core.c 194.0 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/highmem.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
37
#include <linux/capability.h>
L
Linus Torvalds 已提交
38 39
#include <linux/completion.h>
#include <linux/kernel_stat.h>
40
#include <linux/debug_locks.h>
41
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
57
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
58
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/unistd.h>
J
Jens Axboe 已提交
66
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
67
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
68
#include <linux/tick.h>
P
Peter Zijlstra 已提交
69 70
#include <linux/debugfs.h>
#include <linux/ctype.h>
71
#include <linux/ftrace.h>
72
#include <linux/slab.h>
73
#include <linux/init_task.h>
A
Al Viro 已提交
74
#include <linux/binfmts.h>
75
#include <linux/context_tracking.h>
L
Linus Torvalds 已提交
76

77
#include <asm/switch_to.h>
78
#include <asm/tlb.h>
79
#include <asm/irq_regs.h>
80
#include <asm/mutex.h>
G
Glauber Costa 已提交
81 82 83
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
84

85
#include "sched.h"
86
#include "../workqueue_internal.h"
87
#include "../smpboot.h"
88

89
#define CREATE_TRACE_POINTS
90
#include <trace/events/sched.h>
91

92
void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93
{
94 95
	unsigned long delta;
	ktime_t soft, hard, now;
96

97 98 99 100 101 102
	for (;;) {
		if (hrtimer_active(period_timer))
			break;

		now = hrtimer_cb_get_time(period_timer);
		hrtimer_forward(period_timer, now, period);
103

104 105 106 107 108 109 110 111
		soft = hrtimer_get_softexpires(period_timer);
		hard = hrtimer_get_expires(period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(period_timer, soft, delta,
					 HRTIMER_MODE_ABS_PINNED, 0);
	}
}

112 113
DEFINE_MUTEX(sched_domains_mutex);
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114

115
static void update_rq_clock_task(struct rq *rq, s64 delta);
116

117
void update_rq_clock(struct rq *rq)
118
{
119
	s64 delta;
120

121
	if (rq->skip_clock_update > 0)
122
		return;
123

124 125 126
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
127 128
}

I
Ingo Molnar 已提交
129 130 131
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
132 133 134 135

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
136
const_debug unsigned int sysctl_sched_features =
137
#include "features.h"
P
Peter Zijlstra 已提交
138 139 140 141 142 143 144 145
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

146
static const char * const sched_feat_names[] = {
147
#include "features.h"
P
Peter Zijlstra 已提交
148 149 150 151
};

#undef SCHED_FEAT

L
Li Zefan 已提交
152
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
153 154 155
{
	int i;

156
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
L
Li Zefan 已提交
157 158 159
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
160
	}
L
Li Zefan 已提交
161
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
162

L
Li Zefan 已提交
163
	return 0;
P
Peter Zijlstra 已提交
164 165
}

166 167
#ifdef HAVE_JUMP_LABEL

168 169
#define jump_label_key__true  STATIC_KEY_INIT_TRUE
#define jump_label_key__false STATIC_KEY_INIT_FALSE
170 171 172 173

#define SCHED_FEAT(name, enabled)	\
	jump_label_key__##enabled ,

174
struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175 176 177 178 179 180 181
#include "features.h"
};

#undef SCHED_FEAT

static void sched_feat_disable(int i)
{
182 183
	if (static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_dec(&sched_feat_keys[i]);
184 185 186 187
}

static void sched_feat_enable(int i)
{
188 189
	if (!static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_inc(&sched_feat_keys[i]);
190 191 192 193 194 195
}
#else
static void sched_feat_disable(int i) { };
static void sched_feat_enable(int i) { };
#endif /* HAVE_JUMP_LABEL */

196
static int sched_feat_set(char *cmp)
P
Peter Zijlstra 已提交
197 198
{
	int i;
199
	int neg = 0;
P
Peter Zijlstra 已提交
200

H
Hillf Danton 已提交
201
	if (strncmp(cmp, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
202 203 204 205
		neg = 1;
		cmp += 3;
	}

206
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
207
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
208
			if (neg) {
P
Peter Zijlstra 已提交
209
				sysctl_sched_features &= ~(1UL << i);
210 211
				sched_feat_disable(i);
			} else {
P
Peter Zijlstra 已提交
212
				sysctl_sched_features |= (1UL << i);
213 214
				sched_feat_enable(i);
			}
P
Peter Zijlstra 已提交
215 216 217 218
			break;
		}
	}

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
	return i;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
	cmp = strstrip(buf);

	i = sched_feat_set(cmp);
240
	if (i == __SCHED_FEAT_NR)
P
Peter Zijlstra 已提交
241 242
		return -EINVAL;

243
	*ppos += cnt;
P
Peter Zijlstra 已提交
244 245 246 247

	return cnt;
}

L
Li Zefan 已提交
248 249 250 251 252
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

253
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
254 255 256 257 258
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
259 260 261 262 263 264 265 266 267 268
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);
269
#endif /* CONFIG_SCHED_DEBUG */
I
Ingo Molnar 已提交
270

271 272 273 274 275 276
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

277 278 279 280 281 282 283 284
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
285
/*
P
Peter Zijlstra 已提交
286
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
287 288
 * default: 1s
 */
P
Peter Zijlstra 已提交
289
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
290

291
__read_mostly int scheduler_running;
292

P
Peter Zijlstra 已提交
293 294 295 296 297
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
298 299


L
Linus Torvalds 已提交
300

301
/*
302
 * __task_rq_lock - lock the rq @p resides on.
303
 */
304
static inline struct rq *__task_rq_lock(struct task_struct *p)
305 306
	__acquires(rq->lock)
{
307 308
	struct rq *rq;

309 310
	lockdep_assert_held(&p->pi_lock);

311
	for (;;) {
312
		rq = task_rq(p);
313
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
314
		if (likely(rq == task_rq(p)))
315
			return rq;
316
		raw_spin_unlock(&rq->lock);
317 318 319
	}
}

L
Linus Torvalds 已提交
320
/*
321
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
L
Linus Torvalds 已提交
322
 */
323
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
324
	__acquires(p->pi_lock)
L
Linus Torvalds 已提交
325 326
	__acquires(rq->lock)
{
327
	struct rq *rq;
L
Linus Torvalds 已提交
328

329
	for (;;) {
330
		raw_spin_lock_irqsave(&p->pi_lock, *flags);
331
		rq = task_rq(p);
332
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
333
		if (likely(rq == task_rq(p)))
334
			return rq;
335 336
		raw_spin_unlock(&rq->lock);
		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
337 338 339
	}
}

A
Alexey Dobriyan 已提交
340
static void __task_rq_unlock(struct rq *rq)
341 342
	__releases(rq->lock)
{
343
	raw_spin_unlock(&rq->lock);
344 345
}

346 347
static inline void
task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
348
	__releases(rq->lock)
349
	__releases(p->pi_lock)
L
Linus Torvalds 已提交
350
{
351 352
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
353 354 355
}

/*
356
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
357
 */
A
Alexey Dobriyan 已提交
358
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
359 360
	__acquires(rq->lock)
{
361
	struct rq *rq;
L
Linus Torvalds 已提交
362 363 364

	local_irq_disable();
	rq = this_rq();
365
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
366 367 368 369

	return rq;
}

P
Peter Zijlstra 已提交
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

398
	raw_spin_lock(&rq->lock);
399
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
400
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
401
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
402 403 404 405

	return HRTIMER_NORESTART;
}

406
#ifdef CONFIG_SMP
407 408 409 410
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
411
{
412
	struct rq *rq = arg;
413

414
	raw_spin_lock(&rq->lock);
415 416
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
417
	raw_spin_unlock(&rq->lock);
418 419
}

420 421 422 423 424
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
425
void hrtick_start(struct rq *rq, u64 delay)
426
{
427 428
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
429

430
	hrtimer_set_expires(timer, time);
431 432 433 434

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
435
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
436 437
		rq->hrtick_csd_pending = 1;
	}
438 439 440 441 442 443 444 445 446 447 448 449 450 451
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
452
		hrtick_clear(cpu_rq(cpu));
453 454 455 456 457 458
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

459
static __init void init_hrtick(void)
460 461 462
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
463 464 465 466 467 468
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
469
void hrtick_start(struct rq *rq, u64 delay)
470
{
471
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
472
			HRTIMER_MODE_REL_PINNED, 0);
473
}
474

A
Andrew Morton 已提交
475
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
476 477
{
}
478
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
479

480
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
481
{
482 483
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
484

485 486 487 488
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
489

490 491
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
492
}
A
Andrew Morton 已提交
493
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
494 495 496 497 498 499 500 501
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

502 503 504
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
505
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
506

I
Ingo Molnar 已提交
507 508 509 510 511 512 513 514
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP
515
void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
516 517 518
{
	int cpu;

519
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
520

521
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
522 523
		return;

524
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
525 526 527 528 529 530 531 532 533 534 535

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

536
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
537 538 539 540
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

541
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
542 543
		return;
	resched_task(cpu_curr(cpu));
544
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
545
}
546

547
#ifdef CONFIG_NO_HZ_COMMON
548 549 550 551 552 553 554 555 556 557 558 559 560 561
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
int get_nohz_timer_target(void)
{
	int cpu = smp_processor_id();
	int i;
	struct sched_domain *sd;

562
	rcu_read_lock();
563
	for_each_domain(cpu, sd) {
564 565 566 567 568 569
		for_each_cpu(i, sched_domain_span(sd)) {
			if (!idle_cpu(i)) {
				cpu = i;
				goto unlock;
			}
		}
570
	}
571 572
unlock:
	rcu_read_unlock();
573 574
	return cpu;
}
575 576 577 578 579 580 581 582 583 584
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
585
static void wake_up_idle_cpu(int cpu)
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;
601 602

	/*
603 604 605
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
606
	 */
607
	set_tsk_need_resched(rq->idle);
608

609 610 611 612
	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
613 614
}

615
static bool wake_up_full_nohz_cpu(int cpu)
616
{
617
	if (tick_nohz_full_cpu(cpu)) {
618 619 620 621 622 623 624 625 626 627 628
		if (cpu != smp_processor_id() ||
		    tick_nohz_tick_stopped())
			smp_send_reschedule(cpu);
		return true;
	}

	return false;
}

void wake_up_nohz_cpu(int cpu)
{
629
	if (!wake_up_full_nohz_cpu(cpu))
630 631 632
		wake_up_idle_cpu(cpu);
}

633
static inline bool got_nohz_idle_kick(void)
634
{
635 636
	int cpu = smp_processor_id();
	return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
637 638
}

639
#else /* CONFIG_NO_HZ_COMMON */
640

641
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
642
{
643
	return false;
P
Peter Zijlstra 已提交
644 645
}

646
#endif /* CONFIG_NO_HZ_COMMON */
647

648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
#ifdef CONFIG_NO_HZ_FULL
bool sched_can_stop_tick(void)
{
       struct rq *rq;

       rq = this_rq();

       /* Make sure rq->nr_running update is visible after the IPI */
       smp_rmb();

       /* More than one running task need preemption */
       if (rq->nr_running > 1)
               return false;

       return true;
}
#endif /* CONFIG_NO_HZ_FULL */

666
void sched_avg_update(struct rq *rq)
667
{
668 669 670
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
671 672 673 674 675 676
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
677 678 679
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
680 681
}

682
#else /* !CONFIG_SMP */
683
void resched_task(struct task_struct *p)
684
{
685
	assert_raw_spin_locked(&task_rq(p)->lock);
686
	set_tsk_need_resched(p);
687
}
688
#endif /* CONFIG_SMP */
689

690 691
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
692
/*
693 694 695 696
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
697
 */
698
int walk_tg_tree_from(struct task_group *from,
699
			     tg_visitor down, tg_visitor up, void *data)
700 701
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
702
	int ret;
703

704 705
	parent = from;

706
down:
P
Peter Zijlstra 已提交
707 708
	ret = (*down)(parent, data);
	if (ret)
709
		goto out;
710 711 712 713 714 715 716
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
717
	ret = (*up)(parent, data);
718 719
	if (ret || parent == from)
		goto out;
720 721 722 723 724

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
725
out:
P
Peter Zijlstra 已提交
726
	return ret;
727 728
}

729
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
730
{
731
	return 0;
P
Peter Zijlstra 已提交
732
}
733 734
#endif

735 736
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
737 738 739
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
740 741 742 743
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
744
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
745
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
746 747
		return;
	}
748

749
	load->weight = scale_load(prio_to_weight[prio]);
N
Nikhil Rao 已提交
750
	load->inv_weight = prio_to_wmult[prio];
751 752
}

753
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
754
{
755
	update_rq_clock(rq);
I
Ingo Molnar 已提交
756
	sched_info_queued(p);
757
	p->sched_class->enqueue_task(rq, p, flags);
758 759
}

760
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
761
{
762
	update_rq_clock(rq);
763
	sched_info_dequeued(p);
764
	p->sched_class->dequeue_task(rq, p, flags);
765 766
}

767
void activate_task(struct rq *rq, struct task_struct *p, int flags)
768 769 770 771
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

772
	enqueue_task(rq, p, flags);
773 774
}

775
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
776 777 778 779
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

780
	dequeue_task(rq, p, flags);
781 782
}

783
static void update_rq_clock_task(struct rq *rq, s64 delta)
784
{
785 786 787 788 789 790 791 792
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
793
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
815 816
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
817
	if (static_key_false((&paravirt_steal_rq_enabled))) {
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
		u64 st;

		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		st = steal_ticks(steal);
		steal = st * TICK_NSEC;

		rq->prev_steal_time_rq += steal;

		delta -= steal;
	}
#endif

835 836
	rq->clock_task += delta;

837 838 839 840
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
841 842
}

843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

873
/*
I
Ingo Molnar 已提交
874
 * __normal_prio - return the priority that is based on the static prio
875 876 877
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
878
	return p->static_prio;
879 880
}

881 882 883 884 885 886 887
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
888
static inline int normal_prio(struct task_struct *p)
889 890 891
{
	int prio;

892
	if (task_has_rt_policy(p))
893 894 895 896 897 898 899 900 901 902 903 904 905
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
906
static int effective_prio(struct task_struct *p)
907 908 909 910 911 912 913 914 915 916 917 918
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
919 920 921 922
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
923
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
924 925 926 927
{
	return cpu_curr(task_cpu(p)) == p;
}

928 929
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
930
				       int oldprio)
931 932 933
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
934 935 936 937
			prev_class->switched_from(rq, p);
		p->sched_class->switched_to(rq, p);
	} else if (oldprio != p->prio)
		p->sched_class->prio_changed(rq, p, oldprio);
938 939
}

940
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
				resched_task(rq->curr);
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
P
Peter Zijlstra 已提交
961
	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
962 963 964
		rq->skip_clock_update = 1;
}

965 966 967 968 969 970 971
static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);

void register_task_migration_notifier(struct notifier_block *n)
{
	atomic_notifier_chain_register(&task_migration_notifier, n);
}

L
Linus Torvalds 已提交
972
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
973
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
974
{
975 976 977 978 979
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
980 981
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
982 983

#ifdef CONFIG_LOCKDEP
984 985 986 987 988
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
P
Peter Zijlstra 已提交
989
	 * see task_group().
990 991 992 993
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
994 995 996
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
997 998
#endif

999
	trace_sched_migrate_task(p, new_cpu);
1000

1001
	if (task_cpu(p) != new_cpu) {
1002 1003
		struct task_migration_notifier tmn;

1004 1005
		if (p->sched_class->migrate_task_rq)
			p->sched_class->migrate_task_rq(p, new_cpu);
1006
		p->se.nr_migrations++;
1007
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1008 1009 1010 1011 1012 1013

		tmn.task = p;
		tmn.from_cpu = task_cpu(p);
		tmn.to_cpu = new_cpu;

		atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
1014
	}
I
Ingo Molnar 已提交
1015 1016

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1017 1018
}

1019
struct migration_arg {
1020
	struct task_struct *task;
L
Linus Torvalds 已提交
1021
	int dest_cpu;
1022
};
L
Linus Torvalds 已提交
1023

1024 1025
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
1026 1027 1028
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1029 1030 1031 1032 1033 1034 1035
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1036 1037 1038 1039 1040 1041
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1042
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1043 1044
{
	unsigned long flags;
I
Ingo Molnar 已提交
1045
	int running, on_rq;
R
Roland McGrath 已提交
1046
	unsigned long ncsw;
1047
	struct rq *rq;
L
Linus Torvalds 已提交
1048

1049 1050 1051 1052 1053 1054 1055 1056
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1057

1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1069 1070 1071
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1072
			cpu_relax();
R
Roland McGrath 已提交
1073
		}
1074

1075 1076 1077 1078 1079 1080
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1081
		trace_sched_wait_task(p);
1082
		running = task_running(rq, p);
P
Peter Zijlstra 已提交
1083
		on_rq = p->on_rq;
R
Roland McGrath 已提交
1084
		ncsw = 0;
1085
		if (!match_state || p->state == match_state)
1086
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1087
		task_rq_unlock(rq, p, &flags);
1088

R
Roland McGrath 已提交
1089 1090 1091 1092 1093 1094
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1105

1106 1107 1108 1109 1110
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1111
		 * So if it was still runnable (but just not actively
1112 1113 1114 1115
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
1116 1117 1118 1119
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1120 1121
			continue;
		}
1122

1123 1124 1125 1126 1127 1128 1129
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1130 1131

	return ncsw;
L
Linus Torvalds 已提交
1132 1133 1134 1135 1136 1137 1138 1139 1140
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1141
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1142 1143 1144 1145 1146
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1147
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1148 1149 1150 1151 1152 1153 1154 1155 1156
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1157
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
1158
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1159

1160
#ifdef CONFIG_SMP
1161
/*
1162
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1163
 */
1164 1165
static int select_fallback_rq(int cpu, struct task_struct *p)
{
1166 1167
	int nid = cpu_to_node(cpu);
	const struct cpumask *nodemask = NULL;
1168 1169
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1170

1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
	/*
	 * If the node that the cpu is on has been offlined, cpu_to_node()
	 * will return -1. There is no cpu on the node, and we should
	 * select the cpu on the other node.
	 */
	if (nid != -1) {
		nodemask = cpumask_of_node(nid);

		/* Look for allowed, online CPU in same node. */
		for_each_cpu(dest_cpu, nodemask) {
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
				return dest_cpu;
		}
1188
	}
1189

1190 1191
	for (;;) {
		/* Any allowed, online CPU? */
1192
		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1193 1194 1195 1196 1197 1198
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			goto out;
		}
1199

1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
		switch (state) {
		case cpuset:
			/* No more Mr. Nice Guy. */
			cpuset_cpus_allowed_fallback(p);
			state = possible;
			break;

		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk_sched("process %d (%s) no longer affine to cpu%d\n",
					task_pid_nr(p), p->comm, cpu);
		}
1229 1230 1231 1232 1233
	}

	return dest_cpu;
}

1234
/*
1235
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1236
 */
1237
static inline
1238
int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1239
{
1240
	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1252
	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
P
Peter Zijlstra 已提交
1253
		     !cpu_online(cpu)))
1254
		cpu = select_fallback_rq(task_cpu(p), p);
1255 1256

	return cpu;
1257
}
1258 1259 1260 1261 1262 1263

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1264 1265
#endif

P
Peter Zijlstra 已提交
1266
static void
1267
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1268
{
P
Peter Zijlstra 已提交
1269
#ifdef CONFIG_SCHEDSTATS
1270 1271
	struct rq *rq = this_rq();

P
Peter Zijlstra 已提交
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
#ifdef CONFIG_SMP
	int this_cpu = smp_processor_id();

	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	} else {
		struct sched_domain *sd;

		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1282
		rcu_read_lock();
P
Peter Zijlstra 已提交
1283 1284 1285 1286 1287 1288
		for_each_domain(this_cpu, sd) {
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
1289
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1290
	}
1291 1292 1293 1294

	if (wake_flags & WF_MIGRATED)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);

P
Peter Zijlstra 已提交
1295 1296 1297
#endif /* CONFIG_SMP */

	schedstat_inc(rq, ttwu_count);
T
Tejun Heo 已提交
1298
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1299 1300

	if (wake_flags & WF_SYNC)
T
Tejun Heo 已提交
1301
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1302 1303 1304 1305 1306 1307

#endif /* CONFIG_SCHEDSTATS */
}

static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
{
T
Tejun Heo 已提交
1308
	activate_task(rq, p, en_flags);
P
Peter Zijlstra 已提交
1309
	p->on_rq = 1;
1310 1311 1312 1313

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1314 1315
}

1316 1317 1318
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1319
static void
1320
ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
T
Tejun Heo 已提交
1321 1322
{
	check_preempt_curr(rq, p, wake_flags);
1323
	trace_sched_wakeup(p, true);
T
Tejun Heo 已提交
1324 1325 1326 1327 1328 1329

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);

1330
	if (rq->idle_stamp) {
T
Tejun Heo 已提交
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
#endif
}

1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
static void
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
{
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
#endif

	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
	ttwu_do_wakeup(rq, p, wake_flags);
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
	if (p->on_rq) {
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;
}

1376
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1377
static void sched_ttwu_pending(void)
1378 1379
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1380 1381
	struct llist_node *llist = llist_del_all(&rq->wake_list);
	struct task_struct *p;
1382 1383 1384

	raw_spin_lock(&rq->lock);

P
Peter Zijlstra 已提交
1385 1386 1387
	while (llist) {
		p = llist_entry(llist, struct task_struct, wake_entry);
		llist = llist_next(llist);
1388 1389 1390 1391 1392 1393 1394 1395
		ttwu_do_activate(rq, p, 0);
	}

	raw_spin_unlock(&rq->lock);
}

void scheduler_ipi(void)
{
1396 1397
	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()
	    && !tick_nohz_full_cpu(smp_processor_id()))
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
1414
	tick_nohz_full_check();
P
Peter Zijlstra 已提交
1415
	sched_ttwu_pending();
1416 1417 1418 1419

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1420 1421
	if (unlikely(got_nohz_idle_kick() && !need_resched())) {
		this_rq()->idle_balance = 1;
1422
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1423
	}
1424
	irq_exit();
1425 1426 1427 1428
}

static void ttwu_queue_remote(struct task_struct *p, int cpu)
{
P
Peter Zijlstra 已提交
1429
	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1430 1431
		smp_send_reschedule(cpu);
}
1432

1433
bool cpus_share_cache(int this_cpu, int that_cpu)
1434 1435 1436
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1437
#endif /* CONFIG_SMP */
1438

1439 1440 1441 1442
static void ttwu_queue(struct task_struct *p, int cpu)
{
	struct rq *rq = cpu_rq(cpu);

1443
#if defined(CONFIG_SMP)
1444
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1445
		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1446 1447 1448 1449 1450
		ttwu_queue_remote(p, cpu);
		return;
	}
#endif

1451 1452 1453
	raw_spin_lock(&rq->lock);
	ttwu_do_activate(rq, p, 0);
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
1454 1455 1456
}

/**
L
Linus Torvalds 已提交
1457
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1458
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1459
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1460
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1461 1462 1463 1464 1465 1466 1467
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
T
Tejun Heo 已提交
1468 1469
 * Returns %true if @p was woken up, %false if it was already running
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
1470
 */
1471 1472
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1473 1474
{
	unsigned long flags;
1475
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1476

1477
	smp_wmb();
1478
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
1479
	if (!(p->state & state))
L
Linus Torvalds 已提交
1480 1481
		goto out;

1482
	success = 1; /* we're going to change ->state */
L
Linus Torvalds 已提交
1483 1484
	cpu = task_cpu(p);

1485 1486
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
1487 1488

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1489
	/*
1490 1491
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
P
Peter Zijlstra 已提交
1492
	 */
1493
	while (p->on_cpu)
1494
		cpu_relax();
1495
	/*
1496
	 * Pairs with the smp_wmb() in finish_lock_switch().
1497
	 */
1498
	smp_rmb();
L
Linus Torvalds 已提交
1499

1500
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
1501
	p->state = TASK_WAKING;
1502

1503
	if (p->sched_class->task_waking)
1504
		p->sched_class->task_waking(p);
1505

1506
	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1507 1508
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
1509
		set_task_cpu(p, cpu);
1510
	}
L
Linus Torvalds 已提交
1511 1512
#endif /* CONFIG_SMP */

1513 1514
	ttwu_queue(p, cpu);
stat:
1515
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
1516
out:
1517
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
1518 1519 1520 1521

	return success;
}

T
Tejun Heo 已提交
1522 1523 1524 1525
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
1526
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
1527
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1528
 * the current task.
T
Tejun Heo 已提交
1529 1530 1531 1532 1533
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

1534 1535 1536 1537
	if (WARN_ON_ONCE(rq != this_rq()) ||
	    WARN_ON_ONCE(p == current))
		return;

T
Tejun Heo 已提交
1538 1539
	lockdep_assert_held(&rq->lock);

1540 1541 1542 1543 1544 1545
	if (!raw_spin_trylock(&p->pi_lock)) {
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
	}

T
Tejun Heo 已提交
1546
	if (!(p->state & TASK_NORMAL))
1547
		goto out;
T
Tejun Heo 已提交
1548

P
Peter Zijlstra 已提交
1549
	if (!p->on_rq)
P
Peter Zijlstra 已提交
1550 1551
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

1552
	ttwu_do_wakeup(rq, p, 0);
1553
	ttwu_stat(p, smp_processor_id(), 0);
1554 1555
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
1556 1557
}

1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
1569
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1570
{
1571 1572
	WARN_ON(task_is_stopped_or_traced(p));
	return try_to_wake_up(p, TASK_NORMAL, 0);
L
Linus Torvalds 已提交
1573 1574 1575
}
EXPORT_SYMBOL(wake_up_process);

1576
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1577 1578 1579 1580 1581 1582 1583
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1584 1585 1586 1587 1588
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
P
Peter Zijlstra 已提交
1589 1590 1591
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
1592 1593
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1594
	p->se.prev_sum_exec_runtime	= 0;
1595
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
1596
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
1597
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
1598

1599 1600 1601 1602 1603 1604
/*
 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
 * removed when useful for applications beyond shares distribution (e.g.
 * load-balance).
 */
#if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
1605 1606 1607
	p->se.avg.runnable_avg_period = 0;
	p->se.avg.runnable_avg_sum = 0;
#endif
I
Ingo Molnar 已提交
1608
#ifdef CONFIG_SCHEDSTATS
1609
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
1610
#endif
N
Nick Piggin 已提交
1611

P
Peter Zijlstra 已提交
1612
	INIT_LIST_HEAD(&p->rt.run_list);
N
Nick Piggin 已提交
1613

1614 1615 1616
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
1617 1618 1619 1620

#ifdef CONFIG_NUMA_BALANCING
	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
		p->mm->numa_next_scan = jiffies;
1621
		p->mm->numa_next_reset = jiffies;
1622 1623 1624 1625 1626 1627
		p->mm->numa_scan_seq = 0;
	}

	p->node_stamp = 0ULL;
	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
	p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
1628
	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1629 1630
	p->numa_work.next = &p->numa_work;
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
1631 1632
}

1633
#ifdef CONFIG_NUMA_BALANCING
1634
#ifdef CONFIG_SCHED_DEBUG
1635 1636 1637 1638 1639 1640 1641
void set_numabalancing_state(bool enabled)
{
	if (enabled)
		sched_feat_set("NUMA");
	else
		sched_feat_set("NO_NUMA");
}
1642 1643 1644 1645 1646 1647
#else
__read_mostly bool numabalancing_enabled;

void set_numabalancing_state(bool enabled)
{
	numabalancing_enabled = enabled;
I
Ingo Molnar 已提交
1648
}
1649
#endif /* CONFIG_SCHED_DEBUG */
1650
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
1651 1652 1653 1654

/*
 * fork()/clone()-time setup:
 */
1655
void sched_fork(struct task_struct *p)
I
Ingo Molnar 已提交
1656
{
1657
	unsigned long flags;
I
Ingo Molnar 已提交
1658 1659 1660
	int cpu = get_cpu();

	__sched_fork(p);
1661
	/*
1662
	 * We mark the process as running here. This guarantees that
1663 1664 1665
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
1666
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1667

1668 1669 1670 1671 1672
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

1673 1674 1675 1676
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
1677
		if (task_has_rt_policy(p)) {
1678
			p->policy = SCHED_NORMAL;
1679
			p->static_prio = NICE_TO_PRIO(0);
1680 1681 1682 1683 1684 1685
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
1686

1687 1688 1689 1690 1691 1692
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
1693

H
Hiroshi Shimamoto 已提交
1694 1695
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
1696

P
Peter Zijlstra 已提交
1697 1698 1699
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

1700 1701 1702 1703 1704 1705 1706
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
1707
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1708
	set_task_cpu(p, cpu);
1709
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1710

1711
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1712
	if (likely(sched_info_on()))
1713
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1714
#endif
P
Peter Zijlstra 已提交
1715 1716
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
1717
#endif
1718
#ifdef CONFIG_PREEMPT_COUNT
1719
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1720
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1721
#endif
1722
#ifdef CONFIG_SMP
1723
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1724
#endif
1725

N
Nick Piggin 已提交
1726
	put_cpu();
L
Linus Torvalds 已提交
1727 1728 1729 1730 1731 1732 1733 1734 1735
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1736
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
1737 1738
{
	unsigned long flags;
I
Ingo Molnar 已提交
1739
	struct rq *rq;
1740

1741
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1742 1743 1744 1745 1746 1747
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 */
1748
	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1749 1750
#endif

1751
	rq = __task_rq_lock(p);
P
Peter Zijlstra 已提交
1752
	activate_task(rq, p, 0);
P
Peter Zijlstra 已提交
1753
	p->on_rq = 1;
1754
	trace_sched_wakeup_new(p, true);
P
Peter Zijlstra 已提交
1755
	check_preempt_curr(rq, p, WF_FORK);
1756
#ifdef CONFIG_SMP
1757 1758
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
1759
#endif
1760
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
1761 1762
}

1763 1764 1765
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
1766
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
1767
 * @notifier: notifier struct to register
1768 1769 1770 1771 1772 1773 1774 1775 1776
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1777
 * @notifier: notifier struct to unregister
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;

1791
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1792 1793 1794 1795 1796 1797 1798 1799 1800
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;

1801
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1802 1803 1804
		notifier->ops->sched_out(notifier, next);
}

1805
#else /* !CONFIG_PREEMPT_NOTIFIERS */
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

1817
#endif /* CONFIG_PREEMPT_NOTIFIERS */
1818

1819 1820 1821
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1822
 * @prev: the current task that is being switched out
1823 1824 1825 1826 1827 1828 1829 1830 1831
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1832 1833 1834
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1835
{
1836
	trace_sched_switch(prev, next);
1837 1838
	sched_info_switch(prev, next);
	perf_event_task_sched_out(prev, next);
1839
	fire_sched_out_preempt_notifiers(prev, next);
1840 1841 1842 1843
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1844 1845
/**
 * finish_task_switch - clean up after a task-switch
1846
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1847 1848
 * @prev: the thread we just switched away from.
 *
1849 1850 1851 1852
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1853 1854
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
1855
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
1856 1857 1858
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
1859
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1860 1861 1862
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1863
	long prev_state;
L
Linus Torvalds 已提交
1864 1865 1866 1867 1868

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1869
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1870 1871
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1872
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1873 1874 1875 1876 1877
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1878
	prev_state = prev->state;
1879
	vtime_task_switch(prev);
1880
	finish_arch_switch(prev);
1881
	perf_event_task_sched_in(prev, current);
1882
	finish_lock_switch(rq, prev);
1883
	finish_arch_post_lock_switch();
S
Steven Rostedt 已提交
1884

1885
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1886 1887
	if (mm)
		mmdrop(mm);
1888
	if (unlikely(prev_state == TASK_DEAD)) {
1889 1890 1891
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1892
		 */
1893
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1894
		put_task_struct(prev);
1895
	}
1896 1897

	tick_nohz_task_switch(current);
L
Linus Torvalds 已提交
1898 1899
}

1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

1915
		raw_spin_lock_irqsave(&rq->lock, flags);
1916 1917
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
1918
		raw_spin_unlock_irqrestore(&rq->lock, flags);
1919 1920 1921 1922 1923 1924

		rq->post_schedule = 0;
	}
}

#else
1925

1926 1927 1928 1929 1930 1931
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
1932 1933
}

1934 1935
#endif

L
Linus Torvalds 已提交
1936 1937 1938 1939
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1940
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1941 1942
	__releases(rq->lock)
{
1943 1944
	struct rq *rq = this_rq();

1945
	finish_task_switch(rq, prev);
1946

1947 1948 1949 1950 1951
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
1952

1953 1954 1955 1956
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1957
	if (current->set_child_tid)
1958
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
1959 1960 1961 1962 1963 1964
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
1965
static inline void
1966
context_switch(struct rq *rq, struct task_struct *prev,
1967
	       struct task_struct *next)
L
Linus Torvalds 已提交
1968
{
I
Ingo Molnar 已提交
1969
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
1970

1971
	prepare_task_switch(rq, prev, next);
1972

I
Ingo Molnar 已提交
1973 1974
	mm = next->mm;
	oldmm = prev->active_mm;
1975 1976 1977 1978 1979
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
1980
	arch_start_context_switch(prev);
1981

1982
	if (!mm) {
L
Linus Torvalds 已提交
1983 1984 1985 1986 1987 1988
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

1989
	if (!prev->mm) {
L
Linus Torvalds 已提交
1990 1991 1992
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
1993 1994 1995 1996 1997 1998 1999
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2000
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2001
#endif
L
Linus Torvalds 已提交
2002

2003
	context_tracking_task_switch(prev, next);
L
Linus Torvalds 已提交
2004 2005 2006
	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2007 2008 2009 2010 2011 2012 2013
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2014 2015 2016
}

/*
2017
 * nr_running and nr_context_switches:
L
Linus Torvalds 已提交
2018 2019
 *
 * externally visible scheduler statistics: current number of runnable
2020
 * threads, total number of context switches performed since bootup.
L
Linus Torvalds 已提交
2021 2022 2023 2024 2025 2026 2027 2028 2029
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2030
}
L
Linus Torvalds 已提交
2031 2032

unsigned long long nr_context_switches(void)
2033
{
2034 2035
	int i;
	unsigned long long sum = 0;
2036

2037
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2038
		sum += cpu_rq(i)->nr_switches;
2039

L
Linus Torvalds 已提交
2040 2041
	return sum;
}
2042

L
Linus Torvalds 已提交
2043 2044 2045
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2046

2047
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2048
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2049

L
Linus Torvalds 已提交
2050 2051
	return sum;
}
2052

2053
unsigned long nr_iowait_cpu(int cpu)
2054
{
2055
	struct rq *this = cpu_rq(cpu);
2056 2057
	return atomic_read(&this->nr_iowait);
}
2058

2059 2060 2061 2062 2063
unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}
2064

2065

2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
/*
 * Global load-average calculations
 *
 * We take a distributed and async approach to calculating the global load-avg
 * in order to minimize overhead.
 *
 * The global load average is an exponentially decaying average of nr_running +
 * nr_uninterruptible.
 *
 * Once every LOAD_FREQ:
 *
 *   nr_active = 0;
 *   for_each_possible_cpu(cpu)
 *   	nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
 *
 *   avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
 *
 * Due to a number of reasons the above turns in the mess below:
 *
 *  - for_each_possible_cpu() is prohibitively expensive on machines with
 *    serious number of cpus, therefore we need to take a distributed approach
 *    to calculating nr_active.
 *
 *        \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
 *                      = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
 *
 *    So assuming nr_active := 0 when we start out -- true per definition, we
 *    can simply take per-cpu deltas and fold those into a global accumulate
 *    to obtain the same result. See calc_load_fold_active().
 *
 *    Furthermore, in order to avoid synchronizing all per-cpu delta folding
 *    across the machine, we assume 10 ticks is sufficient time for every
 *    cpu to have completed this task.
 *
 *    This places an upper-bound on the IRQ-off latency of the machine. Then
 *    again, being late doesn't loose the delta, just wrecks the sample.
 *
 *  - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
 *    this would add another cross-cpu cacheline miss and atomic operation
 *    to the wakeup path. Instead we increment on whatever cpu the task ran
 *    when it went into uninterruptible state and decrement on whatever cpu
 *    did the wakeup. This means that only the sum of nr_uninterruptible over
 *    all cpus yields the correct result.
 *
 *  This covers the NO_HZ=n code, for extra head-aches, see the comment below.
 */

2113 2114 2115 2116
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
EXPORT_SYMBOL(avenrun); /* should be removed */

/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
}
2133

2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
static long calc_load_fold_active(struct rq *this_rq)
{
	long nr_active, delta = 0;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
	}

	return delta;
}

2149 2150 2151
/*
 * a1 = a0 * e + a * (1 - e)
 */
2152 2153 2154 2155 2156 2157 2158 2159 2160
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
{
	load *= exp;
	load += active * (FIXED_1 - exp);
	load += 1UL << (FSHIFT - 1);
	return load >> FSHIFT;
}

2161
#ifdef CONFIG_NO_HZ_COMMON
2162
/*
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
 * Handle NO_HZ for the global load-average.
 *
 * Since the above described distributed algorithm to compute the global
 * load-average relies on per-cpu sampling from the tick, it is affected by
 * NO_HZ.
 *
 * The basic idea is to fold the nr_active delta into a global idle-delta upon
 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
 * when we read the global state.
 *
 * Obviously reality has to ruin such a delightfully simple scheme:
 *
 *  - When we go NO_HZ idle during the window, we can negate our sample
 *    contribution, causing under-accounting.
 *
 *    We avoid this by keeping two idle-delta counters and flipping them
 *    when the window starts, thus separating old and new NO_HZ load.
 *
 *    The only trick is the slight shift in index flip for read vs write.
 *
 *        0s            5s            10s           15s
 *          +10           +10           +10           +10
 *        |-|-----------|-|-----------|-|-----------|-|
 *    r:0 0 1           1 0           0 1           1 0
 *    w:0 1 1           0 0           1 1           0 0
 *
 *    This ensures we'll fold the old idle contribution in this window while
 *    accumlating the new one.
 *
 *  - When we wake up from NO_HZ idle during the window, we push up our
 *    contribution, since we effectively move our sample point to a known
 *    busy state.
 *
 *    This is solved by pushing the window forward, and thus skipping the
 *    sample, for this cpu (effectively using the idle-delta for this cpu which
 *    was in effect at the time the window opened). This also solves the issue
 *    of having to deal with a cpu having been in NOHZ idle for multiple
 *    LOAD_FREQ intervals.
2201 2202 2203
 *
 * When making the ILB scale, we should try to pull this in as well.
 */
2204 2205
static atomic_long_t calc_load_idle[2];
static int calc_load_idx;
2206

2207
static inline int calc_load_write_idx(void)
2208
{
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
	int idx = calc_load_idx;

	/*
	 * See calc_global_nohz(), if we observe the new index, we also
	 * need to observe the new update time.
	 */
	smp_rmb();

	/*
	 * If the folding window started, make sure we start writing in the
	 * next idle-delta.
	 */
	if (!time_before(jiffies, calc_load_update))
		idx++;

	return idx & 1;
}

static inline int calc_load_read_idx(void)
{
	return calc_load_idx & 1;
}

void calc_load_enter_idle(void)
{
	struct rq *this_rq = this_rq();
2235 2236
	long delta;

2237 2238 2239 2240
	/*
	 * We're going into NOHZ mode, if there's any pending delta, fold it
	 * into the pending idle delta.
	 */
2241
	delta = calc_load_fold_active(this_rq);
2242 2243 2244 2245
	if (delta) {
		int idx = calc_load_write_idx();
		atomic_long_add(delta, &calc_load_idle[idx]);
	}
2246 2247
}

2248
void calc_load_exit_idle(void)
2249
{
2250 2251 2252 2253 2254 2255 2256
	struct rq *this_rq = this_rq();

	/*
	 * If we're still before the sample window, we're done.
	 */
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
2257 2258

	/*
2259 2260 2261
	 * We woke inside or after the sample window, this means we're already
	 * accounted through the nohz accounting, so skip the entire deal and
	 * sync up for the next window.
2262
	 */
2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274
	this_rq->calc_load_update = calc_load_update;
	if (time_before(jiffies, this_rq->calc_load_update + 10))
		this_rq->calc_load_update += LOAD_FREQ;
}

static long calc_load_fold_idle(void)
{
	int idx = calc_load_read_idx();
	long delta = 0;

	if (atomic_long_read(&calc_load_idle[idx]))
		delta = atomic_long_xchg(&calc_load_idle[idx], 0);
2275 2276 2277

	return delta;
}
2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355

/**
 * fixed_power_int - compute: x^n, in O(log n) time
 *
 * @x:         base of the power
 * @frac_bits: fractional bits of @x
 * @n:         power to raise @x to.
 *
 * By exploiting the relation between the definition of the natural power
 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
 * (where: n_i \elem {0, 1}, the binary vector representing n),
 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
 * of course trivially computable in O(log_2 n), the length of our binary
 * vector.
 */
static unsigned long
fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
{
	unsigned long result = 1UL << frac_bits;

	if (n) for (;;) {
		if (n & 1) {
			result *= x;
			result += 1UL << (frac_bits - 1);
			result >>= frac_bits;
		}
		n >>= 1;
		if (!n)
			break;
		x *= x;
		x += 1UL << (frac_bits - 1);
		x >>= frac_bits;
	}

	return result;
}

/*
 * a1 = a0 * e + a * (1 - e)
 *
 * a2 = a1 * e + a * (1 - e)
 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
 *    = a0 * e^2 + a * (1 - e) * (1 + e)
 *
 * a3 = a2 * e + a * (1 - e)
 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
 *
 *  ...
 *
 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
 *    = a0 * e^n + a * (1 - e^n)
 *
 * [1] application of the geometric series:
 *
 *              n         1 - x^(n+1)
 *     S_n := \Sum x^i = -------------
 *             i=0          1 - x
 */
static unsigned long
calc_load_n(unsigned long load, unsigned long exp,
	    unsigned long active, unsigned int n)
{

	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
}

/*
 * NO_HZ can leave us missing all per-cpu ticks calling
 * calc_load_account_active(), but since an idle CPU folds its delta into
 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
 * in the pending idle delta if our idle period crossed a load cycle boundary.
 *
 * Once we've updated the global active value, we need to apply the exponential
 * weights adjusted to the number of cycles missed.
 */
2356
static void calc_global_nohz(void)
2357 2358 2359
{
	long delta, active, n;

2360 2361 2362 2363 2364 2365
	if (!time_before(jiffies, calc_load_update + 10)) {
		/*
		 * Catch-up, fold however many we are behind still
		 */
		delta = jiffies - calc_load_update - 10;
		n = 1 + (delta / LOAD_FREQ);
2366

2367 2368
		active = atomic_long_read(&calc_load_tasks);
		active = active > 0 ? active * FIXED_1 : 0;
2369

2370 2371 2372
		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2373

2374 2375
		calc_load_update += n * LOAD_FREQ;
	}
2376

2377 2378 2379 2380 2381 2382 2383 2384 2385
	/*
	 * Flip the idle index...
	 *
	 * Make sure we first write the new time then flip the index, so that
	 * calc_load_write_idx() will see the new time when it reads the new
	 * index, this avoids a double flip messing things up.
	 */
	smp_wmb();
	calc_load_idx++;
2386
}
2387
#else /* !CONFIG_NO_HZ_COMMON */
2388

2389 2390
static inline long calc_load_fold_idle(void) { return 0; }
static inline void calc_global_nohz(void) { }
2391

2392
#endif /* CONFIG_NO_HZ_COMMON */
2393 2394

/*
2395 2396
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
2397
 */
2398
void calc_global_load(unsigned long ticks)
2399
{
2400
	long active, delta;
L
Linus Torvalds 已提交
2401

2402
	if (time_before(jiffies, calc_load_update + 10))
2403
		return;
L
Linus Torvalds 已提交
2404

2405 2406 2407 2408 2409 2410 2411
	/*
	 * Fold the 'old' idle-delta to include all NO_HZ cpus.
	 */
	delta = calc_load_fold_idle();
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);

2412 2413
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
L
Linus Torvalds 已提交
2414

2415 2416 2417
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
I
Ingo Molnar 已提交
2418

2419
	calc_load_update += LOAD_FREQ;
2420 2421

	/*
2422
	 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
2423 2424
	 */
	calc_global_nohz();
2425
}
L
Linus Torvalds 已提交
2426

2427
/*
2428 2429
 * Called from update_cpu_load() to periodically update this CPU's
 * active count.
2430 2431 2432
 */
static void calc_load_account_active(struct rq *this_rq)
{
2433
	long delta;
2434

2435 2436
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
2437

2438 2439
	delta  = calc_load_fold_active(this_rq);
	if (delta)
2440
		atomic_long_add(delta, &calc_load_tasks);
2441 2442

	this_rq->calc_load_update += LOAD_FREQ;
2443 2444
}

2445 2446 2447 2448
/*
 * End of global load-average stuff
 */

2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515
/*
 * The exact cpuload at various idx values, calculated at every tick would be
 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
 *
 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
 * on nth tick when cpu may be busy, then we have:
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
 *
 * decay_load_missed() below does efficient calculation of
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
 *
 * The calculation is approximated on a 128 point scale.
 * degrade_zero_ticks is the number of ticks after which load at any
 * particular idx is approximated to be zero.
 * degrade_factor is a precomputed table, a row for each load idx.
 * Each column corresponds to degradation factor for a power of two ticks,
 * based on 128 point scale.
 * Example:
 * row 2, col 3 (=12) says that the degradation at load idx 2 after
 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
 *
 * With this power of 2 load factors, we can degrade the load n times
 * by looking at 1 bits in n and doing as many mult/shift instead of
 * n mult/shifts needed by the exact degradation.
 */
#define DEGRADE_SHIFT		7
static const unsigned char
		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const unsigned char
		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
					{0, 0, 0, 0, 0, 0, 0, 0},
					{64, 32, 8, 0, 0, 0, 0, 0},
					{96, 72, 40, 12, 1, 0, 0},
					{112, 98, 75, 43, 15, 1, 0},
					{120, 112, 98, 76, 45, 16, 2} };

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}

2516
/*
I
Ingo Molnar 已提交
2517
 * Update rq->cpu_load[] statistics. This function is usually called every
2518 2519
 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
 * every tick. We fix it up based on jiffies.
2520
 */
2521 2522
static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
			      unsigned long pending_updates)
2523
{
I
Ingo Molnar 已提交
2524
	int i, scale;
2525

I
Ingo Molnar 已提交
2526
	this_rq->nr_load_updates++;
2527

I
Ingo Molnar 已提交
2528
	/* Update our load: */
2529 2530
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
I
Ingo Molnar 已提交
2531
		unsigned long old_load, new_load;
2532

I
Ingo Molnar 已提交
2533
		/* scale is effectively 1 << i now, and >> i divides by scale */
2534

I
Ingo Molnar 已提交
2535
		old_load = this_rq->cpu_load[i];
2536
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
I
Ingo Molnar 已提交
2537
		new_load = this_load;
I
Ingo Molnar 已提交
2538 2539 2540 2541 2542 2543
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
2544 2545 2546
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
I
Ingo Molnar 已提交
2547
	}
2548 2549

	sched_avg_update(this_rq);
2550 2551
}

2552
#ifdef CONFIG_NO_HZ_COMMON
2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565
/*
 * There is no sane way to deal with nohz on smp when using jiffies because the
 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
 *
 * Therefore we cannot use the delta approach from the regular tick since that
 * would seriously skew the load calculation. However we'll make do for those
 * updates happening while idle (nohz_idle_balance) or coming out of idle
 * (tick_nohz_idle_exit).
 *
 * This means we might still be one tick off for nohz periods.
 */

2566 2567 2568 2569 2570 2571
/*
 * Called from nohz_idle_balance() to update the load ratings before doing the
 * idle balance.
 */
void update_idle_cpu_load(struct rq *this_rq)
{
2572
	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2573 2574 2575 2576
	unsigned long load = this_rq->load.weight;
	unsigned long pending_updates;

	/*
2577
	 * bail if there's load or we're actually up-to-date.
2578 2579 2580 2581 2582 2583 2584 2585 2586 2587
	 */
	if (load || curr_jiffies == this_rq->last_load_update_tick)
		return;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	this_rq->last_load_update_tick = curr_jiffies;

	__update_cpu_load(this_rq, load, pending_updates);
}

2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611
/*
 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
 */
void update_cpu_load_nohz(void)
{
	struct rq *this_rq = this_rq();
	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
	unsigned long pending_updates;

	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

	raw_spin_lock(&this_rq->lock);
	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	if (pending_updates) {
		this_rq->last_load_update_tick = curr_jiffies;
		/*
		 * We were idle, this means load 0, the current load might be
		 * !0 due to remote wakeups and the sort.
		 */
		__update_cpu_load(this_rq, 0, pending_updates);
	}
	raw_spin_unlock(&this_rq->lock);
}
2612
#endif /* CONFIG_NO_HZ_COMMON */
2613

2614 2615 2616
/*
 * Called from scheduler_tick()
 */
2617 2618
static void update_cpu_load_active(struct rq *this_rq)
{
2619
	/*
2620
	 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
2621 2622 2623
	 */
	this_rq->last_load_update_tick = jiffies;
	__update_cpu_load(this_rq, this_rq->load.weight, 1);
2624

2625
	calc_load_account_active(this_rq);
2626 2627
}

I
Ingo Molnar 已提交
2628
#ifdef CONFIG_SMP
2629

2630
/*
P
Peter Zijlstra 已提交
2631 2632
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2633
 */
P
Peter Zijlstra 已提交
2634
void sched_exec(void)
2635
{
P
Peter Zijlstra 已提交
2636
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2637
	unsigned long flags;
2638
	int dest_cpu;
2639

2640
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2641
	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2642 2643
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2644

2645
	if (likely(cpu_active(dest_cpu))) {
2646
		struct migration_arg arg = { p, dest_cpu };
2647

2648 2649
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2650 2651
		return;
	}
2652
unlock:
2653
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2654
}
I
Ingo Molnar 已提交
2655

L
Linus Torvalds 已提交
2656 2657 2658
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2659
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
2660 2661

EXPORT_PER_CPU_SYMBOL(kstat);
2662
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
2663 2664

/*
2665
 * Return any ns on the sched_clock that have not yet been accounted in
2666
 * @p in case that task is currently running.
2667 2668
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
2669
 */
2670 2671 2672 2673 2674 2675
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
2676
		ns = rq->clock_task - p->se.exec_start;
2677 2678 2679 2680 2681 2682 2683
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

2684
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
2685 2686
{
	unsigned long flags;
2687
	struct rq *rq;
2688
	u64 ns = 0;
2689

2690
	rq = task_rq_lock(p, &flags);
2691
	ns = do_task_delta_exec(p, rq);
2692
	task_rq_unlock(rq, p, &flags);
2693

2694 2695
	return ns;
}
2696

2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2710
	task_rq_unlock(rq, p, &flags);
2711 2712 2713

	return ns;
}
2714

2715 2716 2717 2718 2719 2720 2721 2722
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2723
	struct task_struct *curr = rq->curr;
2724 2725

	sched_clock_tick();
I
Ingo Molnar 已提交
2726

2727
	raw_spin_lock(&rq->lock);
2728
	update_rq_clock(rq);
2729
	update_cpu_load_active(rq);
P
Peter Zijlstra 已提交
2730
	curr->sched_class->task_tick(rq, curr, 0);
2731
	raw_spin_unlock(&rq->lock);
2732

2733
	perf_event_task_tick();
2734

2735
#ifdef CONFIG_SMP
2736
	rq->idle_balance = idle_cpu(cpu);
I
Ingo Molnar 已提交
2737
	trigger_load_balance(rq, cpu);
2738
#endif
L
Linus Torvalds 已提交
2739 2740
}

2741
notrace unsigned long get_parent_ip(unsigned long addr)
2742 2743 2744 2745 2746 2747 2748 2749
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
2750

2751 2752 2753
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

2754
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
2755
{
2756
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2757 2758 2759
	/*
	 * Underflow?
	 */
2760 2761
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
2762
#endif
L
Linus Torvalds 已提交
2763
	preempt_count() += val;
2764
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2765 2766 2767
	/*
	 * Spinlock count overflowing soon?
	 */
2768 2769
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
2770 2771 2772
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
2773 2774 2775
}
EXPORT_SYMBOL(add_preempt_count);

2776
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
2777
{
2778
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2779 2780 2781
	/*
	 * Underflow?
	 */
2782
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2783
		return;
L
Linus Torvalds 已提交
2784 2785 2786
	/*
	 * Is the spinlock portion underflowing?
	 */
2787 2788 2789
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
2790
#endif
2791

2792 2793
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
2794 2795 2796 2797 2798 2799 2800
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
2801
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
2802
 */
I
Ingo Molnar 已提交
2803
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
2804
{
2805 2806 2807
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
2808 2809
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
2810

I
Ingo Molnar 已提交
2811
	debug_show_held_locks(prev);
2812
	print_modules();
I
Ingo Molnar 已提交
2813 2814
	if (irqs_disabled())
		print_irqtrace_events(prev);
2815
	dump_stack();
2816
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
I
Ingo Molnar 已提交
2817
}
L
Linus Torvalds 已提交
2818

I
Ingo Molnar 已提交
2819 2820 2821 2822 2823
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
2824
	/*
I
Ingo Molnar 已提交
2825
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
2826 2827 2828
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
2829
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
2830
		__schedule_bug(prev);
2831
	rcu_sleep_check();
I
Ingo Molnar 已提交
2832

L
Linus Torvalds 已提交
2833 2834
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

2835
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
2836 2837
}

P
Peter Zijlstra 已提交
2838
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
2839
{
2840
	if (prev->on_rq || rq->skip_clock_update < 0)
2841
		update_rq_clock(rq);
P
Peter Zijlstra 已提交
2842
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
2843 2844
}

I
Ingo Molnar 已提交
2845 2846 2847 2848
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
2849
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
2850
{
2851
	const struct sched_class *class;
I
Ingo Molnar 已提交
2852
	struct task_struct *p;
L
Linus Torvalds 已提交
2853 2854

	/*
I
Ingo Molnar 已提交
2855 2856
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
2857
	 */
2858
	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2859
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
2860 2861
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
2862 2863
	}

2864
	for_each_class(class) {
2865
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
2866 2867 2868
		if (p)
			return p;
	}
2869 2870

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
2871
}
L
Linus Torvalds 已提交
2872

I
Ingo Molnar 已提交
2873
/*
2874
 * __schedule() is the main scheduler function.
2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908
 *
 * The main means of driving the scheduler and thus entering this function are:
 *
 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 *      paths. For example, see arch/x86/entry_64.S.
 *
 *      To drive preemption between tasks, the scheduler sets the flag in timer
 *      interrupt handler scheduler_tick().
 *
 *   3. Wakeups don't really cause entry into schedule(). They add a
 *      task to the run-queue and that's it.
 *
 *      Now, if the new task added to the run-queue preempts the current
 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 *      called on the nearest possible occasion:
 *
 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
 *
 *         - in syscall or exception context, at the next outmost
 *           preempt_enable(). (this might be as soon as the wake_up()'s
 *           spin_unlock()!)
 *
 *         - in IRQ context, return from interrupt-handler to
 *           preemptible context
 *
 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
 *         then at the next:
 *
 *          - cond_resched() call
 *          - explicit schedule() call
 *          - return from syscall or exception to user-space
 *          - return from interrupt-handler to user-space
I
Ingo Molnar 已提交
2909
 */
2910
static void __sched __schedule(void)
I
Ingo Molnar 已提交
2911 2912
{
	struct task_struct *prev, *next;
2913
	unsigned long *switch_count;
I
Ingo Molnar 已提交
2914
	struct rq *rq;
2915
	int cpu;
I
Ingo Molnar 已提交
2916

2917 2918
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
2919 2920
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
2921
	rcu_note_context_switch(cpu);
I
Ingo Molnar 已提交
2922 2923 2924
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
2925

2926
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
2927
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
2928

2929
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
2930

2931
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
2932
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
2933
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
2934
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
2935
		} else {
2936 2937 2938
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

T
Tejun Heo 已提交
2939
			/*
2940 2941 2942
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
2943 2944 2945 2946 2947 2948 2949 2950 2951
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
		}
I
Ingo Molnar 已提交
2952
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
2953 2954
	}

2955
	pre_schedule(rq, prev);
2956

I
Ingo Molnar 已提交
2957
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
2958 2959
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
2960
	put_prev_task(rq, prev);
2961
	next = pick_next_task(rq);
2962 2963
	clear_tsk_need_resched(prev);
	rq->skip_clock_update = 0;
L
Linus Torvalds 已提交
2964 2965 2966 2967 2968 2969

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
2970
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
2971
		/*
2972 2973 2974 2975
		 * The context switch have flipped the stack from under us
		 * and restored the local variables which were saved when
		 * this task called schedule() in the past. prev == current
		 * is still correct, but it can be moved to another cpu/rq.
P
Peter Zijlstra 已提交
2976 2977 2978
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
2979
	} else
2980
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
2981

2982
	post_schedule(rq);
L
Linus Torvalds 已提交
2983

2984
	sched_preempt_enable_no_resched();
2985
	if (need_resched())
L
Linus Torvalds 已提交
2986 2987
		goto need_resched;
}
2988

2989 2990
static inline void sched_submit_work(struct task_struct *tsk)
{
2991
	if (!tsk->state || tsk_is_pi_blocked(tsk))
2992 2993 2994 2995 2996 2997 2998 2999 3000
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

S
Simon Kirby 已提交
3001
asmlinkage void __sched schedule(void)
3002
{
3003 3004 3005
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
3006 3007
	__schedule();
}
L
Linus Torvalds 已提交
3008 3009
EXPORT_SYMBOL(schedule);

3010
#ifdef CONFIG_CONTEXT_TRACKING
3011 3012 3013 3014 3015 3016 3017 3018
asmlinkage void __sched schedule_user(void)
{
	/*
	 * If we come here after a random call to set_need_resched(),
	 * or we have been woken up remotely but the IPI has not yet arrived,
	 * we haven't yet exited the RCU idle mode. Do it here manually until
	 * we find a better solution.
	 */
3019
	user_exit();
3020
	schedule();
3021
	user_enter();
3022 3023 3024
}
#endif

3025 3026 3027 3028 3029 3030 3031
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
3032
	sched_preempt_enable_no_resched();
3033 3034 3035 3036
	schedule();
	preempt_disable();
}

L
Linus Torvalds 已提交
3037 3038
#ifdef CONFIG_PREEMPT
/*
3039
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3040
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3041 3042
 * occur there and call schedule directly.
 */
3043
asmlinkage void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
3044 3045
{
	struct thread_info *ti = current_thread_info();
3046

L
Linus Torvalds 已提交
3047 3048
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3049
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3050
	 */
N
Nick Piggin 已提交
3051
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3052 3053
		return;

3054
	do {
3055
		add_preempt_count_notrace(PREEMPT_ACTIVE);
3056
		__schedule();
3057
		sub_preempt_count_notrace(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3058

3059 3060 3061 3062 3063
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3064
	} while (need_resched());
L
Linus Torvalds 已提交
3065 3066 3067 3068
}
EXPORT_SYMBOL(preempt_schedule);

/*
3069
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3070 3071 3072 3073 3074 3075 3076
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
3077
	enum ctx_state prev_state;
3078

3079
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3080 3081
	BUG_ON(ti->preempt_count || !irqs_disabled());

3082 3083
	prev_state = exception_enter();

3084 3085 3086
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
3087
		__schedule();
3088 3089
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3090

3091 3092 3093 3094 3095
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3096
	} while (need_resched());
3097 3098

	exception_exit(prev_state);
L
Linus Torvalds 已提交
3099 3100 3101 3102
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
3103
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3104
			  void *key)
L
Linus Torvalds 已提交
3105
{
P
Peter Zijlstra 已提交
3106
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3107 3108 3109 3110
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
3111 3112
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
3113 3114 3115
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
3116
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
3117 3118
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
3119
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
3120
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
3121
{
3122
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3123

3124
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3125 3126
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
3127
		if (curr->func(curr, mode, wake_flags, key) &&
3128
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3129 3130 3131 3132 3133 3134 3135 3136 3137
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3138
 * @key: is directly passed to the wakeup function
3139 3140 3141
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3142
 */
3143
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3144
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
3157
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
L
Linus Torvalds 已提交
3158
{
3159
	__wake_up_common(q, mode, nr, 0, NULL);
L
Linus Torvalds 已提交
3160
}
3161
EXPORT_SYMBOL_GPL(__wake_up_locked);
L
Linus Torvalds 已提交
3162

3163 3164 3165 3166
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}
3167
EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3168

L
Linus Torvalds 已提交
3169
/**
3170
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3171 3172 3173
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3174
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
3175 3176 3177 3178 3179 3180 3181
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
3182 3183 3184
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3185
 */
3186 3187
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3188 3189
{
	unsigned long flags;
P
Peter Zijlstra 已提交
3190
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
3191 3192 3193 3194 3195

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
3196
		wake_flags = 0;
L
Linus Torvalds 已提交
3197 3198

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
3199
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
3200 3201
	spin_unlock_irqrestore(&q->lock, flags);
}
3202 3203 3204 3205 3206 3207 3208 3209 3210
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
3211 3212
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

3213 3214 3215 3216 3217 3218 3219 3220
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
3221 3222 3223
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3224
 */
3225
void complete(struct completion *x)
L
Linus Torvalds 已提交
3226 3227 3228 3229 3230
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
3231
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
3232 3233 3234 3235
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

3236 3237 3238 3239 3240
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
3241 3242 3243
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3244
 */
3245
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
3246 3247 3248 3249 3250
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
3251
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
3252 3253 3254 3255
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

3256
static inline long __sched
3257 3258
do_wait_for_common(struct completion *x,
		   long (*action)(long), long timeout, int state)
L
Linus Torvalds 已提交
3259 3260 3261 3262
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

C
Changli Gao 已提交
3263
		__add_wait_queue_tail_exclusive(&x->wait, &wait);
L
Linus Torvalds 已提交
3264
		do {
3265
			if (signal_pending_state(state, current)) {
3266 3267
				timeout = -ERESTARTSYS;
				break;
3268 3269
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
3270
			spin_unlock_irq(&x->wait.lock);
3271
			timeout = action(timeout);
L
Linus Torvalds 已提交
3272
			spin_lock_irq(&x->wait.lock);
3273
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
3274
		__remove_wait_queue(&x->wait, &wait);
3275 3276
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
3277 3278
	}
	x->done--;
3279
	return timeout ?: 1;
L
Linus Torvalds 已提交
3280 3281
}

3282 3283 3284
static inline long __sched
__wait_for_common(struct completion *x,
		  long (*action)(long), long timeout, int state)
L
Linus Torvalds 已提交
3285 3286 3287 3288
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
3289
	timeout = do_wait_for_common(x, action, timeout, state);
L
Linus Torvalds 已提交
3290
	spin_unlock_irq(&x->wait.lock);
3291 3292
	return timeout;
}
L
Linus Torvalds 已提交
3293

3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
{
	return __wait_for_common(x, schedule_timeout, timeout, state);
}

static long __sched
wait_for_common_io(struct completion *x, long timeout, int state)
{
	return __wait_for_common(x, io_schedule_timeout, timeout, state);
}

3306 3307 3308 3309 3310 3311 3312 3313 3314 3315
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
3316
void __sched wait_for_completion(struct completion *x)
3317 3318
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3319
}
3320
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
3321

3322 3323 3324 3325 3326 3327 3328 3329
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
3330 3331 3332
 *
 * The return value is 0 if timed out, and positive (at least 1, or number of
 * jiffies left till timeout) if completed.
3333
 */
3334
unsigned long __sched
3335
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
3336
{
3337
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3338
}
3339
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
3340

3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373
/**
 * wait_for_completion_io: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout. The caller is accounted as waiting
 * for IO.
 */
void __sched wait_for_completion_io(struct completion *x)
{
	wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
}
EXPORT_SYMBOL(wait_for_completion_io);

/**
 * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible. The caller is accounted as waiting for IO.
 *
 * The return value is 0 if timed out, and positive (at least 1, or number of
 * jiffies left till timeout) if completed.
 */
unsigned long __sched
wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
{
	return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
}
EXPORT_SYMBOL(wait_for_completion_io_timeout);

3374 3375 3376 3377 3378 3379
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
3380 3381
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3382
 */
3383
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
3384
{
3385 3386 3387 3388
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
3389
}
3390
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
3391

3392 3393 3394 3395 3396 3397 3398
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3399 3400 3401
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
 * positive (at least 1, or number of jiffies left till timeout) if completed.
3402
 */
3403
long __sched
3404 3405
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
3406
{
3407
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
3408
}
3409
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
3410

3411 3412 3413 3414 3415 3416
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
3417 3418
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3419
 */
M
Matthew Wilcox 已提交
3420 3421 3422 3423 3424 3425 3426 3427 3428
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

3429 3430 3431 3432 3433 3434 3435 3436
/**
 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be
 * signaled or for a specified timeout to expire. It can be
 * interrupted by a kill signal. The timeout is in jiffies.
3437 3438 3439
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
 * positive (at least 1, or number of jiffies left till timeout) if completed.
3440
 */
3441
long __sched
3442 3443 3444 3445 3446 3447 3448
wait_for_completion_killable_timeout(struct completion *x,
				     unsigned long timeout)
{
	return wait_for_common(x, timeout, TASK_KILLABLE);
}
EXPORT_SYMBOL(wait_for_completion_killable_timeout);

3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
3463
	unsigned long flags;
3464 3465
	int ret = 1;

3466
	spin_lock_irqsave(&x->wait.lock, flags);
3467 3468 3469 3470
	if (!x->done)
		ret = 0;
	else
		x->done--;
3471
	spin_unlock_irqrestore(&x->wait.lock, flags);
3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
3486
	unsigned long flags;
3487 3488
	int ret = 1;

3489
	spin_lock_irqsave(&x->wait.lock, flags);
3490 3491
	if (!x->done)
		ret = 0;
3492
	spin_unlock_irqrestore(&x->wait.lock, flags);
3493 3494 3495 3496
	return ret;
}
EXPORT_SYMBOL(completion_done);

3497 3498
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
3499
{
I
Ingo Molnar 已提交
3500 3501 3502 3503
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3504

3505
	__set_current_state(state);
L
Linus Torvalds 已提交
3506

3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3521 3522 3523
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3524
long __sched
I
Ingo Molnar 已提交
3525
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3526
{
3527
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3528 3529 3530
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
3531
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3532
{
3533
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3534 3535 3536
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
3537
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3538
{
3539
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3540 3541 3542
}
EXPORT_SYMBOL(sleep_on_timeout);

3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
3555
void rt_mutex_setprio(struct task_struct *p, int prio)
3556
{
3557
	int oldprio, on_rq, running;
3558
	struct rq *rq;
3559
	const struct sched_class *prev_class;
3560 3561 3562

	BUG_ON(prio < 0 || prio > MAX_PRIO);

3563
	rq = __task_rq_lock(p);
3564

3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

3583
	trace_sched_pi_setprio(p, prio);
3584
	oldprio = p->prio;
3585
	prev_class = p->sched_class;
P
Peter Zijlstra 已提交
3586
	on_rq = p->on_rq;
3587
	running = task_current(rq, p);
3588
	if (on_rq)
3589
		dequeue_task(rq, p, 0);
3590 3591
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
3592 3593 3594 3595 3596 3597

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

3598 3599
	p->prio = prio;

3600 3601
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
3602
	if (on_rq)
3603
		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3604

P
Peter Zijlstra 已提交
3605
	check_class_changed(rq, p, prev_class, oldprio);
3606
out_unlock:
3607
	__task_rq_unlock(rq);
3608 3609
}
#endif
3610
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3611
{
I
Ingo Molnar 已提交
3612
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
3613
	unsigned long flags;
3614
	struct rq *rq;
L
Linus Torvalds 已提交
3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
3627
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
3628
	 */
3629
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3630 3631 3632
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
P
Peter Zijlstra 已提交
3633
	on_rq = p->on_rq;
3634
	if (on_rq)
3635
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
3636 3637

	p->static_prio = NICE_TO_PRIO(nice);
3638
	set_load_weight(p);
3639 3640 3641
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3642

I
Ingo Molnar 已提交
3643
	if (on_rq) {
3644
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
3645
		/*
3646 3647
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3648
		 */
3649
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
3650 3651 3652
			resched_task(rq->curr);
	}
out_unlock:
3653
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3654 3655 3656
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3657 3658 3659 3660 3661
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3662
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3663
{
3664 3665
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
3666

3667
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3668 3669 3670
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3671 3672 3673 3674 3675 3676 3677 3678 3679
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3680
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3681
{
3682
	long nice, retval;
L
Linus Torvalds 已提交
3683 3684 3685 3686 3687 3688

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
3689 3690
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
3691 3692 3693
	if (increment > 40)
		increment = 40;

3694
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
3695 3696 3697 3698 3699
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
3700 3701 3702
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3721
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3722 3723 3724 3725 3726 3727 3728 3729
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
3730
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
3731 3732 3733
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
3734
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
3735 3736 3737 3738 3739 3740 3741

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3756 3757 3758 3759 3760 3761
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
3762
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3763 3764 3765 3766 3767 3768 3769 3770
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
3771
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
3772
{
3773
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
3774 3775 3776
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
3777 3778
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
3779 3780 3781
{
	p->policy = policy;
	p->rt_priority = prio;
3782 3783 3784
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
3785 3786 3787 3788
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
3789
	set_load_weight(p);
L
Linus Torvalds 已提交
3790 3791
}

3792 3793 3794 3795 3796 3797 3798 3799 3800 3801
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
3802 3803
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
3804 3805 3806 3807
	rcu_read_unlock();
	return match;
}

3808
static int __sched_setscheduler(struct task_struct *p, int policy,
3809
				const struct sched_param *param, bool user)
L
Linus Torvalds 已提交
3810
{
3811
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
3812
	unsigned long flags;
3813
	const struct sched_class *prev_class;
3814
	struct rq *rq;
3815
	int reset_on_fork;
L
Linus Torvalds 已提交
3816

3817 3818
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
3819 3820
recheck:
	/* double check policy once rq lock held */
3821 3822
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
3823
		policy = oldpolicy = p->policy;
3824 3825 3826 3827 3828 3829 3830 3831 3832 3833
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
3834 3835
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
3836 3837
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
3838 3839
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
3840
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3841
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
3842
		return -EINVAL;
3843
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
3844 3845
		return -EINVAL;

3846 3847 3848
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
3849
	if (user && !capable(CAP_SYS_NICE)) {
3850
		if (rt_policy(policy)) {
3851 3852
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
3853 3854 3855 3856 3857 3858 3859 3860 3861 3862

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
3863

I
Ingo Molnar 已提交
3864
		/*
3865 3866
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
3867
		 */
3868 3869 3870 3871
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
			if (!can_nice(p, TASK_NICE(p)))
				return -EPERM;
		}
3872

3873
		/* can't change other user's priorities */
3874
		if (!check_same_owner(p))
3875
			return -EPERM;
3876 3877 3878 3879

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
3880
	}
L
Linus Torvalds 已提交
3881

3882
	if (user) {
3883
		retval = security_task_setscheduler(p);
3884 3885 3886 3887
		if (retval)
			return retval;
	}

3888 3889 3890
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
3891
	 *
L
Lucas De Marchi 已提交
3892
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
3893 3894
	 * runqueue lock must be held.
	 */
3895
	rq = task_rq_lock(p, &flags);
3896

3897 3898 3899 3900
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
3901
		task_rq_unlock(rq, p, &flags);
3902 3903 3904
		return -EINVAL;
	}

3905 3906 3907 3908 3909
	/*
	 * If not changing anything there's no need to proceed further:
	 */
	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
			param->sched_priority == p->rt_priority))) {
3910
		task_rq_unlock(rq, p, &flags);
3911 3912 3913
		return 0;
	}

3914 3915 3916 3917 3918 3919 3920
#ifdef CONFIG_RT_GROUP_SCHED
	if (user) {
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3921 3922
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
3923
			task_rq_unlock(rq, p, &flags);
3924 3925 3926 3927 3928
			return -EPERM;
		}
	}
#endif

L
Linus Torvalds 已提交
3929 3930 3931
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
3932
		task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3933 3934
		goto recheck;
	}
P
Peter Zijlstra 已提交
3935
	on_rq = p->on_rq;
3936
	running = task_current(rq, p);
3937
	if (on_rq)
3938
		dequeue_task(rq, p, 0);
3939 3940
	if (running)
		p->sched_class->put_prev_task(rq, p);
3941

3942 3943
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
3944
	oldprio = p->prio;
3945
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
3946
	__setscheduler(rq, p, policy, param->sched_priority);
3947

3948 3949
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
3950
	if (on_rq)
3951
		enqueue_task(rq, p, 0);
3952

P
Peter Zijlstra 已提交
3953
	check_class_changed(rq, p, prev_class, oldprio);
3954
	task_rq_unlock(rq, p, &flags);
3955

3956 3957
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
3958 3959
	return 0;
}
3960 3961 3962 3963 3964 3965 3966 3967 3968 3969

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
3970
		       const struct sched_param *param)
3971 3972 3973
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
3974 3975
EXPORT_SYMBOL_GPL(sched_setscheduler);

3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3988
			       const struct sched_param *param)
3989 3990 3991 3992
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
3993 3994
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
3995 3996 3997
{
	struct sched_param lparam;
	struct task_struct *p;
3998
	int retval;
L
Linus Torvalds 已提交
3999 4000 4001 4002 4003

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4004 4005 4006

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4007
	p = find_process_by_pid(pid);
4008 4009 4010
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4011

L
Linus Torvalds 已提交
4012 4013 4014 4015 4016 4017 4018 4019 4020
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
4021 4022
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
4023
{
4024 4025 4026 4027
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4028 4029 4030 4031 4032 4033 4034 4035
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
4036
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4037 4038 4039 4040 4041 4042 4043 4044
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
4045
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4046
{
4047
	struct task_struct *p;
4048
	int retval;
L
Linus Torvalds 已提交
4049 4050

	if (pid < 0)
4051
		return -EINVAL;
L
Linus Torvalds 已提交
4052 4053

	retval = -ESRCH;
4054
	rcu_read_lock();
L
Linus Torvalds 已提交
4055 4056 4057 4058
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4059 4060
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4061
	}
4062
	rcu_read_unlock();
L
Linus Torvalds 已提交
4063 4064 4065 4066
	return retval;
}

/**
4067
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4068 4069 4070
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
4071
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4072 4073
{
	struct sched_param lp;
4074
	struct task_struct *p;
4075
	int retval;
L
Linus Torvalds 已提交
4076 4077

	if (!param || pid < 0)
4078
		return -EINVAL;
L
Linus Torvalds 已提交
4079

4080
	rcu_read_lock();
L
Linus Torvalds 已提交
4081 4082 4083 4084 4085 4086 4087 4088 4089 4090
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
4091
	rcu_read_unlock();
L
Linus Torvalds 已提交
4092 4093 4094 4095 4096 4097 4098 4099 4100

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4101
	rcu_read_unlock();
L
Linus Torvalds 已提交
4102 4103 4104
	return retval;
}

4105
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4106
{
4107
	cpumask_var_t cpus_allowed, new_mask;
4108 4109
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4110

4111
	get_online_cpus();
4112
	rcu_read_lock();
L
Linus Torvalds 已提交
4113 4114 4115

	p = find_process_by_pid(pid);
	if (!p) {
4116
		rcu_read_unlock();
4117
		put_online_cpus();
L
Linus Torvalds 已提交
4118 4119 4120
		return -ESRCH;
	}

4121
	/* Prevent p going away */
L
Linus Torvalds 已提交
4122
	get_task_struct(p);
4123
	rcu_read_unlock();
L
Linus Torvalds 已提交
4124

4125 4126 4127 4128
	if (p->flags & PF_NO_SETAFFINITY) {
		retval = -EINVAL;
		goto out_put_task;
	}
4129 4130 4131 4132 4133 4134 4135 4136
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4137
	retval = -EPERM;
E
Eric W. Biederman 已提交
4138 4139 4140 4141 4142 4143 4144 4145
	if (!check_same_owner(p)) {
		rcu_read_lock();
		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
			rcu_read_unlock();
			goto out_unlock;
		}
		rcu_read_unlock();
	}
L
Linus Torvalds 已提交
4146

4147
	retval = security_task_setscheduler(p);
4148 4149 4150
	if (retval)
		goto out_unlock;

4151 4152
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Peter Zijlstra 已提交
4153
again:
4154
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
4155

P
Paul Menage 已提交
4156
	if (!retval) {
4157 4158
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4159 4160 4161 4162 4163
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4164
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4165 4166 4167
			goto again;
		}
	}
L
Linus Torvalds 已提交
4168
out_unlock:
4169 4170 4171 4172
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4173
	put_task_struct(p);
4174
	put_online_cpus();
L
Linus Torvalds 已提交
4175 4176 4177 4178
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4179
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4180
{
4181 4182 4183 4184 4185
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4186 4187 4188 4189 4190 4191 4192 4193 4194
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
4195 4196
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4197
{
4198
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4199 4200
	int retval;

4201 4202
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4203

4204 4205 4206 4207 4208
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4209 4210
}

4211
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4212
{
4213
	struct task_struct *p;
4214
	unsigned long flags;
L
Linus Torvalds 已提交
4215 4216
	int retval;

4217
	get_online_cpus();
4218
	rcu_read_lock();
L
Linus Torvalds 已提交
4219 4220 4221 4222 4223 4224

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4225 4226 4227 4228
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4229
	raw_spin_lock_irqsave(&p->pi_lock, flags);
4230
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4231
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4232 4233

out_unlock:
4234
	rcu_read_unlock();
4235
	put_online_cpus();
L
Linus Torvalds 已提交
4236

4237
	return retval;
L
Linus Torvalds 已提交
4238 4239 4240 4241 4242 4243 4244 4245
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
4246 4247
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4248 4249
{
	int ret;
4250
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4251

A
Anton Blanchard 已提交
4252
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4253 4254
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4255 4256
		return -EINVAL;

4257 4258
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4259

4260 4261
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4262
		size_t retlen = min_t(size_t, len, cpumask_size());
4263 4264

		if (copy_to_user(user_mask_ptr, mask, retlen))
4265 4266
			ret = -EFAULT;
		else
4267
			ret = retlen;
4268 4269
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4270

4271
	return ret;
L
Linus Torvalds 已提交
4272 4273 4274 4275 4276
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4277 4278
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4279
 */
4280
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4281
{
4282
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4283

4284
	schedstat_inc(rq, yld_count);
4285
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4286 4287 4288 4289 4290 4291

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4292
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4293
	do_raw_spin_unlock(&rq->lock);
4294
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
4295 4296 4297 4298 4299 4300

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
4301 4302 4303 4304 4305
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
4306
static void __cond_resched(void)
L
Linus Torvalds 已提交
4307
{
4308
	add_preempt_count(PREEMPT_ACTIVE);
4309
	__schedule();
4310
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4311 4312
}

4313
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4314
{
P
Peter Zijlstra 已提交
4315
	if (should_resched()) {
L
Linus Torvalds 已提交
4316 4317 4318 4319 4320
		__cond_resched();
		return 1;
	}
	return 0;
}
4321
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4322 4323

/*
4324
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4325 4326
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4327
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4328 4329 4330
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4331
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4332
{
P
Peter Zijlstra 已提交
4333
	int resched = should_resched();
J
Jan Kara 已提交
4334 4335
	int ret = 0;

4336 4337
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
4338
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4339
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4340
		if (resched)
N
Nick Piggin 已提交
4341 4342 4343
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
4344
		ret = 1;
L
Linus Torvalds 已提交
4345 4346
		spin_lock(lock);
	}
J
Jan Kara 已提交
4347
	return ret;
L
Linus Torvalds 已提交
4348
}
4349
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4350

4351
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4352 4353 4354
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
4355
	if (should_resched()) {
4356
		local_bh_enable();
L
Linus Torvalds 已提交
4357 4358 4359 4360 4361 4362
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
4363
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4364 4365 4366 4367

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
 * 	yield();
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
4386 4387 4388 4389 4390 4391 4392 4393
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

4394 4395 4396 4397
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
4398 4399
 * @p: target task
 * @preempt: whether task preemption is allowed or not
4400 4401 4402 4403
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
4404 4405 4406 4407
 * Returns:
 *	true (>0) if we indeed boosted the target task.
 *	false (0) if we failed to boost the target.
 *	-ESRCH if there's no task to yield to.
4408 4409 4410 4411 4412 4413
 */
bool __sched yield_to(struct task_struct *p, bool preempt)
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
4414
	int yielded = 0;
4415 4416 4417 4418 4419 4420

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
4421 4422 4423 4424 4425 4426 4427 4428 4429
	/*
	 * If we're the only runnable task on the rq and target rq also
	 * has only one task, there's absolutely no point in yielding.
	 */
	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
		yielded = -ESRCH;
		goto out_irq;
	}

4430 4431 4432 4433 4434 4435 4436
	double_rq_lock(rq, p_rq);
	while (task_rq(p) != p_rq) {
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
4437
		goto out_unlock;
4438 4439

	if (curr->sched_class != p->sched_class)
4440
		goto out_unlock;
4441 4442

	if (task_running(p_rq, p) || p->state)
4443
		goto out_unlock;
4444 4445

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4446
	if (yielded) {
4447
		schedstat_inc(rq, yld_count);
4448 4449 4450 4451 4452 4453 4454
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
			resched_task(p_rq->curr);
	}
4455

4456
out_unlock:
4457
	double_rq_unlock(rq, p_rq);
4458
out_irq:
4459 4460
	local_irq_restore(flags);

4461
	if (yielded > 0)
4462 4463 4464 4465 4466 4467
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
4468
/*
I
Ingo Molnar 已提交
4469
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4470 4471 4472 4473
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
4474
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4475

4476
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4477
	atomic_inc(&rq->nr_iowait);
4478
	blk_flush_plug(current);
4479
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4480
	schedule();
4481
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4482
	atomic_dec(&rq->nr_iowait);
4483
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4484 4485 4486 4487 4488
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4489
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4490 4491
	long ret;

4492
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4493
	atomic_inc(&rq->nr_iowait);
4494
	blk_flush_plug(current);
4495
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4496
	ret = schedule_timeout(timeout);
4497
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4498
	atomic_dec(&rq->nr_iowait);
4499
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4500 4501 4502 4503 4504 4505 4506 4507 4508 4509
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
4510
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
4511 4512 4513 4514 4515 4516 4517 4518 4519
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4520
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4521
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
4535
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
4536 4537 4538 4539 4540 4541 4542 4543 4544
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4545
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4546
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
4560
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4561
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
4562
{
4563
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4564
	unsigned int time_slice;
4565 4566
	unsigned long flags;
	struct rq *rq;
4567
	int retval;
L
Linus Torvalds 已提交
4568 4569 4570
	struct timespec t;

	if (pid < 0)
4571
		return -EINVAL;
L
Linus Torvalds 已提交
4572 4573

	retval = -ESRCH;
4574
	rcu_read_lock();
L
Linus Torvalds 已提交
4575 4576 4577 4578 4579 4580 4581 4582
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4583 4584
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
4585
	task_rq_unlock(rq, p, &flags);
D
Dmitry Adamushko 已提交
4586

4587
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
4588
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4589 4590
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4591

L
Linus Torvalds 已提交
4592
out_unlock:
4593
	rcu_read_unlock();
L
Linus Torvalds 已提交
4594 4595 4596
	return retval;
}

4597
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4598

4599
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4600 4601
{
	unsigned long free = 0;
4602
	int ppid;
4603
	unsigned state;
L
Linus Torvalds 已提交
4604 4605

	state = p->state ? __ffs(p->state) + 1 : 0;
4606
	printk(KERN_INFO "%-15.15s %c", p->comm,
4607
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4608
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4609
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4610
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4611
	else
P
Peter Zijlstra 已提交
4612
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4613 4614
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4615
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4616
	else
P
Peter Zijlstra 已提交
4617
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4618 4619
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
4620
	free = stack_not_used(p);
L
Linus Torvalds 已提交
4621
#endif
4622 4623 4624
	rcu_read_lock();
	ppid = task_pid_nr(rcu_dereference(p->real_parent));
	rcu_read_unlock();
P
Peter Zijlstra 已提交
4625
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4626
		task_pid_nr(p), ppid,
4627
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
4628

4629
	show_stack(p, NULL);
L
Linus Torvalds 已提交
4630 4631
}

I
Ingo Molnar 已提交
4632
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4633
{
4634
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4635

4636
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
4637 4638
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4639
#else
P
Peter Zijlstra 已提交
4640 4641
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4642
#endif
4643
	rcu_read_lock();
L
Linus Torvalds 已提交
4644 4645 4646
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
4647
		 * console might take a lot of time:
L
Linus Torvalds 已提交
4648 4649
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4650
		if (!state_filter || (p->state & state_filter))
4651
			sched_show_task(p);
L
Linus Torvalds 已提交
4652 4653
	} while_each_thread(g, p);

4654 4655
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4656 4657 4658
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
4659
	rcu_read_unlock();
I
Ingo Molnar 已提交
4660 4661 4662
	/*
	 * Only show locks if all tasks are dumped:
	 */
4663
	if (!state_filter)
I
Ingo Molnar 已提交
4664
		debug_show_all_locks();
L
Linus Torvalds 已提交
4665 4666
}

I
Ingo Molnar 已提交
4667 4668
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
4669
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4670 4671
}

4672 4673 4674 4675 4676 4677 4678 4679
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4680
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4681
{
4682
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4683 4684
	unsigned long flags;

4685
	raw_spin_lock_irqsave(&rq->lock, flags);
4686

I
Ingo Molnar 已提交
4687
	__sched_fork(idle);
4688
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
4689 4690
	idle->se.exec_start = sched_clock();

4691
	do_set_cpus_allowed(idle, cpumask_of(cpu));
4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
4703
	__set_task_cpu(idle, cpu);
4704
	rcu_read_unlock();
L
Linus Torvalds 已提交
4705 4706

	rq->curr = rq->idle = idle;
P
Peter Zijlstra 已提交
4707 4708
#if defined(CONFIG_SMP)
	idle->on_cpu = 1;
4709
#endif
4710
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
4711 4712

	/* Set the preempt count _outside_ the spinlocks! */
A
Al Viro 已提交
4713
	task_thread_info(idle)->preempt_count = 0;
4714

I
Ingo Molnar 已提交
4715 4716 4717 4718
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
4719
	ftrace_graph_init_idle_task(idle, cpu);
4720
	vtime_init_idle(idle);
4721 4722 4723
#if defined(CONFIG_SMP)
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
4724 4725
}

L
Linus Torvalds 已提交
4726
#ifdef CONFIG_SMP
4727 4728 4729 4730
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
	if (p->sched_class && p->sched_class->set_cpus_allowed)
		p->sched_class->set_cpus_allowed(p, new_mask);
4731 4732

	cpumask_copy(&p->cpus_allowed, new_mask);
4733
	p->nr_cpus_allowed = cpumask_weight(new_mask);
4734 4735
}

L
Linus Torvalds 已提交
4736 4737 4738
/*
 * This is how migration works:
 *
4739 4740 4741 4742 4743 4744
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
4745
 *    it and puts it into the right queue.
4746 4747
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
4748 4749 4750 4751 4752 4753 4754 4755
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
4756
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
4757 4758
 * call is not atomic; no spinlocks may be held.
 */
4759
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
4760 4761
{
	unsigned long flags;
4762
	struct rq *rq;
4763
	unsigned int dest_cpu;
4764
	int ret = 0;
L
Linus Torvalds 已提交
4765 4766

	rq = task_rq_lock(p, &flags);
4767

4768 4769 4770
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

4771
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
4772 4773 4774 4775
		ret = -EINVAL;
		goto out;
	}

4776
	do_set_cpus_allowed(p, new_mask);
4777

L
Linus Torvalds 已提交
4778
	/* Can the task run on the task's current CPU? If so, we're done */
4779
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
4780 4781
		goto out;

4782
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4783
	if (p->on_rq) {
4784
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
4785
		/* Need help from migration thread: drop lock and wait. */
4786
		task_rq_unlock(rq, p, &flags);
4787
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
4788 4789 4790 4791
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
4792
	task_rq_unlock(rq, p, &flags);
4793

L
Linus Torvalds 已提交
4794 4795
	return ret;
}
4796
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
4797 4798

/*
I
Ingo Molnar 已提交
4799
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
4800 4801 4802 4803 4804 4805
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4806 4807
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4808
 */
4809
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4810
{
4811
	struct rq *rq_dest, *rq_src;
4812
	int ret = 0;
L
Linus Torvalds 已提交
4813

4814
	if (unlikely(!cpu_active(dest_cpu)))
4815
		return ret;
L
Linus Torvalds 已提交
4816 4817 4818 4819

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

4820
	raw_spin_lock(&p->pi_lock);
L
Linus Torvalds 已提交
4821 4822 4823
	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
4824
		goto done;
L
Linus Torvalds 已提交
4825
	/* Affinity changed (again). */
4826
	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
L
Linus Torvalds 已提交
4827
		goto fail;
L
Linus Torvalds 已提交
4828

4829 4830 4831 4832
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
P
Peter Zijlstra 已提交
4833
	if (p->on_rq) {
4834
		dequeue_task(rq_src, p, 0);
4835
		set_task_cpu(p, dest_cpu);
4836
		enqueue_task(rq_dest, p, 0);
4837
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
4838
	}
L
Linus Torvalds 已提交
4839
done:
4840
	ret = 1;
L
Linus Torvalds 已提交
4841
fail:
L
Linus Torvalds 已提交
4842
	double_rq_unlock(rq_src, rq_dest);
4843
	raw_spin_unlock(&p->pi_lock);
4844
	return ret;
L
Linus Torvalds 已提交
4845 4846 4847
}

/*
4848 4849 4850
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
4851
 */
4852
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
4853
{
4854
	struct migration_arg *arg = data;
4855

4856 4857 4858 4859
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
4860
	local_irq_disable();
4861
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4862
	local_irq_enable();
L
Linus Torvalds 已提交
4863
	return 0;
4864 4865
}

L
Linus Torvalds 已提交
4866
#ifdef CONFIG_HOTPLUG_CPU
4867

4868
/*
4869 4870
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
4871
 */
4872
void idle_task_exit(void)
L
Linus Torvalds 已提交
4873
{
4874
	struct mm_struct *mm = current->active_mm;
4875

4876
	BUG_ON(cpu_online(smp_processor_id()));
4877

4878 4879 4880
	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
L
Linus Torvalds 已提交
4881 4882 4883
}

/*
4884 4885 4886 4887 4888
 * Since this CPU is going 'away' for a while, fold any nr_active delta
 * we might have. Assumes we're called after migrate_tasks() so that the
 * nr_active count is stable.
 *
 * Also see the comment "Global load-average calculations".
L
Linus Torvalds 已提交
4889
 */
4890
static void calc_load_migrate(struct rq *rq)
L
Linus Torvalds 已提交
4891
{
4892 4893 4894
	long delta = calc_load_fold_active(rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
4895 4896
}

4897
/*
4898 4899 4900 4901 4902 4903
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
4904
 */
4905
static void migrate_tasks(unsigned int dead_cpu)
L
Linus Torvalds 已提交
4906
{
4907
	struct rq *rq = cpu_rq(dead_cpu);
4908 4909
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
4910 4911

	/*
4912 4913 4914 4915 4916 4917 4918
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
4919
	 */
4920
	rq->stop = NULL;
4921

I
Ingo Molnar 已提交
4922
	for ( ; ; ) {
4923 4924 4925 4926 4927
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
4928
			break;
4929

4930
		next = pick_next_task(rq);
4931
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
4932
		next->sched_class->put_prev_task(rq, next);
4933

4934 4935 4936 4937 4938 4939 4940
		/* Find suitable destination for @next, with force if needed. */
		dest_cpu = select_fallback_rq(dead_cpu, next);
		raw_spin_unlock(&rq->lock);

		__migrate_task(next, dead_cpu, dest_cpu);

		raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
4941
	}
4942

4943
	rq->stop = stop;
4944
}
4945

L
Linus Torvalds 已提交
4946 4947
#endif /* CONFIG_HOTPLUG_CPU */

4948 4949 4950
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
4951 4952
	{
		.procname	= "sched_domain",
4953
		.mode		= 0555,
4954
	},
4955
	{}
4956 4957 4958
};

static struct ctl_table sd_ctl_root[] = {
4959 4960
	{
		.procname	= "kernel",
4961
		.mode		= 0555,
4962 4963
		.child		= sd_ctl_dir,
	},
4964
	{}
4965 4966 4967 4968 4969
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
4970
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4971 4972 4973 4974

	return entry;
}

4975 4976
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
4977
	struct ctl_table *entry;
4978

4979 4980 4981
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
4982
	 * will always be set. In the lowest directory the names are
4983 4984 4985
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
4986 4987
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
4988 4989 4990
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
4991 4992 4993 4994 4995

	kfree(*tablep);
	*tablep = NULL;
}

4996
static int min_load_idx = 0;
4997
static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4998

4999
static void
5000
set_table_entry(struct ctl_table *entry,
5001
		const char *procname, void *data, int maxlen,
5002 5003
		umode_t mode, proc_handler *proc_handler,
		bool load_idx)
5004 5005 5006 5007 5008 5009
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
5010 5011 5012 5013 5014

	if (load_idx) {
		entry->extra1 = &min_load_idx;
		entry->extra2 = &max_load_idx;
	}
5015 5016 5017 5018 5019
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5020
	struct ctl_table *table = sd_alloc_ctl_entry(13);
5021

5022 5023 5024
	if (table == NULL)
		return NULL;

5025
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5026
		sizeof(long), 0644, proc_doulongvec_minmax, false);
5027
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5028
		sizeof(long), 0644, proc_doulongvec_minmax, false);
5029
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5030
		sizeof(int), 0644, proc_dointvec_minmax, true);
5031
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5032
		sizeof(int), 0644, proc_dointvec_minmax, true);
5033
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5034
		sizeof(int), 0644, proc_dointvec_minmax, true);
5035
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5036
		sizeof(int), 0644, proc_dointvec_minmax, true);
5037
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5038
		sizeof(int), 0644, proc_dointvec_minmax, true);
5039
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5040
		sizeof(int), 0644, proc_dointvec_minmax, false);
5041
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5042
		sizeof(int), 0644, proc_dointvec_minmax, false);
5043
	set_table_entry(&table[9], "cache_nice_tries",
5044
		&sd->cache_nice_tries,
5045
		sizeof(int), 0644, proc_dointvec_minmax, false);
5046
	set_table_entry(&table[10], "flags", &sd->flags,
5047
		sizeof(int), 0644, proc_dointvec_minmax, false);
5048
	set_table_entry(&table[11], "name", sd->name,
5049
		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5050
	/* &table[12] is terminator */
5051 5052 5053 5054

	return table;
}

5055
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5056 5057 5058 5059 5060 5061 5062 5063 5064
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5065 5066
	if (table == NULL)
		return NULL;
5067 5068 5069 5070 5071

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5072
		entry->mode = 0555;
5073 5074 5075 5076 5077 5078 5079 5080
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5081
static void register_sched_domain_sysctl(void)
5082
{
5083
	int i, cpu_num = num_possible_cpus();
5084 5085 5086
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5087 5088 5089
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5090 5091 5092
	if (entry == NULL)
		return;

5093
	for_each_possible_cpu(i) {
5094 5095
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5096
		entry->mode = 0555;
5097
		entry->child = sd_alloc_ctl_cpu_table(i);
5098
		entry++;
5099
	}
5100 5101

	WARN_ON(sd_sysctl_header);
5102 5103
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5104

5105
/* may be called multiple times per register */
5106 5107
static void unregister_sched_domain_sysctl(void)
{
5108 5109
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5110
	sd_sysctl_header = NULL;
5111 5112
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5113
}
5114
#else
5115 5116 5117 5118
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5119 5120 5121 5122
{
}
#endif

5123 5124 5125 5126 5127
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5128
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5148
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5149 5150 5151 5152
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5153 5154 5155 5156
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5157 5158
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5159
{
5160
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5161
	unsigned long flags;
5162
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5163

5164
	switch (action & ~CPU_TASKS_FROZEN) {
5165

L
Linus Torvalds 已提交
5166
	case CPU_UP_PREPARE:
5167
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5168
		break;
5169

L
Linus Torvalds 已提交
5170
	case CPU_ONLINE:
5171
		/* Update our root-domain */
5172
		raw_spin_lock_irqsave(&rq->lock, flags);
5173
		if (rq->rd) {
5174
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5175 5176

			set_rq_online(rq);
5177
		}
5178
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5179
		break;
5180

L
Linus Torvalds 已提交
5181
#ifdef CONFIG_HOTPLUG_CPU
5182
	case CPU_DYING:
5183
		sched_ttwu_pending();
G
Gregory Haskins 已提交
5184
		/* Update our root-domain */
5185
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5186
		if (rq->rd) {
5187
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5188
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5189
		}
5190 5191
		migrate_tasks(cpu);
		BUG_ON(rq->nr_running != 1); /* the migration thread */
5192
		raw_spin_unlock_irqrestore(&rq->lock, flags);
5193
		break;
5194

5195
	case CPU_DEAD:
5196
		calc_load_migrate(rq);
G
Gregory Haskins 已提交
5197
		break;
L
Linus Torvalds 已提交
5198 5199
#endif
	}
5200 5201 5202

	update_max_interval();

L
Linus Torvalds 已提交
5203 5204 5205
	return NOTIFY_OK;
}

5206 5207 5208
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5209
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5210
 */
5211
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5212
	.notifier_call = migration_call,
5213
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
5214 5215
};

5216 5217 5218 5219
static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
5220
	case CPU_STARTING:
5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		set_cpu_active((long)hcpu, false);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

5241
static int __init migration_init(void)
L
Linus Torvalds 已提交
5242 5243
{
	void *cpu = (void *)(long)smp_processor_id();
5244
	int err;
5245

5246
	/* Initialize migration for the boot CPU */
5247 5248
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5249 5250
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5251

5252 5253 5254 5255
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

5256
	return 0;
L
Linus Torvalds 已提交
5257
}
5258
early_initcall(migration_init);
L
Linus Torvalds 已提交
5259 5260 5261
#endif

#ifdef CONFIG_SMP
5262

5263 5264
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

5265
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5266

5267
static __read_mostly int sched_debug_enabled;
5268

5269
static int __init sched_debug_setup(char *str)
5270
{
5271
	sched_debug_enabled = 1;
5272 5273 5274

	return 0;
}
5275 5276 5277 5278 5279 5280
early_param("sched_debug", sched_debug_setup);

static inline bool sched_debug(void)
{
	return sched_debug_enabled;
}
5281

5282
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5283
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5284
{
I
Ingo Molnar 已提交
5285
	struct sched_group *group = sd->groups;
5286
	char str[256];
L
Linus Torvalds 已提交
5287

R
Rusty Russell 已提交
5288
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5289
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5290 5291 5292 5293

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5294
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5295
		if (sd->parent)
P
Peter Zijlstra 已提交
5296 5297
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5298
		return -1;
N
Nick Piggin 已提交
5299 5300
	}

P
Peter Zijlstra 已提交
5301
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
5302

5303
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5304 5305
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5306
	}
5307
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5308 5309
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5310
	}
L
Linus Torvalds 已提交
5311

I
Ingo Molnar 已提交
5312
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5313
	do {
I
Ingo Molnar 已提交
5314
		if (!group) {
P
Peter Zijlstra 已提交
5315 5316
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5317 5318 5319
			break;
		}

5320 5321 5322 5323 5324 5325
		/*
		 * Even though we initialize ->power to something semi-sane,
		 * we leave power_orig unset. This allows us to detect if
		 * domain iteration is still funny without causing /0 traps.
		 */
		if (!group->sgp->power_orig) {
P
Peter Zijlstra 已提交
5326 5327 5328
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
5329 5330
			break;
		}
L
Linus Torvalds 已提交
5331

5332
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5333 5334
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
5335 5336
			break;
		}
L
Linus Torvalds 已提交
5337

5338 5339
		if (!(sd->flags & SD_OVERLAP) &&
		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5340 5341
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
5342 5343
			break;
		}
L
Linus Torvalds 已提交
5344

5345
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
5346

R
Rusty Russell 已提交
5347
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5348

P
Peter Zijlstra 已提交
5349
		printk(KERN_CONT " %s", str);
5350
		if (group->sgp->power != SCHED_POWER_SCALE) {
P
Peter Zijlstra 已提交
5351
			printk(KERN_CONT " (cpu_power = %d)",
5352
				group->sgp->power);
5353
		}
L
Linus Torvalds 已提交
5354

I
Ingo Molnar 已提交
5355 5356
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
5357
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5358

5359
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
5360
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5361

5362 5363
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
5364 5365
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
5366 5367
	return 0;
}
L
Linus Torvalds 已提交
5368

I
Ingo Molnar 已提交
5369 5370 5371
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5372

5373
	if (!sched_debug_enabled)
5374 5375
		return;

I
Ingo Molnar 已提交
5376 5377 5378 5379
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5380

I
Ingo Molnar 已提交
5381 5382 5383
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
5384
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
I
Ingo Molnar 已提交
5385
			break;
L
Linus Torvalds 已提交
5386 5387
		level++;
		sd = sd->parent;
5388
		if (!sd)
I
Ingo Molnar 已提交
5389 5390
			break;
	}
L
Linus Torvalds 已提交
5391
}
5392
#else /* !CONFIG_SCHED_DEBUG */
5393
# define sched_domain_debug(sd, cpu) do { } while (0)
5394 5395 5396 5397
static inline bool sched_debug(void)
{
	return false;
}
5398
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
5399

5400
static int sd_degenerate(struct sched_domain *sd)
5401
{
5402
	if (cpumask_weight(sched_domain_span(sd)) == 1)
5403 5404 5405 5406 5407 5408
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5409 5410 5411
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5412 5413 5414 5415 5416
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
5417
	if (sd->flags & (SD_WAKE_AFFINE))
5418 5419 5420 5421 5422
		return 0;

	return 1;
}

5423 5424
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5425 5426 5427 5428 5429 5430
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

5431
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5432 5433 5434 5435 5436 5437 5438
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5439 5440 5441
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5442 5443
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
5444 5445 5446 5447 5448 5449 5450
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

5451
static void free_rootdomain(struct rcu_head *rcu)
5452
{
5453
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5454

5455
	cpupri_cleanup(&rd->cpupri);
5456 5457 5458 5459 5460 5461
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
5462 5463
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
5464
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
5465 5466
	unsigned long flags;

5467
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5468 5469

	if (rq->rd) {
I
Ingo Molnar 已提交
5470
		old_rd = rq->rd;
G
Gregory Haskins 已提交
5471

5472
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5473
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5474

5475
		cpumask_clear_cpu(rq->cpu, old_rd->span);
5476

I
Ingo Molnar 已提交
5477 5478 5479 5480 5481 5482 5483
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
5484 5485 5486 5487 5488
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

5489
	cpumask_set_cpu(rq->cpu, rd->span);
5490
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5491
		set_rq_online(rq);
G
Gregory Haskins 已提交
5492

5493
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
5494 5495

	if (old_rd)
5496
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
5497 5498
}

5499
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
5500 5501 5502
{
	memset(rd, 0, sizeof(*rd));

5503
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5504
		goto out;
5505
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5506
		goto free_span;
5507
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5508
		goto free_online;
5509

5510
	if (cpupri_init(&rd->cpupri) != 0)
5511
		goto free_rto_mask;
5512
	return 0;
5513

5514 5515
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
5516 5517 5518 5519
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
5520
out:
5521
	return -ENOMEM;
G
Gregory Haskins 已提交
5522 5523
}

5524 5525 5526 5527 5528 5529
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
struct root_domain def_root_domain;

G
Gregory Haskins 已提交
5530 5531
static void init_defrootdomain(void)
{
5532
	init_rootdomain(&def_root_domain);
5533

G
Gregory Haskins 已提交
5534 5535 5536
	atomic_set(&def_root_domain.refcount, 1);
}

5537
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
5538 5539 5540 5541 5542 5543 5544
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

5545
	if (init_rootdomain(rd) != 0) {
5546 5547 5548
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
5549 5550 5551 5552

	return rd;
}

5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571
static void free_sched_groups(struct sched_group *sg, int free_sgp)
{
	struct sched_group *tmp, *first;

	if (!sg)
		return;

	first = sg;
	do {
		tmp = sg->next;

		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
			kfree(sg->sgp);

		kfree(sg);
		sg = tmp;
	} while (sg != first);
}

5572 5573 5574
static void free_sched_domain(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5575 5576 5577 5578 5579 5580 5581 5582

	/*
	 * If its an overlapping domain it has private groups, iterate and
	 * nuke them all.
	 */
	if (sd->flags & SD_OVERLAP) {
		free_sched_groups(sd->groups, 1);
	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5583
		kfree(sd->groups->sgp);
5584
		kfree(sd->groups);
5585
	}
5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599
	kfree(sd);
}

static void destroy_sched_domain(struct sched_domain *sd, int cpu)
{
	call_rcu(&sd->rcu, free_sched_domain);
}

static void destroy_sched_domains(struct sched_domain *sd, int cpu)
{
	for (; sd; sd = sd->parent)
		destroy_sched_domain(sd, cpu);
}

5600 5601 5602 5603 5604 5605 5606
/*
 * Keep a special pointer to the highest sched_domain that has
 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 * allows us to avoid some pointer chasing select_idle_sibling().
 *
 * Also keep a unique ID per domain (we use the first cpu number in
 * the cpumask of the domain), this allows us to quickly tell if
5607
 * two cpus are in the same cache domain, see cpus_share_cache().
5608 5609 5610 5611 5612 5613 5614 5615 5616 5617
 */
DEFINE_PER_CPU(struct sched_domain *, sd_llc);
DEFINE_PER_CPU(int, sd_llc_id);

static void update_top_cache_domain(int cpu)
{
	struct sched_domain *sd;
	int id = cpu;

	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5618
	if (sd)
5619 5620 5621 5622 5623 5624
		id = cpumask_first(sched_domain_span(sd));

	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
	per_cpu(sd_llc_id, cpu) = id;
}

L
Linus Torvalds 已提交
5625
/*
I
Ingo Molnar 已提交
5626
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
5627 5628
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
5629 5630
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
5631
{
5632
	struct rq *rq = cpu_rq(cpu);
5633 5634 5635
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
5636
	for (tmp = sd; tmp; ) {
5637 5638 5639
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5640

5641
		if (sd_parent_degenerate(tmp, parent)) {
5642
			tmp->parent = parent->parent;
5643 5644
			if (parent->parent)
				parent->parent->child = tmp;
5645
			destroy_sched_domain(parent, cpu);
5646 5647
		} else
			tmp = tmp->parent;
5648 5649
	}

5650
	if (sd && sd_degenerate(sd)) {
5651
		tmp = sd;
5652
		sd = sd->parent;
5653
		destroy_sched_domain(tmp, cpu);
5654 5655 5656
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5657

5658
	sched_domain_debug(sd, cpu);
L
Linus Torvalds 已提交
5659

G
Gregory Haskins 已提交
5660
	rq_attach_root(rq, rd);
5661
	tmp = rq->sd;
N
Nick Piggin 已提交
5662
	rcu_assign_pointer(rq->sd, sd);
5663
	destroy_sched_domains(tmp, cpu);
5664 5665

	update_top_cache_domain(cpu);
L
Linus Torvalds 已提交
5666 5667 5668
}

/* cpus with isolated domains */
5669
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
5670 5671 5672 5673

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
5674
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
5675
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
5676 5677 5678
	return 1;
}

I
Ingo Molnar 已提交
5679
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5680

5681 5682 5683 5684 5685
static const struct cpumask *cpu_cpu_mask(int cpu)
{
	return cpumask_of_node(cpu_to_node(cpu));
}

5686 5687 5688
struct sd_data {
	struct sched_domain **__percpu sd;
	struct sched_group **__percpu sg;
5689
	struct sched_group_power **__percpu sgp;
5690 5691
};

5692
struct s_data {
5693
	struct sched_domain ** __percpu sd;
5694 5695 5696
	struct root_domain	*rd;
};

5697 5698
enum s_alloc {
	sa_rootdomain,
5699
	sa_sd,
5700
	sa_sd_storage,
5701 5702 5703
	sa_none,
};

5704 5705 5706
struct sched_domain_topology_level;

typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5707 5708
typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);

5709 5710
#define SDTL_OVERLAP	0x01

5711
struct sched_domain_topology_level {
5712 5713
	sched_domain_init_f init;
	sched_domain_mask_f mask;
5714
	int		    flags;
5715
	int		    numa_level;
5716
	struct sd_data      data;
5717 5718
};

P
Peter Zijlstra 已提交
5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756
/*
 * Build an iteration mask that can exclude certain CPUs from the upwards
 * domain traversal.
 *
 * Asymmetric node setups can result in situations where the domain tree is of
 * unequal depth, make sure to skip domains that already cover the entire
 * range.
 *
 * In that case build_sched_domains() will have terminated the iteration early
 * and our sibling sd spans will be empty. Domains should always include the
 * cpu they're built on, so check that.
 *
 */
static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
{
	const struct cpumask *span = sched_domain_span(sd);
	struct sd_data *sdd = sd->private;
	struct sched_domain *sibling;
	int i;

	for_each_cpu(i, span) {
		sibling = *per_cpu_ptr(sdd->sd, i);
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
			continue;

		cpumask_set_cpu(i, sched_group_mask(sg));
	}
}

/*
 * Return the canonical balance cpu for this group, this is the first cpu
 * of this group that's also in the iteration mask.
 */
int group_balance_cpu(struct sched_group *sg)
{
	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
}

5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774
static int
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered = sched_domains_tmpmask;
	struct sd_data *sdd = sd->private;
	struct sched_domain *child;
	int i;

	cpumask_clear(covered);

	for_each_cpu(i, span) {
		struct cpumask *sg_span;

		if (cpumask_test_cpu(i, covered))
			continue;

P
Peter Zijlstra 已提交
5775 5776 5777 5778 5779 5780
		child = *per_cpu_ptr(sdd->sd, i);

		/* See the comment near build_group_mask(). */
		if (!cpumask_test_cpu(i, sched_domain_span(child)))
			continue;

5781
		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5782
				GFP_KERNEL, cpu_to_node(cpu));
5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795

		if (!sg)
			goto fail;

		sg_span = sched_group_cpus(sg);
		if (child->child) {
			child = child->child;
			cpumask_copy(sg_span, sched_domain_span(child));
		} else
			cpumask_set_cpu(i, sg_span);

		cpumask_or(covered, covered, sg_span);

P
Peter Zijlstra 已提交
5796
		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
P
Peter Zijlstra 已提交
5797 5798 5799
		if (atomic_inc_return(&sg->sgp->ref) == 1)
			build_group_mask(sd, sg);

5800 5801 5802 5803 5804 5805
		/*
		 * Initialize sgp->power such that even if we mess up the
		 * domains and no possible iteration will get us here, we won't
		 * die on a /0 trap.
		 */
		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5806

P
Peter Zijlstra 已提交
5807 5808 5809 5810 5811
		/*
		 * Make sure the first group of this domain contains the
		 * canonical balance cpu. Otherwise the sched_domain iteration
		 * breaks. See update_sg_lb_stats().
		 */
P
Peter Zijlstra 已提交
5812
		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
P
Peter Zijlstra 已提交
5813
		    group_balance_cpu(sg) == cpu)
5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832
			groups = sg;

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
		last->next = first;
	}
	sd->groups = groups;

	return 0;

fail:
	free_sched_groups(first, 0);

	return -ENOMEM;
}

5833
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
5834
{
5835 5836
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
5837

5838 5839
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
5840

5841
	if (sg) {
5842
		*sg = *per_cpu_ptr(sdd->sg, cpu);
5843
		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5844
		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5845
	}
5846 5847

	return cpu;
5848 5849
}

5850
/*
5851 5852 5853
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
5854 5855
 *
 * Assumes the sched_domain tree is fully constructed
5856
 */
5857 5858
static int
build_sched_groups(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5859
{
5860 5861 5862
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
5863
	struct cpumask *covered;
5864
	int i;
5865

5866 5867 5868 5869 5870 5871
	get_group(cpu, sdd, &sd->groups);
	atomic_inc(&sd->groups->ref);

	if (cpu != cpumask_first(sched_domain_span(sd)))
		return 0;

5872 5873 5874
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

5875
	cpumask_clear(covered);
5876

5877 5878 5879 5880
	for_each_cpu(i, span) {
		struct sched_group *sg;
		int group = get_group(i, sdd, &sg);
		int j;
5881

5882 5883
		if (cpumask_test_cpu(i, covered))
			continue;
5884

5885
		cpumask_clear(sched_group_cpus(sg));
5886
		sg->sgp->power = 0;
P
Peter Zijlstra 已提交
5887
		cpumask_setall(sched_group_mask(sg));
5888

5889 5890 5891
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
5892

5893 5894 5895
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
5896

5897 5898 5899 5900 5901 5902 5903
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
5904 5905

	return 0;
5906
}
5907

5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
5920
	struct sched_group *sg = sd->groups;
5921

5922 5923 5924 5925 5926 5927
	WARN_ON(!sd || !sg);

	do {
		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
		sg = sg->next;
	} while (sg != sd->groups);
5928

P
Peter Zijlstra 已提交
5929
	if (cpu != group_balance_cpu(sg))
5930
		return;
5931

5932
	update_group_power(sd, cpu);
5933
	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5934 5935
}

5936 5937 5938
int __weak arch_sd_sibling_asym_packing(void)
{
       return 0*SD_ASYM_PACKING;
5939 5940
}

5941 5942 5943 5944 5945
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

5946 5947 5948 5949 5950 5951
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

5952 5953 5954 5955 5956 5957 5958 5959 5960
#define SD_INIT_FUNC(type)						\
static noinline struct sched_domain *					\
sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
{									\
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
	*sd = SD_##type##_INIT;						\
	SD_INIT_NAME(sd, type);						\
	sd->private = &tl->data;					\
	return sd;							\
5961 5962 5963 5964 5965 5966 5967 5968 5969
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif
5970 5971 5972
#ifdef CONFIG_SCHED_BOOK
 SD_INIT_FUNC(BOOK)
#endif
5973

5974
static int default_relax_domain_level = -1;
5975
int sched_domain_level_max;
5976 5977 5978

static int __init setup_relax_domain_level(char *str)
{
5979 5980
	if (kstrtoint(str, 0, &default_relax_domain_level))
		pr_warn("Unable to set relax_domain_level\n");
5981

5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
6000
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6001 6002
	} else {
		/* turn on idle balance on this domain */
6003
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6004 6005 6006
	}
}

6007 6008 6009
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

6010 6011 6012 6013 6014
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
6015 6016
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
6017 6018
	case sa_sd:
		free_percpu(d->sd); /* fall through */
6019
	case sa_sd_storage:
6020
		__sdt_free(cpu_map); /* fall through */
6021 6022 6023 6024
	case sa_none:
		break;
	}
}
6025

6026 6027 6028
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
6029 6030
	memset(d, 0, sizeof(*d));

6031 6032
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
6033 6034 6035
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
6036
	d->rd = alloc_rootdomain();
6037
	if (!d->rd)
6038
		return sa_sd;
6039 6040
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
6041

6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

6054
	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6055
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6056 6057

	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6058
		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
6059 6060
}

6061 6062
#ifdef CONFIG_SCHED_SMT
static const struct cpumask *cpu_smt_mask(int cpu)
6063
{
6064
	return topology_thread_cpumask(cpu);
6065
}
6066
#endif
6067

6068 6069 6070
/*
 * Topology list, bottom-up.
 */
6071
static struct sched_domain_topology_level default_topology[] = {
6072 6073
#ifdef CONFIG_SCHED_SMT
	{ sd_init_SIBLING, cpu_smt_mask, },
6074
#endif
6075
#ifdef CONFIG_SCHED_MC
6076
	{ sd_init_MC, cpu_coregroup_mask, },
6077
#endif
6078 6079 6080 6081
#ifdef CONFIG_SCHED_BOOK
	{ sd_init_BOOK, cpu_book_mask, },
#endif
	{ sd_init_CPU, cpu_cpu_mask, },
6082 6083 6084 6085 6086
	{ NULL, },
};

static struct sched_domain_topology_level *sched_domain_topology = default_topology;

6087 6088 6089 6090 6091 6092 6093 6094 6095
#ifdef CONFIG_NUMA

static int sched_domains_numa_levels;
static int *sched_domains_numa_distance;
static struct cpumask ***sched_domains_numa_masks;
static int sched_domains_curr_level;

static inline int sd_local_flags(int level)
{
6096
	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113
		return 0;

	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
}

static struct sched_domain *
sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
{
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
	int level = tl->numa_level;
	int sd_weight = cpumask_weight(
			sched_domains_numa_masks[level][cpu_to_node(cpu)]);

	*sd = (struct sched_domain){
		.min_interval		= sd_weight,
		.max_interval		= 2*sd_weight,
		.busy_factor		= 32,
6114
		.imbalance_pct		= 125,
6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152
		.cache_nice_tries	= 2,
		.busy_idx		= 3,
		.idle_idx		= 2,
		.newidle_idx		= 0,
		.wake_idx		= 0,
		.forkexec_idx		= 0,

		.flags			= 1*SD_LOAD_BALANCE
					| 1*SD_BALANCE_NEWIDLE
					| 0*SD_BALANCE_EXEC
					| 0*SD_BALANCE_FORK
					| 0*SD_BALANCE_WAKE
					| 0*SD_WAKE_AFFINE
					| 0*SD_SHARE_CPUPOWER
					| 0*SD_SHARE_PKG_RESOURCES
					| 1*SD_SERIALIZE
					| 0*SD_PREFER_SIBLING
					| sd_local_flags(level)
					,
		.last_balance		= jiffies,
		.balance_interval	= sd_weight,
	};
	SD_INIT_NAME(sd, NUMA);
	sd->private = &tl->data;

	/*
	 * Ugly hack to pass state to sd_numa_mask()...
	 */
	sched_domains_curr_level = tl->numa_level;

	return sd;
}

static const struct cpumask *sd_numa_mask(int cpu)
{
	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
}

6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188
static void sched_numa_warn(const char *str)
{
	static int done = false;
	int i,j;

	if (done)
		return;

	done = true;

	printk(KERN_WARNING "ERROR: %s\n\n", str);

	for (i = 0; i < nr_node_ids; i++) {
		printk(KERN_WARNING "  ");
		for (j = 0; j < nr_node_ids; j++)
			printk(KERN_CONT "%02d ", node_distance(i,j));
		printk(KERN_CONT "\n");
	}
	printk(KERN_WARNING "\n");
}

static bool find_numa_distance(int distance)
{
	int i;

	if (distance == node_distance(0, 0))
		return true;

	for (i = 0; i < sched_domains_numa_levels; i++) {
		if (sched_domains_numa_distance[i] == distance)
			return true;
	}

	return false;
}

6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209
static void sched_init_numa(void)
{
	int next_distance, curr_distance = node_distance(0, 0);
	struct sched_domain_topology_level *tl;
	int level = 0;
	int i, j, k;

	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
	if (!sched_domains_numa_distance)
		return;

	/*
	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
	 * unique distances in the node_distance() table.
	 *
	 * Assumes node_distance(0,j) includes all distances in
	 * node_distance(i,j) in order to avoid cubic time.
	 */
	next_distance = curr_distance;
	for (i = 0; i < nr_node_ids; i++) {
		for (j = 0; j < nr_node_ids; j++) {
6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233
			for (k = 0; k < nr_node_ids; k++) {
				int distance = node_distance(i, k);

				if (distance > curr_distance &&
				    (distance < next_distance ||
				     next_distance == curr_distance))
					next_distance = distance;

				/*
				 * While not a strong assumption it would be nice to know
				 * about cases where if node A is connected to B, B is not
				 * equally connected to A.
				 */
				if (sched_debug() && node_distance(k, i) != distance)
					sched_numa_warn("Node-distance not symmetric");

				if (sched_debug() && i && !find_numa_distance(distance))
					sched_numa_warn("Node-0 not representative");
			}
			if (next_distance != curr_distance) {
				sched_domains_numa_distance[level++] = next_distance;
				sched_domains_numa_levels = level;
				curr_distance = next_distance;
			} else break;
6234
		}
6235 6236 6237 6238 6239 6240

		/*
		 * In case of sched_debug() we verify the above assumption.
		 */
		if (!sched_debug())
			break;
6241 6242 6243 6244 6245
	}
	/*
	 * 'level' contains the number of unique distances, excluding the
	 * identity distance node_distance(i,i).
	 *
V
Viresh Kumar 已提交
6246
	 * The sched_domains_numa_distance[] array includes the actual distance
6247 6248 6249
	 * numbers.
	 */

6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260
	/*
	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
	 * the array will contain less then 'level' members. This could be
	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
	 * in other functions.
	 *
	 * We reset it to 'level' at the end of this function.
	 */
	sched_domains_numa_levels = 0;

6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275
	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
	if (!sched_domains_numa_masks)
		return;

	/*
	 * Now for each level, construct a mask per node which contains all
	 * cpus of nodes that are that many hops away from us.
	 */
	for (i = 0; i < level; i++) {
		sched_domains_numa_masks[i] =
			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
		if (!sched_domains_numa_masks[i])
			return;

		for (j = 0; j < nr_node_ids; j++) {
6276
			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6277 6278 6279 6280 6281 6282
			if (!mask)
				return;

			sched_domains_numa_masks[i][j] = mask;

			for (k = 0; k < nr_node_ids; k++) {
6283
				if (node_distance(j, k) > sched_domains_numa_distance[i])
6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314
					continue;

				cpumask_or(mask, mask, cpumask_of_node(k));
			}
		}
	}

	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
	if (!tl)
		return;

	/*
	 * Copy the default topology bits..
	 */
	for (i = 0; default_topology[i].init; i++)
		tl[i] = default_topology[i];

	/*
	 * .. and append 'j' levels of NUMA goodness.
	 */
	for (j = 0; j < level; i++, j++) {
		tl[i] = (struct sched_domain_topology_level){
			.init = sd_numa_init,
			.mask = sd_numa_mask,
			.flags = SDTL_OVERLAP,
			.numa_level = j,
		};
	}

	sched_domain_topology = tl;
6315 6316

	sched_domains_numa_levels = level;
6317
}
6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364

static void sched_domains_numa_masks_set(int cpu)
{
	int i, j;
	int node = cpu_to_node(cpu);

	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++) {
			if (node_distance(j, node) <= sched_domains_numa_distance[i])
				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
		}
	}
}

static void sched_domains_numa_masks_clear(int cpu)
{
	int i, j;
	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++)
			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
	}
}

/*
 * Update sched_domains_numa_masks[level][node] array when new cpus
 * are onlined.
 */
static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	int cpu = (long)hcpu;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
		sched_domains_numa_masks_set(cpu);
		break;

	case CPU_DEAD:
		sched_domains_numa_masks_clear(cpu);
		break;

	default:
		return NOTIFY_DONE;
	}

	return NOTIFY_OK;
6365 6366 6367 6368 6369
}
#else
static inline void sched_init_numa(void)
{
}
6370 6371 6372 6373 6374 6375 6376

static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	return 0;
}
6377 6378
#endif /* CONFIG_NUMA */

6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for (tl = sched_domain_topology; tl->init; tl++) {
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

6395 6396 6397 6398
		sdd->sgp = alloc_percpu(struct sched_group_power *);
		if (!sdd->sgp)
			return -ENOMEM;

6399 6400 6401
		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_group *sg;
6402
			struct sched_group_power *sgp;
6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415

		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

6416 6417
			sg->next = sg;

6418
			*per_cpu_ptr(sdd->sg, j) = sg;
6419

P
Peter Zijlstra 已提交
6420
			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6421 6422 6423 6424 6425
					GFP_KERNEL, cpu_to_node(j));
			if (!sgp)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sgp, j) = sgp;
6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for (tl = sched_domain_topology; tl->init; tl++) {
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453
			struct sched_domain *sd;

			if (sdd->sd) {
				sd = *per_cpu_ptr(sdd->sd, j);
				if (sd && (sd->flags & SD_OVERLAP))
					free_sched_groups(sd->groups, 0);
				kfree(*per_cpu_ptr(sdd->sd, j));
			}

			if (sdd->sg)
				kfree(*per_cpu_ptr(sdd->sg, j));
			if (sdd->sgp)
				kfree(*per_cpu_ptr(sdd->sgp, j));
6454 6455
		}
		free_percpu(sdd->sd);
6456
		sdd->sd = NULL;
6457
		free_percpu(sdd->sg);
6458
		sdd->sg = NULL;
6459
		free_percpu(sdd->sgp);
6460
		sdd->sgp = NULL;
6461 6462 6463
	}
}

6464 6465
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
		struct s_data *d, const struct cpumask *cpu_map,
6466
		struct sched_domain_attr *attr, struct sched_domain *child,
6467 6468
		int cpu)
{
6469
	struct sched_domain *sd = tl->init(tl, cpu);
6470
	if (!sd)
6471
		return child;
6472 6473

	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6474 6475 6476
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6477
		child->parent = sd;
6478
	}
6479
	sd->child = child;
6480
	set_domain_attribute(sd, attr);
6481 6482 6483 6484

	return sd;
}

6485 6486 6487 6488
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
6489 6490
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
6491 6492
{
	enum s_alloc alloc_state = sa_none;
6493
	struct sched_domain *sd;
6494
	struct s_data d;
6495
	int i, ret = -ENOMEM;
6496

6497 6498 6499
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
6500

6501
	/* Set up domains for cpus specified by the cpu_map. */
6502
	for_each_cpu(i, cpu_map) {
6503 6504
		struct sched_domain_topology_level *tl;

6505
		sd = NULL;
6506
		for (tl = sched_domain_topology; tl->init; tl++) {
6507
			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6508 6509
			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
				sd->flags |= SD_OVERLAP;
6510 6511
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
				break;
6512
		}
6513

6514 6515 6516
		while (sd->child)
			sd = sd->child;

6517
		*per_cpu_ptr(d.sd, i) = sd;
6518 6519 6520 6521 6522 6523
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6524 6525 6526 6527 6528 6529 6530
			if (sd->flags & SD_OVERLAP) {
				if (build_overlap_sched_groups(sd, i))
					goto error;
			} else {
				if (build_sched_groups(sd, i))
					goto error;
			}
6531
		}
6532
	}
6533

L
Linus Torvalds 已提交
6534
	/* Calculate CPU power for physical packages and nodes */
6535 6536 6537
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
6538

6539 6540
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
6541
			init_sched_groups_power(i, sd);
6542
		}
6543
	}
6544

L
Linus Torvalds 已提交
6545
	/* Attach the domains */
6546
	rcu_read_lock();
6547
	for_each_cpu(i, cpu_map) {
6548
		sd = *per_cpu_ptr(d.sd, i);
6549
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
6550
	}
6551
	rcu_read_unlock();
6552

6553
	ret = 0;
6554
error:
6555
	__free_domain_allocs(&d, alloc_state, cpu_map);
6556
	return ret;
L
Linus Torvalds 已提交
6557
}
P
Paul Jackson 已提交
6558

6559
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
6560
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
6561 6562
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
6563 6564 6565

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
6566 6567
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
6568
 */
6569
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
6570

6571 6572 6573 6574 6575 6576
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
6577
{
6578
	return 0;
6579 6580
}

6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

6606
/*
I
Ingo Molnar 已提交
6607
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6608 6609
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6610
 */
6611
static int init_sched_domains(const struct cpumask *cpu_map)
6612
{
6613 6614
	int err;

6615
	arch_update_cpu_topology();
P
Paul Jackson 已提交
6616
	ndoms_cur = 1;
6617
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
6618
	if (!doms_cur)
6619 6620
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6621
	err = build_sched_domains(doms_cur[0], NULL);
6622
	register_sched_domain_sysctl();
6623 6624

	return err;
6625 6626 6627 6628 6629 6630
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6631
static void detach_destroy_domains(const struct cpumask *cpu_map)
6632 6633 6634
{
	int i;

6635
	rcu_read_lock();
6636
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
6637
		cpu_attach_domain(NULL, &def_root_domain, i);
6638
	rcu_read_unlock();
6639 6640
}

6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
6657 6658
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
6659
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
6660 6661 6662
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
6663
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
6664 6665 6666
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
6667 6668 6669
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
6670 6671 6672 6673 6674 6675
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
6676
 *
6677
 * If doms_new == NULL it will be replaced with cpu_online_mask.
6678 6679
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
6680
 *
P
Paul Jackson 已提交
6681 6682
 * Call with hotplug lock held
 */
6683
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6684
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
6685
{
6686
	int i, j, n;
6687
	int new_topology;
P
Paul Jackson 已提交
6688

6689
	mutex_lock(&sched_domains_mutex);
6690

6691 6692 6693
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

6694 6695 6696
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

6697
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
6698 6699 6700

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
6701
		for (j = 0; j < n && !new_topology; j++) {
6702
			if (cpumask_equal(doms_cur[i], doms_new[j])
6703
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
6704 6705 6706
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
6707
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
6708 6709 6710 6711
match1:
		;
	}

6712 6713
	if (doms_new == NULL) {
		ndoms_cur = 0;
6714
		doms_new = &fallback_doms;
6715
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6716
		WARN_ON_ONCE(dattr_new);
6717 6718
	}

P
Paul Jackson 已提交
6719 6720
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
6721
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6722
			if (cpumask_equal(doms_new[i], doms_cur[j])
6723
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
6724 6725 6726
				goto match2;
		}
		/* no match - add a new doms_new */
6727
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
6728 6729 6730 6731 6732
match2:
		;
	}

	/* Remember the new sched domains */
6733 6734
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
6735
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
6736
	doms_cur = doms_new;
6737
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
6738
	ndoms_cur = ndoms_new;
6739 6740

	register_sched_domain_sysctl();
6741

6742
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
6743 6744
}

6745 6746
static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */

L
Linus Torvalds 已提交
6747
/*
6748 6749 6750
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
6751 6752 6753
 *
 * If we come here as part of a suspend/resume, don't touch cpusets because we
 * want to restore it back to its original state upon resume anyway.
L
Linus Torvalds 已提交
6754
 */
6755 6756
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
6757
{
6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779
	switch (action) {
	case CPU_ONLINE_FROZEN:
	case CPU_DOWN_FAILED_FROZEN:

		/*
		 * num_cpus_frozen tracks how many CPUs are involved in suspend
		 * resume sequence. As long as this is not the last online
		 * operation in the resume sequence, just build a single sched
		 * domain, ignoring cpusets.
		 */
		num_cpus_frozen--;
		if (likely(num_cpus_frozen)) {
			partition_sched_domains(1, NULL, NULL);
			break;
		}

		/*
		 * This is the last CPU online operation. So fall through and
		 * restore the original sched domains by considering the
		 * cpuset configurations.
		 */

6780
	case CPU_ONLINE:
6781
	case CPU_DOWN_FAILED:
6782
		cpuset_update_active_cpus(true);
6783
		break;
6784 6785 6786
	default:
		return NOTIFY_DONE;
	}
6787
	return NOTIFY_OK;
6788
}
6789

6790 6791
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
6792
{
6793
	switch (action) {
6794
	case CPU_DOWN_PREPARE:
6795
		cpuset_update_active_cpus(false);
6796 6797 6798 6799 6800
		break;
	case CPU_DOWN_PREPARE_FROZEN:
		num_cpus_frozen++;
		partition_sched_domains(1, NULL, NULL);
		break;
6801 6802 6803
	default:
		return NOTIFY_DONE;
	}
6804
	return NOTIFY_OK;
6805 6806
}

L
Linus Torvalds 已提交
6807 6808
void __init sched_init_smp(void)
{
6809 6810 6811
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6812
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6813

6814 6815
	sched_init_numa();

6816
	get_online_cpus();
6817
	mutex_lock(&sched_domains_mutex);
6818
	init_sched_domains(cpu_active_mask);
6819 6820 6821
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6822
	mutex_unlock(&sched_domains_mutex);
6823
	put_online_cpus();
6824

6825
	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6826 6827
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6828 6829 6830 6831

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

6832
	init_hrtick();
6833 6834

	/* Move init over to a non-isolated CPU */
6835
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6836
		BUG();
I
Ingo Molnar 已提交
6837
	sched_init_granularity();
6838
	free_cpumask_var(non_isolated_cpus);
6839

6840
	init_sched_rt_class();
L
Linus Torvalds 已提交
6841 6842 6843 6844
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6845
	sched_init_granularity();
L
Linus Torvalds 已提交
6846 6847 6848
}
#endif /* CONFIG_SMP */

6849 6850
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
6851 6852 6853 6854 6855 6856 6857
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

6858
#ifdef CONFIG_CGROUP_SCHED
6859 6860 6861 6862
/*
 * Default task group.
 * Every task in system belongs to this group at bootup.
 */
6863
struct task_group root_task_group;
6864
LIST_HEAD(task_groups);
6865
#endif
P
Peter Zijlstra 已提交
6866

6867
DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
P
Peter Zijlstra 已提交
6868

L
Linus Torvalds 已提交
6869 6870
void __init sched_init(void)
{
I
Ingo Molnar 已提交
6871
	int i, j;
6872 6873 6874 6875 6876 6877 6878
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6879
#endif
6880
#ifdef CONFIG_CPUMASK_OFFSTACK
6881
	alloc_size += num_possible_cpus() * cpumask_size();
6882 6883
#endif
	if (alloc_size) {
6884
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6885 6886

#ifdef CONFIG_FAIR_GROUP_SCHED
6887
		root_task_group.se = (struct sched_entity **)ptr;
6888 6889
		ptr += nr_cpu_ids * sizeof(void **);

6890
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6891
		ptr += nr_cpu_ids * sizeof(void **);
6892

6893
#endif /* CONFIG_FAIR_GROUP_SCHED */
6894
#ifdef CONFIG_RT_GROUP_SCHED
6895
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6896 6897
		ptr += nr_cpu_ids * sizeof(void **);

6898
		root_task_group.rt_rq = (struct rt_rq **)ptr;
6899 6900
		ptr += nr_cpu_ids * sizeof(void **);

6901
#endif /* CONFIG_RT_GROUP_SCHED */
6902 6903
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
6904
			per_cpu(load_balance_mask, i) = (void *)ptr;
6905 6906 6907
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
6908
	}
I
Ingo Molnar 已提交
6909

G
Gregory Haskins 已提交
6910 6911 6912 6913
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

6914 6915 6916 6917
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
6918
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6919
			global_rt_period(), global_rt_runtime());
6920
#endif /* CONFIG_RT_GROUP_SCHED */
6921

D
Dhaval Giani 已提交
6922
#ifdef CONFIG_CGROUP_SCHED
6923 6924
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
6925
	INIT_LIST_HEAD(&root_task_group.siblings);
6926
	autogroup_init(&init_task);
6927

D
Dhaval Giani 已提交
6928
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
6929

6930
	for_each_possible_cpu(i) {
6931
		struct rq *rq;
L
Linus Torvalds 已提交
6932 6933

		rq = cpu_rq(i);
6934
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
6935
		rq->nr_running = 0;
6936 6937
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
6938
		init_cfs_rq(&rq->cfs);
P
Peter Zijlstra 已提交
6939
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
6940
#ifdef CONFIG_FAIR_GROUP_SCHED
6941
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
6942
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
6943
		/*
6944
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
6945 6946 6947 6948
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
6949
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
6950 6951 6952
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
6953
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
6954 6955 6956
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
6957
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
6958
		 *
6959 6960
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
6961
		 */
6962
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6963
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
6964 6965 6966
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6967
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
6968
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6969
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
6970
#endif
L
Linus Torvalds 已提交
6971

I
Ingo Molnar 已提交
6972 6973
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
6974 6975 6976

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
6977
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6978
		rq->sd = NULL;
G
Gregory Haskins 已提交
6979
		rq->rd = NULL;
6980
		rq->cpu_power = SCHED_POWER_SCALE;
6981
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
6982
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6983
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6984
		rq->push_cpu = 0;
6985
		rq->cpu = i;
6986
		rq->online = 0;
6987 6988
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
6989 6990 6991

		INIT_LIST_HEAD(&rq->cfs_tasks);

6992
		rq_attach_root(rq, &def_root_domain);
6993
#ifdef CONFIG_NO_HZ_COMMON
6994
		rq->nohz_flags = 0;
6995
#endif
L
Linus Torvalds 已提交
6996
#endif
P
Peter Zijlstra 已提交
6997
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
6998 6999 7000
		atomic_set(&rq->nr_iowait, 0);
	}

7001
	set_load_weight(&init_task);
7002

7003 7004 7005 7006
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

7007
#ifdef CONFIG_RT_MUTEXES
7008
	plist_head_init(&init_task.pi_waiters);
7009 7010
#endif

L
Linus Torvalds 已提交
7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
7024 7025 7026

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
7027 7028 7029 7030
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
7031

7032
#ifdef CONFIG_SMP
7033
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
R
Rusty Russell 已提交
7034 7035 7036
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7037
	idle_thread_set_boot_cpu();
7038 7039
#endif
	init_sched_fair_class();
7040

7041
	scheduler_running = 1;
L
Linus Torvalds 已提交
7042 7043
}

7044
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7045 7046
static inline int preempt_count_equals(int preempt_offset)
{
7047
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7048

A
Arnd Bergmann 已提交
7049
	return (nested == preempt_offset);
7050 7051
}

7052
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7053 7054 7055
{
	static unsigned long prev_jiffy;	/* ratelimiting */

7056
	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7057 7058
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
7059 7060 7061 7062 7063
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
7064 7065 7066 7067 7068 7069 7070
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
7071 7072 7073 7074 7075

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
7076 7077 7078 7079 7080
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7081 7082
static void normalize_task(struct rq *rq, struct task_struct *p)
{
P
Peter Zijlstra 已提交
7083 7084
	const struct sched_class *prev_class = p->sched_class;
	int old_prio = p->prio;
7085
	int on_rq;
7086

P
Peter Zijlstra 已提交
7087
	on_rq = p->on_rq;
7088
	if (on_rq)
7089
		dequeue_task(rq, p, 0);
7090 7091
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
7092
		enqueue_task(rq, p, 0);
7093 7094
		resched_task(rq->curr);
	}
P
Peter Zijlstra 已提交
7095 7096

	check_class_changed(rq, p, prev_class, old_prio);
7097 7098
}

L
Linus Torvalds 已提交
7099 7100
void normalize_rt_tasks(void)
{
7101
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7102
	unsigned long flags;
7103
	struct rq *rq;
L
Linus Torvalds 已提交
7104

7105
	read_lock_irqsave(&tasklist_lock, flags);
7106
	do_each_thread(g, p) {
7107 7108 7109 7110 7111 7112
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
7113 7114
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
7115 7116 7117
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
7118
#endif
I
Ingo Molnar 已提交
7119 7120 7121 7122 7123 7124 7125 7126

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7127
			continue;
I
Ingo Molnar 已提交
7128
		}
L
Linus Torvalds 已提交
7129

7130
		raw_spin_lock(&p->pi_lock);
7131
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7132

7133
		normalize_task(rq, p);
7134

7135
		__task_rq_unlock(rq);
7136
		raw_spin_unlock(&p->pi_lock);
7137 7138
	} while_each_thread(g, p);

7139
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7140 7141 7142
}

#endif /* CONFIG_MAGIC_SYSRQ */
7143

7144
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7145
/*
7146
 * These functions are only useful for the IA64 MCA handling, or kdb.
7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7161
struct task_struct *curr_task(int cpu)
7162 7163 7164 7165
{
	return cpu_curr(cpu);
}

7166 7167 7168
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
7169 7170 7171 7172 7173 7174
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7175 7176
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7177 7178 7179 7180 7181 7182 7183
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7184
void set_curr_task(int cpu, struct task_struct *p)
7185 7186 7187 7188 7189
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7190

D
Dhaval Giani 已提交
7191
#ifdef CONFIG_CGROUP_SCHED
7192 7193 7194
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

7195 7196 7197 7198
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
7199
	autogroup_free(tg);
7200 7201 7202 7203
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
7204
struct task_group *sched_create_group(struct task_group *parent)
7205 7206 7207 7208 7209 7210 7211
{
	struct task_group *tg;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

7212
	if (!alloc_fair_sched_group(tg, parent))
7213 7214
		goto err;

7215
	if (!alloc_rt_sched_group(tg, parent))
7216 7217
		goto err;

7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228
	return tg;

err:
	free_sched_group(tg);
	return ERR_PTR(-ENOMEM);
}

void sched_online_group(struct task_group *tg, struct task_group *parent)
{
	unsigned long flags;

7229
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7230
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
7231 7232 7233 7234 7235

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
7236
	list_add_rcu(&tg->siblings, &parent->children);
7237
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7238 7239
}

7240
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
7241
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7242 7243
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
7244
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
7245 7246
}

7247
/* Destroy runqueue etc associated with a task group */
7248
void sched_destroy_group(struct task_group *tg)
7249 7250 7251 7252 7253 7254
{
	/* wait for possible concurrent references to cfs_rqs complete */
	call_rcu(&tg->rcu, free_sched_group_rcu);
}

void sched_offline_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7255
{
7256
	unsigned long flags;
7257
	int i;
S
Srivatsa Vaddagiri 已提交
7258

7259 7260
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
7261
		unregister_fair_sched_group(tg, i);
7262 7263

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7264
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
7265
	list_del_rcu(&tg->siblings);
7266
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7267 7268
}

7269
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7270 7271 7272
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7273 7274
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7275
{
P
Peter Zijlstra 已提交
7276
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
7277 7278 7279 7280 7281 7282
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

7283
	running = task_current(rq, tsk);
P
Peter Zijlstra 已提交
7284
	on_rq = tsk->on_rq;
S
Srivatsa Vaddagiri 已提交
7285

7286
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
7287
		dequeue_task(rq, tsk, 0);
7288 7289
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7290

P
Peter Zijlstra 已提交
7291 7292 7293 7294 7295 7296
	tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
				lockdep_is_held(&tsk->sighand->siglock)),
			  struct task_group, css);
	tg = autogroup_task_group(tsk, tg);
	tsk->sched_task_group = tg;

P
Peter Zijlstra 已提交
7297
#ifdef CONFIG_FAIR_GROUP_SCHED
7298 7299 7300
	if (tsk->sched_class->task_move_group)
		tsk->sched_class->task_move_group(tsk, on_rq);
	else
P
Peter Zijlstra 已提交
7301
#endif
7302
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
7303

7304 7305 7306
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
7307
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
7308

7309
	task_rq_unlock(rq, tsk, &flags);
S
Srivatsa Vaddagiri 已提交
7310
}
D
Dhaval Giani 已提交
7311
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
7312

7313
#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
P
Peter Zijlstra 已提交
7314 7315 7316
static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7317
		return 1ULL << 20;
P
Peter Zijlstra 已提交
7318

P
Peter Zijlstra 已提交
7319
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
7320
}
7321 7322 7323 7324 7325 7326 7327
#endif

#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
P
Peter Zijlstra 已提交
7328

P
Peter Zijlstra 已提交
7329 7330
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
7331
{
P
Peter Zijlstra 已提交
7332
	struct task_struct *g, *p;
7333

P
Peter Zijlstra 已提交
7334
	do_each_thread(g, p) {
7335
		if (rt_task(p) && task_rq(p)->rt.tg == tg)
P
Peter Zijlstra 已提交
7336 7337
			return 1;
	} while_each_thread(g, p);
7338

P
Peter Zijlstra 已提交
7339 7340
	return 0;
}
7341

P
Peter Zijlstra 已提交
7342 7343 7344 7345 7346
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
7347

7348
static int tg_rt_schedulable(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
7349 7350 7351 7352 7353
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
7354

P
Peter Zijlstra 已提交
7355 7356
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
7357

P
Peter Zijlstra 已提交
7358 7359 7360
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
7361 7362
	}

7363 7364 7365 7366 7367
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
7368

7369 7370 7371
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
7372 7373
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
7374

P
Peter Zijlstra 已提交
7375
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7376

7377 7378 7379 7380 7381
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
7382

7383 7384 7385
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
7386 7387 7388
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7389

P
Peter Zijlstra 已提交
7390 7391 7392 7393
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
7394

P
Peter Zijlstra 已提交
7395
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7396
	}
P
Peter Zijlstra 已提交
7397

P
Peter Zijlstra 已提交
7398 7399 7400 7401
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
7402 7403
}

P
Peter Zijlstra 已提交
7404
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7405
{
7406 7407
	int ret;

P
Peter Zijlstra 已提交
7408 7409 7410 7411 7412 7413
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

7414 7415 7416 7417 7418
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7419 7420
}

7421
static int tg_set_rt_bandwidth(struct task_group *tg,
7422
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
7423
{
P
Peter Zijlstra 已提交
7424
	int i, err = 0;
P
Peter Zijlstra 已提交
7425 7426

	mutex_lock(&rt_constraints_mutex);
7427
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
7428 7429
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
7430
		goto unlock;
P
Peter Zijlstra 已提交
7431

7432
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7433 7434
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
7435 7436 7437 7438

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

7439
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7440
		rt_rq->rt_runtime = rt_runtime;
7441
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7442
	}
7443
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
7444
unlock:
7445
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
7446 7447 7448
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
7449 7450
}

7451
static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7452 7453 7454 7455 7456 7457 7458 7459
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

7460
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7461 7462
}

7463
static long sched_group_rt_runtime(struct task_group *tg)
P
Peter Zijlstra 已提交
7464 7465 7466
{
	u64 rt_runtime_us;

7467
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7468 7469
		return -1;

7470
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7471 7472 7473
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
7474

7475
static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7476 7477 7478 7479 7480 7481
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

7482 7483 7484
	if (rt_period == 0)
		return -EINVAL;

7485
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7486 7487
}

7488
static long sched_group_rt_period(struct task_group *tg)
7489 7490 7491 7492 7493 7494 7495 7496 7497 7498
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
7499
	u64 runtime, period;
7500 7501
	int ret = 0;

7502 7503 7504
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7505 7506 7507 7508 7509 7510 7511 7512
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
7513

7514
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
7515
	read_lock(&tasklist_lock);
7516
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
7517
	read_unlock(&tasklist_lock);
7518 7519 7520 7521
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
7522

7523
static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7524 7525 7526 7527 7528 7529 7530 7531
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

7532
#else /* !CONFIG_RT_GROUP_SCHED */
7533 7534
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
7535 7536 7537
	unsigned long flags;
	int i;

7538 7539 7540
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7541 7542 7543 7544 7545 7546 7547
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

7548
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7549 7550 7551
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

7552
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7553
		rt_rq->rt_runtime = global_rt_runtime();
7554
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7555
	}
7556
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7557

7558 7559
	return 0;
}
7560
#endif /* CONFIG_RT_GROUP_SCHED */
7561

7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580
int sched_rr_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
	/* make sure that internally we keep jiffies */
	/* also, writing zero resets timeslice to default */
	if (!ret && write) {
		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
	}
	mutex_unlock(&mutex);
	return ret;
}

7581
int sched_rt_handler(struct ctl_table *table, int write,
7582
		void __user *buffer, size_t *lenp,
7583 7584 7585 7586 7587 7588 7589 7590 7591 7592
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

7593
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
7610

7611
#ifdef CONFIG_CGROUP_SCHED
7612 7613

/* return corresponding task_group object of a cgroup */
7614
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7615
{
7616 7617
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
7618 7619
}

7620
static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp)
7621
{
7622
	struct task_group *tg, *parent;
7623

7624
	if (!cgrp->parent) {
7625
		/* This is early initialization for the top cgroup */
7626
		return &root_task_group.css;
7627 7628
	}

7629 7630
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
7631 7632 7633 7634 7635 7636
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649
static int cpu_cgroup_css_online(struct cgroup *cgrp)
{
	struct task_group *tg = cgroup_tg(cgrp);
	struct task_group *parent;

	if (!cgrp->parent)
		return 0;

	parent = cgroup_tg(cgrp->parent);
	sched_online_group(tg, parent);
	return 0;
}

7650
static void cpu_cgroup_css_free(struct cgroup *cgrp)
7651
{
7652
	struct task_group *tg = cgroup_tg(cgrp);
7653 7654 7655 7656

	sched_destroy_group(tg);
}

7657 7658 7659 7660 7661 7662 7663
static void cpu_cgroup_css_offline(struct cgroup *cgrp)
{
	struct task_group *tg = cgroup_tg(cgrp);

	sched_offline_group(tg);
}

7664
static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7665
				 struct cgroup_taskset *tset)
7666
{
7667 7668 7669
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset) {
7670
#ifdef CONFIG_RT_GROUP_SCHED
7671 7672
		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
			return -EINVAL;
7673
#else
7674 7675 7676
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
7677
#endif
7678
	}
7679 7680
	return 0;
}
7681

7682
static void cpu_cgroup_attach(struct cgroup *cgrp,
7683
			      struct cgroup_taskset *tset)
7684
{
7685 7686 7687 7688
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset)
		sched_move_task(task);
7689 7690
}

7691
static void
7692 7693
cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
		struct task_struct *task)
7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	sched_move_task(task);
}

7706
#ifdef CONFIG_FAIR_GROUP_SCHED
7707
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7708
				u64 shareval)
7709
{
7710
	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7711 7712
}

7713
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7714
{
7715
	struct task_group *tg = cgroup_tg(cgrp);
7716

7717
	return (u64) scale_load_down(tg->shares);
7718
}
7719 7720

#ifdef CONFIG_CFS_BANDWIDTH
7721 7722
static DEFINE_MUTEX(cfs_constraints_mutex);

7723 7724 7725
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

7726 7727
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

7728 7729
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
7730
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7731
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

7752 7753 7754 7755 7756
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

7757
	runtime_enabled = quota != RUNTIME_INF;
7758 7759
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7760 7761 7762
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
7763

P
Paul Turner 已提交
7764
	__refill_cfs_bandwidth_runtime(cfs_b);
7765 7766 7767 7768 7769 7770
	/* restart the period timer (if active) to handle new period expiry */
	if (runtime_enabled && cfs_b->timer_active) {
		/* force a reprogram */
		cfs_b->timer_active = 0;
		__start_cfs_bandwidth(cfs_b);
	}
7771 7772 7773 7774
	raw_spin_unlock_irq(&cfs_b->lock);

	for_each_possible_cpu(i) {
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7775
		struct rq *rq = cfs_rq->rq;
7776 7777

		raw_spin_lock_irq(&rq->lock);
7778
		cfs_rq->runtime_enabled = runtime_enabled;
7779
		cfs_rq->runtime_remaining = 0;
7780

7781
		if (cfs_rq->throttled)
7782
			unthrottle_cfs_rq(cfs_rq);
7783 7784
		raw_spin_unlock_irq(&rq->lock);
	}
7785 7786
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
7787

7788
	return ret;
7789 7790 7791 7792 7793 7794
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

7795
	period = ktime_to_ns(tg->cfs_bandwidth.period);
7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

7808
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7809 7810
		return -1;

7811
	quota_us = tg->cfs_bandwidth.quota;
7812 7813 7814 7815 7816 7817 7818 7819 7820 7821
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
7822
	quota = tg->cfs_bandwidth.quota;
7823 7824 7825 7826 7827 7828 7829 7830

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

7831
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
{
	return tg_get_cfs_quota(cgroup_tg(cgrp));
}

static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
				s64 cfs_quota_us)
{
	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
}

static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
{
	return tg_get_cfs_period(cgroup_tg(cgrp));
}

static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
				u64 cfs_period_us)
{
	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
}

7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
7891
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7892 7893 7894 7895 7896
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
7897
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917

		quota = normalize_cfs_quota(tg, d);
		parent_quota = parent_b->hierarchal_quota;

		/*
		 * ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
	cfs_b->hierarchal_quota = quota;

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
7918
	int ret;
7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

7930 7931 7932 7933 7934
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7935
}
7936 7937 7938 7939 7940

static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct task_group *tg = cgroup_tg(cgrp);
7941
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7942 7943 7944 7945 7946 7947 7948

	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
	cb->fill(cb, "throttled_time", cfs_b->throttled_time);

	return 0;
}
7949
#endif /* CONFIG_CFS_BANDWIDTH */
7950
#endif /* CONFIG_FAIR_GROUP_SCHED */
7951

7952
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
7953
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7954
				s64 val)
P
Peter Zijlstra 已提交
7955
{
7956
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
7957 7958
}

7959
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
7960
{
7961
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
7962
}
7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
7974
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
7975

7976
static struct cftype cpu_files[] = {
7977
#ifdef CONFIG_FAIR_GROUP_SCHED
7978 7979
	{
		.name = "shares",
7980 7981
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
7982
	},
7983
#endif
7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
7995 7996 7997 7998
	{
		.name = "stat",
		.read_map = cpu_stats_show,
	},
7999
#endif
8000
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8001
	{
P
Peter Zijlstra 已提交
8002
		.name = "rt_runtime_us",
8003 8004
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8005
	},
8006 8007
	{
		.name = "rt_period_us",
8008 8009
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8010
	},
8011
#endif
8012
	{ }	/* terminate */
8013 8014 8015
};

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
8016
	.name		= "cpu",
8017 8018
	.css_alloc	= cpu_cgroup_css_alloc,
	.css_free	= cpu_cgroup_css_free,
8019 8020
	.css_online	= cpu_cgroup_css_online,
	.css_offline	= cpu_cgroup_css_offline,
8021 8022
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
8023
	.exit		= cpu_cgroup_exit,
I
Ingo Molnar 已提交
8024
	.subsys_id	= cpu_cgroup_subsys_id,
8025
	.base_cftypes	= cpu_files,
8026 8027 8028
	.early_init	= 1,
};

8029
#endif	/* CONFIG_CGROUP_SCHED */
8030

8031 8032 8033 8034 8035
void dump_cpu_task(int cpu)
{
	pr_info("Task dump for CPU %d:\n", cpu);
	sched_show_task(cpu_curr(cpu));
}