core.c 188.8 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/highmem.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
37
#include <linux/capability.h>
L
Linus Torvalds 已提交
38 39
#include <linux/completion.h>
#include <linux/kernel_stat.h>
40
#include <linux/debug_locks.h>
41
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
57
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
58
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/unistd.h>
J
Jens Axboe 已提交
66
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
67
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
68
#include <linux/tick.h>
P
Peter Zijlstra 已提交
69 70
#include <linux/debugfs.h>
#include <linux/ctype.h>
71
#include <linux/ftrace.h>
72
#include <linux/slab.h>
73
#include <linux/init_task.h>
A
Al Viro 已提交
74
#include <linux/binfmts.h>
75
#include <linux/context_tracking.h>
76
#include <linux/compiler.h>
L
Linus Torvalds 已提交
77

78
#include <asm/switch_to.h>
79
#include <asm/tlb.h>
80
#include <asm/irq_regs.h>
81
#include <asm/mutex.h>
G
Glauber Costa 已提交
82 83 84
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
85

86
#include "sched.h"
87
#include "../workqueue_internal.h"
88
#include "../smpboot.h"
89

90
#define CREATE_TRACE_POINTS
91
#include <trace/events/sched.h>
92

93
void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
94
{
95 96
	unsigned long delta;
	ktime_t soft, hard, now;
97

98 99 100 101 102 103
	for (;;) {
		if (hrtimer_active(period_timer))
			break;

		now = hrtimer_cb_get_time(period_timer);
		hrtimer_forward(period_timer, now, period);
104

105 106 107 108 109 110 111 112
		soft = hrtimer_get_softexpires(period_timer);
		hard = hrtimer_get_expires(period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(period_timer, soft, delta,
					 HRTIMER_MODE_ABS_PINNED, 0);
	}
}

113 114
DEFINE_MUTEX(sched_domains_mutex);
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
115

116
static void update_rq_clock_task(struct rq *rq, s64 delta);
117

118
void update_rq_clock(struct rq *rq)
119
{
120
	s64 delta;
121

122
	if (rq->skip_clock_update > 0)
123
		return;
124

125 126 127
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
128 129
}

I
Ingo Molnar 已提交
130 131 132
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
133 134 135 136

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
137
const_debug unsigned int sysctl_sched_features =
138
#include "features.h"
P
Peter Zijlstra 已提交
139 140 141 142 143 144 145 146
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

147
static const char * const sched_feat_names[] = {
148
#include "features.h"
P
Peter Zijlstra 已提交
149 150 151 152
};

#undef SCHED_FEAT

L
Li Zefan 已提交
153
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
154 155 156
{
	int i;

157
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
L
Li Zefan 已提交
158 159 160
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
161
	}
L
Li Zefan 已提交
162
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
163

L
Li Zefan 已提交
164
	return 0;
P
Peter Zijlstra 已提交
165 166
}

167 168
#ifdef HAVE_JUMP_LABEL

169 170
#define jump_label_key__true  STATIC_KEY_INIT_TRUE
#define jump_label_key__false STATIC_KEY_INIT_FALSE
171 172 173 174

#define SCHED_FEAT(name, enabled)	\
	jump_label_key__##enabled ,

175
struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
176 177 178 179 180 181 182
#include "features.h"
};

#undef SCHED_FEAT

static void sched_feat_disable(int i)
{
183 184
	if (static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_dec(&sched_feat_keys[i]);
185 186 187 188
}

static void sched_feat_enable(int i)
{
189 190
	if (!static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_inc(&sched_feat_keys[i]);
191 192 193 194 195 196
}
#else
static void sched_feat_disable(int i) { };
static void sched_feat_enable(int i) { };
#endif /* HAVE_JUMP_LABEL */

197
static int sched_feat_set(char *cmp)
P
Peter Zijlstra 已提交
198 199
{
	int i;
200
	int neg = 0;
P
Peter Zijlstra 已提交
201

H
Hillf Danton 已提交
202
	if (strncmp(cmp, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
203 204 205 206
		neg = 1;
		cmp += 3;
	}

207
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
208
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
209
			if (neg) {
P
Peter Zijlstra 已提交
210
				sysctl_sched_features &= ~(1UL << i);
211 212
				sched_feat_disable(i);
			} else {
P
Peter Zijlstra 已提交
213
				sysctl_sched_features |= (1UL << i);
214 215
				sched_feat_enable(i);
			}
P
Peter Zijlstra 已提交
216 217 218 219
			break;
		}
	}

220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
	return i;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
	cmp = strstrip(buf);

	i = sched_feat_set(cmp);
241
	if (i == __SCHED_FEAT_NR)
P
Peter Zijlstra 已提交
242 243
		return -EINVAL;

244
	*ppos += cnt;
P
Peter Zijlstra 已提交
245 246 247 248

	return cnt;
}

L
Li Zefan 已提交
249 250 251 252 253
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

254
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
255 256 257 258 259
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
260 261 262 263 264 265 266 267 268 269
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);
270
#endif /* CONFIG_SCHED_DEBUG */
I
Ingo Molnar 已提交
271

272 273 274 275 276 277
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

278 279 280 281 282 283 284 285
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
286
/*
P
Peter Zijlstra 已提交
287
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
288 289
 * default: 1s
 */
P
Peter Zijlstra 已提交
290
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
291

292
__read_mostly int scheduler_running;
293

P
Peter Zijlstra 已提交
294 295 296 297 298
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
299

300
/*
301
 * __task_rq_lock - lock the rq @p resides on.
302
 */
303
static inline struct rq *__task_rq_lock(struct task_struct *p)
304 305
	__acquires(rq->lock)
{
306 307
	struct rq *rq;

308 309
	lockdep_assert_held(&p->pi_lock);

310
	for (;;) {
311
		rq = task_rq(p);
312
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
313
		if (likely(rq == task_rq(p)))
314
			return rq;
315
		raw_spin_unlock(&rq->lock);
316 317 318
	}
}

L
Linus Torvalds 已提交
319
/*
320
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
L
Linus Torvalds 已提交
321
 */
322
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
323
	__acquires(p->pi_lock)
L
Linus Torvalds 已提交
324 325
	__acquires(rq->lock)
{
326
	struct rq *rq;
L
Linus Torvalds 已提交
327

328
	for (;;) {
329
		raw_spin_lock_irqsave(&p->pi_lock, *flags);
330
		rq = task_rq(p);
331
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
332
		if (likely(rq == task_rq(p)))
333
			return rq;
334 335
		raw_spin_unlock(&rq->lock);
		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
336 337 338
	}
}

A
Alexey Dobriyan 已提交
339
static void __task_rq_unlock(struct rq *rq)
340 341
	__releases(rq->lock)
{
342
	raw_spin_unlock(&rq->lock);
343 344
}

345 346
static inline void
task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
347
	__releases(rq->lock)
348
	__releases(p->pi_lock)
L
Linus Torvalds 已提交
349
{
350 351
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
352 353 354
}

/*
355
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
356
 */
A
Alexey Dobriyan 已提交
357
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
358 359
	__acquires(rq->lock)
{
360
	struct rq *rq;
L
Linus Torvalds 已提交
361 362 363

	local_irq_disable();
	rq = this_rq();
364
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
365 366 367 368

	return rq;
}

P
Peter Zijlstra 已提交
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

390
	raw_spin_lock(&rq->lock);
391
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
392
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
393
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
394 395 396 397

	return HRTIMER_NORESTART;
}

398
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
399 400 401 402 403 404 405 406 407

static int __hrtick_restart(struct rq *rq)
{
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = hrtimer_get_softexpires(timer);

	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
}

408 409 410 411
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
412
{
413
	struct rq *rq = arg;
414

415
	raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
416
	__hrtick_restart(rq);
417
	rq->hrtick_csd_pending = 0;
418
	raw_spin_unlock(&rq->lock);
419 420
}

421 422 423 424 425
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
426
void hrtick_start(struct rq *rq, u64 delay)
427
{
428 429
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
430

431
	hrtimer_set_expires(timer, time);
432 433

	if (rq == this_rq()) {
P
Peter Zijlstra 已提交
434
		__hrtick_restart(rq);
435
	} else if (!rq->hrtick_csd_pending) {
436
		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
437 438
		rq->hrtick_csd_pending = 1;
	}
439 440 441 442 443 444 445 446 447 448 449 450 451 452
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
453
		hrtick_clear(cpu_rq(cpu));
454 455 456 457 458 459
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

460
static __init void init_hrtick(void)
461 462 463
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
464 465 466 467 468 469
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
470
void hrtick_start(struct rq *rq, u64 delay)
471
{
472
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
473
			HRTIMER_MODE_REL_PINNED, 0);
474
}
475

A
Andrew Morton 已提交
476
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
477 478
{
}
479
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
480

481
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
482
{
483 484
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
485

486 487 488 489
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
490

491 492
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
493
}
A
Andrew Morton 已提交
494
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
495 496 497 498 499 500 501 502
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

503 504 505
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
506
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
507

I
Ingo Molnar 已提交
508 509 510 511 512 513 514
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
515
void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
516 517 518
{
	int cpu;

519
	lockdep_assert_held(&task_rq(p)->lock);
I
Ingo Molnar 已提交
520

521
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
522 523
		return;

524
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
525 526

	cpu = task_cpu(p);
527 528
	if (cpu == smp_processor_id()) {
		set_preempt_need_resched();
I
Ingo Molnar 已提交
529
		return;
530
	}
I
Ingo Molnar 已提交
531 532 533 534 535 536 537

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

538
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
539 540 541 542
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

543
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
544 545
		return;
	resched_task(cpu_curr(cpu));
546
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
547
}
548

549
#ifdef CONFIG_SMP
550
#ifdef CONFIG_NO_HZ_COMMON
551 552 553 554 555 556 557 558
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
559
int get_nohz_timer_target(int pinned)
560 561 562 563 564
{
	int cpu = smp_processor_id();
	int i;
	struct sched_domain *sd;

565 566 567
	if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
		return cpu;

568
	rcu_read_lock();
569
	for_each_domain(cpu, sd) {
570 571 572 573 574 575
		for_each_cpu(i, sched_domain_span(sd)) {
			if (!idle_cpu(i)) {
				cpu = i;
				goto unlock;
			}
		}
576
	}
577 578
unlock:
	rcu_read_unlock();
579 580
	return cpu;
}
581 582 583 584 585 586 587 588 589 590
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
591
static void wake_up_idle_cpu(int cpu)
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;
607 608

	/*
609 610 611
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
612
	 */
613
	set_tsk_need_resched(rq->idle);
614

615 616 617 618
	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
619 620
}

621
static bool wake_up_full_nohz_cpu(int cpu)
622
{
623
	if (tick_nohz_full_cpu(cpu)) {
624 625 626 627 628 629 630 631 632 633 634
		if (cpu != smp_processor_id() ||
		    tick_nohz_tick_stopped())
			smp_send_reschedule(cpu);
		return true;
	}

	return false;
}

void wake_up_nohz_cpu(int cpu)
{
635
	if (!wake_up_full_nohz_cpu(cpu))
636 637 638
		wake_up_idle_cpu(cpu);
}

639
static inline bool got_nohz_idle_kick(void)
640
{
641
	int cpu = smp_processor_id();
642 643 644 645 646 647 648 649 650 651 652 653 654

	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
		return false;

	if (idle_cpu(cpu) && !need_resched())
		return true;

	/*
	 * We can't run Idle Load Balance on this CPU for this time so we
	 * cancel it and clear NOHZ_BALANCE_KICK
	 */
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
	return false;
655 656
}

657
#else /* CONFIG_NO_HZ_COMMON */
658

659
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
660
{
661
	return false;
P
Peter Zijlstra 已提交
662 663
}

664
#endif /* CONFIG_NO_HZ_COMMON */
665

666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
#ifdef CONFIG_NO_HZ_FULL
bool sched_can_stop_tick(void)
{
       struct rq *rq;

       rq = this_rq();

       /* Make sure rq->nr_running update is visible after the IPI */
       smp_rmb();

       /* More than one running task need preemption */
       if (rq->nr_running > 1)
               return false;

       return true;
}
#endif /* CONFIG_NO_HZ_FULL */
683

684
void sched_avg_update(struct rq *rq)
685
{
686 687
	s64 period = sched_avg_period();

688
	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
689 690 691 692 693 694
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
695 696 697
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
698 699
}

700
#endif /* CONFIG_SMP */
701

702 703
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
704
/*
705 706 707 708
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
709
 */
710
int walk_tg_tree_from(struct task_group *from,
711
			     tg_visitor down, tg_visitor up, void *data)
712 713
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
714
	int ret;
715

716 717
	parent = from;

718
down:
P
Peter Zijlstra 已提交
719 720
	ret = (*down)(parent, data);
	if (ret)
721
		goto out;
722 723 724 725 726 727 728
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
729
	ret = (*up)(parent, data);
730 731
	if (ret || parent == from)
		goto out;
732 733 734 735 736

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
737
out:
P
Peter Zijlstra 已提交
738
	return ret;
739 740
}

741
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
742
{
743
	return 0;
P
Peter Zijlstra 已提交
744
}
745 746
#endif

747 748
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
749 750 751
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
752 753 754 755
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
756
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
757
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
758 759
		return;
	}
760

761
	load->weight = scale_load(prio_to_weight[prio]);
N
Nikhil Rao 已提交
762
	load->inv_weight = prio_to_wmult[prio];
763 764
}

765
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
766
{
767
	update_rq_clock(rq);
768
	sched_info_queued(rq, p);
769
	p->sched_class->enqueue_task(rq, p, flags);
770 771
}

772
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
773
{
774
	update_rq_clock(rq);
775
	sched_info_dequeued(rq, p);
776
	p->sched_class->dequeue_task(rq, p, flags);
777 778
}

779
void activate_task(struct rq *rq, struct task_struct *p, int flags)
780 781 782 783
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

784
	enqueue_task(rq, p, flags);
785 786
}

787
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
788 789 790 791
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

792
	dequeue_task(rq, p, flags);
793 794
}

795
static void update_rq_clock_task(struct rq *rq, s64 delta)
796
{
797 798 799 800 801 802 803 804
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
805
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
827 828
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
829
	if (static_key_false((&paravirt_steal_rq_enabled))) {
830 831 832 833 834 835 836 837 838 839 840
		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		rq->prev_steal_time_rq += steal;
		delta -= steal;
	}
#endif

841 842
	rq->clock_task += delta;

843 844 845 846
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
847 848
}

849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

879
/*
I
Ingo Molnar 已提交
880
 * __normal_prio - return the priority that is based on the static prio
881 882 883
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
884
	return p->static_prio;
885 886
}

887 888 889 890 891 892 893
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
894
static inline int normal_prio(struct task_struct *p)
895 896 897
{
	int prio;

898 899 900
	if (task_has_dl_policy(p))
		prio = MAX_DL_PRIO-1;
	else if (task_has_rt_policy(p))
901 902 903 904 905 906 907 908 909 910 911 912 913
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
914
static int effective_prio(struct task_struct *p)
915 916 917 918 919 920 921 922 923 924 925 926
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
927 928 929
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
930 931
 *
 * Return: 1 if the task is currently executing. 0 otherwise.
L
Linus Torvalds 已提交
932
 */
933
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
934 935 936 937
{
	return cpu_curr(task_cpu(p)) == p;
}

938 939
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
940
				       int oldprio)
941 942 943
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
944 945
			prev_class->switched_from(rq, p);
		p->sched_class->switched_to(rq, p);
946
	} else if (oldprio != p->prio || dl_task(p))
P
Peter Zijlstra 已提交
947
		p->sched_class->prio_changed(rq, p, oldprio);
948 949
}

950
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
				resched_task(rq->curr);
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
P
Peter Zijlstra 已提交
971
	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
972 973 974
		rq->skip_clock_update = 1;
}

L
Linus Torvalds 已提交
975
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
976
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
977
{
978 979 980 981 982
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
983
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
984
			!(task_preempt_count(p) & PREEMPT_ACTIVE));
985 986

#ifdef CONFIG_LOCKDEP
987 988 989 990 991
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
P
Peter Zijlstra 已提交
992
	 * see task_group().
993 994 995 996
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
997 998 999
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
1000 1001
#endif

1002
	trace_sched_migrate_task(p, new_cpu);
1003

1004
	if (task_cpu(p) != new_cpu) {
1005 1006
		if (p->sched_class->migrate_task_rq)
			p->sched_class->migrate_task_rq(p, new_cpu);
1007
		p->se.nr_migrations++;
1008
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1009
	}
I
Ingo Molnar 已提交
1010 1011

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1012 1013
}

1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
static void __migrate_swap_task(struct task_struct *p, int cpu)
{
	if (p->on_rq) {
		struct rq *src_rq, *dst_rq;

		src_rq = task_rq(p);
		dst_rq = cpu_rq(cpu);

		deactivate_task(src_rq, p, 0);
		set_task_cpu(p, cpu);
		activate_task(dst_rq, p, 0);
		check_preempt_curr(dst_rq, p, 0);
	} else {
		/*
		 * Task isn't running anymore; make it appear like we migrated
		 * it before it went to sleep. This means on wakeup we make the
		 * previous cpu our targer instead of where it really is.
		 */
		p->wake_cpu = cpu;
	}
}

struct migration_swap_arg {
	struct task_struct *src_task, *dst_task;
	int src_cpu, dst_cpu;
};

static int migrate_swap_stop(void *data)
{
	struct migration_swap_arg *arg = data;
	struct rq *src_rq, *dst_rq;
	int ret = -EAGAIN;

	src_rq = cpu_rq(arg->src_cpu);
	dst_rq = cpu_rq(arg->dst_cpu);

1050 1051
	double_raw_lock(&arg->src_task->pi_lock,
			&arg->dst_task->pi_lock);
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
	double_rq_lock(src_rq, dst_rq);
	if (task_cpu(arg->dst_task) != arg->dst_cpu)
		goto unlock;

	if (task_cpu(arg->src_task) != arg->src_cpu)
		goto unlock;

	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
		goto unlock;

	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
		goto unlock;

	__migrate_swap_task(arg->src_task, arg->dst_cpu);
	__migrate_swap_task(arg->dst_task, arg->src_cpu);

	ret = 0;

unlock:
	double_rq_unlock(src_rq, dst_rq);
1072 1073
	raw_spin_unlock(&arg->dst_task->pi_lock);
	raw_spin_unlock(&arg->src_task->pi_lock);
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095

	return ret;
}

/*
 * Cross migrate two tasks
 */
int migrate_swap(struct task_struct *cur, struct task_struct *p)
{
	struct migration_swap_arg arg;
	int ret = -EINVAL;

	arg = (struct migration_swap_arg){
		.src_task = cur,
		.src_cpu = task_cpu(cur),
		.dst_task = p,
		.dst_cpu = task_cpu(p),
	};

	if (arg.src_cpu == arg.dst_cpu)
		goto out;

1096 1097 1098 1099
	/*
	 * These three tests are all lockless; this is OK since all of them
	 * will be re-checked with proper locks held further down the line.
	 */
1100 1101 1102 1103 1104 1105 1106 1107 1108
	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
		goto out;

	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
		goto out;

	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
		goto out;

1109
	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1110 1111 1112 1113 1114 1115
	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);

out:
	return ret;
}

1116
struct migration_arg {
1117
	struct task_struct *task;
L
Linus Torvalds 已提交
1118
	int dest_cpu;
1119
};
L
Linus Torvalds 已提交
1120

1121 1122
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
1123 1124 1125
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1126 1127 1128 1129 1130 1131 1132
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1133 1134 1135 1136 1137 1138
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1139
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1140 1141
{
	unsigned long flags;
I
Ingo Molnar 已提交
1142
	int running, on_rq;
R
Roland McGrath 已提交
1143
	unsigned long ncsw;
1144
	struct rq *rq;
L
Linus Torvalds 已提交
1145

1146 1147 1148 1149 1150 1151 1152 1153
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1154

1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1166 1167 1168
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1169
			cpu_relax();
R
Roland McGrath 已提交
1170
		}
1171

1172 1173 1174 1175 1176 1177
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1178
		trace_sched_wait_task(p);
1179
		running = task_running(rq, p);
P
Peter Zijlstra 已提交
1180
		on_rq = p->on_rq;
R
Roland McGrath 已提交
1181
		ncsw = 0;
1182
		if (!match_state || p->state == match_state)
1183
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1184
		task_rq_unlock(rq, p, &flags);
1185

R
Roland McGrath 已提交
1186 1187 1188 1189 1190 1191
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1202

1203 1204 1205 1206 1207
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1208
		 * So if it was still runnable (but just not actively
1209 1210 1211 1212
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
1213 1214 1215 1216
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1217 1218
			continue;
		}
1219

1220 1221 1222 1223 1224 1225 1226
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1227 1228

	return ncsw;
L
Linus Torvalds 已提交
1229 1230 1231 1232 1233 1234 1235 1236 1237
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1238
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1239 1240 1241 1242 1243
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1244
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1245 1246 1247 1248 1249 1250 1251 1252 1253
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1254
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
1255
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1256

1257
#ifdef CONFIG_SMP
1258
/*
1259
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1260
 */
1261 1262
static int select_fallback_rq(int cpu, struct task_struct *p)
{
1263 1264
	int nid = cpu_to_node(cpu);
	const struct cpumask *nodemask = NULL;
1265 1266
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1267

1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
	/*
	 * If the node that the cpu is on has been offlined, cpu_to_node()
	 * will return -1. There is no cpu on the node, and we should
	 * select the cpu on the other node.
	 */
	if (nid != -1) {
		nodemask = cpumask_of_node(nid);

		/* Look for allowed, online CPU in same node. */
		for_each_cpu(dest_cpu, nodemask) {
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
				return dest_cpu;
		}
1285
	}
1286

1287 1288
	for (;;) {
		/* Any allowed, online CPU? */
1289
		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1290 1291 1292 1293 1294 1295
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			goto out;
		}
1296

1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
		switch (state) {
		case cpuset:
			/* No more Mr. Nice Guy. */
			cpuset_cpus_allowed_fallback(p);
			state = possible;
			break;

		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk_sched("process %d (%s) no longer affine to cpu%d\n",
					task_pid_nr(p), p->comm, cpu);
		}
1326 1327 1328 1329 1330
	}

	return dest_cpu;
}

1331
/*
1332
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1333
 */
1334
static inline
1335
int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1336
{
1337
	cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1349
	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
P
Peter Zijlstra 已提交
1350
		     !cpu_online(cpu)))
1351
		cpu = select_fallback_rq(task_cpu(p), p);
1352 1353

	return cpu;
1354
}
1355 1356 1357 1358 1359 1360

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1361 1362
#endif

P
Peter Zijlstra 已提交
1363
static void
1364
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1365
{
P
Peter Zijlstra 已提交
1366
#ifdef CONFIG_SCHEDSTATS
1367 1368
	struct rq *rq = this_rq();

P
Peter Zijlstra 已提交
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
#ifdef CONFIG_SMP
	int this_cpu = smp_processor_id();

	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	} else {
		struct sched_domain *sd;

		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1379
		rcu_read_lock();
P
Peter Zijlstra 已提交
1380 1381 1382 1383 1384 1385
		for_each_domain(this_cpu, sd) {
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
1386
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1387
	}
1388 1389 1390 1391

	if (wake_flags & WF_MIGRATED)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);

P
Peter Zijlstra 已提交
1392 1393 1394
#endif /* CONFIG_SMP */

	schedstat_inc(rq, ttwu_count);
T
Tejun Heo 已提交
1395
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1396 1397

	if (wake_flags & WF_SYNC)
T
Tejun Heo 已提交
1398
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1399 1400 1401 1402 1403 1404

#endif /* CONFIG_SCHEDSTATS */
}

static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
{
T
Tejun Heo 已提交
1405
	activate_task(rq, p, en_flags);
P
Peter Zijlstra 已提交
1406
	p->on_rq = 1;
1407 1408 1409 1410

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1411 1412
}

1413 1414 1415
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1416
static void
1417
ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
T
Tejun Heo 已提交
1418 1419
{
	check_preempt_curr(rq, p, wake_flags);
1420
	trace_sched_wakeup(p, true);
T
Tejun Heo 已提交
1421 1422 1423 1424 1425 1426

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);

1427
	if (rq->idle_stamp) {
1428
		u64 delta = rq_clock(rq) - rq->idle_stamp;
1429
		u64 max = 2*rq->max_idle_balance_cost;
T
Tejun Heo 已提交
1430

1431 1432 1433
		update_avg(&rq->avg_idle, delta);

		if (rq->avg_idle > max)
T
Tejun Heo 已提交
1434
			rq->avg_idle = max;
1435

T
Tejun Heo 已提交
1436 1437 1438 1439 1440
		rq->idle_stamp = 0;
	}
#endif
}

1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
static void
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
{
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
#endif

	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
	ttwu_do_wakeup(rq, p, wake_flags);
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
	if (p->on_rq) {
1466 1467
		/* check_preempt_curr() may use rq clock */
		update_rq_clock(rq);
1468 1469 1470 1471 1472 1473 1474 1475
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;
}

1476
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1477
static void sched_ttwu_pending(void)
1478 1479
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1480 1481
	struct llist_node *llist = llist_del_all(&rq->wake_list);
	struct task_struct *p;
1482 1483 1484

	raw_spin_lock(&rq->lock);

P
Peter Zijlstra 已提交
1485 1486 1487
	while (llist) {
		p = llist_entry(llist, struct task_struct, wake_entry);
		llist = llist_next(llist);
1488 1489 1490 1491 1492 1493 1494 1495
		ttwu_do_activate(rq, p, 0);
	}

	raw_spin_unlock(&rq->lock);
}

void scheduler_ipi(void)
{
1496 1497 1498 1499 1500
	/*
	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
	 * TIF_NEED_RESCHED remotely (for the first time) will also send
	 * this IPI.
	 */
1501
	preempt_fold_need_resched();
1502

1503 1504 1505
	if (llist_empty(&this_rq()->wake_list)
			&& !tick_nohz_full_cpu(smp_processor_id())
			&& !got_nohz_idle_kick())
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
1522
	tick_nohz_full_check();
P
Peter Zijlstra 已提交
1523
	sched_ttwu_pending();
1524 1525 1526 1527

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1528
	if (unlikely(got_nohz_idle_kick())) {
1529
		this_rq()->idle_balance = 1;
1530
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1531
	}
1532
	irq_exit();
1533 1534 1535 1536
}

static void ttwu_queue_remote(struct task_struct *p, int cpu)
{
P
Peter Zijlstra 已提交
1537
	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1538 1539
		smp_send_reschedule(cpu);
}
1540

1541
bool cpus_share_cache(int this_cpu, int that_cpu)
1542 1543 1544
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1545
#endif /* CONFIG_SMP */
1546

1547 1548 1549 1550
static void ttwu_queue(struct task_struct *p, int cpu)
{
	struct rq *rq = cpu_rq(cpu);

1551
#if defined(CONFIG_SMP)
1552
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1553
		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1554 1555 1556 1557 1558
		ttwu_queue_remote(p, cpu);
		return;
	}
#endif

1559 1560 1561
	raw_spin_lock(&rq->lock);
	ttwu_do_activate(rq, p, 0);
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
1562 1563 1564
}

/**
L
Linus Torvalds 已提交
1565
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1566
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1567
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1568
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1569 1570 1571 1572 1573 1574 1575
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
1576
 * Return: %true if @p was woken up, %false if it was already running.
T
Tejun Heo 已提交
1577
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
1578
 */
1579 1580
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1581 1582
{
	unsigned long flags;
1583
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1584

1585 1586 1587 1588 1589 1590 1591
	/*
	 * If we are going to wake up a thread waiting for CONDITION we
	 * need to ensure that CONDITION=1 done by the caller can not be
	 * reordered with p->state check below. This pairs with mb() in
	 * set_current_state() the waiting thread does.
	 */
	smp_mb__before_spinlock();
1592
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
1593
	if (!(p->state & state))
L
Linus Torvalds 已提交
1594 1595
		goto out;

1596
	success = 1; /* we're going to change ->state */
L
Linus Torvalds 已提交
1597 1598
	cpu = task_cpu(p);

1599 1600
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
1601 1602

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1603
	/*
1604 1605
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
P
Peter Zijlstra 已提交
1606
	 */
1607
	while (p->on_cpu)
1608
		cpu_relax();
1609
	/*
1610
	 * Pairs with the smp_wmb() in finish_lock_switch().
1611
	 */
1612
	smp_rmb();
L
Linus Torvalds 已提交
1613

1614
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
1615
	p->state = TASK_WAKING;
1616

1617
	if (p->sched_class->task_waking)
1618
		p->sched_class->task_waking(p);
1619

1620
	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1621 1622
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
1623
		set_task_cpu(p, cpu);
1624
	}
L
Linus Torvalds 已提交
1625 1626
#endif /* CONFIG_SMP */

1627 1628
	ttwu_queue(p, cpu);
stat:
1629
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
1630
out:
1631
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
1632 1633 1634 1635

	return success;
}

T
Tejun Heo 已提交
1636 1637 1638 1639
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
1640
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
1641
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1642
 * the current task.
T
Tejun Heo 已提交
1643 1644 1645 1646 1647
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

1648 1649 1650 1651
	if (WARN_ON_ONCE(rq != this_rq()) ||
	    WARN_ON_ONCE(p == current))
		return;

T
Tejun Heo 已提交
1652 1653
	lockdep_assert_held(&rq->lock);

1654 1655 1656 1657 1658 1659
	if (!raw_spin_trylock(&p->pi_lock)) {
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
	}

T
Tejun Heo 已提交
1660
	if (!(p->state & TASK_NORMAL))
1661
		goto out;
T
Tejun Heo 已提交
1662

P
Peter Zijlstra 已提交
1663
	if (!p->on_rq)
P
Peter Zijlstra 已提交
1664 1665
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

1666
	ttwu_do_wakeup(rq, p, 0);
1667
	ttwu_stat(p, smp_processor_id(), 0);
1668 1669
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
1670 1671
}

1672 1673 1674 1675 1676
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
1677 1678 1679
 * processes.
 *
 * Return: 1 if the process was woken up, 0 if it was already running.
1680 1681 1682 1683
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
1684
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1685
{
1686 1687
	WARN_ON(task_is_stopped_or_traced(p));
	return try_to_wake_up(p, TASK_NORMAL, 0);
L
Linus Torvalds 已提交
1688 1689 1690
}
EXPORT_SYMBOL(wake_up_process);

1691
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1692 1693 1694 1695 1696 1697 1698
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1699 1700 1701
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
1702
static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
1703
{
P
Peter Zijlstra 已提交
1704 1705 1706
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
1707 1708
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1709
	p->se.prev_sum_exec_runtime	= 0;
1710
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
1711
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
1712
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
1713 1714

#ifdef CONFIG_SCHEDSTATS
1715
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
1716
#endif
N
Nick Piggin 已提交
1717

1718 1719 1720 1721
	RB_CLEAR_NODE(&p->dl.rb_node);
	hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	p->dl.dl_runtime = p->dl.runtime = 0;
	p->dl.dl_deadline = p->dl.deadline = 0;
1722
	p->dl.dl_period = 0;
1723 1724
	p->dl.flags = 0;

P
Peter Zijlstra 已提交
1725
	INIT_LIST_HEAD(&p->rt.run_list);
N
Nick Piggin 已提交
1726

1727 1728 1729
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
1730 1731 1732

#ifdef CONFIG_NUMA_BALANCING
	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1733
		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1734 1735 1736
		p->mm->numa_scan_seq = 0;
	}

1737 1738 1739 1740 1741
	if (clone_flags & CLONE_VM)
		p->numa_preferred_nid = current->numa_preferred_nid;
	else
		p->numa_preferred_nid = -1;

1742 1743
	p->node_stamp = 0ULL;
	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1744
	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1745
	p->numa_work.next = &p->numa_work;
1746 1747
	p->numa_faults_memory = NULL;
	p->numa_faults_buffer_memory = NULL;
1748 1749
	p->last_task_numa_placement = 0;
	p->last_sum_exec_runtime = 0;
1750 1751 1752

	INIT_LIST_HEAD(&p->numa_entry);
	p->numa_group = NULL;
1753
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
1754 1755
}

1756
#ifdef CONFIG_NUMA_BALANCING
1757
#ifdef CONFIG_SCHED_DEBUG
1758 1759 1760 1761 1762 1763 1764
void set_numabalancing_state(bool enabled)
{
	if (enabled)
		sched_feat_set("NUMA");
	else
		sched_feat_set("NO_NUMA");
}
1765 1766 1767 1768 1769 1770
#else
__read_mostly bool numabalancing_enabled;

void set_numabalancing_state(bool enabled)
{
	numabalancing_enabled = enabled;
I
Ingo Molnar 已提交
1771
}
1772
#endif /* CONFIG_SCHED_DEBUG */
1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795

#ifdef CONFIG_PROC_SYSCTL
int sysctl_numa_balancing(struct ctl_table *table, int write,
			 void __user *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table t;
	int err;
	int state = numabalancing_enabled;

	if (write && !capable(CAP_SYS_ADMIN))
		return -EPERM;

	t = *table;
	t.data = &state;
	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
	if (err < 0)
		return err;
	if (write)
		set_numabalancing_state(state);
	return err;
}
#endif
#endif
I
Ingo Molnar 已提交
1796 1797 1798 1799

/*
 * fork()/clone()-time setup:
 */
1800
int sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
1801
{
1802
	unsigned long flags;
I
Ingo Molnar 已提交
1803 1804
	int cpu = get_cpu();

1805
	__sched_fork(clone_flags, p);
1806
	/*
1807
	 * We mark the process as running here. This guarantees that
1808 1809 1810
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
1811
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1812

1813 1814 1815 1816 1817
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

1818 1819 1820 1821
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
1822
		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1823
			p->policy = SCHED_NORMAL;
1824
			p->static_prio = NICE_TO_PRIO(0);
1825 1826 1827 1828 1829 1830
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
1831

1832 1833 1834 1835 1836 1837
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
1838

1839 1840 1841 1842 1843 1844
	if (dl_prio(p->prio)) {
		put_cpu();
		return -EAGAIN;
	} else if (rt_prio(p->prio)) {
		p->sched_class = &rt_sched_class;
	} else {
H
Hiroshi Shimamoto 已提交
1845
		p->sched_class = &fair_sched_class;
1846
	}
1847

P
Peter Zijlstra 已提交
1848 1849 1850
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

1851 1852 1853 1854 1855 1856 1857
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
1858
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1859
	set_task_cpu(p, cpu);
1860
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1861

1862
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1863
	if (likely(sched_info_on()))
1864
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1865
#endif
P
Peter Zijlstra 已提交
1866 1867
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
1868
#endif
1869
	init_task_preempt_count(p);
1870
#ifdef CONFIG_SMP
1871
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1872
	RB_CLEAR_NODE(&p->pushable_dl_tasks);
1873
#endif
1874

N
Nick Piggin 已提交
1875
	put_cpu();
1876
	return 0;
L
Linus Torvalds 已提交
1877 1878
}

1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 20;

	/*
	 * Doing this here saves a lot of checks in all
	 * the calling paths, and returning zero seems
	 * safe for them anyway.
	 */
	if (period == 0)
		return 0;

	return div64_u64(runtime << 20, period);
}

#ifdef CONFIG_SMP
inline struct dl_bw *dl_bw_of(int i)
{
	return &cpu_rq(i)->rd->dl_bw;
}

1901
static inline int dl_bw_cpus(int i)
1902
{
1903 1904 1905 1906 1907 1908 1909
	struct root_domain *rd = cpu_rq(i)->rd;
	int cpus = 0;

	for_each_cpu_and(i, rd->span, cpu_active_mask)
		cpus++;

	return cpus;
1910 1911 1912 1913 1914 1915 1916
}
#else
inline struct dl_bw *dl_bw_of(int i)
{
	return &cpu_rq(i)->dl.dl_bw;
}

1917
static inline int dl_bw_cpus(int i)
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
{
	return 1;
}
#endif

static inline
void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
{
	dl_b->total_bw -= tsk_bw;
}

static inline
void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
{
	dl_b->total_bw += tsk_bw;
}

static inline
bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
{
	return dl_b->bw != -1 &&
	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
}

/*
 * We must be sure that accepting a new task (or allowing changing the
 * parameters of an existing one) is consistent with the bandwidth
 * constraints. If yes, this function also accordingly updates the currently
 * allocated bandwidth to reflect the new situation.
 *
 * This function is called while holding p's rq->lock.
 */
static int dl_overflow(struct task_struct *p, int policy,
		       const struct sched_attr *attr)
{

	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1955
	u64 period = attr->sched_period ?: attr->sched_deadline;
1956 1957
	u64 runtime = attr->sched_runtime;
	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
1958
	int cpus, err = -1;
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968

	if (new_bw == p->dl.dl_bw)
		return 0;

	/*
	 * Either if a task, enters, leave, or stays -deadline but changes
	 * its parameters, we may need to update accordingly the total
	 * allocated bandwidth of the container.
	 */
	raw_spin_lock(&dl_b->lock);
1969
	cpus = dl_bw_cpus(task_cpu(p));
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
	if (dl_policy(policy) && !task_has_dl_policy(p) &&
	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
		__dl_add(dl_b, new_bw);
		err = 0;
	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
		__dl_clear(dl_b, p->dl.dl_bw);
		__dl_add(dl_b, new_bw);
		err = 0;
	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
		__dl_clear(dl_b, p->dl.dl_bw);
		err = 0;
	}
	raw_spin_unlock(&dl_b->lock);

	return err;
}

extern void init_dl_bw(struct dl_bw *dl_b);

L
Linus Torvalds 已提交
1990 1991 1992 1993 1994 1995 1996
/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1997
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
1998 1999
{
	unsigned long flags;
I
Ingo Molnar 已提交
2000
	struct rq *rq;
2001

2002
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2003 2004 2005 2006 2007 2008
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 */
2009
	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2010 2011
#endif

2012 2013
	/* Initialize new task's runnable average */
	init_task_runnable_average(p);
2014
	rq = __task_rq_lock(p);
P
Peter Zijlstra 已提交
2015
	activate_task(rq, p, 0);
P
Peter Zijlstra 已提交
2016
	p->on_rq = 1;
2017
	trace_sched_wakeup_new(p, true);
P
Peter Zijlstra 已提交
2018
	check_preempt_curr(rq, p, WF_FORK);
2019
#ifdef CONFIG_SMP
2020 2021
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2022
#endif
2023
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
2024 2025
}

2026 2027 2028
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2029
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2030
 * @notifier: notifier struct to register
2031 2032 2033 2034 2035 2036 2037 2038 2039
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2040
 * @notifier: notifier struct to unregister
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;

2054
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2055 2056 2057 2058 2059 2060 2061 2062 2063
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;

2064
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2065 2066 2067
		notifier->ops->sched_out(notifier, next);
}

2068
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2080
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2081

2082 2083 2084
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2085
 * @prev: the current task that is being switched out
2086 2087 2088 2089 2090 2091 2092 2093 2094
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2095 2096 2097
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2098
{
2099
	trace_sched_switch(prev, next);
2100
	sched_info_switch(rq, prev, next);
2101
	perf_event_task_sched_out(prev, next);
2102
	fire_sched_out_preempt_notifiers(prev, next);
2103 2104 2105 2106
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2107 2108
/**
 * finish_task_switch - clean up after a task-switch
2109
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2110 2111
 * @prev: the thread we just switched away from.
 *
2112 2113 2114 2115
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2116 2117
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2118
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2119 2120 2121
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2122
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2123 2124 2125
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2126
	long prev_state;
L
Linus Torvalds 已提交
2127 2128 2129 2130 2131

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2132
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2133 2134
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2135
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2136 2137 2138 2139 2140
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2141
	prev_state = prev->state;
2142
	vtime_task_switch(prev);
2143
	finish_arch_switch(prev);
2144
	perf_event_task_sched_in(prev, current);
2145
	finish_lock_switch(rq, prev);
2146
	finish_arch_post_lock_switch();
S
Steven Rostedt 已提交
2147

2148
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2149 2150
	if (mm)
		mmdrop(mm);
2151
	if (unlikely(prev_state == TASK_DEAD)) {
2152 2153 2154
		if (prev->sched_class->task_dead)
			prev->sched_class->task_dead(prev);

2155 2156 2157
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2158
		 */
2159
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2160
		put_task_struct(prev);
2161
	}
2162 2163

	tick_nohz_task_switch(current);
L
Linus Torvalds 已提交
2164 2165
}

2166 2167 2168 2169 2170 2171 2172 2173
#ifdef CONFIG_SMP

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

2174
		raw_spin_lock_irqsave(&rq->lock, flags);
2175 2176
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
2177
		raw_spin_unlock_irqrestore(&rq->lock, flags);
2178 2179 2180 2181 2182 2183

		rq->post_schedule = 0;
	}
}

#else
2184

2185 2186
static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
2187 2188
}

2189 2190
#endif

L
Linus Torvalds 已提交
2191 2192 2193 2194
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2195
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2196 2197
	__releases(rq->lock)
{
2198 2199
	struct rq *rq = this_rq();

2200
	finish_task_switch(rq, prev);
2201

2202 2203 2204 2205 2206
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2207

2208 2209 2210 2211
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2212
	if (current->set_child_tid)
2213
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2214 2215 2216 2217 2218 2219
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2220
static inline void
2221
context_switch(struct rq *rq, struct task_struct *prev,
2222
	       struct task_struct *next)
L
Linus Torvalds 已提交
2223
{
I
Ingo Molnar 已提交
2224
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2225

2226
	prepare_task_switch(rq, prev, next);
2227

I
Ingo Molnar 已提交
2228 2229
	mm = next->mm;
	oldmm = prev->active_mm;
2230 2231 2232 2233 2234
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2235
	arch_start_context_switch(prev);
2236

2237
	if (!mm) {
L
Linus Torvalds 已提交
2238 2239 2240 2241 2242 2243
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2244
	if (!prev->mm) {
L
Linus Torvalds 已提交
2245 2246 2247
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2248 2249 2250 2251 2252 2253 2254
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2255
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2256
#endif
L
Linus Torvalds 已提交
2257

2258
	context_tracking_task_switch(prev, next);
L
Linus Torvalds 已提交
2259 2260 2261
	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2262 2263 2264 2265 2266 2267 2268
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2269 2270 2271
}

/*
2272
 * nr_running and nr_context_switches:
L
Linus Torvalds 已提交
2273 2274
 *
 * externally visible scheduler statistics: current number of runnable
2275
 * threads, total number of context switches performed since bootup.
L
Linus Torvalds 已提交
2276 2277 2278 2279 2280 2281 2282 2283 2284
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2285
}
L
Linus Torvalds 已提交
2286 2287

unsigned long long nr_context_switches(void)
2288
{
2289 2290
	int i;
	unsigned long long sum = 0;
2291

2292
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2293
		sum += cpu_rq(i)->nr_switches;
2294

L
Linus Torvalds 已提交
2295 2296
	return sum;
}
2297

L
Linus Torvalds 已提交
2298 2299 2300
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2301

2302
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2303
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2304

L
Linus Torvalds 已提交
2305 2306
	return sum;
}
2307

2308
unsigned long nr_iowait_cpu(int cpu)
2309
{
2310
	struct rq *this = cpu_rq(cpu);
2311 2312
	return atomic_read(&this->nr_iowait);
}
2313

I
Ingo Molnar 已提交
2314
#ifdef CONFIG_SMP
2315

2316
/*
P
Peter Zijlstra 已提交
2317 2318
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2319
 */
P
Peter Zijlstra 已提交
2320
void sched_exec(void)
2321
{
P
Peter Zijlstra 已提交
2322
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2323
	unsigned long flags;
2324
	int dest_cpu;
2325

2326
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2327
	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2328 2329
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2330

2331
	if (likely(cpu_active(dest_cpu))) {
2332
		struct migration_arg arg = { p, dest_cpu };
2333

2334 2335
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2336 2337
		return;
	}
2338
unlock:
2339
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2340
}
I
Ingo Molnar 已提交
2341

L
Linus Torvalds 已提交
2342 2343 2344
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2345
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
2346 2347

EXPORT_PER_CPU_SYMBOL(kstat);
2348
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
2349 2350

/*
2351
 * Return any ns on the sched_clock that have not yet been accounted in
2352
 * @p in case that task is currently running.
2353 2354
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
2355
 */
2356 2357 2358 2359 2360 2361
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
2362
		ns = rq_clock_task(rq) - p->se.exec_start;
2363 2364 2365 2366 2367 2368 2369
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

2370
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
2371 2372
{
	unsigned long flags;
2373
	struct rq *rq;
2374
	u64 ns = 0;
2375

2376
	rq = task_rq_lock(p, &flags);
2377
	ns = do_task_delta_exec(p, rq);
2378
	task_rq_unlock(rq, p, &flags);
2379

2380 2381
	return ns;
}
2382

2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407
#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
	/*
	 * 64-bit doesn't need locks to atomically read a 64bit value.
	 * So we have a optimization chance when the task's delta_exec is 0.
	 * Reading ->on_cpu is racy, but this is ok.
	 *
	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
	 * If we race with it entering cpu, unaccounted time is 0. This is
	 * indistinguishable from the read occurring a few cycles earlier.
	 */
	if (!p->on_cpu)
		return p->se.sum_exec_runtime;
#endif

2408 2409
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2410
	task_rq_unlock(rq, p, &flags);
2411 2412 2413

	return ns;
}
2414

2415 2416 2417 2418 2419 2420 2421 2422
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2423
	struct task_struct *curr = rq->curr;
2424 2425

	sched_clock_tick();
I
Ingo Molnar 已提交
2426

2427
	raw_spin_lock(&rq->lock);
2428
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
2429
	curr->sched_class->task_tick(rq, curr, 0);
2430
	update_cpu_load_active(rq);
2431
	raw_spin_unlock(&rq->lock);
2432

2433
	perf_event_task_tick();
2434

2435
#ifdef CONFIG_SMP
2436
	rq->idle_balance = idle_cpu(cpu);
2437
	trigger_load_balance(rq);
2438
#endif
2439
	rq_last_tick_reset(rq);
L
Linus Torvalds 已提交
2440 2441
}

2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452
#ifdef CONFIG_NO_HZ_FULL
/**
 * scheduler_tick_max_deferment
 *
 * Keep at least one tick per second when a single
 * active task is running because the scheduler doesn't
 * yet completely support full dynticks environment.
 *
 * This makes sure that uptime, CFS vruntime, load
 * balancing, etc... continue to move forward, even
 * with a very low granularity.
2453 2454
 *
 * Return: Maximum deferment in nanoseconds.
2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465
 */
u64 scheduler_tick_max_deferment(void)
{
	struct rq *rq = this_rq();
	unsigned long next, now = ACCESS_ONCE(jiffies);

	next = rq->last_sched_tick + HZ;

	if (time_before_eq(next, now))
		return 0;

2466
	return jiffies_to_nsecs(next - now);
L
Linus Torvalds 已提交
2467
}
2468
#endif
L
Linus Torvalds 已提交
2469

2470
notrace unsigned long get_parent_ip(unsigned long addr)
2471 2472 2473 2474 2475 2476 2477 2478
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
2479

2480 2481 2482
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

2483
void __kprobes preempt_count_add(int val)
L
Linus Torvalds 已提交
2484
{
2485
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2486 2487 2488
	/*
	 * Underflow?
	 */
2489 2490
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
2491
#endif
2492
	__preempt_count_add(val);
2493
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2494 2495 2496
	/*
	 * Spinlock count overflowing soon?
	 */
2497 2498
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
2499
#endif
2500 2501 2502 2503 2504 2505 2506
	if (preempt_count() == val) {
		unsigned long ip = get_parent_ip(CALLER_ADDR1);
#ifdef CONFIG_DEBUG_PREEMPT
		current->preempt_disable_ip = ip;
#endif
		trace_preempt_off(CALLER_ADDR0, ip);
	}
L
Linus Torvalds 已提交
2507
}
2508
EXPORT_SYMBOL(preempt_count_add);
L
Linus Torvalds 已提交
2509

2510
void __kprobes preempt_count_sub(int val)
L
Linus Torvalds 已提交
2511
{
2512
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2513 2514 2515
	/*
	 * Underflow?
	 */
2516
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2517
		return;
L
Linus Torvalds 已提交
2518 2519 2520
	/*
	 * Is the spinlock portion underflowing?
	 */
2521 2522 2523
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
2524
#endif
2525

2526 2527
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2528
	__preempt_count_sub(val);
L
Linus Torvalds 已提交
2529
}
2530
EXPORT_SYMBOL(preempt_count_sub);
L
Linus Torvalds 已提交
2531 2532 2533 2534

#endif

/*
I
Ingo Molnar 已提交
2535
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
2536
 */
I
Ingo Molnar 已提交
2537
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
2538
{
2539 2540 2541
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
2542 2543
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
2544

I
Ingo Molnar 已提交
2545
	debug_show_held_locks(prev);
2546
	print_modules();
I
Ingo Molnar 已提交
2547 2548
	if (irqs_disabled())
		print_irqtrace_events(prev);
2549 2550 2551 2552 2553 2554 2555
#ifdef CONFIG_DEBUG_PREEMPT
	if (in_atomic_preempt_off()) {
		pr_err("Preemption disabled at:");
		print_ip_sym(current->preempt_disable_ip);
		pr_cont("\n");
	}
#endif
2556
	dump_stack();
2557
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
I
Ingo Molnar 已提交
2558
}
L
Linus Torvalds 已提交
2559

I
Ingo Molnar 已提交
2560 2561 2562 2563 2564
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
2565
	/*
I
Ingo Molnar 已提交
2566
	 * Test if we are atomic. Since do_exit() needs to call into
2567 2568
	 * schedule() atomically, we ignore that path. Otherwise whine
	 * if we are scheduling when we should not.
L
Linus Torvalds 已提交
2569
	 */
2570
	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
I
Ingo Molnar 已提交
2571
		__schedule_bug(prev);
2572
	rcu_sleep_check();
I
Ingo Molnar 已提交
2573

L
Linus Torvalds 已提交
2574 2575
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

2576
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
2577 2578 2579 2580 2581 2582
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
2583
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
2584
{
2585
	const struct sched_class *class = &fair_sched_class;
I
Ingo Molnar 已提交
2586
	struct task_struct *p;
L
Linus Torvalds 已提交
2587 2588

	/*
I
Ingo Molnar 已提交
2589 2590
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
2591
	 */
2592
	if (likely(prev->sched_class == class &&
2593
		   rq->nr_running == rq->cfs.h_nr_running)) {
2594
		p = fair_sched_class.pick_next_task(rq, prev);
2595 2596 2597 2598 2599 2600 2601 2602
		if (unlikely(p == RETRY_TASK))
			goto again;

		/* assumes fair_sched_class->next == idle_sched_class */
		if (unlikely(!p))
			p = idle_sched_class.pick_next_task(rq, prev);

		return p;
L
Linus Torvalds 已提交
2603 2604
	}

2605
again:
2606
	for_each_class(class) {
2607
		p = class->pick_next_task(rq, prev);
2608 2609 2610
		if (p) {
			if (unlikely(p == RETRY_TASK))
				goto again;
I
Ingo Molnar 已提交
2611
			return p;
2612
		}
I
Ingo Molnar 已提交
2613
	}
2614 2615

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
2616
}
L
Linus Torvalds 已提交
2617

I
Ingo Molnar 已提交
2618
/*
2619
 * __schedule() is the main scheduler function.
2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653
 *
 * The main means of driving the scheduler and thus entering this function are:
 *
 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 *      paths. For example, see arch/x86/entry_64.S.
 *
 *      To drive preemption between tasks, the scheduler sets the flag in timer
 *      interrupt handler scheduler_tick().
 *
 *   3. Wakeups don't really cause entry into schedule(). They add a
 *      task to the run-queue and that's it.
 *
 *      Now, if the new task added to the run-queue preempts the current
 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 *      called on the nearest possible occasion:
 *
 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
 *
 *         - in syscall or exception context, at the next outmost
 *           preempt_enable(). (this might be as soon as the wake_up()'s
 *           spin_unlock()!)
 *
 *         - in IRQ context, return from interrupt-handler to
 *           preemptible context
 *
 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
 *         then at the next:
 *
 *          - cond_resched() call
 *          - explicit schedule() call
 *          - return from syscall or exception to user-space
 *          - return from interrupt-handler to user-space
I
Ingo Molnar 已提交
2654
 */
2655
static void __sched __schedule(void)
I
Ingo Molnar 已提交
2656 2657
{
	struct task_struct *prev, *next;
2658
	unsigned long *switch_count;
I
Ingo Molnar 已提交
2659
	struct rq *rq;
2660
	int cpu;
I
Ingo Molnar 已提交
2661

2662 2663
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
2664 2665
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
2666
	rcu_note_context_switch(cpu);
I
Ingo Molnar 已提交
2667 2668 2669
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
2670

2671
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
2672
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
2673

2674 2675 2676 2677 2678 2679
	/*
	 * Make sure that signal_pending_state()->signal_pending() below
	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
	 * done by the caller to avoid the race with signal_wake_up().
	 */
	smp_mb__before_spinlock();
2680
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
2681

2682
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
2683
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
2684
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
2685
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
2686
		} else {
2687 2688 2689
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

T
Tejun Heo 已提交
2690
			/*
2691 2692 2693
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
2694 2695 2696 2697 2698 2699 2700 2701 2702
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
		}
I
Ingo Molnar 已提交
2703
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
2704 2705
	}

2706 2707 2708 2709
	if (prev->on_rq || rq->skip_clock_update < 0)
		update_rq_clock(rq);

	next = pick_next_task(rq, prev);
2710
	clear_tsk_need_resched(prev);
2711
	clear_preempt_need_resched();
2712
	rq->skip_clock_update = 0;
L
Linus Torvalds 已提交
2713 2714 2715 2716 2717 2718

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
2719
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
2720
		/*
2721 2722 2723 2724
		 * The context switch have flipped the stack from under us
		 * and restored the local variables which were saved when
		 * this task called schedule() in the past. prev == current
		 * is still correct, but it can be moved to another cpu/rq.
P
Peter Zijlstra 已提交
2725 2726 2727
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
2728
	} else
2729
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
2730

2731
	post_schedule(rq);
L
Linus Torvalds 已提交
2732

2733
	sched_preempt_enable_no_resched();
2734
	if (need_resched())
L
Linus Torvalds 已提交
2735 2736
		goto need_resched;
}
2737

2738 2739
static inline void sched_submit_work(struct task_struct *tsk)
{
2740
	if (!tsk->state || tsk_is_pi_blocked(tsk))
2741 2742 2743 2744 2745 2746 2747 2748 2749
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

S
Simon Kirby 已提交
2750
asmlinkage void __sched schedule(void)
2751
{
2752 2753 2754
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
2755 2756
	__schedule();
}
L
Linus Torvalds 已提交
2757 2758
EXPORT_SYMBOL(schedule);

2759
#ifdef CONFIG_CONTEXT_TRACKING
2760 2761 2762 2763 2764 2765 2766 2767
asmlinkage void __sched schedule_user(void)
{
	/*
	 * If we come here after a random call to set_need_resched(),
	 * or we have been woken up remotely but the IPI has not yet arrived,
	 * we haven't yet exited the RCU idle mode. Do it here manually until
	 * we find a better solution.
	 */
2768
	user_exit();
2769
	schedule();
2770
	user_enter();
2771 2772 2773
}
#endif

2774 2775 2776 2777 2778 2779 2780
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
2781
	sched_preempt_enable_no_resched();
2782 2783 2784 2785
	schedule();
	preempt_disable();
}

L
Linus Torvalds 已提交
2786 2787
#ifdef CONFIG_PREEMPT
/*
2788
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
2789
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
2790 2791
 * occur there and call schedule directly.
 */
2792
asmlinkage void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
2793 2794 2795
{
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
2796
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
2797
	 */
2798
	if (likely(!preemptible()))
L
Linus Torvalds 已提交
2799 2800
		return;

2801
	do {
2802
		__preempt_count_add(PREEMPT_ACTIVE);
2803
		__schedule();
2804
		__preempt_count_sub(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
2805

2806 2807 2808 2809 2810
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
2811
	} while (need_resched());
L
Linus Torvalds 已提交
2812 2813
}
EXPORT_SYMBOL(preempt_schedule);
2814
#endif /* CONFIG_PREEMPT */
L
Linus Torvalds 已提交
2815 2816

/*
2817
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
2818 2819 2820 2821 2822 2823
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
2824
	enum ctx_state prev_state;
2825

2826
	/* Catch callers which need to be fixed */
2827
	BUG_ON(preempt_count() || !irqs_disabled());
L
Linus Torvalds 已提交
2828

2829 2830
	prev_state = exception_enter();

2831
	do {
2832
		__preempt_count_add(PREEMPT_ACTIVE);
2833
		local_irq_enable();
2834
		__schedule();
2835
		local_irq_disable();
2836
		__preempt_count_sub(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
2837

2838 2839 2840 2841 2842
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
2843
	} while (need_resched());
2844 2845

	exception_exit(prev_state);
L
Linus Torvalds 已提交
2846 2847
}

P
Peter Zijlstra 已提交
2848
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
2849
			  void *key)
L
Linus Torvalds 已提交
2850
{
P
Peter Zijlstra 已提交
2851
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
2852 2853 2854
}
EXPORT_SYMBOL(default_wake_function);

2855 2856 2857 2858 2859 2860 2861 2862 2863 2864
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
2865 2866
 * Used by the rt_mutex code to implement priority inheritance
 * logic. Call site only calls if the priority of the task changed.
2867
 */
2868
void rt_mutex_setprio(struct task_struct *p, int prio)
2869
{
2870
	int oldprio, on_rq, running, enqueue_flag = 0;
2871
	struct rq *rq;
2872
	const struct sched_class *prev_class;
2873

2874
	BUG_ON(prio > MAX_PRIO);
2875

2876
	rq = __task_rq_lock(p);
2877

2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

2896
	trace_sched_pi_setprio(p, prio);
2897
	p->pi_top_task = rt_mutex_get_top_task(p);
2898
	oldprio = p->prio;
2899
	prev_class = p->sched_class;
P
Peter Zijlstra 已提交
2900
	on_rq = p->on_rq;
2901
	running = task_current(rq, p);
2902
	if (on_rq)
2903
		dequeue_task(rq, p, 0);
2904 2905
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
2906

2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923
	/*
	 * Boosting condition are:
	 * 1. -rt task is running and holds mutex A
	 *      --> -dl task blocks on mutex A
	 *
	 * 2. -dl task is running and holds mutex A
	 *      --> -dl task blocks on mutex A and could preempt the
	 *          running task
	 */
	if (dl_prio(prio)) {
		if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
			dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
			p->dl.dl_boosted = 1;
			p->dl.dl_throttled = 0;
			enqueue_flag = ENQUEUE_REPLENISH;
		} else
			p->dl.dl_boosted = 0;
2924
		p->sched_class = &dl_sched_class;
2925 2926 2927 2928 2929
	} else if (rt_prio(prio)) {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
		if (oldprio < prio)
			enqueue_flag = ENQUEUE_HEAD;
I
Ingo Molnar 已提交
2930
		p->sched_class = &rt_sched_class;
2931 2932 2933
	} else {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
I
Ingo Molnar 已提交
2934
		p->sched_class = &fair_sched_class;
2935
	}
I
Ingo Molnar 已提交
2936

2937 2938
	p->prio = prio;

2939 2940
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
2941
	if (on_rq)
2942
		enqueue_task(rq, p, enqueue_flag);
2943

P
Peter Zijlstra 已提交
2944
	check_class_changed(rq, p, prev_class, oldprio);
2945
out_unlock:
2946
	__task_rq_unlock(rq);
2947 2948
}
#endif
2949

2950
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
2951
{
I
Ingo Molnar 已提交
2952
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
2953
	unsigned long flags;
2954
	struct rq *rq;
L
Linus Torvalds 已提交
2955

2956
	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
L
Linus Torvalds 已提交
2957 2958 2959 2960 2961 2962 2963 2964 2965 2966
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
2967
	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
L
Linus Torvalds 已提交
2968
	 */
2969
	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
2970 2971 2972
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
P
Peter Zijlstra 已提交
2973
	on_rq = p->on_rq;
2974
	if (on_rq)
2975
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
2976 2977

	p->static_prio = NICE_TO_PRIO(nice);
2978
	set_load_weight(p);
2979 2980 2981
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
2982

I
Ingo Molnar 已提交
2983
	if (on_rq) {
2984
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
2985
		/*
2986 2987
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
2988
		 */
2989
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
2990 2991 2992
			resched_task(rq->curr);
	}
out_unlock:
2993
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
2994 2995 2996
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
2997 2998 2999 3000 3001
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3002
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3003
{
3004 3005
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
3006

3007
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3008 3009 3010
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3011 3012 3013 3014 3015 3016 3017 3018 3019
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3020
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3021
{
3022
	long nice, retval;
L
Linus Torvalds 已提交
3023 3024 3025 3026 3027 3028

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
3029 3030
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
3031 3032 3033
	if (increment > 40)
		increment = 40;

3034
	nice = task_nice(current) + increment;
3035 3036 3037 3038
	if (nice < MIN_NICE)
		nice = MIN_NICE;
	if (nice > MAX_NICE)
		nice = MAX_NICE;
L
Linus Torvalds 已提交
3039

M
Matt Mackall 已提交
3040 3041 3042
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
3057
 * Return: The priority value as seen by users in /proc.
L
Linus Torvalds 已提交
3058 3059 3060
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3061
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3062 3063 3064 3065 3066 3067 3068
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
3069 3070
 *
 * Return: 1 if the CPU is currently idle. 0 otherwise.
L
Linus Torvalds 已提交
3071 3072 3073
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3088 3089 3090 3091 3092
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
3093 3094
 *
 * Return: The idle task for the cpu @cpu.
L
Linus Torvalds 已提交
3095
 */
3096
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3097 3098 3099 3100 3101 3102 3103
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
3104 3105
 *
 * The task of @pid, if found. %NULL otherwise.
L
Linus Torvalds 已提交
3106
 */
A
Alexey Dobriyan 已提交
3107
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
3108
{
3109
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
3110 3111
}

3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127
/*
 * This function initializes the sched_dl_entity of a newly becoming
 * SCHED_DEADLINE task.
 *
 * Only the static values are considered here, the actual runtime and the
 * absolute deadline will be properly calculated when the task is enqueued
 * for the first time with its new policy.
 */
static void
__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	init_dl_task_timer(dl_se);
	dl_se->dl_runtime = attr->sched_runtime;
	dl_se->dl_deadline = attr->sched_deadline;
3128
	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3129
	dl_se->flags = attr->sched_flags;
3130
	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3131 3132
	dl_se->dl_throttled = 0;
	dl_se->dl_new = 1;
3133
	dl_se->dl_yielded = 0;
3134 3135
}

3136 3137
static void __setscheduler_params(struct task_struct *p,
		const struct sched_attr *attr)
L
Linus Torvalds 已提交
3138
{
3139 3140
	int policy = attr->sched_policy;

3141 3142 3143
	if (policy == -1) /* setparam */
		policy = p->policy;

L
Linus Torvalds 已提交
3144
	p->policy = policy;
3145

3146 3147
	if (dl_policy(policy))
		__setparam_dl(p, attr);
3148
	else if (fair_policy(policy))
3149 3150
		p->static_prio = NICE_TO_PRIO(attr->sched_nice);

3151 3152 3153 3154 3155 3156
	/*
	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
	 * !rt_policy. Always setting this ensures that things like
	 * getparam()/getattr() don't report silly values for !rt tasks.
	 */
	p->rt_priority = attr->sched_priority;
3157
	p->normal_prio = normal_prio(p);
3158 3159
	set_load_weight(p);
}
3160

3161 3162 3163 3164 3165
/* Actually do priority change: must hold pi & rq lock. */
static void __setscheduler(struct rq *rq, struct task_struct *p,
			   const struct sched_attr *attr)
{
	__setscheduler_params(p, attr);
3166

3167 3168 3169 3170 3171 3172
	/*
	 * If we get here, there was no pi waiters boosting the
	 * task. It is safe to use the normal prio.
	 */
	p->prio = normal_prio(p);

3173 3174 3175
	if (dl_prio(p->prio))
		p->sched_class = &dl_sched_class;
	else if (rt_prio(p->prio))
3176 3177 3178
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
3179
}
3180 3181 3182 3183 3184 3185 3186 3187 3188

static void
__getparam_dl(struct task_struct *p, struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	attr->sched_priority = p->rt_priority;
	attr->sched_runtime = dl_se->dl_runtime;
	attr->sched_deadline = dl_se->dl_deadline;
3189
	attr->sched_period = dl_se->dl_period;
3190 3191 3192 3193 3194 3195
	attr->sched_flags = dl_se->flags;
}

/*
 * This function validates the new parameters of a -deadline task.
 * We ask for the deadline not being zero, and greater or equal
3196
 * than the runtime, as well as the period of being zero or
3197 3198 3199
 * greater than deadline. Furthermore, we have to be sure that
 * user parameters are above the internal resolution (1us); we
 * check sched_runtime only since it is always the smaller one.
3200 3201 3202 3203 3204
 */
static bool
__checkparam_dl(const struct sched_attr *attr)
{
	return attr && attr->sched_deadline != 0 &&
3205 3206
		(attr->sched_period == 0 ||
		(s64)(attr->sched_period   - attr->sched_deadline) >= 0) &&
3207 3208
		(s64)(attr->sched_deadline - attr->sched_runtime ) >= 0  &&
		attr->sched_runtime >= (2 << (DL_SCALE - 1));
3209 3210
}

3211 3212 3213 3214 3215 3216 3217 3218 3219 3220
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
3221 3222
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
3223 3224 3225 3226
	rcu_read_unlock();
	return match;
}

3227 3228 3229
static int __sched_setscheduler(struct task_struct *p,
				const struct sched_attr *attr,
				bool user)
L
Linus Torvalds 已提交
3230
{
3231 3232
	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
		      MAX_RT_PRIO - 1 - attr->sched_priority;
3233
	int retval, oldprio, oldpolicy = -1, on_rq, running;
3234
	int policy = attr->sched_policy;
L
Linus Torvalds 已提交
3235
	unsigned long flags;
3236
	const struct sched_class *prev_class;
3237
	struct rq *rq;
3238
	int reset_on_fork;
L
Linus Torvalds 已提交
3239

3240 3241
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
3242 3243
recheck:
	/* double check policy once rq lock held */
3244 3245
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
3246
		policy = oldpolicy = p->policy;
3247
	} else {
3248
		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3249

3250 3251
		if (policy != SCHED_DEADLINE &&
				policy != SCHED_FIFO && policy != SCHED_RR &&
3252 3253 3254 3255 3256
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

3257 3258 3259
	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
		return -EINVAL;

L
Linus Torvalds 已提交
3260 3261
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
3262 3263
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
3264
	 */
3265
	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3266
	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
3267
		return -EINVAL;
3268 3269
	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
	    (rt_policy(policy) != (attr->sched_priority != 0)))
L
Linus Torvalds 已提交
3270 3271
		return -EINVAL;

3272 3273 3274
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
3275
	if (user && !capable(CAP_SYS_NICE)) {
3276
		if (fair_policy(policy)) {
3277
			if (attr->sched_nice < task_nice(p) &&
3278
			    !can_nice(p, attr->sched_nice))
3279 3280 3281
				return -EPERM;
		}

3282
		if (rt_policy(policy)) {
3283 3284
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
3285 3286 3287 3288 3289 3290

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
3291 3292
			if (attr->sched_priority > p->rt_priority &&
			    attr->sched_priority > rlim_rtprio)
3293 3294
				return -EPERM;
		}
3295

3296 3297 3298 3299 3300 3301 3302 3303 3304
		 /*
		  * Can't set/change SCHED_DEADLINE policy at all for now
		  * (safest behavior); in the future we would like to allow
		  * unprivileged DL tasks to increase their relative deadline
		  * or reduce their runtime (both ways reducing utilization)
		  */
		if (dl_policy(policy))
			return -EPERM;

I
Ingo Molnar 已提交
3305
		/*
3306 3307
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
3308
		 */
3309
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3310
			if (!can_nice(p, task_nice(p)))
3311 3312
				return -EPERM;
		}
3313

3314
		/* can't change other user's priorities */
3315
		if (!check_same_owner(p))
3316
			return -EPERM;
3317 3318 3319 3320

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
3321
	}
L
Linus Torvalds 已提交
3322

3323
	if (user) {
3324
		retval = security_task_setscheduler(p);
3325 3326 3327 3328
		if (retval)
			return retval;
	}

3329 3330 3331
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
3332
	 *
L
Lucas De Marchi 已提交
3333
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
3334 3335
	 * runqueue lock must be held.
	 */
3336
	rq = task_rq_lock(p, &flags);
3337

3338 3339 3340 3341
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
3342
		task_rq_unlock(rq, p, &flags);
3343 3344 3345
		return -EINVAL;
	}

3346
	/*
3347 3348
	 * If not changing anything there's no need to proceed further,
	 * but store a possible modification of reset_on_fork.
3349
	 */
3350
	if (unlikely(policy == p->policy)) {
3351
		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3352 3353 3354
			goto change;
		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
			goto change;
3355 3356
		if (dl_policy(policy))
			goto change;
3357

3358
		p->sched_reset_on_fork = reset_on_fork;
3359
		task_rq_unlock(rq, p, &flags);
3360 3361
		return 0;
	}
3362
change:
3363

3364
	if (user) {
3365
#ifdef CONFIG_RT_GROUP_SCHED
3366 3367 3368 3369 3370
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3371 3372
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
3373
			task_rq_unlock(rq, p, &flags);
3374 3375 3376
			return -EPERM;
		}
#endif
3377 3378 3379 3380 3381 3382 3383 3384 3385
#ifdef CONFIG_SMP
		if (dl_bandwidth_enabled() && dl_policy(policy)) {
			cpumask_t *span = rq->rd->span;

			/*
			 * Don't allow tasks with an affinity mask smaller than
			 * the entire root_domain to become SCHED_DEADLINE. We
			 * will also fail if there's no bandwidth available.
			 */
3386 3387
			if (!cpumask_subset(span, &p->cpus_allowed) ||
			    rq->rd->dl_bw.bw == 0) {
3388 3389 3390 3391 3392 3393
				task_rq_unlock(rq, p, &flags);
				return -EPERM;
			}
		}
#endif
	}
3394

L
Linus Torvalds 已提交
3395 3396 3397
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
3398
		task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3399 3400
		goto recheck;
	}
3401 3402 3403 3404 3405 3406

	/*
	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
	 * is available.
	 */
3407
	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3408 3409 3410 3411
		task_rq_unlock(rq, p, &flags);
		return -EBUSY;
	}

3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429
	p->sched_reset_on_fork = reset_on_fork;
	oldprio = p->prio;

	/*
	 * Special case for priority boosted tasks.
	 *
	 * If the new priority is lower or equal (user space view)
	 * than the current (boosted) priority, we just store the new
	 * normal parameters and do not touch the scheduler class and
	 * the runqueue. This will be done when the task deboost
	 * itself.
	 */
	if (rt_mutex_check_prio(p, newprio)) {
		__setscheduler_params(p, attr);
		task_rq_unlock(rq, p, &flags);
		return 0;
	}

P
Peter Zijlstra 已提交
3430
	on_rq = p->on_rq;
3431
	running = task_current(rq, p);
3432
	if (on_rq)
3433
		dequeue_task(rq, p, 0);
3434 3435
	if (running)
		p->sched_class->put_prev_task(rq, p);
3436

3437
	prev_class = p->sched_class;
3438
	__setscheduler(rq, p, attr);
3439

3440 3441
	if (running)
		p->sched_class->set_curr_task(rq);
3442 3443 3444 3445 3446 3447 3448
	if (on_rq) {
		/*
		 * We enqueue to tail when the priority of a task is
		 * increased (user space view).
		 */
		enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
	}
3449

P
Peter Zijlstra 已提交
3450
	check_class_changed(rq, p, prev_class, oldprio);
3451
	task_rq_unlock(rq, p, &flags);
3452

3453 3454
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
3455 3456
	return 0;
}
3457

3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477
static int _sched_setscheduler(struct task_struct *p, int policy,
			       const struct sched_param *param, bool check)
{
	struct sched_attr attr = {
		.sched_policy   = policy,
		.sched_priority = param->sched_priority,
		.sched_nice	= PRIO_TO_NICE(p->static_prio),
	};

	/*
	 * Fixup the legacy SCHED_RESET_ON_FORK hack
	 */
	if (policy & SCHED_RESET_ON_FORK) {
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
		policy &= ~SCHED_RESET_ON_FORK;
		attr.sched_policy = policy;
	}

	return __sched_setscheduler(p, &attr, check);
}
3478 3479 3480 3481 3482 3483
/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
3484 3485
 * Return: 0 on success. An error code otherwise.
 *
3486 3487 3488
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
3489
		       const struct sched_param *param)
3490
{
3491
	return _sched_setscheduler(p, policy, param, true);
3492
}
L
Linus Torvalds 已提交
3493 3494
EXPORT_SYMBOL_GPL(sched_setscheduler);

3495 3496 3497 3498 3499 3500
int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
{
	return __sched_setscheduler(p, attr, true);
}
EXPORT_SYMBOL_GPL(sched_setattr);

3501 3502 3503 3504 3505 3506 3507 3508 3509 3510
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
3511 3512
 *
 * Return: 0 on success. An error code otherwise.
3513 3514
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3515
			       const struct sched_param *param)
3516
{
3517
	return _sched_setscheduler(p, policy, param, false);
3518 3519
}

I
Ingo Molnar 已提交
3520 3521
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
3522 3523 3524
{
	struct sched_param lparam;
	struct task_struct *p;
3525
	int retval;
L
Linus Torvalds 已提交
3526 3527 3528 3529 3530

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
3531 3532 3533

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
3534
	p = find_process_by_pid(pid);
3535 3536 3537
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
3538

L
Linus Torvalds 已提交
3539 3540 3541
	return retval;
}

3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603
/*
 * Mimics kernel/events/core.c perf_copy_attr().
 */
static int sched_copy_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr)
{
	u32 size;
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = SCHED_ATTR_SIZE_VER0;

	if (size < SCHED_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
	 */
	if (size > sizeof(*attr)) {
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;

		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;

		for (; addr < end; addr++) {
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
		size = sizeof(*attr);
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * XXX: do we want to be lenient like existing syscalls; or do we want
	 * to be strict and return an error on out-of-bounds values?
	 */
3604
	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3605 3606 3607 3608 3609 3610 3611 3612 3613 3614

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

L
Linus Torvalds 已提交
3615 3616 3617 3618 3619
/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
3620 3621
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
3622
 */
3623 3624
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
3625
{
3626 3627 3628 3629
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
3630 3631 3632 3633 3634 3635 3636
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
3637 3638
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
3639
 */
3640
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
3641 3642 3643 3644
{
	return do_sched_setscheduler(pid, -1, param);
}

3645 3646 3647
/**
 * sys_sched_setattr - same as above, but with extended sched_attr
 * @pid: the pid in question.
J
Juri Lelli 已提交
3648
 * @uattr: structure containing the extended parameters.
3649
 * @flags: for future extension.
3650
 */
3651 3652
SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
			       unsigned int, flags)
3653 3654 3655 3656 3657
{
	struct sched_attr attr;
	struct task_struct *p;
	int retval;

3658
	if (!uattr || pid < 0 || flags)
3659 3660
		return -EINVAL;

3661 3662 3663
	retval = sched_copy_attr(uattr, &attr);
	if (retval)
		return retval;
3664

3665 3666 3667
	if (attr.sched_policy < 0)
		return -EINVAL;

3668 3669 3670 3671 3672 3673 3674 3675 3676 3677
	rcu_read_lock();
	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (p != NULL)
		retval = sched_setattr(p, &attr);
	rcu_read_unlock();

	return retval;
}

L
Linus Torvalds 已提交
3678 3679 3680
/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
3681 3682 3683
 *
 * Return: On success, the policy of the thread. Otherwise, a negative error
 * code.
L
Linus Torvalds 已提交
3684
 */
3685
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
3686
{
3687
	struct task_struct *p;
3688
	int retval;
L
Linus Torvalds 已提交
3689 3690

	if (pid < 0)
3691
		return -EINVAL;
L
Linus Torvalds 已提交
3692 3693

	retval = -ESRCH;
3694
	rcu_read_lock();
L
Linus Torvalds 已提交
3695 3696 3697 3698
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
3699 3700
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
3701
	}
3702
	rcu_read_unlock();
L
Linus Torvalds 已提交
3703 3704 3705 3706
	return retval;
}

/**
3707
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
3708 3709
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
3710 3711 3712
 *
 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
 * code.
L
Linus Torvalds 已提交
3713
 */
3714
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
3715
{
3716
	struct sched_param lp = { .sched_priority = 0 };
3717
	struct task_struct *p;
3718
	int retval;
L
Linus Torvalds 已提交
3719 3720

	if (!param || pid < 0)
3721
		return -EINVAL;
L
Linus Torvalds 已提交
3722

3723
	rcu_read_lock();
L
Linus Torvalds 已提交
3724 3725 3726 3727 3728 3729 3730 3731 3732
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

3733 3734
	if (task_has_rt_policy(p))
		lp.sched_priority = p->rt_priority;
3735
	rcu_read_unlock();
L
Linus Torvalds 已提交
3736 3737 3738 3739 3740 3741 3742 3743 3744

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
3745
	rcu_read_unlock();
L
Linus Torvalds 已提交
3746 3747 3748
	return retval;
}

3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777
static int sched_read_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr,
			   unsigned int usize)
{
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, usize))
		return -EFAULT;

	/*
	 * If we're handed a smaller struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. old
	 * user-space does not get uncomplete information.
	 */
	if (usize < sizeof(*attr)) {
		unsigned char *addr;
		unsigned char *end;

		addr = (void *)attr + usize;
		end  = (void *)attr + sizeof(*attr);

		for (; addr < end; addr++) {
			if (*addr)
				goto err_size;
		}

		attr->size = usize;
	}

3778
	ret = copy_to_user(uattr, attr, attr->size);
3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790
	if (ret)
		return -EFAULT;

out:
	return ret;

err_size:
	ret = -E2BIG;
	goto out;
}

/**
3791
 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3792
 * @pid: the pid in question.
J
Juri Lelli 已提交
3793
 * @uattr: structure containing the extended parameters.
3794
 * @size: sizeof(attr) for fwd/bwd comp.
3795
 * @flags: for future extension.
3796
 */
3797 3798
SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
		unsigned int, size, unsigned int, flags)
3799 3800 3801 3802 3803 3804 3805 3806
{
	struct sched_attr attr = {
		.size = sizeof(struct sched_attr),
	};
	struct task_struct *p;
	int retval;

	if (!uattr || pid < 0 || size > PAGE_SIZE ||
3807
	    size < SCHED_ATTR_SIZE_VER0 || flags)
3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820
		return -EINVAL;

	rcu_read_lock();
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	attr.sched_policy = p->policy;
3821 3822
	if (p->sched_reset_on_fork)
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3823 3824 3825
	if (task_has_dl_policy(p))
		__getparam_dl(p, &attr);
	else if (task_has_rt_policy(p))
3826 3827
		attr.sched_priority = p->rt_priority;
	else
3828
		attr.sched_nice = task_nice(p);
3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839

	rcu_read_unlock();

	retval = sched_read_attr(uattr, &attr, size);
	return retval;

out_unlock:
	rcu_read_unlock();
	return retval;
}

3840
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
3841
{
3842
	cpumask_var_t cpus_allowed, new_mask;
3843 3844
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
3845

3846
	rcu_read_lock();
L
Linus Torvalds 已提交
3847 3848 3849

	p = find_process_by_pid(pid);
	if (!p) {
3850
		rcu_read_unlock();
L
Linus Torvalds 已提交
3851 3852 3853
		return -ESRCH;
	}

3854
	/* Prevent p going away */
L
Linus Torvalds 已提交
3855
	get_task_struct(p);
3856
	rcu_read_unlock();
L
Linus Torvalds 已提交
3857

3858 3859 3860 3861
	if (p->flags & PF_NO_SETAFFINITY) {
		retval = -EINVAL;
		goto out_put_task;
	}
3862 3863 3864 3865 3866 3867 3868 3869
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
3870
	retval = -EPERM;
E
Eric W. Biederman 已提交
3871 3872 3873 3874 3875 3876 3877 3878
	if (!check_same_owner(p)) {
		rcu_read_lock();
		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
			rcu_read_unlock();
			goto out_unlock;
		}
		rcu_read_unlock();
	}
L
Linus Torvalds 已提交
3879

3880
	retval = security_task_setscheduler(p);
3881 3882 3883
	if (retval)
		goto out_unlock;

3884 3885 3886 3887

	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);

3888 3889 3890 3891 3892 3893 3894 3895 3896 3897
	/*
	 * Since bandwidth control happens on root_domain basis,
	 * if admission test is enabled, we only admit -deadline
	 * tasks allowed to run on all the CPUs in the task's
	 * root_domain.
	 */
#ifdef CONFIG_SMP
	if (task_has_dl_policy(p)) {
		const struct cpumask *span = task_rq(p)->rd->span;

3898
		if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
3899 3900 3901 3902 3903
			retval = -EBUSY;
			goto out_unlock;
		}
	}
#endif
P
Peter Zijlstra 已提交
3904
again:
3905
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
3906

P
Paul Menage 已提交
3907
	if (!retval) {
3908 3909
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
3910 3911 3912 3913 3914
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
3915
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
3916 3917 3918
			goto again;
		}
	}
L
Linus Torvalds 已提交
3919
out_unlock:
3920 3921 3922 3923
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
3924 3925 3926 3927 3928
	put_task_struct(p);
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3929
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
3930
{
3931 3932 3933 3934 3935
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
3936 3937 3938 3939 3940 3941 3942 3943
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
3944 3945
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
3946
 */
3947 3948
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
3949
{
3950
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
3951 3952
	int retval;

3953 3954
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
3955

3956 3957 3958 3959 3960
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
3961 3962
}

3963
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
3964
{
3965
	struct task_struct *p;
3966
	unsigned long flags;
L
Linus Torvalds 已提交
3967 3968
	int retval;

3969
	rcu_read_lock();
L
Linus Torvalds 已提交
3970 3971 3972 3973 3974 3975

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

3976 3977 3978 3979
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

3980
	raw_spin_lock_irqsave(&p->pi_lock, flags);
3981
	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
3982
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
3983 3984

out_unlock:
3985
	rcu_read_unlock();
L
Linus Torvalds 已提交
3986

3987
	return retval;
L
Linus Torvalds 已提交
3988 3989 3990 3991 3992 3993 3994
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3995 3996
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
3997
 */
3998 3999
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4000 4001
{
	int ret;
4002
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4003

A
Anton Blanchard 已提交
4004
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4005 4006
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4007 4008
		return -EINVAL;

4009 4010
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4011

4012 4013
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4014
		size_t retlen = min_t(size_t, len, cpumask_size());
4015 4016

		if (copy_to_user(user_mask_ptr, mask, retlen))
4017 4018
			ret = -EFAULT;
		else
4019
			ret = retlen;
4020 4021
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4022

4023
	return ret;
L
Linus Torvalds 已提交
4024 4025 4026 4027 4028
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4029 4030
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
4031 4032
 *
 * Return: 0.
L
Linus Torvalds 已提交
4033
 */
4034
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4035
{
4036
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4037

4038
	schedstat_inc(rq, yld_count);
4039
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4040 4041 4042 4043 4044 4045

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4046
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4047
	do_raw_spin_unlock(&rq->lock);
4048
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
4049 4050 4051 4052 4053 4054

	schedule();

	return 0;
}

A
Andrew Morton 已提交
4055
static void __cond_resched(void)
L
Linus Torvalds 已提交
4056
{
4057
	__preempt_count_add(PREEMPT_ACTIVE);
4058
	__schedule();
4059
	__preempt_count_sub(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4060 4061
}

4062
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4063
{
P
Peter Zijlstra 已提交
4064
	if (should_resched()) {
L
Linus Torvalds 已提交
4065 4066 4067 4068 4069
		__cond_resched();
		return 1;
	}
	return 0;
}
4070
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4071 4072

/*
4073
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4074 4075
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4076
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4077 4078 4079
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4080
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4081
{
P
Peter Zijlstra 已提交
4082
	int resched = should_resched();
J
Jan Kara 已提交
4083 4084
	int ret = 0;

4085 4086
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
4087
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4088
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4089
		if (resched)
N
Nick Piggin 已提交
4090 4091 4092
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
4093
		ret = 1;
L
Linus Torvalds 已提交
4094 4095
		spin_lock(lock);
	}
J
Jan Kara 已提交
4096
	return ret;
L
Linus Torvalds 已提交
4097
}
4098
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4099

4100
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4101 4102 4103
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
4104
	if (should_resched()) {
4105
		local_bh_enable();
L
Linus Torvalds 已提交
4106 4107 4108 4109 4110 4111
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
4112
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4113 4114 4115 4116

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
 * 	yield();
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
4135 4136 4137 4138 4139 4140 4141 4142
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

4143 4144 4145 4146
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
4147 4148
 * @p: target task
 * @preempt: whether task preemption is allowed or not
4149 4150 4151 4152
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
4153
 * Return:
4154 4155 4156
 *	true (>0) if we indeed boosted the target task.
 *	false (0) if we failed to boost the target.
 *	-ESRCH if there's no task to yield to.
4157 4158 4159 4160 4161 4162
 */
bool __sched yield_to(struct task_struct *p, bool preempt)
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
4163
	int yielded = 0;
4164 4165 4166 4167 4168 4169

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
4170 4171 4172 4173 4174 4175 4176 4177 4178
	/*
	 * If we're the only runnable task on the rq and target rq also
	 * has only one task, there's absolutely no point in yielding.
	 */
	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
		yielded = -ESRCH;
		goto out_irq;
	}

4179
	double_rq_lock(rq, p_rq);
4180
	if (task_rq(p) != p_rq) {
4181 4182 4183 4184 4185
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
4186
		goto out_unlock;
4187 4188

	if (curr->sched_class != p->sched_class)
4189
		goto out_unlock;
4190 4191

	if (task_running(p_rq, p) || p->state)
4192
		goto out_unlock;
4193 4194

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4195
	if (yielded) {
4196
		schedstat_inc(rq, yld_count);
4197 4198 4199 4200 4201 4202 4203
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
			resched_task(p_rq->curr);
	}
4204

4205
out_unlock:
4206
	double_rq_unlock(rq, p_rq);
4207
out_irq:
4208 4209
	local_irq_restore(flags);

4210
	if (yielded > 0)
4211 4212 4213 4214 4215 4216
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
4217
/*
I
Ingo Molnar 已提交
4218
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4219 4220 4221 4222
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
4223
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4224

4225
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4226
	atomic_inc(&rq->nr_iowait);
4227
	blk_flush_plug(current);
4228
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4229
	schedule();
4230
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4231
	atomic_dec(&rq->nr_iowait);
4232
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4233 4234 4235 4236 4237
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4238
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4239 4240
	long ret;

4241
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4242
	atomic_inc(&rq->nr_iowait);
4243
	blk_flush_plug(current);
4244
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4245
	ret = schedule_timeout(timeout);
4246
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4247
	atomic_dec(&rq->nr_iowait);
4248
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4249 4250 4251 4252 4253 4254 4255
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
4256 4257 4258
 * Return: On success, this syscall returns the maximum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
4259
 */
4260
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
4261 4262 4263 4264 4265 4266 4267 4268
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
4269
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
4270
	case SCHED_NORMAL:
4271
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4272
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4273 4274 4275 4276 4277 4278 4279 4280 4281 4282
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
4283 4284 4285
 * Return: On success, this syscall returns the minimum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
4286
 */
4287
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
4288 4289 4290 4291 4292 4293 4294 4295
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
4296
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
4297
	case SCHED_NORMAL:
4298
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4299
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
4312 4313 4314
 *
 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
 * an error code.
L
Linus Torvalds 已提交
4315
 */
4316
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4317
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
4318
{
4319
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4320
	unsigned int time_slice;
4321 4322
	unsigned long flags;
	struct rq *rq;
4323
	int retval;
L
Linus Torvalds 已提交
4324 4325 4326
	struct timespec t;

	if (pid < 0)
4327
		return -EINVAL;
L
Linus Torvalds 已提交
4328 4329

	retval = -ESRCH;
4330
	rcu_read_lock();
L
Linus Torvalds 已提交
4331 4332 4333 4334 4335 4336 4337 4338
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4339
	rq = task_rq_lock(p, &flags);
4340 4341 4342
	time_slice = 0;
	if (p->sched_class->get_rr_interval)
		time_slice = p->sched_class->get_rr_interval(rq, p);
4343
	task_rq_unlock(rq, p, &flags);
D
Dmitry Adamushko 已提交
4344

4345
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
4346
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4347 4348
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4349

L
Linus Torvalds 已提交
4350
out_unlock:
4351
	rcu_read_unlock();
L
Linus Torvalds 已提交
4352 4353 4354
	return retval;
}

4355
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4356

4357
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4358 4359
{
	unsigned long free = 0;
4360
	int ppid;
4361
	unsigned state;
L
Linus Torvalds 已提交
4362 4363

	state = p->state ? __ffs(p->state) + 1 : 0;
4364
	printk(KERN_INFO "%-15.15s %c", p->comm,
4365
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4366
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4367
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4368
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4369
	else
P
Peter Zijlstra 已提交
4370
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4371 4372
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4373
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4374
	else
P
Peter Zijlstra 已提交
4375
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4376 4377
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
4378
	free = stack_not_used(p);
L
Linus Torvalds 已提交
4379
#endif
4380 4381 4382
	rcu_read_lock();
	ppid = task_pid_nr(rcu_dereference(p->real_parent));
	rcu_read_unlock();
P
Peter Zijlstra 已提交
4383
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4384
		task_pid_nr(p), ppid,
4385
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
4386

4387
	print_worker_info(KERN_INFO, p);
4388
	show_stack(p, NULL);
L
Linus Torvalds 已提交
4389 4390
}

I
Ingo Molnar 已提交
4391
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4392
{
4393
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4394

4395
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
4396 4397
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4398
#else
P
Peter Zijlstra 已提交
4399 4400
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4401
#endif
4402
	rcu_read_lock();
L
Linus Torvalds 已提交
4403 4404 4405
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
4406
		 * console might take a lot of time:
L
Linus Torvalds 已提交
4407 4408
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4409
		if (!state_filter || (p->state & state_filter))
4410
			sched_show_task(p);
L
Linus Torvalds 已提交
4411 4412
	} while_each_thread(g, p);

4413 4414
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4415 4416 4417
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
4418
	rcu_read_unlock();
I
Ingo Molnar 已提交
4419 4420 4421
	/*
	 * Only show locks if all tasks are dumped:
	 */
4422
	if (!state_filter)
I
Ingo Molnar 已提交
4423
		debug_show_all_locks();
L
Linus Torvalds 已提交
4424 4425
}

4426
void init_idle_bootup_task(struct task_struct *idle)
I
Ingo Molnar 已提交
4427
{
I
Ingo Molnar 已提交
4428
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4429 4430
}

4431 4432 4433 4434 4435 4436 4437 4438
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4439
void init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4440
{
4441
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4442 4443
	unsigned long flags;

4444
	raw_spin_lock_irqsave(&rq->lock, flags);
4445

4446
	__sched_fork(0, idle);
4447
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
4448 4449
	idle->se.exec_start = sched_clock();

4450
	do_set_cpus_allowed(idle, cpumask_of(cpu));
4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
4462
	__set_task_cpu(idle, cpu);
4463
	rcu_read_unlock();
L
Linus Torvalds 已提交
4464 4465

	rq->curr = rq->idle = idle;
4466
	idle->on_rq = 1;
P
Peter Zijlstra 已提交
4467 4468
#if defined(CONFIG_SMP)
	idle->on_cpu = 1;
4469
#endif
4470
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
4471 4472

	/* Set the preempt count _outside_ the spinlocks! */
4473
	init_idle_preempt_count(idle, cpu);
4474

I
Ingo Molnar 已提交
4475 4476 4477 4478
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
4479
	ftrace_graph_init_idle_task(idle, cpu);
4480
	vtime_init_idle(idle, cpu);
4481 4482 4483
#if defined(CONFIG_SMP)
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
4484 4485
}

L
Linus Torvalds 已提交
4486
#ifdef CONFIG_SMP
4487 4488 4489 4490
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
	if (p->sched_class && p->sched_class->set_cpus_allowed)
		p->sched_class->set_cpus_allowed(p, new_mask);
4491 4492

	cpumask_copy(&p->cpus_allowed, new_mask);
4493
	p->nr_cpus_allowed = cpumask_weight(new_mask);
4494 4495
}

L
Linus Torvalds 已提交
4496 4497 4498
/*
 * This is how migration works:
 *
4499 4500 4501 4502 4503 4504
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
4505
 *    it and puts it into the right queue.
4506 4507
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
4508 4509 4510 4511 4512 4513 4514 4515
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
4516
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
4517 4518
 * call is not atomic; no spinlocks may be held.
 */
4519
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
4520 4521
{
	unsigned long flags;
4522
	struct rq *rq;
4523
	unsigned int dest_cpu;
4524
	int ret = 0;
L
Linus Torvalds 已提交
4525 4526

	rq = task_rq_lock(p, &flags);
4527

4528 4529 4530
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

4531
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
4532 4533 4534 4535
		ret = -EINVAL;
		goto out;
	}

4536
	do_set_cpus_allowed(p, new_mask);
4537

L
Linus Torvalds 已提交
4538
	/* Can the task run on the task's current CPU? If so, we're done */
4539
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
4540 4541
		goto out;

4542
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4543
	if (p->on_rq) {
4544
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
4545
		/* Need help from migration thread: drop lock and wait. */
4546
		task_rq_unlock(rq, p, &flags);
4547
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
4548 4549 4550 4551
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
4552
	task_rq_unlock(rq, p, &flags);
4553

L
Linus Torvalds 已提交
4554 4555
	return ret;
}
4556
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
4557 4558

/*
I
Ingo Molnar 已提交
4559
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
4560 4561 4562 4563 4564 4565
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4566 4567
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4568
 */
4569
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4570
{
4571
	struct rq *rq_dest, *rq_src;
4572
	int ret = 0;
L
Linus Torvalds 已提交
4573

4574
	if (unlikely(!cpu_active(dest_cpu)))
4575
		return ret;
L
Linus Torvalds 已提交
4576 4577 4578 4579

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

4580
	raw_spin_lock(&p->pi_lock);
L
Linus Torvalds 已提交
4581 4582 4583
	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
4584
		goto done;
L
Linus Torvalds 已提交
4585
	/* Affinity changed (again). */
4586
	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
L
Linus Torvalds 已提交
4587
		goto fail;
L
Linus Torvalds 已提交
4588

4589 4590 4591 4592
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
P
Peter Zijlstra 已提交
4593
	if (p->on_rq) {
4594
		dequeue_task(rq_src, p, 0);
4595
		set_task_cpu(p, dest_cpu);
4596
		enqueue_task(rq_dest, p, 0);
4597
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
4598
	}
L
Linus Torvalds 已提交
4599
done:
4600
	ret = 1;
L
Linus Torvalds 已提交
4601
fail:
L
Linus Torvalds 已提交
4602
	double_rq_unlock(rq_src, rq_dest);
4603
	raw_spin_unlock(&p->pi_lock);
4604
	return ret;
L
Linus Torvalds 已提交
4605 4606
}

4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621
#ifdef CONFIG_NUMA_BALANCING
/* Migrate current task p to target_cpu */
int migrate_task_to(struct task_struct *p, int target_cpu)
{
	struct migration_arg arg = { p, target_cpu };
	int curr_cpu = task_cpu(p);

	if (curr_cpu == target_cpu)
		return 0;

	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
		return -EINVAL;

	/* TODO: This is not properly updating schedstats */

4622
	trace_sched_move_numa(p, curr_cpu, target_cpu);
4623 4624
	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
}
4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652

/*
 * Requeue a task on a given node and accurately track the number of NUMA
 * tasks on the runqueues
 */
void sched_setnuma(struct task_struct *p, int nid)
{
	struct rq *rq;
	unsigned long flags;
	bool on_rq, running;

	rq = task_rq_lock(p, &flags);
	on_rq = p->on_rq;
	running = task_current(rq, p);

	if (on_rq)
		dequeue_task(rq, p, 0);
	if (running)
		p->sched_class->put_prev_task(rq, p);

	p->numa_preferred_nid = nid;

	if (running)
		p->sched_class->set_curr_task(rq);
	if (on_rq)
		enqueue_task(rq, p, 0);
	task_rq_unlock(rq, p, &flags);
}
4653 4654
#endif

L
Linus Torvalds 已提交
4655
/*
4656 4657 4658
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
4659
 */
4660
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
4661
{
4662
	struct migration_arg *arg = data;
4663

4664 4665 4666 4667
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
4668
	local_irq_disable();
4669
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4670
	local_irq_enable();
L
Linus Torvalds 已提交
4671
	return 0;
4672 4673
}

L
Linus Torvalds 已提交
4674
#ifdef CONFIG_HOTPLUG_CPU
4675

4676
/*
4677 4678
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
4679
 */
4680
void idle_task_exit(void)
L
Linus Torvalds 已提交
4681
{
4682
	struct mm_struct *mm = current->active_mm;
4683

4684
	BUG_ON(cpu_online(smp_processor_id()));
4685

4686
	if (mm != &init_mm) {
4687
		switch_mm(mm, &init_mm, current);
4688 4689
		finish_arch_post_lock_switch();
	}
4690
	mmdrop(mm);
L
Linus Torvalds 已提交
4691 4692 4693
}

/*
4694 4695 4696 4697 4698
 * Since this CPU is going 'away' for a while, fold any nr_active delta
 * we might have. Assumes we're called after migrate_tasks() so that the
 * nr_active count is stable.
 *
 * Also see the comment "Global load-average calculations".
L
Linus Torvalds 已提交
4699
 */
4700
static void calc_load_migrate(struct rq *rq)
L
Linus Torvalds 已提交
4701
{
4702 4703 4704
	long delta = calc_load_fold_active(rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
4705 4706
}

4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722
static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
{
}

static const struct sched_class fake_sched_class = {
	.put_prev_task = put_prev_task_fake,
};

static struct task_struct fake_task = {
	/*
	 * Avoid pull_{rt,dl}_task()
	 */
	.prio = MAX_PRIO + 1,
	.sched_class = &fake_sched_class,
};

4723
/*
4724 4725 4726 4727 4728 4729
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
4730
 */
4731
static void migrate_tasks(unsigned int dead_cpu)
L
Linus Torvalds 已提交
4732
{
4733
	struct rq *rq = cpu_rq(dead_cpu);
4734 4735
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
4736 4737

	/*
4738 4739 4740 4741 4742 4743 4744
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
4745
	 */
4746
	rq->stop = NULL;
4747

4748 4749 4750 4751 4752 4753 4754
	/*
	 * put_prev_task() and pick_next_task() sched
	 * class method both need to have an up-to-date
	 * value of rq->clock[_task]
	 */
	update_rq_clock(rq);

I
Ingo Molnar 已提交
4755
	for ( ; ; ) {
4756 4757 4758 4759 4760
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
4761
			break;
4762

4763
		next = pick_next_task(rq, &fake_task);
4764
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
4765
		next->sched_class->put_prev_task(rq, next);
4766

4767 4768 4769 4770 4771 4772 4773
		/* Find suitable destination for @next, with force if needed. */
		dest_cpu = select_fallback_rq(dead_cpu, next);
		raw_spin_unlock(&rq->lock);

		__migrate_task(next, dead_cpu, dest_cpu);

		raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
4774
	}
4775

4776
	rq->stop = stop;
4777
}
4778

L
Linus Torvalds 已提交
4779 4780
#endif /* CONFIG_HOTPLUG_CPU */

4781 4782 4783
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
4784 4785
	{
		.procname	= "sched_domain",
4786
		.mode		= 0555,
4787
	},
4788
	{}
4789 4790 4791
};

static struct ctl_table sd_ctl_root[] = {
4792 4793
	{
		.procname	= "kernel",
4794
		.mode		= 0555,
4795 4796
		.child		= sd_ctl_dir,
	},
4797
	{}
4798 4799 4800 4801 4802
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
4803
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4804 4805 4806 4807

	return entry;
}

4808 4809
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
4810
	struct ctl_table *entry;
4811

4812 4813 4814
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
4815
	 * will always be set. In the lowest directory the names are
4816 4817 4818
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
4819 4820
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
4821 4822 4823
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
4824 4825 4826 4827 4828

	kfree(*tablep);
	*tablep = NULL;
}

4829
static int min_load_idx = 0;
4830
static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4831

4832
static void
4833
set_table_entry(struct ctl_table *entry,
4834
		const char *procname, void *data, int maxlen,
4835 4836
		umode_t mode, proc_handler *proc_handler,
		bool load_idx)
4837 4838 4839 4840 4841 4842
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
4843 4844 4845 4846 4847

	if (load_idx) {
		entry->extra1 = &min_load_idx;
		entry->extra2 = &max_load_idx;
	}
4848 4849 4850 4851 4852
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
4853
	struct ctl_table *table = sd_alloc_ctl_entry(14);
4854

4855 4856 4857
	if (table == NULL)
		return NULL;

4858
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4859
		sizeof(long), 0644, proc_doulongvec_minmax, false);
4860
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4861
		sizeof(long), 0644, proc_doulongvec_minmax, false);
4862
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4863
		sizeof(int), 0644, proc_dointvec_minmax, true);
4864
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4865
		sizeof(int), 0644, proc_dointvec_minmax, true);
4866
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4867
		sizeof(int), 0644, proc_dointvec_minmax, true);
4868
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4869
		sizeof(int), 0644, proc_dointvec_minmax, true);
4870
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4871
		sizeof(int), 0644, proc_dointvec_minmax, true);
4872
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4873
		sizeof(int), 0644, proc_dointvec_minmax, false);
4874
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4875
		sizeof(int), 0644, proc_dointvec_minmax, false);
4876
	set_table_entry(&table[9], "cache_nice_tries",
4877
		&sd->cache_nice_tries,
4878
		sizeof(int), 0644, proc_dointvec_minmax, false);
4879
	set_table_entry(&table[10], "flags", &sd->flags,
4880
		sizeof(int), 0644, proc_dointvec_minmax, false);
4881 4882 4883 4884
	set_table_entry(&table[11], "max_newidle_lb_cost",
		&sd->max_newidle_lb_cost,
		sizeof(long), 0644, proc_doulongvec_minmax, false);
	set_table_entry(&table[12], "name", sd->name,
4885
		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4886
	/* &table[13] is terminator */
4887 4888 4889 4890

	return table;
}

4891
static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4892 4893 4894 4895 4896 4897 4898 4899 4900
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4901 4902
	if (table == NULL)
		return NULL;
4903 4904 4905 4906 4907

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
4908
		entry->mode = 0555;
4909 4910 4911 4912 4913 4914 4915 4916
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
4917
static void register_sched_domain_sysctl(void)
4918
{
4919
	int i, cpu_num = num_possible_cpus();
4920 4921 4922
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

4923 4924 4925
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

4926 4927 4928
	if (entry == NULL)
		return;

4929
	for_each_possible_cpu(i) {
4930 4931
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
4932
		entry->mode = 0555;
4933
		entry->child = sd_alloc_ctl_cpu_table(i);
4934
		entry++;
4935
	}
4936 4937

	WARN_ON(sd_sysctl_header);
4938 4939
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
4940

4941
/* may be called multiple times per register */
4942 4943
static void unregister_sched_domain_sysctl(void)
{
4944 4945
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
4946
	sd_sysctl_header = NULL;
4947 4948
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
4949
}
4950
#else
4951 4952 4953 4954
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
4955 4956 4957 4958
{
}
#endif

4959 4960 4961 4962 4963
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

4964
		cpumask_set_cpu(rq->cpu, rq->rd->online);
4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

4984
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
4985 4986 4987 4988
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
4989 4990 4991 4992
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
4993
static int
4994
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
4995
{
4996
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
4997
	unsigned long flags;
4998
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4999

5000
	switch (action & ~CPU_TASKS_FROZEN) {
5001

L
Linus Torvalds 已提交
5002
	case CPU_UP_PREPARE:
5003
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5004
		break;
5005

L
Linus Torvalds 已提交
5006
	case CPU_ONLINE:
5007
		/* Update our root-domain */
5008
		raw_spin_lock_irqsave(&rq->lock, flags);
5009
		if (rq->rd) {
5010
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5011 5012

			set_rq_online(rq);
5013
		}
5014
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5015
		break;
5016

L
Linus Torvalds 已提交
5017
#ifdef CONFIG_HOTPLUG_CPU
5018
	case CPU_DYING:
5019
		sched_ttwu_pending();
G
Gregory Haskins 已提交
5020
		/* Update our root-domain */
5021
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5022
		if (rq->rd) {
5023
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5024
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5025
		}
5026 5027
		migrate_tasks(cpu);
		BUG_ON(rq->nr_running != 1); /* the migration thread */
5028
		raw_spin_unlock_irqrestore(&rq->lock, flags);
5029
		break;
5030

5031
	case CPU_DEAD:
5032
		calc_load_migrate(rq);
G
Gregory Haskins 已提交
5033
		break;
L
Linus Torvalds 已提交
5034 5035
#endif
	}
5036 5037 5038

	update_max_interval();

L
Linus Torvalds 已提交
5039 5040 5041
	return NOTIFY_OK;
}

5042 5043 5044
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5045
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5046
 */
5047
static struct notifier_block migration_notifier = {
L
Linus Torvalds 已提交
5048
	.notifier_call = migration_call,
5049
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
5050 5051
};

5052
static int sched_cpu_active(struct notifier_block *nfb,
5053 5054 5055
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
5056
	case CPU_STARTING:
5057 5058 5059 5060 5061 5062 5063 5064
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

5065
static int sched_cpu_inactive(struct notifier_block *nfb,
5066 5067
					unsigned long action, void *hcpu)
{
5068 5069 5070
	unsigned long flags;
	long cpu = (long)hcpu;

5071 5072
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088
		set_cpu_active(cpu, false);

		/* explicitly allow suspend */
		if (!(action & CPU_TASKS_FROZEN)) {
			struct dl_bw *dl_b = dl_bw_of(cpu);
			bool overflow;
			int cpus;

			raw_spin_lock_irqsave(&dl_b->lock, flags);
			cpus = dl_bw_cpus(cpu);
			overflow = __dl_overflow(dl_b, cpus, 0, 0);
			raw_spin_unlock_irqrestore(&dl_b->lock, flags);

			if (overflow)
				return notifier_from_errno(-EBUSY);
		}
5089 5090
		return NOTIFY_OK;
	}
5091 5092

	return NOTIFY_DONE;
5093 5094
}

5095
static int __init migration_init(void)
L
Linus Torvalds 已提交
5096 5097
{
	void *cpu = (void *)(long)smp_processor_id();
5098
	int err;
5099

5100
	/* Initialize migration for the boot CPU */
5101 5102
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5103 5104
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5105

5106 5107 5108 5109
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

5110
	return 0;
L
Linus Torvalds 已提交
5111
}
5112
early_initcall(migration_init);
L
Linus Torvalds 已提交
5113 5114 5115
#endif

#ifdef CONFIG_SMP
5116

5117 5118
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

5119
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5120

5121
static __read_mostly int sched_debug_enabled;
5122

5123
static int __init sched_debug_setup(char *str)
5124
{
5125
	sched_debug_enabled = 1;
5126 5127 5128

	return 0;
}
5129 5130 5131 5132 5133 5134
early_param("sched_debug", sched_debug_setup);

static inline bool sched_debug(void)
{
	return sched_debug_enabled;
}
5135

5136
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5137
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5138
{
I
Ingo Molnar 已提交
5139
	struct sched_group *group = sd->groups;
5140
	char str[256];
L
Linus Torvalds 已提交
5141

R
Rusty Russell 已提交
5142
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5143
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5144 5145 5146 5147

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5148
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5149
		if (sd->parent)
P
Peter Zijlstra 已提交
5150 5151
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5152
		return -1;
N
Nick Piggin 已提交
5153 5154
	}

P
Peter Zijlstra 已提交
5155
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
5156

5157
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5158 5159
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5160
	}
5161
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5162 5163
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5164
	}
L
Linus Torvalds 已提交
5165

I
Ingo Molnar 已提交
5166
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5167
	do {
I
Ingo Molnar 已提交
5168
		if (!group) {
P
Peter Zijlstra 已提交
5169 5170
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5171 5172 5173
			break;
		}

5174 5175 5176 5177 5178 5179
		/*
		 * Even though we initialize ->power to something semi-sane,
		 * we leave power_orig unset. This allows us to detect if
		 * domain iteration is still funny without causing /0 traps.
		 */
		if (!group->sgp->power_orig) {
P
Peter Zijlstra 已提交
5180 5181 5182
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
5183 5184
			break;
		}
L
Linus Torvalds 已提交
5185

5186
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5187 5188
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
5189 5190
			break;
		}
L
Linus Torvalds 已提交
5191

5192 5193
		if (!(sd->flags & SD_OVERLAP) &&
		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5194 5195
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
5196 5197
			break;
		}
L
Linus Torvalds 已提交
5198

5199
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
5200

R
Rusty Russell 已提交
5201
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5202

P
Peter Zijlstra 已提交
5203
		printk(KERN_CONT " %s", str);
5204
		if (group->sgp->power != SCHED_POWER_SCALE) {
P
Peter Zijlstra 已提交
5205
			printk(KERN_CONT " (cpu_power = %d)",
5206
				group->sgp->power);
5207
		}
L
Linus Torvalds 已提交
5208

I
Ingo Molnar 已提交
5209 5210
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
5211
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5212

5213
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
5214
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5215

5216 5217
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
5218 5219
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
5220 5221
	return 0;
}
L
Linus Torvalds 已提交
5222

I
Ingo Molnar 已提交
5223 5224 5225
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5226

5227
	if (!sched_debug_enabled)
5228 5229
		return;

I
Ingo Molnar 已提交
5230 5231 5232 5233
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5234

I
Ingo Molnar 已提交
5235 5236 5237
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
5238
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
I
Ingo Molnar 已提交
5239
			break;
L
Linus Torvalds 已提交
5240 5241
		level++;
		sd = sd->parent;
5242
		if (!sd)
I
Ingo Molnar 已提交
5243 5244
			break;
	}
L
Linus Torvalds 已提交
5245
}
5246
#else /* !CONFIG_SCHED_DEBUG */
5247
# define sched_domain_debug(sd, cpu) do { } while (0)
5248 5249 5250 5251
static inline bool sched_debug(void)
{
	return false;
}
5252
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
5253

5254
static int sd_degenerate(struct sched_domain *sd)
5255
{
5256
	if (cpumask_weight(sched_domain_span(sd)) == 1)
5257 5258 5259 5260 5261 5262
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5263 5264 5265
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5266 5267 5268 5269 5270
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
5271
	if (sd->flags & (SD_WAKE_AFFINE))
5272 5273 5274 5275 5276
		return 0;

	return 1;
}

5277 5278
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5279 5280 5281 5282 5283 5284
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

5285
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5286 5287 5288 5289 5290 5291 5292
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5293 5294
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
5295 5296
				SD_SHARE_PKG_RESOURCES |
				SD_PREFER_SIBLING);
5297 5298
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
5299 5300 5301 5302 5303 5304 5305
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

5306
static void free_rootdomain(struct rcu_head *rcu)
5307
{
5308
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5309

5310
	cpupri_cleanup(&rd->cpupri);
5311
	cpudl_cleanup(&rd->cpudl);
5312
	free_cpumask_var(rd->dlo_mask);
5313 5314 5315 5316 5317 5318
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
5319 5320
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
5321
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
5322 5323
	unsigned long flags;

5324
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5325 5326

	if (rq->rd) {
I
Ingo Molnar 已提交
5327
		old_rd = rq->rd;
G
Gregory Haskins 已提交
5328

5329
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5330
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5331

5332
		cpumask_clear_cpu(rq->cpu, old_rd->span);
5333

I
Ingo Molnar 已提交
5334
		/*
5335
		 * If we dont want to free the old_rd yet then
I
Ingo Molnar 已提交
5336 5337 5338 5339 5340
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
5341 5342 5343 5344 5345
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

5346
	cpumask_set_cpu(rq->cpu, rd->span);
5347
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5348
		set_rq_online(rq);
G
Gregory Haskins 已提交
5349

5350
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
5351 5352

	if (old_rd)
5353
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
5354 5355
}

5356
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
5357 5358 5359
{
	memset(rd, 0, sizeof(*rd));

5360
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5361
		goto out;
5362
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5363
		goto free_span;
5364
	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5365
		goto free_online;
5366 5367
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
		goto free_dlo_mask;
5368

5369
	init_dl_bw(&rd->dl_bw);
5370 5371
	if (cpudl_init(&rd->cpudl) != 0)
		goto free_dlo_mask;
5372

5373
	if (cpupri_init(&rd->cpupri) != 0)
5374
		goto free_rto_mask;
5375
	return 0;
5376

5377 5378
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
5379 5380
free_dlo_mask:
	free_cpumask_var(rd->dlo_mask);
5381 5382 5383 5384
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
5385
out:
5386
	return -ENOMEM;
G
Gregory Haskins 已提交
5387 5388
}

5389 5390 5391 5392 5393 5394
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
struct root_domain def_root_domain;

G
Gregory Haskins 已提交
5395 5396
static void init_defrootdomain(void)
{
5397
	init_rootdomain(&def_root_domain);
5398

G
Gregory Haskins 已提交
5399 5400 5401
	atomic_set(&def_root_domain.refcount, 1);
}

5402
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
5403 5404 5405 5406 5407 5408 5409
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

5410
	if (init_rootdomain(rd) != 0) {
5411 5412 5413
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
5414 5415 5416 5417

	return rd;
}

5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436
static void free_sched_groups(struct sched_group *sg, int free_sgp)
{
	struct sched_group *tmp, *first;

	if (!sg)
		return;

	first = sg;
	do {
		tmp = sg->next;

		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
			kfree(sg->sgp);

		kfree(sg);
		sg = tmp;
	} while (sg != first);
}

5437 5438 5439
static void free_sched_domain(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5440 5441 5442 5443 5444 5445 5446 5447

	/*
	 * If its an overlapping domain it has private groups, iterate and
	 * nuke them all.
	 */
	if (sd->flags & SD_OVERLAP) {
		free_sched_groups(sd->groups, 1);
	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5448
		kfree(sd->groups->sgp);
5449
		kfree(sd->groups);
5450
	}
5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464
	kfree(sd);
}

static void destroy_sched_domain(struct sched_domain *sd, int cpu)
{
	call_rcu(&sd->rcu, free_sched_domain);
}

static void destroy_sched_domains(struct sched_domain *sd, int cpu)
{
	for (; sd; sd = sd->parent)
		destroy_sched_domain(sd, cpu);
}

5465 5466 5467 5468 5469 5470 5471
/*
 * Keep a special pointer to the highest sched_domain that has
 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 * allows us to avoid some pointer chasing select_idle_sibling().
 *
 * Also keep a unique ID per domain (we use the first cpu number in
 * the cpumask of the domain), this allows us to quickly tell if
5472
 * two cpus are in the same cache domain, see cpus_share_cache().
5473 5474
 */
DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5475
DEFINE_PER_CPU(int, sd_llc_size);
5476
DEFINE_PER_CPU(int, sd_llc_id);
5477
DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5478 5479
DEFINE_PER_CPU(struct sched_domain *, sd_busy);
DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5480 5481 5482 5483

static void update_top_cache_domain(int cpu)
{
	struct sched_domain *sd;
5484
	struct sched_domain *busy_sd = NULL;
5485
	int id = cpu;
5486
	int size = 1;
5487 5488

	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5489
	if (sd) {
5490
		id = cpumask_first(sched_domain_span(sd));
5491
		size = cpumask_weight(sched_domain_span(sd));
5492
		busy_sd = sd->parent; /* sd_busy */
5493
	}
5494
	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5495 5496

	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5497
	per_cpu(sd_llc_size, cpu) = size;
5498
	per_cpu(sd_llc_id, cpu) = id;
5499 5500 5501

	sd = lowest_flag_domain(cpu, SD_NUMA);
	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5502 5503 5504

	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5505 5506
}

L
Linus Torvalds 已提交
5507
/*
I
Ingo Molnar 已提交
5508
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
5509 5510
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
5511 5512
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
5513
{
5514
	struct rq *rq = cpu_rq(cpu);
5515 5516 5517
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
5518
	for (tmp = sd; tmp; ) {
5519 5520 5521
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5522

5523
		if (sd_parent_degenerate(tmp, parent)) {
5524
			tmp->parent = parent->parent;
5525 5526
			if (parent->parent)
				parent->parent->child = tmp;
5527 5528 5529 5530 5531 5532 5533
			/*
			 * Transfer SD_PREFER_SIBLING down in case of a
			 * degenerate parent; the spans match for this
			 * so the property transfers.
			 */
			if (parent->flags & SD_PREFER_SIBLING)
				tmp->flags |= SD_PREFER_SIBLING;
5534
			destroy_sched_domain(parent, cpu);
5535 5536
		} else
			tmp = tmp->parent;
5537 5538
	}

5539
	if (sd && sd_degenerate(sd)) {
5540
		tmp = sd;
5541
		sd = sd->parent;
5542
		destroy_sched_domain(tmp, cpu);
5543 5544 5545
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5546

5547
	sched_domain_debug(sd, cpu);
L
Linus Torvalds 已提交
5548

G
Gregory Haskins 已提交
5549
	rq_attach_root(rq, rd);
5550
	tmp = rq->sd;
N
Nick Piggin 已提交
5551
	rcu_assign_pointer(rq->sd, sd);
5552
	destroy_sched_domains(tmp, cpu);
5553 5554

	update_top_cache_domain(cpu);
L
Linus Torvalds 已提交
5555 5556 5557
}

/* cpus with isolated domains */
5558
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
5559 5560 5561 5562

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
5563
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
5564
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
5565 5566 5567
	return 1;
}

I
Ingo Molnar 已提交
5568
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5569

5570 5571 5572 5573 5574
static const struct cpumask *cpu_cpu_mask(int cpu)
{
	return cpumask_of_node(cpu_to_node(cpu));
}

5575 5576 5577
struct sd_data {
	struct sched_domain **__percpu sd;
	struct sched_group **__percpu sg;
5578
	struct sched_group_power **__percpu sgp;
5579 5580
};

5581
struct s_data {
5582
	struct sched_domain ** __percpu sd;
5583 5584 5585
	struct root_domain	*rd;
};

5586 5587
enum s_alloc {
	sa_rootdomain,
5588
	sa_sd,
5589
	sa_sd_storage,
5590 5591 5592
	sa_none,
};

5593 5594 5595
struct sched_domain_topology_level;

typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5596 5597
typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);

5598 5599
#define SDTL_OVERLAP	0x01

5600
struct sched_domain_topology_level {
5601 5602
	sched_domain_init_f init;
	sched_domain_mask_f mask;
5603
	int		    flags;
5604
	int		    numa_level;
5605
	struct sd_data      data;
5606 5607
};

P
Peter Zijlstra 已提交
5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645
/*
 * Build an iteration mask that can exclude certain CPUs from the upwards
 * domain traversal.
 *
 * Asymmetric node setups can result in situations where the domain tree is of
 * unequal depth, make sure to skip domains that already cover the entire
 * range.
 *
 * In that case build_sched_domains() will have terminated the iteration early
 * and our sibling sd spans will be empty. Domains should always include the
 * cpu they're built on, so check that.
 *
 */
static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
{
	const struct cpumask *span = sched_domain_span(sd);
	struct sd_data *sdd = sd->private;
	struct sched_domain *sibling;
	int i;

	for_each_cpu(i, span) {
		sibling = *per_cpu_ptr(sdd->sd, i);
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
			continue;

		cpumask_set_cpu(i, sched_group_mask(sg));
	}
}

/*
 * Return the canonical balance cpu for this group, this is the first cpu
 * of this group that's also in the iteration mask.
 */
int group_balance_cpu(struct sched_group *sg)
{
	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
}

5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663
static int
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered = sched_domains_tmpmask;
	struct sd_data *sdd = sd->private;
	struct sched_domain *child;
	int i;

	cpumask_clear(covered);

	for_each_cpu(i, span) {
		struct cpumask *sg_span;

		if (cpumask_test_cpu(i, covered))
			continue;

P
Peter Zijlstra 已提交
5664 5665 5666 5667 5668 5669
		child = *per_cpu_ptr(sdd->sd, i);

		/* See the comment near build_group_mask(). */
		if (!cpumask_test_cpu(i, sched_domain_span(child)))
			continue;

5670
		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5671
				GFP_KERNEL, cpu_to_node(cpu));
5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684

		if (!sg)
			goto fail;

		sg_span = sched_group_cpus(sg);
		if (child->child) {
			child = child->child;
			cpumask_copy(sg_span, sched_domain_span(child));
		} else
			cpumask_set_cpu(i, sg_span);

		cpumask_or(covered, covered, sg_span);

P
Peter Zijlstra 已提交
5685
		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
P
Peter Zijlstra 已提交
5686 5687 5688
		if (atomic_inc_return(&sg->sgp->ref) == 1)
			build_group_mask(sd, sg);

5689 5690 5691 5692 5693 5694
		/*
		 * Initialize sgp->power such that even if we mess up the
		 * domains and no possible iteration will get us here, we won't
		 * die on a /0 trap.
		 */
		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5695
		sg->sgp->power_orig = sg->sgp->power;
5696

P
Peter Zijlstra 已提交
5697 5698 5699 5700 5701
		/*
		 * Make sure the first group of this domain contains the
		 * canonical balance cpu. Otherwise the sched_domain iteration
		 * breaks. See update_sg_lb_stats().
		 */
P
Peter Zijlstra 已提交
5702
		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
P
Peter Zijlstra 已提交
5703
		    group_balance_cpu(sg) == cpu)
5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722
			groups = sg;

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
		last->next = first;
	}
	sd->groups = groups;

	return 0;

fail:
	free_sched_groups(first, 0);

	return -ENOMEM;
}

5723
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
5724
{
5725 5726
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
5727

5728 5729
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
5730

5731
	if (sg) {
5732
		*sg = *per_cpu_ptr(sdd->sg, cpu);
5733
		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5734
		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5735
	}
5736 5737

	return cpu;
5738 5739
}

5740
/*
5741 5742 5743
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
5744 5745
 *
 * Assumes the sched_domain tree is fully constructed
5746
 */
5747 5748
static int
build_sched_groups(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5749
{
5750 5751 5752
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
5753
	struct cpumask *covered;
5754
	int i;
5755

5756 5757 5758
	get_group(cpu, sdd, &sd->groups);
	atomic_inc(&sd->groups->ref);

5759
	if (cpu != cpumask_first(span))
5760 5761
		return 0;

5762 5763 5764
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

5765
	cpumask_clear(covered);
5766

5767 5768
	for_each_cpu(i, span) {
		struct sched_group *sg;
5769
		int group, j;
5770

5771 5772
		if (cpumask_test_cpu(i, covered))
			continue;
5773

5774
		group = get_group(i, sdd, &sg);
5775
		cpumask_clear(sched_group_cpus(sg));
5776
		sg->sgp->power = 0;
P
Peter Zijlstra 已提交
5777
		cpumask_setall(sched_group_mask(sg));
5778

5779 5780 5781
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
5782

5783 5784 5785
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
5786

5787 5788 5789 5790 5791 5792 5793
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
5794 5795

	return 0;
5796
}
5797

5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
5810
	struct sched_group *sg = sd->groups;
5811

5812
	WARN_ON(!sg);
5813 5814 5815 5816 5817

	do {
		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
		sg = sg->next;
	} while (sg != sd->groups);
5818

P
Peter Zijlstra 已提交
5819
	if (cpu != group_balance_cpu(sg))
5820
		return;
5821

5822
	update_group_power(sd, cpu);
5823
	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5824 5825
}

5826 5827 5828
int __weak arch_sd_sibling_asym_packing(void)
{
       return 0*SD_ASYM_PACKING;
5829 5830
}

5831 5832 5833 5834 5835
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

5836 5837 5838 5839 5840 5841
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

5842 5843 5844 5845 5846 5847 5848 5849 5850
#define SD_INIT_FUNC(type)						\
static noinline struct sched_domain *					\
sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
{									\
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
	*sd = SD_##type##_INIT;						\
	SD_INIT_NAME(sd, type);						\
	sd->private = &tl->data;					\
	return sd;							\
5851 5852 5853 5854 5855 5856 5857 5858 5859
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif
5860 5861 5862
#ifdef CONFIG_SCHED_BOOK
 SD_INIT_FUNC(BOOK)
#endif
5863

5864
static int default_relax_domain_level = -1;
5865
int sched_domain_level_max;
5866 5867 5868

static int __init setup_relax_domain_level(char *str)
{
5869 5870
	if (kstrtoint(str, 0, &default_relax_domain_level))
		pr_warn("Unable to set relax_domain_level\n");
5871

5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
5890
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5891 5892
	} else {
		/* turn on idle balance on this domain */
5893
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5894 5895 5896
	}
}

5897 5898 5899
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

5900 5901 5902 5903 5904
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
5905 5906
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
5907 5908
	case sa_sd:
		free_percpu(d->sd); /* fall through */
5909
	case sa_sd_storage:
5910
		__sdt_free(cpu_map); /* fall through */
5911 5912 5913 5914
	case sa_none:
		break;
	}
}
5915

5916 5917 5918
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
5919 5920
	memset(d, 0, sizeof(*d));

5921 5922
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
5923 5924 5925
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
5926
	d->rd = alloc_rootdomain();
5927
	if (!d->rd)
5928
		return sa_sd;
5929 5930
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
5931

5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

5944
	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5945
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5946 5947

	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5948
		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
5949 5950
}

5951 5952
#ifdef CONFIG_SCHED_SMT
static const struct cpumask *cpu_smt_mask(int cpu)
5953
{
5954
	return topology_thread_cpumask(cpu);
5955
}
5956
#endif
5957

5958 5959 5960
/*
 * Topology list, bottom-up.
 */
5961
static struct sched_domain_topology_level default_topology[] = {
5962 5963
#ifdef CONFIG_SCHED_SMT
	{ sd_init_SIBLING, cpu_smt_mask, },
5964
#endif
5965
#ifdef CONFIG_SCHED_MC
5966
	{ sd_init_MC, cpu_coregroup_mask, },
5967
#endif
5968 5969 5970 5971
#ifdef CONFIG_SCHED_BOOK
	{ sd_init_BOOK, cpu_book_mask, },
#endif
	{ sd_init_CPU, cpu_cpu_mask, },
5972 5973 5974 5975 5976
	{ NULL, },
};

static struct sched_domain_topology_level *sched_domain_topology = default_topology;

5977 5978 5979
#define for_each_sd_topology(tl)			\
	for (tl = sched_domain_topology; tl->init; tl++)

5980 5981 5982 5983 5984 5985 5986 5987 5988
#ifdef CONFIG_NUMA

static int sched_domains_numa_levels;
static int *sched_domains_numa_distance;
static struct cpumask ***sched_domains_numa_masks;
static int sched_domains_curr_level;

static inline int sd_local_flags(int level)
{
5989
	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006
		return 0;

	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
}

static struct sched_domain *
sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
{
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
	int level = tl->numa_level;
	int sd_weight = cpumask_weight(
			sched_domains_numa_masks[level][cpu_to_node(cpu)]);

	*sd = (struct sched_domain){
		.min_interval		= sd_weight,
		.max_interval		= 2*sd_weight,
		.busy_factor		= 32,
6007
		.imbalance_pct		= 125,
6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024
		.cache_nice_tries	= 2,
		.busy_idx		= 3,
		.idle_idx		= 2,
		.newidle_idx		= 0,
		.wake_idx		= 0,
		.forkexec_idx		= 0,

		.flags			= 1*SD_LOAD_BALANCE
					| 1*SD_BALANCE_NEWIDLE
					| 0*SD_BALANCE_EXEC
					| 0*SD_BALANCE_FORK
					| 0*SD_BALANCE_WAKE
					| 0*SD_WAKE_AFFINE
					| 0*SD_SHARE_CPUPOWER
					| 0*SD_SHARE_PKG_RESOURCES
					| 1*SD_SERIALIZE
					| 0*SD_PREFER_SIBLING
6025
					| 1*SD_NUMA
6026 6027 6028 6029
					| sd_local_flags(level)
					,
		.last_balance		= jiffies,
		.balance_interval	= sd_weight,
6030 6031
		.max_newidle_lb_cost	= 0,
		.next_decay_max_lb_cost	= jiffies,
6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048
	};
	SD_INIT_NAME(sd, NUMA);
	sd->private = &tl->data;

	/*
	 * Ugly hack to pass state to sd_numa_mask()...
	 */
	sched_domains_curr_level = tl->numa_level;

	return sd;
}

static const struct cpumask *sd_numa_mask(int cpu)
{
	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
}

6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084
static void sched_numa_warn(const char *str)
{
	static int done = false;
	int i,j;

	if (done)
		return;

	done = true;

	printk(KERN_WARNING "ERROR: %s\n\n", str);

	for (i = 0; i < nr_node_ids; i++) {
		printk(KERN_WARNING "  ");
		for (j = 0; j < nr_node_ids; j++)
			printk(KERN_CONT "%02d ", node_distance(i,j));
		printk(KERN_CONT "\n");
	}
	printk(KERN_WARNING "\n");
}

static bool find_numa_distance(int distance)
{
	int i;

	if (distance == node_distance(0, 0))
		return true;

	for (i = 0; i < sched_domains_numa_levels; i++) {
		if (sched_domains_numa_distance[i] == distance)
			return true;
	}

	return false;
}

6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105
static void sched_init_numa(void)
{
	int next_distance, curr_distance = node_distance(0, 0);
	struct sched_domain_topology_level *tl;
	int level = 0;
	int i, j, k;

	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
	if (!sched_domains_numa_distance)
		return;

	/*
	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
	 * unique distances in the node_distance() table.
	 *
	 * Assumes node_distance(0,j) includes all distances in
	 * node_distance(i,j) in order to avoid cubic time.
	 */
	next_distance = curr_distance;
	for (i = 0; i < nr_node_ids; i++) {
		for (j = 0; j < nr_node_ids; j++) {
6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129
			for (k = 0; k < nr_node_ids; k++) {
				int distance = node_distance(i, k);

				if (distance > curr_distance &&
				    (distance < next_distance ||
				     next_distance == curr_distance))
					next_distance = distance;

				/*
				 * While not a strong assumption it would be nice to know
				 * about cases where if node A is connected to B, B is not
				 * equally connected to A.
				 */
				if (sched_debug() && node_distance(k, i) != distance)
					sched_numa_warn("Node-distance not symmetric");

				if (sched_debug() && i && !find_numa_distance(distance))
					sched_numa_warn("Node-0 not representative");
			}
			if (next_distance != curr_distance) {
				sched_domains_numa_distance[level++] = next_distance;
				sched_domains_numa_levels = level;
				curr_distance = next_distance;
			} else break;
6130
		}
6131 6132 6133 6134 6135 6136

		/*
		 * In case of sched_debug() we verify the above assumption.
		 */
		if (!sched_debug())
			break;
6137 6138 6139 6140 6141
	}
	/*
	 * 'level' contains the number of unique distances, excluding the
	 * identity distance node_distance(i,i).
	 *
V
Viresh Kumar 已提交
6142
	 * The sched_domains_numa_distance[] array includes the actual distance
6143 6144 6145
	 * numbers.
	 */

6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156
	/*
	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
	 * the array will contain less then 'level' members. This could be
	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
	 * in other functions.
	 *
	 * We reset it to 'level' at the end of this function.
	 */
	sched_domains_numa_levels = 0;

6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171
	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
	if (!sched_domains_numa_masks)
		return;

	/*
	 * Now for each level, construct a mask per node which contains all
	 * cpus of nodes that are that many hops away from us.
	 */
	for (i = 0; i < level; i++) {
		sched_domains_numa_masks[i] =
			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
		if (!sched_domains_numa_masks[i])
			return;

		for (j = 0; j < nr_node_ids; j++) {
6172
			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6173 6174 6175 6176 6177 6178
			if (!mask)
				return;

			sched_domains_numa_masks[i][j] = mask;

			for (k = 0; k < nr_node_ids; k++) {
6179
				if (node_distance(j, k) > sched_domains_numa_distance[i])
6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210
					continue;

				cpumask_or(mask, mask, cpumask_of_node(k));
			}
		}
	}

	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
	if (!tl)
		return;

	/*
	 * Copy the default topology bits..
	 */
	for (i = 0; default_topology[i].init; i++)
		tl[i] = default_topology[i];

	/*
	 * .. and append 'j' levels of NUMA goodness.
	 */
	for (j = 0; j < level; i++, j++) {
		tl[i] = (struct sched_domain_topology_level){
			.init = sd_numa_init,
			.mask = sd_numa_mask,
			.flags = SDTL_OVERLAP,
			.numa_level = j,
		};
	}

	sched_domain_topology = tl;
6211 6212

	sched_domains_numa_levels = level;
6213
}
6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260

static void sched_domains_numa_masks_set(int cpu)
{
	int i, j;
	int node = cpu_to_node(cpu);

	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++) {
			if (node_distance(j, node) <= sched_domains_numa_distance[i])
				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
		}
	}
}

static void sched_domains_numa_masks_clear(int cpu)
{
	int i, j;
	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++)
			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
	}
}

/*
 * Update sched_domains_numa_masks[level][node] array when new cpus
 * are onlined.
 */
static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	int cpu = (long)hcpu;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
		sched_domains_numa_masks_set(cpu);
		break;

	case CPU_DEAD:
		sched_domains_numa_masks_clear(cpu);
		break;

	default:
		return NOTIFY_DONE;
	}

	return NOTIFY_OK;
6261 6262 6263 6264 6265
}
#else
static inline void sched_init_numa(void)
{
}
6266 6267 6268 6269 6270 6271 6272

static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	return 0;
}
6273 6274
#endif /* CONFIG_NUMA */

6275 6276 6277 6278 6279
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

6280
	for_each_sd_topology(tl) {
6281 6282 6283 6284 6285 6286 6287 6288 6289 6290
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

6291 6292 6293 6294
		sdd->sgp = alloc_percpu(struct sched_group_power *);
		if (!sdd->sgp)
			return -ENOMEM;

6295 6296 6297
		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_group *sg;
6298
			struct sched_group_power *sgp;
6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311

		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

6312 6313
			sg->next = sg;

6314
			*per_cpu_ptr(sdd->sg, j) = sg;
6315

P
Peter Zijlstra 已提交
6316
			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6317 6318 6319 6320 6321
					GFP_KERNEL, cpu_to_node(j));
			if (!sgp)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sgp, j) = sgp;
6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

6333
	for_each_sd_topology(tl) {
6334 6335 6336
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349
			struct sched_domain *sd;

			if (sdd->sd) {
				sd = *per_cpu_ptr(sdd->sd, j);
				if (sd && (sd->flags & SD_OVERLAP))
					free_sched_groups(sd->groups, 0);
				kfree(*per_cpu_ptr(sdd->sd, j));
			}

			if (sdd->sg)
				kfree(*per_cpu_ptr(sdd->sg, j));
			if (sdd->sgp)
				kfree(*per_cpu_ptr(sdd->sgp, j));
6350 6351
		}
		free_percpu(sdd->sd);
6352
		sdd->sd = NULL;
6353
		free_percpu(sdd->sg);
6354
		sdd->sg = NULL;
6355
		free_percpu(sdd->sgp);
6356
		sdd->sgp = NULL;
6357 6358 6359
	}
}

6360
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6361 6362
		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
		struct sched_domain *child, int cpu)
6363
{
6364
	struct sched_domain *sd = tl->init(tl, cpu);
6365
	if (!sd)
6366
		return child;
6367 6368

	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6369 6370 6371
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6372
		child->parent = sd;
6373
		sd->child = child;
6374
	}
6375
	set_domain_attribute(sd, attr);
6376 6377 6378 6379

	return sd;
}

6380 6381 6382 6383
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
6384 6385
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
6386
{
6387
	enum s_alloc alloc_state;
6388
	struct sched_domain *sd;
6389
	struct s_data d;
6390
	int i, ret = -ENOMEM;
6391

6392 6393 6394
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
6395

6396
	/* Set up domains for cpus specified by the cpu_map. */
6397
	for_each_cpu(i, cpu_map) {
6398 6399
		struct sched_domain_topology_level *tl;

6400
		sd = NULL;
6401
		for_each_sd_topology(tl) {
6402
			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6403 6404
			if (tl == sched_domain_topology)
				*per_cpu_ptr(d.sd, i) = sd;
6405 6406
			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
				sd->flags |= SD_OVERLAP;
6407 6408
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
				break;
6409
		}
6410 6411 6412 6413 6414 6415
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6416 6417 6418 6419 6420 6421 6422
			if (sd->flags & SD_OVERLAP) {
				if (build_overlap_sched_groups(sd, i))
					goto error;
			} else {
				if (build_sched_groups(sd, i))
					goto error;
			}
6423
		}
6424
	}
6425

L
Linus Torvalds 已提交
6426
	/* Calculate CPU power for physical packages and nodes */
6427 6428 6429
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
6430

6431 6432
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
6433
			init_sched_groups_power(i, sd);
6434
		}
6435
	}
6436

L
Linus Torvalds 已提交
6437
	/* Attach the domains */
6438
	rcu_read_lock();
6439
	for_each_cpu(i, cpu_map) {
6440
		sd = *per_cpu_ptr(d.sd, i);
6441
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
6442
	}
6443
	rcu_read_unlock();
6444

6445
	ret = 0;
6446
error:
6447
	__free_domain_allocs(&d, alloc_state, cpu_map);
6448
	return ret;
L
Linus Torvalds 已提交
6449
}
P
Paul Jackson 已提交
6450

6451
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
6452
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
6453 6454
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
6455 6456 6457

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
6458 6459
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
6460
 */
6461
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
6462

6463 6464 6465 6466 6467
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
6468
int __weak arch_update_cpu_topology(void)
6469
{
6470
	return 0;
6471 6472
}

6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

6498
/*
I
Ingo Molnar 已提交
6499
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6500 6501
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6502
 */
6503
static int init_sched_domains(const struct cpumask *cpu_map)
6504
{
6505 6506
	int err;

6507
	arch_update_cpu_topology();
P
Paul Jackson 已提交
6508
	ndoms_cur = 1;
6509
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
6510
	if (!doms_cur)
6511 6512
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6513
	err = build_sched_domains(doms_cur[0], NULL);
6514
	register_sched_domain_sysctl();
6515 6516

	return err;
6517 6518 6519 6520 6521 6522
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6523
static void detach_destroy_domains(const struct cpumask *cpu_map)
6524 6525 6526
{
	int i;

6527
	rcu_read_lock();
6528
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
6529
		cpu_attach_domain(NULL, &def_root_domain, i);
6530
	rcu_read_unlock();
6531 6532
}

6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
6549 6550
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
6551
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
6552 6553 6554
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
6555
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
6556 6557 6558
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
6559 6560 6561
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
6562 6563 6564 6565 6566 6567
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
6568
 *
6569
 * If doms_new == NULL it will be replaced with cpu_online_mask.
6570 6571
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
6572
 *
P
Paul Jackson 已提交
6573 6574
 * Call with hotplug lock held
 */
6575
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6576
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
6577
{
6578
	int i, j, n;
6579
	int new_topology;
P
Paul Jackson 已提交
6580

6581
	mutex_lock(&sched_domains_mutex);
6582

6583 6584 6585
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

6586 6587 6588
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

6589
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
6590 6591 6592

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
6593
		for (j = 0; j < n && !new_topology; j++) {
6594
			if (cpumask_equal(doms_cur[i], doms_new[j])
6595
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
6596 6597 6598
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
6599
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
6600 6601 6602 6603
match1:
		;
	}

6604
	n = ndoms_cur;
6605
	if (doms_new == NULL) {
6606
		n = 0;
6607
		doms_new = &fallback_doms;
6608
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6609
		WARN_ON_ONCE(dattr_new);
6610 6611
	}

P
Paul Jackson 已提交
6612 6613
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
6614
		for (j = 0; j < n && !new_topology; j++) {
6615
			if (cpumask_equal(doms_new[i], doms_cur[j])
6616
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
6617 6618 6619
				goto match2;
		}
		/* no match - add a new doms_new */
6620
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
6621 6622 6623 6624 6625
match2:
		;
	}

	/* Remember the new sched domains */
6626 6627
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
6628
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
6629
	doms_cur = doms_new;
6630
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
6631
	ndoms_cur = ndoms_new;
6632 6633

	register_sched_domain_sysctl();
6634

6635
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
6636 6637
}

6638 6639
static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */

L
Linus Torvalds 已提交
6640
/*
6641 6642 6643
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
6644 6645 6646
 *
 * If we come here as part of a suspend/resume, don't touch cpusets because we
 * want to restore it back to its original state upon resume anyway.
L
Linus Torvalds 已提交
6647
 */
6648 6649
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
6650
{
6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672
	switch (action) {
	case CPU_ONLINE_FROZEN:
	case CPU_DOWN_FAILED_FROZEN:

		/*
		 * num_cpus_frozen tracks how many CPUs are involved in suspend
		 * resume sequence. As long as this is not the last online
		 * operation in the resume sequence, just build a single sched
		 * domain, ignoring cpusets.
		 */
		num_cpus_frozen--;
		if (likely(num_cpus_frozen)) {
			partition_sched_domains(1, NULL, NULL);
			break;
		}

		/*
		 * This is the last CPU online operation. So fall through and
		 * restore the original sched domains by considering the
		 * cpuset configurations.
		 */

6673
	case CPU_ONLINE:
6674
	case CPU_DOWN_FAILED:
6675
		cpuset_update_active_cpus(true);
6676
		break;
6677 6678 6679
	default:
		return NOTIFY_DONE;
	}
6680
	return NOTIFY_OK;
6681
}
6682

6683 6684
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
6685
{
6686
	switch (action) {
6687
	case CPU_DOWN_PREPARE:
6688
		cpuset_update_active_cpus(false);
6689 6690 6691 6692 6693
		break;
	case CPU_DOWN_PREPARE_FROZEN:
		num_cpus_frozen++;
		partition_sched_domains(1, NULL, NULL);
		break;
6694 6695 6696
	default:
		return NOTIFY_DONE;
	}
6697
	return NOTIFY_OK;
6698 6699
}

L
Linus Torvalds 已提交
6700 6701
void __init sched_init_smp(void)
{
6702 6703 6704
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6705
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6706

6707 6708
	sched_init_numa();

6709 6710 6711 6712 6713
	/*
	 * There's no userspace yet to cause hotplug operations; hence all the
	 * cpu masks are stable and all blatant races in the below code cannot
	 * happen.
	 */
6714
	mutex_lock(&sched_domains_mutex);
6715
	init_sched_domains(cpu_active_mask);
6716 6717 6718
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6719
	mutex_unlock(&sched_domains_mutex);
6720

6721
	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6722 6723
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6724

6725
	init_hrtick();
6726 6727

	/* Move init over to a non-isolated CPU */
6728
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6729
		BUG();
I
Ingo Molnar 已提交
6730
	sched_init_granularity();
6731
	free_cpumask_var(non_isolated_cpus);
6732

6733
	init_sched_rt_class();
6734
	init_sched_dl_class();
L
Linus Torvalds 已提交
6735 6736 6737 6738
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6739
	sched_init_granularity();
L
Linus Torvalds 已提交
6740 6741 6742
}
#endif /* CONFIG_SMP */

6743 6744
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
6745 6746 6747 6748 6749 6750 6751
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

6752
#ifdef CONFIG_CGROUP_SCHED
6753 6754 6755 6756
/*
 * Default task group.
 * Every task in system belongs to this group at bootup.
 */
6757
struct task_group root_task_group;
6758
LIST_HEAD(task_groups);
6759
#endif
P
Peter Zijlstra 已提交
6760

6761
DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
P
Peter Zijlstra 已提交
6762

L
Linus Torvalds 已提交
6763 6764
void __init sched_init(void)
{
I
Ingo Molnar 已提交
6765
	int i, j;
6766 6767 6768 6769 6770 6771 6772
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6773
#endif
6774
#ifdef CONFIG_CPUMASK_OFFSTACK
6775
	alloc_size += num_possible_cpus() * cpumask_size();
6776 6777
#endif
	if (alloc_size) {
6778
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6779 6780

#ifdef CONFIG_FAIR_GROUP_SCHED
6781
		root_task_group.se = (struct sched_entity **)ptr;
6782 6783
		ptr += nr_cpu_ids * sizeof(void **);

6784
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6785
		ptr += nr_cpu_ids * sizeof(void **);
6786

6787
#endif /* CONFIG_FAIR_GROUP_SCHED */
6788
#ifdef CONFIG_RT_GROUP_SCHED
6789
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6790 6791
		ptr += nr_cpu_ids * sizeof(void **);

6792
		root_task_group.rt_rq = (struct rt_rq **)ptr;
6793 6794
		ptr += nr_cpu_ids * sizeof(void **);

6795
#endif /* CONFIG_RT_GROUP_SCHED */
6796 6797
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
6798
			per_cpu(load_balance_mask, i) = (void *)ptr;
6799 6800 6801
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
6802
	}
I
Ingo Molnar 已提交
6803

6804 6805 6806
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());
	init_dl_bandwidth(&def_dl_bandwidth,
6807
			global_rt_period(), global_rt_runtime());
6808

G
Gregory Haskins 已提交
6809 6810 6811 6812
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

6813
#ifdef CONFIG_RT_GROUP_SCHED
6814
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6815
			global_rt_period(), global_rt_runtime());
6816
#endif /* CONFIG_RT_GROUP_SCHED */
6817

D
Dhaval Giani 已提交
6818
#ifdef CONFIG_CGROUP_SCHED
6819 6820
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
6821
	INIT_LIST_HEAD(&root_task_group.siblings);
6822
	autogroup_init(&init_task);
6823

D
Dhaval Giani 已提交
6824
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
6825

6826
	for_each_possible_cpu(i) {
6827
		struct rq *rq;
L
Linus Torvalds 已提交
6828 6829

		rq = cpu_rq(i);
6830
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
6831
		rq->nr_running = 0;
6832 6833
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
6834
		init_cfs_rq(&rq->cfs);
P
Peter Zijlstra 已提交
6835
		init_rt_rq(&rq->rt, rq);
6836
		init_dl_rq(&rq->dl, rq);
I
Ingo Molnar 已提交
6837
#ifdef CONFIG_FAIR_GROUP_SCHED
6838
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
6839
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
6840
		/*
6841
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
6842 6843 6844 6845
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
6846
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
6847 6848 6849
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
6850
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
6851 6852 6853
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
6854
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
6855
		 *
6856 6857
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
6858
		 */
6859
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6860
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
6861 6862 6863
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6864
#ifdef CONFIG_RT_GROUP_SCHED
6865
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
6866
#endif
L
Linus Torvalds 已提交
6867

I
Ingo Molnar 已提交
6868 6869
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
6870 6871 6872

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
6873
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6874
		rq->sd = NULL;
G
Gregory Haskins 已提交
6875
		rq->rd = NULL;
6876
		rq->cpu_power = SCHED_POWER_SCALE;
6877
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
6878
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6879
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6880
		rq->push_cpu = 0;
6881
		rq->cpu = i;
6882
		rq->online = 0;
6883 6884
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
6885
		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6886 6887 6888

		INIT_LIST_HEAD(&rq->cfs_tasks);

6889
		rq_attach_root(rq, &def_root_domain);
6890
#ifdef CONFIG_NO_HZ_COMMON
6891
		rq->nohz_flags = 0;
6892
#endif
6893 6894 6895
#ifdef CONFIG_NO_HZ_FULL
		rq->last_sched_tick = 0;
#endif
L
Linus Torvalds 已提交
6896
#endif
P
Peter Zijlstra 已提交
6897
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
6898 6899 6900
		atomic_set(&rq->nr_iowait, 0);
	}

6901
	set_load_weight(&init_task);
6902

6903 6904 6905 6906
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

L
Linus Torvalds 已提交
6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
6920 6921 6922

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
6923 6924 6925 6926
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
6927

6928
#ifdef CONFIG_SMP
6929
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
R
Rusty Russell 已提交
6930 6931 6932
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6933
	idle_thread_set_boot_cpu();
6934 6935
#endif
	init_sched_fair_class();
6936

6937
	scheduler_running = 1;
L
Linus Torvalds 已提交
6938 6939
}

6940
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6941 6942
static inline int preempt_count_equals(int preempt_offset)
{
6943
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6944

A
Arnd Bergmann 已提交
6945
	return (nested == preempt_offset);
6946 6947
}

6948
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
6949 6950 6951
{
	static unsigned long prev_jiffy;	/* ratelimiting */

6952
	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6953 6954
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
	     !is_idle_task(current)) ||
6955
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
6956 6957 6958 6959 6960
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
6961 6962 6963 6964 6965 6966 6967
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
6968 6969 6970 6971

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
6972 6973 6974 6975 6976 6977 6978
#ifdef CONFIG_DEBUG_PREEMPT
	if (!preempt_count_equals(preempt_offset)) {
		pr_err("Preemption disabled at:");
		print_ip_sym(current->preempt_disable_ip);
		pr_cont("\n");
	}
#endif
I
Ingo Molnar 已提交
6979
	dump_stack();
L
Linus Torvalds 已提交
6980 6981 6982 6983 6984
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
6985 6986
static void normalize_task(struct rq *rq, struct task_struct *p)
{
P
Peter Zijlstra 已提交
6987
	const struct sched_class *prev_class = p->sched_class;
6988 6989 6990
	struct sched_attr attr = {
		.sched_policy = SCHED_NORMAL,
	};
P
Peter Zijlstra 已提交
6991
	int old_prio = p->prio;
6992
	int on_rq;
6993

P
Peter Zijlstra 已提交
6994
	on_rq = p->on_rq;
6995
	if (on_rq)
6996
		dequeue_task(rq, p, 0);
6997
	__setscheduler(rq, p, &attr);
6998
	if (on_rq) {
6999
		enqueue_task(rq, p, 0);
7000 7001
		resched_task(rq->curr);
	}
P
Peter Zijlstra 已提交
7002 7003

	check_class_changed(rq, p, prev_class, old_prio);
7004 7005
}

L
Linus Torvalds 已提交
7006 7007
void normalize_rt_tasks(void)
{
7008
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7009
	unsigned long flags;
7010
	struct rq *rq;
L
Linus Torvalds 已提交
7011

7012
	read_lock_irqsave(&tasklist_lock, flags);
7013
	do_each_thread(g, p) {
7014 7015 7016 7017 7018 7019
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
7020 7021
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
7022 7023 7024
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
7025
#endif
I
Ingo Molnar 已提交
7026

7027
		if (!dl_task(p) && !rt_task(p)) {
I
Ingo Molnar 已提交
7028 7029 7030 7031
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
7032
			if (task_nice(p) < 0 && p->mm)
I
Ingo Molnar 已提交
7033
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7034
			continue;
I
Ingo Molnar 已提交
7035
		}
L
Linus Torvalds 已提交
7036

7037
		raw_spin_lock(&p->pi_lock);
7038
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7039

7040
		normalize_task(rq, p);
7041

7042
		__task_rq_unlock(rq);
7043
		raw_spin_unlock(&p->pi_lock);
7044 7045
	} while_each_thread(g, p);

7046
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7047 7048 7049
}

#endif /* CONFIG_MAGIC_SYSRQ */
7050

7051
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7052
/*
7053
 * These functions are only useful for the IA64 MCA handling, or kdb.
7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7067 7068
 *
 * Return: The current task for @cpu.
7069
 */
7070
struct task_struct *curr_task(int cpu)
7071 7072 7073 7074
{
	return cpu_curr(cpu);
}

7075 7076 7077
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
7078 7079 7080 7081 7082 7083
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7084 7085
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7086 7087 7088 7089 7090 7091 7092
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7093
void set_curr_task(int cpu, struct task_struct *p)
7094 7095 7096 7097 7098
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7099

D
Dhaval Giani 已提交
7100
#ifdef CONFIG_CGROUP_SCHED
7101 7102 7103
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

7104 7105 7106 7107
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
7108
	autogroup_free(tg);
7109 7110 7111 7112
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
7113
struct task_group *sched_create_group(struct task_group *parent)
7114 7115 7116 7117 7118 7119 7120
{
	struct task_group *tg;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

7121
	if (!alloc_fair_sched_group(tg, parent))
7122 7123
		goto err;

7124
	if (!alloc_rt_sched_group(tg, parent))
7125 7126
		goto err;

7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137
	return tg;

err:
	free_sched_group(tg);
	return ERR_PTR(-ENOMEM);
}

void sched_online_group(struct task_group *tg, struct task_group *parent)
{
	unsigned long flags;

7138
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7139
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
7140 7141 7142 7143 7144

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
7145
	list_add_rcu(&tg->siblings, &parent->children);
7146
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7147 7148
}

7149
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
7150
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7151 7152
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
7153
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
7154 7155
}

7156
/* Destroy runqueue etc associated with a task group */
7157
void sched_destroy_group(struct task_group *tg)
7158 7159 7160 7161 7162 7163
{
	/* wait for possible concurrent references to cfs_rqs complete */
	call_rcu(&tg->rcu, free_sched_group_rcu);
}

void sched_offline_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7164
{
7165
	unsigned long flags;
7166
	int i;
S
Srivatsa Vaddagiri 已提交
7167

7168 7169
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
7170
		unregister_fair_sched_group(tg, i);
7171 7172

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7173
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
7174
	list_del_rcu(&tg->siblings);
7175
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7176 7177
}

7178
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7179 7180 7181
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7182 7183
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7184
{
P
Peter Zijlstra 已提交
7185
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
7186 7187 7188 7189 7190 7191
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

7192
	running = task_current(rq, tsk);
P
Peter Zijlstra 已提交
7193
	on_rq = tsk->on_rq;
S
Srivatsa Vaddagiri 已提交
7194

7195
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
7196
		dequeue_task(rq, tsk, 0);
7197 7198
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7199

7200
	tg = container_of(task_css_check(tsk, cpu_cgrp_id,
P
Peter Zijlstra 已提交
7201 7202 7203 7204 7205
				lockdep_is_held(&tsk->sighand->siglock)),
			  struct task_group, css);
	tg = autogroup_task_group(tsk, tg);
	tsk->sched_task_group = tg;

P
Peter Zijlstra 已提交
7206
#ifdef CONFIG_FAIR_GROUP_SCHED
7207 7208 7209
	if (tsk->sched_class->task_move_group)
		tsk->sched_class->task_move_group(tsk, on_rq);
	else
P
Peter Zijlstra 已提交
7210
#endif
7211
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
7212

7213 7214 7215
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
7216
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
7217

7218
	task_rq_unlock(rq, tsk, &flags);
S
Srivatsa Vaddagiri 已提交
7219
}
D
Dhaval Giani 已提交
7220
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
7221

7222 7223 7224 7225 7226
#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
P
Peter Zijlstra 已提交
7227

P
Peter Zijlstra 已提交
7228 7229
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
7230
{
P
Peter Zijlstra 已提交
7231
	struct task_struct *g, *p;
7232

P
Peter Zijlstra 已提交
7233
	do_each_thread(g, p) {
7234
		if (rt_task(p) && task_rq(p)->rt.tg == tg)
P
Peter Zijlstra 已提交
7235 7236
			return 1;
	} while_each_thread(g, p);
7237

P
Peter Zijlstra 已提交
7238 7239
	return 0;
}
7240

P
Peter Zijlstra 已提交
7241 7242 7243 7244 7245
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
7246

7247
static int tg_rt_schedulable(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
7248 7249 7250 7251 7252
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
7253

P
Peter Zijlstra 已提交
7254 7255
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
7256

P
Peter Zijlstra 已提交
7257 7258 7259
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
7260 7261
	}

7262 7263 7264 7265 7266
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
7267

7268 7269 7270
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
7271 7272
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
7273

P
Peter Zijlstra 已提交
7274
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7275

7276 7277 7278 7279 7280
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
7281

7282 7283 7284
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
7285 7286 7287
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7288

P
Peter Zijlstra 已提交
7289 7290 7291 7292
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
7293

P
Peter Zijlstra 已提交
7294
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7295
	}
P
Peter Zijlstra 已提交
7296

P
Peter Zijlstra 已提交
7297 7298 7299 7300
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
7301 7302
}

P
Peter Zijlstra 已提交
7303
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7304
{
7305 7306
	int ret;

P
Peter Zijlstra 已提交
7307 7308 7309 7310 7311 7312
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

7313 7314 7315 7316 7317
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7318 7319
}

7320
static int tg_set_rt_bandwidth(struct task_group *tg,
7321
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
7322
{
P
Peter Zijlstra 已提交
7323
	int i, err = 0;
P
Peter Zijlstra 已提交
7324 7325

	mutex_lock(&rt_constraints_mutex);
7326
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
7327 7328
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
7329
		goto unlock;
P
Peter Zijlstra 已提交
7330

7331
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7332 7333
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
7334 7335 7336 7337

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

7338
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7339
		rt_rq->rt_runtime = rt_runtime;
7340
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7341
	}
7342
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
7343
unlock:
7344
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
7345 7346 7347
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
7348 7349
}

7350
static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7351 7352 7353 7354 7355 7356 7357 7358
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

7359
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7360 7361
}

7362
static long sched_group_rt_runtime(struct task_group *tg)
P
Peter Zijlstra 已提交
7363 7364 7365
{
	u64 rt_runtime_us;

7366
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7367 7368
		return -1;

7369
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7370 7371 7372
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
7373

7374
static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7375 7376 7377 7378 7379 7380
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

7381 7382 7383
	if (rt_period == 0)
		return -EINVAL;

7384
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7385 7386
}

7387
static long sched_group_rt_period(struct task_group *tg)
7388 7389 7390 7391 7392 7393 7394
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}
7395
#endif /* CONFIG_RT_GROUP_SCHED */
7396

7397
#ifdef CONFIG_RT_GROUP_SCHED
7398 7399 7400 7401 7402
static int sched_rt_global_constraints(void)
{
	int ret = 0;

	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
7403
	read_lock(&tasklist_lock);
7404
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
7405
	read_unlock(&tasklist_lock);
7406 7407 7408 7409
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
7410

7411
static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7412 7413 7414 7415 7416 7417 7418 7419
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

7420
#else /* !CONFIG_RT_GROUP_SCHED */
7421 7422
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
7423
	unsigned long flags;
7424
	int i, ret = 0;
7425

7426
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7427 7428 7429
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

7430
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7431
		rt_rq->rt_runtime = global_rt_runtime();
7432
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7433
	}
7434
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7435

7436
	return ret;
7437
}
7438
#endif /* CONFIG_RT_GROUP_SCHED */
7439

7440 7441
static int sched_dl_global_constraints(void)
{
7442 7443
	u64 runtime = global_rt_runtime();
	u64 period = global_rt_period();
7444
	u64 new_bw = to_ratio(period, runtime);
7445
	int cpu, ret = 0;
7446
	unsigned long flags;
7447 7448 7449 7450 7451 7452 7453 7454 7455 7456

	/*
	 * Here we want to check the bandwidth not being set to some
	 * value smaller than the currently allocated bandwidth in
	 * any of the root_domains.
	 *
	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
	 * cycling on root_domains... Discussion on different/better
	 * solutions is welcome!
	 */
7457 7458
	for_each_possible_cpu(cpu) {
		struct dl_bw *dl_b = dl_bw_of(cpu);
7459

7460
		raw_spin_lock_irqsave(&dl_b->lock, flags);
7461 7462
		if (new_bw < dl_b->total_bw)
			ret = -EBUSY;
7463
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7464 7465 7466

		if (ret)
			break;
7467 7468
	}

7469
	return ret;
7470 7471
}

7472
static void sched_dl_do_global(void)
7473
{
7474 7475
	u64 new_bw = -1;
	int cpu;
7476
	unsigned long flags;
7477

7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489
	def_dl_bandwidth.dl_period = global_rt_period();
	def_dl_bandwidth.dl_runtime = global_rt_runtime();

	if (global_rt_runtime() != RUNTIME_INF)
		new_bw = to_ratio(global_rt_period(), global_rt_runtime());

	/*
	 * FIXME: As above...
	 */
	for_each_possible_cpu(cpu) {
		struct dl_bw *dl_b = dl_bw_of(cpu);

7490
		raw_spin_lock_irqsave(&dl_b->lock, flags);
7491
		dl_b->bw = new_bw;
7492
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7493
	}
7494 7495 7496 7497 7498 7499 7500
}

static int sched_rt_global_validate(void)
{
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7501 7502
	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7503 7504 7505 7506 7507 7508 7509 7510 7511
		return -EINVAL;

	return 0;
}

static void sched_rt_do_global(void)
{
	def_rt_bandwidth.rt_runtime = global_rt_runtime();
	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7512 7513
}

7514
int sched_rt_handler(struct ctl_table *table, int write,
7515
		void __user *buffer, size_t *lenp,
7516 7517 7518 7519
		loff_t *ppos)
{
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);
7520
	int ret;
7521 7522 7523 7524 7525

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

7526
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7527 7528

	if (!ret && write) {
7529 7530 7531 7532
		ret = sched_rt_global_validate();
		if (ret)
			goto undo;

7533
		ret = sched_rt_global_constraints();
7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547
		if (ret)
			goto undo;

		ret = sched_dl_global_constraints();
		if (ret)
			goto undo;

		sched_rt_do_global();
		sched_dl_do_global();
	}
	if (0) {
undo:
		sysctl_sched_rt_period = old_period;
		sysctl_sched_rt_runtime = old_runtime;
7548 7549 7550 7551 7552
	}
	mutex_unlock(&mutex);

	return ret;
}
7553

7554
int sched_rr_handler(struct ctl_table *table, int write,
7555 7556 7557 7558 7559 7560 7561 7562
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7563 7564
	/* make sure that internally we keep jiffies */
	/* also, writing zero resets timeslice to default */
7565
	if (!ret && write) {
7566 7567
		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7568 7569 7570 7571 7572
	}
	mutex_unlock(&mutex);
	return ret;
}

7573
#ifdef CONFIG_CGROUP_SCHED
7574

7575
static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7576
{
7577
	return css ? container_of(css, struct task_group, css) : NULL;
7578 7579
}

7580 7581
static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7582
{
7583 7584
	struct task_group *parent = css_tg(parent_css);
	struct task_group *tg;
7585

7586
	if (!parent) {
7587
		/* This is early initialization for the top cgroup */
7588
		return &root_task_group.css;
7589 7590
	}

7591
	tg = sched_create_group(parent);
7592 7593 7594 7595 7596 7597
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

7598
static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7599
{
7600 7601
	struct task_group *tg = css_tg(css);
	struct task_group *parent = css_tg(css_parent(css));
7602

T
Tejun Heo 已提交
7603 7604
	if (parent)
		sched_online_group(tg, parent);
7605 7606 7607
	return 0;
}

7608
static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7609
{
7610
	struct task_group *tg = css_tg(css);
7611 7612 7613 7614

	sched_destroy_group(tg);
}

7615
static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7616
{
7617
	struct task_group *tg = css_tg(css);
7618 7619 7620 7621

	sched_offline_group(tg);
}

7622
static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7623
				 struct cgroup_taskset *tset)
7624
{
7625 7626
	struct task_struct *task;

7627
	cgroup_taskset_for_each(task, tset) {
7628
#ifdef CONFIG_RT_GROUP_SCHED
7629
		if (!sched_rt_can_attach(css_tg(css), task))
7630
			return -EINVAL;
7631
#else
7632 7633 7634
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
7635
#endif
7636
	}
7637 7638
	return 0;
}
7639

7640
static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7641
			      struct cgroup_taskset *tset)
7642
{
7643 7644
	struct task_struct *task;

7645
	cgroup_taskset_for_each(task, tset)
7646
		sched_move_task(task);
7647 7648
}

7649 7650 7651
static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
			    struct cgroup_subsys_state *old_css,
			    struct task_struct *task)
7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	sched_move_task(task);
}

7664
#ifdef CONFIG_FAIR_GROUP_SCHED
7665 7666
static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
				struct cftype *cftype, u64 shareval)
7667
{
7668
	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7669 7670
}

7671 7672
static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
			       struct cftype *cft)
7673
{
7674
	struct task_group *tg = css_tg(css);
7675

7676
	return (u64) scale_load_down(tg->shares);
7677
}
7678 7679

#ifdef CONFIG_CFS_BANDWIDTH
7680 7681
static DEFINE_MUTEX(cfs_constraints_mutex);

7682 7683 7684
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

7685 7686
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

7687 7688
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
7689
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7690
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

7711 7712 7713 7714 7715
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

7716
	runtime_enabled = quota != RUNTIME_INF;
7717
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7718 7719 7720 7721 7722 7723
	/*
	 * If we need to toggle cfs_bandwidth_used, off->on must occur
	 * before making related changes, and on->off must occur afterwards
	 */
	if (runtime_enabled && !runtime_was_enabled)
		cfs_bandwidth_usage_inc();
7724 7725 7726
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
7727

P
Paul Turner 已提交
7728
	__refill_cfs_bandwidth_runtime(cfs_b);
7729 7730 7731 7732 7733 7734
	/* restart the period timer (if active) to handle new period expiry */
	if (runtime_enabled && cfs_b->timer_active) {
		/* force a reprogram */
		cfs_b->timer_active = 0;
		__start_cfs_bandwidth(cfs_b);
	}
7735 7736 7737 7738
	raw_spin_unlock_irq(&cfs_b->lock);

	for_each_possible_cpu(i) {
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7739
		struct rq *rq = cfs_rq->rq;
7740 7741

		raw_spin_lock_irq(&rq->lock);
7742
		cfs_rq->runtime_enabled = runtime_enabled;
7743
		cfs_rq->runtime_remaining = 0;
7744

7745
		if (cfs_rq->throttled)
7746
			unthrottle_cfs_rq(cfs_rq);
7747 7748
		raw_spin_unlock_irq(&rq->lock);
	}
7749 7750
	if (runtime_was_enabled && !runtime_enabled)
		cfs_bandwidth_usage_dec();
7751 7752
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
7753

7754
	return ret;
7755 7756 7757 7758 7759 7760
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

7761
	period = ktime_to_ns(tg->cfs_bandwidth.period);
7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

7774
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7775 7776
		return -1;

7777
	quota_us = tg->cfs_bandwidth.quota;
7778 7779 7780 7781 7782 7783 7784 7785 7786 7787
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
7788
	quota = tg->cfs_bandwidth.quota;
7789 7790 7791 7792 7793 7794 7795 7796

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

7797
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7798 7799 7800 7801 7802
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

7803 7804
static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
				  struct cftype *cft)
7805
{
7806
	return tg_get_cfs_quota(css_tg(css));
7807 7808
}

7809 7810
static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
				   struct cftype *cftype, s64 cfs_quota_us)
7811
{
7812
	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7813 7814
}

7815 7816
static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
				   struct cftype *cft)
7817
{
7818
	return tg_get_cfs_period(css_tg(css));
7819 7820
}

7821 7822
static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 cfs_period_us)
7823
{
7824
	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7825 7826
}

7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
7859
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7860 7861 7862 7863 7864
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
7865
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885

		quota = normalize_cfs_quota(tg, d);
		parent_quota = parent_b->hierarchal_quota;

		/*
		 * ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
	cfs_b->hierarchal_quota = quota;

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
7886
	int ret;
7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

7898 7899 7900 7901 7902
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7903
}
7904

7905
static int cpu_stats_show(struct seq_file *sf, void *v)
7906
{
7907
	struct task_group *tg = css_tg(seq_css(sf));
7908
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7909

7910 7911 7912
	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7913 7914 7915

	return 0;
}
7916
#endif /* CONFIG_CFS_BANDWIDTH */
7917
#endif /* CONFIG_FAIR_GROUP_SCHED */
7918

7919
#ifdef CONFIG_RT_GROUP_SCHED
7920 7921
static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
				struct cftype *cft, s64 val)
P
Peter Zijlstra 已提交
7922
{
7923
	return sched_group_set_rt_runtime(css_tg(css), val);
P
Peter Zijlstra 已提交
7924 7925
}

7926 7927
static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
P
Peter Zijlstra 已提交
7928
{
7929
	return sched_group_rt_runtime(css_tg(css));
P
Peter Zijlstra 已提交
7930
}
7931

7932 7933
static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 rt_period_us)
7934
{
7935
	return sched_group_set_rt_period(css_tg(css), rt_period_us);
7936 7937
}

7938 7939
static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
				   struct cftype *cft)
7940
{
7941
	return sched_group_rt_period(css_tg(css));
7942
}
7943
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
7944

7945
static struct cftype cpu_files[] = {
7946
#ifdef CONFIG_FAIR_GROUP_SCHED
7947 7948
	{
		.name = "shares",
7949 7950
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
7951
	},
7952
#endif
7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
7964 7965
	{
		.name = "stat",
7966
		.seq_show = cpu_stats_show,
7967
	},
7968
#endif
7969
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7970
	{
P
Peter Zijlstra 已提交
7971
		.name = "rt_runtime_us",
7972 7973
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
7974
	},
7975 7976
	{
		.name = "rt_period_us",
7977 7978
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
7979
	},
7980
#endif
7981
	{ }	/* terminate */
7982 7983
};

7984
struct cgroup_subsys cpu_cgrp_subsys = {
7985 7986
	.css_alloc	= cpu_cgroup_css_alloc,
	.css_free	= cpu_cgroup_css_free,
7987 7988
	.css_online	= cpu_cgroup_css_online,
	.css_offline	= cpu_cgroup_css_offline,
7989 7990
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
7991
	.exit		= cpu_cgroup_exit,
7992
	.base_cftypes	= cpu_files,
7993 7994 7995
	.early_init	= 1,
};

7996
#endif	/* CONFIG_CGROUP_SCHED */
7997

7998 7999 8000 8001 8002
void dump_cpu_task(int cpu)
{
	pr_info("Task dump for CPU %d:\n", cpu);
	sched_show_task(cpu_curr(cpu));
}