\
})

470
#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
471 472 473 474 475 476 477 478 479 480
/*
 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
 * this avoids any races wrt polling state changes and thereby avoids
 * spurious IPIs.
 */
static bool set_nr_and_not_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
}
481 482 483 484 485 486 487 488 489 490

/*
 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
 *
 * If this returns true, then the idle task promises to call
 * sched_ttwu_pending() and reschedule soon.
 */
static bool set_nr_if_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
491
	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
492 493 494 495 496 497 498 499 500 501 502 503 504 505

	for (;;) {
		if (!(val & _TIF_POLLING_NRFLAG))
			return false;
		if (val & _TIF_NEED_RESCHED)
			return true;
		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
		if (old == val)
			break;
		val = old;
	}
	return true;
}

506 507 508 509 510 511
#else
static bool set_nr_and_not_polling(struct task_struct *p)
{
	set_tsk_need_resched(p);
	return true;
}
512 513 514 515 516 517 518

#ifdef CONFIG_SMP
static bool set_nr_if_polling(struct task_struct *p)
{
	return false;
}
#endif
519 520
#endif

521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
void wake_q_add(struct wake_q_head *head, struct task_struct *task)
{
	struct wake_q_node *node = &task->wake_q;

	/*
	 * Atomically grab the task, if ->wake_q is !nil already it means
	 * its already queued (either by us or someone else) and will get the
	 * wakeup due to that.
	 *
	 * This cmpxchg() implies a full barrier, which pairs with the write
	 * barrier implied by the wakeup in wake_up_list().
	 */
	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
		return;

	get_task_struct(task);

	/*
	 * The head is context local, there can be no concurrency.
	 */
	*head->lastp = node;
	head->lastp = &node->next;
}

void wake_up_q(struct wake_q_head *head)
{
	struct wake_q_node *node = head->first;

	while (node != WAKE_Q_TAIL) {
		struct task_struct *task;

		task = container_of(node, struct task_struct, wake_q);
		BUG_ON(!task);
		/* task can safely be re-inserted now */
		node = node->next;
		task->wake_q.next = NULL;

		/*
		 * wake_up_process() implies a wmb() to pair with the queueing
		 * in wake_q_add() so as not to miss wakeups.
		 */
		wake_up_process(task);
		put_task_struct(task);
	}
}

I
Ingo Molnar 已提交
567
/*
568
 * resched_curr - mark rq's current task 'to be rescheduled now'.
I
Ingo Molnar 已提交
569 570 571 572 573
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
574
void resched_curr(struct rq *rq)
I
Ingo Molnar 已提交
575
{
576
	struct task_struct *curr = rq->curr;
I
Ingo Molnar 已提交
577 578
	int cpu;

579
	lockdep_assert_held(&rq->lock);
I
Ingo Molnar 已提交
580

581
	if (test_tsk_need_resched(curr))
I
Ingo Molnar 已提交
582 583
		return;

584
	cpu = cpu_of(rq);
585

586
	if (cpu == smp_processor_id()) {
587
		set_tsk_need_resched(curr);
588
		set_preempt_need_resched();
I
Ingo Molnar 已提交
589
		return;
590
	}
I
Ingo Molnar 已提交
591

592
	if (set_nr_and_not_polling(curr))
I
Ingo Molnar 已提交
593
		smp_send_reschedule(cpu);
594 595
	else
		trace_sched_wake_idle_without_ipi(cpu);
I
Ingo Molnar 已提交
596 597
}

598
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
599 600 601 602
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

603
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
604
		return;
605
	resched_curr(rq);
606
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
607
}
608

609
#ifdef CONFIG_SMP
610
#ifdef CONFIG_NO_HZ_COMMON
611 612 613 614 615 616 617 618
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
619
int get_nohz_timer_target(void)
620
{
621
	int i, cpu = smp_processor_id();
622 623
	struct sched_domain *sd;

624
	if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
625 626
		return cpu;

627
	rcu_read_lock();
628
	for_each_domain(cpu, sd) {
629
		for_each_cpu(i, sched_domain_span(sd)) {
630
			if (!idle_cpu(i) && is_housekeeping_cpu(cpu)) {
631 632 633 634
				cpu = i;
				goto unlock;
			}
		}
635
	}
636 637 638

	if (!is_housekeeping_cpu(cpu))
		cpu = housekeeping_any_cpu();
639 640
unlock:
	rcu_read_unlock();
641 642
	return cpu;
}
643 644 645 646 647 648 649 650 651 652
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
653
static void wake_up_idle_cpu(int cpu)
654 655 656 657 658 659
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

660
	if (set_nr_and_not_polling(rq->idle))
661
		smp_send_reschedule(cpu);
662 663
	else
		trace_sched_wake_idle_without_ipi(cpu);
664 665
}

666
static bool wake_up_full_nohz_cpu(int cpu)
667
{
668 669 670 671 672 673
	/*
	 * We just need the target to call irq_exit() and re-evaluate
	 * the next tick. The nohz full kick at least implies that.
	 * If needed we can still optimize that later with an
	 * empty IRQ.
	 */
674
	if (tick_nohz_full_cpu(cpu)) {
675 676
		if (cpu != smp_processor_id() ||
		    tick_nohz_tick_stopped())
677
			tick_nohz_full_kick_cpu(cpu);
678 679 680 681 682 683 684 685
		return true;
	}

	return false;
}

void wake_up_nohz_cpu(int cpu)
{
686
	if (!wake_up_full_nohz_cpu(cpu))
687 688 689
		wake_up_idle_cpu(cpu);
}

690
static inline bool got_nohz_idle_kick(void)
691
{
692
	int cpu = smp_processor_id();
693 694 695 696 697 698 699 700 701 702 703 704 705

	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
		return false;

	if (idle_cpu(cpu) && !need_resched())
		return true;

	/*
	 * We can't run Idle Load Balance on this CPU for this time so we
	 * cancel it and clear NOHZ_BALANCE_KICK
	 */
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
	return false;
706 707
}

708
#else /* CONFIG_NO_HZ_COMMON */
709

710
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
711
{
712
	return false;
P
Peter Zijlstra 已提交
713 714
}

715
#endif /* CONFIG_NO_HZ_COMMON */
716

717 718 719
#ifdef CONFIG_NO_HZ_FULL
bool sched_can_stop_tick(void)
{
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
	/*
	 * FIFO realtime policy runs the highest priority task. Other runnable
	 * tasks are of a lower priority. The scheduler tick does nothing.
	 */
	if (current->policy == SCHED_FIFO)
		return true;

	/*
	 * Round-robin realtime tasks time slice with other tasks at the same
	 * realtime priority. Is this task the only one at this priority?
	 */
	if (current->policy == SCHED_RR) {
		struct sched_rt_entity *rt_se = &current->rt;

		return rt_se->run_list.prev == rt_se->run_list.next;
	}

737 738 739 740 741
	/*
	 * More than one running task need preemption.
	 * nr_running update is assumed to be visible
	 * after IPI is sent from wakers.
	 */
742 743
	if (this_rq()->nr_running > 1)
		return false;
744

745
	return true;
746 747
}
#endif /* CONFIG_NO_HZ_FULL */
748

749
void sched_avg_update(struct rq *rq)
750
{
751 752
	s64 period = sched_avg_period();

753
	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
754 755 756 757 758 759
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
760 761 762
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
763 764
}

765
#endif /* CONFIG_SMP */
766

767 768
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
769
/*
770 771 772 773
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
774
 */
775
int walk_tg_tree_from(struct task_group *from,
776
			     tg_visitor down, tg_visitor up, void *data)
777 778
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
779
	int ret;
780

781 782
	parent = from;

783
down:
P
Peter Zijlstra 已提交
784 785
	ret = (*down)(parent, data);
	if (ret)
786
		goto out;
787 788 789 790 791 792 793
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
794
	ret = (*up)(parent, data);
795 796
	if (ret || parent == from)
		goto out;
797 798 799 800 801

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
802
out:
P
Peter Zijlstra 已提交
803
	return ret;
804 805
}

806
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
807
{
808
	return 0;
P
Peter Zijlstra 已提交
809
}
810 811
#endif

812 813
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
814 815 816
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
817 818 819 820
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
821
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
822
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
823 824
		return;
	}
825

826
	load->weight = scale_load(prio_to_weight[prio]);
N
Nikhil Rao 已提交
827
	load->inv_weight = prio_to_wmult[prio];
828 829
}

830
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
831
{
832
	update_rq_clock(rq);
833
	sched_info_queued(rq, p);
834
	p->sched_class->enqueue_task(rq, p, flags);
835 836
}

837
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
838
{
839
	update_rq_clock(rq);
840
	sched_info_dequeued(rq, p);
841
	p->sched_class->dequeue_task(rq, p, flags);
842 843
}

844
void activate_task(struct rq *rq, struct task_struct *p, int flags)
845 846 847 848
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

849
	enqueue_task(rq, p, flags);
850 851
}

852
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
853 854 855 856
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

857
	dequeue_task(rq, p, flags);
858 859
}

860
static void update_rq_clock_task(struct rq *rq, s64 delta)
861
{
862 863 864 865 866 867 868 869
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
870
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
892 893
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
894
	if (static_key_false((&paravirt_steal_rq_enabled))) {
895 896 897 898 899 900 901 902 903 904 905
		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		rq->prev_steal_time_rq += steal;
		delta -= steal;
	}
#endif

906 907
	rq->clock_task += delta;

908
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
909
	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
910 911
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
912 913
}

914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

944
/*
I
Ingo Molnar 已提交
945
 * __normal_prio - return the priority that is based on the static prio
946 947 948
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
949
	return p->static_prio;
950 951
}

952 953 954 955 956 957 958
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
959
static inline int normal_prio(struct task_struct *p)
960 961 962
{
	int prio;

963 964 965
	if (task_has_dl_policy(p))
		prio = MAX_DL_PRIO-1;
	else if (task_has_rt_policy(p))
966 967 968 969 970 971 972 973 974 975 976 977 978
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
979
static int effective_prio(struct task_struct *p)
980 981 982 983 984 985 986 987 988 989 990 991
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
992 993 994
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
995 996
 *
 * Return: 1 if the task is currently executing. 0 otherwise.
L
Linus Torvalds 已提交
997
 */
998
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
999 1000 1001 1002
{
	return cpu_curr(task_cpu(p)) == p;
}

1003
/*
1004 1005 1006 1007 1008
 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
 * use the balance_callback list if you want balancing.
 *
 * this means any call to check_class_changed() must be followed by a call to
 * balance_callback().
1009
 */
1010 1011
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
1012
				       int oldprio)
1013 1014 1015
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
1016
			prev_class->switched_from(rq, p);
1017

P
Peter Zijlstra 已提交
1018
		p->sched_class->switched_to(rq, p);
1019
	} else if (oldprio != p->prio || dl_task(p))
P
Peter Zijlstra 已提交
1020
		p->sched_class->prio_changed(rq, p, oldprio);
1021 1022
}

1023
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
1034
				resched_curr(rq);
1035 1036 1037 1038 1039 1040 1041 1042 1043
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
1044
	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1045
		rq_clock_skip_update(rq, true);
1046 1047
}

L
Linus Torvalds 已提交
1048
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
/*
 * This is how migration works:
 *
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
 */

/*
 * move_queued_task - move a queued task to new rq.
 *
 * Returns (locked) new rq. Old rq's lock is released.
 */
1068
static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
P
Peter Zijlstra 已提交
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
{
	lockdep_assert_held(&rq->lock);

	dequeue_task(rq, p, 0);
	p->on_rq = TASK_ON_RQ_MIGRATING;
	set_task_cpu(p, new_cpu);
	raw_spin_unlock(&rq->lock);

	rq = cpu_rq(new_cpu);

	raw_spin_lock(&rq->lock);
	BUG_ON(task_cpu(p) != new_cpu);
	p->on_rq = TASK_ON_RQ_QUEUED;
	enqueue_task(rq, p, 0);
	check_preempt_curr(rq, p, 0);

	return rq;
}

struct migration_arg {
	struct task_struct *task;
	int dest_cpu;
};

/*
 * Move (not current) task off this cpu, onto dest cpu. We're doing
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
 */
1102
static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
P
Peter Zijlstra 已提交
1103 1104
{
	if (unlikely(!cpu_active(dest_cpu)))
1105
		return rq;
P
Peter Zijlstra 已提交
1106 1107 1108

	/* Affinity changed (again). */
	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1109
		return rq;
P
Peter Zijlstra 已提交
1110

1111 1112 1113
	rq = move_queued_task(rq, p, dest_cpu);

	return rq;
P
Peter Zijlstra 已提交
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
}

/*
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
 */
static int migration_cpu_stop(void *data)
{
	struct migration_arg *arg = data;
1124 1125
	struct task_struct *p = arg->task;
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137

	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
	local_irq_disable();
	/*
	 * We need to explicitly wake pending tasks before running
	 * __migrate_task() such that we will not miss enforcing cpus_allowed
	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
	 */
	sched_ttwu_pending();
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150

	raw_spin_lock(&p->pi_lock);
	raw_spin_lock(&rq->lock);
	/*
	 * If task_rq(p) != rq, it cannot be migrated here, because we're
	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
	 * we're holding p->pi_lock.
	 */
	if (task_rq(p) == rq && task_on_rq_queued(p))
		rq = __migrate_task(rq, p, arg->dest_cpu);
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock(&p->pi_lock);

P
Peter Zijlstra 已提交
1151 1152 1153 1154
	local_irq_enable();
	return 0;
}

1155 1156 1157 1158 1159
/*
 * sched_class::set_cpus_allowed must do the below, but is not required to
 * actually call this function.
 */
void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
P
Peter Zijlstra 已提交
1160 1161 1162 1163 1164
{
	cpumask_copy(&p->cpus_allowed, new_mask);
	p->nr_cpus_allowed = cpumask_weight(new_mask);
}

1165 1166
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
1167 1168 1169
	struct rq *rq = task_rq(p);
	bool queued, running;

1170
	lockdep_assert_held(&p->pi_lock);
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185

	queued = task_on_rq_queued(p);
	running = task_current(rq, p);

	if (queued) {
		/*
		 * Because __kthread_bind() calls this on blocked tasks without
		 * holding rq->lock.
		 */
		lockdep_assert_held(&rq->lock);
		dequeue_task(rq, p, 0);
	}
	if (running)
		put_prev_task(rq, p);

1186
	p->sched_class->set_cpus_allowed(p, new_mask);
1187 1188 1189 1190 1191

	if (running)
		p->sched_class->set_curr_task(rq);
	if (queued)
		enqueue_task(rq, p, 0);
1192 1193
}

P
Peter Zijlstra 已提交
1194 1195 1196 1197 1198 1199 1200 1201 1202
/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely. The
 * call is not atomic; no spinlocks may be held.
 */
1203 1204
static int __set_cpus_allowed_ptr(struct task_struct *p,
				  const struct cpumask *new_mask, bool check)
P
Peter Zijlstra 已提交
1205 1206 1207 1208 1209 1210 1211 1212
{
	unsigned long flags;
	struct rq *rq;
	unsigned int dest_cpu;
	int ret = 0;

	rq = task_rq_lock(p, &flags);

1213 1214 1215 1216 1217 1218 1219 1220 1221
	/*
	 * Must re-check here, to close a race against __kthread_bind(),
	 * sched_setaffinity() is not guaranteed to observe the flag.
	 */
	if (check && (p->flags & PF_NO_SETAFFINITY)) {
		ret = -EINVAL;
		goto out;
	}

P
Peter Zijlstra 已提交
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
		ret = -EINVAL;
		goto out;
	}

	do_set_cpus_allowed(p, new_mask);

	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpumask_test_cpu(task_cpu(p), new_mask))
		goto out;

	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
	if (task_running(rq, p) || p->state == TASK_WAKING) {
		struct migration_arg arg = { p, dest_cpu };
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, p, &flags);
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
		tlb_migrate_finish(p->mm);
		return 0;
1244 1245 1246 1247 1248 1249
	} else if (task_on_rq_queued(p)) {
		/*
		 * OK, since we're going to drop the lock immediately
		 * afterwards anyway.
		 */
		lockdep_unpin_lock(&rq->lock);
1250
		rq = move_queued_task(rq, p, dest_cpu);
1251 1252
		lockdep_pin_lock(&rq->lock);
	}
P
Peter Zijlstra 已提交
1253 1254 1255 1256 1257
out:
	task_rq_unlock(rq, p, &flags);

	return ret;
}
1258 1259 1260 1261 1262

int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
{
	return __set_cpus_allowed_ptr(p, new_mask, false);
}
P
Peter Zijlstra 已提交
1263 1264
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);

I
Ingo Molnar 已提交
1265
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1266
{
1267 1268 1269 1270 1271
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
1272
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
O
Oleg Nesterov 已提交
1273
			!p->on_rq);
1274 1275

#ifdef CONFIG_LOCKDEP
1276 1277 1278 1279 1280
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
P
Peter Zijlstra 已提交
1281
	 * see task_group().
1282 1283 1284 1285
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
1286 1287 1288
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
1289 1290
#endif

1291
	trace_sched_migrate_task(p, new_cpu);
1292

1293
	if (task_cpu(p) != new_cpu) {
1294 1295
		if (p->sched_class->migrate_task_rq)
			p->sched_class->migrate_task_rq(p, new_cpu);
1296
		p->se.nr_migrations++;
1297
		perf_event_task_migrate(p);
1298
	}
I
Ingo Molnar 已提交
1299 1300

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1301 1302
}

1303 1304
static void __migrate_swap_task(struct task_struct *p, int cpu)
{
1305
	if (task_on_rq_queued(p)) {
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
		struct rq *src_rq, *dst_rq;

		src_rq = task_rq(p);
		dst_rq = cpu_rq(cpu);

		deactivate_task(src_rq, p, 0);
		set_task_cpu(p, cpu);
		activate_task(dst_rq, p, 0);
		check_preempt_curr(dst_rq, p, 0);
	} else {
		/*
		 * Task isn't running anymore; make it appear like we migrated
		 * it before it went to sleep. This means on wakeup we make the
		 * previous cpu our targer instead of where it really is.
		 */
		p->wake_cpu = cpu;
	}
}

struct migration_swap_arg {
	struct task_struct *src_task, *dst_task;
	int src_cpu, dst_cpu;
};

static int migrate_swap_stop(void *data)
{
	struct migration_swap_arg *arg = data;
	struct rq *src_rq, *dst_rq;
	int ret = -EAGAIN;

	src_rq = cpu_rq(arg->src_cpu);
	dst_rq = cpu_rq(arg->dst_cpu);

1339 1340
	double_raw_lock(&arg->src_task->pi_lock,
			&arg->dst_task->pi_lock);
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
	double_rq_lock(src_rq, dst_rq);
	if (task_cpu(arg->dst_task) != arg->dst_cpu)
		goto unlock;

	if (task_cpu(arg->src_task) != arg->src_cpu)
		goto unlock;

	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
		goto unlock;

	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
		goto unlock;

	__migrate_swap_task(arg->src_task, arg->dst_cpu);
	__migrate_swap_task(arg->dst_task, arg->src_cpu);

	ret = 0;

unlock:
	double_rq_unlock(src_rq, dst_rq);
1361 1362
	raw_spin_unlock(&arg->dst_task->pi_lock);
	raw_spin_unlock(&arg->src_task->pi_lock);
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384

	return ret;
}

/*
 * Cross migrate two tasks
 */
int migrate_swap(struct task_struct *cur, struct task_struct *p)
{
	struct migration_swap_arg arg;
	int ret = -EINVAL;

	arg = (struct migration_swap_arg){
		.src_task = cur,
		.src_cpu = task_cpu(cur),
		.dst_task = p,
		.dst_cpu = task_cpu(p),
	};

	if (arg.src_cpu == arg.dst_cpu)
		goto out;

1385 1386 1387 1388
	/*
	 * These three tests are all lockless; this is OK since all of them
	 * will be re-checked with proper locks held further down the line.
	 */
1389 1390 1391 1392 1393 1394 1395 1396 1397
	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
		goto out;

	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
		goto out;

	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
		goto out;

1398
	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1399 1400 1401 1402 1403 1404
	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);

out:
	return ret;
}

L
Linus Torvalds 已提交
1405 1406 1407
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1408 1409 1410 1411 1412 1413 1414
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1415 1416 1417 1418 1419 1420
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1421
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1422 1423
{
	unsigned long flags;
1424
	int running, queued;
R
Roland McGrath 已提交
1425
	unsigned long ncsw;
1426
	struct rq *rq;
L
Linus Torvalds 已提交
1427

1428 1429 1430 1431 1432 1433 1434 1435
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1436

1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1448 1449 1450
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1451
			cpu_relax();
R
Roland McGrath 已提交
1452
		}
1453

1454 1455 1456 1457 1458 1459
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1460
		trace_sched_wait_task(p);
1461
		running = task_running(rq, p);
1462
		queued = task_on_rq_queued(p);
R
Roland McGrath 已提交
1463
		ncsw = 0;
1464
		if (!match_state || p->state == match_state)
1465
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1466
		task_rq_unlock(rq, p, &flags);
1467

R
Roland McGrath 已提交
1468 1469 1470 1471 1472 1473
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1484

1485 1486 1487 1488 1489
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1490
		 * So if it was still runnable (but just not actively
1491 1492 1493
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
1494
		if (unlikely(queued)) {
1495 1496 1497 1498
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1499 1500
			continue;
		}
1501

1502 1503 1504 1505 1506 1507 1508
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1509 1510

	return ncsw;
L
Linus Torvalds 已提交
1511 1512 1513 1514 1515 1516 1517 1518 1519
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1520
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1521 1522 1523 1524 1525
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1526
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1527 1528 1529 1530 1531 1532 1533 1534 1535
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1536
EXPORT_SYMBOL_GPL(kick_process);
L
Linus Torvalds 已提交
1537

1538
/*
1539
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1540
 */
1541 1542
static int select_fallback_rq(int cpu, struct task_struct *p)
{
1543 1544
	int nid = cpu_to_node(cpu);
	const struct cpumask *nodemask = NULL;
1545 1546
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1547

1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
	/*
	 * If the node that the cpu is on has been offlined, cpu_to_node()
	 * will return -1. There is no cpu on the node, and we should
	 * select the cpu on the other node.
	 */
	if (nid != -1) {
		nodemask = cpumask_of_node(nid);

		/* Look for allowed, online CPU in same node. */
		for_each_cpu(dest_cpu, nodemask) {
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
				return dest_cpu;
		}
1565
	}
1566

1567 1568
	for (;;) {
		/* Any allowed, online CPU? */
1569
		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1570 1571 1572 1573 1574 1575
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			goto out;
		}
1576

1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
		switch (state) {
		case cpuset:
			/* No more Mr. Nice Guy. */
			cpuset_cpus_allowed_fallback(p);
			state = possible;
			break;

		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
1603
			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1604 1605
					task_pid_nr(p), p->comm, cpu);
		}
1606 1607 1608 1609 1610
	}

	return dest_cpu;
}

1611
/*
1612
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1613
 */
1614
static inline
1615
int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1616
{
1617 1618
	lockdep_assert_held(&p->pi_lock);

1619 1620
	if (p->nr_cpus_allowed > 1)
		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1632
	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
P
Peter Zijlstra 已提交
1633
		     !cpu_online(cpu)))
1634
		cpu = select_fallback_rq(task_cpu(p), p);
1635 1636

	return cpu;
1637
}
1638 1639 1640 1641 1642 1643

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1644 1645 1646 1647 1648 1649 1650 1651 1652

#else

static inline int __set_cpus_allowed_ptr(struct task_struct *p,
					 const struct cpumask *new_mask, bool check)
{
	return set_cpus_allowed_ptr(p, new_mask);
}

P
Peter Zijlstra 已提交
1653
#endif /* CONFIG_SMP */
1654

P
Peter Zijlstra 已提交
1655
static void
1656
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1657
{
P
Peter Zijlstra 已提交
1658
#ifdef CONFIG_SCHEDSTATS
1659 1660
	struct rq *rq = this_rq();

P
Peter Zijlstra 已提交
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
#ifdef CONFIG_SMP
	int this_cpu = smp_processor_id();

	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	} else {
		struct sched_domain *sd;

		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1671
		rcu_read_lock();
P
Peter Zijlstra 已提交
1672 1673 1674 1675 1676 1677
		for_each_domain(this_cpu, sd) {
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
1678
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1679
	}
1680 1681 1682 1683

	if (wake_flags & WF_MIGRATED)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);

P
Peter Zijlstra 已提交
1684 1685 1686
#endif /* CONFIG_SMP */

	schedstat_inc(rq, ttwu_count);
T
Tejun Heo 已提交
1687
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1688 1689

	if (wake_flags & WF_SYNC)
T
Tejun Heo 已提交
1690
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1691 1692 1693 1694 1695 1696

#endif /* CONFIG_SCHEDSTATS */
}

static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
{
T
Tejun Heo 已提交
1697
	activate_task(rq, p, en_flags);
1698
	p->on_rq = TASK_ON_RQ_QUEUED;
1699 1700 1701 1702

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1703 1704
}

1705 1706 1707
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1708
static void
1709
ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
T
Tejun Heo 已提交
1710 1711 1712
{
	check_preempt_curr(rq, p, wake_flags);
	p->state = TASK_RUNNING;
1713 1714
	trace_sched_wakeup(p);

T
Tejun Heo 已提交
1715
#ifdef CONFIG_SMP
1716 1717
	if (p->sched_class->task_woken) {
		/*
1718 1719
		 * Our task @p is fully woken up and running; so its safe to
		 * drop the rq->lock, hereafter rq is only used for statistics.
1720
		 */
1721
		lockdep_unpin_lock(&rq->lock);
T
Tejun Heo 已提交
1722
		p->sched_class->task_woken(rq, p);
1723
		lockdep_pin_lock(&rq->lock);
1724
	}
T
Tejun Heo 已提交
1725

1726
	if (rq->idle_stamp) {
1727
		u64 delta = rq_clock(rq) - rq->idle_stamp;
1728
		u64 max = 2*rq->max_idle_balance_cost;
T
Tejun Heo 已提交
1729

1730 1731 1732
		update_avg(&rq->avg_idle, delta);

		if (rq->avg_idle > max)
T
Tejun Heo 已提交
1733
			rq->avg_idle = max;
1734

T
Tejun Heo 已提交
1735 1736 1737 1738 1739
		rq->idle_stamp = 0;
	}
#endif
}

1740 1741 1742
static void
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
{
1743 1744
	lockdep_assert_held(&rq->lock);

1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
#endif

	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
	ttwu_do_wakeup(rq, p, wake_flags);
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
1766
	if (task_on_rq_queued(p)) {
1767 1768
		/* check_preempt_curr() may use rq clock */
		update_rq_clock(rq);
1769 1770 1771 1772 1773 1774 1775 1776
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;
}

1777
#ifdef CONFIG_SMP
1778
void sched_ttwu_pending(void)
1779 1780
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1781 1782
	struct llist_node *llist = llist_del_all(&rq->wake_list);
	struct task_struct *p;
1783
	unsigned long flags;
1784

1785 1786 1787 1788
	if (!llist)
		return;

	raw_spin_lock_irqsave(&rq->lock, flags);
1789
	lockdep_pin_lock(&rq->lock);
1790

P
Peter Zijlstra 已提交
1791 1792 1793
	while (llist) {
		p = llist_entry(llist, struct task_struct, wake_entry);
		llist = llist_next(llist);
1794 1795 1796
		ttwu_do_activate(rq, p, 0);
	}

1797
	lockdep_unpin_lock(&rq->lock);
1798
	raw_spin_unlock_irqrestore(&rq->lock, flags);
1799 1800 1801 1802
}

void scheduler_ipi(void)
{
1803 1804 1805 1806 1807
	/*
	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
	 * TIF_NEED_RESCHED remotely (for the first time) will also send
	 * this IPI.
	 */
1808
	preempt_fold_need_resched();
1809

1810
	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
P
Peter Zijlstra 已提交
1827
	sched_ttwu_pending();
1828 1829 1830 1831

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1832
	if (unlikely(got_nohz_idle_kick())) {
1833
		this_rq()->idle_balance = 1;
1834
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1835
	}
1836
	irq_exit();
1837 1838 1839 1840
}

static void ttwu_queue_remote(struct task_struct *p, int cpu)
{
1841 1842 1843 1844 1845 1846 1847 1848
	struct rq *rq = cpu_rq(cpu);

	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
		if (!set_nr_if_polling(rq->idle))
			smp_send_reschedule(cpu);
		else
			trace_sched_wake_idle_without_ipi(cpu);
	}
1849
}
1850

1851 1852 1853 1854 1855
void wake_up_if_idle(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

1856 1857 1858 1859
	rcu_read_lock();

	if (!is_idle_task(rcu_dereference(rq->curr)))
		goto out;
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869

	if (set_nr_if_polling(rq->idle)) {
		trace_sched_wake_idle_without_ipi(cpu);
	} else {
		raw_spin_lock_irqsave(&rq->lock, flags);
		if (is_idle_task(rq->curr))
			smp_send_reschedule(cpu);
		/* Else cpu is not in idle, do nothing here */
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}
1870 1871 1872

out:
	rcu_read_unlock();
1873 1874
}

1875
bool cpus_share_cache(int this_cpu, int that_cpu)
1876 1877 1878
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1879
#endif /* CONFIG_SMP */
1880

1881 1882 1883 1884
static void ttwu_queue(struct task_struct *p, int cpu)
{
	struct rq *rq = cpu_rq(cpu);

1885
#if defined(CONFIG_SMP)
1886
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1887
		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1888 1889 1890 1891 1892
		ttwu_queue_remote(p, cpu);
		return;
	}
#endif

1893
	raw_spin_lock(&rq->lock);
1894
	lockdep_pin_lock(&rq->lock);
1895
	ttwu_do_activate(rq, p, 0);
1896
	lockdep_unpin_lock(&rq->lock);
1897
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
1898 1899 1900
}

/**
L
Linus Torvalds 已提交
1901
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1902
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1903
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1904
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1905 1906 1907 1908 1909 1910 1911
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
1912
 * Return: %true if @p was woken up, %false if it was already running.
T
Tejun Heo 已提交
1913
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
1914
 */
1915 1916
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1917 1918
{
	unsigned long flags;
1919
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1920

1921 1922 1923 1924 1925 1926 1927
	/*
	 * If we are going to wake up a thread waiting for CONDITION we
	 * need to ensure that CONDITION=1 done by the caller can not be
	 * reordered with p->state check below. This pairs with mb() in
	 * set_current_state() the waiting thread does.
	 */
	smp_mb__before_spinlock();
1928
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
1929
	if (!(p->state & state))
L
Linus Torvalds 已提交
1930 1931
		goto out;

1932 1933
	trace_sched_waking(p);

1934
	success = 1; /* we're going to change ->state */
L
Linus Torvalds 已提交
1935 1936
	cpu = task_cpu(p);

1937 1938
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
1939 1940

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1941
	/*
1942 1943
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
P
Peter Zijlstra 已提交
1944
	 */
1945
	while (p->on_cpu)
1946
		cpu_relax();
1947
	/*
1948
	 * Pairs with the smp_wmb() in finish_lock_switch().
1949
	 */
1950
	smp_rmb();
L
Linus Torvalds 已提交
1951

1952
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
1953
	p->state = TASK_WAKING;
1954

1955
	if (p->sched_class->task_waking)
1956
		p->sched_class->task_waking(p);
1957

1958
	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1959 1960
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
1961
		set_task_cpu(p, cpu);
1962
	}
L
Linus Torvalds 已提交
1963 1964
#endif /* CONFIG_SMP */

1965 1966
	ttwu_queue(p, cpu);
stat:
1967
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
1968
out:
1969
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
1970 1971 1972 1973

	return success;
}

T
Tejun Heo 已提交
1974 1975 1976 1977
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
1978
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
1979
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1980
 * the current task.
T
Tejun Heo 已提交
1981 1982 1983 1984 1985
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

1986 1987 1988 1989
	if (WARN_ON_ONCE(rq != this_rq()) ||
	    WARN_ON_ONCE(p == current))
		return;

T
Tejun Heo 已提交
1990 1991
	lockdep_assert_held(&rq->lock);

1992
	if (!raw_spin_trylock(&p->pi_lock)) {
1993 1994 1995 1996 1997 1998 1999
		/*
		 * This is OK, because current is on_cpu, which avoids it being
		 * picked for load-balance and preemption/IRQs are still
		 * disabled avoiding further scheduler activity on it and we've
		 * not yet picked a replacement task.
		 */
		lockdep_unpin_lock(&rq->lock);
2000 2001 2002
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
2003
		lockdep_pin_lock(&rq->lock);
2004 2005
	}

T
Tejun Heo 已提交
2006
	if (!(p->state & TASK_NORMAL))
2007
		goto out;
T
Tejun Heo 已提交
2008

2009 2010
	trace_sched_waking(p);

2011
	if (!task_on_rq_queued(p))
P
Peter Zijlstra 已提交
2012 2013
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

2014
	ttwu_do_wakeup(rq, p, 0);
2015
	ttwu_stat(p, smp_processor_id(), 0);
2016 2017
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
2018 2019
}

2020 2021 2022 2023 2024
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
2025 2026 2027
 * processes.
 *
 * Return: 1 if the process was woken up, 0 if it was already running.
2028 2029 2030 2031
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2032
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2033
{
2034 2035
	WARN_ON(task_is_stopped_or_traced(p));
	return try_to_wake_up(p, TASK_NORMAL, 0);
L
Linus Torvalds 已提交
2036 2037 2038
}
EXPORT_SYMBOL(wake_up_process);

2039
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2040 2041 2042 2043
{
	return try_to_wake_up(p, state, 0);
}

2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
/*
 * This function clears the sched_dl_entity static params.
 */
void __dl_clear_params(struct task_struct *p)
{
	struct sched_dl_entity *dl_se = &p->dl;

	dl_se->dl_runtime = 0;
	dl_se->dl_deadline = 0;
	dl_se->dl_period = 0;
	dl_se->flags = 0;
	dl_se->dl_bw = 0;
2056 2057 2058 2059

	dl_se->dl_throttled = 0;
	dl_se->dl_new = 1;
	dl_se->dl_yielded = 0;
2060 2061
}

L
Linus Torvalds 已提交
2062 2063 2064
/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2065 2066 2067
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
2068
static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
2069
{
P
Peter Zijlstra 已提交
2070 2071 2072
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
2073 2074
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2075
	p->se.prev_sum_exec_runtime	= 0;
2076
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
2077
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
2078
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
2079 2080

#ifdef CONFIG_SCHEDSTATS
2081
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
2082
#endif
N
Nick Piggin 已提交
2083

2084
	RB_CLEAR_NODE(&p->dl.rb_node);
2085
	init_dl_task_timer(&p->dl);
2086
	__dl_clear_params(p);
2087

P
Peter Zijlstra 已提交
2088
	INIT_LIST_HEAD(&p->rt.run_list);
N
Nick Piggin 已提交
2089

2090 2091 2092
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
2093 2094 2095

#ifdef CONFIG_NUMA_BALANCING
	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2096
		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2097 2098 2099
		p->mm->numa_scan_seq = 0;
	}

2100 2101 2102 2103 2104
	if (clone_flags & CLONE_VM)
		p->numa_preferred_nid = current->numa_preferred_nid;
	else
		p->numa_preferred_nid = -1;

2105 2106
	p->node_stamp = 0ULL;
	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2107
	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2108
	p->numa_work.next = &p->numa_work;
2109
	p->numa_faults = NULL;
2110 2111
	p->last_task_numa_placement = 0;
	p->last_sum_exec_runtime = 0;
2112 2113

	p->numa_group = NULL;
2114
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
2115 2116
}

2117 2118
DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);

2119
#ifdef CONFIG_NUMA_BALANCING
2120

2121 2122
void set_numabalancing_state(bool enabled)
{
2123 2124 2125 2126
	if (enabled)
		static_branch_enable(&sched_numa_balancing);
	else
		static_branch_disable(&sched_numa_balancing);
2127
}
2128 2129 2130 2131 2132 2133 2134

#ifdef CONFIG_PROC_SYSCTL
int sysctl_numa_balancing(struct ctl_table *table, int write,
			 void __user *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table t;
	int err;
2135
	int state = static_branch_likely(&sched_numa_balancing);
2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150

	if (write && !capable(CAP_SYS_ADMIN))
		return -EPERM;

	t = *table;
	t.data = &state;
	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
	if (err < 0)
		return err;
	if (write)
		set_numabalancing_state(state);
	return err;
}
#endif
#endif
I
Ingo Molnar 已提交
2151 2152 2153 2154

/*
 * fork()/clone()-time setup:
 */
2155
int sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
2156
{
2157
	unsigned long flags;
I
Ingo Molnar 已提交
2158 2159
	int cpu = get_cpu();

2160
	__sched_fork(clone_flags, p);
2161
	/*
2162
	 * We mark the process as running here. This guarantees that
2163 2164 2165
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
2166
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2167

2168 2169 2170 2171 2172
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

2173 2174 2175 2176
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2177
		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2178
			p->policy = SCHED_NORMAL;
2179
			p->static_prio = NICE_TO_PRIO(0);
2180 2181 2182 2183 2184 2185
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
2186

2187 2188 2189 2190 2191 2192
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2193

2194 2195 2196 2197 2198 2199
	if (dl_prio(p->prio)) {
		put_cpu();
		return -EAGAIN;
	} else if (rt_prio(p->prio)) {
		p->sched_class = &rt_sched_class;
	} else {
H
Hiroshi Shimamoto 已提交
2200
		p->sched_class = &fair_sched_class;
2201
	}
2202

P
Peter Zijlstra 已提交
2203 2204 2205
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

2206 2207 2208 2209 2210 2211 2212
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
2213
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2214
	set_task_cpu(p, cpu);
2215
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2216

2217
#ifdef CONFIG_SCHED_INFO
I
Ingo Molnar 已提交
2218
	if (likely(sched_info_on()))
2219
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2220
#endif
P
Peter Zijlstra 已提交
2221 2222
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
2223
#endif
2224
	init_task_preempt_count(p);
2225
#ifdef CONFIG_SMP
2226
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2227
	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2228
#endif
2229

N
Nick Piggin 已提交
2230
	put_cpu();
2231
	return 0;
L
Linus Torvalds 已提交
2232 2233
}

2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 20;

	/*
	 * Doing this here saves a lot of checks in all
	 * the calling paths, and returning zero seems
	 * safe for them anyway.
	 */
	if (period == 0)
		return 0;

	return div64_u64(runtime << 20, period);
}

#ifdef CONFIG_SMP
inline struct dl_bw *dl_bw_of(int i)
{
2253 2254
	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
			 "sched RCU must be held");
2255 2256 2257
	return &cpu_rq(i)->rd->dl_bw;
}

2258
static inline int dl_bw_cpus(int i)
2259
{
2260 2261 2262
	struct root_domain *rd = cpu_rq(i)->rd;
	int cpus = 0;

2263 2264
	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
			 "sched RCU must be held");
2265 2266 2267 2268
	for_each_cpu_and(i, rd->span, cpu_active_mask)
		cpus++;

	return cpus;
2269 2270 2271 2272 2273 2274 2275
}
#else
inline struct dl_bw *dl_bw_of(int i)
{
	return &cpu_rq(i)->dl.dl_bw;
}

2276
static inline int dl_bw_cpus(int i)
2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288
{
	return 1;
}
#endif

/*
 * We must be sure that accepting a new task (or allowing changing the
 * parameters of an existing one) is consistent with the bandwidth
 * constraints. If yes, this function also accordingly updates the currently
 * allocated bandwidth to reflect the new situation.
 *
 * This function is called while holding p's rq->lock.
2289 2290 2291
 *
 * XXX we should delay bw change until the task's 0-lag point, see
 * __setparam_dl().
2292 2293 2294 2295 2296 2297
 */
static int dl_overflow(struct task_struct *p, int policy,
		       const struct sched_attr *attr)
{

	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2298
	u64 period = attr->sched_period ?: attr->sched_deadline;
2299 2300
	u64 runtime = attr->sched_runtime;
	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2301
	int cpus, err = -1;
2302 2303 2304 2305 2306 2307 2308 2309 2310 2311

	if (new_bw == p->dl.dl_bw)
		return 0;

	/*
	 * Either if a task, enters, leave, or stays -deadline but changes
	 * its parameters, we may need to update accordingly the total
	 * allocated bandwidth of the container.
	 */
	raw_spin_lock(&dl_b->lock);
2312
	cpus = dl_bw_cpus(task_cpu(p));
2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
	if (dl_policy(policy) && !task_has_dl_policy(p) &&
	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
		__dl_add(dl_b, new_bw);
		err = 0;
	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
		__dl_clear(dl_b, p->dl.dl_bw);
		__dl_add(dl_b, new_bw);
		err = 0;
	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
		__dl_clear(dl_b, p->dl.dl_bw);
		err = 0;
	}
	raw_spin_unlock(&dl_b->lock);

	return err;
}

extern void init_dl_bw(struct dl_bw *dl_b);

L
Linus Torvalds 已提交
2333 2334 2335 2336 2337 2338 2339
/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2340
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
2341 2342
{
	unsigned long flags;
I
Ingo Molnar 已提交
2343
	struct rq *rq;
2344

2345
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2346 2347
	/* Initialize new task's runnable average */
	init_entity_runnable_average(&p->se);
2348 2349 2350 2351 2352 2353
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 */
2354
	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2355 2356
#endif

2357
	rq = __task_rq_lock(p);
P
Peter Zijlstra 已提交
2358
	activate_task(rq, p, 0);
2359
	p->on_rq = TASK_ON_RQ_QUEUED;
2360
	trace_sched_wakeup_new(p);
P
Peter Zijlstra 已提交
2361
	check_preempt_curr(rq, p, WF_FORK);
2362
#ifdef CONFIG_SMP
2363 2364
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2365
#endif
2366
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
2367 2368
}

2369 2370
#ifdef CONFIG_PREEMPT_NOTIFIERS

2371 2372
static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;

2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
void preempt_notifier_inc(void)
{
	static_key_slow_inc(&preempt_notifier_key);
}
EXPORT_SYMBOL_GPL(preempt_notifier_inc);

void preempt_notifier_dec(void)
{
	static_key_slow_dec(&preempt_notifier_key);
}
EXPORT_SYMBOL_GPL(preempt_notifier_dec);

2385
/**
2386
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2387
 * @notifier: notifier struct to register
2388 2389 2390
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
2391 2392 2393
	if (!static_key_false(&preempt_notifier_key))
		WARN(1, "registering preempt_notifier while notifiers disabled\n");

2394 2395 2396 2397 2398 2399
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2400
 * @notifier: notifier struct to unregister
2401
 *
2402
 * This is *not* safe to call from within a preemption notifier.
2403 2404 2405 2406 2407 2408 2409
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

2410
static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2411 2412 2413
{
	struct preempt_notifier *notifier;

2414
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2415 2416 2417
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

2418 2419 2420 2421 2422 2423
static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	if (static_key_false(&preempt_notifier_key))
		__fire_sched_in_preempt_notifiers(curr);
}

2424
static void
2425 2426
__fire_sched_out_preempt_notifiers(struct task_struct *curr,
				   struct task_struct *next)
2427 2428 2429
{
	struct preempt_notifier *notifier;

2430
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2431 2432 2433
		notifier->ops->sched_out(notifier, next);
}

2434 2435 2436 2437 2438 2439 2440 2441
static __always_inline void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	if (static_key_false(&preempt_notifier_key))
		__fire_sched_out_preempt_notifiers(curr, next);
}

2442
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2443

2444
static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2445 2446 2447
{
}

2448
static inline void
2449 2450 2451 2452 2453
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2454
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2455

2456 2457 2458
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2459
 * @prev: the current task that is being switched out
2460 2461 2462 2463 2464 2465 2466 2467 2468
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2469 2470 2471
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2472
{
2473
	trace_sched_switch(prev, next);
2474
	sched_info_switch(rq, prev, next);
2475
	perf_event_task_sched_out(prev, next);
2476
	fire_sched_out_preempt_notifiers(prev, next);
2477 2478 2479 2480
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2481 2482 2483 2484
/**
 * finish_task_switch - clean up after a task-switch
 * @prev: the thread we just switched away from.
 *
2485 2486 2487 2488
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2489 2490
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2491
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2492 2493
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
2494 2495 2496 2497 2498
 *
 * The context switch have flipped the stack from under us and restored the
 * local variables which were saved when this task called schedule() in the
 * past. prev == current is still correct but we need to recalculate this_rq
 * because prev may have moved to another CPU.
L
Linus Torvalds 已提交
2499
 */
2500
static struct rq *finish_task_switch(struct task_struct *prev)
L
Linus Torvalds 已提交
2501 2502
	__releases(rq->lock)
{
2503
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
2504
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2505
	long prev_state;
L
Linus Torvalds 已提交
2506 2507 2508 2509 2510

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2511
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2512 2513
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2514
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2515 2516 2517 2518 2519
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2520
	prev_state = prev->state;
2521
	vtime_task_switch(prev);
2522
	perf_event_task_sched_in(prev, current);
2523
	finish_lock_switch(rq, prev);
2524
	finish_arch_post_lock_switch();
S
Steven Rostedt 已提交
2525

2526
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2527 2528
	if (mm)
		mmdrop(mm);
2529
	if (unlikely(prev_state == TASK_DEAD)) {
2530 2531 2532
		if (prev->sched_class->task_dead)
			prev->sched_class->task_dead(prev);

2533 2534 2535
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2536
		 */
2537
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2538
		put_task_struct(prev);
2539
	}
2540

2541
	tick_nohz_task_switch();
2542
	return rq;
L
Linus Torvalds 已提交
2543 2544
}

2545 2546 2547
#ifdef CONFIG_SMP

/* rq->lock is NOT held, but preemption is disabled */
2548
static void __balance_callback(struct rq *rq)
2549
{
2550 2551 2552
	struct callback_head *head, *next;
	void (*func)(struct rq *rq);
	unsigned long flags;
2553

2554 2555 2556 2557 2558 2559 2560 2561
	raw_spin_lock_irqsave(&rq->lock, flags);
	head = rq->balance_callback;
	rq->balance_callback = NULL;
	while (head) {
		func = (void (*)(struct rq *))head->func;
		next = head->next;
		head->next = NULL;
		head = next;
2562

2563
		func(rq);
2564
	}
2565 2566 2567 2568 2569 2570 2571
	raw_spin_unlock_irqrestore(&rq->lock, flags);
}

static inline void balance_callback(struct rq *rq)
{
	if (unlikely(rq->balance_callback))
		__balance_callback(rq);
2572 2573 2574
}

#else
2575

2576
static inline void balance_callback(struct rq *rq)
2577
{
L
Linus Torvalds 已提交
2578 2579
}

2580 2581
#endif

L
Linus Torvalds 已提交
2582 2583 2584 2585
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2586
asmlinkage __visible void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2587 2588
	__releases(rq->lock)
{
2589
	struct rq *rq;
2590

2591 2592
	/* finish_task_switch() drops rq->lock and enables preemtion */
	preempt_disable();
2593
	rq = finish_task_switch(prev);
2594
	balance_callback(rq);
2595
	preempt_enable();
2596

L
Linus Torvalds 已提交
2597
	if (current->set_child_tid)
2598
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2599 2600 2601
}

/*
2602
 * context_switch - switch to the new MM and the new thread's register state.
L
Linus Torvalds 已提交
2603
 */
2604
static inline struct rq *
2605
context_switch(struct rq *rq, struct task_struct *prev,
2606
	       struct task_struct *next)
L
Linus Torvalds 已提交
2607
{
I
Ingo Molnar 已提交
2608
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2609

2610
	prepare_task_switch(rq, prev, next);
2611

I
Ingo Molnar 已提交
2612 2613
	mm = next->mm;
	oldmm = prev->active_mm;
2614 2615 2616 2617 2618
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2619
	arch_start_context_switch(prev);
2620

2621
	if (!mm) {
L
Linus Torvalds 已提交
2622 2623 2624 2625 2626 2627
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2628
	if (!prev->mm) {
L
Linus Torvalds 已提交
2629 2630 2631
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2632 2633 2634 2635 2636 2637
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
2638
	lockdep_unpin_lock(&rq->lock);
2639
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
2640 2641 2642

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);
I
Ingo Molnar 已提交
2643
	barrier();
2644 2645

	return finish_task_switch(prev);
L
Linus Torvalds 已提交
2646 2647 2648
}

/*
2649
 * nr_running and nr_context_switches:
L
Linus Torvalds 已提交
2650 2651
 *
 * externally visible scheduler statistics: current number of runnable
2652
 * threads, total number of context switches performed since bootup.
L
Linus Torvalds 已提交
2653 2654 2655 2656 2657 2658 2659 2660 2661
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2662
}
L
Linus Torvalds 已提交
2663

2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675
/*
 * Check if only the current task is running on the cpu.
 */
bool single_task_running(void)
{
	if (cpu_rq(smp_processor_id())->nr_running == 1)
		return true;
	else
		return false;
}
EXPORT_SYMBOL(single_task_running);

L
Linus Torvalds 已提交
2676
unsigned long long nr_context_switches(void)
2677
{
2678 2679
	int i;
	unsigned long long sum = 0;
2680

2681
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2682
		sum += cpu_rq(i)->nr_switches;
2683

L
Linus Torvalds 已提交
2684 2685
	return sum;
}
2686

L
Linus Torvalds 已提交
2687 2688 2689
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2690

2691
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2692
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2693

L
Linus Torvalds 已提交
2694 2695
	return sum;
}
2696

2697
unsigned long nr_iowait_cpu(int cpu)
2698
{
2699
	struct rq *this = cpu_rq(cpu);
2700 2701
	return atomic_read(&this->nr_iowait);
}
2702

2703 2704
void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
{
2705 2706 2707
	struct rq *rq = this_rq();
	*nr_waiters = atomic_read(&rq->nr_iowait);
	*load = rq->load.weight;
2708 2709
}

I
Ingo Molnar 已提交
2710
#ifdef CONFIG_SMP
2711

2712
/*
P
Peter Zijlstra 已提交
2713 2714
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2715
 */
P
Peter Zijlstra 已提交
2716
void sched_exec(void)
2717
{
P
Peter Zijlstra 已提交
2718
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2719
	unsigned long flags;
2720
	int dest_cpu;
2721

2722
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2723
	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2724 2725
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2726

2727
	if (likely(cpu_active(dest_cpu))) {
2728
		struct migration_arg arg = { p, dest_cpu };
2729

2730 2731
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2732 2733
		return;
	}
2734
unlock:
2735
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2736
}
I
Ingo Molnar 已提交
2737

L
Linus Torvalds 已提交
2738 2739 2740
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2741
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
2742 2743

EXPORT_PER_CPU_SYMBOL(kstat);
2744
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
2745

2746 2747 2748 2749 2750 2751 2752 2753 2754
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
2755
	u64 ns;
2756

2757 2758 2759 2760 2761 2762 2763 2764 2765
#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
	/*
	 * 64-bit doesn't need locks to atomically read a 64bit value.
	 * So we have a optimization chance when the task's delta_exec is 0.
	 * Reading ->on_cpu is racy, but this is ok.
	 *
	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
	 * If we race with it entering cpu, unaccounted time is 0. This is
	 * indistinguishable from the read occurring a few cycles earlier.
2766 2767
	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
	 * been accounted, so we're correct here as well.
2768
	 */
2769
	if (!p->on_cpu || !task_on_rq_queued(p))
2770 2771 2772
		return p->se.sum_exec_runtime;
#endif

2773
	rq = task_rq_lock(p, &flags);
2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
	/*
	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
	 * project cycles that may never be accounted to this
	 * thread, breaking clock_gettime().
	 */
	if (task_current(rq, p) && task_on_rq_queued(p)) {
		update_rq_clock(rq);
		p->sched_class->update_curr(rq);
	}
	ns = p->se.sum_exec_runtime;
2784
	task_rq_unlock(rq, p, &flags);
2785 2786 2787

	return ns;
}
2788

2789 2790 2791 2792 2793 2794 2795 2796
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2797
	struct task_struct *curr = rq->curr;
2798 2799

	sched_clock_tick();
I
Ingo Molnar 已提交
2800

2801
	raw_spin_lock(&rq->lock);
2802
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
2803
	curr->sched_class->task_tick(rq, curr, 0);
2804
	update_cpu_load_active(rq);
2805
	calc_global_load_tick(rq);
2806
	raw_spin_unlock(&rq->lock);
2807

2808
	perf_event_task_tick();
2809

2810
#ifdef CONFIG_SMP
2811
	rq->idle_balance = idle_cpu(cpu);
2812
	trigger_load_balance(rq);
2813
#endif
2814
	rq_last_tick_reset(rq);
L
Linus Torvalds 已提交
2815 2816
}

2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827
#ifdef CONFIG_NO_HZ_FULL
/**
 * scheduler_tick_max_deferment
 *
 * Keep at least one tick per second when a single
 * active task is running because the scheduler doesn't
 * yet completely support full dynticks environment.
 *
 * This makes sure that uptime, CFS vruntime, load
 * balancing, etc... continue to move forward, even
 * with a very low granularity.
2828 2829
 *
 * Return: Maximum deferment in nanoseconds.
2830 2831 2832 2833
 */
u64 scheduler_tick_max_deferment(void)
{
	struct rq *rq = this_rq();
2834
	unsigned long next, now = READ_ONCE(jiffies);
2835 2836 2837 2838 2839 2840

	next = rq->last_sched_tick + HZ;

	if (time_before_eq(next, now))
		return 0;

2841
	return jiffies_to_nsecs(next - now);
L
Linus Torvalds 已提交
2842
}
2843
#endif
L
Linus Torvalds 已提交
2844

2845
notrace unsigned long get_parent_ip(unsigned long addr)
2846 2847 2848 2849 2850 2851 2852 2853
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
2854

2855 2856 2857
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

2858
void preempt_count_add(int val)
L
Linus Torvalds 已提交
2859
{
2860
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2861 2862 2863
	/*
	 * Underflow?
	 */
2864 2865
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
2866
#endif
2867
	__preempt_count_add(val);
2868
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2869 2870 2871
	/*
	 * Spinlock count overflowing soon?
	 */
2872 2873
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
2874
#endif
2875 2876 2877 2878 2879 2880 2881
	if (preempt_count() == val) {
		unsigned long ip = get_parent_ip(CALLER_ADDR1);
#ifdef CONFIG_DEBUG_PREEMPT
		current->preempt_disable_ip = ip;
#endif
		trace_preempt_off(CALLER_ADDR0, ip);
	}
L
Linus Torvalds 已提交
2882
}
2883
EXPORT_SYMBOL(preempt_count_add);
2884
NOKPROBE_SYMBOL(preempt_count_add);
L
Linus Torvalds 已提交
2885

2886
void preempt_count_sub(int val)
L
Linus Torvalds 已提交
2887
{
2888
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2889 2890 2891
	/*
	 * Underflow?
	 */
2892
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2893
		return;
L
Linus Torvalds 已提交
2894 2895 2896
	/*
	 * Is the spinlock portion underflowing?
	 */
2897 2898 2899
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
2900
#endif
2901

2902 2903
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2904
	__preempt_count_sub(val);
L
Linus Torvalds 已提交
2905
}
2906
EXPORT_SYMBOL(preempt_count_sub);
2907
NOKPROBE_SYMBOL(preempt_count_sub);
L
Linus Torvalds 已提交
2908 2909 2910 2911

#endif

/*
I
Ingo Molnar 已提交
2912
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
2913
 */
I
Ingo Molnar 已提交
2914
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
2915
{
2916 2917 2918
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
2919 2920
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
2921

I
Ingo Molnar 已提交
2922
	debug_show_held_locks(prev);
2923
	print_modules();
I
Ingo Molnar 已提交
2924 2925
	if (irqs_disabled())
		print_irqtrace_events(prev);
2926 2927 2928 2929 2930 2931 2932
#ifdef CONFIG_DEBUG_PREEMPT
	if (in_atomic_preempt_off()) {
		pr_err("Preemption disabled at:");
		print_ip_sym(current->preempt_disable_ip);
		pr_cont("\n");
	}
#endif
2933
	dump_stack();
2934
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
I
Ingo Molnar 已提交
2935
}
L
Linus Torvalds 已提交
2936

I
Ingo Molnar 已提交
2937 2938 2939 2940 2941
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
2942 2943 2944
#ifdef CONFIG_SCHED_STACK_END_CHECK
	BUG_ON(unlikely(task_stack_end_corrupted(prev)));
#endif
L
Linus Torvalds 已提交
2945
	/*
I
Ingo Molnar 已提交
2946
	 * Test if we are atomic. Since do_exit() needs to call into
2947 2948
	 * schedule() atomically, we ignore that path. Otherwise whine
	 * if we are scheduling when we should not.
L
Linus Torvalds 已提交
2949
	 */
2950
	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
I
Ingo Molnar 已提交
2951
		__schedule_bug(prev);
2952
	rcu_sleep_check();
I
Ingo Molnar 已提交
2953

L
Linus Torvalds 已提交
2954 2955
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

2956
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
2957 2958 2959 2960 2961 2962
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
2963
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
2964
{
2965
	const struct sched_class *class = &fair_sched_class;
I
Ingo Molnar 已提交
2966
	struct task_struct *p;
L
Linus Torvalds 已提交
2967 2968

	/*
I
Ingo Molnar 已提交
2969 2970
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
2971
	 */
2972
	if (likely(prev->sched_class == class &&
2973
		   rq->nr_running == rq->cfs.h_nr_running)) {
2974
		p = fair_sched_class.pick_next_task(rq, prev);
2975 2976 2977 2978 2979 2980 2981 2982
		if (unlikely(p == RETRY_TASK))
			goto again;

		/* assumes fair_sched_class->next == idle_sched_class */
		if (unlikely(!p))
			p = idle_sched_class.pick_next_task(rq, prev);

		return p;
L
Linus Torvalds 已提交
2983 2984
	}

2985
again:
2986
	for_each_class(class) {
2987
		p = class->pick_next_task(rq, prev);
2988 2989 2990
		if (p) {
			if (unlikely(p == RETRY_TASK))
				goto again;
I
Ingo Molnar 已提交
2991
			return p;
2992
		}
I
Ingo Molnar 已提交
2993
	}
2994 2995

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
2996
}
L
Linus Torvalds 已提交
2997

I
Ingo Molnar 已提交
2998
/*
2999
 * __schedule() is the main scheduler function.
3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033
 *
 * The main means of driving the scheduler and thus entering this function are:
 *
 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 *      paths. For example, see arch/x86/entry_64.S.
 *
 *      To drive preemption between tasks, the scheduler sets the flag in timer
 *      interrupt handler scheduler_tick().
 *
 *   3. Wakeups don't really cause entry into schedule(). They add a
 *      task to the run-queue and that's it.
 *
 *      Now, if the new task added to the run-queue preempts the current
 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 *      called on the nearest possible occasion:
 *
 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
 *
 *         - in syscall or exception context, at the next outmost
 *           preempt_enable(). (this might be as soon as the wake_up()'s
 *           spin_unlock()!)
 *
 *         - in IRQ context, return from interrupt-handler to
 *           preemptible context
 *
 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
 *         then at the next:
 *
 *          - cond_resched() call
 *          - explicit schedule() call
 *          - return from syscall or exception to user-space
 *          - return from interrupt-handler to user-space
3034
 *
3035
 * WARNING: must be called with preemption disabled!
I
Ingo Molnar 已提交
3036
 */
3037
static void __sched __schedule(void)
I
Ingo Molnar 已提交
3038 3039
{
	struct task_struct *prev, *next;
3040
	unsigned long *switch_count;
I
Ingo Molnar 已提交
3041
	struct rq *rq;
3042
	int cpu;
I
Ingo Molnar 已提交
3043 3044 3045

	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
3046
	rcu_note_context_switch();
I
Ingo Molnar 已提交
3047 3048 3049
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
3050

3051
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
3052
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
3053

3054 3055 3056 3057 3058 3059
	/*
	 * Make sure that signal_pending_state()->signal_pending() below
	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
	 * done by the caller to avoid the race with signal_wake_up().
	 */
	smp_mb__before_spinlock();
3060
	raw_spin_lock_irq(&rq->lock);
3061
	lockdep_pin_lock(&rq->lock);
L
Linus Torvalds 已提交
3062

3063 3064
	rq->clock_skip_update <<= 1; /* promote REQ to ACT */

3065
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
3066
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
3067
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
3068
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
3069
		} else {
3070 3071 3072
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

T
Tejun Heo 已提交
3073
			/*
3074 3075 3076
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
3077 3078 3079 3080 3081 3082 3083 3084 3085
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
		}
I
Ingo Molnar 已提交
3086
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3087 3088
	}

3089
	if (task_on_rq_queued(prev))
3090 3091 3092
		update_rq_clock(rq);

	next = pick_next_task(rq, prev);
3093
	clear_tsk_need_resched(prev);
3094
	clear_preempt_need_resched();
3095
	rq->clock_skip_update = 0;
L
Linus Torvalds 已提交
3096 3097 3098 3099 3100 3101

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

3102 3103
		rq = context_switch(rq, prev, next); /* unlocks the rq */
		cpu = cpu_of(rq);
3104 3105
	} else {
		lockdep_unpin_lock(&rq->lock);
3106
		raw_spin_unlock_irq(&rq->lock);
3107
	}
L
Linus Torvalds 已提交
3108

3109
	balance_callback(rq);
L
Linus Torvalds 已提交
3110
}
3111

3112 3113
static inline void sched_submit_work(struct task_struct *tsk)
{
3114
	if (!tsk->state || tsk_is_pi_blocked(tsk))
3115 3116 3117 3118 3119 3120 3121 3122 3123
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

3124
asmlinkage __visible void __sched schedule(void)
3125
{
3126 3127 3128
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
3129
	do {
3130
		preempt_disable();
3131
		__schedule();
3132
		sched_preempt_enable_no_resched();
3133
	} while (need_resched());
3134
}
L
Linus Torvalds 已提交
3135 3136
EXPORT_SYMBOL(schedule);

3137
#ifdef CONFIG_CONTEXT_TRACKING
3138
asmlinkage __visible void __sched schedule_user(void)
3139 3140 3141 3142 3143 3144
{
	/*
	 * If we come here after a random call to set_need_resched(),
	 * or we have been woken up remotely but the IPI has not yet arrived,
	 * we haven't yet exited the RCU idle mode. Do it here manually until
	 * we find a better solution.
3145 3146
	 *
	 * NB: There are buggy callers of this function.  Ideally we
3147
	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3148
	 * too frequently to make sense yet.
3149
	 */
3150
	enum ctx_state prev_state = exception_enter();
3151
	schedule();
3152
	exception_exit(prev_state);
3153 3154 3155
}
#endif

3156 3157 3158 3159 3160 3161 3162
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
3163
	sched_preempt_enable_no_resched();
3164 3165 3166 3167
	schedule();
	preempt_disable();
}

3168
static void __sched notrace preempt_schedule_common(void)
3169 3170
{
	do {
3171
		preempt_active_enter();
3172
		__schedule();
3173
		preempt_active_exit();
3174 3175 3176 3177 3178 3179 3180 3181

		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
	} while (need_resched());
}

L
Linus Torvalds 已提交
3182 3183
#ifdef CONFIG_PREEMPT
/*
3184
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3185
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3186 3187
 * occur there and call schedule directly.
 */
3188
asmlinkage __visible void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
3189 3190 3191
{
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3192
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3193
	 */
3194
	if (likely(!preemptible()))
L
Linus Torvalds 已提交
3195 3196
		return;

3197
	preempt_schedule_common();
L
Linus Torvalds 已提交
3198
}
3199
NOKPROBE_SYMBOL(preempt_schedule);
L
Linus Torvalds 已提交
3200
EXPORT_SYMBOL(preempt_schedule);
3201 3202

/**
3203
 * preempt_schedule_notrace - preempt_schedule called by tracing
3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
 *
 * The tracing infrastructure uses preempt_enable_notrace to prevent
 * recursion and tracing preempt enabling caused by the tracing
 * infrastructure itself. But as tracing can happen in areas coming
 * from userspace or just about to enter userspace, a preempt enable
 * can occur before user_exit() is called. This will cause the scheduler
 * to be called when the system is still in usermode.
 *
 * To prevent this, the preempt_enable_notrace will use this function
 * instead of preempt_schedule() to exit user context if needed before
 * calling the scheduler.
 */
3216
asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3217 3218 3219 3220 3221 3222 3223
{
	enum ctx_state prev_ctx;

	if (likely(!preemptible()))
		return;

	do {
3224 3225 3226 3227 3228 3229 3230
		/*
		 * Use raw __prempt_count() ops that don't call function.
		 * We can't call functions before disabling preemption which
		 * disarm preemption tracing recursions.
		 */
		__preempt_count_add(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
		barrier();
3231 3232 3233 3234 3235 3236 3237 3238 3239 3240
		/*
		 * Needs preempt disabled in case user_exit() is traced
		 * and the tracer calls preempt_enable_notrace() causing
		 * an infinite recursion.
		 */
		prev_ctx = exception_enter();
		__schedule();
		exception_exit(prev_ctx);

		barrier();
3241
		__preempt_count_sub(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
3242 3243
	} while (need_resched());
}
3244
EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3245

3246
#endif /* CONFIG_PREEMPT */
L
Linus Torvalds 已提交
3247 3248

/*
3249
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3250 3251 3252 3253
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
3254
asmlinkage __visible void __sched preempt_schedule_irq(void)
L
Linus Torvalds 已提交
3255
{
3256
	enum ctx_state prev_state;
3257

3258
	/* Catch callers which need to be fixed */
3259
	BUG_ON(preempt_count() || !irqs_disabled());
L
Linus Torvalds 已提交
3260

3261 3262
	prev_state = exception_enter();

3263
	do {
3264
		preempt_active_enter();
3265
		local_irq_enable();
3266
		__schedule();
3267
		local_irq_disable();
3268
		preempt_active_exit();
3269
	} while (need_resched());
3270 3271

	exception_exit(prev_state);
L
Linus Torvalds 已提交
3272 3273
}

P
Peter Zijlstra 已提交
3274
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3275
			  void *key)
L
Linus Torvalds 已提交
3276
{
P
Peter Zijlstra 已提交
3277
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3278 3279 3280
}
EXPORT_SYMBOL(default_wake_function);

3281 3282 3283 3284 3285 3286 3287 3288 3289 3290
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
3291 3292
 * Used by the rt_mutex code to implement priority inheritance
 * logic. Call site only calls if the priority of the task changed.
3293
 */
3294
void rt_mutex_setprio(struct task_struct *p, int prio)
3295
{
3296
	int oldprio, queued, running, enqueue_flag = 0;
3297
	struct rq *rq;
3298
	const struct sched_class *prev_class;
3299

3300
	BUG_ON(prio > MAX_PRIO);
3301

3302
	rq = __task_rq_lock(p);
3303

3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

3322
	trace_sched_pi_setprio(p, prio);
3323
	oldprio = p->prio;
3324
	prev_class = p->sched_class;
3325
	queued = task_on_rq_queued(p);
3326
	running = task_current(rq, p);
3327
	if (queued)
3328
		dequeue_task(rq, p, 0);
3329
	if (running)
3330
		put_prev_task(rq, p);
I
Ingo Molnar 已提交
3331

3332 3333 3334 3335 3336 3337 3338 3339 3340 3341
	/*
	 * Boosting condition are:
	 * 1. -rt task is running and holds mutex A
	 *      --> -dl task blocks on mutex A
	 *
	 * 2. -dl task is running and holds mutex A
	 *      --> -dl task blocks on mutex A and could preempt the
	 *          running task
	 */
	if (dl_prio(prio)) {
3342 3343 3344
		struct task_struct *pi_task = rt_mutex_get_top_task(p);
		if (!dl_prio(p->normal_prio) ||
		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3345 3346 3347 3348
			p->dl.dl_boosted = 1;
			enqueue_flag = ENQUEUE_REPLENISH;
		} else
			p->dl.dl_boosted = 0;
3349
		p->sched_class = &dl_sched_class;
3350 3351 3352 3353 3354
	} else if (rt_prio(prio)) {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
		if (oldprio < prio)
			enqueue_flag = ENQUEUE_HEAD;
I
Ingo Molnar 已提交
3355
		p->sched_class = &rt_sched_class;
3356 3357 3358
	} else {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
3359 3360
		if (rt_prio(oldprio))
			p->rt.timeout = 0;
I
Ingo Molnar 已提交
3361
		p->sched_class = &fair_sched_class;
3362
	}
I
Ingo Molnar 已提交
3363

3364 3365
	p->prio = prio;

3366 3367
	if (running)
		p->sched_class->set_curr_task(rq);
3368
	if (queued)
3369
		enqueue_task(rq, p, enqueue_flag);
3370

P
Peter Zijlstra 已提交
3371
	check_class_changed(rq, p, prev_class, oldprio);
3372
out_unlock:
3373
	preempt_disable(); /* avoid rq from going away on us */
3374
	__task_rq_unlock(rq);
3375 3376 3377

	balance_callback(rq);
	preempt_enable();
3378 3379
}
#endif
3380

3381
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3382
{
3383
	int old_prio, delta, queued;
L
Linus Torvalds 已提交
3384
	unsigned long flags;
3385
	struct rq *rq;
L
Linus Torvalds 已提交
3386

3387
	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
L
Linus Torvalds 已提交
3388 3389 3390 3391 3392 3393 3394 3395 3396 3397
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
3398
	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
L
Linus Torvalds 已提交
3399
	 */
3400
	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3401 3402 3403
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
3404 3405
	queued = task_on_rq_queued(p);
	if (queued)
3406
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
3407 3408

	p->static_prio = NICE_TO_PRIO(nice);
3409
	set_load_weight(p);
3410 3411 3412
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3413

3414
	if (queued) {
3415
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
3416
		/*
3417 3418
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3419
		 */
3420
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3421
			resched_curr(rq);
L
Linus Torvalds 已提交
3422 3423
	}
out_unlock:
3424
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3425 3426 3427
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3428 3429 3430 3431 3432
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3433
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3434
{
3435
	/* convert nice value [19,-20] to rlimit style value [1,40] */
3436
	int nice_rlim = nice_to_rlimit(nice);
3437

3438
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3439 3440 3441
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3442 3443 3444 3445 3446 3447 3448 3449 3450
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3451
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3452
{
3453
	long nice, retval;
L
Linus Torvalds 已提交
3454 3455 3456 3457 3458 3459

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
3460
	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3461
	nice = task_nice(current) + increment;
L
Linus Torvalds 已提交
3462

3463
	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
M
Matt Mackall 已提交
3464 3465 3466
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
3481
 * Return: The priority value as seen by users in /proc.
L
Linus Torvalds 已提交
3482 3483 3484
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3485
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3486 3487 3488 3489 3490 3491 3492
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
3493 3494
 *
 * Return: 1 if the CPU is currently idle. 0 otherwise.
L
Linus Torvalds 已提交
3495 3496 3497
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3512 3513 3514 3515 3516
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
3517 3518
 *
 * Return: The idle task for the cpu @cpu.
L
Linus Torvalds 已提交
3519
 */
3520
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3521 3522 3523 3524 3525 3526 3527
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
3528 3529
 *
 * The task of @pid, if found. %NULL otherwise.
L
Linus Torvalds 已提交
3530
 */
A
Alexey Dobriyan 已提交
3531
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
3532
{
3533
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
3534 3535
}

3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550
/*
 * This function initializes the sched_dl_entity of a newly becoming
 * SCHED_DEADLINE task.
 *
 * Only the static values are considered here, the actual runtime and the
 * absolute deadline will be properly calculated when the task is enqueued
 * for the first time with its new policy.
 */
static void
__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	dl_se->dl_runtime = attr->sched_runtime;
	dl_se->dl_deadline = attr->sched_deadline;
3551
	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3552
	dl_se->flags = attr->sched_flags;
3553
	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573

	/*
	 * Changing the parameters of a task is 'tricky' and we're not doing
	 * the correct thing -- also see task_dead_dl() and switched_from_dl().
	 *
	 * What we SHOULD do is delay the bandwidth release until the 0-lag
	 * point. This would include retaining the task_struct until that time
	 * and change dl_overflow() to not immediately decrement the current
	 * amount.
	 *
	 * Instead we retain the current runtime/deadline and let the new
	 * parameters take effect after the current reservation period lapses.
	 * This is safe (albeit pessimistic) because the 0-lag point is always
	 * before the current scheduling deadline.
	 *
	 * We can still have temporary overloads because we do not delay the
	 * change in bandwidth until that time; so admission control is
	 * not on the safe side. It does however guarantee tasks will never
	 * consume more than promised.
	 */
3574 3575
}

3576 3577 3578 3579 3580 3581
/*
 * sched_setparam() passes in -1 for its policy, to let the functions
 * it calls know not to change it.
 */
#define SETPARAM_POLICY	-1

3582 3583
static void __setscheduler_params(struct task_struct *p,
		const struct sched_attr *attr)
L
Linus Torvalds 已提交
3584
{
3585 3586
	int policy = attr->sched_policy;

3587
	if (policy == SETPARAM_POLICY)
3588 3589
		policy = p->policy;

L
Linus Torvalds 已提交
3590
	p->policy = policy;
3591

3592 3593
	if (dl_policy(policy))
		__setparam_dl(p, attr);
3594
	else if (fair_policy(policy))
3595 3596
		p->static_prio = NICE_TO_PRIO(attr->sched_nice);

3597 3598 3599 3600 3601 3602
	/*
	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
	 * !rt_policy. Always setting this ensures that things like
	 * getparam()/getattr() don't report silly values for !rt tasks.
	 */
	p->rt_priority = attr->sched_priority;
3603
	p->normal_prio = normal_prio(p);
3604 3605
	set_load_weight(p);
}
3606

3607 3608
/* Actually do priority change: must hold pi & rq lock. */
static void __setscheduler(struct rq *rq, struct task_struct *p,
3609
			   const struct sched_attr *attr, bool keep_boost)
3610 3611
{
	__setscheduler_params(p, attr);
3612

3613
	/*
3614 3615
	 * Keep a potential priority boosting if called from
	 * sched_setscheduler().
3616
	 */
3617 3618 3619 3620
	if (keep_boost)
		p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
	else
		p->prio = normal_prio(p);
3621

3622 3623 3624
	if (dl_prio(p->prio))
		p->sched_class = &dl_sched_class;
	else if (rt_prio(p->prio))
3625 3626 3627
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
3628
}
3629 3630 3631 3632 3633 3634 3635 3636 3637

static void
__getparam_dl(struct task_struct *p, struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	attr->sched_priority = p->rt_priority;
	attr->sched_runtime = dl_se->dl_runtime;
	attr->sched_deadline = dl_se->dl_deadline;
3638
	attr->sched_period = dl_se->dl_period;
3639 3640 3641 3642 3643 3644
	attr->sched_flags = dl_se->flags;
}

/*
 * This function validates the new parameters of a -deadline task.
 * We ask for the deadline not being zero, and greater or equal
3645
 * than the runtime, as well as the period of being zero or
3646
 * greater than deadline. Furthermore, we have to be sure that
3647 3648 3649 3650
 * user parameters are above the internal resolution of 1us (we
 * check sched_runtime only since it is always the smaller one) and
 * below 2^63 ns (we have to check both sched_deadline and
 * sched_period, as the latter can be zero).
3651 3652 3653 3654
 */
static bool
__checkparam_dl(const struct sched_attr *attr)
{
3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680
	/* deadline != 0 */
	if (attr->sched_deadline == 0)
		return false;

	/*
	 * Since we truncate DL_SCALE bits, make sure we're at least
	 * that big.
	 */
	if (attr->sched_runtime < (1ULL << DL_SCALE))
		return false;

	/*
	 * Since we use the MSB for wrap-around and sign issues, make
	 * sure it's not set (mind that period can be equal to zero).
	 */
	if (attr->sched_deadline & (1ULL << 63) ||
	    attr->sched_period & (1ULL << 63))
		return false;

	/* runtime <= deadline <= period (if period != 0) */
	if ((attr->sched_period != 0 &&
	     attr->sched_period < attr->sched_deadline) ||
	    attr->sched_deadline < attr->sched_runtime)
		return false;

	return true;
3681 3682
}

3683 3684 3685 3686 3687 3688 3689 3690 3691 3692
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
3693 3694
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
3695 3696 3697 3698
	rcu_read_unlock();
	return match;
}

3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712
static bool dl_param_changed(struct task_struct *p,
		const struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	if (dl_se->dl_runtime != attr->sched_runtime ||
		dl_se->dl_deadline != attr->sched_deadline ||
		dl_se->dl_period != attr->sched_period ||
		dl_se->flags != attr->sched_flags)
		return true;

	return false;
}

3713 3714
static int __sched_setscheduler(struct task_struct *p,
				const struct sched_attr *attr,
3715
				bool user, bool pi)
L
Linus Torvalds 已提交
3716
{
3717 3718
	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
		      MAX_RT_PRIO - 1 - attr->sched_priority;
3719
	int retval, oldprio, oldpolicy = -1, queued, running;
3720
	int new_effective_prio, policy = attr->sched_policy;
L
Linus Torvalds 已提交
3721
	unsigned long flags;
3722
	const struct sched_class *prev_class;
3723
	struct rq *rq;
3724
	int reset_on_fork;
L
Linus Torvalds 已提交
3725

3726 3727
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
3728 3729
recheck:
	/* double check policy once rq lock held */
3730 3731
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
3732
		policy = oldpolicy = p->policy;
3733
	} else {
3734
		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3735

3736 3737
		if (policy != SCHED_DEADLINE &&
				policy != SCHED_FIFO && policy != SCHED_RR &&
3738 3739 3740 3741 3742
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

3743 3744 3745
	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
		return -EINVAL;

L
Linus Torvalds 已提交
3746 3747
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
3748 3749
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
3750
	 */
3751
	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3752
	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
3753
		return -EINVAL;
3754 3755
	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
	    (rt_policy(policy) != (attr->sched_priority != 0)))
L
Linus Torvalds 已提交
3756 3757
		return -EINVAL;

3758 3759 3760
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
3761
	if (user && !capable(CAP_SYS_NICE)) {
3762
		if (fair_policy(policy)) {
3763
			if (attr->sched_nice < task_nice(p) &&
3764
			    !can_nice(p, attr->sched_nice))
3765 3766 3767
				return -EPERM;
		}

3768
		if (rt_policy(policy)) {
3769 3770
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
3771 3772 3773 3774 3775 3776

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
3777 3778
			if (attr->sched_priority > p->rt_priority &&
			    attr->sched_priority > rlim_rtprio)
3779 3780
				return -EPERM;
		}
3781

3782 3783 3784 3785 3786 3787 3788 3789 3790
		 /*
		  * Can't set/change SCHED_DEADLINE policy at all for now
		  * (safest behavior); in the future we would like to allow
		  * unprivileged DL tasks to increase their relative deadline
		  * or reduce their runtime (both ways reducing utilization)
		  */
		if (dl_policy(policy))
			return -EPERM;

I
Ingo Molnar 已提交
3791
		/*
3792 3793
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
3794
		 */
3795
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3796
			if (!can_nice(p, task_nice(p)))
3797 3798
				return -EPERM;
		}
3799

3800
		/* can't change other user's priorities */
3801
		if (!check_same_owner(p))
3802
			return -EPERM;
3803 3804 3805 3806

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
3807
	}
L
Linus Torvalds 已提交
3808

3809
	if (user) {
3810
		retval = security_task_setscheduler(p);
3811 3812 3813 3814
		if (retval)
			return retval;
	}

3815 3816 3817
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
3818
	 *
L
Lucas De Marchi 已提交
3819
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
3820 3821
	 * runqueue lock must be held.
	 */
3822
	rq = task_rq_lock(p, &flags);
3823

3824 3825 3826 3827
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
3828
		task_rq_unlock(rq, p, &flags);
3829 3830 3831
		return -EINVAL;
	}

3832
	/*
3833 3834
	 * If not changing anything there's no need to proceed further,
	 * but store a possible modification of reset_on_fork.
3835
	 */
3836
	if (unlikely(policy == p->policy)) {
3837
		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3838 3839 3840
			goto change;
		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
			goto change;
3841
		if (dl_policy(policy) && dl_param_changed(p, attr))
3842
			goto change;
3843

3844
		p->sched_reset_on_fork = reset_on_fork;
3845
		task_rq_unlock(rq, p, &flags);
3846 3847
		return 0;
	}
3848
change:
3849

3850
	if (user) {
3851
#ifdef CONFIG_RT_GROUP_SCHED
3852 3853 3854 3855 3856
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3857 3858
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
3859
			task_rq_unlock(rq, p, &flags);
3860 3861 3862
			return -EPERM;
		}
#endif
3863 3864 3865 3866 3867 3868 3869 3870 3871
#ifdef CONFIG_SMP
		if (dl_bandwidth_enabled() && dl_policy(policy)) {
			cpumask_t *span = rq->rd->span;

			/*
			 * Don't allow tasks with an affinity mask smaller than
			 * the entire root_domain to become SCHED_DEADLINE. We
			 * will also fail if there's no bandwidth available.
			 */
3872 3873
			if (!cpumask_subset(span, &p->cpus_allowed) ||
			    rq->rd->dl_bw.bw == 0) {
3874 3875 3876 3877 3878 3879
				task_rq_unlock(rq, p, &flags);
				return -EPERM;
			}
		}
#endif
	}
3880

L
Linus Torvalds 已提交
3881 3882 3883
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
3884
		task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3885 3886
		goto recheck;
	}
3887 3888 3889 3890 3891 3892

	/*
	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
	 * is available.
	 */
3893
	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3894 3895 3896 3897
		task_rq_unlock(rq, p, &flags);
		return -EBUSY;
	}

3898 3899 3900
	p->sched_reset_on_fork = reset_on_fork;
	oldprio = p->prio;

3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914
	if (pi) {
		/*
		 * Take priority boosted tasks into account. If the new
		 * effective priority is unchanged, we just store the new
		 * normal parameters and do not touch the scheduler class and
		 * the runqueue. This will be done when the task deboost
		 * itself.
		 */
		new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
		if (new_effective_prio == oldprio) {
			__setscheduler_params(p, attr);
			task_rq_unlock(rq, p, &flags);
			return 0;
		}
3915 3916
	}

3917
	queued = task_on_rq_queued(p);
3918
	running = task_current(rq, p);
3919
	if (queued)
3920
		dequeue_task(rq, p, 0);
3921
	if (running)
3922
		put_prev_task(rq, p);
3923

3924
	prev_class = p->sched_class;
3925
	__setscheduler(rq, p, attr, pi);
3926

3927 3928
	if (running)
		p->sched_class->set_curr_task(rq);
3929
	if (queued) {
3930 3931 3932 3933 3934 3935
		/*
		 * We enqueue to tail when the priority of a task is
		 * increased (user space view).
		 */
		enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
	}
3936

P
Peter Zijlstra 已提交
3937
	check_class_changed(rq, p, prev_class, oldprio);
3938
	preempt_disable(); /* avoid rq from going away on us */
3939
	task_rq_unlock(rq, p, &flags);
3940

3941 3942
	if (pi)
		rt_mutex_adjust_pi(p);
3943

3944 3945 3946 3947 3948
	/*
	 * Run balance callbacks after we've adjusted the PI chain.
	 */
	balance_callback(rq);
	preempt_enable();
3949

L
Linus Torvalds 已提交
3950 3951
	return 0;
}
3952

3953 3954 3955 3956 3957 3958 3959 3960 3961
static int _sched_setscheduler(struct task_struct *p, int policy,
			       const struct sched_param *param, bool check)
{
	struct sched_attr attr = {
		.sched_policy   = policy,
		.sched_priority = param->sched_priority,
		.sched_nice	= PRIO_TO_NICE(p->static_prio),
	};

3962 3963
	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
3964 3965 3966 3967 3968
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
		policy &= ~SCHED_RESET_ON_FORK;
		attr.sched_policy = policy;
	}

3969
	return __sched_setscheduler(p, &attr, check, true);
3970
}
3971 3972 3973 3974 3975 3976
/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
3977 3978
 * Return: 0 on success. An error code otherwise.
 *
3979 3980 3981
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
3982
		       const struct sched_param *param)
3983
{
3984
	return _sched_setscheduler(p, policy, param, true);
3985
}
L
Linus Torvalds 已提交
3986 3987
EXPORT_SYMBOL_GPL(sched_setscheduler);

3988 3989
int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
{
3990
	return __sched_setscheduler(p, attr, true, true);
3991 3992 3993
}
EXPORT_SYMBOL_GPL(sched_setattr);

3994 3995 3996 3997 3998 3999 4000 4001 4002 4003
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
4004 4005
 *
 * Return: 0 on success. An error code otherwise.
4006 4007
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4008
			       const struct sched_param *param)
4009
{
4010
	return _sched_setscheduler(p, policy, param, false);
4011 4012
}

I
Ingo Molnar 已提交
4013 4014
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4015 4016 4017
{
	struct sched_param lparam;
	struct task_struct *p;
4018
	int retval;
L
Linus Torvalds 已提交
4019 4020 4021 4022 4023

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4024 4025 4026

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4027
	p = find_process_by_pid(pid);
4028 4029 4030
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4031

L
Linus Torvalds 已提交
4032 4033 4034
	return retval;
}

4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096
/*
 * Mimics kernel/events/core.c perf_copy_attr().
 */
static int sched_copy_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr)
{
	u32 size;
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = SCHED_ATTR_SIZE_VER0;

	if (size < SCHED_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
	 */
	if (size > sizeof(*attr)) {
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;

		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;

		for (; addr < end; addr++) {
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
		size = sizeof(*attr);
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * XXX: do we want to be lenient like existing syscalls; or do we want
	 * to be strict and return an error on out-of-bounds values?
	 */
4097
	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4098

4099
	return 0;
4100 4101 4102

err_size:
	put_user(sizeof(*attr), &uattr->size);
4103
	return -E2BIG;
4104 4105
}

L
Linus Torvalds 已提交
4106 4107 4108 4109 4110
/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4111 4112
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4113
 */
4114 4115
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
4116
{
4117 4118 4119 4120
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4121 4122 4123 4124 4125 4126 4127
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
4128 4129
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4130
 */
4131
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4132
{
4133
	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
L
Linus Torvalds 已提交
4134 4135
}

4136 4137 4138
/**
 * sys_sched_setattr - same as above, but with extended sched_attr
 * @pid: the pid in question.
J
Juri Lelli 已提交
4139
 * @uattr: structure containing the extended parameters.
4140
 * @flags: for future extension.
4141
 */
4142 4143
SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
			       unsigned int, flags)
4144 4145 4146 4147 4148
{
	struct sched_attr attr;
	struct task_struct *p;
	int retval;

4149
	if (!uattr || pid < 0 || flags)
4150 4151
		return -EINVAL;

4152 4153 4154
	retval = sched_copy_attr(uattr, &attr);
	if (retval)
		return retval;
4155

4156
	if ((int)attr.sched_policy < 0)
4157
		return -EINVAL;
4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168

	rcu_read_lock();
	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (p != NULL)
		retval = sched_setattr(p, &attr);
	rcu_read_unlock();

	return retval;
}

L
Linus Torvalds 已提交
4169 4170 4171
/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
4172 4173 4174
 *
 * Return: On success, the policy of the thread. Otherwise, a negative error
 * code.
L
Linus Torvalds 已提交
4175
 */
4176
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4177
{
4178
	struct task_struct *p;
4179
	int retval;
L
Linus Torvalds 已提交
4180 4181

	if (pid < 0)
4182
		return -EINVAL;
L
Linus Torvalds 已提交
4183 4184

	retval = -ESRCH;
4185
	rcu_read_lock();
L
Linus Torvalds 已提交
4186 4187 4188 4189
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4190 4191
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4192
	}
4193
	rcu_read_unlock();
L
Linus Torvalds 已提交
4194 4195 4196 4197
	return retval;
}

/**
4198
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4199 4200
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
4201 4202 4203
 *
 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
 * code.
L
Linus Torvalds 已提交
4204
 */
4205
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4206
{
4207
	struct sched_param lp = { .sched_priority = 0 };
4208
	struct task_struct *p;
4209
	int retval;
L
Linus Torvalds 已提交
4210 4211

	if (!param || pid < 0)
4212
		return -EINVAL;
L
Linus Torvalds 已提交
4213

4214
	rcu_read_lock();
L
Linus Torvalds 已提交
4215 4216 4217 4218 4219 4220 4221 4222 4223
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4224 4225
	if (task_has_rt_policy(p))
		lp.sched_priority = p->rt_priority;
4226
	rcu_read_unlock();
L
Linus Torvalds 已提交
4227 4228 4229 4230 4231 4232 4233 4234 4235

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4236
	rcu_read_unlock();
L
Linus Torvalds 已提交
4237 4238 4239
	return retval;
}

4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262
static int sched_read_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr,
			   unsigned int usize)
{
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, usize))
		return -EFAULT;

	/*
	 * If we're handed a smaller struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. old
	 * user-space does not get uncomplete information.
	 */
	if (usize < sizeof(*attr)) {
		unsigned char *addr;
		unsigned char *end;

		addr = (void *)attr + usize;
		end  = (void *)attr + sizeof(*attr);

		for (; addr < end; addr++) {
			if (*addr)
4263
				return -EFBIG;
4264 4265 4266 4267 4268
		}

		attr->size = usize;
	}

4269
	ret = copy_to_user(uattr, attr, attr->size);
4270 4271 4272
	if (ret)
		return -EFAULT;

4273
	return 0;
4274 4275 4276
}

/**
4277
 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4278
 * @pid: the pid in question.
J
Juri Lelli 已提交
4279
 * @uattr: structure containing the extended parameters.
4280
 * @size: sizeof(attr) for fwd/bwd comp.
4281
 * @flags: for future extension.
4282
 */
4283 4284
SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
		unsigned int, size, unsigned int, flags)
4285 4286 4287 4288 4289 4290 4291 4292
{
	struct sched_attr attr = {
		.size = sizeof(struct sched_attr),
	};
	struct task_struct *p;
	int retval;

	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4293
	    size < SCHED_ATTR_SIZE_VER0 || flags)
4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306
		return -EINVAL;

	rcu_read_lock();
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	attr.sched_policy = p->policy;
4307 4308
	if (p->sched_reset_on_fork)
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4309 4310 4311
	if (task_has_dl_policy(p))
		__getparam_dl(p, &attr);
	else if (task_has_rt_policy(p))
4312 4313
		attr.sched_priority = p->rt_priority;
	else
4314
		attr.sched_nice = task_nice(p);
4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325

	rcu_read_unlock();

	retval = sched_read_attr(uattr, &attr, size);
	return retval;

out_unlock:
	rcu_read_unlock();
	return retval;
}

4326
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4327
{
4328
	cpumask_var_t cpus_allowed, new_mask;
4329 4330
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4331

4332
	rcu_read_lock();
L
Linus Torvalds 已提交
4333 4334 4335

	p = find_process_by_pid(pid);
	if (!p) {
4336
		rcu_read_unlock();
L
Linus Torvalds 已提交
4337 4338 4339
		return -ESRCH;
	}

4340
	/* Prevent p going away */
L
Linus Torvalds 已提交
4341
	get_task_struct(p);
4342
	rcu_read_unlock();
L
Linus Torvalds 已提交
4343

4344 4345 4346 4347
	if (p->flags & PF_NO_SETAFFINITY) {
		retval = -EINVAL;
		goto out_put_task;
	}
4348 4349 4350 4351 4352 4353 4354 4355
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4356
	retval = -EPERM;
E
Eric W. Biederman 已提交
4357 4358 4359 4360
	if (!check_same_owner(p)) {
		rcu_read_lock();
		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
			rcu_read_unlock();
4361
			goto out_free_new_mask;
E
Eric W. Biederman 已提交
4362 4363 4364
		}
		rcu_read_unlock();
	}
L
Linus Torvalds 已提交
4365

4366
	retval = security_task_setscheduler(p);
4367
	if (retval)
4368
		goto out_free_new_mask;
4369

4370 4371 4372 4373

	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);

4374 4375 4376 4377 4378 4379 4380
	/*
	 * Since bandwidth control happens on root_domain basis,
	 * if admission test is enabled, we only admit -deadline
	 * tasks allowed to run on all the CPUs in the task's
	 * root_domain.
	 */
#ifdef CONFIG_SMP
4381 4382 4383
	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
		rcu_read_lock();
		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4384
			retval = -EBUSY;
4385
			rcu_read_unlock();
4386
			goto out_free_new_mask;
4387
		}
4388
		rcu_read_unlock();
4389 4390
	}
#endif
P
Peter Zijlstra 已提交
4391
again:
4392
	retval = __set_cpus_allowed_ptr(p, new_mask, true);
L
Linus Torvalds 已提交
4393

P
Paul Menage 已提交
4394
	if (!retval) {
4395 4396
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4397 4398 4399 4400 4401
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4402
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4403 4404 4405
			goto again;
		}
	}
4406
out_free_new_mask:
4407 4408 4409 4410
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4411 4412 4413 4414 4415
	put_task_struct(p);
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4416
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4417
{
4418 4419 4420 4421 4422
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4423 4424 4425 4426 4427 4428 4429 4430
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
4431 4432
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4433
 */
4434 4435
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4436
{
4437
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4438 4439
	int retval;

4440 4441
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4442

4443 4444 4445 4446 4447
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4448 4449
}

4450
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4451
{
4452
	struct task_struct *p;
4453
	unsigned long flags;
L
Linus Torvalds 已提交
4454 4455
	int retval;

4456
	rcu_read_lock();
L
Linus Torvalds 已提交
4457 4458 4459 4460 4461 4462

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4463 4464 4465 4466
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4467
	raw_spin_lock_irqsave(&p->pi_lock, flags);
4468
	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4469
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4470 4471

out_unlock:
4472
	rcu_read_unlock();
L
Linus Torvalds 已提交
4473

4474
	return retval;
L
Linus Torvalds 已提交
4475 4476 4477 4478 4479 4480 4481
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4482 4483
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4484
 */
4485 4486
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4487 4488
{
	int ret;
4489
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4490

A
Anton Blanchard 已提交
4491
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4492 4493
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4494 4495
		return -EINVAL;

4496 4497
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4498

4499 4500
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4501
		size_t retlen = min_t(size_t, len, cpumask_size());
4502 4503

		if (copy_to_user(user_mask_ptr, mask, retlen))
4504 4505
			ret = -EFAULT;
		else
4506
			ret = retlen;
4507 4508
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4509

4510
	return ret;
L
Linus Torvalds 已提交
4511 4512 4513 4514 4515
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4516 4517
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
4518 4519
 *
 * Return: 0.
L
Linus Torvalds 已提交
4520
 */
4521
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4522
{
4523
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4524

4525
	schedstat_inc(rq, yld_count);
4526
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4527 4528 4529 4530 4531 4532

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4533
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4534
	do_raw_spin_unlock(&rq->lock);
4535
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
4536 4537 4538 4539 4540 4541

	schedule();

	return 0;
}

4542
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4543
{
4544
	if (should_resched(0)) {
4545
		preempt_schedule_common();
L
Linus Torvalds 已提交
4546 4547 4548 4549
		return 1;
	}
	return 0;
}
4550
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4551 4552

/*
4553
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4554 4555
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4556
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4557 4558 4559
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4560
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4561
{
4562
	int resched = should_resched(PREEMPT_LOCK_OFFSET);
J
Jan Kara 已提交
4563 4564
	int ret = 0;

4565 4566
	lockdep_assert_held(lock);

4567
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4568
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4569
		if (resched)
4570
			preempt_schedule_common();
N
Nick Piggin 已提交
4571 4572
		else
			cpu_relax();
J
Jan Kara 已提交
4573
		ret = 1;
L
Linus Torvalds 已提交
4574 4575
		spin_lock(lock);
	}
J
Jan Kara 已提交
4576
	return ret;
L
Linus Torvalds 已提交
4577
}
4578
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4579

4580
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4581 4582 4583
{
	BUG_ON(!in_softirq());

4584
	if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4585
		local_bh_enable();
4586
		preempt_schedule_common();
L
Linus Torvalds 已提交
4587 4588 4589 4590 4591
		local_bh_disable();
		return 1;
	}
	return 0;
}
4592
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4593 4594 4595 4596

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
 * 	yield();
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
4615 4616 4617 4618 4619 4620 4621 4622
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

4623 4624 4625 4626
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
4627 4628
 * @p: target task
 * @preempt: whether task preemption is allowed or not
4629 4630 4631 4632
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
4633
 * Return:
4634 4635 4636
 *	true (>0) if we indeed boosted the target task.
 *	false (0) if we failed to boost the target.
 *	-ESRCH if there's no task to yield to.
4637
 */
4638
int __sched yield_to(struct task_struct *p, bool preempt)
4639 4640 4641 4642
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
4643
	int yielded = 0;
4644 4645 4646 4647 4648 4649

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
4650 4651 4652 4653 4654 4655 4656 4657 4658
	/*
	 * If we're the only runnable task on the rq and target rq also
	 * has only one task, there's absolutely no point in yielding.
	 */
	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
		yielded = -ESRCH;
		goto out_irq;
	}

4659
	double_rq_lock(rq, p_rq);
4660
	if (task_rq(p) != p_rq) {
4661 4662 4663 4664 4665
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
4666
		goto out_unlock;
4667 4668

	if (curr->sched_class != p->sched_class)
4669
		goto out_unlock;
4670 4671

	if (task_running(p_rq, p) || p->state)
4672
		goto out_unlock;
4673 4674

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4675
	if (yielded) {
4676
		schedstat_inc(rq, yld_count);
4677 4678 4679 4680 4681
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
4682
			resched_curr(p_rq);
4683
	}
4684

4685
out_unlock:
4686
	double_rq_unlock(rq, p_rq);
4687
out_irq:
4688 4689
	local_irq_restore(flags);

4690
	if (yielded > 0)
4691 4692 4693 4694 4695 4696
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
4697
/*
I
Ingo Molnar 已提交
4698
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4699 4700 4701 4702
 * that process accounting knows that this is a task in IO wait state.
 */
long __sched io_schedule_timeout(long timeout)
{
4703 4704
	int old_iowait = current->in_iowait;
	struct rq *rq;
L
Linus Torvalds 已提交
4705 4706
	long ret;

4707
	current->in_iowait = 1;
4708
	blk_schedule_flush_plug(current);
4709

4710
	delayacct_blkio_start();
4711
	rq = raw_rq();
L
Linus Torvalds 已提交
4712 4713
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
4714
	current->in_iowait = old_iowait;
L
Linus Torvalds 已提交
4715
	atomic_dec(&rq->nr_iowait);
4716
	delayacct_blkio_end();
4717

L
Linus Torvalds 已提交
4718 4719
	return ret;
}
4720
EXPORT_SYMBOL(io_schedule_timeout);
L
Linus Torvalds 已提交
4721 4722 4723 4724 4725

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
4726 4727 4728
 * Return: On success, this syscall returns the maximum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
4729
 */
4730
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
4731 4732 4733 4734 4735 4736 4737 4738
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
4739
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
4740
	case SCHED_NORMAL:
4741
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4742
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4743 4744 4745 4746 4747 4748 4749 4750 4751 4752
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
4753 4754 4755
 * Return: On success, this syscall returns the minimum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
4756
 */
4757
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
4758 4759 4760 4761 4762 4763 4764 4765
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
4766
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
4767
	case SCHED_NORMAL:
4768
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4769
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
4782 4783 4784
 *
 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
 * an error code.
L
Linus Torvalds 已提交
4785
 */
4786
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4787
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
4788
{
4789
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4790
	unsigned int time_slice;
4791 4792
	unsigned long flags;
	struct rq *rq;
4793
	int retval;
L
Linus Torvalds 已提交
4794 4795 4796
	struct timespec t;

	if (pid < 0)
4797
		return -EINVAL;
L
Linus Torvalds 已提交
4798 4799

	retval = -ESRCH;
4800
	rcu_read_lock();
L
Linus Torvalds 已提交
4801 4802 4803 4804 4805 4806 4807 4808
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4809
	rq = task_rq_lock(p, &flags);
4810 4811 4812
	time_slice = 0;
	if (p->sched_class->get_rr_interval)
		time_slice = p->sched_class->get_rr_interval(rq, p);
4813
	task_rq_unlock(rq, p, &flags);
D
Dmitry Adamushko 已提交
4814

4815
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
4816
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4817 4818
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4819

L
Linus Torvalds 已提交
4820
out_unlock:
4821
	rcu_read_unlock();
L
Linus Torvalds 已提交
4822 4823 4824
	return retval;
}

4825
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4826

4827
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4828 4829
{
	unsigned long free = 0;
4830
	int ppid;
4831
	unsigned long state = p->state;
L
Linus Torvalds 已提交
4832

4833 4834
	if (state)
		state = __ffs(state) + 1;
4835
	printk(KERN_INFO "%-15.15s %c", p->comm,
4836
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4837
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4838
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4839
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4840
	else
P
Peter Zijlstra 已提交
4841
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4842 4843
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4844
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4845
	else
P
Peter Zijlstra 已提交
4846
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4847 4848
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
4849
	free = stack_not_used(p);
L
Linus Torvalds 已提交
4850
#endif
4851
	ppid = 0;
4852
	rcu_read_lock();
4853 4854
	if (pid_alive(p))
		ppid = task_pid_nr(rcu_dereference(p->real_parent));
4855
	rcu_read_unlock();
P
Peter Zijlstra 已提交
4856
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4857
		task_pid_nr(p), ppid,
4858
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
4859

4860
	print_worker_info(KERN_INFO, p);
4861
	show_stack(p, NULL);
L
Linus Torvalds 已提交
4862 4863
}

I
Ingo Molnar 已提交
4864
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4865
{
4866
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4867

4868
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
4869 4870
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4871
#else
P
Peter Zijlstra 已提交
4872 4873
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4874
#endif
4875
	rcu_read_lock();
4876
	for_each_process_thread(g, p) {
L
Linus Torvalds 已提交
4877 4878
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
4879
		 * console might take a lot of time:
L
Linus Torvalds 已提交
4880 4881
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4882
		if (!state_filter || (p->state & state_filter))
4883
			sched_show_task(p);
4884
	}
L
Linus Torvalds 已提交
4885

4886 4887
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4888 4889 4890
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
4891
	rcu_read_unlock();
I
Ingo Molnar 已提交
4892 4893 4894
	/*
	 * Only show locks if all tasks are dumped:
	 */
4895
	if (!state_filter)
I
Ingo Molnar 已提交
4896
		debug_show_all_locks();
L
Linus Torvalds 已提交
4897 4898
}

4899
void init_idle_bootup_task(struct task_struct *idle)
I
Ingo Molnar 已提交
4900
{
I
Ingo Molnar 已提交
4901
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4902 4903
}

4904 4905 4906 4907 4908 4909 4910 4911
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4912
void init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4913
{
4914
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4915 4916
	unsigned long flags;

4917 4918
	raw_spin_lock_irqsave(&idle->pi_lock, flags);
	raw_spin_lock(&rq->lock);
4919

4920
	__sched_fork(0, idle);
4921
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
4922 4923
	idle->se.exec_start = sched_clock();

4924
	do_set_cpus_allowed(idle, cpumask_of(cpu));
4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
4936
	__set_task_cpu(idle, cpu);
4937
	rcu_read_unlock();
L
Linus Torvalds 已提交
4938 4939

	rq->curr = rq->idle = idle;
4940
	idle->on_rq = TASK_ON_RQ_QUEUED;
P
Peter Zijlstra 已提交
4941 4942
#if defined(CONFIG_SMP)
	idle->on_cpu = 1;
4943
#endif
4944 4945
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
L
Linus Torvalds 已提交
4946 4947

	/* Set the preempt count _outside_ the spinlocks! */
4948
	init_idle_preempt_count(idle, cpu);
4949

I
Ingo Molnar 已提交
4950 4951 4952 4953
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
4954
	ftrace_graph_init_idle_task(idle, cpu);
4955
	vtime_init_idle(idle, cpu);
4956 4957 4958
#if defined(CONFIG_SMP)
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
4959 4960
}

4961 4962 4963 4964 4965 4966 4967
int cpuset_cpumask_can_shrink(const struct cpumask *cur,
			      const struct cpumask *trial)
{
	int ret = 1, trial_cpus;
	struct dl_bw *cur_dl_b;
	unsigned long flags;

4968 4969 4970
	if (!cpumask_weight(cur))
		return ret;

4971
	rcu_read_lock_sched();
4972 4973 4974 4975 4976 4977 4978 4979
	cur_dl_b = dl_bw_of(cpumask_any(cur));
	trial_cpus = cpumask_weight(trial);

	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
	if (cur_dl_b->bw != -1 &&
	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
		ret = 0;
	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
4980
	rcu_read_unlock_sched();
4981 4982 4983 4984

	return ret;
}

4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008
int task_can_attach(struct task_struct *p,
		    const struct cpumask *cs_cpus_allowed)
{
	int ret = 0;

	/*
	 * Kthreads which disallow setaffinity shouldn't be moved
	 * to a new cpuset; we don't want to change their cpu
	 * affinity and isolating such threads by their set of
	 * allowed nodes is unnecessary.  Thus, cpusets are not
	 * applicable for such threads.  This prevents checking for
	 * success of set_cpus_allowed_ptr() on all attached tasks
	 * before cpus_allowed may be changed.
	 */
	if (p->flags & PF_NO_SETAFFINITY) {
		ret = -EINVAL;
		goto out;
	}

#ifdef CONFIG_SMP
	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
					      cs_cpus_allowed)) {
		unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
							cs_cpus_allowed);
5009
		struct dl_bw *dl_b;
5010 5011 5012 5013
		bool overflow;
		int cpus;
		unsigned long flags;

5014 5015
		rcu_read_lock_sched();
		dl_b = dl_bw_of(dest_cpu);
5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030
		raw_spin_lock_irqsave(&dl_b->lock, flags);
		cpus = dl_bw_cpus(dest_cpu);
		overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
		if (overflow)
			ret = -EBUSY;
		else {
			/*
			 * We reserve space for this task in the destination
			 * root_domain, as we can't fail after this point.
			 * We will free resources in the source root_domain
			 * later on (see set_cpus_allowed_dl()).
			 */
			__dl_add(dl_b, p->dl.dl_bw);
		}
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5031
		rcu_read_unlock_sched();
5032 5033 5034 5035 5036 5037 5038

	}
#endif
out:
	return ret;
}

L
Linus Torvalds 已提交
5039 5040
#ifdef CONFIG_SMP

5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055
#ifdef CONFIG_NUMA_BALANCING
/* Migrate current task p to target_cpu */
int migrate_task_to(struct task_struct *p, int target_cpu)
{
	struct migration_arg arg = { p, target_cpu };
	int curr_cpu = task_cpu(p);

	if (curr_cpu == target_cpu)
		return 0;

	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
		return -EINVAL;

	/* TODO: This is not properly updating schedstats */

5056
	trace_sched_move_numa(p, curr_cpu, target_cpu);
5057 5058
	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
}
5059 5060 5061 5062 5063 5064 5065 5066 5067

/*
 * Requeue a task on a given node and accurately track the number of NUMA
 * tasks on the runqueues
 */
void sched_setnuma(struct task_struct *p, int nid)
{
	struct rq *rq;
	unsigned long flags;
5068
	bool queued, running;
5069 5070

	rq = task_rq_lock(p, &flags);
5071
	queued = task_on_rq_queued(p);
5072 5073
	running = task_current(rq, p);

5074
	if (queued)
5075 5076
		dequeue_task(rq, p, 0);
	if (running)
5077
		put_prev_task(rq, p);
5078 5079 5080 5081 5082

	p->numa_preferred_nid = nid;

	if (running)
		p->sched_class->set_curr_task(rq);
5083
	if (queued)
5084 5085 5086
		enqueue_task(rq, p, 0);
	task_rq_unlock(rq, p, &flags);
}
P
Peter Zijlstra 已提交
5087
#endif /* CONFIG_NUMA_BALANCING */
5088

L
Linus Torvalds 已提交
5089
#ifdef CONFIG_HOTPLUG_CPU
5090
/*
5091 5092
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
5093
 */
5094
void idle_task_exit(void)
L
Linus Torvalds 已提交
5095
{
5096
	struct mm_struct *mm = current->active_mm;
5097

5098
	BUG_ON(cpu_online(smp_processor_id()));
5099

5100
	if (mm != &init_mm) {
5101
		switch_mm(mm, &init_mm, current);
5102 5103
		finish_arch_post_lock_switch();
	}
5104
	mmdrop(mm);
L
Linus Torvalds 已提交
5105 5106 5107
}

/*
5108 5109 5110 5111 5112
 * Since this CPU is going 'away' for a while, fold any nr_active delta
 * we might have. Assumes we're called after migrate_tasks() so that the
 * nr_active count is stable.
 *
 * Also see the comment "Global load-average calculations".
L
Linus Torvalds 已提交
5113
 */
5114
static void calc_load_migrate(struct rq *rq)
L
Linus Torvalds 已提交
5115
{
5116 5117 5118
	long delta = calc_load_fold_active(rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
5119 5120
}

5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136
static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
{
}

static const struct sched_class fake_sched_class = {
	.put_prev_task = put_prev_task_fake,
};

static struct task_struct fake_task = {
	/*
	 * Avoid pull_{rt,dl}_task()
	 */
	.prio = MAX_PRIO + 1,
	.sched_class = &fake_sched_class,
};

5137
/*
5138 5139 5140 5141 5142 5143
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
5144
 */
5145
static void migrate_tasks(struct rq *dead_rq)
L
Linus Torvalds 已提交
5146
{
5147
	struct rq *rq = dead_rq;
5148 5149
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
5150 5151

	/*
5152 5153 5154 5155 5156 5157 5158
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
5159
	 */
5160
	rq->stop = NULL;
5161

5162 5163 5164 5165 5166 5167 5168
	/*
	 * put_prev_task() and pick_next_task() sched
	 * class method both need to have an up-to-date
	 * value of rq->clock[_task]
	 */
	update_rq_clock(rq);

5169
	for (;;) {
5170 5171 5172 5173 5174
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
5175
			break;
5176

5177
		/*
W
Wanpeng Li 已提交
5178
		 * pick_next_task assumes pinned rq->lock.
5179 5180
		 */
		lockdep_pin_lock(&rq->lock);
5181
		next = pick_next_task(rq, &fake_task);
5182
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
5183
		next->sched_class->put_prev_task(rq, next);
5184

W
Wanpeng Li 已提交
5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208
		/*
		 * Rules for changing task_struct::cpus_allowed are holding
		 * both pi_lock and rq->lock, such that holding either
		 * stabilizes the mask.
		 *
		 * Drop rq->lock is not quite as disastrous as it usually is
		 * because !cpu_active at this point, which means load-balance
		 * will not interfere. Also, stop-machine.
		 */
		lockdep_unpin_lock(&rq->lock);
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&next->pi_lock);
		raw_spin_lock(&rq->lock);

		/*
		 * Since we're inside stop-machine, _nothing_ should have
		 * changed the task, WARN if weird stuff happened, because in
		 * that case the above rq->lock drop is a fail too.
		 */
		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
			raw_spin_unlock(&next->pi_lock);
			continue;
		}

5209
		/* Find suitable destination for @next, with force if needed. */
5210
		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5211

5212 5213 5214 5215 5216 5217
		rq = __migrate_task(rq, next, dest_cpu);
		if (rq != dead_rq) {
			raw_spin_unlock(&rq->lock);
			rq = dead_rq;
			raw_spin_lock(&rq->lock);
		}
W
Wanpeng Li 已提交
5218
		raw_spin_unlock(&next->pi_lock);
L
Linus Torvalds 已提交
5219
	}
5220

5221
	rq->stop = stop;
5222
}
L
Linus Torvalds 已提交
5223 5224
#endif /* CONFIG_HOTPLUG_CPU */

5225 5226 5227
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5228 5229
	{
		.procname	= "sched_domain",
5230
		.mode		= 0555,
5231
	},
5232
	{}
5233 5234 5235
};

static struct ctl_table sd_ctl_root[] = {
5236 5237
	{
		.procname	= "kernel",
5238
		.mode		= 0555,
5239 5240
		.child		= sd_ctl_dir,
	},
5241
	{}
5242 5243 5244 5245 5246
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5247
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5248 5249 5250 5251

	return entry;
}

5252 5253
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5254
	struct ctl_table *entry;
5255

5256 5257 5258
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5259
	 * will always be set. In the lowest directory the names are
5260 5261 5262
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5263 5264
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5265 5266 5267
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5268 5269 5270 5271 5272

	kfree(*tablep);
	*tablep = NULL;
}

5273
static int min_load_idx = 0;
5274
static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5275

5276
static void
5277
set_table_entry(struct ctl_table *entry,
5278
		const char *procname, void *data, int maxlen,
5279 5280
		umode_t mode, proc_handler *proc_handler,
		bool load_idx)
5281 5282 5283 5284 5285 5286
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
5287 5288 5289 5290 5291

	if (load_idx) {
		entry->extra1 = &min_load_idx;
		entry->extra2 = &max_load_idx;
	}
5292 5293 5294 5295 5296
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5297
	struct ctl_table *table = sd_alloc_ctl_entry(14);
5298

5299 5300 5301
	if (table == NULL)
		return NULL;

5302
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5303
		sizeof(long), 0644, proc_doulongvec_minmax, false);
5304
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5305
		sizeof(long), 0644, proc_doulongvec_minmax, false);
5306
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5307
		sizeof(int), 0644, proc_dointvec_minmax, true);
5308
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5309
		sizeof(int), 0644, proc_dointvec_minmax, true);
5310
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5311
		sizeof(int), 0644, proc_dointvec_minmax, true);
5312
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5313
		sizeof(int), 0644, proc_dointvec_minmax, true);
5314
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5315
		sizeof(int), 0644, proc_dointvec_minmax, true);
5316
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5317
		sizeof(int), 0644, proc_dointvec_minmax, false);
5318
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5319
		sizeof(int), 0644, proc_dointvec_minmax, false);
5320
	set_table_entry(&table[9], "cache_nice_tries",
5321
		&sd->cache_nice_tries,
5322
		sizeof(int), 0644, proc_dointvec_minmax, false);
5323
	set_table_entry(&table[10], "flags", &sd->flags,
5324
		sizeof(int), 0644, proc_dointvec_minmax, false);
5325 5326 5327 5328
	set_table_entry(&table[11], "max_newidle_lb_cost",
		&sd->max_newidle_lb_cost,
		sizeof(long), 0644, proc_doulongvec_minmax, false);
	set_table_entry(&table[12], "name", sd->name,
5329
		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5330
	/* &table[13] is terminator */
5331 5332 5333 5334

	return table;
}

5335
static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5336 5337 5338 5339 5340 5341 5342 5343 5344
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5345 5346
	if (table == NULL)
		return NULL;
5347 5348 5349 5350 5351

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5352
		entry->mode = 0555;
5353 5354 5355 5356 5357 5358 5359 5360
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5361
static void register_sched_domain_sysctl(void)
5362
{
5363
	int i, cpu_num = num_possible_cpus();
5364 5365 5366
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5367 5368 5369
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5370 5371 5372
	if (entry == NULL)
		return;

5373
	for_each_possible_cpu(i) {
5374 5375
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5376
		entry->mode = 0555;
5377
		entry->child = sd_alloc_ctl_cpu_table(i);
5378
		entry++;
5379
	}
5380 5381

	WARN_ON(sd_sysctl_header);
5382 5383
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5384

5385
/* may be called multiple times per register */
5386 5387
static void unregister_sched_domain_sysctl(void)
{
5388
	unregister_sysctl_table(sd_sysctl_header);
5389
	sd_sysctl_header = NULL;
5390 5391
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5392
}
5393
#else
5394 5395 5396 5397
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5398 5399
{
}
P
Peter Zijlstra 已提交
5400
#endif /* CONFIG_SCHED_DEBUG && CONFIG_SYSCTL */
5401

5402 5403 5404 5405 5406
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5407
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5427
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5428 5429 5430 5431
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5432 5433 5434 5435
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5436
static int
5437
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5438
{
5439
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5440
	unsigned long flags;
5441
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5442

5443
	switch (action & ~CPU_TASKS_FROZEN) {
5444

L
Linus Torvalds 已提交
5445
	case CPU_UP_PREPARE:
5446
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5447
		break;
5448

L
Linus Torvalds 已提交
5449
	case CPU_ONLINE:
5450
		/* Update our root-domain */
5451
		raw_spin_lock_irqsave(&rq->lock, flags);
5452
		if (rq->rd) {
5453
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5454 5455

			set_rq_online(rq);
5456
		}
5457
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5458
		break;
5459

L
Linus Torvalds 已提交
5460
#ifdef CONFIG_HOTPLUG_CPU
5461
	case CPU_DYING:
5462
		sched_ttwu_pending();
G
Gregory Haskins 已提交
5463
		/* Update our root-domain */
5464
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5465
		if (rq->rd) {
5466
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5467
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5468
		}
5469
		migrate_tasks(rq);
5470
		BUG_ON(rq->nr_running != 1); /* the migration thread */
5471
		raw_spin_unlock_irqrestore(&rq->lock, flags);
5472
		break;
5473

5474
	case CPU_DEAD:
5475
		calc_load_migrate(rq);
G
Gregory Haskins 已提交
5476
		break;
L
Linus Torvalds 已提交
5477 5478
#endif
	}
5479 5480 5481

	update_max_interval();

L
Linus Torvalds 已提交
5482 5483 5484
	return NOTIFY_OK;
}

5485 5486 5487
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5488
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5489
 */
5490
static struct notifier_block migration_notifier = {
L
Linus Torvalds 已提交
5491
	.notifier_call = migration_call,
5492
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
5493 5494
};

5495
static void set_cpu_rq_start_time(void)
5496 5497 5498 5499 5500 5501
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
	rq->age_stamp = sched_clock_cpu(cpu);
}

5502
static int sched_cpu_active(struct notifier_block *nfb,
5503 5504 5505
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
5506 5507 5508
	case CPU_STARTING:
		set_cpu_rq_start_time();
		return NOTIFY_OK;
5509 5510 5511 5512 5513 5514 5515 5516
	case CPU_ONLINE:
		/*
		 * At this point a starting CPU has marked itself as online via
		 * set_cpu_online(). But it might not yet have marked itself
		 * as active, which is essential from here on.
		 *
		 * Thus, fall-through and help the starting CPU along.
		 */
5517 5518 5519 5520 5521 5522 5523 5524
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

5525
static int sched_cpu_inactive(struct notifier_block *nfb,
5526 5527 5528 5529
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
5530
		set_cpu_active((long)hcpu, false);
5531
		return NOTIFY_OK;
5532 5533
	default:
		return NOTIFY_DONE;
5534 5535 5536
	}
}

5537
static int __init migration_init(void)
L
Linus Torvalds 已提交
5538 5539
{
	void *cpu = (void *)(long)smp_processor_id();
5540
	int err;
5541

5542
	/* Initialize migration for the boot CPU */
5543 5544
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5545 5546
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5547

5548 5549 5550 5551
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

5552
	return 0;
L
Linus Torvalds 已提交
5553
}
5554
early_initcall(migration_init);
5555

5556 5557
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

5558
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5559

5560
static __read_mostly int sched_debug_enabled;
5561

5562
static int __init sched_debug_setup(char *str)
5563
{
5564
	sched_debug_enabled = 1;
5565 5566 5567

	return 0;
}
5568 5569 5570 5571 5572 5573
early_param("sched_debug", sched_debug_setup);

static inline bool sched_debug(void)
{
	return sched_debug_enabled;
}
5574

5575
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5576
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5577
{
I
Ingo Molnar 已提交
5578
	struct sched_group *group = sd->groups;
L
Linus Torvalds 已提交
5579

5580
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5581 5582 5583 5584

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5585
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5586
		if (sd->parent)
P
Peter Zijlstra 已提交
5587 5588
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5589
		return -1;
N
Nick Piggin 已提交
5590 5591
	}

5592 5593
	printk(KERN_CONT "span %*pbl level %s\n",
	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
I
Ingo Molnar 已提交
5594

5595
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5596 5597
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5598
	}
5599
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5600 5601
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5602
	}
L
Linus Torvalds 已提交
5603

I
Ingo Molnar 已提交
5604
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5605
	do {
I
Ingo Molnar 已提交
5606
		if (!group) {
P
Peter Zijlstra 已提交
5607 5608
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5609 5610 5611
			break;
		}

5612
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5613 5614
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
5615 5616
			break;
		}
L
Linus Torvalds 已提交
5617

5618 5619
		if (!(sd->flags & SD_OVERLAP) &&
		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5620 5621
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
5622 5623
			break;
		}
L
Linus Torvalds 已提交
5624

5625
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
5626

5627 5628
		printk(KERN_CONT " %*pbl",
		       cpumask_pr_args(sched_group_cpus(group)));
5629
		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5630 5631
			printk(KERN_CONT " (cpu_capacity = %d)",
				group->sgc->capacity);
5632
		}
L
Linus Torvalds 已提交
5633

I
Ingo Molnar 已提交
5634 5635
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
5636
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5637

5638
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
5639
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5640

5641 5642
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
5643 5644
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
5645 5646
	return 0;
}
L
Linus Torvalds 已提交
5647

I
Ingo Molnar 已提交
5648 5649 5650
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5651

5652
	if (!sched_debug_enabled)
5653 5654
		return;

I
Ingo Molnar 已提交
5655 5656 5657 5658
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5659

I
Ingo Molnar 已提交
5660 5661 5662
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
5663
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
I
Ingo Molnar 已提交
5664
			break;
L
Linus Torvalds 已提交
5665 5666
		level++;
		sd = sd->parent;
5667
		if (!sd)
I
Ingo Molnar 已提交
5668 5669
			break;
	}
L
Linus Torvalds 已提交
5670
}
5671
#else /* !CONFIG_SCHED_DEBUG */
5672
# define sched_domain_debug(sd, cpu) do { } while (0)
5673 5674 5675 5676
static inline bool sched_debug(void)
{
	return false;
}
5677
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
5678

5679
static int sd_degenerate(struct sched_domain *sd)
5680
{
5681
	if (cpumask_weight(sched_domain_span(sd)) == 1)
5682 5683 5684 5685 5686 5687
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5688
			 SD_BALANCE_EXEC |
5689
			 SD_SHARE_CPUCAPACITY |
5690 5691
			 SD_SHARE_PKG_RESOURCES |
			 SD_SHARE_POWERDOMAIN)) {
5692 5693 5694 5695 5696
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
5697
	if (sd->flags & (SD_WAKE_AFFINE))
5698 5699 5700 5701 5702
		return 0;

	return 1;
}

5703 5704
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5705 5706 5707 5708 5709 5710
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

5711
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5712 5713 5714 5715 5716 5717 5718
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5719
				SD_BALANCE_EXEC |
5720
				SD_SHARE_CPUCAPACITY |
5721
				SD_SHARE_PKG_RESOURCES |
5722 5723
				SD_PREFER_SIBLING |
				SD_SHARE_POWERDOMAIN);
5724 5725
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
5726 5727 5728 5729 5730 5731 5732
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

5733
static void free_rootdomain(struct rcu_head *rcu)
5734
{
5735
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5736

5737
	cpupri_cleanup(&rd->cpupri);
5738
	cpudl_cleanup(&rd->cpudl);
5739
	free_cpumask_var(rd->dlo_mask);
5740 5741 5742 5743 5744 5745
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
5746 5747
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
5748
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
5749 5750
	unsigned long flags;

5751
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5752 5753

	if (rq->rd) {
I
Ingo Molnar 已提交
5754
		old_rd = rq->rd;
G
Gregory Haskins 已提交
5755

5756
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5757
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5758

5759
		cpumask_clear_cpu(rq->cpu, old_rd->span);
5760

I
Ingo Molnar 已提交
5761
		/*
5762
		 * If we dont want to free the old_rd yet then
I
Ingo Molnar 已提交
5763 5764 5765 5766 5767
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
5768 5769 5770 5771 5772
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

5773
	cpumask_set_cpu(rq->cpu, rd->span);
5774
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5775
		set_rq_online(rq);
G
Gregory Haskins 已提交
5776

5777
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
5778 5779

	if (old_rd)
5780
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
5781 5782
}

5783
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
5784 5785 5786
{
	memset(rd, 0, sizeof(*rd));

5787
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5788
		goto out;
5789
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5790
		goto free_span;
5791
	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5792
		goto free_online;
5793 5794
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
		goto free_dlo_mask;
5795

5796
	init_dl_bw(&rd->dl_bw);
5797 5798
	if (cpudl_init(&rd->cpudl) != 0)
		goto free_dlo_mask;
5799

5800
	if (cpupri_init(&rd->cpupri) != 0)
5801
		goto free_rto_mask;
5802
	return 0;
5803

5804 5805
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
5806 5807
free_dlo_mask:
	free_cpumask_var(rd->dlo_mask);
5808 5809 5810 5811
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
5812
out:
5813
	return -ENOMEM;
G
Gregory Haskins 已提交
5814 5815
}

5816 5817 5818 5819 5820 5821
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
struct root_domain def_root_domain;

G
Gregory Haskins 已提交
5822 5823
static void init_defrootdomain(void)
{
5824
	init_rootdomain(&def_root_domain);
5825

G
Gregory Haskins 已提交
5826 5827 5828
	atomic_set(&def_root_domain.refcount, 1);
}

5829
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
5830 5831 5832 5833 5834 5835 5836
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

5837
	if (init_rootdomain(rd) != 0) {
5838 5839 5840
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
5841 5842 5843 5844

	return rd;
}

5845
static void free_sched_groups(struct sched_group *sg, int free_sgc)
5846 5847 5848 5849 5850 5851 5852 5853 5854 5855
{
	struct sched_group *tmp, *first;

	if (!sg)
		return;

	first = sg;
	do {
		tmp = sg->next;

5856 5857
		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
			kfree(sg->sgc);
5858 5859 5860 5861 5862 5863

		kfree(sg);
		sg = tmp;
	} while (sg != first);
}

5864 5865 5866
static void free_sched_domain(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5867 5868 5869 5870 5871 5872 5873 5874

	/*
	 * If its an overlapping domain it has private groups, iterate and
	 * nuke them all.
	 */
	if (sd->flags & SD_OVERLAP) {
		free_sched_groups(sd->groups, 1);
	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5875
		kfree(sd->groups->sgc);
5876
		kfree(sd->groups);
5877
	}
5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891
	kfree(sd);
}

static void destroy_sched_domain(struct sched_domain *sd, int cpu)
{
	call_rcu(&sd->rcu, free_sched_domain);
}

static void destroy_sched_domains(struct sched_domain *sd, int cpu)
{
	for (; sd; sd = sd->parent)
		destroy_sched_domain(sd, cpu);
}

5892 5893 5894 5895 5896 5897 5898
/*
 * Keep a special pointer to the highest sched_domain that has
 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 * allows us to avoid some pointer chasing select_idle_sibling().
 *
 * Also keep a unique ID per domain (we use the first cpu number in
 * the cpumask of the domain), this allows us to quickly tell if
5899
 * two cpus are in the same cache domain, see cpus_share_cache().
5900 5901
 */
DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5902
DEFINE_PER_CPU(int, sd_llc_size);
5903
DEFINE_PER_CPU(int, sd_llc_id);
5904
DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5905 5906
DEFINE_PER_CPU(struct sched_domain *, sd_busy);
DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5907 5908 5909 5910

static void update_top_cache_domain(int cpu)
{
	struct sched_domain *sd;
5911
	struct sched_domain *busy_sd = NULL;
5912
	int id = cpu;
5913
	int size = 1;
5914 5915

	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5916
	if (sd) {
5917
		id = cpumask_first(sched_domain_span(sd));
5918
		size = cpumask_weight(sched_domain_span(sd));
5919
		busy_sd = sd->parent; /* sd_busy */
5920
	}
5921
	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5922 5923

	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5924
	per_cpu(sd_llc_size, cpu) = size;
5925
	per_cpu(sd_llc_id, cpu) = id;
5926 5927 5928

	sd = lowest_flag_domain(cpu, SD_NUMA);
	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5929 5930 5931

	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5932 5933
}

L
Linus Torvalds 已提交
5934
/*
I
Ingo Molnar 已提交
5935
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
5936 5937
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
5938 5939
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
5940
{
5941
	struct rq *rq = cpu_rq(cpu);
5942 5943 5944
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
5945
	for (tmp = sd; tmp; ) {
5946 5947 5948
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5949

5950
		if (sd_parent_degenerate(tmp, parent)) {
5951
			tmp->parent = parent->parent;
5952 5953
			if (parent->parent)
				parent->parent->child = tmp;
5954 5955 5956 5957 5958 5959 5960
			/*
			 * Transfer SD_PREFER_SIBLING down in case of a
			 * degenerate parent; the spans match for this
			 * so the property transfers.
			 */
			if (parent->flags & SD_PREFER_SIBLING)
				tmp->flags |= SD_PREFER_SIBLING;
5961
			destroy_sched_domain(parent, cpu);
5962 5963
		} else
			tmp = tmp->parent;
5964 5965
	}

5966
	if (sd && sd_degenerate(sd)) {
5967
		tmp = sd;
5968
		sd = sd->parent;
5969
		destroy_sched_domain(tmp, cpu);
5970 5971 5972
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5973

5974
	sched_domain_debug(sd, cpu);
L
Linus Torvalds 已提交
5975

G
Gregory Haskins 已提交
5976
	rq_attach_root(rq, rd);
5977
	tmp = rq->sd;
N
Nick Piggin 已提交
5978
	rcu_assign_pointer(rq->sd, sd);
5979
	destroy_sched_domains(tmp, cpu);
5980 5981

	update_top_cache_domain(cpu);
L
Linus Torvalds 已提交
5982 5983 5984 5985 5986
}

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
5987
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
5988
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
5989 5990 5991
	return 1;
}

I
Ingo Molnar 已提交
5992
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5993

5994
struct s_data {
5995
	struct sched_domain ** __percpu sd;
5996 5997 5998
	struct root_domain	*rd;
};

5999 6000
enum s_alloc {
	sa_rootdomain,
6001
	sa_sd,
6002
	sa_sd_storage,
6003 6004 6005
	sa_none,
};

P
Peter Zijlstra 已提交
6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043
/*
 * Build an iteration mask that can exclude certain CPUs from the upwards
 * domain traversal.
 *
 * Asymmetric node setups can result in situations where the domain tree is of
 * unequal depth, make sure to skip domains that already cover the entire
 * range.
 *
 * In that case build_sched_domains() will have terminated the iteration early
 * and our sibling sd spans will be empty. Domains should always include the
 * cpu they're built on, so check that.
 *
 */
static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
{
	const struct cpumask *span = sched_domain_span(sd);
	struct sd_data *sdd = sd->private;
	struct sched_domain *sibling;
	int i;

	for_each_cpu(i, span) {
		sibling = *per_cpu_ptr(sdd->sd, i);
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
			continue;

		cpumask_set_cpu(i, sched_group_mask(sg));
	}
}

/*
 * Return the canonical balance cpu for this group, this is the first cpu
 * of this group that's also in the iteration mask.
 */
int group_balance_cpu(struct sched_group *sg)
{
	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
}

6044 6045 6046 6047 6048 6049 6050
static int
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered = sched_domains_tmpmask;
	struct sd_data *sdd = sd->private;
6051
	struct sched_domain *sibling;
6052 6053 6054 6055 6056 6057 6058 6059 6060 6061
	int i;

	cpumask_clear(covered);

	for_each_cpu(i, span) {
		struct cpumask *sg_span;

		if (cpumask_test_cpu(i, covered))
			continue;

6062
		sibling = *per_cpu_ptr(sdd->sd, i);
P
Peter Zijlstra 已提交
6063 6064

		/* See the comment near build_group_mask(). */
6065
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
P
Peter Zijlstra 已提交
6066 6067
			continue;

6068
		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6069
				GFP_KERNEL, cpu_to_node(cpu));
6070 6071 6072 6073 6074

		if (!sg)
			goto fail;

		sg_span = sched_group_cpus(sg);
6075 6076 6077
		if (sibling->child)
			cpumask_copy(sg_span, sched_domain_span(sibling->child));
		else
6078 6079 6080 6081
			cpumask_set_cpu(i, sg_span);

		cpumask_or(covered, covered, sg_span);

6082 6083
		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
		if (atomic_inc_return(&sg->sgc->ref) == 1)
P
Peter Zijlstra 已提交
6084 6085
			build_group_mask(sd, sg);

6086
		/*
6087
		 * Initialize sgc->capacity such that even if we mess up the
6088 6089 6090
		 * domains and no possible iteration will get us here, we won't
		 * die on a /0 trap.
		 */
6091
		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6092

P
Peter Zijlstra 已提交
6093 6094 6095 6096 6097
		/*
		 * Make sure the first group of this domain contains the
		 * canonical balance cpu. Otherwise the sched_domain iteration
		 * breaks. See update_sg_lb_stats().
		 */
P
Peter Zijlstra 已提交
6098
		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
P
Peter Zijlstra 已提交
6099
		    group_balance_cpu(sg) == cpu)
6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118
			groups = sg;

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
		last->next = first;
	}
	sd->groups = groups;

	return 0;

fail:
	free_sched_groups(first, 0);

	return -ENOMEM;
}

6119
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
6120
{
6121 6122
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
6123

6124 6125
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
6126

6127
	if (sg) {
6128
		*sg = *per_cpu_ptr(sdd->sg, cpu);
6129 6130
		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6131
	}
6132 6133

	return cpu;
6134 6135
}

6136
/*
6137 6138
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
6139
 * and ->cpu_capacity to 0.
6140 6141
 *
 * Assumes the sched_domain tree is fully constructed
6142
 */
6143 6144
static int
build_sched_groups(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
6145
{
6146 6147 6148
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
6149
	struct cpumask *covered;
6150
	int i;
6151

6152 6153 6154
	get_group(cpu, sdd, &sd->groups);
	atomic_inc(&sd->groups->ref);

6155
	if (cpu != cpumask_first(span))
6156 6157
		return 0;

6158 6159 6160
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

6161
	cpumask_clear(covered);
6162

6163 6164
	for_each_cpu(i, span) {
		struct sched_group *sg;
6165
		int group, j;
6166

6167 6168
		if (cpumask_test_cpu(i, covered))
			continue;
6169

6170
		group = get_group(i, sdd, &sg);
P
Peter Zijlstra 已提交
6171
		cpumask_setall(sched_group_mask(sg));
6172

6173 6174 6175
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
6176

6177 6178 6179
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
6180

6181 6182 6183 6184 6185 6186 6187
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
6188 6189

	return 0;
6190
}
6191

6192
/*
6193
 * Initialize sched groups cpu_capacity.
6194
 *
6195
 * cpu_capacity indicates the capacity of sched group, which is used while
6196
 * distributing the load between different sched groups in a sched domain.
6197 6198 6199 6200
 * Typically cpu_capacity for all the groups in a sched domain will be same
 * unless there are asymmetries in the topology. If there are asymmetries,
 * group having more cpu_capacity will pickup more load compared to the
 * group having less cpu_capacity.
6201
 */
6202
static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6203
{
6204
	struct sched_group *sg = sd->groups;
6205

6206
	WARN_ON(!sg);
6207 6208 6209 6210 6211

	do {
		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
		sg = sg->next;
	} while (sg != sd->groups);
6212

P
Peter Zijlstra 已提交
6213
	if (cpu != group_balance_cpu(sg))
6214
		return;
6215

6216 6217
	update_group_capacity(sd, cpu);
	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6218 6219
}

6220 6221 6222 6223 6224
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

6225
static int default_relax_domain_level = -1;
6226
int sched_domain_level_max;
6227 6228 6229

static int __init setup_relax_domain_level(char *str)
{
6230 6231
	if (kstrtoint(str, 0, &default_relax_domain_level))
		pr_warn("Unable to set relax_domain_level\n");
6232

6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
6251
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6252 6253
	} else {
		/* turn on idle balance on this domain */
6254
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6255 6256 6257
	}
}

6258 6259 6260
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

6261 6262 6263 6264 6265
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
6266 6267
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
6268 6269
	case sa_sd:
		free_percpu(d->sd); /* fall through */
6270
	case sa_sd_storage:
6271
		__sdt_free(cpu_map); /* fall through */
6272 6273 6274 6275
	case sa_none:
		break;
	}
}
6276

6277 6278 6279
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
6280 6281
	memset(d, 0, sizeof(*d));

6282 6283
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
6284 6285 6286
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
6287
	d->rd = alloc_rootdomain();
6288
	if (!d->rd)
6289
		return sa_sd;
6290 6291
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
6292

6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

6305
	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6306
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6307

6308 6309
	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6310 6311
}

6312 6313
#ifdef CONFIG_NUMA
static int sched_domains_numa_levels;
6314
enum numa_topology_type sched_numa_topology_type;
6315
static int *sched_domains_numa_distance;
6316
int sched_max_numa_distance;
6317 6318
static struct cpumask ***sched_domains_numa_masks;
static int sched_domains_curr_level;
6319
#endif
6320

6321 6322 6323
/*
 * SD_flags allowed in topology descriptions.
 *
6324
 * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6325 6326
 * SD_SHARE_PKG_RESOURCES - describes shared caches
 * SD_NUMA                - describes NUMA topologies
6327
 * SD_SHARE_POWERDOMAIN   - describes shared power domain
6328 6329 6330 6331 6332
 *
 * Odd one out:
 * SD_ASYM_PACKING        - describes SMT quirks
 */
#define TOPOLOGY_SD_FLAGS		\
6333
	(SD_SHARE_CPUCAPACITY |		\
6334 6335
	 SD_SHARE_PKG_RESOURCES |	\
	 SD_NUMA |			\
6336 6337
	 SD_ASYM_PACKING |		\
	 SD_SHARE_POWERDOMAIN)
6338 6339

static struct sched_domain *
6340
sd_init(struct sched_domain_topology_level *tl, int cpu)
6341 6342
{
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358
	int sd_weight, sd_flags = 0;

#ifdef CONFIG_NUMA
	/*
	 * Ugly hack to pass state to sd_numa_mask()...
	 */
	sched_domains_curr_level = tl->numa_level;
#endif

	sd_weight = cpumask_weight(tl->mask(cpu));

	if (tl->sd_flags)
		sd_flags = (*tl->sd_flags)();
	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
			"wrong sd_flags in topology description\n"))
		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6359 6360 6361 6362 6363

	*sd = (struct sched_domain){
		.min_interval		= sd_weight,
		.max_interval		= 2*sd_weight,
		.busy_factor		= 32,
6364
		.imbalance_pct		= 125,
6365 6366 6367 6368

		.cache_nice_tries	= 0,
		.busy_idx		= 0,
		.idle_idx		= 0,
6369 6370 6371 6372 6373 6374
		.newidle_idx		= 0,
		.wake_idx		= 0,
		.forkexec_idx		= 0,

		.flags			= 1*SD_LOAD_BALANCE
					| 1*SD_BALANCE_NEWIDLE
6375 6376
					| 1*SD_BALANCE_EXEC
					| 1*SD_BALANCE_FORK
6377
					| 0*SD_BALANCE_WAKE
6378
					| 1*SD_WAKE_AFFINE
6379
					| 0*SD_SHARE_CPUCAPACITY
6380
					| 0*SD_SHARE_PKG_RESOURCES
6381
					| 0*SD_SERIALIZE
6382
					| 0*SD_PREFER_SIBLING
6383 6384
					| 0*SD_NUMA
					| sd_flags
6385
					,
6386

6387 6388
		.last_balance		= jiffies,
		.balance_interval	= sd_weight,
6389
		.smt_gain		= 0,
6390 6391
		.max_newidle_lb_cost	= 0,
		.next_decay_max_lb_cost	= jiffies,
6392 6393 6394
#ifdef CONFIG_SCHED_DEBUG
		.name			= tl->name,
#endif
6395 6396 6397
	};

	/*
6398
	 * Convert topological properties into behaviour.
6399
	 */
6400

6401
	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6402
		sd->flags |= SD_PREFER_SIBLING;
6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432
		sd->imbalance_pct = 110;
		sd->smt_gain = 1178; /* ~15% */

	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
		sd->imbalance_pct = 117;
		sd->cache_nice_tries = 1;
		sd->busy_idx = 2;

#ifdef CONFIG_NUMA
	} else if (sd->flags & SD_NUMA) {
		sd->cache_nice_tries = 2;
		sd->busy_idx = 3;
		sd->idle_idx = 2;

		sd->flags |= SD_SERIALIZE;
		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
			sd->flags &= ~(SD_BALANCE_EXEC |
				       SD_BALANCE_FORK |
				       SD_WAKE_AFFINE);
		}

#endif
	} else {
		sd->flags |= SD_PREFER_SIBLING;
		sd->cache_nice_tries = 1;
		sd->busy_idx = 2;
		sd->idle_idx = 1;
	}

	sd->private = &tl->data;
6433 6434 6435 6436

	return sd;
}

6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462
/*
 * Topology list, bottom-up.
 */
static struct sched_domain_topology_level default_topology[] = {
#ifdef CONFIG_SCHED_SMT
	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
#endif
#ifdef CONFIG_SCHED_MC
	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
#endif
	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
	{ NULL, },
};

struct sched_domain_topology_level *sched_domain_topology = default_topology;

#define for_each_sd_topology(tl)			\
	for (tl = sched_domain_topology; tl->mask; tl++)

void set_sched_topology(struct sched_domain_topology_level *tl)
{
	sched_domain_topology = tl;
}

#ifdef CONFIG_NUMA

6463 6464 6465 6466 6467
static const struct cpumask *sd_numa_mask(int cpu)
{
	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
}

6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488
static void sched_numa_warn(const char *str)
{
	static int done = false;
	int i,j;

	if (done)
		return;

	done = true;

	printk(KERN_WARNING "ERROR: %s\n\n", str);

	for (i = 0; i < nr_node_ids; i++) {
		printk(KERN_WARNING "  ");
		for (j = 0; j < nr_node_ids; j++)
			printk(KERN_CONT "%02d ", node_distance(i,j));
		printk(KERN_CONT "\n");
	}
	printk(KERN_WARNING "\n");
}

6489
bool find_numa_distance(int distance)
6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503
{
	int i;

	if (distance == node_distance(0, 0))
		return true;

	for (i = 0; i < sched_domains_numa_levels; i++) {
		if (sched_domains_numa_distance[i] == distance)
			return true;
	}

	return false;
}

6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528
/*
 * A system can have three types of NUMA topology:
 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
 *
 * The difference between a glueless mesh topology and a backplane
 * topology lies in whether communication between not directly
 * connected nodes goes through intermediary nodes (where programs
 * could run), or through backplane controllers. This affects
 * placement of programs.
 *
 * The type of topology can be discerned with the following tests:
 * - If the maximum distance between any nodes is 1 hop, the system
 *   is directly connected.
 * - If for two nodes A and B, located N > 1 hops away from each other,
 *   there is an intermediary node C, which is < N hops away from both
 *   nodes A and B, the system is a glueless mesh.
 */
static void init_numa_topology_type(void)
{
	int a, b, c, n;

	n = sched_max_numa_distance;

6529
	if (sched_domains_numa_levels <= 1) {
6530
		sched_numa_topology_type = NUMA_DIRECT;
6531 6532
		return;
	}
6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555

	for_each_online_node(a) {
		for_each_online_node(b) {
			/* Find two nodes furthest removed from each other. */
			if (node_distance(a, b) < n)
				continue;

			/* Is there an intermediary node between a and b? */
			for_each_online_node(c) {
				if (node_distance(a, c) < n &&
				    node_distance(b, c) < n) {
					sched_numa_topology_type =
							NUMA_GLUELESS_MESH;
					return;
				}
			}

			sched_numa_topology_type = NUMA_BACKPLANE;
			return;
		}
	}
}

6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576
static void sched_init_numa(void)
{
	int next_distance, curr_distance = node_distance(0, 0);
	struct sched_domain_topology_level *tl;
	int level = 0;
	int i, j, k;

	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
	if (!sched_domains_numa_distance)
		return;

	/*
	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
	 * unique distances in the node_distance() table.
	 *
	 * Assumes node_distance(0,j) includes all distances in
	 * node_distance(i,j) in order to avoid cubic time.
	 */
	next_distance = curr_distance;
	for (i = 0; i < nr_node_ids; i++) {
		for (j = 0; j < nr_node_ids; j++) {
6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600
			for (k = 0; k < nr_node_ids; k++) {
				int distance = node_distance(i, k);

				if (distance > curr_distance &&
				    (distance < next_distance ||
				     next_distance == curr_distance))
					next_distance = distance;

				/*
				 * While not a strong assumption it would be nice to know
				 * about cases where if node A is connected to B, B is not
				 * equally connected to A.
				 */
				if (sched_debug() && node_distance(k, i) != distance)
					sched_numa_warn("Node-distance not symmetric");

				if (sched_debug() && i && !find_numa_distance(distance))
					sched_numa_warn("Node-0 not representative");
			}
			if (next_distance != curr_distance) {
				sched_domains_numa_distance[level++] = next_distance;
				sched_domains_numa_levels = level;
				curr_distance = next_distance;
			} else break;
6601
		}
6602 6603 6604 6605 6606 6607

		/*
		 * In case of sched_debug() we verify the above assumption.
		 */
		if (!sched_debug())
			break;
6608
	}
6609 6610 6611 6612

	if (!level)
		return;

6613 6614 6615 6616
	/*
	 * 'level' contains the number of unique distances, excluding the
	 * identity distance node_distance(i,i).
	 *
V
Viresh Kumar 已提交
6617
	 * The sched_domains_numa_distance[] array includes the actual distance
6618 6619 6620
	 * numbers.
	 */

6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631
	/*
	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
	 * the array will contain less then 'level' members. This could be
	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
	 * in other functions.
	 *
	 * We reset it to 'level' at the end of this function.
	 */
	sched_domains_numa_levels = 0;

6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646
	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
	if (!sched_domains_numa_masks)
		return;

	/*
	 * Now for each level, construct a mask per node which contains all
	 * cpus of nodes that are that many hops away from us.
	 */
	for (i = 0; i < level; i++) {
		sched_domains_numa_masks[i] =
			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
		if (!sched_domains_numa_masks[i])
			return;

		for (j = 0; j < nr_node_ids; j++) {
6647
			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6648 6649 6650 6651 6652 6653
			if (!mask)
				return;

			sched_domains_numa_masks[i][j] = mask;

			for (k = 0; k < nr_node_ids; k++) {
6654
				if (node_distance(j, k) > sched_domains_numa_distance[i])
6655 6656 6657 6658 6659 6660 6661
					continue;

				cpumask_or(mask, mask, cpumask_of_node(k));
			}
		}
	}

6662 6663 6664
	/* Compute default topology size */
	for (i = 0; sched_domain_topology[i].mask; i++);

6665
	tl = kzalloc((i + level + 1) *
6666 6667 6668 6669 6670 6671 6672
			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
	if (!tl)
		return;

	/*
	 * Copy the default topology bits..
	 */
6673 6674
	for (i = 0; sched_domain_topology[i].mask; i++)
		tl[i] = sched_domain_topology[i];
6675 6676 6677 6678 6679 6680 6681

	/*
	 * .. and append 'j' levels of NUMA goodness.
	 */
	for (j = 0; j < level; i++, j++) {
		tl[i] = (struct sched_domain_topology_level){
			.mask = sd_numa_mask,
6682
			.sd_flags = cpu_numa_flags,
6683 6684
			.flags = SDTL_OVERLAP,
			.numa_level = j,
6685
			SD_INIT_NAME(NUMA)
6686 6687 6688 6689
		};
	}

	sched_domain_topology = tl;
6690 6691

	sched_domains_numa_levels = level;
6692
	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6693 6694

	init_numa_topology_type();
6695
}
6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742

static void sched_domains_numa_masks_set(int cpu)
{
	int i, j;
	int node = cpu_to_node(cpu);

	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++) {
			if (node_distance(j, node) <= sched_domains_numa_distance[i])
				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
		}
	}
}

static void sched_domains_numa_masks_clear(int cpu)
{
	int i, j;
	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++)
			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
	}
}

/*
 * Update sched_domains_numa_masks[level][node] array when new cpus
 * are onlined.
 */
static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	int cpu = (long)hcpu;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
		sched_domains_numa_masks_set(cpu);
		break;

	case CPU_DEAD:
		sched_domains_numa_masks_clear(cpu);
		break;

	default:
		return NOTIFY_DONE;
	}

	return NOTIFY_OK;
6743 6744 6745 6746 6747
}
#else
static inline void sched_init_numa(void)
{
}
6748 6749 6750 6751 6752 6753 6754

static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	return 0;
}
6755 6756
#endif /* CONFIG_NUMA */

6757 6758 6759 6760 6761
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

6762
	for_each_sd_topology(tl) {
6763 6764 6765 6766 6767 6768 6769 6770 6771 6772
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

6773 6774
		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
		if (!sdd->sgc)
6775 6776
			return -ENOMEM;

6777 6778 6779
		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_group *sg;
6780
			struct sched_group_capacity *sgc;
6781

P
Peter Zijlstra 已提交
6782
			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

6794 6795
			sg->next = sg;

6796
			*per_cpu_ptr(sdd->sg, j) = sg;
6797

6798
			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6799
					GFP_KERNEL, cpu_to_node(j));
6800
			if (!sgc)
6801 6802
				return -ENOMEM;

6803
			*per_cpu_ptr(sdd->sgc, j) = sgc;
6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

6815
	for_each_sd_topology(tl) {
6816 6817 6818
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829
			struct sched_domain *sd;

			if (sdd->sd) {
				sd = *per_cpu_ptr(sdd->sd, j);
				if (sd && (sd->flags & SD_OVERLAP))
					free_sched_groups(sd->groups, 0);
				kfree(*per_cpu_ptr(sdd->sd, j));
			}

			if (sdd->sg)
				kfree(*per_cpu_ptr(sdd->sg, j));
6830 6831
			if (sdd->sgc)
				kfree(*per_cpu_ptr(sdd->sgc, j));
6832 6833
		}
		free_percpu(sdd->sd);
6834
		sdd->sd = NULL;
6835
		free_percpu(sdd->sg);
6836
		sdd->sg = NULL;
6837 6838
		free_percpu(sdd->sgc);
		sdd->sgc = NULL;
6839 6840 6841
	}
}

6842
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6843 6844
		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
		struct sched_domain *child, int cpu)
6845
{
6846
	struct sched_domain *sd = sd_init(tl, cpu);
6847
	if (!sd)
6848
		return child;
6849 6850

	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6851 6852 6853
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6854
		child->parent = sd;
6855
		sd->child = child;
P
Peter Zijlstra 已提交
6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869

		if (!cpumask_subset(sched_domain_span(child),
				    sched_domain_span(sd))) {
			pr_err("BUG: arch topology borken\n");
#ifdef CONFIG_SCHED_DEBUG
			pr_err("     the %s domain not a subset of the %s domain\n",
					child->name, sd->name);
#endif
			/* Fixup, ensure @sd has at least @child cpus. */
			cpumask_or(sched_domain_span(sd),
				   sched_domain_span(sd),
				   sched_domain_span(child));
		}

6870
	}
6871
	set_domain_attribute(sd, attr);
6872 6873 6874 6875

	return sd;
}

6876 6877 6878 6879
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
6880 6881
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
6882
{
6883
	enum s_alloc alloc_state;
6884
	struct sched_domain *sd;
6885
	struct s_data d;
6886
	int i, ret = -ENOMEM;
6887

6888 6889 6890
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
6891

6892
	/* Set up domains for cpus specified by the cpu_map. */
6893
	for_each_cpu(i, cpu_map) {
6894 6895
		struct sched_domain_topology_level *tl;

6896
		sd = NULL;
6897
		for_each_sd_topology(tl) {
6898
			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6899 6900
			if (tl == sched_domain_topology)
				*per_cpu_ptr(d.sd, i) = sd;
6901 6902
			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
				sd->flags |= SD_OVERLAP;
6903 6904
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
				break;
6905
		}
6906 6907 6908 6909 6910 6911
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6912 6913 6914 6915 6916 6917 6918
			if (sd->flags & SD_OVERLAP) {
				if (build_overlap_sched_groups(sd, i))
					goto error;
			} else {
				if (build_sched_groups(sd, i))
					goto error;
			}
6919
		}
6920
	}
6921

6922
	/* Calculate CPU capacity for physical packages and nodes */
6923 6924 6925
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
6926

6927 6928
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
6929
			init_sched_groups_capacity(i, sd);
6930
		}
6931
	}
6932

L
Linus Torvalds 已提交
6933
	/* Attach the domains */
6934
	rcu_read_lock();
6935
	for_each_cpu(i, cpu_map) {
6936
		sd = *per_cpu_ptr(d.sd, i);
6937
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
6938
	}
6939
	rcu_read_unlock();
6940

6941
	ret = 0;
6942
error:
6943
	__free_domain_allocs(&d, alloc_state, cpu_map);
6944
	return ret;
L
Linus Torvalds 已提交
6945
}
P
Paul Jackson 已提交
6946

6947
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
6948
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
6949 6950
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
6951 6952 6953

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
6954 6955
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
6956
 */
6957
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
6958

6959 6960 6961 6962 6963
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
6964
int __weak arch_update_cpu_topology(void)
6965
{
6966
	return 0;
6967 6968
}

6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

6994
/*
I
Ingo Molnar 已提交
6995
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6996 6997
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6998
 */
6999
static int init_sched_domains(const struct cpumask *cpu_map)
7000
{
7001 7002
	int err;

7003
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7004
	ndoms_cur = 1;
7005
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
7006
	if (!doms_cur)
7007 7008
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7009
	err = build_sched_domains(doms_cur[0], NULL);
7010
	register_sched_domain_sysctl();
7011 7012

	return err;
7013 7014 7015 7016 7017 7018
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7019
static void detach_destroy_domains(const struct cpumask *cpu_map)
7020 7021 7022
{
	int i;

7023
	rcu_read_lock();
7024
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
7025
		cpu_attach_domain(NULL, &def_root_domain, i);
7026
	rcu_read_unlock();
7027 7028
}

7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7045 7046
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7047
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7048 7049 7050
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
7051
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7052 7053 7054
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7055 7056 7057
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
7058 7059 7060 7061 7062 7063
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
7064
 *
7065
 * If doms_new == NULL it will be replaced with cpu_online_mask.
7066 7067
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
7068
 *
P
Paul Jackson 已提交
7069 7070
 * Call with hotplug lock held
 */
7071
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7072
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7073
{
7074
	int i, j, n;
7075
	int new_topology;
P
Paul Jackson 已提交
7076

7077
	mutex_lock(&sched_domains_mutex);
7078

7079 7080 7081
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7082 7083 7084
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

7085
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
7086 7087 7088

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
7089
		for (j = 0; j < n && !new_topology; j++) {
7090
			if (cpumask_equal(doms_cur[i], doms_new[j])
7091
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7092 7093 7094
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
7095
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
7096 7097 7098 7099
match1:
		;
	}

7100
	n = ndoms_cur;
7101
	if (doms_new == NULL) {
7102
		n = 0;
7103
		doms_new = &fallback_doms;
7104
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7105
		WARN_ON_ONCE(dattr_new);
7106 7107
	}

P
Paul Jackson 已提交
7108 7109
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
7110
		for (j = 0; j < n && !new_topology; j++) {
7111
			if (cpumask_equal(doms_new[i], doms_cur[j])
7112
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7113 7114 7115
				goto match2;
		}
		/* no match - add a new doms_new */
7116
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7117 7118 7119 7120 7121
match2:
		;
	}

	/* Remember the new sched domains */
7122 7123
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
7124
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7125
	doms_cur = doms_new;
7126
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7127
	ndoms_cur = ndoms_new;
7128 7129

	register_sched_domain_sysctl();
7130

7131
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7132 7133
}

7134 7135
static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */

L
Linus Torvalds 已提交
7136
/*
7137 7138 7139
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
7140 7141 7142
 *
 * If we come here as part of a suspend/resume, don't touch cpusets because we
 * want to restore it back to its original state upon resume anyway.
L
Linus Torvalds 已提交
7143
 */
7144 7145
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
7146
{
7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168
	switch (action) {
	case CPU_ONLINE_FROZEN:
	case CPU_DOWN_FAILED_FROZEN:

		/*
		 * num_cpus_frozen tracks how many CPUs are involved in suspend
		 * resume sequence. As long as this is not the last online
		 * operation in the resume sequence, just build a single sched
		 * domain, ignoring cpusets.
		 */
		num_cpus_frozen--;
		if (likely(num_cpus_frozen)) {
			partition_sched_domains(1, NULL, NULL);
			break;
		}

		/*
		 * This is the last CPU online operation. So fall through and
		 * restore the original sched domains by considering the
		 * cpuset configurations.
		 */

7169
	case CPU_ONLINE:
7170
		cpuset_update_active_cpus(true);
7171
		break;
7172 7173 7174
	default:
		return NOTIFY_DONE;
	}
7175
	return NOTIFY_OK;
7176
}
7177

7178 7179
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
7180
{
7181 7182 7183
	unsigned long flags;
	long cpu = (long)hcpu;
	struct dl_bw *dl_b;
7184 7185
	bool overflow;
	int cpus;
7186

7187
	switch (action) {
7188
	case CPU_DOWN_PREPARE:
7189 7190
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);
7191

7192 7193 7194 7195
		raw_spin_lock_irqsave(&dl_b->lock, flags);
		cpus = dl_bw_cpus(cpu);
		overflow = __dl_overflow(dl_b, cpus, 0, 0);
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7196

7197
		rcu_read_unlock_sched();
7198

7199 7200
		if (overflow)
			return notifier_from_errno(-EBUSY);
7201
		cpuset_update_active_cpus(false);
7202 7203 7204 7205 7206
		break;
	case CPU_DOWN_PREPARE_FROZEN:
		num_cpus_frozen++;
		partition_sched_domains(1, NULL, NULL);
		break;
7207 7208 7209
	default:
		return NOTIFY_DONE;
	}
7210
	return NOTIFY_OK;
7211 7212
}

L
Linus Torvalds 已提交
7213 7214
void __init sched_init_smp(void)
{
7215 7216 7217
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7218
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7219

7220 7221 7222
	/* nohz_full won't take effect without isolating the cpus. */
	tick_nohz_full_add_cpus_to(cpu_isolated_map);

7223 7224
	sched_init_numa();

7225 7226 7227 7228 7229
	/*
	 * There's no userspace yet to cause hotplug operations; hence all the
	 * cpu masks are stable and all blatant races in the below code cannot
	 * happen.
	 */
7230
	mutex_lock(&sched_domains_mutex);
7231
	init_sched_domains(cpu_active_mask);
7232 7233 7234
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7235
	mutex_unlock(&sched_domains_mutex);
7236

7237
	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7238 7239
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7240

7241
	init_hrtick();
7242 7243

	/* Move init over to a non-isolated CPU */
7244
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7245
		BUG();
I
Ingo Molnar 已提交
7246
	sched_init_granularity();
7247
	free_cpumask_var(non_isolated_cpus);
7248

7249
	init_sched_rt_class();
7250
	init_sched_dl_class();
L
Linus Torvalds 已提交
7251 7252 7253 7254
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7255
	sched_init_granularity();
L
Linus Torvalds 已提交
7256 7257 7258 7259 7260 7261 7262 7263 7264 7265
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

7266
#ifdef CONFIG_CGROUP_SCHED
7267 7268 7269 7270
/*
 * Default task group.
 * Every task in system belongs to this group at bootup.
 */
7271
struct task_group root_task_group;
7272
LIST_HEAD(task_groups);
7273
#endif
P
Peter Zijlstra 已提交
7274

7275
DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
P
Peter Zijlstra 已提交
7276

L
Linus Torvalds 已提交
7277 7278
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7279
	int i, j;
7280 7281 7282 7283 7284 7285 7286 7287 7288
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
	if (alloc_size) {
7289
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7290 7291

#ifdef CONFIG_FAIR_GROUP_SCHED
7292
		root_task_group.se = (struct sched_entity **)ptr;
7293 7294
		ptr += nr_cpu_ids * sizeof(void **);

7295
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7296
		ptr += nr_cpu_ids * sizeof(void **);
7297

7298
#endif /* CONFIG_FAIR_GROUP_SCHED */
7299
#ifdef CONFIG_RT_GROUP_SCHED
7300
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7301 7302
		ptr += nr_cpu_ids * sizeof(void **);

7303
		root_task_group.rt_rq = (struct rt_rq **)ptr;
7304 7305
		ptr += nr_cpu_ids * sizeof(void **);

7306
#endif /* CONFIG_RT_GROUP_SCHED */
7307
	}
7308
#ifdef CONFIG_CPUMASK_OFFSTACK
7309 7310 7311
	for_each_possible_cpu(i) {
		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7312
	}
7313
#endif /* CONFIG_CPUMASK_OFFSTACK */
I
Ingo Molnar 已提交
7314

7315 7316 7317
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());
	init_dl_bandwidth(&def_dl_bandwidth,
7318
			global_rt_period(), global_rt_runtime());
7319

G
Gregory Haskins 已提交
7320 7321 7322 7323
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7324
#ifdef CONFIG_RT_GROUP_SCHED
7325
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7326
			global_rt_period(), global_rt_runtime());
7327
#endif /* CONFIG_RT_GROUP_SCHED */
7328

D
Dhaval Giani 已提交
7329
#ifdef CONFIG_CGROUP_SCHED
7330 7331
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
7332
	INIT_LIST_HEAD(&root_task_group.siblings);
7333
	autogroup_init(&init_task);
7334

D
Dhaval Giani 已提交
7335
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
7336

7337
	for_each_possible_cpu(i) {
7338
		struct rq *rq;
L
Linus Torvalds 已提交
7339 7340

		rq = cpu_rq(i);
7341
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
7342
		rq->nr_running = 0;
7343 7344
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
7345
		init_cfs_rq(&rq->cfs);
7346 7347
		init_rt_rq(&rq->rt);
		init_dl_rq(&rq->dl);
I
Ingo Molnar 已提交
7348
#ifdef CONFIG_FAIR_GROUP_SCHED
7349
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
7350
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
7351
		/*
7352
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
7353 7354 7355 7356
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
7357
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
7358 7359 7360
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
7361
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
7362 7363 7364
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
7365
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
7366
		 *
7367 7368
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
7369
		 */
7370
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7371
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
7372 7373 7374
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7375
#ifdef CONFIG_RT_GROUP_SCHED
7376
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
7377
#endif
L
Linus Torvalds 已提交
7378

I
Ingo Molnar 已提交
7379 7380
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
7381 7382 7383

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
7384
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7385
		rq->sd = NULL;
G
Gregory Haskins 已提交
7386
		rq->rd = NULL;
7387
		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7388
		rq->balance_callback = NULL;
L
Linus Torvalds 已提交
7389
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7390
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7391
		rq->push_cpu = 0;
7392
		rq->cpu = i;
7393
		rq->online = 0;
7394 7395
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
7396
		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7397 7398 7399

		INIT_LIST_HEAD(&rq->cfs_tasks);

7400
		rq_attach_root(rq, &def_root_domain);
7401
#ifdef CONFIG_NO_HZ_COMMON
7402
		rq->nohz_flags = 0;
7403
#endif
7404 7405 7406
#ifdef CONFIG_NO_HZ_FULL
		rq->last_sched_tick = 0;
#endif
L
Linus Torvalds 已提交
7407
#endif
P
Peter Zijlstra 已提交
7408
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7409 7410 7411
		atomic_set(&rq->nr_iowait, 0);
	}

7412
	set_load_weight(&init_task);
7413

7414 7415 7416 7417
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

L
Linus Torvalds 已提交
7418 7419 7420 7421 7422 7423
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

7424 7425 7426 7427 7428
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;

L
Linus Torvalds 已提交
7429 7430 7431 7432 7433 7434 7435
	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
7436 7437 7438

	calc_load_update = jiffies + LOAD_FREQ;

7439
#ifdef CONFIG_SMP
7440
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
R
Rusty Russell 已提交
7441 7442 7443
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7444
	idle_thread_set_boot_cpu();
7445
	set_cpu_rq_start_time();
7446 7447
#endif
	init_sched_fair_class();
7448

7449
	scheduler_running = 1;
L
Linus Torvalds 已提交
7450 7451
}

7452
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7453 7454
static inline int preempt_count_equals(int preempt_offset)
{
7455
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7456

A
Arnd Bergmann 已提交
7457
	return (nested == preempt_offset);
7458 7459
}

7460
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7461
{
P
Peter Zijlstra 已提交
7462 7463 7464 7465 7466
	/*
	 * Blocking primitives will set (and therefore destroy) current->state,
	 * since we will exit with TASK_RUNNING make sure we enter with it,
	 * otherwise we will destroy state.
	 */
7467
	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
P
Peter Zijlstra 已提交
7468 7469 7470 7471
			"do not call blocking ops when !TASK_RUNNING; "
			"state=%lx set at [<%p>] %pS\n",
			current->state,
			(void *)current->task_state_change,
7472
			(void *)current->task_state_change);
P
Peter Zijlstra 已提交
7473

7474 7475 7476 7477 7478
	___might_sleep(file, line, preempt_offset);
}
EXPORT_SYMBOL(__might_sleep);

void ___might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7479 7480 7481
{
	static unsigned long prev_jiffy;	/* ratelimiting */

7482
	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7483 7484
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
	     !is_idle_task(current)) ||
7485
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
7486 7487 7488 7489 7490
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
7491 7492 7493 7494 7495 7496 7497
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
7498

7499 7500 7501
	if (task_stack_end_corrupted(current))
		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");

I
Ingo Molnar 已提交
7502 7503 7504
	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
7505 7506 7507 7508 7509 7510 7511
#ifdef CONFIG_DEBUG_PREEMPT
	if (!preempt_count_equals(preempt_offset)) {
		pr_err("Preemption disabled at:");
		print_ip_sym(current->preempt_disable_ip);
		pr_cont("\n");
	}
#endif
I
Ingo Molnar 已提交
7512
	dump_stack();
L
Linus Torvalds 已提交
7513
}
7514
EXPORT_SYMBOL(___might_sleep);
L
Linus Torvalds 已提交
7515 7516 7517
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7518
void normalize_rt_tasks(void)
7519
{
7520
	struct task_struct *g, *p;
7521 7522 7523
	struct sched_attr attr = {
		.sched_policy = SCHED_NORMAL,
	};
L
Linus Torvalds 已提交
7524

7525
	read_lock(&tasklist_lock);
7526
	for_each_process_thread(g, p) {
7527 7528 7529
		/*
		 * Only normalize user tasks:
		 */
7530
		if (p->flags & PF_KTHREAD)
7531 7532
			continue;

I
Ingo Molnar 已提交
7533 7534
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
7535 7536 7537
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
7538
#endif
I
Ingo Molnar 已提交
7539

7540
		if (!dl_task(p) && !rt_task(p)) {
I
Ingo Molnar 已提交
7541 7542 7543 7544
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
7545
			if (task_nice(p) < 0)
I
Ingo Molnar 已提交
7546
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7547
			continue;
I
Ingo Molnar 已提交
7548
		}
L
Linus Torvalds 已提交
7549

7550
		__sched_setscheduler(p, &attr, false, false);
7551
	}
7552
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
7553 7554 7555
}

#endif /* CONFIG_MAGIC_SYSRQ */
7556

7557
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7558
/*
7559
 * These functions are only useful for the IA64 MCA handling, or kdb.
7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7573 7574
 *
 * Return: The current task for @cpu.
7575
 */
7576
struct task_struct *curr_task(int cpu)
7577 7578 7579 7580
{
	return cpu_curr(cpu);
}

7581 7582 7583
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
7584 7585 7586 7587 7588 7589
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7590 7591
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7592 7593 7594 7595 7596 7597 7598
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7599
void set_curr_task(int cpu, struct task_struct *p)
7600 7601 7602 7603 7604
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7605

D
Dhaval Giani 已提交
7606
#ifdef CONFIG_CGROUP_SCHED
7607 7608 7609
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

7610 7611 7612 7613
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
7614
	autogroup_free(tg);
7615 7616 7617 7618
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
7619
struct task_group *sched_create_group(struct task_group *parent)
7620 7621 7622 7623 7624 7625 7626
{
	struct task_group *tg;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

7627
	if (!alloc_fair_sched_group(tg, parent))
7628 7629
		goto err;

7630
	if (!alloc_rt_sched_group(tg, parent))
7631 7632
		goto err;

7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643
	return tg;

err:
	free_sched_group(tg);
	return ERR_PTR(-ENOMEM);
}

void sched_online_group(struct task_group *tg, struct task_group *parent)
{
	unsigned long flags;

7644
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7645
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
7646 7647 7648 7649 7650

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
7651
	list_add_rcu(&tg->siblings, &parent->children);
7652
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7653 7654
}

7655
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
7656
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7657 7658
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
7659
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
7660 7661
}

7662
/* Destroy runqueue etc associated with a task group */
7663
void sched_destroy_group(struct task_group *tg)
7664 7665 7666 7667 7668 7669
{
	/* wait for possible concurrent references to cfs_rqs complete */
	call_rcu(&tg->rcu, free_sched_group_rcu);
}

void sched_offline_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7670
{
7671
	unsigned long flags;
7672
	int i;
S
Srivatsa Vaddagiri 已提交
7673

7674 7675
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
7676
		unregister_fair_sched_group(tg, i);
7677 7678

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7679
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
7680
	list_del_rcu(&tg->siblings);
7681
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7682 7683
}

7684
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7685 7686 7687
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7688 7689
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7690
{
P
Peter Zijlstra 已提交
7691
	struct task_group *tg;
7692
	int queued, running;
S
Srivatsa Vaddagiri 已提交
7693 7694 7695 7696 7697
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

7698
	running = task_current(rq, tsk);
7699
	queued = task_on_rq_queued(tsk);
S
Srivatsa Vaddagiri 已提交
7700

7701
	if (queued)
S
Srivatsa Vaddagiri 已提交
7702
		dequeue_task(rq, tsk, 0);
7703
	if (unlikely(running))
7704
		put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7705

7706 7707 7708 7709 7710 7711
	/*
	 * All callers are synchronized by task_rq_lock(); we do not use RCU
	 * which is pointless here. Thus, we pass "true" to task_css_check()
	 * to prevent lockdep warnings.
	 */
	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
P
Peter Zijlstra 已提交
7712 7713 7714 7715
			  struct task_group, css);
	tg = autogroup_task_group(tsk, tg);
	tsk->sched_task_group = tg;

P
Peter Zijlstra 已提交
7716
#ifdef CONFIG_FAIR_GROUP_SCHED
7717
	if (tsk->sched_class->task_move_group)
7718
		tsk->sched_class->task_move_group(tsk);
7719
	else
P
Peter Zijlstra 已提交
7720
#endif
7721
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
7722

7723 7724
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
7725
	if (queued)
7726
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
7727

7728
	task_rq_unlock(rq, tsk, &flags);
S
Srivatsa Vaddagiri 已提交
7729
}
D
Dhaval Giani 已提交
7730
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
7731

7732 7733 7734 7735 7736
#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
P
Peter Zijlstra 已提交
7737

P
Peter Zijlstra 已提交
7738 7739
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
7740
{
P
Peter Zijlstra 已提交
7741
	struct task_struct *g, *p;
7742

7743 7744 7745 7746 7747 7748
	/*
	 * Autogroups do not have RT tasks; see autogroup_create().
	 */
	if (task_group_is_autogroup(tg))
		return 0;

7749
	for_each_process_thread(g, p) {
7750
		if (rt_task(p) && task_group(p) == tg)
P
Peter Zijlstra 已提交
7751
			return 1;
7752
	}
7753

P
Peter Zijlstra 已提交
7754 7755
	return 0;
}
7756

P
Peter Zijlstra 已提交
7757 7758 7759 7760 7761
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
7762

7763
static int tg_rt_schedulable(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
7764 7765 7766 7767 7768
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
7769

P
Peter Zijlstra 已提交
7770 7771
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
7772

P
Peter Zijlstra 已提交
7773 7774 7775
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
7776 7777
	}

7778 7779 7780 7781 7782
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
7783

7784 7785 7786
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
7787 7788
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
7789

P
Peter Zijlstra 已提交
7790
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7791

7792 7793 7794 7795 7796
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
7797

7798 7799 7800
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
7801 7802 7803
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7804

P
Peter Zijlstra 已提交
7805 7806 7807 7808
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
7809

P
Peter Zijlstra 已提交
7810
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7811
	}
P
Peter Zijlstra 已提交
7812

P
Peter Zijlstra 已提交
7813 7814 7815 7816
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
7817 7818
}

P
Peter Zijlstra 已提交
7819
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7820
{
7821 7822
	int ret;

P
Peter Zijlstra 已提交
7823 7824 7825 7826 7827 7828
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

7829 7830 7831 7832 7833
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7834 7835
}

7836
static int tg_set_rt_bandwidth(struct task_group *tg,
7837
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
7838
{
P
Peter Zijlstra 已提交
7839
	int i, err = 0;
P
Peter Zijlstra 已提交
7840

7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851
	/*
	 * Disallowing the root group RT runtime is BAD, it would disallow the
	 * kernel creating (and or operating) RT threads.
	 */
	if (tg == &root_task_group && rt_runtime == 0)
		return -EINVAL;

	/* No period doesn't make any sense. */
	if (rt_period == 0)
		return -EINVAL;

P
Peter Zijlstra 已提交
7852
	mutex_lock(&rt_constraints_mutex);
7853
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
7854 7855
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
7856
		goto unlock;
P
Peter Zijlstra 已提交
7857

7858
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7859 7860
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
7861 7862 7863 7864

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

7865
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7866
		rt_rq->rt_runtime = rt_runtime;
7867
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7868
	}
7869
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
7870
unlock:
7871
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
7872 7873 7874
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
7875 7876
}

7877
static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7878 7879 7880 7881 7882 7883 7884 7885
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

7886
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7887 7888
}

7889
static long sched_group_rt_runtime(struct task_group *tg)
P
Peter Zijlstra 已提交
7890 7891 7892
{
	u64 rt_runtime_us;

7893
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7894 7895
		return -1;

7896
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7897 7898 7899
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
7900

7901
static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
7902 7903 7904
{
	u64 rt_runtime, rt_period;

7905
	rt_period = rt_period_us * NSEC_PER_USEC;
7906 7907
	rt_runtime = tg->rt_bandwidth.rt_runtime;

7908
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7909 7910
}

7911
static long sched_group_rt_period(struct task_group *tg)
7912 7913 7914 7915 7916 7917 7918
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}
7919
#endif /* CONFIG_RT_GROUP_SCHED */
7920

7921
#ifdef CONFIG_RT_GROUP_SCHED
7922 7923 7924 7925 7926
static int sched_rt_global_constraints(void)
{
	int ret = 0;

	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
7927
	read_lock(&tasklist_lock);
7928
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
7929
	read_unlock(&tasklist_lock);
7930 7931 7932 7933
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
7934

7935
static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7936 7937 7938 7939 7940 7941 7942 7943
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

7944
#else /* !CONFIG_RT_GROUP_SCHED */
7945 7946
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
7947
	unsigned long flags;
7948
	int i, ret = 0;
7949

7950
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7951 7952 7953
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

7954
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7955
		rt_rq->rt_runtime = global_rt_runtime();
7956
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7957
	}
7958
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7959

7960
	return ret;
7961
}
7962
#endif /* CONFIG_RT_GROUP_SCHED */
7963

7964
static int sched_dl_global_validate(void)
7965
{
7966 7967
	u64 runtime = global_rt_runtime();
	u64 period = global_rt_period();
7968
	u64 new_bw = to_ratio(period, runtime);
7969
	struct dl_bw *dl_b;
7970
	int cpu, ret = 0;
7971
	unsigned long flags;
7972 7973 7974 7975 7976 7977 7978 7979 7980 7981

	/*
	 * Here we want to check the bandwidth not being set to some
	 * value smaller than the currently allocated bandwidth in
	 * any of the root_domains.
	 *
	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
	 * cycling on root_domains... Discussion on different/better
	 * solutions is welcome!
	 */
7982
	for_each_possible_cpu(cpu) {
7983 7984
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);
7985

7986
		raw_spin_lock_irqsave(&dl_b->lock, flags);
7987 7988
		if (new_bw < dl_b->total_bw)
			ret = -EBUSY;
7989
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7990

7991 7992
		rcu_read_unlock_sched();

7993 7994
		if (ret)
			break;
7995 7996
	}

7997
	return ret;
7998 7999
}

8000
static void sched_dl_do_global(void)
8001
{
8002
	u64 new_bw = -1;
8003
	struct dl_bw *dl_b;
8004
	int cpu;
8005
	unsigned long flags;
8006

8007 8008 8009 8010 8011 8012 8013 8014 8015 8016
	def_dl_bandwidth.dl_period = global_rt_period();
	def_dl_bandwidth.dl_runtime = global_rt_runtime();

	if (global_rt_runtime() != RUNTIME_INF)
		new_bw = to_ratio(global_rt_period(), global_rt_runtime());

	/*
	 * FIXME: As above...
	 */
	for_each_possible_cpu(cpu) {
8017 8018
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);
8019

8020
		raw_spin_lock_irqsave(&dl_b->lock, flags);
8021
		dl_b->bw = new_bw;
8022
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8023 8024

		rcu_read_unlock_sched();
8025
	}
8026 8027 8028 8029 8030 8031 8032
}

static int sched_rt_global_validate(void)
{
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8033 8034
	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
8035 8036 8037 8038 8039 8040 8041 8042 8043
		return -EINVAL;

	return 0;
}

static void sched_rt_do_global(void)
{
	def_rt_bandwidth.rt_runtime = global_rt_runtime();
	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
8044 8045
}

8046
int sched_rt_handler(struct ctl_table *table, int write,
8047
		void __user *buffer, size_t *lenp,
8048 8049 8050 8051
		loff_t *ppos)
{
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);
8052
	int ret;
8053 8054 8055 8056 8057

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

8058
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8059 8060

	if (!ret && write) {
8061 8062 8063 8064
		ret = sched_rt_global_validate();
		if (ret)
			goto undo;

8065
		ret = sched_dl_global_validate();
8066 8067 8068
		if (ret)
			goto undo;

8069
		ret = sched_rt_global_constraints();
8070 8071 8072 8073 8074 8075 8076 8077 8078 8079
		if (ret)
			goto undo;

		sched_rt_do_global();
		sched_dl_do_global();
	}
	if (0) {
undo:
		sysctl_sched_rt_period = old_period;
		sysctl_sched_rt_runtime = old_runtime;
8080 8081 8082 8083 8084
	}
	mutex_unlock(&mutex);

	return ret;
}
8085

8086
int sched_rr_handler(struct ctl_table *table, int write,
8087 8088 8089 8090 8091 8092 8093 8094
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8095 8096
	/* make sure that internally we keep jiffies */
	/* also, writing zero resets timeslice to default */
8097
	if (!ret && write) {
8098 8099
		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8100 8101 8102 8103 8104
	}
	mutex_unlock(&mutex);
	return ret;
}

8105
#ifdef CONFIG_CGROUP_SCHED
8106

8107
static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8108
{
8109
	return css ? container_of(css, struct task_group, css) : NULL;
8110 8111
}

8112 8113
static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8114
{
8115 8116
	struct task_group *parent = css_tg(parent_css);
	struct task_group *tg;
8117

8118
	if (!parent) {
8119
		/* This is early initialization for the top cgroup */
8120
		return &root_task_group.css;
8121 8122
	}

8123
	tg = sched_create_group(parent);
8124 8125 8126 8127 8128 8129
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

8130
static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
8131
{
8132
	struct task_group *tg = css_tg(css);
T
Tejun Heo 已提交
8133
	struct task_group *parent = css_tg(css->parent);
8134

T
Tejun Heo 已提交
8135 8136
	if (parent)
		sched_online_group(tg, parent);
8137 8138 8139
	return 0;
}

8140
static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8141
{
8142
	struct task_group *tg = css_tg(css);
8143 8144 8145 8146

	sched_destroy_group(tg);
}

8147
static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
8148
{
8149
	struct task_group *tg = css_tg(css);
8150 8151 8152 8153

	sched_offline_group(tg);
}

8154
static void cpu_cgroup_fork(struct task_struct *task, void *private)
8155 8156 8157 8158
{
	sched_move_task(task);
}

8159
static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
8160
				 struct cgroup_taskset *tset)
8161
{
8162 8163
	struct task_struct *task;

8164
	cgroup_taskset_for_each(task, tset) {
8165
#ifdef CONFIG_RT_GROUP_SCHED
8166
		if (!sched_rt_can_attach(css_tg(css), task))
8167
			return -EINVAL;
8168
#else
8169 8170 8171
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
8172
#endif
8173
	}
8174 8175
	return 0;
}
8176

8177
static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
8178
			      struct cgroup_taskset *tset)
8179
{
8180 8181
	struct task_struct *task;

8182
	cgroup_taskset_for_each(task, tset)
8183
		sched_move_task(task);
8184 8185
}

8186 8187 8188
static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
			    struct cgroup_subsys_state *old_css,
			    struct task_struct *task)
8189 8190 8191 8192
{
	sched_move_task(task);
}

8193
#ifdef CONFIG_FAIR_GROUP_SCHED
8194 8195
static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
				struct cftype *cftype, u64 shareval)
8196
{
8197
	return sched_group_set_shares(css_tg(css), scale_load(shareval));
8198 8199
}

8200 8201
static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
			       struct cftype *cft)
8202
{
8203
	struct task_group *tg = css_tg(css);
8204

8205
	return (u64) scale_load_down(tg->shares);
8206
}
8207 8208

#ifdef CONFIG_CFS_BANDWIDTH
8209 8210
static DEFINE_MUTEX(cfs_constraints_mutex);

8211 8212 8213
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

8214 8215
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

8216 8217
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
8218
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8219
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

8240 8241 8242 8243 8244
	/*
	 * Prevent race between setting of cfs_rq->runtime_enabled and
	 * unthrottle_offline_cfs_rqs().
	 */
	get_online_cpus();
8245 8246 8247 8248 8249
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

8250
	runtime_enabled = quota != RUNTIME_INF;
8251
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8252 8253 8254 8255 8256 8257
	/*
	 * If we need to toggle cfs_bandwidth_used, off->on must occur
	 * before making related changes, and on->off must occur afterwards
	 */
	if (runtime_enabled && !runtime_was_enabled)
		cfs_bandwidth_usage_inc();
8258 8259 8260
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
8261

P
Paul Turner 已提交
8262
	__refill_cfs_bandwidth_runtime(cfs_b);
8263
	/* restart the period timer (if active) to handle new period expiry */
P
Peter Zijlstra 已提交
8264 8265
	if (runtime_enabled)
		start_cfs_bandwidth(cfs_b);
8266 8267
	raw_spin_unlock_irq(&cfs_b->lock);

8268
	for_each_online_cpu(i) {
8269
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8270
		struct rq *rq = cfs_rq->rq;
8271 8272

		raw_spin_lock_irq(&rq->lock);
8273
		cfs_rq->runtime_enabled = runtime_enabled;
8274
		cfs_rq->runtime_remaining = 0;
8275

8276
		if (cfs_rq->throttled)
8277
			unthrottle_cfs_rq(cfs_rq);
8278 8279
		raw_spin_unlock_irq(&rq->lock);
	}
8280 8281
	if (runtime_was_enabled && !runtime_enabled)
		cfs_bandwidth_usage_dec();
8282 8283
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
8284
	put_online_cpus();
8285

8286
	return ret;
8287 8288 8289 8290 8291 8292
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

8293
	period = ktime_to_ns(tg->cfs_bandwidth.period);
8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

8306
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8307 8308
		return -1;

8309
	quota_us = tg->cfs_bandwidth.quota;
8310 8311 8312 8313 8314 8315 8316 8317 8318 8319
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
8320
	quota = tg->cfs_bandwidth.quota;
8321 8322 8323 8324 8325 8326 8327 8328

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

8329
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8330 8331 8332 8333 8334
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

8335 8336
static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
				  struct cftype *cft)
8337
{
8338
	return tg_get_cfs_quota(css_tg(css));
8339 8340
}

8341 8342
static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
				   struct cftype *cftype, s64 cfs_quota_us)
8343
{
8344
	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8345 8346
}

8347 8348
static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
				   struct cftype *cft)
8349
{
8350
	return tg_get_cfs_period(css_tg(css));
8351 8352
}

8353 8354
static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 cfs_period_us)
8355
{
8356
	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8357 8358
}

8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
8391
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8392 8393 8394 8395 8396
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
8397
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8398 8399

		quota = normalize_cfs_quota(tg, d);
8400
		parent_quota = parent_b->hierarchical_quota;
8401 8402 8403 8404 8405 8406 8407 8408 8409 8410

		/*
		 * ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
8411
	cfs_b->hierarchical_quota = quota;
8412 8413 8414 8415 8416 8417

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
8418
	int ret;
8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

8430 8431 8432 8433 8434
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
8435
}
8436

8437
static int cpu_stats_show(struct seq_file *sf, void *v)
8438
{
8439
	struct task_group *tg = css_tg(seq_css(sf));
8440
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8441

8442 8443 8444
	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8445 8446 8447

	return 0;
}
8448
#endif /* CONFIG_CFS_BANDWIDTH */
8449
#endif /* CONFIG_FAIR_GROUP_SCHED */
8450

8451
#ifdef CONFIG_RT_GROUP_SCHED
8452 8453
static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
				struct cftype *cft, s64 val)
P
Peter Zijlstra 已提交
8454
{
8455
	return sched_group_set_rt_runtime(css_tg(css), val);
P
Peter Zijlstra 已提交
8456 8457
}

8458 8459
static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
P
Peter Zijlstra 已提交
8460
{
8461
	return sched_group_rt_runtime(css_tg(css));
P
Peter Zijlstra 已提交
8462
}
8463

8464 8465
static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 rt_period_us)
8466
{
8467
	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8468 8469
}

8470 8471
static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
				   struct cftype *cft)
8472
{
8473
	return sched_group_rt_period(css_tg(css));
8474
}
8475
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
8476

8477
static struct cftype cpu_files[] = {
8478
#ifdef CONFIG_FAIR_GROUP_SCHED
8479 8480
	{
		.name = "shares",
8481 8482
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8483
	},
8484
#endif
8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
8496 8497
	{
		.name = "stat",
8498
		.seq_show = cpu_stats_show,
8499
	},
8500
#endif
8501
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8502
	{
P
Peter Zijlstra 已提交
8503
		.name = "rt_runtime_us",
8504 8505
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8506
	},
8507 8508
	{
		.name = "rt_period_us",
8509 8510
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8511
	},
8512
#endif
8513
	{ }	/* terminate */
8514 8515
};

8516
struct cgroup_subsys cpu_cgrp_subsys = {
8517 8518
	.css_alloc	= cpu_cgroup_css_alloc,
	.css_free	= cpu_cgroup_css_free,
8519 8520
	.css_online	= cpu_cgroup_css_online,
	.css_offline	= cpu_cgroup_css_offline,
8521
	.fork		= cpu_cgroup_fork,
8522 8523
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
8524
	.exit		= cpu_cgroup_exit,
8525
	.legacy_cftypes	= cpu_files,
8526 8527 8528
	.early_init	= 1,
};

8529
#endif	/* CONFIG_CGROUP_SCHED */
8530

8531 8532 8533 8534 8535
void dump_cpu_task(int cpu)
{
	pr_info("Task dump for CPU %d:\n", cpu);
	sched_show_task(cpu_curr(cpu));
}