core.c 203.2 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/highmem.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
37
#include <linux/capability.h>
L
Linus Torvalds 已提交
38 39
#include <linux/completion.h>
#include <linux/kernel_stat.h>
40
#include <linux/debug_locks.h>
41
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
57
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
58
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/unistd.h>
J
Jens Axboe 已提交
66
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
67
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
68
#include <linux/tick.h>
P
Peter Zijlstra 已提交
69 70
#include <linux/debugfs.h>
#include <linux/ctype.h>
71
#include <linux/ftrace.h>
72
#include <linux/slab.h>
73
#include <linux/init_task.h>
A
Al Viro 已提交
74
#include <linux/binfmts.h>
75
#include <linux/context_tracking.h>
76
#include <linux/compiler.h>
L
Linus Torvalds 已提交
77

78
#include <asm/switch_to.h>
79
#include <asm/tlb.h>
80
#include <asm/irq_regs.h>
81
#include <asm/mutex.h>
G
Glauber Costa 已提交
82 83 84
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
85

86
#include "sched.h"
87
#include "../workqueue_internal.h"
88
#include "../smpboot.h"
89

90
#define CREATE_TRACE_POINTS
91
#include <trace/events/sched.h>
92

93 94
DEFINE_MUTEX(sched_domains_mutex);
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
95

96
static void update_rq_clock_task(struct rq *rq, s64 delta);
97

98
void update_rq_clock(struct rq *rq)
99
{
100
	s64 delta;
101

102 103 104
	lockdep_assert_held(&rq->lock);

	if (rq->clock_skip_update & RQCF_ACT_SKIP)
105
		return;
106

107
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
108 109
	if (delta < 0)
		return;
110 111
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
112 113
}

I
Ingo Molnar 已提交
114 115 116
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
117 118 119 120

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
121
const_debug unsigned int sysctl_sched_features =
122
#include "features.h"
P
Peter Zijlstra 已提交
123 124 125 126 127 128 129 130
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

131
static const char * const sched_feat_names[] = {
132
#include "features.h"
P
Peter Zijlstra 已提交
133 134 135 136
};

#undef SCHED_FEAT

L
Li Zefan 已提交
137
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
138 139 140
{
	int i;

141
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
L
Li Zefan 已提交
142 143 144
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
145
	}
L
Li Zefan 已提交
146
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
147

L
Li Zefan 已提交
148
	return 0;
P
Peter Zijlstra 已提交
149 150
}

151 152
#ifdef HAVE_JUMP_LABEL

153 154
#define jump_label_key__true  STATIC_KEY_INIT_TRUE
#define jump_label_key__false STATIC_KEY_INIT_FALSE
155 156 157 158

#define SCHED_FEAT(name, enabled)	\
	jump_label_key__##enabled ,

159
struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
160 161 162 163 164 165 166
#include "features.h"
};

#undef SCHED_FEAT

static void sched_feat_disable(int i)
{
167 168
	if (static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_dec(&sched_feat_keys[i]);
169 170 171 172
}

static void sched_feat_enable(int i)
{
173 174
	if (!static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_inc(&sched_feat_keys[i]);
175 176 177 178 179 180
}
#else
static void sched_feat_disable(int i) { };
static void sched_feat_enable(int i) { };
#endif /* HAVE_JUMP_LABEL */

181
static int sched_feat_set(char *cmp)
P
Peter Zijlstra 已提交
182 183
{
	int i;
184
	int neg = 0;
P
Peter Zijlstra 已提交
185

H
Hillf Danton 已提交
186
	if (strncmp(cmp, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
187 188 189 190
		neg = 1;
		cmp += 3;
	}

191
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
192
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
193
			if (neg) {
P
Peter Zijlstra 已提交
194
				sysctl_sched_features &= ~(1UL << i);
195 196
				sched_feat_disable(i);
			} else {
P
Peter Zijlstra 已提交
197
				sysctl_sched_features |= (1UL << i);
198 199
				sched_feat_enable(i);
			}
P
Peter Zijlstra 已提交
200 201 202 203
			break;
		}
	}

204 205 206 207 208 209 210 211 212 213
	return i;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp;
	int i;
214
	struct inode *inode;
215 216 217 218 219 220 221 222 223 224

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
	cmp = strstrip(buf);

225 226 227
	/* Ensure the static_key remains in a consistent state */
	inode = file_inode(filp);
	mutex_lock(&inode->i_mutex);
228
	i = sched_feat_set(cmp);
229
	mutex_unlock(&inode->i_mutex);
230
	if (i == __SCHED_FEAT_NR)
P
Peter Zijlstra 已提交
231 232
		return -EINVAL;

233
	*ppos += cnt;
P
Peter Zijlstra 已提交
234 235 236 237

	return cnt;
}

L
Li Zefan 已提交
238 239 240 241 242
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

243
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
244 245 246 247 248
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
249 250 251 252 253 254 255 256 257 258
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);
259
#endif /* CONFIG_SCHED_DEBUG */
I
Ingo Molnar 已提交
260

261 262 263 264 265 266
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

267 268 269 270 271 272 273 274
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
275
/*
P
Peter Zijlstra 已提交
276
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
277 278
 * default: 1s
 */
P
Peter Zijlstra 已提交
279
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
280

281
__read_mostly int scheduler_running;
282

P
Peter Zijlstra 已提交
283 284 285 286 287
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
288

289 290 291
/* cpus with isolated domains */
cpumask_var_t cpu_isolated_map;

L
Linus Torvalds 已提交
292
/*
293
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
294
 */
A
Alexey Dobriyan 已提交
295
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
296 297
	__acquires(rq->lock)
{
298
	struct rq *rq;
L
Linus Torvalds 已提交
299 300 301

	local_irq_disable();
	rq = this_rq();
302
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
303 304 305 306

	return rq;
}

P
Peter Zijlstra 已提交
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

328
	raw_spin_lock(&rq->lock);
329
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
330
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
331
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
332 333 334 335

	return HRTIMER_NORESTART;
}

336
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
337

338
static void __hrtick_restart(struct rq *rq)
P
Peter Zijlstra 已提交
339 340 341
{
	struct hrtimer *timer = &rq->hrtick_timer;

342
	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
P
Peter Zijlstra 已提交
343 344
}

345 346 347 348
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
349
{
350
	struct rq *rq = arg;
351

352
	raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
353
	__hrtick_restart(rq);
354
	rq->hrtick_csd_pending = 0;
355
	raw_spin_unlock(&rq->lock);
356 357
}

358 359 360 361 362
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
363
void hrtick_start(struct rq *rq, u64 delay)
364
{
365
	struct hrtimer *timer = &rq->hrtick_timer;
366 367 368 369 370 371 372 373 374
	ktime_t time;
	s64 delta;

	/*
	 * Don't schedule slices shorter than 10000ns, that just
	 * doesn't make sense and can cause timer DoS.
	 */
	delta = max_t(s64, delay, 10000LL);
	time = ktime_add_ns(timer->base->get_time(), delta);
375

376
	hrtimer_set_expires(timer, time);
377 378

	if (rq == this_rq()) {
P
Peter Zijlstra 已提交
379
		__hrtick_restart(rq);
380
	} else if (!rq->hrtick_csd_pending) {
381
		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
382 383
		rq->hrtick_csd_pending = 1;
	}
384 385 386 387 388 389 390 391 392 393 394 395 396 397
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
398
		hrtick_clear(cpu_rq(cpu));
399 400 401 402 403 404
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

405
static __init void init_hrtick(void)
406 407 408
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
409 410 411 412 413 414
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
415
void hrtick_start(struct rq *rq, u64 delay)
416
{
W
Wanpeng Li 已提交
417 418 419 420 421
	/*
	 * Don't schedule slices shorter than 10000ns, that just
	 * doesn't make sense. Rely on vruntime for fairness.
	 */
	delay = max_t(u64, delay, 10000LL);
422 423
	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
		      HRTIMER_MODE_REL_PINNED);
424
}
425

A
Andrew Morton 已提交
426
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
427 428
{
}
429
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
430

431
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
432
{
433 434
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
435

436 437 438 439
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
440

441 442
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
443
}
A
Andrew Morton 已提交
444
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
445 446 447 448 449 450 451 452
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

453 454 455
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
456
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
457

458 459 460 461 462 463 464 465 466 467 468 469 470 471
/*
 * cmpxchg based fetch_or, macro so it works for different integer types
 */
#define fetch_or(ptr, val)						\
({	typeof(*(ptr)) __old, __val = *(ptr);				\
 	for (;;) {							\
 		__old = cmpxchg((ptr), __val, __val | (val));		\
 		if (__old == __val)					\
 			break;						\
 		__val = __old;						\
 	}								\
 	__old;								\
})

472
#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
473 474 475 476 477 478 479 480 481 482
/*
 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
 * this avoids any races wrt polling state changes and thereby avoids
 * spurious IPIs.
 */
static bool set_nr_and_not_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
}
483 484 485 486 487 488 489 490 491 492

/*
 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
 *
 * If this returns true, then the idle task promises to call
 * sched_ttwu_pending() and reschedule soon.
 */
static bool set_nr_if_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
493
	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
494 495 496 497 498 499 500 501 502 503 504 505 506 507

	for (;;) {
		if (!(val & _TIF_POLLING_NRFLAG))
			return false;
		if (val & _TIF_NEED_RESCHED)
			return true;
		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
		if (old == val)
			break;
		val = old;
	}
	return true;
}

508 509 510 511 512 513
#else
static bool set_nr_and_not_polling(struct task_struct *p)
{
	set_tsk_need_resched(p);
	return true;
}
514 515 516 517 518 519 520

#ifdef CONFIG_SMP
static bool set_nr_if_polling(struct task_struct *p)
{
	return false;
}
#endif
521 522
#endif

523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
void wake_q_add(struct wake_q_head *head, struct task_struct *task)
{
	struct wake_q_node *node = &task->wake_q;

	/*
	 * Atomically grab the task, if ->wake_q is !nil already it means
	 * its already queued (either by us or someone else) and will get the
	 * wakeup due to that.
	 *
	 * This cmpxchg() implies a full barrier, which pairs with the write
	 * barrier implied by the wakeup in wake_up_list().
	 */
	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
		return;

	get_task_struct(task);

	/*
	 * The head is context local, there can be no concurrency.
	 */
	*head->lastp = node;
	head->lastp = &node->next;
}

void wake_up_q(struct wake_q_head *head)
{
	struct wake_q_node *node = head->first;

	while (node != WAKE_Q_TAIL) {
		struct task_struct *task;

		task = container_of(node, struct task_struct, wake_q);
		BUG_ON(!task);
		/* task can safely be re-inserted now */
		node = node->next;
		task->wake_q.next = NULL;

		/*
		 * wake_up_process() implies a wmb() to pair with the queueing
		 * in wake_q_add() so as not to miss wakeups.
		 */
		wake_up_process(task);
		put_task_struct(task);
	}
}

I
Ingo Molnar 已提交
569
/*
570
 * resched_curr - mark rq's current task 'to be rescheduled now'.
I
Ingo Molnar 已提交
571 572 573 574 575
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
576
void resched_curr(struct rq *rq)
I
Ingo Molnar 已提交
577
{
578
	struct task_struct *curr = rq->curr;
I
Ingo Molnar 已提交
579 580
	int cpu;

581
	lockdep_assert_held(&rq->lock);
I
Ingo Molnar 已提交
582

583
	if (test_tsk_need_resched(curr))
I
Ingo Molnar 已提交
584 585
		return;

586
	cpu = cpu_of(rq);
587

588
	if (cpu == smp_processor_id()) {
589
		set_tsk_need_resched(curr);
590
		set_preempt_need_resched();
I
Ingo Molnar 已提交
591
		return;
592
	}
I
Ingo Molnar 已提交
593

594
	if (set_nr_and_not_polling(curr))
I
Ingo Molnar 已提交
595
		smp_send_reschedule(cpu);
596 597
	else
		trace_sched_wake_idle_without_ipi(cpu);
I
Ingo Molnar 已提交
598 599
}

600
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
601 602 603 604
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

605
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
606
		return;
607
	resched_curr(rq);
608
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
609
}
610

611
#ifdef CONFIG_SMP
612
#ifdef CONFIG_NO_HZ_COMMON
613 614 615 616 617 618 619 620
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
621
int get_nohz_timer_target(void)
622
{
623
	int i, cpu = smp_processor_id();
624 625
	struct sched_domain *sd;

626
	if (!idle_cpu(cpu))
627 628
		return cpu;

629
	rcu_read_lock();
630
	for_each_domain(cpu, sd) {
631 632 633 634 635 636
		for_each_cpu(i, sched_domain_span(sd)) {
			if (!idle_cpu(i)) {
				cpu = i;
				goto unlock;
			}
		}
637
	}
638 639
unlock:
	rcu_read_unlock();
640 641
	return cpu;
}
642 643 644 645 646 647 648 649 650 651
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
652
static void wake_up_idle_cpu(int cpu)
653 654 655 656 657 658
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

659
	if (set_nr_and_not_polling(rq->idle))
660
		smp_send_reschedule(cpu);
661 662
	else
		trace_sched_wake_idle_without_ipi(cpu);
663 664
}

665
static bool wake_up_full_nohz_cpu(int cpu)
666
{
667 668 669 670 671 672
	/*
	 * We just need the target to call irq_exit() and re-evaluate
	 * the next tick. The nohz full kick at least implies that.
	 * If needed we can still optimize that later with an
	 * empty IRQ.
	 */
673
	if (tick_nohz_full_cpu(cpu)) {
674 675
		if (cpu != smp_processor_id() ||
		    tick_nohz_tick_stopped())
676
			tick_nohz_full_kick_cpu(cpu);
677 678 679 680 681 682 683 684
		return true;
	}

	return false;
}

void wake_up_nohz_cpu(int cpu)
{
685
	if (!wake_up_full_nohz_cpu(cpu))
686 687 688
		wake_up_idle_cpu(cpu);
}

689
static inline bool got_nohz_idle_kick(void)
690
{
691
	int cpu = smp_processor_id();
692 693 694 695 696 697 698 699 700 701 702 703 704

	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
		return false;

	if (idle_cpu(cpu) && !need_resched())
		return true;

	/*
	 * We can't run Idle Load Balance on this CPU for this time so we
	 * cancel it and clear NOHZ_BALANCE_KICK
	 */
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
	return false;
705 706
}

707
#else /* CONFIG_NO_HZ_COMMON */
708

709
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
710
{
711
	return false;
P
Peter Zijlstra 已提交
712 713
}

714
#endif /* CONFIG_NO_HZ_COMMON */
715

716 717 718
#ifdef CONFIG_NO_HZ_FULL
bool sched_can_stop_tick(void)
{
719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
	/*
	 * FIFO realtime policy runs the highest priority task. Other runnable
	 * tasks are of a lower priority. The scheduler tick does nothing.
	 */
	if (current->policy == SCHED_FIFO)
		return true;

	/*
	 * Round-robin realtime tasks time slice with other tasks at the same
	 * realtime priority. Is this task the only one at this priority?
	 */
	if (current->policy == SCHED_RR) {
		struct sched_rt_entity *rt_se = &current->rt;

		return rt_se->run_list.prev == rt_se->run_list.next;
	}

736 737 738 739 740
	/*
	 * More than one running task need preemption.
	 * nr_running update is assumed to be visible
	 * after IPI is sent from wakers.
	 */
741 742
	if (this_rq()->nr_running > 1)
		return false;
743

744
	return true;
745 746
}
#endif /* CONFIG_NO_HZ_FULL */
747

748
void sched_avg_update(struct rq *rq)
749
{
750 751
	s64 period = sched_avg_period();

752
	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
753 754 755 756 757 758
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
759 760 761
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
762 763
}

764
#endif /* CONFIG_SMP */
765

766 767
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
768
/*
769 770 771 772
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
773
 */
774
int walk_tg_tree_from(struct task_group *from,
775
			     tg_visitor down, tg_visitor up, void *data)
776 777
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
778
	int ret;
779

780 781
	parent = from;

782
down:
P
Peter Zijlstra 已提交
783 784
	ret = (*down)(parent, data);
	if (ret)
785
		goto out;
786 787 788 789 790 791 792
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
793
	ret = (*up)(parent, data);
794 795
	if (ret || parent == from)
		goto out;
796 797 798 799 800

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
801
out:
P
Peter Zijlstra 已提交
802
	return ret;
803 804
}

805
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
806
{
807
	return 0;
P
Peter Zijlstra 已提交
808
}
809 810
#endif

811 812
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
813 814 815
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
816 817 818 819
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
820
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
821
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
822 823
		return;
	}
824

825
	load->weight = scale_load(prio_to_weight[prio]);
N
Nikhil Rao 已提交
826
	load->inv_weight = prio_to_wmult[prio];
827 828
}

829
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
830
{
831
	update_rq_clock(rq);
832
	sched_info_queued(rq, p);
833
	p->sched_class->enqueue_task(rq, p, flags);
834 835
}

836
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
837
{
838
	update_rq_clock(rq);
839
	sched_info_dequeued(rq, p);
840
	p->sched_class->dequeue_task(rq, p, flags);
841 842
}

843
void activate_task(struct rq *rq, struct task_struct *p, int flags)
844 845 846 847
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

848
	enqueue_task(rq, p, flags);
849 850
}

851
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
852 853 854 855
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

856
	dequeue_task(rq, p, flags);
857 858
}

859
static void update_rq_clock_task(struct rq *rq, s64 delta)
860
{
861 862 863 864 865 866 867 868
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
869
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
891 892
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
893
	if (static_key_false((&paravirt_steal_rq_enabled))) {
894 895 896 897 898 899 900 901 902 903 904
		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		rq->prev_steal_time_rq += steal;
		delta -= steal;
	}
#endif

905 906
	rq->clock_task += delta;

907
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
908
	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
909 910
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
911 912
}

913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

943
/*
I
Ingo Molnar 已提交
944
 * __normal_prio - return the priority that is based on the static prio
945 946 947
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
948
	return p->static_prio;
949 950
}

951 952 953 954 955 956 957
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
958
static inline int normal_prio(struct task_struct *p)
959 960 961
{
	int prio;

962 963 964
	if (task_has_dl_policy(p))
		prio = MAX_DL_PRIO-1;
	else if (task_has_rt_policy(p))
965 966 967 968 969 970 971 972 973 974 975 976 977
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
978
static int effective_prio(struct task_struct *p)
979 980 981 982 983 984 985 986 987 988 989 990
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
991 992 993
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
994 995
 *
 * Return: 1 if the task is currently executing. 0 otherwise.
L
Linus Torvalds 已提交
996
 */
997
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
998 999 1000 1001
{
	return cpu_curr(task_cpu(p)) == p;
}

1002
/*
1003 1004 1005 1006 1007
 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
 * use the balance_callback list if you want balancing.
 *
 * this means any call to check_class_changed() must be followed by a call to
 * balance_callback().
1008
 */
1009 1010
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
1011
				       int oldprio)
1012 1013 1014
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
1015
			prev_class->switched_from(rq, p);
1016

P
Peter Zijlstra 已提交
1017
		p->sched_class->switched_to(rq, p);
1018
	} else if (oldprio != p->prio || dl_task(p))
P
Peter Zijlstra 已提交
1019
		p->sched_class->prio_changed(rq, p, oldprio);
1020 1021
}

1022
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
1033
				resched_curr(rq);
1034 1035 1036 1037 1038 1039 1040 1041 1042
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
1043
	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1044
		rq_clock_skip_update(rq, true);
1045 1046
}

L
Linus Torvalds 已提交
1047
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
/*
 * This is how migration works:
 *
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
 */

/*
 * move_queued_task - move a queued task to new rq.
 *
 * Returns (locked) new rq. Old rq's lock is released.
 */
1067
static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
P
Peter Zijlstra 已提交
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
{
	lockdep_assert_held(&rq->lock);

	dequeue_task(rq, p, 0);
	p->on_rq = TASK_ON_RQ_MIGRATING;
	set_task_cpu(p, new_cpu);
	raw_spin_unlock(&rq->lock);

	rq = cpu_rq(new_cpu);

	raw_spin_lock(&rq->lock);
	BUG_ON(task_cpu(p) != new_cpu);
	p->on_rq = TASK_ON_RQ_QUEUED;
	enqueue_task(rq, p, 0);
	check_preempt_curr(rq, p, 0);

	return rq;
}

struct migration_arg {
	struct task_struct *task;
	int dest_cpu;
};

/*
 * Move (not current) task off this cpu, onto dest cpu. We're doing
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
 */
1101
static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
P
Peter Zijlstra 已提交
1102 1103
{
	if (unlikely(!cpu_active(dest_cpu)))
1104
		return rq;
P
Peter Zijlstra 已提交
1105 1106 1107

	/* Affinity changed (again). */
	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1108
		return rq;
P
Peter Zijlstra 已提交
1109

1110 1111 1112
	rq = move_queued_task(rq, p, dest_cpu);

	return rq;
P
Peter Zijlstra 已提交
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
}

/*
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
 */
static int migration_cpu_stop(void *data)
{
	struct migration_arg *arg = data;
1123 1124
	struct task_struct *p = arg->task;
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136

	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
	local_irq_disable();
	/*
	 * We need to explicitly wake pending tasks before running
	 * __migrate_task() such that we will not miss enforcing cpus_allowed
	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
	 */
	sched_ttwu_pending();
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149

	raw_spin_lock(&p->pi_lock);
	raw_spin_lock(&rq->lock);
	/*
	 * If task_rq(p) != rq, it cannot be migrated here, because we're
	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
	 * we're holding p->pi_lock.
	 */
	if (task_rq(p) == rq && task_on_rq_queued(p))
		rq = __migrate_task(rq, p, arg->dest_cpu);
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock(&p->pi_lock);

P
Peter Zijlstra 已提交
1150 1151 1152 1153
	local_irq_enable();
	return 0;
}

1154 1155 1156 1157 1158
/*
 * sched_class::set_cpus_allowed must do the below, but is not required to
 * actually call this function.
 */
void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
P
Peter Zijlstra 已提交
1159 1160 1161 1162 1163
{
	cpumask_copy(&p->cpus_allowed, new_mask);
	p->nr_cpus_allowed = cpumask_weight(new_mask);
}

1164 1165 1166 1167 1168 1169
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
	lockdep_assert_held(&p->pi_lock);
	p->sched_class->set_cpus_allowed(p, new_mask);
}

P
Peter Zijlstra 已提交
1170 1171 1172 1173 1174 1175 1176 1177 1178
/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely. The
 * call is not atomic; no spinlocks may be held.
 */
1179 1180
static int __set_cpus_allowed_ptr(struct task_struct *p,
				  const struct cpumask *new_mask, bool check)
P
Peter Zijlstra 已提交
1181 1182 1183 1184 1185 1186 1187 1188
{
	unsigned long flags;
	struct rq *rq;
	unsigned int dest_cpu;
	int ret = 0;

	rq = task_rq_lock(p, &flags);

1189 1190 1191 1192 1193 1194 1195 1196 1197
	/*
	 * Must re-check here, to close a race against __kthread_bind(),
	 * sched_setaffinity() is not guaranteed to observe the flag.
	 */
	if (check && (p->flags & PF_NO_SETAFFINITY)) {
		ret = -EINVAL;
		goto out;
	}

P
Peter Zijlstra 已提交
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
		ret = -EINVAL;
		goto out;
	}

	do_set_cpus_allowed(p, new_mask);

	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpumask_test_cpu(task_cpu(p), new_mask))
		goto out;

	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
	if (task_running(rq, p) || p->state == TASK_WAKING) {
		struct migration_arg arg = { p, dest_cpu };
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, p, &flags);
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
		tlb_migrate_finish(p->mm);
		return 0;
1220 1221 1222 1223 1224 1225
	} else if (task_on_rq_queued(p)) {
		/*
		 * OK, since we're going to drop the lock immediately
		 * afterwards anyway.
		 */
		lockdep_unpin_lock(&rq->lock);
1226
		rq = move_queued_task(rq, p, dest_cpu);
1227 1228
		lockdep_pin_lock(&rq->lock);
	}
P
Peter Zijlstra 已提交
1229 1230 1231 1232 1233
out:
	task_rq_unlock(rq, p, &flags);

	return ret;
}
1234 1235 1236 1237 1238

int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
{
	return __set_cpus_allowed_ptr(p, new_mask, false);
}
P
Peter Zijlstra 已提交
1239 1240
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);

I
Ingo Molnar 已提交
1241
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1242
{
1243 1244 1245 1246 1247
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
1248
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
O
Oleg Nesterov 已提交
1249
			!p->on_rq);
1250 1251

#ifdef CONFIG_LOCKDEP
1252 1253 1254 1255 1256
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
P
Peter Zijlstra 已提交
1257
	 * see task_group().
1258 1259 1260 1261
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
1262 1263 1264
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
1265 1266
#endif

1267
	trace_sched_migrate_task(p, new_cpu);
1268

1269
	if (task_cpu(p) != new_cpu) {
1270 1271
		if (p->sched_class->migrate_task_rq)
			p->sched_class->migrate_task_rq(p, new_cpu);
1272
		p->se.nr_migrations++;
1273
		perf_event_task_migrate(p);
1274
	}
I
Ingo Molnar 已提交
1275 1276

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1277 1278
}

1279 1280
static void __migrate_swap_task(struct task_struct *p, int cpu)
{
1281
	if (task_on_rq_queued(p)) {
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
		struct rq *src_rq, *dst_rq;

		src_rq = task_rq(p);
		dst_rq = cpu_rq(cpu);

		deactivate_task(src_rq, p, 0);
		set_task_cpu(p, cpu);
		activate_task(dst_rq, p, 0);
		check_preempt_curr(dst_rq, p, 0);
	} else {
		/*
		 * Task isn't running anymore; make it appear like we migrated
		 * it before it went to sleep. This means on wakeup we make the
		 * previous cpu our targer instead of where it really is.
		 */
		p->wake_cpu = cpu;
	}
}

struct migration_swap_arg {
	struct task_struct *src_task, *dst_task;
	int src_cpu, dst_cpu;
};

static int migrate_swap_stop(void *data)
{
	struct migration_swap_arg *arg = data;
	struct rq *src_rq, *dst_rq;
	int ret = -EAGAIN;

	src_rq = cpu_rq(arg->src_cpu);
	dst_rq = cpu_rq(arg->dst_cpu);

1315 1316
	double_raw_lock(&arg->src_task->pi_lock,
			&arg->dst_task->pi_lock);
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
	double_rq_lock(src_rq, dst_rq);
	if (task_cpu(arg->dst_task) != arg->dst_cpu)
		goto unlock;

	if (task_cpu(arg->src_task) != arg->src_cpu)
		goto unlock;

	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
		goto unlock;

	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
		goto unlock;

	__migrate_swap_task(arg->src_task, arg->dst_cpu);
	__migrate_swap_task(arg->dst_task, arg->src_cpu);

	ret = 0;

unlock:
	double_rq_unlock(src_rq, dst_rq);
1337 1338
	raw_spin_unlock(&arg->dst_task->pi_lock);
	raw_spin_unlock(&arg->src_task->pi_lock);
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360

	return ret;
}

/*
 * Cross migrate two tasks
 */
int migrate_swap(struct task_struct *cur, struct task_struct *p)
{
	struct migration_swap_arg arg;
	int ret = -EINVAL;

	arg = (struct migration_swap_arg){
		.src_task = cur,
		.src_cpu = task_cpu(cur),
		.dst_task = p,
		.dst_cpu = task_cpu(p),
	};

	if (arg.src_cpu == arg.dst_cpu)
		goto out;

1361 1362 1363 1364
	/*
	 * These three tests are all lockless; this is OK since all of them
	 * will be re-checked with proper locks held further down the line.
	 */
1365 1366 1367 1368 1369 1370 1371 1372 1373
	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
		goto out;

	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
		goto out;

	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
		goto out;

1374
	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1375 1376 1377 1378 1379 1380
	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);

out:
	return ret;
}

L
Linus Torvalds 已提交
1381 1382 1383
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1384 1385 1386 1387 1388 1389 1390
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1391 1392 1393 1394 1395 1396
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1397
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1398 1399
{
	unsigned long flags;
1400
	int running, queued;
R
Roland McGrath 已提交
1401
	unsigned long ncsw;
1402
	struct rq *rq;
L
Linus Torvalds 已提交
1403

1404 1405 1406 1407 1408 1409 1410 1411
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1412

1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1424 1425 1426
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1427
			cpu_relax();
R
Roland McGrath 已提交
1428
		}
1429

1430 1431 1432 1433 1434 1435
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1436
		trace_sched_wait_task(p);
1437
		running = task_running(rq, p);
1438
		queued = task_on_rq_queued(p);
R
Roland McGrath 已提交
1439
		ncsw = 0;
1440
		if (!match_state || p->state == match_state)
1441
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1442
		task_rq_unlock(rq, p, &flags);
1443

R
Roland McGrath 已提交
1444 1445 1446 1447 1448 1449
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1460

1461 1462 1463 1464 1465
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1466
		 * So if it was still runnable (but just not actively
1467 1468 1469
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
1470
		if (unlikely(queued)) {
1471 1472 1473 1474
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1475 1476
			continue;
		}
1477

1478 1479 1480 1481 1482 1483 1484
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1485 1486

	return ncsw;
L
Linus Torvalds 已提交
1487 1488 1489 1490 1491 1492 1493 1494 1495
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1496
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1497 1498 1499 1500 1501
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1502
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1503 1504 1505 1506 1507 1508 1509 1510 1511
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1512
EXPORT_SYMBOL_GPL(kick_process);
L
Linus Torvalds 已提交
1513

1514
/*
1515
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1516
 */
1517 1518
static int select_fallback_rq(int cpu, struct task_struct *p)
{
1519 1520
	int nid = cpu_to_node(cpu);
	const struct cpumask *nodemask = NULL;
1521 1522
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1523

1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
	/*
	 * If the node that the cpu is on has been offlined, cpu_to_node()
	 * will return -1. There is no cpu on the node, and we should
	 * select the cpu on the other node.
	 */
	if (nid != -1) {
		nodemask = cpumask_of_node(nid);

		/* Look for allowed, online CPU in same node. */
		for_each_cpu(dest_cpu, nodemask) {
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
				return dest_cpu;
		}
1541
	}
1542

1543 1544
	for (;;) {
		/* Any allowed, online CPU? */
1545
		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1546 1547 1548 1549 1550 1551
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			goto out;
		}
1552

1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
		switch (state) {
		case cpuset:
			/* No more Mr. Nice Guy. */
			cpuset_cpus_allowed_fallback(p);
			state = possible;
			break;

		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
1579
			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1580 1581
					task_pid_nr(p), p->comm, cpu);
		}
1582 1583 1584 1585 1586
	}

	return dest_cpu;
}

1587
/*
1588
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1589
 */
1590
static inline
1591
int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1592
{
1593 1594
	lockdep_assert_held(&p->pi_lock);

1595 1596
	if (p->nr_cpus_allowed > 1)
		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1608
	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
P
Peter Zijlstra 已提交
1609
		     !cpu_online(cpu)))
1610
		cpu = select_fallback_rq(task_cpu(p), p);
1611 1612

	return cpu;
1613
}
1614 1615 1616 1617 1618 1619

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1620 1621 1622 1623 1624 1625 1626 1627 1628

#else

static inline int __set_cpus_allowed_ptr(struct task_struct *p,
					 const struct cpumask *new_mask, bool check)
{
	return set_cpus_allowed_ptr(p, new_mask);
}

P
Peter Zijlstra 已提交
1629
#endif /* CONFIG_SMP */
1630

P
Peter Zijlstra 已提交
1631
static void
1632
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1633
{
P
Peter Zijlstra 已提交
1634
#ifdef CONFIG_SCHEDSTATS
1635 1636
	struct rq *rq = this_rq();

P
Peter Zijlstra 已提交
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
#ifdef CONFIG_SMP
	int this_cpu = smp_processor_id();

	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	} else {
		struct sched_domain *sd;

		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1647
		rcu_read_lock();
P
Peter Zijlstra 已提交
1648 1649 1650 1651 1652 1653
		for_each_domain(this_cpu, sd) {
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
1654
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1655
	}
1656 1657 1658 1659

	if (wake_flags & WF_MIGRATED)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);

P
Peter Zijlstra 已提交
1660 1661 1662
#endif /* CONFIG_SMP */

	schedstat_inc(rq, ttwu_count);
T
Tejun Heo 已提交
1663
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1664 1665

	if (wake_flags & WF_SYNC)
T
Tejun Heo 已提交
1666
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1667 1668 1669 1670 1671 1672

#endif /* CONFIG_SCHEDSTATS */
}

static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
{
T
Tejun Heo 已提交
1673
	activate_task(rq, p, en_flags);
1674
	p->on_rq = TASK_ON_RQ_QUEUED;
1675 1676 1677 1678

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1679 1680
}

1681 1682 1683
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1684
static void
1685
ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
T
Tejun Heo 已提交
1686 1687 1688
{
	check_preempt_curr(rq, p, wake_flags);
	p->state = TASK_RUNNING;
1689 1690
	trace_sched_wakeup(p);

T
Tejun Heo 已提交
1691
#ifdef CONFIG_SMP
1692 1693
	if (p->sched_class->task_woken) {
		/*
1694 1695
		 * Our task @p is fully woken up and running; so its safe to
		 * drop the rq->lock, hereafter rq is only used for statistics.
1696
		 */
1697
		lockdep_unpin_lock(&rq->lock);
T
Tejun Heo 已提交
1698
		p->sched_class->task_woken(rq, p);
1699
		lockdep_pin_lock(&rq->lock);
1700
	}
T
Tejun Heo 已提交
1701

1702
	if (rq->idle_stamp) {
1703
		u64 delta = rq_clock(rq) - rq->idle_stamp;
1704
		u64 max = 2*rq->max_idle_balance_cost;
T
Tejun Heo 已提交
1705

1706 1707 1708
		update_avg(&rq->avg_idle, delta);

		if (rq->avg_idle > max)
T
Tejun Heo 已提交
1709
			rq->avg_idle = max;
1710

T
Tejun Heo 已提交
1711 1712 1713 1714 1715
		rq->idle_stamp = 0;
	}
#endif
}

1716 1717 1718
static void
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
{
1719 1720
	lockdep_assert_held(&rq->lock);

1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
#endif

	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
	ttwu_do_wakeup(rq, p, wake_flags);
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
1742
	if (task_on_rq_queued(p)) {
1743 1744
		/* check_preempt_curr() may use rq clock */
		update_rq_clock(rq);
1745 1746 1747 1748 1749 1750 1751 1752
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;
}

1753
#ifdef CONFIG_SMP
1754
void sched_ttwu_pending(void)
1755 1756
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1757 1758
	struct llist_node *llist = llist_del_all(&rq->wake_list);
	struct task_struct *p;
1759
	unsigned long flags;
1760

1761 1762 1763 1764
	if (!llist)
		return;

	raw_spin_lock_irqsave(&rq->lock, flags);
1765
	lockdep_pin_lock(&rq->lock);
1766

P
Peter Zijlstra 已提交
1767 1768 1769
	while (llist) {
		p = llist_entry(llist, struct task_struct, wake_entry);
		llist = llist_next(llist);
1770 1771 1772
		ttwu_do_activate(rq, p, 0);
	}

1773
	lockdep_unpin_lock(&rq->lock);
1774
	raw_spin_unlock_irqrestore(&rq->lock, flags);
1775 1776 1777 1778
}

void scheduler_ipi(void)
{
1779 1780 1781 1782 1783
	/*
	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
	 * TIF_NEED_RESCHED remotely (for the first time) will also send
	 * this IPI.
	 */
1784
	preempt_fold_need_resched();
1785

1786
	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
P
Peter Zijlstra 已提交
1803
	sched_ttwu_pending();
1804 1805 1806 1807

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1808
	if (unlikely(got_nohz_idle_kick())) {
1809
		this_rq()->idle_balance = 1;
1810
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1811
	}
1812
	irq_exit();
1813 1814 1815 1816
}

static void ttwu_queue_remote(struct task_struct *p, int cpu)
{
1817 1818 1819 1820 1821 1822 1823 1824
	struct rq *rq = cpu_rq(cpu);

	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
		if (!set_nr_if_polling(rq->idle))
			smp_send_reschedule(cpu);
		else
			trace_sched_wake_idle_without_ipi(cpu);
	}
1825
}
1826

1827 1828 1829 1830 1831
void wake_up_if_idle(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

1832 1833 1834 1835
	rcu_read_lock();

	if (!is_idle_task(rcu_dereference(rq->curr)))
		goto out;
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845

	if (set_nr_if_polling(rq->idle)) {
		trace_sched_wake_idle_without_ipi(cpu);
	} else {
		raw_spin_lock_irqsave(&rq->lock, flags);
		if (is_idle_task(rq->curr))
			smp_send_reschedule(cpu);
		/* Else cpu is not in idle, do nothing here */
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}
1846 1847 1848

out:
	rcu_read_unlock();
1849 1850
}

1851
bool cpus_share_cache(int this_cpu, int that_cpu)
1852 1853 1854
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1855
#endif /* CONFIG_SMP */
1856

1857 1858 1859 1860
static void ttwu_queue(struct task_struct *p, int cpu)
{
	struct rq *rq = cpu_rq(cpu);

1861
#if defined(CONFIG_SMP)
1862
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1863
		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1864 1865 1866 1867 1868
		ttwu_queue_remote(p, cpu);
		return;
	}
#endif

1869
	raw_spin_lock(&rq->lock);
1870
	lockdep_pin_lock(&rq->lock);
1871
	ttwu_do_activate(rq, p, 0);
1872
	lockdep_unpin_lock(&rq->lock);
1873
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
1874 1875 1876
}

/**
L
Linus Torvalds 已提交
1877
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1878
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1879
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1880
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1881 1882 1883 1884 1885 1886 1887
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
1888
 * Return: %true if @p was woken up, %false if it was already running.
T
Tejun Heo 已提交
1889
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
1890
 */
1891 1892
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1893 1894
{
	unsigned long flags;
1895
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1896

1897 1898 1899 1900 1901 1902 1903
	/*
	 * If we are going to wake up a thread waiting for CONDITION we
	 * need to ensure that CONDITION=1 done by the caller can not be
	 * reordered with p->state check below. This pairs with mb() in
	 * set_current_state() the waiting thread does.
	 */
	smp_mb__before_spinlock();
1904
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
1905
	if (!(p->state & state))
L
Linus Torvalds 已提交
1906 1907
		goto out;

1908 1909
	trace_sched_waking(p);

1910
	success = 1; /* we're going to change ->state */
L
Linus Torvalds 已提交
1911 1912
	cpu = task_cpu(p);

1913 1914
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
1915 1916

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1917
	/*
1918 1919
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
P
Peter Zijlstra 已提交
1920
	 */
1921
	while (p->on_cpu)
1922
		cpu_relax();
1923
	/*
1924
	 * Pairs with the smp_wmb() in finish_lock_switch().
1925
	 */
1926
	smp_rmb();
L
Linus Torvalds 已提交
1927

1928
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
1929
	p->state = TASK_WAKING;
1930

1931
	if (p->sched_class->task_waking)
1932
		p->sched_class->task_waking(p);
1933

1934
	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1935 1936
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
1937
		set_task_cpu(p, cpu);
1938
	}
L
Linus Torvalds 已提交
1939 1940
#endif /* CONFIG_SMP */

1941 1942
	ttwu_queue(p, cpu);
stat:
1943
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
1944
out:
1945
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
1946 1947 1948 1949

	return success;
}

T
Tejun Heo 已提交
1950 1951 1952 1953
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
1954
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
1955
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1956
 * the current task.
T
Tejun Heo 已提交
1957 1958 1959 1960 1961
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

1962 1963 1964 1965
	if (WARN_ON_ONCE(rq != this_rq()) ||
	    WARN_ON_ONCE(p == current))
		return;

T
Tejun Heo 已提交
1966 1967
	lockdep_assert_held(&rq->lock);

1968
	if (!raw_spin_trylock(&p->pi_lock)) {
1969 1970 1971 1972 1973 1974 1975
		/*
		 * This is OK, because current is on_cpu, which avoids it being
		 * picked for load-balance and preemption/IRQs are still
		 * disabled avoiding further scheduler activity on it and we've
		 * not yet picked a replacement task.
		 */
		lockdep_unpin_lock(&rq->lock);
1976 1977 1978
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
1979
		lockdep_pin_lock(&rq->lock);
1980 1981
	}

T
Tejun Heo 已提交
1982
	if (!(p->state & TASK_NORMAL))
1983
		goto out;
T
Tejun Heo 已提交
1984

1985 1986
	trace_sched_waking(p);

1987
	if (!task_on_rq_queued(p))
P
Peter Zijlstra 已提交
1988 1989
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

1990
	ttwu_do_wakeup(rq, p, 0);
1991
	ttwu_stat(p, smp_processor_id(), 0);
1992 1993
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
1994 1995
}

1996 1997 1998 1999 2000
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
2001 2002 2003
 * processes.
 *
 * Return: 1 if the process was woken up, 0 if it was already running.
2004 2005 2006 2007
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2008
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2009
{
2010 2011
	WARN_ON(task_is_stopped_or_traced(p));
	return try_to_wake_up(p, TASK_NORMAL, 0);
L
Linus Torvalds 已提交
2012 2013 2014
}
EXPORT_SYMBOL(wake_up_process);

2015
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2016 2017 2018 2019
{
	return try_to_wake_up(p, state, 0);
}

2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
/*
 * This function clears the sched_dl_entity static params.
 */
void __dl_clear_params(struct task_struct *p)
{
	struct sched_dl_entity *dl_se = &p->dl;

	dl_se->dl_runtime = 0;
	dl_se->dl_deadline = 0;
	dl_se->dl_period = 0;
	dl_se->flags = 0;
	dl_se->dl_bw = 0;
2032 2033 2034 2035

	dl_se->dl_throttled = 0;
	dl_se->dl_new = 1;
	dl_se->dl_yielded = 0;
2036 2037
}

L
Linus Torvalds 已提交
2038 2039 2040
/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2041 2042 2043
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
2044
static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
2045
{
P
Peter Zijlstra 已提交
2046 2047 2048
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
2049 2050
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2051
	p->se.prev_sum_exec_runtime	= 0;
2052
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
2053
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
2054
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
2055 2056

#ifdef CONFIG_SCHEDSTATS
2057
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
2058
#endif
N
Nick Piggin 已提交
2059

2060
	RB_CLEAR_NODE(&p->dl.rb_node);
2061
	init_dl_task_timer(&p->dl);
2062
	__dl_clear_params(p);
2063

P
Peter Zijlstra 已提交
2064
	INIT_LIST_HEAD(&p->rt.run_list);
N
Nick Piggin 已提交
2065

2066 2067 2068
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
2069 2070 2071

#ifdef CONFIG_NUMA_BALANCING
	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2072
		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2073 2074 2075
		p->mm->numa_scan_seq = 0;
	}

2076 2077 2078 2079 2080
	if (clone_flags & CLONE_VM)
		p->numa_preferred_nid = current->numa_preferred_nid;
	else
		p->numa_preferred_nid = -1;

2081 2082
	p->node_stamp = 0ULL;
	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2083
	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2084
	p->numa_work.next = &p->numa_work;
2085
	p->numa_faults = NULL;
2086 2087
	p->last_task_numa_placement = 0;
	p->last_sum_exec_runtime = 0;
2088 2089

	p->numa_group = NULL;
2090
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
2091 2092
}

2093
#ifdef CONFIG_NUMA_BALANCING
2094
#ifdef CONFIG_SCHED_DEBUG
2095 2096 2097 2098 2099 2100 2101
void set_numabalancing_state(bool enabled)
{
	if (enabled)
		sched_feat_set("NUMA");
	else
		sched_feat_set("NO_NUMA");
}
2102 2103 2104 2105 2106 2107
#else
__read_mostly bool numabalancing_enabled;

void set_numabalancing_state(bool enabled)
{
	numabalancing_enabled = enabled;
I
Ingo Molnar 已提交
2108
}
2109
#endif /* CONFIG_SCHED_DEBUG */
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132

#ifdef CONFIG_PROC_SYSCTL
int sysctl_numa_balancing(struct ctl_table *table, int write,
			 void __user *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table t;
	int err;
	int state = numabalancing_enabled;

	if (write && !capable(CAP_SYS_ADMIN))
		return -EPERM;

	t = *table;
	t.data = &state;
	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
	if (err < 0)
		return err;
	if (write)
		set_numabalancing_state(state);
	return err;
}
#endif
#endif
I
Ingo Molnar 已提交
2133 2134 2135 2136

/*
 * fork()/clone()-time setup:
 */
2137
int sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
2138
{
2139
	unsigned long flags;
I
Ingo Molnar 已提交
2140 2141
	int cpu = get_cpu();

2142
	__sched_fork(clone_flags, p);
2143
	/*
2144
	 * We mark the process as running here. This guarantees that
2145 2146 2147
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
2148
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2149

2150 2151 2152 2153 2154
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

2155 2156 2157 2158
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2159
		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2160
			p->policy = SCHED_NORMAL;
2161
			p->static_prio = NICE_TO_PRIO(0);
2162 2163 2164 2165 2166 2167
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
2168

2169 2170 2171 2172 2173 2174
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2175

2176 2177 2178 2179 2180 2181
	if (dl_prio(p->prio)) {
		put_cpu();
		return -EAGAIN;
	} else if (rt_prio(p->prio)) {
		p->sched_class = &rt_sched_class;
	} else {
H
Hiroshi Shimamoto 已提交
2182
		p->sched_class = &fair_sched_class;
2183
	}
2184

P
Peter Zijlstra 已提交
2185 2186 2187
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

2188 2189 2190 2191 2192 2193 2194
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
2195
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2196
	set_task_cpu(p, cpu);
2197
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2198

2199
#ifdef CONFIG_SCHED_INFO
I
Ingo Molnar 已提交
2200
	if (likely(sched_info_on()))
2201
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2202
#endif
P
Peter Zijlstra 已提交
2203 2204
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
2205
#endif
2206
	init_task_preempt_count(p);
2207
#ifdef CONFIG_SMP
2208
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2209
	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2210
#endif
2211

N
Nick Piggin 已提交
2212
	put_cpu();
2213
	return 0;
L
Linus Torvalds 已提交
2214 2215
}

2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 20;

	/*
	 * Doing this here saves a lot of checks in all
	 * the calling paths, and returning zero seems
	 * safe for them anyway.
	 */
	if (period == 0)
		return 0;

	return div64_u64(runtime << 20, period);
}

#ifdef CONFIG_SMP
inline struct dl_bw *dl_bw_of(int i)
{
2235 2236
	rcu_lockdep_assert(rcu_read_lock_sched_held(),
			   "sched RCU must be held");
2237 2238 2239
	return &cpu_rq(i)->rd->dl_bw;
}

2240
static inline int dl_bw_cpus(int i)
2241
{
2242 2243 2244
	struct root_domain *rd = cpu_rq(i)->rd;
	int cpus = 0;

2245 2246
	rcu_lockdep_assert(rcu_read_lock_sched_held(),
			   "sched RCU must be held");
2247 2248 2249 2250
	for_each_cpu_and(i, rd->span, cpu_active_mask)
		cpus++;

	return cpus;
2251 2252 2253 2254 2255 2256 2257
}
#else
inline struct dl_bw *dl_bw_of(int i)
{
	return &cpu_rq(i)->dl.dl_bw;
}

2258
static inline int dl_bw_cpus(int i)
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
{
	return 1;
}
#endif

/*
 * We must be sure that accepting a new task (or allowing changing the
 * parameters of an existing one) is consistent with the bandwidth
 * constraints. If yes, this function also accordingly updates the currently
 * allocated bandwidth to reflect the new situation.
 *
 * This function is called while holding p's rq->lock.
2271 2272 2273
 *
 * XXX we should delay bw change until the task's 0-lag point, see
 * __setparam_dl().
2274 2275 2276 2277 2278 2279
 */
static int dl_overflow(struct task_struct *p, int policy,
		       const struct sched_attr *attr)
{

	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2280
	u64 period = attr->sched_period ?: attr->sched_deadline;
2281 2282
	u64 runtime = attr->sched_runtime;
	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2283
	int cpus, err = -1;
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293

	if (new_bw == p->dl.dl_bw)
		return 0;

	/*
	 * Either if a task, enters, leave, or stays -deadline but changes
	 * its parameters, we may need to update accordingly the total
	 * allocated bandwidth of the container.
	 */
	raw_spin_lock(&dl_b->lock);
2294
	cpus = dl_bw_cpus(task_cpu(p));
2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
	if (dl_policy(policy) && !task_has_dl_policy(p) &&
	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
		__dl_add(dl_b, new_bw);
		err = 0;
	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
		__dl_clear(dl_b, p->dl.dl_bw);
		__dl_add(dl_b, new_bw);
		err = 0;
	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
		__dl_clear(dl_b, p->dl.dl_bw);
		err = 0;
	}
	raw_spin_unlock(&dl_b->lock);

	return err;
}

extern void init_dl_bw(struct dl_bw *dl_b);

L
Linus Torvalds 已提交
2315 2316 2317 2318 2319 2320 2321
/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2322
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
2323 2324
{
	unsigned long flags;
I
Ingo Molnar 已提交
2325
	struct rq *rq;
2326

2327
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2328 2329 2330 2331 2332 2333
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 */
2334
	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2335 2336
#endif

2337
	/* Initialize new task's runnable average */
2338
	init_entity_runnable_average(&p->se);
2339
	rq = __task_rq_lock(p);
P
Peter Zijlstra 已提交
2340
	activate_task(rq, p, 0);
2341
	p->on_rq = TASK_ON_RQ_QUEUED;
2342
	trace_sched_wakeup_new(p);
P
Peter Zijlstra 已提交
2343
	check_preempt_curr(rq, p, WF_FORK);
2344
#ifdef CONFIG_SMP
2345 2346
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2347
#endif
2348
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
2349 2350
}

2351 2352
#ifdef CONFIG_PREEMPT_NOTIFIERS

2353 2354
static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;

2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366
void preempt_notifier_inc(void)
{
	static_key_slow_inc(&preempt_notifier_key);
}
EXPORT_SYMBOL_GPL(preempt_notifier_inc);

void preempt_notifier_dec(void)
{
	static_key_slow_dec(&preempt_notifier_key);
}
EXPORT_SYMBOL_GPL(preempt_notifier_dec);

2367
/**
2368
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2369
 * @notifier: notifier struct to register
2370 2371 2372
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
2373 2374 2375
	if (!static_key_false(&preempt_notifier_key))
		WARN(1, "registering preempt_notifier while notifiers disabled\n");

2376 2377 2378 2379 2380 2381
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2382
 * @notifier: notifier struct to unregister
2383
 *
2384
 * This is *not* safe to call from within a preemption notifier.
2385 2386 2387 2388 2389 2390 2391
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

2392
static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2393 2394 2395
{
	struct preempt_notifier *notifier;

2396
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2397 2398 2399
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

2400 2401 2402 2403 2404 2405
static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	if (static_key_false(&preempt_notifier_key))
		__fire_sched_in_preempt_notifiers(curr);
}

2406
static void
2407 2408
__fire_sched_out_preempt_notifiers(struct task_struct *curr,
				   struct task_struct *next)
2409 2410 2411
{
	struct preempt_notifier *notifier;

2412
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2413 2414 2415
		notifier->ops->sched_out(notifier, next);
}

2416 2417 2418 2419 2420 2421 2422 2423
static __always_inline void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	if (static_key_false(&preempt_notifier_key))
		__fire_sched_out_preempt_notifiers(curr, next);
}

2424
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2425

2426
static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2427 2428 2429
{
}

2430
static inline void
2431 2432 2433 2434 2435
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2436
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2437

2438 2439 2440
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2441
 * @prev: the current task that is being switched out
2442 2443 2444 2445 2446 2447 2448 2449 2450
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2451 2452 2453
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2454
{
2455
	trace_sched_switch(prev, next);
2456
	sched_info_switch(rq, prev, next);
2457
	perf_event_task_sched_out(prev, next);
2458
	fire_sched_out_preempt_notifiers(prev, next);
2459 2460 2461 2462
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2463 2464 2465 2466
/**
 * finish_task_switch - clean up after a task-switch
 * @prev: the thread we just switched away from.
 *
2467 2468 2469 2470
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2471 2472
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2473
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2474 2475
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
2476 2477 2478 2479 2480
 *
 * The context switch have flipped the stack from under us and restored the
 * local variables which were saved when this task called schedule() in the
 * past. prev == current is still correct but we need to recalculate this_rq
 * because prev may have moved to another CPU.
L
Linus Torvalds 已提交
2481
 */
2482
static struct rq *finish_task_switch(struct task_struct *prev)
L
Linus Torvalds 已提交
2483 2484
	__releases(rq->lock)
{
2485
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
2486
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2487
	long prev_state;
L
Linus Torvalds 已提交
2488 2489 2490 2491 2492

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2493
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2494 2495
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2496
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2497 2498 2499 2500 2501
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2502
	prev_state = prev->state;
2503
	vtime_task_switch(prev);
2504
	perf_event_task_sched_in(prev, current);
2505
	finish_lock_switch(rq, prev);
2506
	finish_arch_post_lock_switch();
S
Steven Rostedt 已提交
2507

2508
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2509 2510
	if (mm)
		mmdrop(mm);
2511
	if (unlikely(prev_state == TASK_DEAD)) {
2512 2513 2514
		if (prev->sched_class->task_dead)
			prev->sched_class->task_dead(prev);

2515 2516 2517
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2518
		 */
2519
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2520
		put_task_struct(prev);
2521
	}
2522 2523

	tick_nohz_task_switch(current);
2524
	return rq;
L
Linus Torvalds 已提交
2525 2526
}

2527 2528 2529
#ifdef CONFIG_SMP

/* rq->lock is NOT held, but preemption is disabled */
2530
static void __balance_callback(struct rq *rq)
2531
{
2532 2533 2534
	struct callback_head *head, *next;
	void (*func)(struct rq *rq);
	unsigned long flags;
2535

2536 2537 2538 2539 2540 2541 2542 2543
	raw_spin_lock_irqsave(&rq->lock, flags);
	head = rq->balance_callback;
	rq->balance_callback = NULL;
	while (head) {
		func = (void (*)(struct rq *))head->func;
		next = head->next;
		head->next = NULL;
		head = next;
2544

2545
		func(rq);
2546
	}
2547 2548 2549 2550 2551 2552 2553
	raw_spin_unlock_irqrestore(&rq->lock, flags);
}

static inline void balance_callback(struct rq *rq)
{
	if (unlikely(rq->balance_callback))
		__balance_callback(rq);
2554 2555 2556
}

#else
2557

2558
static inline void balance_callback(struct rq *rq)
2559
{
L
Linus Torvalds 已提交
2560 2561
}

2562 2563
#endif

L
Linus Torvalds 已提交
2564 2565 2566 2567
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2568
asmlinkage __visible void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2569 2570
	__releases(rq->lock)
{
2571
	struct rq *rq;
2572

2573 2574
	/* finish_task_switch() drops rq->lock and enables preemtion */
	preempt_disable();
2575
	rq = finish_task_switch(prev);
2576
	balance_callback(rq);
2577
	preempt_enable();
2578

L
Linus Torvalds 已提交
2579
	if (current->set_child_tid)
2580
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2581 2582 2583
}

/*
2584
 * context_switch - switch to the new MM and the new thread's register state.
L
Linus Torvalds 已提交
2585
 */
2586
static inline struct rq *
2587
context_switch(struct rq *rq, struct task_struct *prev,
2588
	       struct task_struct *next)
L
Linus Torvalds 已提交
2589
{
I
Ingo Molnar 已提交
2590
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2591

2592
	prepare_task_switch(rq, prev, next);
2593

I
Ingo Molnar 已提交
2594 2595
	mm = next->mm;
	oldmm = prev->active_mm;
2596 2597 2598 2599 2600
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2601
	arch_start_context_switch(prev);
2602

2603
	if (!mm) {
L
Linus Torvalds 已提交
2604 2605 2606 2607 2608 2609
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2610
	if (!prev->mm) {
L
Linus Torvalds 已提交
2611 2612 2613
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2614 2615 2616 2617 2618 2619
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
2620
	lockdep_unpin_lock(&rq->lock);
2621
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
2622 2623 2624

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);
I
Ingo Molnar 已提交
2625
	barrier();
2626 2627

	return finish_task_switch(prev);
L
Linus Torvalds 已提交
2628 2629 2630
}

/*
2631
 * nr_running and nr_context_switches:
L
Linus Torvalds 已提交
2632 2633
 *
 * externally visible scheduler statistics: current number of runnable
2634
 * threads, total number of context switches performed since bootup.
L
Linus Torvalds 已提交
2635 2636 2637 2638 2639 2640 2641 2642 2643
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2644
}
L
Linus Torvalds 已提交
2645

2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
/*
 * Check if only the current task is running on the cpu.
 */
bool single_task_running(void)
{
	if (cpu_rq(smp_processor_id())->nr_running == 1)
		return true;
	else
		return false;
}
EXPORT_SYMBOL(single_task_running);

L
Linus Torvalds 已提交
2658
unsigned long long nr_context_switches(void)
2659
{
2660 2661
	int i;
	unsigned long long sum = 0;
2662

2663
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2664
		sum += cpu_rq(i)->nr_switches;
2665

L
Linus Torvalds 已提交
2666 2667
	return sum;
}
2668

L
Linus Torvalds 已提交
2669 2670 2671
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2672

2673
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2674
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2675

L
Linus Torvalds 已提交
2676 2677
	return sum;
}
2678

2679
unsigned long nr_iowait_cpu(int cpu)
2680
{
2681
	struct rq *this = cpu_rq(cpu);
2682 2683
	return atomic_read(&this->nr_iowait);
}
2684

2685 2686
void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
{
2687 2688 2689
	struct rq *rq = this_rq();
	*nr_waiters = atomic_read(&rq->nr_iowait);
	*load = rq->load.weight;
2690 2691
}

I
Ingo Molnar 已提交
2692
#ifdef CONFIG_SMP
2693

2694
/*
P
Peter Zijlstra 已提交
2695 2696
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2697
 */
P
Peter Zijlstra 已提交
2698
void sched_exec(void)
2699
{
P
Peter Zijlstra 已提交
2700
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2701
	unsigned long flags;
2702
	int dest_cpu;
2703

2704
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2705
	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2706 2707
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2708

2709
	if (likely(cpu_active(dest_cpu))) {
2710
		struct migration_arg arg = { p, dest_cpu };
2711

2712 2713
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2714 2715
		return;
	}
2716
unlock:
2717
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2718
}
I
Ingo Molnar 已提交
2719

L
Linus Torvalds 已提交
2720 2721 2722
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2723
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
2724 2725

EXPORT_PER_CPU_SYMBOL(kstat);
2726
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
2727

2728 2729 2730 2731 2732 2733 2734 2735 2736
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
2737
	u64 ns;
2738

2739 2740 2741 2742 2743 2744 2745 2746 2747
#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
	/*
	 * 64-bit doesn't need locks to atomically read a 64bit value.
	 * So we have a optimization chance when the task's delta_exec is 0.
	 * Reading ->on_cpu is racy, but this is ok.
	 *
	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
	 * If we race with it entering cpu, unaccounted time is 0. This is
	 * indistinguishable from the read occurring a few cycles earlier.
2748 2749
	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
	 * been accounted, so we're correct here as well.
2750
	 */
2751
	if (!p->on_cpu || !task_on_rq_queued(p))
2752 2753 2754
		return p->se.sum_exec_runtime;
#endif

2755
	rq = task_rq_lock(p, &flags);
2756 2757 2758 2759 2760 2761 2762 2763 2764 2765
	/*
	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
	 * project cycles that may never be accounted to this
	 * thread, breaking clock_gettime().
	 */
	if (task_current(rq, p) && task_on_rq_queued(p)) {
		update_rq_clock(rq);
		p->sched_class->update_curr(rq);
	}
	ns = p->se.sum_exec_runtime;
2766
	task_rq_unlock(rq, p, &flags);
2767 2768 2769

	return ns;
}
2770

2771 2772 2773 2774 2775 2776 2777 2778
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2779
	struct task_struct *curr = rq->curr;
2780 2781

	sched_clock_tick();
I
Ingo Molnar 已提交
2782

2783
	raw_spin_lock(&rq->lock);
2784
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
2785
	curr->sched_class->task_tick(rq, curr, 0);
2786
	update_cpu_load_active(rq);
2787
	calc_global_load_tick(rq);
2788
	raw_spin_unlock(&rq->lock);
2789

2790
	perf_event_task_tick();
2791

2792
#ifdef CONFIG_SMP
2793
	rq->idle_balance = idle_cpu(cpu);
2794
	trigger_load_balance(rq);
2795
#endif
2796
	rq_last_tick_reset(rq);
L
Linus Torvalds 已提交
2797 2798
}

2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809
#ifdef CONFIG_NO_HZ_FULL
/**
 * scheduler_tick_max_deferment
 *
 * Keep at least one tick per second when a single
 * active task is running because the scheduler doesn't
 * yet completely support full dynticks environment.
 *
 * This makes sure that uptime, CFS vruntime, load
 * balancing, etc... continue to move forward, even
 * with a very low granularity.
2810 2811
 *
 * Return: Maximum deferment in nanoseconds.
2812 2813 2814 2815
 */
u64 scheduler_tick_max_deferment(void)
{
	struct rq *rq = this_rq();
2816
	unsigned long next, now = READ_ONCE(jiffies);
2817 2818 2819 2820 2821 2822

	next = rq->last_sched_tick + HZ;

	if (time_before_eq(next, now))
		return 0;

2823
	return jiffies_to_nsecs(next - now);
L
Linus Torvalds 已提交
2824
}
2825
#endif
L
Linus Torvalds 已提交
2826

2827
notrace unsigned long get_parent_ip(unsigned long addr)
2828 2829 2830 2831 2832 2833 2834 2835
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
2836

2837 2838 2839
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

2840
void preempt_count_add(int val)
L
Linus Torvalds 已提交
2841
{
2842
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2843 2844 2845
	/*
	 * Underflow?
	 */
2846 2847
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
2848
#endif
2849
	__preempt_count_add(val);
2850
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2851 2852 2853
	/*
	 * Spinlock count overflowing soon?
	 */
2854 2855
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
2856
#endif
2857 2858 2859 2860 2861 2862 2863
	if (preempt_count() == val) {
		unsigned long ip = get_parent_ip(CALLER_ADDR1);
#ifdef CONFIG_DEBUG_PREEMPT
		current->preempt_disable_ip = ip;
#endif
		trace_preempt_off(CALLER_ADDR0, ip);
	}
L
Linus Torvalds 已提交
2864
}
2865
EXPORT_SYMBOL(preempt_count_add);
2866
NOKPROBE_SYMBOL(preempt_count_add);
L
Linus Torvalds 已提交
2867

2868
void preempt_count_sub(int val)
L
Linus Torvalds 已提交
2869
{
2870
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2871 2872 2873
	/*
	 * Underflow?
	 */
2874
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2875
		return;
L
Linus Torvalds 已提交
2876 2877 2878
	/*
	 * Is the spinlock portion underflowing?
	 */
2879 2880 2881
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
2882
#endif
2883

2884 2885
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2886
	__preempt_count_sub(val);
L
Linus Torvalds 已提交
2887
}
2888
EXPORT_SYMBOL(preempt_count_sub);
2889
NOKPROBE_SYMBOL(preempt_count_sub);
L
Linus Torvalds 已提交
2890 2891 2892 2893

#endif

/*
I
Ingo Molnar 已提交
2894
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
2895
 */
I
Ingo Molnar 已提交
2896
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
2897
{
2898 2899 2900
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
2901 2902
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
2903

I
Ingo Molnar 已提交
2904
	debug_show_held_locks(prev);
2905
	print_modules();
I
Ingo Molnar 已提交
2906 2907
	if (irqs_disabled())
		print_irqtrace_events(prev);
2908 2909 2910 2911 2912 2913 2914
#ifdef CONFIG_DEBUG_PREEMPT
	if (in_atomic_preempt_off()) {
		pr_err("Preemption disabled at:");
		print_ip_sym(current->preempt_disable_ip);
		pr_cont("\n");
	}
#endif
2915
	dump_stack();
2916
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
I
Ingo Molnar 已提交
2917
}
L
Linus Torvalds 已提交
2918

I
Ingo Molnar 已提交
2919 2920 2921 2922 2923
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
2924 2925 2926
#ifdef CONFIG_SCHED_STACK_END_CHECK
	BUG_ON(unlikely(task_stack_end_corrupted(prev)));
#endif
L
Linus Torvalds 已提交
2927
	/*
I
Ingo Molnar 已提交
2928
	 * Test if we are atomic. Since do_exit() needs to call into
2929 2930
	 * schedule() atomically, we ignore that path. Otherwise whine
	 * if we are scheduling when we should not.
L
Linus Torvalds 已提交
2931
	 */
2932
	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
I
Ingo Molnar 已提交
2933
		__schedule_bug(prev);
2934
	rcu_sleep_check();
I
Ingo Molnar 已提交
2935

L
Linus Torvalds 已提交
2936 2937
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

2938
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
2939 2940 2941 2942 2943 2944
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
2945
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
2946
{
2947
	const struct sched_class *class = &fair_sched_class;
I
Ingo Molnar 已提交
2948
	struct task_struct *p;
L
Linus Torvalds 已提交
2949 2950

	/*
I
Ingo Molnar 已提交
2951 2952
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
2953
	 */
2954
	if (likely(prev->sched_class == class &&
2955
		   rq->nr_running == rq->cfs.h_nr_running)) {
2956
		p = fair_sched_class.pick_next_task(rq, prev);
2957 2958 2959 2960 2961 2962 2963 2964
		if (unlikely(p == RETRY_TASK))
			goto again;

		/* assumes fair_sched_class->next == idle_sched_class */
		if (unlikely(!p))
			p = idle_sched_class.pick_next_task(rq, prev);

		return p;
L
Linus Torvalds 已提交
2965 2966
	}

2967
again:
2968
	for_each_class(class) {
2969
		p = class->pick_next_task(rq, prev);
2970 2971 2972
		if (p) {
			if (unlikely(p == RETRY_TASK))
				goto again;
I
Ingo Molnar 已提交
2973
			return p;
2974
		}
I
Ingo Molnar 已提交
2975
	}
2976 2977

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
2978
}
L
Linus Torvalds 已提交
2979

I
Ingo Molnar 已提交
2980
/*
2981
 * __schedule() is the main scheduler function.
2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015
 *
 * The main means of driving the scheduler and thus entering this function are:
 *
 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 *      paths. For example, see arch/x86/entry_64.S.
 *
 *      To drive preemption between tasks, the scheduler sets the flag in timer
 *      interrupt handler scheduler_tick().
 *
 *   3. Wakeups don't really cause entry into schedule(). They add a
 *      task to the run-queue and that's it.
 *
 *      Now, if the new task added to the run-queue preempts the current
 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 *      called on the nearest possible occasion:
 *
 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
 *
 *         - in syscall or exception context, at the next outmost
 *           preempt_enable(). (this might be as soon as the wake_up()'s
 *           spin_unlock()!)
 *
 *         - in IRQ context, return from interrupt-handler to
 *           preemptible context
 *
 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
 *         then at the next:
 *
 *          - cond_resched() call
 *          - explicit schedule() call
 *          - return from syscall or exception to user-space
 *          - return from interrupt-handler to user-space
3016
 *
3017
 * WARNING: must be called with preemption disabled!
I
Ingo Molnar 已提交
3018
 */
3019
static void __sched __schedule(void)
I
Ingo Molnar 已提交
3020 3021
{
	struct task_struct *prev, *next;
3022
	unsigned long *switch_count;
I
Ingo Molnar 已提交
3023
	struct rq *rq;
3024
	int cpu;
I
Ingo Molnar 已提交
3025 3026 3027

	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
3028
	rcu_note_context_switch();
I
Ingo Molnar 已提交
3029 3030 3031
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
3032

3033
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
3034
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
3035

3036 3037 3038 3039 3040 3041
	/*
	 * Make sure that signal_pending_state()->signal_pending() below
	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
	 * done by the caller to avoid the race with signal_wake_up().
	 */
	smp_mb__before_spinlock();
3042
	raw_spin_lock_irq(&rq->lock);
3043
	lockdep_pin_lock(&rq->lock);
L
Linus Torvalds 已提交
3044

3045 3046
	rq->clock_skip_update <<= 1; /* promote REQ to ACT */

3047
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
3048
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
3049
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
3050
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
3051
		} else {
3052 3053 3054
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

T
Tejun Heo 已提交
3055
			/*
3056 3057 3058
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
3059 3060 3061 3062 3063 3064 3065 3066 3067
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
		}
I
Ingo Molnar 已提交
3068
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3069 3070
	}

3071
	if (task_on_rq_queued(prev))
3072 3073 3074
		update_rq_clock(rq);

	next = pick_next_task(rq, prev);
3075
	clear_tsk_need_resched(prev);
3076
	clear_preempt_need_resched();
3077
	rq->clock_skip_update = 0;
L
Linus Torvalds 已提交
3078 3079 3080 3081 3082 3083

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

3084 3085
		rq = context_switch(rq, prev, next); /* unlocks the rq */
		cpu = cpu_of(rq);
3086 3087
	} else {
		lockdep_unpin_lock(&rq->lock);
3088
		raw_spin_unlock_irq(&rq->lock);
3089
	}
L
Linus Torvalds 已提交
3090

3091
	balance_callback(rq);
L
Linus Torvalds 已提交
3092
}
3093

3094 3095
static inline void sched_submit_work(struct task_struct *tsk)
{
3096
	if (!tsk->state || tsk_is_pi_blocked(tsk))
3097 3098 3099 3100 3101 3102 3103 3104 3105
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

3106
asmlinkage __visible void __sched schedule(void)
3107
{
3108 3109 3110
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
3111
	do {
3112
		preempt_disable();
3113
		__schedule();
3114
		sched_preempt_enable_no_resched();
3115
	} while (need_resched());
3116
}
L
Linus Torvalds 已提交
3117 3118
EXPORT_SYMBOL(schedule);

3119
#ifdef CONFIG_CONTEXT_TRACKING
3120
asmlinkage __visible void __sched schedule_user(void)
3121 3122 3123 3124 3125 3126
{
	/*
	 * If we come here after a random call to set_need_resched(),
	 * or we have been woken up remotely but the IPI has not yet arrived,
	 * we haven't yet exited the RCU idle mode. Do it here manually until
	 * we find a better solution.
3127 3128
	 *
	 * NB: There are buggy callers of this function.  Ideally we
3129
	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3130
	 * too frequently to make sense yet.
3131
	 */
3132
	enum ctx_state prev_state = exception_enter();
3133
	schedule();
3134
	exception_exit(prev_state);
3135 3136 3137
}
#endif

3138 3139 3140 3141 3142 3143 3144
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
3145
	sched_preempt_enable_no_resched();
3146 3147 3148 3149
	schedule();
	preempt_disable();
}

3150
static void __sched notrace preempt_schedule_common(void)
3151 3152
{
	do {
3153
		preempt_active_enter();
3154
		__schedule();
3155
		preempt_active_exit();
3156 3157 3158 3159 3160 3161 3162 3163

		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
	} while (need_resched());
}

L
Linus Torvalds 已提交
3164 3165
#ifdef CONFIG_PREEMPT
/*
3166
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3167
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3168 3169
 * occur there and call schedule directly.
 */
3170
asmlinkage __visible void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
3171 3172 3173
{
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3174
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3175
	 */
3176
	if (likely(!preemptible()))
L
Linus Torvalds 已提交
3177 3178
		return;

3179
	preempt_schedule_common();
L
Linus Torvalds 已提交
3180
}
3181
NOKPROBE_SYMBOL(preempt_schedule);
L
Linus Torvalds 已提交
3182
EXPORT_SYMBOL(preempt_schedule);
3183 3184

/**
3185
 * preempt_schedule_notrace - preempt_schedule called by tracing
3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197
 *
 * The tracing infrastructure uses preempt_enable_notrace to prevent
 * recursion and tracing preempt enabling caused by the tracing
 * infrastructure itself. But as tracing can happen in areas coming
 * from userspace or just about to enter userspace, a preempt enable
 * can occur before user_exit() is called. This will cause the scheduler
 * to be called when the system is still in usermode.
 *
 * To prevent this, the preempt_enable_notrace will use this function
 * instead of preempt_schedule() to exit user context if needed before
 * calling the scheduler.
 */
3198
asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3199 3200 3201 3202 3203 3204 3205
{
	enum ctx_state prev_ctx;

	if (likely(!preemptible()))
		return;

	do {
3206 3207 3208 3209 3210 3211 3212
		/*
		 * Use raw __prempt_count() ops that don't call function.
		 * We can't call functions before disabling preemption which
		 * disarm preemption tracing recursions.
		 */
		__preempt_count_add(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
		barrier();
3213 3214 3215 3216 3217 3218 3219 3220 3221 3222
		/*
		 * Needs preempt disabled in case user_exit() is traced
		 * and the tracer calls preempt_enable_notrace() causing
		 * an infinite recursion.
		 */
		prev_ctx = exception_enter();
		__schedule();
		exception_exit(prev_ctx);

		barrier();
3223
		__preempt_count_sub(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
3224 3225
	} while (need_resched());
}
3226
EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3227

3228
#endif /* CONFIG_PREEMPT */
L
Linus Torvalds 已提交
3229 3230

/*
3231
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3232 3233 3234 3235
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
3236
asmlinkage __visible void __sched preempt_schedule_irq(void)
L
Linus Torvalds 已提交
3237
{
3238
	enum ctx_state prev_state;
3239

3240
	/* Catch callers which need to be fixed */
3241
	BUG_ON(preempt_count() || !irqs_disabled());
L
Linus Torvalds 已提交
3242

3243 3244
	prev_state = exception_enter();

3245
	do {
3246
		preempt_active_enter();
3247
		local_irq_enable();
3248
		__schedule();
3249
		local_irq_disable();
3250
		preempt_active_exit();
3251
	} while (need_resched());
3252 3253

	exception_exit(prev_state);
L
Linus Torvalds 已提交
3254 3255
}

P
Peter Zijlstra 已提交
3256
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3257
			  void *key)
L
Linus Torvalds 已提交
3258
{
P
Peter Zijlstra 已提交
3259
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3260 3261 3262
}
EXPORT_SYMBOL(default_wake_function);

3263 3264 3265 3266 3267 3268 3269 3270 3271 3272
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
3273 3274
 * Used by the rt_mutex code to implement priority inheritance
 * logic. Call site only calls if the priority of the task changed.
3275
 */
3276
void rt_mutex_setprio(struct task_struct *p, int prio)
3277
{
3278
	int oldprio, queued, running, enqueue_flag = 0;
3279
	struct rq *rq;
3280
	const struct sched_class *prev_class;
3281

3282
	BUG_ON(prio > MAX_PRIO);
3283

3284
	rq = __task_rq_lock(p);
3285

3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

3304
	trace_sched_pi_setprio(p, prio);
3305
	oldprio = p->prio;
3306
	prev_class = p->sched_class;
3307
	queued = task_on_rq_queued(p);
3308
	running = task_current(rq, p);
3309
	if (queued)
3310
		dequeue_task(rq, p, 0);
3311
	if (running)
3312
		put_prev_task(rq, p);
I
Ingo Molnar 已提交
3313

3314 3315 3316 3317 3318 3319 3320 3321 3322 3323
	/*
	 * Boosting condition are:
	 * 1. -rt task is running and holds mutex A
	 *      --> -dl task blocks on mutex A
	 *
	 * 2. -dl task is running and holds mutex A
	 *      --> -dl task blocks on mutex A and could preempt the
	 *          running task
	 */
	if (dl_prio(prio)) {
3324 3325 3326
		struct task_struct *pi_task = rt_mutex_get_top_task(p);
		if (!dl_prio(p->normal_prio) ||
		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3327 3328 3329 3330
			p->dl.dl_boosted = 1;
			enqueue_flag = ENQUEUE_REPLENISH;
		} else
			p->dl.dl_boosted = 0;
3331
		p->sched_class = &dl_sched_class;
3332 3333 3334 3335 3336
	} else if (rt_prio(prio)) {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
		if (oldprio < prio)
			enqueue_flag = ENQUEUE_HEAD;
I
Ingo Molnar 已提交
3337
		p->sched_class = &rt_sched_class;
3338 3339 3340
	} else {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
3341 3342
		if (rt_prio(oldprio))
			p->rt.timeout = 0;
I
Ingo Molnar 已提交
3343
		p->sched_class = &fair_sched_class;
3344
	}
I
Ingo Molnar 已提交
3345

3346 3347
	p->prio = prio;

3348 3349
	if (running)
		p->sched_class->set_curr_task(rq);
3350
	if (queued)
3351
		enqueue_task(rq, p, enqueue_flag);
3352

P
Peter Zijlstra 已提交
3353
	check_class_changed(rq, p, prev_class, oldprio);
3354
out_unlock:
3355
	preempt_disable(); /* avoid rq from going away on us */
3356
	__task_rq_unlock(rq);
3357 3358 3359

	balance_callback(rq);
	preempt_enable();
3360 3361
}
#endif
3362

3363
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3364
{
3365
	int old_prio, delta, queued;
L
Linus Torvalds 已提交
3366
	unsigned long flags;
3367
	struct rq *rq;
L
Linus Torvalds 已提交
3368

3369
	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
L
Linus Torvalds 已提交
3370 3371 3372 3373 3374 3375 3376 3377 3378 3379
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
3380
	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
L
Linus Torvalds 已提交
3381
	 */
3382
	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3383 3384 3385
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
3386 3387
	queued = task_on_rq_queued(p);
	if (queued)
3388
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
3389 3390

	p->static_prio = NICE_TO_PRIO(nice);
3391
	set_load_weight(p);
3392 3393 3394
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3395

3396
	if (queued) {
3397
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
3398
		/*
3399 3400
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3401
		 */
3402
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3403
			resched_curr(rq);
L
Linus Torvalds 已提交
3404 3405
	}
out_unlock:
3406
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3407 3408 3409
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3410 3411 3412 3413 3414
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3415
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3416
{
3417
	/* convert nice value [19,-20] to rlimit style value [1,40] */
3418
	int nice_rlim = nice_to_rlimit(nice);
3419

3420
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3421 3422 3423
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3424 3425 3426 3427 3428 3429 3430 3431 3432
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3433
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3434
{
3435
	long nice, retval;
L
Linus Torvalds 已提交
3436 3437 3438 3439 3440 3441

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
3442
	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3443
	nice = task_nice(current) + increment;
L
Linus Torvalds 已提交
3444

3445
	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
M
Matt Mackall 已提交
3446 3447 3448
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
3463
 * Return: The priority value as seen by users in /proc.
L
Linus Torvalds 已提交
3464 3465 3466
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3467
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3468 3469 3470 3471 3472 3473 3474
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
3475 3476
 *
 * Return: 1 if the CPU is currently idle. 0 otherwise.
L
Linus Torvalds 已提交
3477 3478 3479
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3494 3495 3496 3497 3498
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
3499 3500
 *
 * Return: The idle task for the cpu @cpu.
L
Linus Torvalds 已提交
3501
 */
3502
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3503 3504 3505 3506 3507 3508 3509
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
3510 3511
 *
 * The task of @pid, if found. %NULL otherwise.
L
Linus Torvalds 已提交
3512
 */
A
Alexey Dobriyan 已提交
3513
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
3514
{
3515
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
3516 3517
}

3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532
/*
 * This function initializes the sched_dl_entity of a newly becoming
 * SCHED_DEADLINE task.
 *
 * Only the static values are considered here, the actual runtime and the
 * absolute deadline will be properly calculated when the task is enqueued
 * for the first time with its new policy.
 */
static void
__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	dl_se->dl_runtime = attr->sched_runtime;
	dl_se->dl_deadline = attr->sched_deadline;
3533
	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3534
	dl_se->flags = attr->sched_flags;
3535
	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555

	/*
	 * Changing the parameters of a task is 'tricky' and we're not doing
	 * the correct thing -- also see task_dead_dl() and switched_from_dl().
	 *
	 * What we SHOULD do is delay the bandwidth release until the 0-lag
	 * point. This would include retaining the task_struct until that time
	 * and change dl_overflow() to not immediately decrement the current
	 * amount.
	 *
	 * Instead we retain the current runtime/deadline and let the new
	 * parameters take effect after the current reservation period lapses.
	 * This is safe (albeit pessimistic) because the 0-lag point is always
	 * before the current scheduling deadline.
	 *
	 * We can still have temporary overloads because we do not delay the
	 * change in bandwidth until that time; so admission control is
	 * not on the safe side. It does however guarantee tasks will never
	 * consume more than promised.
	 */
3556 3557
}

3558 3559 3560 3561 3562 3563
/*
 * sched_setparam() passes in -1 for its policy, to let the functions
 * it calls know not to change it.
 */
#define SETPARAM_POLICY	-1

3564 3565
static void __setscheduler_params(struct task_struct *p,
		const struct sched_attr *attr)
L
Linus Torvalds 已提交
3566
{
3567 3568
	int policy = attr->sched_policy;

3569
	if (policy == SETPARAM_POLICY)
3570 3571
		policy = p->policy;

L
Linus Torvalds 已提交
3572
	p->policy = policy;
3573

3574 3575
	if (dl_policy(policy))
		__setparam_dl(p, attr);
3576
	else if (fair_policy(policy))
3577 3578
		p->static_prio = NICE_TO_PRIO(attr->sched_nice);

3579 3580 3581 3582 3583 3584
	/*
	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
	 * !rt_policy. Always setting this ensures that things like
	 * getparam()/getattr() don't report silly values for !rt tasks.
	 */
	p->rt_priority = attr->sched_priority;
3585
	p->normal_prio = normal_prio(p);
3586 3587
	set_load_weight(p);
}
3588

3589 3590
/* Actually do priority change: must hold pi & rq lock. */
static void __setscheduler(struct rq *rq, struct task_struct *p,
3591
			   const struct sched_attr *attr, bool keep_boost)
3592 3593
{
	__setscheduler_params(p, attr);
3594

3595
	/*
3596 3597
	 * Keep a potential priority boosting if called from
	 * sched_setscheduler().
3598
	 */
3599 3600 3601 3602
	if (keep_boost)
		p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
	else
		p->prio = normal_prio(p);
3603

3604 3605 3606
	if (dl_prio(p->prio))
		p->sched_class = &dl_sched_class;
	else if (rt_prio(p->prio))
3607 3608 3609
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
3610
}
3611 3612 3613 3614 3615 3616 3617 3618 3619

static void
__getparam_dl(struct task_struct *p, struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	attr->sched_priority = p->rt_priority;
	attr->sched_runtime = dl_se->dl_runtime;
	attr->sched_deadline = dl_se->dl_deadline;
3620
	attr->sched_period = dl_se->dl_period;
3621 3622 3623 3624 3625 3626
	attr->sched_flags = dl_se->flags;
}

/*
 * This function validates the new parameters of a -deadline task.
 * We ask for the deadline not being zero, and greater or equal
3627
 * than the runtime, as well as the period of being zero or
3628
 * greater than deadline. Furthermore, we have to be sure that
3629 3630 3631 3632
 * user parameters are above the internal resolution of 1us (we
 * check sched_runtime only since it is always the smaller one) and
 * below 2^63 ns (we have to check both sched_deadline and
 * sched_period, as the latter can be zero).
3633 3634 3635 3636
 */
static bool
__checkparam_dl(const struct sched_attr *attr)
{
3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662
	/* deadline != 0 */
	if (attr->sched_deadline == 0)
		return false;

	/*
	 * Since we truncate DL_SCALE bits, make sure we're at least
	 * that big.
	 */
	if (attr->sched_runtime < (1ULL << DL_SCALE))
		return false;

	/*
	 * Since we use the MSB for wrap-around and sign issues, make
	 * sure it's not set (mind that period can be equal to zero).
	 */
	if (attr->sched_deadline & (1ULL << 63) ||
	    attr->sched_period & (1ULL << 63))
		return false;

	/* runtime <= deadline <= period (if period != 0) */
	if ((attr->sched_period != 0 &&
	     attr->sched_period < attr->sched_deadline) ||
	    attr->sched_deadline < attr->sched_runtime)
		return false;

	return true;
3663 3664
}

3665 3666 3667 3668 3669 3670 3671 3672 3673 3674
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
3675 3676
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
3677 3678 3679 3680
	rcu_read_unlock();
	return match;
}

3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694
static bool dl_param_changed(struct task_struct *p,
		const struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	if (dl_se->dl_runtime != attr->sched_runtime ||
		dl_se->dl_deadline != attr->sched_deadline ||
		dl_se->dl_period != attr->sched_period ||
		dl_se->flags != attr->sched_flags)
		return true;

	return false;
}

3695 3696
static int __sched_setscheduler(struct task_struct *p,
				const struct sched_attr *attr,
3697
				bool user, bool pi)
L
Linus Torvalds 已提交
3698
{
3699 3700
	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
		      MAX_RT_PRIO - 1 - attr->sched_priority;
3701
	int retval, oldprio, oldpolicy = -1, queued, running;
3702
	int new_effective_prio, policy = attr->sched_policy;
L
Linus Torvalds 已提交
3703
	unsigned long flags;
3704
	const struct sched_class *prev_class;
3705
	struct rq *rq;
3706
	int reset_on_fork;
L
Linus Torvalds 已提交
3707

3708 3709
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
3710 3711
recheck:
	/* double check policy once rq lock held */
3712 3713
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
3714
		policy = oldpolicy = p->policy;
3715
	} else {
3716
		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3717

3718 3719
		if (policy != SCHED_DEADLINE &&
				policy != SCHED_FIFO && policy != SCHED_RR &&
3720 3721 3722 3723 3724
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

3725 3726 3727
	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
		return -EINVAL;

L
Linus Torvalds 已提交
3728 3729
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
3730 3731
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
3732
	 */
3733
	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3734
	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
3735
		return -EINVAL;
3736 3737
	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
	    (rt_policy(policy) != (attr->sched_priority != 0)))
L
Linus Torvalds 已提交
3738 3739
		return -EINVAL;

3740 3741 3742
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
3743
	if (user && !capable(CAP_SYS_NICE)) {
3744
		if (fair_policy(policy)) {
3745
			if (attr->sched_nice < task_nice(p) &&
3746
			    !can_nice(p, attr->sched_nice))
3747 3748 3749
				return -EPERM;
		}

3750
		if (rt_policy(policy)) {
3751 3752
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
3753 3754 3755 3756 3757 3758

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
3759 3760
			if (attr->sched_priority > p->rt_priority &&
			    attr->sched_priority > rlim_rtprio)
3761 3762
				return -EPERM;
		}
3763

3764 3765 3766 3767 3768 3769 3770 3771 3772
		 /*
		  * Can't set/change SCHED_DEADLINE policy at all for now
		  * (safest behavior); in the future we would like to allow
		  * unprivileged DL tasks to increase their relative deadline
		  * or reduce their runtime (both ways reducing utilization)
		  */
		if (dl_policy(policy))
			return -EPERM;

I
Ingo Molnar 已提交
3773
		/*
3774 3775
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
3776
		 */
3777
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3778
			if (!can_nice(p, task_nice(p)))
3779 3780
				return -EPERM;
		}
3781

3782
		/* can't change other user's priorities */
3783
		if (!check_same_owner(p))
3784
			return -EPERM;
3785 3786 3787 3788

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
3789
	}
L
Linus Torvalds 已提交
3790

3791
	if (user) {
3792
		retval = security_task_setscheduler(p);
3793 3794 3795 3796
		if (retval)
			return retval;
	}

3797 3798 3799
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
3800
	 *
L
Lucas De Marchi 已提交
3801
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
3802 3803
	 * runqueue lock must be held.
	 */
3804
	rq = task_rq_lock(p, &flags);
3805

3806 3807 3808 3809
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
3810
		task_rq_unlock(rq, p, &flags);
3811 3812 3813
		return -EINVAL;
	}

3814
	/*
3815 3816
	 * If not changing anything there's no need to proceed further,
	 * but store a possible modification of reset_on_fork.
3817
	 */
3818
	if (unlikely(policy == p->policy)) {
3819
		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3820 3821 3822
			goto change;
		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
			goto change;
3823
		if (dl_policy(policy) && dl_param_changed(p, attr))
3824
			goto change;
3825

3826
		p->sched_reset_on_fork = reset_on_fork;
3827
		task_rq_unlock(rq, p, &flags);
3828 3829
		return 0;
	}
3830
change:
3831

3832
	if (user) {
3833
#ifdef CONFIG_RT_GROUP_SCHED
3834 3835 3836 3837 3838
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3839 3840
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
3841
			task_rq_unlock(rq, p, &flags);
3842 3843 3844
			return -EPERM;
		}
#endif
3845 3846 3847 3848 3849 3850 3851 3852 3853
#ifdef CONFIG_SMP
		if (dl_bandwidth_enabled() && dl_policy(policy)) {
			cpumask_t *span = rq->rd->span;

			/*
			 * Don't allow tasks with an affinity mask smaller than
			 * the entire root_domain to become SCHED_DEADLINE. We
			 * will also fail if there's no bandwidth available.
			 */
3854 3855
			if (!cpumask_subset(span, &p->cpus_allowed) ||
			    rq->rd->dl_bw.bw == 0) {
3856 3857 3858 3859 3860 3861
				task_rq_unlock(rq, p, &flags);
				return -EPERM;
			}
		}
#endif
	}
3862

L
Linus Torvalds 已提交
3863 3864 3865
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
3866
		task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3867 3868
		goto recheck;
	}
3869 3870 3871 3872 3873 3874

	/*
	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
	 * is available.
	 */
3875
	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3876 3877 3878 3879
		task_rq_unlock(rq, p, &flags);
		return -EBUSY;
	}

3880 3881 3882
	p->sched_reset_on_fork = reset_on_fork;
	oldprio = p->prio;

3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896
	if (pi) {
		/*
		 * Take priority boosted tasks into account. If the new
		 * effective priority is unchanged, we just store the new
		 * normal parameters and do not touch the scheduler class and
		 * the runqueue. This will be done when the task deboost
		 * itself.
		 */
		new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
		if (new_effective_prio == oldprio) {
			__setscheduler_params(p, attr);
			task_rq_unlock(rq, p, &flags);
			return 0;
		}
3897 3898
	}

3899
	queued = task_on_rq_queued(p);
3900
	running = task_current(rq, p);
3901
	if (queued)
3902
		dequeue_task(rq, p, 0);
3903
	if (running)
3904
		put_prev_task(rq, p);
3905

3906
	prev_class = p->sched_class;
3907
	__setscheduler(rq, p, attr, pi);
3908

3909 3910
	if (running)
		p->sched_class->set_curr_task(rq);
3911
	if (queued) {
3912 3913 3914 3915 3916 3917
		/*
		 * We enqueue to tail when the priority of a task is
		 * increased (user space view).
		 */
		enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
	}
3918

P
Peter Zijlstra 已提交
3919
	check_class_changed(rq, p, prev_class, oldprio);
3920
	preempt_disable(); /* avoid rq from going away on us */
3921
	task_rq_unlock(rq, p, &flags);
3922

3923 3924
	if (pi)
		rt_mutex_adjust_pi(p);
3925

3926 3927 3928 3929 3930
	/*
	 * Run balance callbacks after we've adjusted the PI chain.
	 */
	balance_callback(rq);
	preempt_enable();
3931

L
Linus Torvalds 已提交
3932 3933
	return 0;
}
3934

3935 3936 3937 3938 3939 3940 3941 3942 3943
static int _sched_setscheduler(struct task_struct *p, int policy,
			       const struct sched_param *param, bool check)
{
	struct sched_attr attr = {
		.sched_policy   = policy,
		.sched_priority = param->sched_priority,
		.sched_nice	= PRIO_TO_NICE(p->static_prio),
	};

3944 3945
	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
3946 3947 3948 3949 3950
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
		policy &= ~SCHED_RESET_ON_FORK;
		attr.sched_policy = policy;
	}

3951
	return __sched_setscheduler(p, &attr, check, true);
3952
}
3953 3954 3955 3956 3957 3958
/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
3959 3960
 * Return: 0 on success. An error code otherwise.
 *
3961 3962 3963
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
3964
		       const struct sched_param *param)
3965
{
3966
	return _sched_setscheduler(p, policy, param, true);
3967
}
L
Linus Torvalds 已提交
3968 3969
EXPORT_SYMBOL_GPL(sched_setscheduler);

3970 3971
int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
{
3972
	return __sched_setscheduler(p, attr, true, true);
3973 3974 3975
}
EXPORT_SYMBOL_GPL(sched_setattr);

3976 3977 3978 3979 3980 3981 3982 3983 3984 3985
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
3986 3987
 *
 * Return: 0 on success. An error code otherwise.
3988 3989
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3990
			       const struct sched_param *param)
3991
{
3992
	return _sched_setscheduler(p, policy, param, false);
3993 3994
}

I
Ingo Molnar 已提交
3995 3996
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
3997 3998 3999
{
	struct sched_param lparam;
	struct task_struct *p;
4000
	int retval;
L
Linus Torvalds 已提交
4001 4002 4003 4004 4005

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4006 4007 4008

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4009
	p = find_process_by_pid(pid);
4010 4011 4012
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4013

L
Linus Torvalds 已提交
4014 4015 4016
	return retval;
}

4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078
/*
 * Mimics kernel/events/core.c perf_copy_attr().
 */
static int sched_copy_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr)
{
	u32 size;
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = SCHED_ATTR_SIZE_VER0;

	if (size < SCHED_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
	 */
	if (size > sizeof(*attr)) {
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;

		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;

		for (; addr < end; addr++) {
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
		size = sizeof(*attr);
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * XXX: do we want to be lenient like existing syscalls; or do we want
	 * to be strict and return an error on out-of-bounds values?
	 */
4079
	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4080

4081
	return 0;
4082 4083 4084

err_size:
	put_user(sizeof(*attr), &uattr->size);
4085
	return -E2BIG;
4086 4087
}

L
Linus Torvalds 已提交
4088 4089 4090 4091 4092
/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4093 4094
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4095
 */
4096 4097
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
4098
{
4099 4100 4101 4102
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4103 4104 4105 4106 4107 4108 4109
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
4110 4111
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4112
 */
4113
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4114
{
4115
	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
L
Linus Torvalds 已提交
4116 4117
}

4118 4119 4120
/**
 * sys_sched_setattr - same as above, but with extended sched_attr
 * @pid: the pid in question.
J
Juri Lelli 已提交
4121
 * @uattr: structure containing the extended parameters.
4122
 * @flags: for future extension.
4123
 */
4124 4125
SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
			       unsigned int, flags)
4126 4127 4128 4129 4130
{
	struct sched_attr attr;
	struct task_struct *p;
	int retval;

4131
	if (!uattr || pid < 0 || flags)
4132 4133
		return -EINVAL;

4134 4135 4136
	retval = sched_copy_attr(uattr, &attr);
	if (retval)
		return retval;
4137

4138
	if ((int)attr.sched_policy < 0)
4139
		return -EINVAL;
4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150

	rcu_read_lock();
	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (p != NULL)
		retval = sched_setattr(p, &attr);
	rcu_read_unlock();

	return retval;
}

L
Linus Torvalds 已提交
4151 4152 4153
/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
4154 4155 4156
 *
 * Return: On success, the policy of the thread. Otherwise, a negative error
 * code.
L
Linus Torvalds 已提交
4157
 */
4158
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4159
{
4160
	struct task_struct *p;
4161
	int retval;
L
Linus Torvalds 已提交
4162 4163

	if (pid < 0)
4164
		return -EINVAL;
L
Linus Torvalds 已提交
4165 4166

	retval = -ESRCH;
4167
	rcu_read_lock();
L
Linus Torvalds 已提交
4168 4169 4170 4171
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4172 4173
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4174
	}
4175
	rcu_read_unlock();
L
Linus Torvalds 已提交
4176 4177 4178 4179
	return retval;
}

/**
4180
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4181 4182
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
4183 4184 4185
 *
 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
 * code.
L
Linus Torvalds 已提交
4186
 */
4187
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4188
{
4189
	struct sched_param lp = { .sched_priority = 0 };
4190
	struct task_struct *p;
4191
	int retval;
L
Linus Torvalds 已提交
4192 4193

	if (!param || pid < 0)
4194
		return -EINVAL;
L
Linus Torvalds 已提交
4195

4196
	rcu_read_lock();
L
Linus Torvalds 已提交
4197 4198 4199 4200 4201 4202 4203 4204 4205
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4206 4207
	if (task_has_rt_policy(p))
		lp.sched_priority = p->rt_priority;
4208
	rcu_read_unlock();
L
Linus Torvalds 已提交
4209 4210 4211 4212 4213 4214 4215 4216 4217

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4218
	rcu_read_unlock();
L
Linus Torvalds 已提交
4219 4220 4221
	return retval;
}

4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244
static int sched_read_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr,
			   unsigned int usize)
{
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, usize))
		return -EFAULT;

	/*
	 * If we're handed a smaller struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. old
	 * user-space does not get uncomplete information.
	 */
	if (usize < sizeof(*attr)) {
		unsigned char *addr;
		unsigned char *end;

		addr = (void *)attr + usize;
		end  = (void *)attr + sizeof(*attr);

		for (; addr < end; addr++) {
			if (*addr)
4245
				return -EFBIG;
4246 4247 4248 4249 4250
		}

		attr->size = usize;
	}

4251
	ret = copy_to_user(uattr, attr, attr->size);
4252 4253 4254
	if (ret)
		return -EFAULT;

4255
	return 0;
4256 4257 4258
}

/**
4259
 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4260
 * @pid: the pid in question.
J
Juri Lelli 已提交
4261
 * @uattr: structure containing the extended parameters.
4262
 * @size: sizeof(attr) for fwd/bwd comp.
4263
 * @flags: for future extension.
4264
 */
4265 4266
SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
		unsigned int, size, unsigned int, flags)
4267 4268 4269 4270 4271 4272 4273 4274
{
	struct sched_attr attr = {
		.size = sizeof(struct sched_attr),
	};
	struct task_struct *p;
	int retval;

	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4275
	    size < SCHED_ATTR_SIZE_VER0 || flags)
4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288
		return -EINVAL;

	rcu_read_lock();
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	attr.sched_policy = p->policy;
4289 4290
	if (p->sched_reset_on_fork)
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4291 4292 4293
	if (task_has_dl_policy(p))
		__getparam_dl(p, &attr);
	else if (task_has_rt_policy(p))
4294 4295
		attr.sched_priority = p->rt_priority;
	else
4296
		attr.sched_nice = task_nice(p);
4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307

	rcu_read_unlock();

	retval = sched_read_attr(uattr, &attr, size);
	return retval;

out_unlock:
	rcu_read_unlock();
	return retval;
}

4308
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4309
{
4310
	cpumask_var_t cpus_allowed, new_mask;
4311 4312
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4313

4314
	rcu_read_lock();
L
Linus Torvalds 已提交
4315 4316 4317

	p = find_process_by_pid(pid);
	if (!p) {
4318
		rcu_read_unlock();
L
Linus Torvalds 已提交
4319 4320 4321
		return -ESRCH;
	}

4322
	/* Prevent p going away */
L
Linus Torvalds 已提交
4323
	get_task_struct(p);
4324
	rcu_read_unlock();
L
Linus Torvalds 已提交
4325

4326 4327 4328 4329
	if (p->flags & PF_NO_SETAFFINITY) {
		retval = -EINVAL;
		goto out_put_task;
	}
4330 4331 4332 4333 4334 4335 4336 4337
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4338
	retval = -EPERM;
E
Eric W. Biederman 已提交
4339 4340 4341 4342
	if (!check_same_owner(p)) {
		rcu_read_lock();
		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
			rcu_read_unlock();
4343
			goto out_free_new_mask;
E
Eric W. Biederman 已提交
4344 4345 4346
		}
		rcu_read_unlock();
	}
L
Linus Torvalds 已提交
4347

4348
	retval = security_task_setscheduler(p);
4349
	if (retval)
4350
		goto out_free_new_mask;
4351

4352 4353 4354 4355

	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);

4356 4357 4358 4359 4360 4361 4362
	/*
	 * Since bandwidth control happens on root_domain basis,
	 * if admission test is enabled, we only admit -deadline
	 * tasks allowed to run on all the CPUs in the task's
	 * root_domain.
	 */
#ifdef CONFIG_SMP
4363 4364 4365
	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
		rcu_read_lock();
		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4366
			retval = -EBUSY;
4367
			rcu_read_unlock();
4368
			goto out_free_new_mask;
4369
		}
4370
		rcu_read_unlock();
4371 4372
	}
#endif
P
Peter Zijlstra 已提交
4373
again:
4374
	retval = __set_cpus_allowed_ptr(p, new_mask, true);
L
Linus Torvalds 已提交
4375

P
Paul Menage 已提交
4376
	if (!retval) {
4377 4378
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4379 4380 4381 4382 4383
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4384
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4385 4386 4387
			goto again;
		}
	}
4388
out_free_new_mask:
4389 4390 4391 4392
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4393 4394 4395 4396 4397
	put_task_struct(p);
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4398
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4399
{
4400 4401 4402 4403 4404
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4405 4406 4407 4408 4409 4410 4411 4412
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
4413 4414
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4415
 */
4416 4417
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4418
{
4419
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4420 4421
	int retval;

4422 4423
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4424

4425 4426 4427 4428 4429
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4430 4431
}

4432
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4433
{
4434
	struct task_struct *p;
4435
	unsigned long flags;
L
Linus Torvalds 已提交
4436 4437
	int retval;

4438
	rcu_read_lock();
L
Linus Torvalds 已提交
4439 4440 4441 4442 4443 4444

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4445 4446 4447 4448
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4449
	raw_spin_lock_irqsave(&p->pi_lock, flags);
4450
	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4451
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4452 4453

out_unlock:
4454
	rcu_read_unlock();
L
Linus Torvalds 已提交
4455

4456
	return retval;
L
Linus Torvalds 已提交
4457 4458 4459 4460 4461 4462 4463
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4464 4465
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4466
 */
4467 4468
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4469 4470
{
	int ret;
4471
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4472

A
Anton Blanchard 已提交
4473
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4474 4475
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4476 4477
		return -EINVAL;

4478 4479
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4480

4481 4482
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4483
		size_t retlen = min_t(size_t, len, cpumask_size());
4484 4485

		if (copy_to_user(user_mask_ptr, mask, retlen))
4486 4487
			ret = -EFAULT;
		else
4488
			ret = retlen;
4489 4490
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4491

4492
	return ret;
L
Linus Torvalds 已提交
4493 4494 4495 4496 4497
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4498 4499
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
4500 4501
 *
 * Return: 0.
L
Linus Torvalds 已提交
4502
 */
4503
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4504
{
4505
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4506

4507
	schedstat_inc(rq, yld_count);
4508
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4509 4510 4511 4512 4513 4514

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4515
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4516
	do_raw_spin_unlock(&rq->lock);
4517
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
4518 4519 4520 4521 4522 4523

	schedule();

	return 0;
}

4524
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4525
{
4526
	if (should_resched(0)) {
4527
		preempt_schedule_common();
L
Linus Torvalds 已提交
4528 4529 4530 4531
		return 1;
	}
	return 0;
}
4532
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4533 4534

/*
4535
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4536 4537
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4538
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4539 4540 4541
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4542
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4543
{
4544
	int resched = should_resched(PREEMPT_LOCK_OFFSET);
J
Jan Kara 已提交
4545 4546
	int ret = 0;

4547 4548
	lockdep_assert_held(lock);

4549
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4550
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4551
		if (resched)
4552
			preempt_schedule_common();
N
Nick Piggin 已提交
4553 4554
		else
			cpu_relax();
J
Jan Kara 已提交
4555
		ret = 1;
L
Linus Torvalds 已提交
4556 4557
		spin_lock(lock);
	}
J
Jan Kara 已提交
4558
	return ret;
L
Linus Torvalds 已提交
4559
}
4560
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4561

4562
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4563 4564 4565
{
	BUG_ON(!in_softirq());

4566
	if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4567
		local_bh_enable();
4568
		preempt_schedule_common();
L
Linus Torvalds 已提交
4569 4570 4571 4572 4573
		local_bh_disable();
		return 1;
	}
	return 0;
}
4574
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4575 4576 4577 4578

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
 * 	yield();
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
4597 4598 4599 4600 4601 4602 4603 4604
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

4605 4606 4607 4608
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
4609 4610
 * @p: target task
 * @preempt: whether task preemption is allowed or not
4611 4612 4613 4614
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
4615
 * Return:
4616 4617 4618
 *	true (>0) if we indeed boosted the target task.
 *	false (0) if we failed to boost the target.
 *	-ESRCH if there's no task to yield to.
4619
 */
4620
int __sched yield_to(struct task_struct *p, bool preempt)
4621 4622 4623 4624
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
4625
	int yielded = 0;
4626 4627 4628 4629 4630 4631

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
4632 4633 4634 4635 4636 4637 4638 4639 4640
	/*
	 * If we're the only runnable task on the rq and target rq also
	 * has only one task, there's absolutely no point in yielding.
	 */
	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
		yielded = -ESRCH;
		goto out_irq;
	}

4641
	double_rq_lock(rq, p_rq);
4642
	if (task_rq(p) != p_rq) {
4643 4644 4645 4646 4647
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
4648
		goto out_unlock;
4649 4650

	if (curr->sched_class != p->sched_class)
4651
		goto out_unlock;
4652 4653

	if (task_running(p_rq, p) || p->state)
4654
		goto out_unlock;
4655 4656

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4657
	if (yielded) {
4658
		schedstat_inc(rq, yld_count);
4659 4660 4661 4662 4663
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
4664
			resched_curr(p_rq);
4665
	}
4666

4667
out_unlock:
4668
	double_rq_unlock(rq, p_rq);
4669
out_irq:
4670 4671
	local_irq_restore(flags);

4672
	if (yielded > 0)
4673 4674 4675 4676 4677 4678
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
4679
/*
I
Ingo Molnar 已提交
4680
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4681 4682 4683 4684
 * that process accounting knows that this is a task in IO wait state.
 */
long __sched io_schedule_timeout(long timeout)
{
4685 4686
	int old_iowait = current->in_iowait;
	struct rq *rq;
L
Linus Torvalds 已提交
4687 4688
	long ret;

4689
	current->in_iowait = 1;
4690
	blk_schedule_flush_plug(current);
4691

4692
	delayacct_blkio_start();
4693
	rq = raw_rq();
L
Linus Torvalds 已提交
4694 4695
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
4696
	current->in_iowait = old_iowait;
L
Linus Torvalds 已提交
4697
	atomic_dec(&rq->nr_iowait);
4698
	delayacct_blkio_end();
4699

L
Linus Torvalds 已提交
4700 4701
	return ret;
}
4702
EXPORT_SYMBOL(io_schedule_timeout);
L
Linus Torvalds 已提交
4703 4704 4705 4706 4707

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
4708 4709 4710
 * Return: On success, this syscall returns the maximum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
4711
 */
4712
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
4713 4714 4715 4716 4717 4718 4719 4720
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
4721
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
4722
	case SCHED_NORMAL:
4723
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4724
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4725 4726 4727 4728 4729 4730 4731 4732 4733 4734
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
4735 4736 4737
 * Return: On success, this syscall returns the minimum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
4738
 */
4739
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
4740 4741 4742 4743 4744 4745 4746 4747
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
4748
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
4749
	case SCHED_NORMAL:
4750
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4751
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
4764 4765 4766
 *
 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
 * an error code.
L
Linus Torvalds 已提交
4767
 */
4768
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4769
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
4770
{
4771
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4772
	unsigned int time_slice;
4773 4774
	unsigned long flags;
	struct rq *rq;
4775
	int retval;
L
Linus Torvalds 已提交
4776 4777 4778
	struct timespec t;

	if (pid < 0)
4779
		return -EINVAL;
L
Linus Torvalds 已提交
4780 4781

	retval = -ESRCH;
4782
	rcu_read_lock();
L
Linus Torvalds 已提交
4783 4784 4785 4786 4787 4788 4789 4790
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4791
	rq = task_rq_lock(p, &flags);
4792 4793 4794
	time_slice = 0;
	if (p->sched_class->get_rr_interval)
		time_slice = p->sched_class->get_rr_interval(rq, p);
4795
	task_rq_unlock(rq, p, &flags);
D
Dmitry Adamushko 已提交
4796

4797
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
4798
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4799 4800
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4801

L
Linus Torvalds 已提交
4802
out_unlock:
4803
	rcu_read_unlock();
L
Linus Torvalds 已提交
4804 4805 4806
	return retval;
}

4807
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4808

4809
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4810 4811
{
	unsigned long free = 0;
4812
	int ppid;
4813
	unsigned long state = p->state;
L
Linus Torvalds 已提交
4814

4815 4816
	if (state)
		state = __ffs(state) + 1;
4817
	printk(KERN_INFO "%-15.15s %c", p->comm,
4818
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4819
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4820
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4821
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4822
	else
P
Peter Zijlstra 已提交
4823
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4824 4825
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4826
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4827
	else
P
Peter Zijlstra 已提交
4828
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4829 4830
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
4831
	free = stack_not_used(p);
L
Linus Torvalds 已提交
4832
#endif
4833
	ppid = 0;
4834
	rcu_read_lock();
4835 4836
	if (pid_alive(p))
		ppid = task_pid_nr(rcu_dereference(p->real_parent));
4837
	rcu_read_unlock();
P
Peter Zijlstra 已提交
4838
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4839
		task_pid_nr(p), ppid,
4840
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
4841

4842
	print_worker_info(KERN_INFO, p);
4843
	show_stack(p, NULL);
L
Linus Torvalds 已提交
4844 4845
}

I
Ingo Molnar 已提交
4846
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4847
{
4848
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4849

4850
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
4851 4852
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4853
#else
P
Peter Zijlstra 已提交
4854 4855
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4856
#endif
4857
	rcu_read_lock();
4858
	for_each_process_thread(g, p) {
L
Linus Torvalds 已提交
4859 4860
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
4861
		 * console might take a lot of time:
L
Linus Torvalds 已提交
4862 4863
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4864
		if (!state_filter || (p->state & state_filter))
4865
			sched_show_task(p);
4866
	}
L
Linus Torvalds 已提交
4867

4868 4869
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4870 4871 4872
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
4873
	rcu_read_unlock();
I
Ingo Molnar 已提交
4874 4875 4876
	/*
	 * Only show locks if all tasks are dumped:
	 */
4877
	if (!state_filter)
I
Ingo Molnar 已提交
4878
		debug_show_all_locks();
L
Linus Torvalds 已提交
4879 4880
}

4881
void init_idle_bootup_task(struct task_struct *idle)
I
Ingo Molnar 已提交
4882
{
I
Ingo Molnar 已提交
4883
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4884 4885
}

4886 4887 4888 4889 4890 4891 4892 4893
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4894
void init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4895
{
4896
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4897 4898
	unsigned long flags;

4899 4900
	raw_spin_lock_irqsave(&idle->pi_lock, flags);
	raw_spin_lock(&rq->lock);
4901

4902
	__sched_fork(0, idle);
4903
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
4904 4905
	idle->se.exec_start = sched_clock();

4906
	do_set_cpus_allowed(idle, cpumask_of(cpu));
4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
4918
	__set_task_cpu(idle, cpu);
4919
	rcu_read_unlock();
L
Linus Torvalds 已提交
4920 4921

	rq->curr = rq->idle = idle;
4922
	idle->on_rq = TASK_ON_RQ_QUEUED;
P
Peter Zijlstra 已提交
4923 4924
#if defined(CONFIG_SMP)
	idle->on_cpu = 1;
4925
#endif
4926 4927
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
L
Linus Torvalds 已提交
4928 4929

	/* Set the preempt count _outside_ the spinlocks! */
4930
	init_idle_preempt_count(idle, cpu);
4931

I
Ingo Molnar 已提交
4932 4933 4934 4935
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
4936
	ftrace_graph_init_idle_task(idle, cpu);
4937
	vtime_init_idle(idle, cpu);
4938 4939 4940
#if defined(CONFIG_SMP)
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
4941 4942
}

4943 4944 4945 4946 4947 4948 4949
int cpuset_cpumask_can_shrink(const struct cpumask *cur,
			      const struct cpumask *trial)
{
	int ret = 1, trial_cpus;
	struct dl_bw *cur_dl_b;
	unsigned long flags;

4950 4951 4952
	if (!cpumask_weight(cur))
		return ret;

4953
	rcu_read_lock_sched();
4954 4955 4956 4957 4958 4959 4960 4961
	cur_dl_b = dl_bw_of(cpumask_any(cur));
	trial_cpus = cpumask_weight(trial);

	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
	if (cur_dl_b->bw != -1 &&
	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
		ret = 0;
	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
4962
	rcu_read_unlock_sched();
4963 4964 4965 4966

	return ret;
}

4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990
int task_can_attach(struct task_struct *p,
		    const struct cpumask *cs_cpus_allowed)
{
	int ret = 0;

	/*
	 * Kthreads which disallow setaffinity shouldn't be moved
	 * to a new cpuset; we don't want to change their cpu
	 * affinity and isolating such threads by their set of
	 * allowed nodes is unnecessary.  Thus, cpusets are not
	 * applicable for such threads.  This prevents checking for
	 * success of set_cpus_allowed_ptr() on all attached tasks
	 * before cpus_allowed may be changed.
	 */
	if (p->flags & PF_NO_SETAFFINITY) {
		ret = -EINVAL;
		goto out;
	}

#ifdef CONFIG_SMP
	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
					      cs_cpus_allowed)) {
		unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
							cs_cpus_allowed);
4991
		struct dl_bw *dl_b;
4992 4993 4994 4995
		bool overflow;
		int cpus;
		unsigned long flags;

4996 4997
		rcu_read_lock_sched();
		dl_b = dl_bw_of(dest_cpu);
4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012
		raw_spin_lock_irqsave(&dl_b->lock, flags);
		cpus = dl_bw_cpus(dest_cpu);
		overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
		if (overflow)
			ret = -EBUSY;
		else {
			/*
			 * We reserve space for this task in the destination
			 * root_domain, as we can't fail after this point.
			 * We will free resources in the source root_domain
			 * later on (see set_cpus_allowed_dl()).
			 */
			__dl_add(dl_b, p->dl.dl_bw);
		}
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5013
		rcu_read_unlock_sched();
5014 5015 5016 5017 5018 5019 5020

	}
#endif
out:
	return ret;
}

L
Linus Torvalds 已提交
5021 5022
#ifdef CONFIG_SMP

5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037
#ifdef CONFIG_NUMA_BALANCING
/* Migrate current task p to target_cpu */
int migrate_task_to(struct task_struct *p, int target_cpu)
{
	struct migration_arg arg = { p, target_cpu };
	int curr_cpu = task_cpu(p);

	if (curr_cpu == target_cpu)
		return 0;

	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
		return -EINVAL;

	/* TODO: This is not properly updating schedstats */

5038
	trace_sched_move_numa(p, curr_cpu, target_cpu);
5039 5040
	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
}
5041 5042 5043 5044 5045 5046 5047 5048 5049

/*
 * Requeue a task on a given node and accurately track the number of NUMA
 * tasks on the runqueues
 */
void sched_setnuma(struct task_struct *p, int nid)
{
	struct rq *rq;
	unsigned long flags;
5050
	bool queued, running;
5051 5052

	rq = task_rq_lock(p, &flags);
5053
	queued = task_on_rq_queued(p);
5054 5055
	running = task_current(rq, p);

5056
	if (queued)
5057 5058
		dequeue_task(rq, p, 0);
	if (running)
5059
		put_prev_task(rq, p);
5060 5061 5062 5063 5064

	p->numa_preferred_nid = nid;

	if (running)
		p->sched_class->set_curr_task(rq);
5065
	if (queued)
5066 5067 5068
		enqueue_task(rq, p, 0);
	task_rq_unlock(rq, p, &flags);
}
P
Peter Zijlstra 已提交
5069
#endif /* CONFIG_NUMA_BALANCING */
5070

L
Linus Torvalds 已提交
5071
#ifdef CONFIG_HOTPLUG_CPU
5072
/*
5073 5074
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
5075
 */
5076
void idle_task_exit(void)
L
Linus Torvalds 已提交
5077
{
5078
	struct mm_struct *mm = current->active_mm;
5079

5080
	BUG_ON(cpu_online(smp_processor_id()));
5081

5082
	if (mm != &init_mm) {
5083
		switch_mm(mm, &init_mm, current);
5084 5085
		finish_arch_post_lock_switch();
	}
5086
	mmdrop(mm);
L
Linus Torvalds 已提交
5087 5088 5089
}

/*
5090 5091 5092 5093 5094
 * Since this CPU is going 'away' for a while, fold any nr_active delta
 * we might have. Assumes we're called after migrate_tasks() so that the
 * nr_active count is stable.
 *
 * Also see the comment "Global load-average calculations".
L
Linus Torvalds 已提交
5095
 */
5096
static void calc_load_migrate(struct rq *rq)
L
Linus Torvalds 已提交
5097
{
5098 5099 5100
	long delta = calc_load_fold_active(rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
5101 5102
}

5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118
static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
{
}

static const struct sched_class fake_sched_class = {
	.put_prev_task = put_prev_task_fake,
};

static struct task_struct fake_task = {
	/*
	 * Avoid pull_{rt,dl}_task()
	 */
	.prio = MAX_PRIO + 1,
	.sched_class = &fake_sched_class,
};

5119
/*
5120 5121 5122 5123 5124 5125
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
5126
 */
5127
static void migrate_tasks(struct rq *dead_rq)
L
Linus Torvalds 已提交
5128
{
5129
	struct rq *rq = dead_rq;
5130 5131
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
5132 5133

	/*
5134 5135 5136 5137 5138 5139 5140
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
5141
	 */
5142
	rq->stop = NULL;
5143

5144 5145 5146 5147 5148 5149 5150
	/*
	 * put_prev_task() and pick_next_task() sched
	 * class method both need to have an up-to-date
	 * value of rq->clock[_task]
	 */
	update_rq_clock(rq);

5151
	for (;;) {
5152 5153 5154 5155 5156
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
5157
			break;
5158

5159 5160 5161 5162 5163
		/*
		 * Ensure rq->lock covers the entire task selection
		 * until the migration.
		 */
		lockdep_pin_lock(&rq->lock);
5164
		next = pick_next_task(rq, &fake_task);
5165
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
5166
		next->sched_class->put_prev_task(rq, next);
5167

5168
		/* Find suitable destination for @next, with force if needed. */
5169
		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5170

5171
		lockdep_unpin_lock(&rq->lock);
5172 5173 5174 5175 5176 5177
		rq = __migrate_task(rq, next, dest_cpu);
		if (rq != dead_rq) {
			raw_spin_unlock(&rq->lock);
			rq = dead_rq;
			raw_spin_lock(&rq->lock);
		}
L
Linus Torvalds 已提交
5178
	}
5179

5180
	rq->stop = stop;
5181
}
L
Linus Torvalds 已提交
5182 5183
#endif /* CONFIG_HOTPLUG_CPU */

5184 5185 5186
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5187 5188
	{
		.procname	= "sched_domain",
5189
		.mode		= 0555,
5190
	},
5191
	{}
5192 5193 5194
};

static struct ctl_table sd_ctl_root[] = {
5195 5196
	{
		.procname	= "kernel",
5197
		.mode		= 0555,
5198 5199
		.child		= sd_ctl_dir,
	},
5200
	{}
5201 5202 5203 5204 5205
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5206
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5207 5208 5209 5210

	return entry;
}

5211 5212
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5213
	struct ctl_table *entry;
5214

5215 5216 5217
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5218
	 * will always be set. In the lowest directory the names are
5219 5220 5221
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5222 5223
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5224 5225 5226
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5227 5228 5229 5230 5231

	kfree(*tablep);
	*tablep = NULL;
}

5232
static int min_load_idx = 0;
5233
static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5234

5235
static void
5236
set_table_entry(struct ctl_table *entry,
5237
		const char *procname, void *data, int maxlen,
5238 5239
		umode_t mode, proc_handler *proc_handler,
		bool load_idx)
5240 5241 5242 5243 5244 5245
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
5246 5247 5248 5249 5250

	if (load_idx) {
		entry->extra1 = &min_load_idx;
		entry->extra2 = &max_load_idx;
	}
5251 5252 5253 5254 5255
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5256
	struct ctl_table *table = sd_alloc_ctl_entry(14);
5257

5258 5259 5260
	if (table == NULL)
		return NULL;

5261
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5262
		sizeof(long), 0644, proc_doulongvec_minmax, false);
5263
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5264
		sizeof(long), 0644, proc_doulongvec_minmax, false);
5265
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5266
		sizeof(int), 0644, proc_dointvec_minmax, true);
5267
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5268
		sizeof(int), 0644, proc_dointvec_minmax, true);
5269
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5270
		sizeof(int), 0644, proc_dointvec_minmax, true);
5271
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5272
		sizeof(int), 0644, proc_dointvec_minmax, true);
5273
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5274
		sizeof(int), 0644, proc_dointvec_minmax, true);
5275
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5276
		sizeof(int), 0644, proc_dointvec_minmax, false);
5277
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5278
		sizeof(int), 0644, proc_dointvec_minmax, false);
5279
	set_table_entry(&table[9], "cache_nice_tries",
5280
		&sd->cache_nice_tries,
5281
		sizeof(int), 0644, proc_dointvec_minmax, false);
5282
	set_table_entry(&table[10], "flags", &sd->flags,
5283
		sizeof(int), 0644, proc_dointvec_minmax, false);
5284 5285 5286 5287
	set_table_entry(&table[11], "max_newidle_lb_cost",
		&sd->max_newidle_lb_cost,
		sizeof(long), 0644, proc_doulongvec_minmax, false);
	set_table_entry(&table[12], "name", sd->name,
5288
		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5289
	/* &table[13] is terminator */
5290 5291 5292 5293

	return table;
}

5294
static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5295 5296 5297 5298 5299 5300 5301 5302 5303
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5304 5305
	if (table == NULL)
		return NULL;
5306 5307 5308 5309 5310

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5311
		entry->mode = 0555;
5312 5313 5314 5315 5316 5317 5318 5319
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5320
static void register_sched_domain_sysctl(void)
5321
{
5322
	int i, cpu_num = num_possible_cpus();
5323 5324 5325
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5326 5327 5328
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5329 5330 5331
	if (entry == NULL)
		return;

5332
	for_each_possible_cpu(i) {
5333 5334
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5335
		entry->mode = 0555;
5336
		entry->child = sd_alloc_ctl_cpu_table(i);
5337
		entry++;
5338
	}
5339 5340

	WARN_ON(sd_sysctl_header);
5341 5342
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5343

5344
/* may be called multiple times per register */
5345 5346
static void unregister_sched_domain_sysctl(void)
{
5347
	unregister_sysctl_table(sd_sysctl_header);
5348
	sd_sysctl_header = NULL;
5349 5350
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5351
}
5352
#else
5353 5354 5355 5356
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5357 5358
{
}
P
Peter Zijlstra 已提交
5359
#endif /* CONFIG_SCHED_DEBUG && CONFIG_SYSCTL */
5360

5361 5362 5363 5364 5365
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5366
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5386
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5387 5388 5389 5390
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5391 5392 5393 5394
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5395
static int
5396
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5397
{
5398
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5399
	unsigned long flags;
5400
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5401

5402
	switch (action & ~CPU_TASKS_FROZEN) {
5403

L
Linus Torvalds 已提交
5404
	case CPU_UP_PREPARE:
5405
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5406
		break;
5407

L
Linus Torvalds 已提交
5408
	case CPU_ONLINE:
5409
		/* Update our root-domain */
5410
		raw_spin_lock_irqsave(&rq->lock, flags);
5411
		if (rq->rd) {
5412
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5413 5414

			set_rq_online(rq);
5415
		}
5416
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5417
		break;
5418

L
Linus Torvalds 已提交
5419
#ifdef CONFIG_HOTPLUG_CPU
5420
	case CPU_DYING:
5421
		sched_ttwu_pending();
G
Gregory Haskins 已提交
5422
		/* Update our root-domain */
5423
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5424
		if (rq->rd) {
5425
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5426
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5427
		}
5428
		migrate_tasks(rq);
5429
		BUG_ON(rq->nr_running != 1); /* the migration thread */
5430
		raw_spin_unlock_irqrestore(&rq->lock, flags);
5431
		break;
5432

5433
	case CPU_DEAD:
5434
		calc_load_migrate(rq);
G
Gregory Haskins 已提交
5435
		break;
L
Linus Torvalds 已提交
5436 5437
#endif
	}
5438 5439 5440

	update_max_interval();

L
Linus Torvalds 已提交
5441 5442 5443
	return NOTIFY_OK;
}

5444 5445 5446
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5447
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5448
 */
5449
static struct notifier_block migration_notifier = {
L
Linus Torvalds 已提交
5450
	.notifier_call = migration_call,
5451
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
5452 5453
};

5454
static void set_cpu_rq_start_time(void)
5455 5456 5457 5458 5459 5460
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
	rq->age_stamp = sched_clock_cpu(cpu);
}

5461
static int sched_cpu_active(struct notifier_block *nfb,
5462 5463 5464
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
5465 5466 5467
	case CPU_STARTING:
		set_cpu_rq_start_time();
		return NOTIFY_OK;
5468 5469 5470 5471 5472 5473 5474 5475
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

5476
static int sched_cpu_inactive(struct notifier_block *nfb,
5477 5478 5479 5480
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
5481
		set_cpu_active((long)hcpu, false);
5482
		return NOTIFY_OK;
5483 5484
	default:
		return NOTIFY_DONE;
5485 5486 5487
	}
}

5488
static int __init migration_init(void)
L
Linus Torvalds 已提交
5489 5490
{
	void *cpu = (void *)(long)smp_processor_id();
5491
	int err;
5492

5493
	/* Initialize migration for the boot CPU */
5494 5495
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5496 5497
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5498

5499 5500 5501 5502
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

5503
	return 0;
L
Linus Torvalds 已提交
5504
}
5505
early_initcall(migration_init);
5506

5507 5508
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

5509
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5510

5511
static __read_mostly int sched_debug_enabled;
5512

5513
static int __init sched_debug_setup(char *str)
5514
{
5515
	sched_debug_enabled = 1;
5516 5517 5518

	return 0;
}
5519 5520 5521 5522 5523 5524
early_param("sched_debug", sched_debug_setup);

static inline bool sched_debug(void)
{
	return sched_debug_enabled;
}
5525

5526
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5527
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5528
{
I
Ingo Molnar 已提交
5529
	struct sched_group *group = sd->groups;
L
Linus Torvalds 已提交
5530

5531
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5532 5533 5534 5535

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5536
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5537
		if (sd->parent)
P
Peter Zijlstra 已提交
5538 5539
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5540
		return -1;
N
Nick Piggin 已提交
5541 5542
	}

5543 5544
	printk(KERN_CONT "span %*pbl level %s\n",
	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
I
Ingo Molnar 已提交
5545

5546
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5547 5548
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5549
	}
5550
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5551 5552
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5553
	}
L
Linus Torvalds 已提交
5554

I
Ingo Molnar 已提交
5555
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5556
	do {
I
Ingo Molnar 已提交
5557
		if (!group) {
P
Peter Zijlstra 已提交
5558 5559
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5560 5561 5562
			break;
		}

5563
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5564 5565
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
5566 5567
			break;
		}
L
Linus Torvalds 已提交
5568

5569 5570
		if (!(sd->flags & SD_OVERLAP) &&
		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5571 5572
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
5573 5574
			break;
		}
L
Linus Torvalds 已提交
5575

5576
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
5577

5578 5579
		printk(KERN_CONT " %*pbl",
		       cpumask_pr_args(sched_group_cpus(group)));
5580
		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5581 5582
			printk(KERN_CONT " (cpu_capacity = %d)",
				group->sgc->capacity);
5583
		}
L
Linus Torvalds 已提交
5584

I
Ingo Molnar 已提交
5585 5586
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
5587
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5588

5589
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
5590
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5591

5592 5593
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
5594 5595
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
5596 5597
	return 0;
}
L
Linus Torvalds 已提交
5598

I
Ingo Molnar 已提交
5599 5600 5601
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5602

5603
	if (!sched_debug_enabled)
5604 5605
		return;

I
Ingo Molnar 已提交
5606 5607 5608 5609
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5610

I
Ingo Molnar 已提交
5611 5612 5613
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
5614
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
I
Ingo Molnar 已提交
5615
			break;
L
Linus Torvalds 已提交
5616 5617
		level++;
		sd = sd->parent;
5618
		if (!sd)
I
Ingo Molnar 已提交
5619 5620
			break;
	}
L
Linus Torvalds 已提交
5621
}
5622
#else /* !CONFIG_SCHED_DEBUG */
5623
# define sched_domain_debug(sd, cpu) do { } while (0)
5624 5625 5626 5627
static inline bool sched_debug(void)
{
	return false;
}
5628
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
5629

5630
static int sd_degenerate(struct sched_domain *sd)
5631
{
5632
	if (cpumask_weight(sched_domain_span(sd)) == 1)
5633 5634 5635 5636 5637 5638
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5639
			 SD_BALANCE_EXEC |
5640
			 SD_SHARE_CPUCAPACITY |
5641 5642
			 SD_SHARE_PKG_RESOURCES |
			 SD_SHARE_POWERDOMAIN)) {
5643 5644 5645 5646 5647
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
5648
	if (sd->flags & (SD_WAKE_AFFINE))
5649 5650 5651 5652 5653
		return 0;

	return 1;
}

5654 5655
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5656 5657 5658 5659 5660 5661
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

5662
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5663 5664 5665 5666 5667 5668 5669
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5670
				SD_BALANCE_EXEC |
5671
				SD_SHARE_CPUCAPACITY |
5672
				SD_SHARE_PKG_RESOURCES |
5673 5674
				SD_PREFER_SIBLING |
				SD_SHARE_POWERDOMAIN);
5675 5676
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
5677 5678 5679 5680 5681 5682 5683
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

5684
static void free_rootdomain(struct rcu_head *rcu)
5685
{
5686
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5687

5688
	cpupri_cleanup(&rd->cpupri);
5689
	cpudl_cleanup(&rd->cpudl);
5690
	free_cpumask_var(rd->dlo_mask);
5691 5692 5693 5694 5695 5696
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
5697 5698
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
5699
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
5700 5701
	unsigned long flags;

5702
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5703 5704

	if (rq->rd) {
I
Ingo Molnar 已提交
5705
		old_rd = rq->rd;
G
Gregory Haskins 已提交
5706

5707
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5708
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5709

5710
		cpumask_clear_cpu(rq->cpu, old_rd->span);
5711

I
Ingo Molnar 已提交
5712
		/*
5713
		 * If we dont want to free the old_rd yet then
I
Ingo Molnar 已提交
5714 5715 5716 5717 5718
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
5719 5720 5721 5722 5723
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

5724
	cpumask_set_cpu(rq->cpu, rd->span);
5725
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5726
		set_rq_online(rq);
G
Gregory Haskins 已提交
5727

5728
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
5729 5730

	if (old_rd)
5731
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
5732 5733
}

5734
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
5735 5736 5737
{
	memset(rd, 0, sizeof(*rd));

5738
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5739
		goto out;
5740
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5741
		goto free_span;
5742
	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5743
		goto free_online;
5744 5745
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
		goto free_dlo_mask;
5746

5747
	init_dl_bw(&rd->dl_bw);
5748 5749
	if (cpudl_init(&rd->cpudl) != 0)
		goto free_dlo_mask;
5750

5751
	if (cpupri_init(&rd->cpupri) != 0)
5752
		goto free_rto_mask;
5753
	return 0;
5754

5755 5756
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
5757 5758
free_dlo_mask:
	free_cpumask_var(rd->dlo_mask);
5759 5760 5761 5762
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
5763
out:
5764
	return -ENOMEM;
G
Gregory Haskins 已提交
5765 5766
}

5767 5768 5769 5770 5771 5772
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
struct root_domain def_root_domain;

G
Gregory Haskins 已提交
5773 5774
static void init_defrootdomain(void)
{
5775
	init_rootdomain(&def_root_domain);
5776

G
Gregory Haskins 已提交
5777 5778 5779
	atomic_set(&def_root_domain.refcount, 1);
}

5780
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
5781 5782 5783 5784 5785 5786 5787
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

5788
	if (init_rootdomain(rd) != 0) {
5789 5790 5791
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
5792 5793 5794 5795

	return rd;
}

5796
static void free_sched_groups(struct sched_group *sg, int free_sgc)
5797 5798 5799 5800 5801 5802 5803 5804 5805 5806
{
	struct sched_group *tmp, *first;

	if (!sg)
		return;

	first = sg;
	do {
		tmp = sg->next;

5807 5808
		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
			kfree(sg->sgc);
5809 5810 5811 5812 5813 5814

		kfree(sg);
		sg = tmp;
	} while (sg != first);
}

5815 5816 5817
static void free_sched_domain(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5818 5819 5820 5821 5822 5823 5824 5825

	/*
	 * If its an overlapping domain it has private groups, iterate and
	 * nuke them all.
	 */
	if (sd->flags & SD_OVERLAP) {
		free_sched_groups(sd->groups, 1);
	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5826
		kfree(sd->groups->sgc);
5827
		kfree(sd->groups);
5828
	}
5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842
	kfree(sd);
}

static void destroy_sched_domain(struct sched_domain *sd, int cpu)
{
	call_rcu(&sd->rcu, free_sched_domain);
}

static void destroy_sched_domains(struct sched_domain *sd, int cpu)
{
	for (; sd; sd = sd->parent)
		destroy_sched_domain(sd, cpu);
}

5843 5844 5845 5846 5847 5848 5849
/*
 * Keep a special pointer to the highest sched_domain that has
 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 * allows us to avoid some pointer chasing select_idle_sibling().
 *
 * Also keep a unique ID per domain (we use the first cpu number in
 * the cpumask of the domain), this allows us to quickly tell if
5850
 * two cpus are in the same cache domain, see cpus_share_cache().
5851 5852
 */
DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5853
DEFINE_PER_CPU(int, sd_llc_size);
5854
DEFINE_PER_CPU(int, sd_llc_id);
5855
DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5856 5857
DEFINE_PER_CPU(struct sched_domain *, sd_busy);
DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5858 5859 5860 5861

static void update_top_cache_domain(int cpu)
{
	struct sched_domain *sd;
5862
	struct sched_domain *busy_sd = NULL;
5863
	int id = cpu;
5864
	int size = 1;
5865 5866

	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5867
	if (sd) {
5868
		id = cpumask_first(sched_domain_span(sd));
5869
		size = cpumask_weight(sched_domain_span(sd));
5870
		busy_sd = sd->parent; /* sd_busy */
5871
	}
5872
	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5873 5874

	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5875
	per_cpu(sd_llc_size, cpu) = size;
5876
	per_cpu(sd_llc_id, cpu) = id;
5877 5878 5879

	sd = lowest_flag_domain(cpu, SD_NUMA);
	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5880 5881 5882

	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5883 5884
}

L
Linus Torvalds 已提交
5885
/*
I
Ingo Molnar 已提交
5886
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
5887 5888
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
5889 5890
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
5891
{
5892
	struct rq *rq = cpu_rq(cpu);
5893 5894 5895
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
5896
	for (tmp = sd; tmp; ) {
5897 5898 5899
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5900

5901
		if (sd_parent_degenerate(tmp, parent)) {
5902
			tmp->parent = parent->parent;
5903 5904
			if (parent->parent)
				parent->parent->child = tmp;
5905 5906 5907 5908 5909 5910 5911
			/*
			 * Transfer SD_PREFER_SIBLING down in case of a
			 * degenerate parent; the spans match for this
			 * so the property transfers.
			 */
			if (parent->flags & SD_PREFER_SIBLING)
				tmp->flags |= SD_PREFER_SIBLING;
5912
			destroy_sched_domain(parent, cpu);
5913 5914
		} else
			tmp = tmp->parent;
5915 5916
	}

5917
	if (sd && sd_degenerate(sd)) {
5918
		tmp = sd;
5919
		sd = sd->parent;
5920
		destroy_sched_domain(tmp, cpu);
5921 5922 5923
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5924

5925
	sched_domain_debug(sd, cpu);
L
Linus Torvalds 已提交
5926

G
Gregory Haskins 已提交
5927
	rq_attach_root(rq, rd);
5928
	tmp = rq->sd;
N
Nick Piggin 已提交
5929
	rcu_assign_pointer(rq->sd, sd);
5930
	destroy_sched_domains(tmp, cpu);
5931 5932

	update_top_cache_domain(cpu);
L
Linus Torvalds 已提交
5933 5934 5935 5936 5937
}

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
5938
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
5939
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
5940 5941 5942
	return 1;
}

I
Ingo Molnar 已提交
5943
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5944

5945
struct s_data {
5946
	struct sched_domain ** __percpu sd;
5947 5948 5949
	struct root_domain	*rd;
};

5950 5951
enum s_alloc {
	sa_rootdomain,
5952
	sa_sd,
5953
	sa_sd_storage,
5954 5955 5956
	sa_none,
};

P
Peter Zijlstra 已提交
5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994
/*
 * Build an iteration mask that can exclude certain CPUs from the upwards
 * domain traversal.
 *
 * Asymmetric node setups can result in situations where the domain tree is of
 * unequal depth, make sure to skip domains that already cover the entire
 * range.
 *
 * In that case build_sched_domains() will have terminated the iteration early
 * and our sibling sd spans will be empty. Domains should always include the
 * cpu they're built on, so check that.
 *
 */
static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
{
	const struct cpumask *span = sched_domain_span(sd);
	struct sd_data *sdd = sd->private;
	struct sched_domain *sibling;
	int i;

	for_each_cpu(i, span) {
		sibling = *per_cpu_ptr(sdd->sd, i);
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
			continue;

		cpumask_set_cpu(i, sched_group_mask(sg));
	}
}

/*
 * Return the canonical balance cpu for this group, this is the first cpu
 * of this group that's also in the iteration mask.
 */
int group_balance_cpu(struct sched_group *sg)
{
	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
}

5995 5996 5997 5998 5999 6000 6001
static int
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered = sched_domains_tmpmask;
	struct sd_data *sdd = sd->private;
6002
	struct sched_domain *sibling;
6003 6004 6005 6006 6007 6008 6009 6010 6011 6012
	int i;

	cpumask_clear(covered);

	for_each_cpu(i, span) {
		struct cpumask *sg_span;

		if (cpumask_test_cpu(i, covered))
			continue;

6013
		sibling = *per_cpu_ptr(sdd->sd, i);
P
Peter Zijlstra 已提交
6014 6015

		/* See the comment near build_group_mask(). */
6016
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
P
Peter Zijlstra 已提交
6017 6018
			continue;

6019
		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6020
				GFP_KERNEL, cpu_to_node(cpu));
6021 6022 6023 6024 6025

		if (!sg)
			goto fail;

		sg_span = sched_group_cpus(sg);
6026 6027 6028
		if (sibling->child)
			cpumask_copy(sg_span, sched_domain_span(sibling->child));
		else
6029 6030 6031 6032
			cpumask_set_cpu(i, sg_span);

		cpumask_or(covered, covered, sg_span);

6033 6034
		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
		if (atomic_inc_return(&sg->sgc->ref) == 1)
P
Peter Zijlstra 已提交
6035 6036
			build_group_mask(sd, sg);

6037
		/*
6038
		 * Initialize sgc->capacity such that even if we mess up the
6039 6040 6041
		 * domains and no possible iteration will get us here, we won't
		 * die on a /0 trap.
		 */
6042
		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6043

P
Peter Zijlstra 已提交
6044 6045 6046 6047 6048
		/*
		 * Make sure the first group of this domain contains the
		 * canonical balance cpu. Otherwise the sched_domain iteration
		 * breaks. See update_sg_lb_stats().
		 */
P
Peter Zijlstra 已提交
6049
		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
P
Peter Zijlstra 已提交
6050
		    group_balance_cpu(sg) == cpu)
6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069
			groups = sg;

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
		last->next = first;
	}
	sd->groups = groups;

	return 0;

fail:
	free_sched_groups(first, 0);

	return -ENOMEM;
}

6070
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
6071
{
6072 6073
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
6074

6075 6076
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
6077

6078
	if (sg) {
6079
		*sg = *per_cpu_ptr(sdd->sg, cpu);
6080 6081
		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6082
	}
6083 6084

	return cpu;
6085 6086
}

6087
/*
6088 6089
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
6090
 * and ->cpu_capacity to 0.
6091 6092
 *
 * Assumes the sched_domain tree is fully constructed
6093
 */
6094 6095
static int
build_sched_groups(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
6096
{
6097 6098 6099
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
6100
	struct cpumask *covered;
6101
	int i;
6102

6103 6104 6105
	get_group(cpu, sdd, &sd->groups);
	atomic_inc(&sd->groups->ref);

6106
	if (cpu != cpumask_first(span))
6107 6108
		return 0;

6109 6110 6111
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

6112
	cpumask_clear(covered);
6113

6114 6115
	for_each_cpu(i, span) {
		struct sched_group *sg;
6116
		int group, j;
6117

6118 6119
		if (cpumask_test_cpu(i, covered))
			continue;
6120

6121
		group = get_group(i, sdd, &sg);
P
Peter Zijlstra 已提交
6122
		cpumask_setall(sched_group_mask(sg));
6123

6124 6125 6126
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
6127

6128 6129 6130
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
6131

6132 6133 6134 6135 6136 6137 6138
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
6139 6140

	return 0;
6141
}
6142

6143
/*
6144
 * Initialize sched groups cpu_capacity.
6145
 *
6146
 * cpu_capacity indicates the capacity of sched group, which is used while
6147
 * distributing the load between different sched groups in a sched domain.
6148 6149 6150 6151
 * Typically cpu_capacity for all the groups in a sched domain will be same
 * unless there are asymmetries in the topology. If there are asymmetries,
 * group having more cpu_capacity will pickup more load compared to the
 * group having less cpu_capacity.
6152
 */
6153
static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6154
{
6155
	struct sched_group *sg = sd->groups;
6156

6157
	WARN_ON(!sg);
6158 6159 6160 6161 6162

	do {
		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
		sg = sg->next;
	} while (sg != sd->groups);
6163

P
Peter Zijlstra 已提交
6164
	if (cpu != group_balance_cpu(sg))
6165
		return;
6166

6167 6168
	update_group_capacity(sd, cpu);
	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6169 6170
}

6171 6172 6173 6174 6175
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

6176
static int default_relax_domain_level = -1;
6177
int sched_domain_level_max;
6178 6179 6180

static int __init setup_relax_domain_level(char *str)
{
6181 6182
	if (kstrtoint(str, 0, &default_relax_domain_level))
		pr_warn("Unable to set relax_domain_level\n");
6183

6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
6202
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6203 6204
	} else {
		/* turn on idle balance on this domain */
6205
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6206 6207 6208
	}
}

6209 6210 6211
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

6212 6213 6214 6215 6216
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
6217 6218
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
6219 6220
	case sa_sd:
		free_percpu(d->sd); /* fall through */
6221
	case sa_sd_storage:
6222
		__sdt_free(cpu_map); /* fall through */
6223 6224 6225 6226
	case sa_none:
		break;
	}
}
6227

6228 6229 6230
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
6231 6232
	memset(d, 0, sizeof(*d));

6233 6234
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
6235 6236 6237
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
6238
	d->rd = alloc_rootdomain();
6239
	if (!d->rd)
6240
		return sa_sd;
6241 6242
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
6243

6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

6256
	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6257
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6258

6259 6260
	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6261 6262
}

6263 6264
#ifdef CONFIG_NUMA
static int sched_domains_numa_levels;
6265
enum numa_topology_type sched_numa_topology_type;
6266
static int *sched_domains_numa_distance;
6267
int sched_max_numa_distance;
6268 6269
static struct cpumask ***sched_domains_numa_masks;
static int sched_domains_curr_level;
6270
#endif
6271

6272 6273 6274
/*
 * SD_flags allowed in topology descriptions.
 *
6275
 * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6276 6277
 * SD_SHARE_PKG_RESOURCES - describes shared caches
 * SD_NUMA                - describes NUMA topologies
6278
 * SD_SHARE_POWERDOMAIN   - describes shared power domain
6279 6280 6281 6282 6283
 *
 * Odd one out:
 * SD_ASYM_PACKING        - describes SMT quirks
 */
#define TOPOLOGY_SD_FLAGS		\
6284
	(SD_SHARE_CPUCAPACITY |		\
6285 6286
	 SD_SHARE_PKG_RESOURCES |	\
	 SD_NUMA |			\
6287 6288
	 SD_ASYM_PACKING |		\
	 SD_SHARE_POWERDOMAIN)
6289 6290

static struct sched_domain *
6291
sd_init(struct sched_domain_topology_level *tl, int cpu)
6292 6293
{
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309
	int sd_weight, sd_flags = 0;

#ifdef CONFIG_NUMA
	/*
	 * Ugly hack to pass state to sd_numa_mask()...
	 */
	sched_domains_curr_level = tl->numa_level;
#endif

	sd_weight = cpumask_weight(tl->mask(cpu));

	if (tl->sd_flags)
		sd_flags = (*tl->sd_flags)();
	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
			"wrong sd_flags in topology description\n"))
		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6310 6311 6312 6313 6314

	*sd = (struct sched_domain){
		.min_interval		= sd_weight,
		.max_interval		= 2*sd_weight,
		.busy_factor		= 32,
6315
		.imbalance_pct		= 125,
6316 6317 6318 6319

		.cache_nice_tries	= 0,
		.busy_idx		= 0,
		.idle_idx		= 0,
6320 6321 6322 6323 6324 6325
		.newidle_idx		= 0,
		.wake_idx		= 0,
		.forkexec_idx		= 0,

		.flags			= 1*SD_LOAD_BALANCE
					| 1*SD_BALANCE_NEWIDLE
6326 6327
					| 1*SD_BALANCE_EXEC
					| 1*SD_BALANCE_FORK
6328
					| 0*SD_BALANCE_WAKE
6329
					| 1*SD_WAKE_AFFINE
6330
					| 0*SD_SHARE_CPUCAPACITY
6331
					| 0*SD_SHARE_PKG_RESOURCES
6332
					| 0*SD_SERIALIZE
6333
					| 0*SD_PREFER_SIBLING
6334 6335
					| 0*SD_NUMA
					| sd_flags
6336
					,
6337

6338 6339
		.last_balance		= jiffies,
		.balance_interval	= sd_weight,
6340
		.smt_gain		= 0,
6341 6342
		.max_newidle_lb_cost	= 0,
		.next_decay_max_lb_cost	= jiffies,
6343 6344 6345
#ifdef CONFIG_SCHED_DEBUG
		.name			= tl->name,
#endif
6346 6347 6348
	};

	/*
6349
	 * Convert topological properties into behaviour.
6350
	 */
6351

6352
	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6353
		sd->flags |= SD_PREFER_SIBLING;
6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383
		sd->imbalance_pct = 110;
		sd->smt_gain = 1178; /* ~15% */

	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
		sd->imbalance_pct = 117;
		sd->cache_nice_tries = 1;
		sd->busy_idx = 2;

#ifdef CONFIG_NUMA
	} else if (sd->flags & SD_NUMA) {
		sd->cache_nice_tries = 2;
		sd->busy_idx = 3;
		sd->idle_idx = 2;

		sd->flags |= SD_SERIALIZE;
		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
			sd->flags &= ~(SD_BALANCE_EXEC |
				       SD_BALANCE_FORK |
				       SD_WAKE_AFFINE);
		}

#endif
	} else {
		sd->flags |= SD_PREFER_SIBLING;
		sd->cache_nice_tries = 1;
		sd->busy_idx = 2;
		sd->idle_idx = 1;
	}

	sd->private = &tl->data;
6384 6385 6386 6387

	return sd;
}

6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413
/*
 * Topology list, bottom-up.
 */
static struct sched_domain_topology_level default_topology[] = {
#ifdef CONFIG_SCHED_SMT
	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
#endif
#ifdef CONFIG_SCHED_MC
	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
#endif
	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
	{ NULL, },
};

struct sched_domain_topology_level *sched_domain_topology = default_topology;

#define for_each_sd_topology(tl)			\
	for (tl = sched_domain_topology; tl->mask; tl++)

void set_sched_topology(struct sched_domain_topology_level *tl)
{
	sched_domain_topology = tl;
}

#ifdef CONFIG_NUMA

6414 6415 6416 6417 6418
static const struct cpumask *sd_numa_mask(int cpu)
{
	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
}

6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439
static void sched_numa_warn(const char *str)
{
	static int done = false;
	int i,j;

	if (done)
		return;

	done = true;

	printk(KERN_WARNING "ERROR: %s\n\n", str);

	for (i = 0; i < nr_node_ids; i++) {
		printk(KERN_WARNING "  ");
		for (j = 0; j < nr_node_ids; j++)
			printk(KERN_CONT "%02d ", node_distance(i,j));
		printk(KERN_CONT "\n");
	}
	printk(KERN_WARNING "\n");
}

6440
bool find_numa_distance(int distance)
6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454
{
	int i;

	if (distance == node_distance(0, 0))
		return true;

	for (i = 0; i < sched_domains_numa_levels; i++) {
		if (sched_domains_numa_distance[i] == distance)
			return true;
	}

	return false;
}

6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479
/*
 * A system can have three types of NUMA topology:
 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
 *
 * The difference between a glueless mesh topology and a backplane
 * topology lies in whether communication between not directly
 * connected nodes goes through intermediary nodes (where programs
 * could run), or through backplane controllers. This affects
 * placement of programs.
 *
 * The type of topology can be discerned with the following tests:
 * - If the maximum distance between any nodes is 1 hop, the system
 *   is directly connected.
 * - If for two nodes A and B, located N > 1 hops away from each other,
 *   there is an intermediary node C, which is < N hops away from both
 *   nodes A and B, the system is a glueless mesh.
 */
static void init_numa_topology_type(void)
{
	int a, b, c, n;

	n = sched_max_numa_distance;

6480
	if (sched_domains_numa_levels <= 1) {
6481
		sched_numa_topology_type = NUMA_DIRECT;
6482 6483
		return;
	}
6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506

	for_each_online_node(a) {
		for_each_online_node(b) {
			/* Find two nodes furthest removed from each other. */
			if (node_distance(a, b) < n)
				continue;

			/* Is there an intermediary node between a and b? */
			for_each_online_node(c) {
				if (node_distance(a, c) < n &&
				    node_distance(b, c) < n) {
					sched_numa_topology_type =
							NUMA_GLUELESS_MESH;
					return;
				}
			}

			sched_numa_topology_type = NUMA_BACKPLANE;
			return;
		}
	}
}

6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527
static void sched_init_numa(void)
{
	int next_distance, curr_distance = node_distance(0, 0);
	struct sched_domain_topology_level *tl;
	int level = 0;
	int i, j, k;

	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
	if (!sched_domains_numa_distance)
		return;

	/*
	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
	 * unique distances in the node_distance() table.
	 *
	 * Assumes node_distance(0,j) includes all distances in
	 * node_distance(i,j) in order to avoid cubic time.
	 */
	next_distance = curr_distance;
	for (i = 0; i < nr_node_ids; i++) {
		for (j = 0; j < nr_node_ids; j++) {
6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551
			for (k = 0; k < nr_node_ids; k++) {
				int distance = node_distance(i, k);

				if (distance > curr_distance &&
				    (distance < next_distance ||
				     next_distance == curr_distance))
					next_distance = distance;

				/*
				 * While not a strong assumption it would be nice to know
				 * about cases where if node A is connected to B, B is not
				 * equally connected to A.
				 */
				if (sched_debug() && node_distance(k, i) != distance)
					sched_numa_warn("Node-distance not symmetric");

				if (sched_debug() && i && !find_numa_distance(distance))
					sched_numa_warn("Node-0 not representative");
			}
			if (next_distance != curr_distance) {
				sched_domains_numa_distance[level++] = next_distance;
				sched_domains_numa_levels = level;
				curr_distance = next_distance;
			} else break;
6552
		}
6553 6554 6555 6556 6557 6558

		/*
		 * In case of sched_debug() we verify the above assumption.
		 */
		if (!sched_debug())
			break;
6559
	}
6560 6561 6562 6563

	if (!level)
		return;

6564 6565 6566 6567
	/*
	 * 'level' contains the number of unique distances, excluding the
	 * identity distance node_distance(i,i).
	 *
V
Viresh Kumar 已提交
6568
	 * The sched_domains_numa_distance[] array includes the actual distance
6569 6570 6571
	 * numbers.
	 */

6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582
	/*
	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
	 * the array will contain less then 'level' members. This could be
	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
	 * in other functions.
	 *
	 * We reset it to 'level' at the end of this function.
	 */
	sched_domains_numa_levels = 0;

6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597
	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
	if (!sched_domains_numa_masks)
		return;

	/*
	 * Now for each level, construct a mask per node which contains all
	 * cpus of nodes that are that many hops away from us.
	 */
	for (i = 0; i < level; i++) {
		sched_domains_numa_masks[i] =
			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
		if (!sched_domains_numa_masks[i])
			return;

		for (j = 0; j < nr_node_ids; j++) {
6598
			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6599 6600 6601 6602 6603 6604
			if (!mask)
				return;

			sched_domains_numa_masks[i][j] = mask;

			for (k = 0; k < nr_node_ids; k++) {
6605
				if (node_distance(j, k) > sched_domains_numa_distance[i])
6606 6607 6608 6609 6610 6611 6612
					continue;

				cpumask_or(mask, mask, cpumask_of_node(k));
			}
		}
	}

6613 6614 6615
	/* Compute default topology size */
	for (i = 0; sched_domain_topology[i].mask; i++);

6616
	tl = kzalloc((i + level + 1) *
6617 6618 6619 6620 6621 6622 6623
			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
	if (!tl)
		return;

	/*
	 * Copy the default topology bits..
	 */
6624 6625
	for (i = 0; sched_domain_topology[i].mask; i++)
		tl[i] = sched_domain_topology[i];
6626 6627 6628 6629 6630 6631 6632

	/*
	 * .. and append 'j' levels of NUMA goodness.
	 */
	for (j = 0; j < level; i++, j++) {
		tl[i] = (struct sched_domain_topology_level){
			.mask = sd_numa_mask,
6633
			.sd_flags = cpu_numa_flags,
6634 6635
			.flags = SDTL_OVERLAP,
			.numa_level = j,
6636
			SD_INIT_NAME(NUMA)
6637 6638 6639 6640
		};
	}

	sched_domain_topology = tl;
6641 6642

	sched_domains_numa_levels = level;
6643
	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6644 6645

	init_numa_topology_type();
6646
}
6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693

static void sched_domains_numa_masks_set(int cpu)
{
	int i, j;
	int node = cpu_to_node(cpu);

	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++) {
			if (node_distance(j, node) <= sched_domains_numa_distance[i])
				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
		}
	}
}

static void sched_domains_numa_masks_clear(int cpu)
{
	int i, j;
	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++)
			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
	}
}

/*
 * Update sched_domains_numa_masks[level][node] array when new cpus
 * are onlined.
 */
static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	int cpu = (long)hcpu;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
		sched_domains_numa_masks_set(cpu);
		break;

	case CPU_DEAD:
		sched_domains_numa_masks_clear(cpu);
		break;

	default:
		return NOTIFY_DONE;
	}

	return NOTIFY_OK;
6694 6695 6696 6697 6698
}
#else
static inline void sched_init_numa(void)
{
}
6699 6700 6701 6702 6703 6704 6705

static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	return 0;
}
6706 6707
#endif /* CONFIG_NUMA */

6708 6709 6710 6711 6712
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

6713
	for_each_sd_topology(tl) {
6714 6715 6716 6717 6718 6719 6720 6721 6722 6723
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

6724 6725
		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
		if (!sdd->sgc)
6726 6727
			return -ENOMEM;

6728 6729 6730
		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_group *sg;
6731
			struct sched_group_capacity *sgc;
6732

P
Peter Zijlstra 已提交
6733
			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

6745 6746
			sg->next = sg;

6747
			*per_cpu_ptr(sdd->sg, j) = sg;
6748

6749
			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6750
					GFP_KERNEL, cpu_to_node(j));
6751
			if (!sgc)
6752 6753
				return -ENOMEM;

6754
			*per_cpu_ptr(sdd->sgc, j) = sgc;
6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

6766
	for_each_sd_topology(tl) {
6767 6768 6769
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780
			struct sched_domain *sd;

			if (sdd->sd) {
				sd = *per_cpu_ptr(sdd->sd, j);
				if (sd && (sd->flags & SD_OVERLAP))
					free_sched_groups(sd->groups, 0);
				kfree(*per_cpu_ptr(sdd->sd, j));
			}

			if (sdd->sg)
				kfree(*per_cpu_ptr(sdd->sg, j));
6781 6782
			if (sdd->sgc)
				kfree(*per_cpu_ptr(sdd->sgc, j));
6783 6784
		}
		free_percpu(sdd->sd);
6785
		sdd->sd = NULL;
6786
		free_percpu(sdd->sg);
6787
		sdd->sg = NULL;
6788 6789
		free_percpu(sdd->sgc);
		sdd->sgc = NULL;
6790 6791 6792
	}
}

6793
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6794 6795
		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
		struct sched_domain *child, int cpu)
6796
{
6797
	struct sched_domain *sd = sd_init(tl, cpu);
6798
	if (!sd)
6799
		return child;
6800 6801

	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6802 6803 6804
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6805
		child->parent = sd;
6806
		sd->child = child;
P
Peter Zijlstra 已提交
6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820

		if (!cpumask_subset(sched_domain_span(child),
				    sched_domain_span(sd))) {
			pr_err("BUG: arch topology borken\n");
#ifdef CONFIG_SCHED_DEBUG
			pr_err("     the %s domain not a subset of the %s domain\n",
					child->name, sd->name);
#endif
			/* Fixup, ensure @sd has at least @child cpus. */
			cpumask_or(sched_domain_span(sd),
				   sched_domain_span(sd),
				   sched_domain_span(child));
		}

6821
	}
6822
	set_domain_attribute(sd, attr);
6823 6824 6825 6826

	return sd;
}

6827 6828 6829 6830
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
6831 6832
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
6833
{
6834
	enum s_alloc alloc_state;
6835
	struct sched_domain *sd;
6836
	struct s_data d;
6837
	int i, ret = -ENOMEM;
6838

6839 6840 6841
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
6842

6843
	/* Set up domains for cpus specified by the cpu_map. */
6844
	for_each_cpu(i, cpu_map) {
6845 6846
		struct sched_domain_topology_level *tl;

6847
		sd = NULL;
6848
		for_each_sd_topology(tl) {
6849
			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6850 6851
			if (tl == sched_domain_topology)
				*per_cpu_ptr(d.sd, i) = sd;
6852 6853
			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
				sd->flags |= SD_OVERLAP;
6854 6855
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
				break;
6856
		}
6857 6858 6859 6860 6861 6862
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6863 6864 6865 6866 6867 6868 6869
			if (sd->flags & SD_OVERLAP) {
				if (build_overlap_sched_groups(sd, i))
					goto error;
			} else {
				if (build_sched_groups(sd, i))
					goto error;
			}
6870
		}
6871
	}
6872

6873
	/* Calculate CPU capacity for physical packages and nodes */
6874 6875 6876
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
6877

6878 6879
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
6880
			init_sched_groups_capacity(i, sd);
6881
		}
6882
	}
6883

L
Linus Torvalds 已提交
6884
	/* Attach the domains */
6885
	rcu_read_lock();
6886
	for_each_cpu(i, cpu_map) {
6887
		sd = *per_cpu_ptr(d.sd, i);
6888
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
6889
	}
6890
	rcu_read_unlock();
6891

6892
	ret = 0;
6893
error:
6894
	__free_domain_allocs(&d, alloc_state, cpu_map);
6895
	return ret;
L
Linus Torvalds 已提交
6896
}
P
Paul Jackson 已提交
6897

6898
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
6899
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
6900 6901
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
6902 6903 6904

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
6905 6906
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
6907
 */
6908
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
6909

6910 6911 6912 6913 6914
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
6915
int __weak arch_update_cpu_topology(void)
6916
{
6917
	return 0;
6918 6919
}

6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

6945
/*
I
Ingo Molnar 已提交
6946
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6947 6948
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6949
 */
6950
static int init_sched_domains(const struct cpumask *cpu_map)
6951
{
6952 6953
	int err;

6954
	arch_update_cpu_topology();
P
Paul Jackson 已提交
6955
	ndoms_cur = 1;
6956
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
6957
	if (!doms_cur)
6958 6959
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6960
	err = build_sched_domains(doms_cur[0], NULL);
6961
	register_sched_domain_sysctl();
6962 6963

	return err;
6964 6965 6966 6967 6968 6969
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6970
static void detach_destroy_domains(const struct cpumask *cpu_map)
6971 6972 6973
{
	int i;

6974
	rcu_read_lock();
6975
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
6976
		cpu_attach_domain(NULL, &def_root_domain, i);
6977
	rcu_read_unlock();
6978 6979
}

6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
6996 6997
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
6998
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
6999 7000 7001
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
7002
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7003 7004 7005
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7006 7007 7008
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
7009 7010 7011 7012 7013 7014
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
7015
 *
7016
 * If doms_new == NULL it will be replaced with cpu_online_mask.
7017 7018
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
7019
 *
P
Paul Jackson 已提交
7020 7021
 * Call with hotplug lock held
 */
7022
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7023
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7024
{
7025
	int i, j, n;
7026
	int new_topology;
P
Paul Jackson 已提交
7027

7028
	mutex_lock(&sched_domains_mutex);
7029

7030 7031 7032
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7033 7034 7035
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

7036
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
7037 7038 7039

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
7040
		for (j = 0; j < n && !new_topology; j++) {
7041
			if (cpumask_equal(doms_cur[i], doms_new[j])
7042
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7043 7044 7045
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
7046
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
7047 7048 7049 7050
match1:
		;
	}

7051
	n = ndoms_cur;
7052
	if (doms_new == NULL) {
7053
		n = 0;
7054
		doms_new = &fallback_doms;
7055
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7056
		WARN_ON_ONCE(dattr_new);
7057 7058
	}

P
Paul Jackson 已提交
7059 7060
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
7061
		for (j = 0; j < n && !new_topology; j++) {
7062
			if (cpumask_equal(doms_new[i], doms_cur[j])
7063
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7064 7065 7066
				goto match2;
		}
		/* no match - add a new doms_new */
7067
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7068 7069 7070 7071 7072
match2:
		;
	}

	/* Remember the new sched domains */
7073 7074
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
7075
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7076
	doms_cur = doms_new;
7077
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7078
	ndoms_cur = ndoms_new;
7079 7080

	register_sched_domain_sysctl();
7081

7082
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7083 7084
}

7085 7086
static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */

L
Linus Torvalds 已提交
7087
/*
7088 7089 7090
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
7091 7092 7093
 *
 * If we come here as part of a suspend/resume, don't touch cpusets because we
 * want to restore it back to its original state upon resume anyway.
L
Linus Torvalds 已提交
7094
 */
7095 7096
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
7097
{
7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119
	switch (action) {
	case CPU_ONLINE_FROZEN:
	case CPU_DOWN_FAILED_FROZEN:

		/*
		 * num_cpus_frozen tracks how many CPUs are involved in suspend
		 * resume sequence. As long as this is not the last online
		 * operation in the resume sequence, just build a single sched
		 * domain, ignoring cpusets.
		 */
		num_cpus_frozen--;
		if (likely(num_cpus_frozen)) {
			partition_sched_domains(1, NULL, NULL);
			break;
		}

		/*
		 * This is the last CPU online operation. So fall through and
		 * restore the original sched domains by considering the
		 * cpuset configurations.
		 */

7120
	case CPU_ONLINE:
7121
		cpuset_update_active_cpus(true);
7122
		break;
7123 7124 7125
	default:
		return NOTIFY_DONE;
	}
7126
	return NOTIFY_OK;
7127
}
7128

7129 7130
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
7131
{
7132 7133 7134
	unsigned long flags;
	long cpu = (long)hcpu;
	struct dl_bw *dl_b;
7135 7136
	bool overflow;
	int cpus;
7137

7138
	switch (action) {
7139
	case CPU_DOWN_PREPARE:
7140 7141
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);
7142

7143 7144 7145 7146
		raw_spin_lock_irqsave(&dl_b->lock, flags);
		cpus = dl_bw_cpus(cpu);
		overflow = __dl_overflow(dl_b, cpus, 0, 0);
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7147

7148
		rcu_read_unlock_sched();
7149

7150 7151
		if (overflow)
			return notifier_from_errno(-EBUSY);
7152
		cpuset_update_active_cpus(false);
7153 7154 7155 7156 7157
		break;
	case CPU_DOWN_PREPARE_FROZEN:
		num_cpus_frozen++;
		partition_sched_domains(1, NULL, NULL);
		break;
7158 7159 7160
	default:
		return NOTIFY_DONE;
	}
7161
	return NOTIFY_OK;
7162 7163
}

L
Linus Torvalds 已提交
7164 7165
void __init sched_init_smp(void)
{
7166 7167 7168
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7169
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7170

7171 7172 7173
	/* nohz_full won't take effect without isolating the cpus. */
	tick_nohz_full_add_cpus_to(cpu_isolated_map);

7174 7175
	sched_init_numa();

7176 7177 7178 7179 7180
	/*
	 * There's no userspace yet to cause hotplug operations; hence all the
	 * cpu masks are stable and all blatant races in the below code cannot
	 * happen.
	 */
7181
	mutex_lock(&sched_domains_mutex);
7182
	init_sched_domains(cpu_active_mask);
7183 7184 7185
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7186
	mutex_unlock(&sched_domains_mutex);
7187

7188
	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7189 7190
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7191

7192
	init_hrtick();
7193 7194

	/* Move init over to a non-isolated CPU */
7195
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7196
		BUG();
I
Ingo Molnar 已提交
7197
	sched_init_granularity();
7198
	free_cpumask_var(non_isolated_cpus);
7199

7200
	init_sched_rt_class();
7201
	init_sched_dl_class();
L
Linus Torvalds 已提交
7202 7203 7204 7205
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7206
	sched_init_granularity();
L
Linus Torvalds 已提交
7207 7208 7209 7210 7211 7212 7213 7214 7215 7216
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

7217
#ifdef CONFIG_CGROUP_SCHED
7218 7219 7220 7221
/*
 * Default task group.
 * Every task in system belongs to this group at bootup.
 */
7222
struct task_group root_task_group;
7223
LIST_HEAD(task_groups);
7224
#endif
P
Peter Zijlstra 已提交
7225

7226
DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
P
Peter Zijlstra 已提交
7227

L
Linus Torvalds 已提交
7228 7229
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7230
	int i, j;
7231 7232 7233 7234 7235 7236 7237 7238 7239
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
	if (alloc_size) {
7240
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7241 7242

#ifdef CONFIG_FAIR_GROUP_SCHED
7243
		root_task_group.se = (struct sched_entity **)ptr;
7244 7245
		ptr += nr_cpu_ids * sizeof(void **);

7246
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7247
		ptr += nr_cpu_ids * sizeof(void **);
7248

7249
#endif /* CONFIG_FAIR_GROUP_SCHED */
7250
#ifdef CONFIG_RT_GROUP_SCHED
7251
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7252 7253
		ptr += nr_cpu_ids * sizeof(void **);

7254
		root_task_group.rt_rq = (struct rt_rq **)ptr;
7255 7256
		ptr += nr_cpu_ids * sizeof(void **);

7257
#endif /* CONFIG_RT_GROUP_SCHED */
7258
	}
7259
#ifdef CONFIG_CPUMASK_OFFSTACK
7260 7261 7262
	for_each_possible_cpu(i) {
		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7263
	}
7264
#endif /* CONFIG_CPUMASK_OFFSTACK */
I
Ingo Molnar 已提交
7265

7266 7267 7268
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());
	init_dl_bandwidth(&def_dl_bandwidth,
7269
			global_rt_period(), global_rt_runtime());
7270

G
Gregory Haskins 已提交
7271 7272 7273 7274
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7275
#ifdef CONFIG_RT_GROUP_SCHED
7276
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7277
			global_rt_period(), global_rt_runtime());
7278
#endif /* CONFIG_RT_GROUP_SCHED */
7279

D
Dhaval Giani 已提交
7280
#ifdef CONFIG_CGROUP_SCHED
7281 7282
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
7283
	INIT_LIST_HEAD(&root_task_group.siblings);
7284
	autogroup_init(&init_task);
7285

D
Dhaval Giani 已提交
7286
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
7287

7288
	for_each_possible_cpu(i) {
7289
		struct rq *rq;
L
Linus Torvalds 已提交
7290 7291

		rq = cpu_rq(i);
7292
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
7293
		rq->nr_running = 0;
7294 7295
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
7296
		init_cfs_rq(&rq->cfs);
7297 7298
		init_rt_rq(&rq->rt);
		init_dl_rq(&rq->dl);
I
Ingo Molnar 已提交
7299
#ifdef CONFIG_FAIR_GROUP_SCHED
7300
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
7301
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
7302
		/*
7303
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
7304 7305 7306 7307
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
7308
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
7309 7310 7311
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
7312
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
7313 7314 7315
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
7316
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
7317
		 *
7318 7319
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
7320
		 */
7321
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7322
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
7323 7324 7325
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7326
#ifdef CONFIG_RT_GROUP_SCHED
7327
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
7328
#endif
L
Linus Torvalds 已提交
7329

I
Ingo Molnar 已提交
7330 7331
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
7332 7333 7334

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
7335
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7336
		rq->sd = NULL;
G
Gregory Haskins 已提交
7337
		rq->rd = NULL;
7338
		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7339
		rq->balance_callback = NULL;
L
Linus Torvalds 已提交
7340
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7341
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7342
		rq->push_cpu = 0;
7343
		rq->cpu = i;
7344
		rq->online = 0;
7345 7346
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
7347
		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7348 7349 7350

		INIT_LIST_HEAD(&rq->cfs_tasks);

7351
		rq_attach_root(rq, &def_root_domain);
7352
#ifdef CONFIG_NO_HZ_COMMON
7353
		rq->nohz_flags = 0;
7354
#endif
7355 7356 7357
#ifdef CONFIG_NO_HZ_FULL
		rq->last_sched_tick = 0;
#endif
L
Linus Torvalds 已提交
7358
#endif
P
Peter Zijlstra 已提交
7359
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7360 7361 7362
		atomic_set(&rq->nr_iowait, 0);
	}

7363
	set_load_weight(&init_task);
7364

7365 7366 7367 7368
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

L
Linus Torvalds 已提交
7369 7370 7371 7372 7373 7374
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

7375 7376 7377 7378 7379
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;

L
Linus Torvalds 已提交
7380 7381 7382 7383 7384 7385 7386
	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
7387 7388 7389

	calc_load_update = jiffies + LOAD_FREQ;

7390
#ifdef CONFIG_SMP
7391
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
R
Rusty Russell 已提交
7392 7393 7394
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7395
	idle_thread_set_boot_cpu();
7396
	set_cpu_rq_start_time();
7397 7398
#endif
	init_sched_fair_class();
7399

7400
	scheduler_running = 1;
L
Linus Torvalds 已提交
7401 7402
}

7403
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7404 7405
static inline int preempt_count_equals(int preempt_offset)
{
7406
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7407

A
Arnd Bergmann 已提交
7408
	return (nested == preempt_offset);
7409 7410
}

7411
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7412
{
P
Peter Zijlstra 已提交
7413 7414 7415 7416 7417
	/*
	 * Blocking primitives will set (and therefore destroy) current->state,
	 * since we will exit with TASK_RUNNING make sure we enter with it,
	 * otherwise we will destroy state.
	 */
7418
	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
P
Peter Zijlstra 已提交
7419 7420 7421 7422
			"do not call blocking ops when !TASK_RUNNING; "
			"state=%lx set at [<%p>] %pS\n",
			current->state,
			(void *)current->task_state_change,
7423
			(void *)current->task_state_change);
P
Peter Zijlstra 已提交
7424

7425 7426 7427 7428 7429
	___might_sleep(file, line, preempt_offset);
}
EXPORT_SYMBOL(__might_sleep);

void ___might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7430 7431 7432
{
	static unsigned long prev_jiffy;	/* ratelimiting */

7433
	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7434 7435
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
	     !is_idle_task(current)) ||
7436
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
7437 7438 7439 7440 7441
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
7442 7443 7444 7445 7446 7447 7448
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
7449

7450 7451 7452
	if (task_stack_end_corrupted(current))
		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");

I
Ingo Molnar 已提交
7453 7454 7455
	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
7456 7457 7458 7459 7460 7461 7462
#ifdef CONFIG_DEBUG_PREEMPT
	if (!preempt_count_equals(preempt_offset)) {
		pr_err("Preemption disabled at:");
		print_ip_sym(current->preempt_disable_ip);
		pr_cont("\n");
	}
#endif
I
Ingo Molnar 已提交
7463
	dump_stack();
L
Linus Torvalds 已提交
7464
}
7465
EXPORT_SYMBOL(___might_sleep);
L
Linus Torvalds 已提交
7466 7467 7468
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7469
void normalize_rt_tasks(void)
7470
{
7471
	struct task_struct *g, *p;
7472 7473 7474
	struct sched_attr attr = {
		.sched_policy = SCHED_NORMAL,
	};
L
Linus Torvalds 已提交
7475

7476
	read_lock(&tasklist_lock);
7477
	for_each_process_thread(g, p) {
7478 7479 7480
		/*
		 * Only normalize user tasks:
		 */
7481
		if (p->flags & PF_KTHREAD)
7482 7483
			continue;

I
Ingo Molnar 已提交
7484 7485
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
7486 7487 7488
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
7489
#endif
I
Ingo Molnar 已提交
7490

7491
		if (!dl_task(p) && !rt_task(p)) {
I
Ingo Molnar 已提交
7492 7493 7494 7495
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
7496
			if (task_nice(p) < 0)
I
Ingo Molnar 已提交
7497
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7498
			continue;
I
Ingo Molnar 已提交
7499
		}
L
Linus Torvalds 已提交
7500

7501
		__sched_setscheduler(p, &attr, false, false);
7502
	}
7503
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
7504 7505 7506
}

#endif /* CONFIG_MAGIC_SYSRQ */
7507

7508
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7509
/*
7510
 * These functions are only useful for the IA64 MCA handling, or kdb.
7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7524 7525
 *
 * Return: The current task for @cpu.
7526
 */
7527
struct task_struct *curr_task(int cpu)
7528 7529 7530 7531
{
	return cpu_curr(cpu);
}

7532 7533 7534
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
7535 7536 7537 7538 7539 7540
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7541 7542
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7543 7544 7545 7546 7547 7548 7549
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7550
void set_curr_task(int cpu, struct task_struct *p)
7551 7552 7553 7554 7555
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7556

D
Dhaval Giani 已提交
7557
#ifdef CONFIG_CGROUP_SCHED
7558 7559 7560
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

7561 7562 7563 7564
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
7565
	autogroup_free(tg);
7566 7567 7568 7569
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
7570
struct task_group *sched_create_group(struct task_group *parent)
7571 7572 7573 7574 7575 7576 7577
{
	struct task_group *tg;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

7578
	if (!alloc_fair_sched_group(tg, parent))
7579 7580
		goto err;

7581
	if (!alloc_rt_sched_group(tg, parent))
7582 7583
		goto err;

7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594
	return tg;

err:
	free_sched_group(tg);
	return ERR_PTR(-ENOMEM);
}

void sched_online_group(struct task_group *tg, struct task_group *parent)
{
	unsigned long flags;

7595
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7596
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
7597 7598 7599 7600 7601

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
7602
	list_add_rcu(&tg->siblings, &parent->children);
7603
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7604 7605
}

7606
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
7607
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7608 7609
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
7610
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
7611 7612
}

7613
/* Destroy runqueue etc associated with a task group */
7614
void sched_destroy_group(struct task_group *tg)
7615 7616 7617 7618 7619 7620
{
	/* wait for possible concurrent references to cfs_rqs complete */
	call_rcu(&tg->rcu, free_sched_group_rcu);
}

void sched_offline_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7621
{
7622
	unsigned long flags;
7623
	int i;
S
Srivatsa Vaddagiri 已提交
7624

7625 7626
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
7627
		unregister_fair_sched_group(tg, i);
7628 7629

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7630
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
7631
	list_del_rcu(&tg->siblings);
7632
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7633 7634
}

7635
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7636 7637 7638
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7639 7640
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7641
{
P
Peter Zijlstra 已提交
7642
	struct task_group *tg;
7643
	int queued, running;
S
Srivatsa Vaddagiri 已提交
7644 7645 7646 7647 7648
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

7649
	running = task_current(rq, tsk);
7650
	queued = task_on_rq_queued(tsk);
S
Srivatsa Vaddagiri 已提交
7651

7652
	if (queued)
S
Srivatsa Vaddagiri 已提交
7653
		dequeue_task(rq, tsk, 0);
7654
	if (unlikely(running))
7655
		put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7656

7657 7658 7659 7660 7661 7662
	/*
	 * All callers are synchronized by task_rq_lock(); we do not use RCU
	 * which is pointless here. Thus, we pass "true" to task_css_check()
	 * to prevent lockdep warnings.
	 */
	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
P
Peter Zijlstra 已提交
7663 7664 7665 7666
			  struct task_group, css);
	tg = autogroup_task_group(tsk, tg);
	tsk->sched_task_group = tg;

P
Peter Zijlstra 已提交
7667
#ifdef CONFIG_FAIR_GROUP_SCHED
7668
	if (tsk->sched_class->task_move_group)
7669
		tsk->sched_class->task_move_group(tsk, queued);
7670
	else
P
Peter Zijlstra 已提交
7671
#endif
7672
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
7673

7674 7675
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
7676
	if (queued)
7677
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
7678

7679
	task_rq_unlock(rq, tsk, &flags);
S
Srivatsa Vaddagiri 已提交
7680
}
D
Dhaval Giani 已提交
7681
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
7682

7683 7684 7685 7686 7687
#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
P
Peter Zijlstra 已提交
7688

P
Peter Zijlstra 已提交
7689 7690
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
7691
{
P
Peter Zijlstra 已提交
7692
	struct task_struct *g, *p;
7693

7694 7695 7696 7697 7698 7699
	/*
	 * Autogroups do not have RT tasks; see autogroup_create().
	 */
	if (task_group_is_autogroup(tg))
		return 0;

7700
	for_each_process_thread(g, p) {
7701
		if (rt_task(p) && task_group(p) == tg)
P
Peter Zijlstra 已提交
7702
			return 1;
7703
	}
7704

P
Peter Zijlstra 已提交
7705 7706
	return 0;
}
7707

P
Peter Zijlstra 已提交
7708 7709 7710 7711 7712
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
7713

7714
static int tg_rt_schedulable(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
7715 7716 7717 7718 7719
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
7720

P
Peter Zijlstra 已提交
7721 7722
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
7723

P
Peter Zijlstra 已提交
7724 7725 7726
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
7727 7728
	}

7729 7730 7731 7732 7733
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
7734

7735 7736 7737
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
7738 7739
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
7740

P
Peter Zijlstra 已提交
7741
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7742

7743 7744 7745 7746 7747
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
7748

7749 7750 7751
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
7752 7753 7754
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7755

P
Peter Zijlstra 已提交
7756 7757 7758 7759
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
7760

P
Peter Zijlstra 已提交
7761
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7762
	}
P
Peter Zijlstra 已提交
7763

P
Peter Zijlstra 已提交
7764 7765 7766 7767
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
7768 7769
}

P
Peter Zijlstra 已提交
7770
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7771
{
7772 7773
	int ret;

P
Peter Zijlstra 已提交
7774 7775 7776 7777 7778 7779
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

7780 7781 7782 7783 7784
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7785 7786
}

7787
static int tg_set_rt_bandwidth(struct task_group *tg,
7788
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
7789
{
P
Peter Zijlstra 已提交
7790
	int i, err = 0;
P
Peter Zijlstra 已提交
7791

7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802
	/*
	 * Disallowing the root group RT runtime is BAD, it would disallow the
	 * kernel creating (and or operating) RT threads.
	 */
	if (tg == &root_task_group && rt_runtime == 0)
		return -EINVAL;

	/* No period doesn't make any sense. */
	if (rt_period == 0)
		return -EINVAL;

P
Peter Zijlstra 已提交
7803
	mutex_lock(&rt_constraints_mutex);
7804
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
7805 7806
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
7807
		goto unlock;
P
Peter Zijlstra 已提交
7808

7809
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7810 7811
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
7812 7813 7814 7815

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

7816
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7817
		rt_rq->rt_runtime = rt_runtime;
7818
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7819
	}
7820
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
7821
unlock:
7822
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
7823 7824 7825
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
7826 7827
}

7828
static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7829 7830 7831 7832 7833 7834 7835 7836
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

7837
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7838 7839
}

7840
static long sched_group_rt_runtime(struct task_group *tg)
P
Peter Zijlstra 已提交
7841 7842 7843
{
	u64 rt_runtime_us;

7844
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7845 7846
		return -1;

7847
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7848 7849 7850
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
7851

7852
static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
7853 7854 7855
{
	u64 rt_runtime, rt_period;

7856
	rt_period = rt_period_us * NSEC_PER_USEC;
7857 7858
	rt_runtime = tg->rt_bandwidth.rt_runtime;

7859
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7860 7861
}

7862
static long sched_group_rt_period(struct task_group *tg)
7863 7864 7865 7866 7867 7868 7869
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}
7870
#endif /* CONFIG_RT_GROUP_SCHED */
7871

7872
#ifdef CONFIG_RT_GROUP_SCHED
7873 7874 7875 7876 7877
static int sched_rt_global_constraints(void)
{
	int ret = 0;

	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
7878
	read_lock(&tasklist_lock);
7879
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
7880
	read_unlock(&tasklist_lock);
7881 7882 7883 7884
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
7885

7886
static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7887 7888 7889 7890 7891 7892 7893 7894
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

7895
#else /* !CONFIG_RT_GROUP_SCHED */
7896 7897
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
7898
	unsigned long flags;
7899
	int i, ret = 0;
7900

7901
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7902 7903 7904
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

7905
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7906
		rt_rq->rt_runtime = global_rt_runtime();
7907
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7908
	}
7909
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7910

7911
	return ret;
7912
}
7913
#endif /* CONFIG_RT_GROUP_SCHED */
7914

7915
static int sched_dl_global_validate(void)
7916
{
7917 7918
	u64 runtime = global_rt_runtime();
	u64 period = global_rt_period();
7919
	u64 new_bw = to_ratio(period, runtime);
7920
	struct dl_bw *dl_b;
7921
	int cpu, ret = 0;
7922
	unsigned long flags;
7923 7924 7925 7926 7927 7928 7929 7930 7931 7932

	/*
	 * Here we want to check the bandwidth not being set to some
	 * value smaller than the currently allocated bandwidth in
	 * any of the root_domains.
	 *
	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
	 * cycling on root_domains... Discussion on different/better
	 * solutions is welcome!
	 */
7933
	for_each_possible_cpu(cpu) {
7934 7935
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);
7936

7937
		raw_spin_lock_irqsave(&dl_b->lock, flags);
7938 7939
		if (new_bw < dl_b->total_bw)
			ret = -EBUSY;
7940
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7941

7942 7943
		rcu_read_unlock_sched();

7944 7945
		if (ret)
			break;
7946 7947
	}

7948
	return ret;
7949 7950
}

7951
static void sched_dl_do_global(void)
7952
{
7953
	u64 new_bw = -1;
7954
	struct dl_bw *dl_b;
7955
	int cpu;
7956
	unsigned long flags;
7957

7958 7959 7960 7961 7962 7963 7964 7965 7966 7967
	def_dl_bandwidth.dl_period = global_rt_period();
	def_dl_bandwidth.dl_runtime = global_rt_runtime();

	if (global_rt_runtime() != RUNTIME_INF)
		new_bw = to_ratio(global_rt_period(), global_rt_runtime());

	/*
	 * FIXME: As above...
	 */
	for_each_possible_cpu(cpu) {
7968 7969
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);
7970

7971
		raw_spin_lock_irqsave(&dl_b->lock, flags);
7972
		dl_b->bw = new_bw;
7973
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7974 7975

		rcu_read_unlock_sched();
7976
	}
7977 7978 7979 7980 7981 7982 7983
}

static int sched_rt_global_validate(void)
{
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7984 7985
	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7986 7987 7988 7989 7990 7991 7992 7993 7994
		return -EINVAL;

	return 0;
}

static void sched_rt_do_global(void)
{
	def_rt_bandwidth.rt_runtime = global_rt_runtime();
	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7995 7996
}

7997
int sched_rt_handler(struct ctl_table *table, int write,
7998
		void __user *buffer, size_t *lenp,
7999 8000 8001 8002
		loff_t *ppos)
{
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);
8003
	int ret;
8004 8005 8006 8007 8008

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

8009
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8010 8011

	if (!ret && write) {
8012 8013 8014 8015
		ret = sched_rt_global_validate();
		if (ret)
			goto undo;

8016
		ret = sched_dl_global_validate();
8017 8018 8019
		if (ret)
			goto undo;

8020
		ret = sched_rt_global_constraints();
8021 8022 8023 8024 8025 8026 8027 8028 8029 8030
		if (ret)
			goto undo;

		sched_rt_do_global();
		sched_dl_do_global();
	}
	if (0) {
undo:
		sysctl_sched_rt_period = old_period;
		sysctl_sched_rt_runtime = old_runtime;
8031 8032 8033 8034 8035
	}
	mutex_unlock(&mutex);

	return ret;
}
8036

8037
int sched_rr_handler(struct ctl_table *table, int write,
8038 8039 8040 8041 8042 8043 8044 8045
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8046 8047
	/* make sure that internally we keep jiffies */
	/* also, writing zero resets timeslice to default */
8048
	if (!ret && write) {
8049 8050
		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8051 8052 8053 8054 8055
	}
	mutex_unlock(&mutex);
	return ret;
}

8056
#ifdef CONFIG_CGROUP_SCHED
8057

8058
static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8059
{
8060
	return css ? container_of(css, struct task_group, css) : NULL;
8061 8062
}

8063 8064
static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8065
{
8066 8067
	struct task_group *parent = css_tg(parent_css);
	struct task_group *tg;
8068

8069
	if (!parent) {
8070
		/* This is early initialization for the top cgroup */
8071
		return &root_task_group.css;
8072 8073
	}

8074
	tg = sched_create_group(parent);
8075 8076 8077 8078 8079 8080
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

8081
static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
8082
{
8083
	struct task_group *tg = css_tg(css);
T
Tejun Heo 已提交
8084
	struct task_group *parent = css_tg(css->parent);
8085

T
Tejun Heo 已提交
8086 8087
	if (parent)
		sched_online_group(tg, parent);
8088 8089 8090
	return 0;
}

8091
static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8092
{
8093
	struct task_group *tg = css_tg(css);
8094 8095 8096 8097

	sched_destroy_group(tg);
}

8098
static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
8099
{
8100
	struct task_group *tg = css_tg(css);
8101 8102 8103 8104

	sched_offline_group(tg);
}

8105 8106 8107 8108 8109
static void cpu_cgroup_fork(struct task_struct *task)
{
	sched_move_task(task);
}

8110
static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
8111
				 struct cgroup_taskset *tset)
8112
{
8113 8114
	struct task_struct *task;

8115
	cgroup_taskset_for_each(task, tset) {
8116
#ifdef CONFIG_RT_GROUP_SCHED
8117
		if (!sched_rt_can_attach(css_tg(css), task))
8118
			return -EINVAL;
8119
#else
8120 8121 8122
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
8123
#endif
8124
	}
8125 8126
	return 0;
}
8127

8128
static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
8129
			      struct cgroup_taskset *tset)
8130
{
8131 8132
	struct task_struct *task;

8133
	cgroup_taskset_for_each(task, tset)
8134
		sched_move_task(task);
8135 8136
}

8137 8138 8139
static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
			    struct cgroup_subsys_state *old_css,
			    struct task_struct *task)
8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	sched_move_task(task);
}

8152
#ifdef CONFIG_FAIR_GROUP_SCHED
8153 8154
static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
				struct cftype *cftype, u64 shareval)
8155
{
8156
	return sched_group_set_shares(css_tg(css), scale_load(shareval));
8157 8158
}

8159 8160
static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
			       struct cftype *cft)
8161
{
8162
	struct task_group *tg = css_tg(css);
8163

8164
	return (u64) scale_load_down(tg->shares);
8165
}
8166 8167

#ifdef CONFIG_CFS_BANDWIDTH
8168 8169
static DEFINE_MUTEX(cfs_constraints_mutex);

8170 8171 8172
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

8173 8174
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

8175 8176
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
8177
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8178
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

8199 8200 8201 8202 8203
	/*
	 * Prevent race between setting of cfs_rq->runtime_enabled and
	 * unthrottle_offline_cfs_rqs().
	 */
	get_online_cpus();
8204 8205 8206 8207 8208
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

8209
	runtime_enabled = quota != RUNTIME_INF;
8210
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8211 8212 8213 8214 8215 8216
	/*
	 * If we need to toggle cfs_bandwidth_used, off->on must occur
	 * before making related changes, and on->off must occur afterwards
	 */
	if (runtime_enabled && !runtime_was_enabled)
		cfs_bandwidth_usage_inc();
8217 8218 8219
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
8220

P
Paul Turner 已提交
8221
	__refill_cfs_bandwidth_runtime(cfs_b);
8222
	/* restart the period timer (if active) to handle new period expiry */
P
Peter Zijlstra 已提交
8223 8224
	if (runtime_enabled)
		start_cfs_bandwidth(cfs_b);
8225 8226
	raw_spin_unlock_irq(&cfs_b->lock);

8227
	for_each_online_cpu(i) {
8228
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8229
		struct rq *rq = cfs_rq->rq;
8230 8231

		raw_spin_lock_irq(&rq->lock);
8232
		cfs_rq->runtime_enabled = runtime_enabled;
8233
		cfs_rq->runtime_remaining = 0;
8234

8235
		if (cfs_rq->throttled)
8236
			unthrottle_cfs_rq(cfs_rq);
8237 8238
		raw_spin_unlock_irq(&rq->lock);
	}
8239 8240
	if (runtime_was_enabled && !runtime_enabled)
		cfs_bandwidth_usage_dec();
8241 8242
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
8243
	put_online_cpus();
8244

8245
	return ret;
8246 8247 8248 8249 8250 8251
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

8252
	period = ktime_to_ns(tg->cfs_bandwidth.period);
8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

8265
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8266 8267
		return -1;

8268
	quota_us = tg->cfs_bandwidth.quota;
8269 8270 8271 8272 8273 8274 8275 8276 8277 8278
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
8279
	quota = tg->cfs_bandwidth.quota;
8280 8281 8282 8283 8284 8285 8286 8287

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

8288
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8289 8290 8291 8292 8293
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

8294 8295
static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
				  struct cftype *cft)
8296
{
8297
	return tg_get_cfs_quota(css_tg(css));
8298 8299
}

8300 8301
static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
				   struct cftype *cftype, s64 cfs_quota_us)
8302
{
8303
	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8304 8305
}

8306 8307
static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
				   struct cftype *cft)
8308
{
8309
	return tg_get_cfs_period(css_tg(css));
8310 8311
}

8312 8313
static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 cfs_period_us)
8314
{
8315
	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8316 8317
}

8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
8350
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8351 8352 8353 8354 8355
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
8356
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8357 8358

		quota = normalize_cfs_quota(tg, d);
8359
		parent_quota = parent_b->hierarchical_quota;
8360 8361 8362 8363 8364 8365 8366 8367 8368 8369

		/*
		 * ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
8370
	cfs_b->hierarchical_quota = quota;
8371 8372 8373 8374 8375 8376

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
8377
	int ret;
8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

8389 8390 8391 8392 8393
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
8394
}
8395

8396
static int cpu_stats_show(struct seq_file *sf, void *v)
8397
{
8398
	struct task_group *tg = css_tg(seq_css(sf));
8399
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8400

8401 8402 8403
	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8404 8405 8406

	return 0;
}
8407
#endif /* CONFIG_CFS_BANDWIDTH */
8408
#endif /* CONFIG_FAIR_GROUP_SCHED */
8409

8410
#ifdef CONFIG_RT_GROUP_SCHED
8411 8412
static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
				struct cftype *cft, s64 val)
P
Peter Zijlstra 已提交
8413
{
8414
	return sched_group_set_rt_runtime(css_tg(css), val);
P
Peter Zijlstra 已提交
8415 8416
}

8417 8418
static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
P
Peter Zijlstra 已提交
8419
{
8420
	return sched_group_rt_runtime(css_tg(css));
P
Peter Zijlstra 已提交
8421
}
8422

8423 8424
static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 rt_period_us)
8425
{
8426
	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8427 8428
}

8429 8430
static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
				   struct cftype *cft)
8431
{
8432
	return sched_group_rt_period(css_tg(css));
8433
}
8434
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
8435

8436
static struct cftype cpu_files[] = {
8437
#ifdef CONFIG_FAIR_GROUP_SCHED
8438 8439
	{
		.name = "shares",
8440 8441
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8442
	},
8443
#endif
8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
8455 8456
	{
		.name = "stat",
8457
		.seq_show = cpu_stats_show,
8458
	},
8459
#endif
8460
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8461
	{
P
Peter Zijlstra 已提交
8462
		.name = "rt_runtime_us",
8463 8464
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8465
	},
8466 8467
	{
		.name = "rt_period_us",
8468 8469
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8470
	},
8471
#endif
8472
	{ }	/* terminate */
8473 8474
};

8475
struct cgroup_subsys cpu_cgrp_subsys = {
8476 8477
	.css_alloc	= cpu_cgroup_css_alloc,
	.css_free	= cpu_cgroup_css_free,
8478 8479
	.css_online	= cpu_cgroup_css_online,
	.css_offline	= cpu_cgroup_css_offline,
8480
	.fork		= cpu_cgroup_fork,
8481 8482
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
8483
	.exit		= cpu_cgroup_exit,
8484
	.legacy_cftypes	= cpu_files,
8485 8486 8487
	.early_init	= 1,
};

8488
#endif	/* CONFIG_CGROUP_SCHED */
8489

8490 8491 8492 8493 8494
void dump_cpu_task(int cpu)
{
	pr_info("Task dump for CPU %d:\n", cpu);
	sched_show_task(cpu_curr(cpu));
}