core.c 200.2 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/highmem.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
37
#include <linux/capability.h>
L
Linus Torvalds 已提交
38 39
#include <linux/completion.h>
#include <linux/kernel_stat.h>
40
#include <linux/debug_locks.h>
41
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
57
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
58
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/unistd.h>
J
Jens Axboe 已提交
66
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
67
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
68
#include <linux/tick.h>
P
Peter Zijlstra 已提交
69 70
#include <linux/debugfs.h>
#include <linux/ctype.h>
71
#include <linux/ftrace.h>
72
#include <linux/slab.h>
73
#include <linux/init_task.h>
A
Al Viro 已提交
74
#include <linux/binfmts.h>
75
#include <linux/context_tracking.h>
76
#include <linux/compiler.h>
L
Linus Torvalds 已提交
77

78
#include <asm/switch_to.h>
79
#include <asm/tlb.h>
80
#include <asm/irq_regs.h>
81
#include <asm/mutex.h>
G
Glauber Costa 已提交
82 83 84
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
85

86
#include "sched.h"
87
#include "../workqueue_internal.h"
88
#include "../smpboot.h"
89

90
#define CREATE_TRACE_POINTS
91
#include <trace/events/sched.h>
92

93
void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
94
{
95 96
	unsigned long delta;
	ktime_t soft, hard, now;
97

98 99 100 101 102 103
	for (;;) {
		if (hrtimer_active(period_timer))
			break;

		now = hrtimer_cb_get_time(period_timer);
		hrtimer_forward(period_timer, now, period);
104

105 106 107 108 109 110 111 112
		soft = hrtimer_get_softexpires(period_timer);
		hard = hrtimer_get_expires(period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(period_timer, soft, delta,
					 HRTIMER_MODE_ABS_PINNED, 0);
	}
}

113 114
DEFINE_MUTEX(sched_domains_mutex);
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
115

116
static void update_rq_clock_task(struct rq *rq, s64 delta);
117

118
void update_rq_clock(struct rq *rq)
119
{
120
	s64 delta;
121

122 123 124
	lockdep_assert_held(&rq->lock);

	if (rq->clock_skip_update & RQCF_ACT_SKIP)
125
		return;
126

127
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
128 129
	if (delta < 0)
		return;
130 131
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
132 133
}

I
Ingo Molnar 已提交
134 135 136
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
137 138 139 140

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
141
const_debug unsigned int sysctl_sched_features =
142
#include "features.h"
P
Peter Zijlstra 已提交
143 144 145 146 147 148 149 150
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

151
static const char * const sched_feat_names[] = {
152
#include "features.h"
P
Peter Zijlstra 已提交
153 154 155 156
};

#undef SCHED_FEAT

L
Li Zefan 已提交
157
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
158 159 160
{
	int i;

161
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
L
Li Zefan 已提交
162 163 164
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
165
	}
L
Li Zefan 已提交
166
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
167

L
Li Zefan 已提交
168
	return 0;
P
Peter Zijlstra 已提交
169 170
}

171 172
#ifdef HAVE_JUMP_LABEL

173 174
#define jump_label_key__true  STATIC_KEY_INIT_TRUE
#define jump_label_key__false STATIC_KEY_INIT_FALSE
175 176 177 178

#define SCHED_FEAT(name, enabled)	\
	jump_label_key__##enabled ,

179
struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
180 181 182 183 184 185 186
#include "features.h"
};

#undef SCHED_FEAT

static void sched_feat_disable(int i)
{
187 188
	if (static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_dec(&sched_feat_keys[i]);
189 190 191 192
}

static void sched_feat_enable(int i)
{
193 194
	if (!static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_inc(&sched_feat_keys[i]);
195 196 197 198 199 200
}
#else
static void sched_feat_disable(int i) { };
static void sched_feat_enable(int i) { };
#endif /* HAVE_JUMP_LABEL */

201
static int sched_feat_set(char *cmp)
P
Peter Zijlstra 已提交
202 203
{
	int i;
204
	int neg = 0;
P
Peter Zijlstra 已提交
205

H
Hillf Danton 已提交
206
	if (strncmp(cmp, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
207 208 209 210
		neg = 1;
		cmp += 3;
	}

211
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
212
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
213
			if (neg) {
P
Peter Zijlstra 已提交
214
				sysctl_sched_features &= ~(1UL << i);
215 216
				sched_feat_disable(i);
			} else {
P
Peter Zijlstra 已提交
217
				sysctl_sched_features |= (1UL << i);
218 219
				sched_feat_enable(i);
			}
P
Peter Zijlstra 已提交
220 221 222 223
			break;
		}
	}

224 225 226 227 228 229 230 231 232 233
	return i;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp;
	int i;
234
	struct inode *inode;
235 236 237 238 239 240 241 242 243 244

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
	cmp = strstrip(buf);

245 246 247
	/* Ensure the static_key remains in a consistent state */
	inode = file_inode(filp);
	mutex_lock(&inode->i_mutex);
248
	i = sched_feat_set(cmp);
249
	mutex_unlock(&inode->i_mutex);
250
	if (i == __SCHED_FEAT_NR)
P
Peter Zijlstra 已提交
251 252
		return -EINVAL;

253
	*ppos += cnt;
P
Peter Zijlstra 已提交
254 255 256 257

	return cnt;
}

L
Li Zefan 已提交
258 259 260 261 262
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

263
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
264 265 266 267 268
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
269 270 271 272 273 274 275 276 277 278
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);
279
#endif /* CONFIG_SCHED_DEBUG */
I
Ingo Molnar 已提交
280

281 282 283 284 285 286
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

287 288 289 290 291 292 293 294
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
295
/*
P
Peter Zijlstra 已提交
296
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
297 298
 * default: 1s
 */
P
Peter Zijlstra 已提交
299
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
300

301
__read_mostly int scheduler_running;
302

P
Peter Zijlstra 已提交
303 304 305 306 307
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
308

L
Linus Torvalds 已提交
309
/*
310
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
311
 */
A
Alexey Dobriyan 已提交
312
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
313 314
	__acquires(rq->lock)
{
315
	struct rq *rq;
L
Linus Torvalds 已提交
316 317 318

	local_irq_disable();
	rq = this_rq();
319
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
320 321 322 323

	return rq;
}

P
Peter Zijlstra 已提交
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

345
	raw_spin_lock(&rq->lock);
346
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
347
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
348
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
349 350 351 352

	return HRTIMER_NORESTART;
}

353
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
354 355 356 357 358 359 360 361 362

static int __hrtick_restart(struct rq *rq)
{
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = hrtimer_get_softexpires(timer);

	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
}

363 364 365 366
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
367
{
368
	struct rq *rq = arg;
369

370
	raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
371
	__hrtick_restart(rq);
372
	rq->hrtick_csd_pending = 0;
373
	raw_spin_unlock(&rq->lock);
374 375
}

376 377 378 379 380
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
381
void hrtick_start(struct rq *rq, u64 delay)
382
{
383
	struct hrtimer *timer = &rq->hrtick_timer;
384 385 386 387 388 389 390 391 392
	ktime_t time;
	s64 delta;

	/*
	 * Don't schedule slices shorter than 10000ns, that just
	 * doesn't make sense and can cause timer DoS.
	 */
	delta = max_t(s64, delay, 10000LL);
	time = ktime_add_ns(timer->base->get_time(), delta);
393

394
	hrtimer_set_expires(timer, time);
395 396

	if (rq == this_rq()) {
P
Peter Zijlstra 已提交
397
		__hrtick_restart(rq);
398
	} else if (!rq->hrtick_csd_pending) {
399
		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
400 401
		rq->hrtick_csd_pending = 1;
	}
402 403 404 405 406 407 408 409 410 411 412 413 414 415
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
416
		hrtick_clear(cpu_rq(cpu));
417 418 419 420 421 422
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

423
static __init void init_hrtick(void)
424 425 426
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
427 428 429 430 431 432
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
433
void hrtick_start(struct rq *rq, u64 delay)
434
{
W
Wanpeng Li 已提交
435 436 437 438 439
	/*
	 * Don't schedule slices shorter than 10000ns, that just
	 * doesn't make sense. Rely on vruntime for fairness.
	 */
	delay = max_t(u64, delay, 10000LL);
440
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
441
			HRTIMER_MODE_REL_PINNED, 0);
442
}
443

A
Andrew Morton 已提交
444
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
445 446
{
}
447
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
448

449
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
450
{
451 452
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
453

454 455 456 457
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
458

459 460
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
461
}
A
Andrew Morton 已提交
462
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
463 464 465 466 467 468 469 470
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

471 472 473
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
474
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
475

476 477 478 479 480 481 482 483 484 485 486 487 488 489
/*
 * cmpxchg based fetch_or, macro so it works for different integer types
 */
#define fetch_or(ptr, val)						\
({	typeof(*(ptr)) __old, __val = *(ptr);				\
 	for (;;) {							\
 		__old = cmpxchg((ptr), __val, __val | (val));		\
 		if (__old == __val)					\
 			break;						\
 		__val = __old;						\
 	}								\
 	__old;								\
})

490
#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
491 492 493 494 495 496 497 498 499 500
/*
 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
 * this avoids any races wrt polling state changes and thereby avoids
 * spurious IPIs.
 */
static bool set_nr_and_not_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
}
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525

/*
 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
 *
 * If this returns true, then the idle task promises to call
 * sched_ttwu_pending() and reschedule soon.
 */
static bool set_nr_if_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
	typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);

	for (;;) {
		if (!(val & _TIF_POLLING_NRFLAG))
			return false;
		if (val & _TIF_NEED_RESCHED)
			return true;
		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
		if (old == val)
			break;
		val = old;
	}
	return true;
}

526 527 528 529 530 531
#else
static bool set_nr_and_not_polling(struct task_struct *p)
{
	set_tsk_need_resched(p);
	return true;
}
532 533 534 535 536 537 538

#ifdef CONFIG_SMP
static bool set_nr_if_polling(struct task_struct *p)
{
	return false;
}
#endif
539 540
#endif

I
Ingo Molnar 已提交
541
/*
542
 * resched_curr - mark rq's current task 'to be rescheduled now'.
I
Ingo Molnar 已提交
543 544 545 546 547
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
548
void resched_curr(struct rq *rq)
I
Ingo Molnar 已提交
549
{
550
	struct task_struct *curr = rq->curr;
I
Ingo Molnar 已提交
551 552
	int cpu;

553
	lockdep_assert_held(&rq->lock);
I
Ingo Molnar 已提交
554

555
	if (test_tsk_need_resched(curr))
I
Ingo Molnar 已提交
556 557
		return;

558
	cpu = cpu_of(rq);
559

560
	if (cpu == smp_processor_id()) {
561
		set_tsk_need_resched(curr);
562
		set_preempt_need_resched();
I
Ingo Molnar 已提交
563
		return;
564
	}
I
Ingo Molnar 已提交
565

566
	if (set_nr_and_not_polling(curr))
I
Ingo Molnar 已提交
567
		smp_send_reschedule(cpu);
568 569
	else
		trace_sched_wake_idle_without_ipi(cpu);
I
Ingo Molnar 已提交
570 571
}

572
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
573 574 575 576
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

577
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
578
		return;
579
	resched_curr(rq);
580
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
581
}
582

583
#ifdef CONFIG_SMP
584
#ifdef CONFIG_NO_HZ_COMMON
585 586 587 588 589 590 591 592
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
593
int get_nohz_timer_target(int pinned)
594 595 596 597 598
{
	int cpu = smp_processor_id();
	int i;
	struct sched_domain *sd;

599 600 601
	if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
		return cpu;

602
	rcu_read_lock();
603
	for_each_domain(cpu, sd) {
604 605 606 607 608 609
		for_each_cpu(i, sched_domain_span(sd)) {
			if (!idle_cpu(i)) {
				cpu = i;
				goto unlock;
			}
		}
610
	}
611 612
unlock:
	rcu_read_unlock();
613 614
	return cpu;
}
615 616 617 618 619 620 621 622 623 624
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
625
static void wake_up_idle_cpu(int cpu)
626 627 628 629 630 631
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

632
	if (set_nr_and_not_polling(rq->idle))
633
		smp_send_reschedule(cpu);
634 635
	else
		trace_sched_wake_idle_without_ipi(cpu);
636 637
}

638
static bool wake_up_full_nohz_cpu(int cpu)
639
{
640 641 642 643 644 645
	/*
	 * We just need the target to call irq_exit() and re-evaluate
	 * the next tick. The nohz full kick at least implies that.
	 * If needed we can still optimize that later with an
	 * empty IRQ.
	 */
646
	if (tick_nohz_full_cpu(cpu)) {
647 648
		if (cpu != smp_processor_id() ||
		    tick_nohz_tick_stopped())
649
			tick_nohz_full_kick_cpu(cpu);
650 651 652 653 654 655 656 657
		return true;
	}

	return false;
}

void wake_up_nohz_cpu(int cpu)
{
658
	if (!wake_up_full_nohz_cpu(cpu))
659 660 661
		wake_up_idle_cpu(cpu);
}

662
static inline bool got_nohz_idle_kick(void)
663
{
664
	int cpu = smp_processor_id();
665 666 667 668 669 670 671 672 673 674 675 676 677

	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
		return false;

	if (idle_cpu(cpu) && !need_resched())
		return true;

	/*
	 * We can't run Idle Load Balance on this CPU for this time so we
	 * cancel it and clear NOHZ_BALANCE_KICK
	 */
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
	return false;
678 679
}

680
#else /* CONFIG_NO_HZ_COMMON */
681

682
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
683
{
684
	return false;
P
Peter Zijlstra 已提交
685 686
}

687
#endif /* CONFIG_NO_HZ_COMMON */
688

689 690 691
#ifdef CONFIG_NO_HZ_FULL
bool sched_can_stop_tick(void)
{
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
	/*
	 * FIFO realtime policy runs the highest priority task. Other runnable
	 * tasks are of a lower priority. The scheduler tick does nothing.
	 */
	if (current->policy == SCHED_FIFO)
		return true;

	/*
	 * Round-robin realtime tasks time slice with other tasks at the same
	 * realtime priority. Is this task the only one at this priority?
	 */
	if (current->policy == SCHED_RR) {
		struct sched_rt_entity *rt_se = &current->rt;

		return rt_se->run_list.prev == rt_se->run_list.next;
	}

709 710 711 712 713
	/*
	 * More than one running task need preemption.
	 * nr_running update is assumed to be visible
	 * after IPI is sent from wakers.
	 */
714 715
	if (this_rq()->nr_running > 1)
		return false;
716

717
	return true;
718 719
}
#endif /* CONFIG_NO_HZ_FULL */
720

721
void sched_avg_update(struct rq *rq)
722
{
723 724
	s64 period = sched_avg_period();

725
	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
726 727 728 729 730 731
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
732 733 734
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
735 736
}

737
#endif /* CONFIG_SMP */
738

739 740
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
741
/*
742 743 744 745
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
746
 */
747
int walk_tg_tree_from(struct task_group *from,
748
			     tg_visitor down, tg_visitor up, void *data)
749 750
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
751
	int ret;
752

753 754
	parent = from;

755
down:
P
Peter Zijlstra 已提交
756 757
	ret = (*down)(parent, data);
	if (ret)
758
		goto out;
759 760 761 762 763 764 765
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
766
	ret = (*up)(parent, data);
767 768
	if (ret || parent == from)
		goto out;
769 770 771 772 773

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
774
out:
P
Peter Zijlstra 已提交
775
	return ret;
776 777
}

778
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
779
{
780
	return 0;
P
Peter Zijlstra 已提交
781
}
782 783
#endif

784 785
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
786 787 788
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
789 790 791 792
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
793
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
794
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
795 796
		return;
	}
797

798
	load->weight = scale_load(prio_to_weight[prio]);
N
Nikhil Rao 已提交
799
	load->inv_weight = prio_to_wmult[prio];
800 801
}

802
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
803
{
804
	update_rq_clock(rq);
805
	sched_info_queued(rq, p);
806
	p->sched_class->enqueue_task(rq, p, flags);
807 808
}

809
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
810
{
811
	update_rq_clock(rq);
812
	sched_info_dequeued(rq, p);
813
	p->sched_class->dequeue_task(rq, p, flags);
814 815
}

816
void activate_task(struct rq *rq, struct task_struct *p, int flags)
817 818 819 820
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

821
	enqueue_task(rq, p, flags);
822 823
}

824
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
825 826 827 828
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

829
	dequeue_task(rq, p, flags);
830 831
}

832
static void update_rq_clock_task(struct rq *rq, s64 delta)
833
{
834 835 836 837 838 839 840 841
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
842
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
864 865
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
866
	if (static_key_false((&paravirt_steal_rq_enabled))) {
867 868 869 870 871 872 873 874 875 876 877
		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		rq->prev_steal_time_rq += steal;
		delta -= steal;
	}
#endif

878 879
	rq->clock_task += delta;

880
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
881
	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
882 883
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
884 885
}

886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

916
/*
I
Ingo Molnar 已提交
917
 * __normal_prio - return the priority that is based on the static prio
918 919 920
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
921
	return p->static_prio;
922 923
}

924 925 926 927 928 929 930
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
931
static inline int normal_prio(struct task_struct *p)
932 933 934
{
	int prio;

935 936 937
	if (task_has_dl_policy(p))
		prio = MAX_DL_PRIO-1;
	else if (task_has_rt_policy(p))
938 939 940 941 942 943 944 945 946 947 948 949 950
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
951
static int effective_prio(struct task_struct *p)
952 953 954 955 956 957 958 959 960 961 962 963
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
964 965 966
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
967 968
 *
 * Return: 1 if the task is currently executing. 0 otherwise.
L
Linus Torvalds 已提交
969
 */
970
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
971 972 973 974
{
	return cpu_curr(task_cpu(p)) == p;
}

975 976 977
/*
 * Can drop rq->lock because from sched_class::switched_from() methods drop it.
 */
978 979
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
980
				       int oldprio)
981 982 983
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
984
			prev_class->switched_from(rq, p);
985
		/* Possble rq->lock 'hole'.  */
P
Peter Zijlstra 已提交
986
		p->sched_class->switched_to(rq, p);
987
	} else if (oldprio != p->prio || dl_task(p))
P
Peter Zijlstra 已提交
988
		p->sched_class->prio_changed(rq, p, oldprio);
989 990
}

991
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
992 993 994 995 996 997 998 999 1000 1001
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
1002
				resched_curr(rq);
1003 1004 1005 1006 1007 1008 1009 1010 1011
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
1012
	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1013
		rq_clock_skip_update(rq, true);
1014 1015
}

L
Linus Torvalds 已提交
1016
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1017
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1018
{
1019 1020 1021 1022 1023
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
1024
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
O
Oleg Nesterov 已提交
1025
			!p->on_rq);
1026 1027

#ifdef CONFIG_LOCKDEP
1028 1029 1030 1031 1032
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
P
Peter Zijlstra 已提交
1033
	 * see task_group().
1034 1035 1036 1037
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
1038 1039 1040
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
1041 1042
#endif

1043
	trace_sched_migrate_task(p, new_cpu);
1044

1045
	if (task_cpu(p) != new_cpu) {
1046 1047
		if (p->sched_class->migrate_task_rq)
			p->sched_class->migrate_task_rq(p, new_cpu);
1048
		p->se.nr_migrations++;
1049
		perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0);
1050
	}
I
Ingo Molnar 已提交
1051 1052

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1053 1054
}

1055 1056
static void __migrate_swap_task(struct task_struct *p, int cpu)
{
1057
	if (task_on_rq_queued(p)) {
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
		struct rq *src_rq, *dst_rq;

		src_rq = task_rq(p);
		dst_rq = cpu_rq(cpu);

		deactivate_task(src_rq, p, 0);
		set_task_cpu(p, cpu);
		activate_task(dst_rq, p, 0);
		check_preempt_curr(dst_rq, p, 0);
	} else {
		/*
		 * Task isn't running anymore; make it appear like we migrated
		 * it before it went to sleep. This means on wakeup we make the
		 * previous cpu our targer instead of where it really is.
		 */
		p->wake_cpu = cpu;
	}
}

struct migration_swap_arg {
	struct task_struct *src_task, *dst_task;
	int src_cpu, dst_cpu;
};

static int migrate_swap_stop(void *data)
{
	struct migration_swap_arg *arg = data;
	struct rq *src_rq, *dst_rq;
	int ret = -EAGAIN;

	src_rq = cpu_rq(arg->src_cpu);
	dst_rq = cpu_rq(arg->dst_cpu);

1091 1092
	double_raw_lock(&arg->src_task->pi_lock,
			&arg->dst_task->pi_lock);
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
	double_rq_lock(src_rq, dst_rq);
	if (task_cpu(arg->dst_task) != arg->dst_cpu)
		goto unlock;

	if (task_cpu(arg->src_task) != arg->src_cpu)
		goto unlock;

	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
		goto unlock;

	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
		goto unlock;

	__migrate_swap_task(arg->src_task, arg->dst_cpu);
	__migrate_swap_task(arg->dst_task, arg->src_cpu);

	ret = 0;

unlock:
	double_rq_unlock(src_rq, dst_rq);
1113 1114
	raw_spin_unlock(&arg->dst_task->pi_lock);
	raw_spin_unlock(&arg->src_task->pi_lock);
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136

	return ret;
}

/*
 * Cross migrate two tasks
 */
int migrate_swap(struct task_struct *cur, struct task_struct *p)
{
	struct migration_swap_arg arg;
	int ret = -EINVAL;

	arg = (struct migration_swap_arg){
		.src_task = cur,
		.src_cpu = task_cpu(cur),
		.dst_task = p,
		.dst_cpu = task_cpu(p),
	};

	if (arg.src_cpu == arg.dst_cpu)
		goto out;

1137 1138 1139 1140
	/*
	 * These three tests are all lockless; this is OK since all of them
	 * will be re-checked with proper locks held further down the line.
	 */
1141 1142 1143 1144 1145 1146 1147 1148 1149
	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
		goto out;

	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
		goto out;

	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
		goto out;

1150
	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1151 1152 1153 1154 1155 1156
	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);

out:
	return ret;
}

1157
struct migration_arg {
1158
	struct task_struct *task;
L
Linus Torvalds 已提交
1159
	int dest_cpu;
1160
};
L
Linus Torvalds 已提交
1161

1162 1163
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
1164 1165 1166
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1167 1168 1169 1170 1171 1172 1173
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1174 1175 1176 1177 1178 1179
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1180
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1181 1182
{
	unsigned long flags;
1183
	int running, queued;
R
Roland McGrath 已提交
1184
	unsigned long ncsw;
1185
	struct rq *rq;
L
Linus Torvalds 已提交
1186

1187 1188 1189 1190 1191 1192 1193 1194
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1195

1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1207 1208 1209
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1210
			cpu_relax();
R
Roland McGrath 已提交
1211
		}
1212

1213 1214 1215 1216 1217 1218
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1219
		trace_sched_wait_task(p);
1220
		running = task_running(rq, p);
1221
		queued = task_on_rq_queued(p);
R
Roland McGrath 已提交
1222
		ncsw = 0;
1223
		if (!match_state || p->state == match_state)
1224
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1225
		task_rq_unlock(rq, p, &flags);
1226

R
Roland McGrath 已提交
1227 1228 1229 1230 1231 1232
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1243

1244 1245 1246 1247 1248
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1249
		 * So if it was still runnable (but just not actively
1250 1251 1252
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
1253
		if (unlikely(queued)) {
1254 1255 1256 1257
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1258 1259
			continue;
		}
1260

1261 1262 1263 1264 1265 1266 1267
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1268 1269

	return ncsw;
L
Linus Torvalds 已提交
1270 1271 1272 1273 1274 1275 1276 1277 1278
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1279
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1280 1281 1282 1283 1284
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1285
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1286 1287 1288 1289 1290 1291 1292 1293 1294
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1295
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
1296
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1297

1298
#ifdef CONFIG_SMP
1299
/*
1300
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1301
 */
1302 1303
static int select_fallback_rq(int cpu, struct task_struct *p)
{
1304 1305
	int nid = cpu_to_node(cpu);
	const struct cpumask *nodemask = NULL;
1306 1307
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1308

1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
	/*
	 * If the node that the cpu is on has been offlined, cpu_to_node()
	 * will return -1. There is no cpu on the node, and we should
	 * select the cpu on the other node.
	 */
	if (nid != -1) {
		nodemask = cpumask_of_node(nid);

		/* Look for allowed, online CPU in same node. */
		for_each_cpu(dest_cpu, nodemask) {
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
				return dest_cpu;
		}
1326
	}
1327

1328 1329
	for (;;) {
		/* Any allowed, online CPU? */
1330
		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1331 1332 1333 1334 1335 1336
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			goto out;
		}
1337

1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
		switch (state) {
		case cpuset:
			/* No more Mr. Nice Guy. */
			cpuset_cpus_allowed_fallback(p);
			state = possible;
			break;

		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
1364
			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1365 1366
					task_pid_nr(p), p->comm, cpu);
		}
1367 1368 1369 1370 1371
	}

	return dest_cpu;
}

1372
/*
1373
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1374
 */
1375
static inline
1376
int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1377
{
1378 1379
	if (p->nr_cpus_allowed > 1)
		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1391
	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
P
Peter Zijlstra 已提交
1392
		     !cpu_online(cpu)))
1393
		cpu = select_fallback_rq(task_cpu(p), p);
1394 1395

	return cpu;
1396
}
1397 1398 1399 1400 1401 1402

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1403 1404
#endif

P
Peter Zijlstra 已提交
1405
static void
1406
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1407
{
P
Peter Zijlstra 已提交
1408
#ifdef CONFIG_SCHEDSTATS
1409 1410
	struct rq *rq = this_rq();

P
Peter Zijlstra 已提交
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
#ifdef CONFIG_SMP
	int this_cpu = smp_processor_id();

	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	} else {
		struct sched_domain *sd;

		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1421
		rcu_read_lock();
P
Peter Zijlstra 已提交
1422 1423 1424 1425 1426 1427
		for_each_domain(this_cpu, sd) {
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
1428
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1429
	}
1430 1431 1432 1433

	if (wake_flags & WF_MIGRATED)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);

P
Peter Zijlstra 已提交
1434 1435 1436
#endif /* CONFIG_SMP */

	schedstat_inc(rq, ttwu_count);
T
Tejun Heo 已提交
1437
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1438 1439

	if (wake_flags & WF_SYNC)
T
Tejun Heo 已提交
1440
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1441 1442 1443 1444 1445 1446

#endif /* CONFIG_SCHEDSTATS */
}

static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
{
T
Tejun Heo 已提交
1447
	activate_task(rq, p, en_flags);
1448
	p->on_rq = TASK_ON_RQ_QUEUED;
1449 1450 1451 1452

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1453 1454
}

1455 1456 1457
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1458
static void
1459
ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
T
Tejun Heo 已提交
1460 1461
{
	check_preempt_curr(rq, p, wake_flags);
1462
	trace_sched_wakeup(p, true);
T
Tejun Heo 已提交
1463 1464 1465 1466 1467 1468

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);

1469
	if (rq->idle_stamp) {
1470
		u64 delta = rq_clock(rq) - rq->idle_stamp;
1471
		u64 max = 2*rq->max_idle_balance_cost;
T
Tejun Heo 已提交
1472

1473 1474 1475
		update_avg(&rq->avg_idle, delta);

		if (rq->avg_idle > max)
T
Tejun Heo 已提交
1476
			rq->avg_idle = max;
1477

T
Tejun Heo 已提交
1478 1479 1480 1481 1482
		rq->idle_stamp = 0;
	}
#endif
}

1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
static void
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
{
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
#endif

	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
	ttwu_do_wakeup(rq, p, wake_flags);
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
1507
	if (task_on_rq_queued(p)) {
1508 1509
		/* check_preempt_curr() may use rq clock */
		update_rq_clock(rq);
1510 1511 1512 1513 1514 1515 1516 1517
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;
}

1518
#ifdef CONFIG_SMP
1519
void sched_ttwu_pending(void)
1520 1521
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1522 1523
	struct llist_node *llist = llist_del_all(&rq->wake_list);
	struct task_struct *p;
1524
	unsigned long flags;
1525

1526 1527 1528 1529
	if (!llist)
		return;

	raw_spin_lock_irqsave(&rq->lock, flags);
1530

P
Peter Zijlstra 已提交
1531 1532 1533
	while (llist) {
		p = llist_entry(llist, struct task_struct, wake_entry);
		llist = llist_next(llist);
1534 1535 1536
		ttwu_do_activate(rq, p, 0);
	}

1537
	raw_spin_unlock_irqrestore(&rq->lock, flags);
1538 1539 1540 1541
}

void scheduler_ipi(void)
{
1542 1543 1544 1545 1546
	/*
	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
	 * TIF_NEED_RESCHED remotely (for the first time) will also send
	 * this IPI.
	 */
1547
	preempt_fold_need_resched();
1548

1549
	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
P
Peter Zijlstra 已提交
1566
	sched_ttwu_pending();
1567 1568 1569 1570

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1571
	if (unlikely(got_nohz_idle_kick())) {
1572
		this_rq()->idle_balance = 1;
1573
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1574
	}
1575
	irq_exit();
1576 1577 1578 1579
}

static void ttwu_queue_remote(struct task_struct *p, int cpu)
{
1580 1581 1582 1583 1584 1585 1586 1587
	struct rq *rq = cpu_rq(cpu);

	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
		if (!set_nr_if_polling(rq->idle))
			smp_send_reschedule(cpu);
		else
			trace_sched_wake_idle_without_ipi(cpu);
	}
1588
}
1589

1590 1591 1592 1593 1594
void wake_up_if_idle(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

1595 1596 1597 1598
	rcu_read_lock();

	if (!is_idle_task(rcu_dereference(rq->curr)))
		goto out;
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608

	if (set_nr_if_polling(rq->idle)) {
		trace_sched_wake_idle_without_ipi(cpu);
	} else {
		raw_spin_lock_irqsave(&rq->lock, flags);
		if (is_idle_task(rq->curr))
			smp_send_reschedule(cpu);
		/* Else cpu is not in idle, do nothing here */
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}
1609 1610 1611

out:
	rcu_read_unlock();
1612 1613
}

1614
bool cpus_share_cache(int this_cpu, int that_cpu)
1615 1616 1617
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1618
#endif /* CONFIG_SMP */
1619

1620 1621 1622 1623
static void ttwu_queue(struct task_struct *p, int cpu)
{
	struct rq *rq = cpu_rq(cpu);

1624
#if defined(CONFIG_SMP)
1625
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1626
		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1627 1628 1629 1630 1631
		ttwu_queue_remote(p, cpu);
		return;
	}
#endif

1632 1633 1634
	raw_spin_lock(&rq->lock);
	ttwu_do_activate(rq, p, 0);
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
1635 1636 1637
}

/**
L
Linus Torvalds 已提交
1638
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1639
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1640
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1641
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1642 1643 1644 1645 1646 1647 1648
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
1649
 * Return: %true if @p was woken up, %false if it was already running.
T
Tejun Heo 已提交
1650
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
1651
 */
1652 1653
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1654 1655
{
	unsigned long flags;
1656
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1657

1658 1659 1660 1661 1662 1663 1664
	/*
	 * If we are going to wake up a thread waiting for CONDITION we
	 * need to ensure that CONDITION=1 done by the caller can not be
	 * reordered with p->state check below. This pairs with mb() in
	 * set_current_state() the waiting thread does.
	 */
	smp_mb__before_spinlock();
1665
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
1666
	if (!(p->state & state))
L
Linus Torvalds 已提交
1667 1668
		goto out;

1669
	success = 1; /* we're going to change ->state */
L
Linus Torvalds 已提交
1670 1671
	cpu = task_cpu(p);

1672 1673
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
1674 1675

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1676
	/*
1677 1678
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
P
Peter Zijlstra 已提交
1679
	 */
1680
	while (p->on_cpu)
1681
		cpu_relax();
1682
	/*
1683
	 * Pairs with the smp_wmb() in finish_lock_switch().
1684
	 */
1685
	smp_rmb();
L
Linus Torvalds 已提交
1686

1687
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
1688
	p->state = TASK_WAKING;
1689

1690
	if (p->sched_class->task_waking)
1691
		p->sched_class->task_waking(p);
1692

1693
	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1694 1695
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
1696
		set_task_cpu(p, cpu);
1697
	}
L
Linus Torvalds 已提交
1698 1699
#endif /* CONFIG_SMP */

1700 1701
	ttwu_queue(p, cpu);
stat:
1702
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
1703
out:
1704
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
1705 1706 1707 1708

	return success;
}

T
Tejun Heo 已提交
1709 1710 1711 1712
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
1713
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
1714
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1715
 * the current task.
T
Tejun Heo 已提交
1716 1717 1718 1719 1720
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

1721 1722 1723 1724
	if (WARN_ON_ONCE(rq != this_rq()) ||
	    WARN_ON_ONCE(p == current))
		return;

T
Tejun Heo 已提交
1725 1726
	lockdep_assert_held(&rq->lock);

1727 1728 1729 1730 1731 1732
	if (!raw_spin_trylock(&p->pi_lock)) {
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
	}

T
Tejun Heo 已提交
1733
	if (!(p->state & TASK_NORMAL))
1734
		goto out;
T
Tejun Heo 已提交
1735

1736
	if (!task_on_rq_queued(p))
P
Peter Zijlstra 已提交
1737 1738
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

1739
	ttwu_do_wakeup(rq, p, 0);
1740
	ttwu_stat(p, smp_processor_id(), 0);
1741 1742
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
1743 1744
}

1745 1746 1747 1748 1749
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
1750 1751 1752
 * processes.
 *
 * Return: 1 if the process was woken up, 0 if it was already running.
1753 1754 1755 1756
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
1757
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1758
{
1759 1760
	WARN_ON(task_is_stopped_or_traced(p));
	return try_to_wake_up(p, TASK_NORMAL, 0);
L
Linus Torvalds 已提交
1761 1762 1763
}
EXPORT_SYMBOL(wake_up_process);

1764
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1765 1766 1767 1768
{
	return try_to_wake_up(p, state, 0);
}

1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
/*
 * This function clears the sched_dl_entity static params.
 */
void __dl_clear_params(struct task_struct *p)
{
	struct sched_dl_entity *dl_se = &p->dl;

	dl_se->dl_runtime = 0;
	dl_se->dl_deadline = 0;
	dl_se->dl_period = 0;
	dl_se->flags = 0;
	dl_se->dl_bw = 0;
1781 1782 1783 1784

	dl_se->dl_throttled = 0;
	dl_se->dl_new = 1;
	dl_se->dl_yielded = 0;
1785 1786
}

L
Linus Torvalds 已提交
1787 1788 1789
/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1790 1791 1792
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
1793
static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
1794
{
P
Peter Zijlstra 已提交
1795 1796 1797
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
1798 1799
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1800
	p->se.prev_sum_exec_runtime	= 0;
1801
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
1802
	p->se.vruntime			= 0;
1803 1804 1805
#ifdef CONFIG_SMP
	p->se.avg.decay_count		= 0;
#endif
P
Peter Zijlstra 已提交
1806
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
1807 1808

#ifdef CONFIG_SCHEDSTATS
1809
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
1810
#endif
N
Nick Piggin 已提交
1811

1812
	RB_CLEAR_NODE(&p->dl.rb_node);
1813
	init_dl_task_timer(&p->dl);
1814
	__dl_clear_params(p);
1815

P
Peter Zijlstra 已提交
1816
	INIT_LIST_HEAD(&p->rt.run_list);
N
Nick Piggin 已提交
1817

1818 1819 1820
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
1821 1822 1823

#ifdef CONFIG_NUMA_BALANCING
	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1824
		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1825 1826 1827
		p->mm->numa_scan_seq = 0;
	}

1828 1829 1830 1831 1832
	if (clone_flags & CLONE_VM)
		p->numa_preferred_nid = current->numa_preferred_nid;
	else
		p->numa_preferred_nid = -1;

1833 1834
	p->node_stamp = 0ULL;
	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1835
	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1836
	p->numa_work.next = &p->numa_work;
1837
	p->numa_faults = NULL;
1838 1839
	p->last_task_numa_placement = 0;
	p->last_sum_exec_runtime = 0;
1840 1841

	p->numa_group = NULL;
1842
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
1843 1844
}

1845
#ifdef CONFIG_NUMA_BALANCING
1846
#ifdef CONFIG_SCHED_DEBUG
1847 1848 1849 1850 1851 1852 1853
void set_numabalancing_state(bool enabled)
{
	if (enabled)
		sched_feat_set("NUMA");
	else
		sched_feat_set("NO_NUMA");
}
1854 1855 1856 1857 1858 1859
#else
__read_mostly bool numabalancing_enabled;

void set_numabalancing_state(bool enabled)
{
	numabalancing_enabled = enabled;
I
Ingo Molnar 已提交
1860
}
1861
#endif /* CONFIG_SCHED_DEBUG */
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884

#ifdef CONFIG_PROC_SYSCTL
int sysctl_numa_balancing(struct ctl_table *table, int write,
			 void __user *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table t;
	int err;
	int state = numabalancing_enabled;

	if (write && !capable(CAP_SYS_ADMIN))
		return -EPERM;

	t = *table;
	t.data = &state;
	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
	if (err < 0)
		return err;
	if (write)
		set_numabalancing_state(state);
	return err;
}
#endif
#endif
I
Ingo Molnar 已提交
1885 1886 1887 1888

/*
 * fork()/clone()-time setup:
 */
1889
int sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
1890
{
1891
	unsigned long flags;
I
Ingo Molnar 已提交
1892 1893
	int cpu = get_cpu();

1894
	__sched_fork(clone_flags, p);
1895
	/*
1896
	 * We mark the process as running here. This guarantees that
1897 1898 1899
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
1900
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1901

1902 1903 1904 1905 1906
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

1907 1908 1909 1910
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
1911
		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1912
			p->policy = SCHED_NORMAL;
1913
			p->static_prio = NICE_TO_PRIO(0);
1914 1915 1916 1917 1918 1919
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
1920

1921 1922 1923 1924 1925 1926
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
1927

1928 1929 1930 1931 1932 1933
	if (dl_prio(p->prio)) {
		put_cpu();
		return -EAGAIN;
	} else if (rt_prio(p->prio)) {
		p->sched_class = &rt_sched_class;
	} else {
H
Hiroshi Shimamoto 已提交
1934
		p->sched_class = &fair_sched_class;
1935
	}
1936

P
Peter Zijlstra 已提交
1937 1938 1939
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

1940 1941 1942 1943 1944 1945 1946
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
1947
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1948
	set_task_cpu(p, cpu);
1949
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1950

1951
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1952
	if (likely(sched_info_on()))
1953
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1954
#endif
P
Peter Zijlstra 已提交
1955 1956
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
1957
#endif
1958
	init_task_preempt_count(p);
1959
#ifdef CONFIG_SMP
1960
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1961
	RB_CLEAR_NODE(&p->pushable_dl_tasks);
1962
#endif
1963

N
Nick Piggin 已提交
1964
	put_cpu();
1965
	return 0;
L
Linus Torvalds 已提交
1966 1967
}

1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 20;

	/*
	 * Doing this here saves a lot of checks in all
	 * the calling paths, and returning zero seems
	 * safe for them anyway.
	 */
	if (period == 0)
		return 0;

	return div64_u64(runtime << 20, period);
}

#ifdef CONFIG_SMP
inline struct dl_bw *dl_bw_of(int i)
{
1987 1988
	rcu_lockdep_assert(rcu_read_lock_sched_held(),
			   "sched RCU must be held");
1989 1990 1991
	return &cpu_rq(i)->rd->dl_bw;
}

1992
static inline int dl_bw_cpus(int i)
1993
{
1994 1995 1996
	struct root_domain *rd = cpu_rq(i)->rd;
	int cpus = 0;

1997 1998
	rcu_lockdep_assert(rcu_read_lock_sched_held(),
			   "sched RCU must be held");
1999 2000 2001 2002
	for_each_cpu_and(i, rd->span, cpu_active_mask)
		cpus++;

	return cpus;
2003 2004 2005 2006 2007 2008 2009
}
#else
inline struct dl_bw *dl_bw_of(int i)
{
	return &cpu_rq(i)->dl.dl_bw;
}

2010
static inline int dl_bw_cpus(int i)
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
{
	return 1;
}
#endif

/*
 * We must be sure that accepting a new task (or allowing changing the
 * parameters of an existing one) is consistent with the bandwidth
 * constraints. If yes, this function also accordingly updates the currently
 * allocated bandwidth to reflect the new situation.
 *
 * This function is called while holding p's rq->lock.
2023 2024 2025
 *
 * XXX we should delay bw change until the task's 0-lag point, see
 * __setparam_dl().
2026 2027 2028 2029 2030 2031
 */
static int dl_overflow(struct task_struct *p, int policy,
		       const struct sched_attr *attr)
{

	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2032
	u64 period = attr->sched_period ?: attr->sched_deadline;
2033 2034
	u64 runtime = attr->sched_runtime;
	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2035
	int cpus, err = -1;
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045

	if (new_bw == p->dl.dl_bw)
		return 0;

	/*
	 * Either if a task, enters, leave, or stays -deadline but changes
	 * its parameters, we may need to update accordingly the total
	 * allocated bandwidth of the container.
	 */
	raw_spin_lock(&dl_b->lock);
2046
	cpus = dl_bw_cpus(task_cpu(p));
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
	if (dl_policy(policy) && !task_has_dl_policy(p) &&
	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
		__dl_add(dl_b, new_bw);
		err = 0;
	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
		__dl_clear(dl_b, p->dl.dl_bw);
		__dl_add(dl_b, new_bw);
		err = 0;
	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
		__dl_clear(dl_b, p->dl.dl_bw);
		err = 0;
	}
	raw_spin_unlock(&dl_b->lock);

	return err;
}

extern void init_dl_bw(struct dl_bw *dl_b);

L
Linus Torvalds 已提交
2067 2068 2069 2070 2071 2072 2073
/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2074
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
2075 2076
{
	unsigned long flags;
I
Ingo Molnar 已提交
2077
	struct rq *rq;
2078

2079
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2080 2081 2082 2083 2084 2085
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 */
2086
	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2087 2088
#endif

2089 2090
	/* Initialize new task's runnable average */
	init_task_runnable_average(p);
2091
	rq = __task_rq_lock(p);
P
Peter Zijlstra 已提交
2092
	activate_task(rq, p, 0);
2093
	p->on_rq = TASK_ON_RQ_QUEUED;
2094
	trace_sched_wakeup_new(p, true);
P
Peter Zijlstra 已提交
2095
	check_preempt_curr(rq, p, WF_FORK);
2096
#ifdef CONFIG_SMP
2097 2098
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2099
#endif
2100
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
2101 2102
}

2103 2104 2105
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2106
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2107
 * @notifier: notifier struct to register
2108 2109 2110 2111 2112 2113 2114 2115 2116
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2117
 * @notifier: notifier struct to unregister
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;

2131
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2132 2133 2134 2135 2136 2137 2138 2139 2140
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;

2141
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2142 2143 2144
		notifier->ops->sched_out(notifier, next);
}

2145
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2157
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2158

2159 2160 2161
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2162
 * @prev: the current task that is being switched out
2163 2164 2165 2166 2167 2168 2169 2170 2171
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2172 2173 2174
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2175
{
2176
	trace_sched_switch(prev, next);
2177
	sched_info_switch(rq, prev, next);
2178
	perf_event_task_sched_out(prev, next);
2179
	fire_sched_out_preempt_notifiers(prev, next);
2180 2181 2182 2183
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2184 2185 2186 2187
/**
 * finish_task_switch - clean up after a task-switch
 * @prev: the thread we just switched away from.
 *
2188 2189 2190 2191
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2192 2193
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2194
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2195 2196
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
2197 2198 2199 2200 2201
 *
 * The context switch have flipped the stack from under us and restored the
 * local variables which were saved when this task called schedule() in the
 * past. prev == current is still correct but we need to recalculate this_rq
 * because prev may have moved to another CPU.
L
Linus Torvalds 已提交
2202
 */
2203
static struct rq *finish_task_switch(struct task_struct *prev)
L
Linus Torvalds 已提交
2204 2205
	__releases(rq->lock)
{
2206
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
2207
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2208
	long prev_state;
L
Linus Torvalds 已提交
2209 2210 2211 2212 2213

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2214
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2215 2216
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2217
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2218 2219 2220 2221 2222
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2223
	prev_state = prev->state;
2224
	vtime_task_switch(prev);
2225
	finish_arch_switch(prev);
2226
	perf_event_task_sched_in(prev, current);
2227
	finish_lock_switch(rq, prev);
2228
	finish_arch_post_lock_switch();
S
Steven Rostedt 已提交
2229

2230
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2231 2232
	if (mm)
		mmdrop(mm);
2233
	if (unlikely(prev_state == TASK_DEAD)) {
2234 2235 2236
		if (prev->sched_class->task_dead)
			prev->sched_class->task_dead(prev);

2237 2238 2239
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2240
		 */
2241
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2242
		put_task_struct(prev);
2243
	}
2244 2245

	tick_nohz_task_switch(current);
2246
	return rq;
L
Linus Torvalds 已提交
2247 2248
}

2249 2250 2251 2252 2253 2254 2255 2256
#ifdef CONFIG_SMP

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

2257
		raw_spin_lock_irqsave(&rq->lock, flags);
2258 2259
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
2260
		raw_spin_unlock_irqrestore(&rq->lock, flags);
2261 2262 2263 2264 2265 2266

		rq->post_schedule = 0;
	}
}

#else
2267

2268 2269
static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
2270 2271
}

2272 2273
#endif

L
Linus Torvalds 已提交
2274 2275 2276 2277
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2278
asmlinkage __visible void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2279 2280
	__releases(rq->lock)
{
2281
	struct rq *rq;
2282

2283 2284
	/* finish_task_switch() drops rq->lock and enables preemtion */
	preempt_disable();
2285
	rq = finish_task_switch(prev);
2286
	post_schedule(rq);
2287
	preempt_enable();
2288

L
Linus Torvalds 已提交
2289
	if (current->set_child_tid)
2290
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2291 2292 2293
}

/*
2294
 * context_switch - switch to the new MM and the new thread's register state.
L
Linus Torvalds 已提交
2295
 */
2296
static inline struct rq *
2297
context_switch(struct rq *rq, struct task_struct *prev,
2298
	       struct task_struct *next)
L
Linus Torvalds 已提交
2299
{
I
Ingo Molnar 已提交
2300
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2301

2302
	prepare_task_switch(rq, prev, next);
2303

I
Ingo Molnar 已提交
2304 2305
	mm = next->mm;
	oldmm = prev->active_mm;
2306 2307 2308 2309 2310
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2311
	arch_start_context_switch(prev);
2312

2313
	if (!mm) {
L
Linus Torvalds 已提交
2314 2315 2316 2317 2318 2319
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2320
	if (!prev->mm) {
L
Linus Torvalds 已提交
2321 2322 2323
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2324 2325 2326 2327 2328 2329
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
2330
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
2331

2332
	context_tracking_task_switch(prev, next);
L
Linus Torvalds 已提交
2333 2334
	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);
I
Ingo Molnar 已提交
2335
	barrier();
2336 2337

	return finish_task_switch(prev);
L
Linus Torvalds 已提交
2338 2339 2340
}

/*
2341
 * nr_running and nr_context_switches:
L
Linus Torvalds 已提交
2342 2343
 *
 * externally visible scheduler statistics: current number of runnable
2344
 * threads, total number of context switches performed since bootup.
L
Linus Torvalds 已提交
2345 2346 2347 2348 2349 2350 2351 2352 2353
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2354
}
L
Linus Torvalds 已提交
2355

2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
/*
 * Check if only the current task is running on the cpu.
 */
bool single_task_running(void)
{
	if (cpu_rq(smp_processor_id())->nr_running == 1)
		return true;
	else
		return false;
}
EXPORT_SYMBOL(single_task_running);

L
Linus Torvalds 已提交
2368
unsigned long long nr_context_switches(void)
2369
{
2370 2371
	int i;
	unsigned long long sum = 0;
2372

2373
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2374
		sum += cpu_rq(i)->nr_switches;
2375

L
Linus Torvalds 已提交
2376 2377
	return sum;
}
2378

L
Linus Torvalds 已提交
2379 2380 2381
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2382

2383
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2384
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2385

L
Linus Torvalds 已提交
2386 2387
	return sum;
}
2388

2389
unsigned long nr_iowait_cpu(int cpu)
2390
{
2391
	struct rq *this = cpu_rq(cpu);
2392 2393
	return atomic_read(&this->nr_iowait);
}
2394

2395 2396 2397 2398 2399 2400 2401
void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
{
	struct rq *this = this_rq();
	*nr_waiters = atomic_read(&this->nr_iowait);
	*load = this->cpu_load[0];
}

I
Ingo Molnar 已提交
2402
#ifdef CONFIG_SMP
2403

2404
/*
P
Peter Zijlstra 已提交
2405 2406
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2407
 */
P
Peter Zijlstra 已提交
2408
void sched_exec(void)
2409
{
P
Peter Zijlstra 已提交
2410
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2411
	unsigned long flags;
2412
	int dest_cpu;
2413

2414
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2415
	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2416 2417
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2418

2419
	if (likely(cpu_active(dest_cpu))) {
2420
		struct migration_arg arg = { p, dest_cpu };
2421

2422 2423
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2424 2425
		return;
	}
2426
unlock:
2427
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2428
}
I
Ingo Molnar 已提交
2429

L
Linus Torvalds 已提交
2430 2431 2432
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2433
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
2434 2435

EXPORT_PER_CPU_SYMBOL(kstat);
2436
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
2437

2438 2439 2440 2441 2442 2443 2444 2445 2446
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
2447
	u64 ns;
2448

2449 2450 2451 2452 2453 2454 2455 2456 2457
#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
	/*
	 * 64-bit doesn't need locks to atomically read a 64bit value.
	 * So we have a optimization chance when the task's delta_exec is 0.
	 * Reading ->on_cpu is racy, but this is ok.
	 *
	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
	 * If we race with it entering cpu, unaccounted time is 0. This is
	 * indistinguishable from the read occurring a few cycles earlier.
2458 2459
	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
	 * been accounted, so we're correct here as well.
2460
	 */
2461
	if (!p->on_cpu || !task_on_rq_queued(p))
2462 2463 2464
		return p->se.sum_exec_runtime;
#endif

2465
	rq = task_rq_lock(p, &flags);
2466 2467 2468 2469 2470 2471 2472 2473 2474 2475
	/*
	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
	 * project cycles that may never be accounted to this
	 * thread, breaking clock_gettime().
	 */
	if (task_current(rq, p) && task_on_rq_queued(p)) {
		update_rq_clock(rq);
		p->sched_class->update_curr(rq);
	}
	ns = p->se.sum_exec_runtime;
2476
	task_rq_unlock(rq, p, &flags);
2477 2478 2479

	return ns;
}
2480

2481 2482 2483 2484 2485 2486 2487 2488
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2489
	struct task_struct *curr = rq->curr;
2490 2491

	sched_clock_tick();
I
Ingo Molnar 已提交
2492

2493
	raw_spin_lock(&rq->lock);
2494
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
2495
	curr->sched_class->task_tick(rq, curr, 0);
2496
	update_cpu_load_active(rq);
2497
	raw_spin_unlock(&rq->lock);
2498

2499
	perf_event_task_tick();
2500

2501
#ifdef CONFIG_SMP
2502
	rq->idle_balance = idle_cpu(cpu);
2503
	trigger_load_balance(rq);
2504
#endif
2505
	rq_last_tick_reset(rq);
L
Linus Torvalds 已提交
2506 2507
}

2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518
#ifdef CONFIG_NO_HZ_FULL
/**
 * scheduler_tick_max_deferment
 *
 * Keep at least one tick per second when a single
 * active task is running because the scheduler doesn't
 * yet completely support full dynticks environment.
 *
 * This makes sure that uptime, CFS vruntime, load
 * balancing, etc... continue to move forward, even
 * with a very low granularity.
2519 2520
 *
 * Return: Maximum deferment in nanoseconds.
2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531
 */
u64 scheduler_tick_max_deferment(void)
{
	struct rq *rq = this_rq();
	unsigned long next, now = ACCESS_ONCE(jiffies);

	next = rq->last_sched_tick + HZ;

	if (time_before_eq(next, now))
		return 0;

2532
	return jiffies_to_nsecs(next - now);
L
Linus Torvalds 已提交
2533
}
2534
#endif
L
Linus Torvalds 已提交
2535

2536
notrace unsigned long get_parent_ip(unsigned long addr)
2537 2538 2539 2540 2541 2542 2543 2544
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
2545

2546 2547 2548
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

2549
void preempt_count_add(int val)
L
Linus Torvalds 已提交
2550
{
2551
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2552 2553 2554
	/*
	 * Underflow?
	 */
2555 2556
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
2557
#endif
2558
	__preempt_count_add(val);
2559
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2560 2561 2562
	/*
	 * Spinlock count overflowing soon?
	 */
2563 2564
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
2565
#endif
2566 2567 2568 2569 2570 2571 2572
	if (preempt_count() == val) {
		unsigned long ip = get_parent_ip(CALLER_ADDR1);
#ifdef CONFIG_DEBUG_PREEMPT
		current->preempt_disable_ip = ip;
#endif
		trace_preempt_off(CALLER_ADDR0, ip);
	}
L
Linus Torvalds 已提交
2573
}
2574
EXPORT_SYMBOL(preempt_count_add);
2575
NOKPROBE_SYMBOL(preempt_count_add);
L
Linus Torvalds 已提交
2576

2577
void preempt_count_sub(int val)
L
Linus Torvalds 已提交
2578
{
2579
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2580 2581 2582
	/*
	 * Underflow?
	 */
2583
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2584
		return;
L
Linus Torvalds 已提交
2585 2586 2587
	/*
	 * Is the spinlock portion underflowing?
	 */
2588 2589 2590
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
2591
#endif
2592

2593 2594
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2595
	__preempt_count_sub(val);
L
Linus Torvalds 已提交
2596
}
2597
EXPORT_SYMBOL(preempt_count_sub);
2598
NOKPROBE_SYMBOL(preempt_count_sub);
L
Linus Torvalds 已提交
2599 2600 2601 2602

#endif

/*
I
Ingo Molnar 已提交
2603
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
2604
 */
I
Ingo Molnar 已提交
2605
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
2606
{
2607 2608 2609
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
2610 2611
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
2612

I
Ingo Molnar 已提交
2613
	debug_show_held_locks(prev);
2614
	print_modules();
I
Ingo Molnar 已提交
2615 2616
	if (irqs_disabled())
		print_irqtrace_events(prev);
2617 2618 2619 2620 2621 2622 2623
#ifdef CONFIG_DEBUG_PREEMPT
	if (in_atomic_preempt_off()) {
		pr_err("Preemption disabled at:");
		print_ip_sym(current->preempt_disable_ip);
		pr_cont("\n");
	}
#endif
2624
	dump_stack();
2625
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
I
Ingo Molnar 已提交
2626
}
L
Linus Torvalds 已提交
2627

I
Ingo Molnar 已提交
2628 2629 2630 2631 2632
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
2633 2634 2635
#ifdef CONFIG_SCHED_STACK_END_CHECK
	BUG_ON(unlikely(task_stack_end_corrupted(prev)));
#endif
L
Linus Torvalds 已提交
2636
	/*
I
Ingo Molnar 已提交
2637
	 * Test if we are atomic. Since do_exit() needs to call into
2638 2639
	 * schedule() atomically, we ignore that path. Otherwise whine
	 * if we are scheduling when we should not.
L
Linus Torvalds 已提交
2640
	 */
2641
	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
I
Ingo Molnar 已提交
2642
		__schedule_bug(prev);
2643
	rcu_sleep_check();
I
Ingo Molnar 已提交
2644

L
Linus Torvalds 已提交
2645 2646
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

2647
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
2648 2649 2650 2651 2652 2653
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
2654
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
2655
{
2656
	const struct sched_class *class = &fair_sched_class;
I
Ingo Molnar 已提交
2657
	struct task_struct *p;
L
Linus Torvalds 已提交
2658 2659

	/*
I
Ingo Molnar 已提交
2660 2661
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
2662
	 */
2663
	if (likely(prev->sched_class == class &&
2664
		   rq->nr_running == rq->cfs.h_nr_running)) {
2665
		p = fair_sched_class.pick_next_task(rq, prev);
2666 2667 2668 2669 2670 2671 2672 2673
		if (unlikely(p == RETRY_TASK))
			goto again;

		/* assumes fair_sched_class->next == idle_sched_class */
		if (unlikely(!p))
			p = idle_sched_class.pick_next_task(rq, prev);

		return p;
L
Linus Torvalds 已提交
2674 2675
	}

2676
again:
2677
	for_each_class(class) {
2678
		p = class->pick_next_task(rq, prev);
2679 2680 2681
		if (p) {
			if (unlikely(p == RETRY_TASK))
				goto again;
I
Ingo Molnar 已提交
2682
			return p;
2683
		}
I
Ingo Molnar 已提交
2684
	}
2685 2686

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
2687
}
L
Linus Torvalds 已提交
2688

I
Ingo Molnar 已提交
2689
/*
2690
 * __schedule() is the main scheduler function.
2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
 *
 * The main means of driving the scheduler and thus entering this function are:
 *
 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 *      paths. For example, see arch/x86/entry_64.S.
 *
 *      To drive preemption between tasks, the scheduler sets the flag in timer
 *      interrupt handler scheduler_tick().
 *
 *   3. Wakeups don't really cause entry into schedule(). They add a
 *      task to the run-queue and that's it.
 *
 *      Now, if the new task added to the run-queue preempts the current
 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 *      called on the nearest possible occasion:
 *
 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
 *
 *         - in syscall or exception context, at the next outmost
 *           preempt_enable(). (this might be as soon as the wake_up()'s
 *           spin_unlock()!)
 *
 *         - in IRQ context, return from interrupt-handler to
 *           preemptible context
 *
 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
 *         then at the next:
 *
 *          - cond_resched() call
 *          - explicit schedule() call
 *          - return from syscall or exception to user-space
 *          - return from interrupt-handler to user-space
2725 2726 2727 2728
 *
 * WARNING: all callers must re-check need_resched() afterward and reschedule
 * accordingly in case an event triggered the need for rescheduling (such as
 * an interrupt waking up a task) while preemption was disabled in __schedule().
I
Ingo Molnar 已提交
2729
 */
2730
static void __sched __schedule(void)
I
Ingo Molnar 已提交
2731 2732
{
	struct task_struct *prev, *next;
2733
	unsigned long *switch_count;
I
Ingo Molnar 已提交
2734
	struct rq *rq;
2735
	int cpu;
I
Ingo Molnar 已提交
2736

2737
	preempt_disable();
I
Ingo Molnar 已提交
2738 2739
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
2740
	rcu_note_context_switch();
I
Ingo Molnar 已提交
2741 2742 2743
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
2744

2745
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
2746
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
2747

2748 2749 2750 2751 2752 2753
	/*
	 * Make sure that signal_pending_state()->signal_pending() below
	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
	 * done by the caller to avoid the race with signal_wake_up().
	 */
	smp_mb__before_spinlock();
2754
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
2755

2756 2757
	rq->clock_skip_update <<= 1; /* promote REQ to ACT */

2758
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
2759
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
2760
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
2761
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
2762
		} else {
2763 2764 2765
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

T
Tejun Heo 已提交
2766
			/*
2767 2768 2769
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
2770 2771 2772 2773 2774 2775 2776 2777 2778
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
		}
I
Ingo Molnar 已提交
2779
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
2780 2781
	}

2782
	if (task_on_rq_queued(prev))
2783 2784 2785
		update_rq_clock(rq);

	next = pick_next_task(rq, prev);
2786
	clear_tsk_need_resched(prev);
2787
	clear_preempt_need_resched();
2788
	rq->clock_skip_update = 0;
L
Linus Torvalds 已提交
2789 2790 2791 2792 2793 2794

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

2795 2796
		rq = context_switch(rq, prev, next); /* unlocks the rq */
		cpu = cpu_of(rq);
L
Linus Torvalds 已提交
2797
	} else
2798
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
2799

2800
	post_schedule(rq);
L
Linus Torvalds 已提交
2801

2802
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
2803
}
2804

2805 2806
static inline void sched_submit_work(struct task_struct *tsk)
{
2807
	if (!tsk->state || tsk_is_pi_blocked(tsk))
2808 2809 2810 2811 2812 2813 2814 2815 2816
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

2817
asmlinkage __visible void __sched schedule(void)
2818
{
2819 2820 2821
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
2822 2823 2824
	do {
		__schedule();
	} while (need_resched());
2825
}
L
Linus Torvalds 已提交
2826 2827
EXPORT_SYMBOL(schedule);

2828
#ifdef CONFIG_CONTEXT_TRACKING
2829
asmlinkage __visible void __sched schedule_user(void)
2830 2831 2832 2833 2834 2835
{
	/*
	 * If we come here after a random call to set_need_resched(),
	 * or we have been woken up remotely but the IPI has not yet arrived,
	 * we haven't yet exited the RCU idle mode. Do it here manually until
	 * we find a better solution.
2836 2837 2838 2839
	 *
	 * NB: There are buggy callers of this function.  Ideally we
	 * should warn if prev_state != IN_USER, but that will trigger
	 * too frequently to make sense yet.
2840
	 */
2841
	enum ctx_state prev_state = exception_enter();
2842
	schedule();
2843
	exception_exit(prev_state);
2844 2845 2846
}
#endif

2847 2848 2849 2850 2851 2852 2853
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
2854
	sched_preempt_enable_no_resched();
2855 2856 2857 2858
	schedule();
	preempt_disable();
}

2859
static void __sched notrace preempt_schedule_common(void)
2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873
{
	do {
		__preempt_count_add(PREEMPT_ACTIVE);
		__schedule();
		__preempt_count_sub(PREEMPT_ACTIVE);

		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (need_resched());
}

L
Linus Torvalds 已提交
2874 2875
#ifdef CONFIG_PREEMPT
/*
2876
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
2877
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
2878 2879
 * occur there and call schedule directly.
 */
2880
asmlinkage __visible void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
2881 2882 2883
{
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
2884
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
2885
	 */
2886
	if (likely(!preemptible()))
L
Linus Torvalds 已提交
2887 2888
		return;

2889
	preempt_schedule_common();
L
Linus Torvalds 已提交
2890
}
2891
NOKPROBE_SYMBOL(preempt_schedule);
L
Linus Torvalds 已提交
2892
EXPORT_SYMBOL(preempt_schedule);
2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933

#ifdef CONFIG_CONTEXT_TRACKING
/**
 * preempt_schedule_context - preempt_schedule called by tracing
 *
 * The tracing infrastructure uses preempt_enable_notrace to prevent
 * recursion and tracing preempt enabling caused by the tracing
 * infrastructure itself. But as tracing can happen in areas coming
 * from userspace or just about to enter userspace, a preempt enable
 * can occur before user_exit() is called. This will cause the scheduler
 * to be called when the system is still in usermode.
 *
 * To prevent this, the preempt_enable_notrace will use this function
 * instead of preempt_schedule() to exit user context if needed before
 * calling the scheduler.
 */
asmlinkage __visible void __sched notrace preempt_schedule_context(void)
{
	enum ctx_state prev_ctx;

	if (likely(!preemptible()))
		return;

	do {
		__preempt_count_add(PREEMPT_ACTIVE);
		/*
		 * Needs preempt disabled in case user_exit() is traced
		 * and the tracer calls preempt_enable_notrace() causing
		 * an infinite recursion.
		 */
		prev_ctx = exception_enter();
		__schedule();
		exception_exit(prev_ctx);

		__preempt_count_sub(PREEMPT_ACTIVE);
		barrier();
	} while (need_resched());
}
EXPORT_SYMBOL_GPL(preempt_schedule_context);
#endif /* CONFIG_CONTEXT_TRACKING */

2934
#endif /* CONFIG_PREEMPT */
L
Linus Torvalds 已提交
2935 2936

/*
2937
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
2938 2939 2940 2941
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
2942
asmlinkage __visible void __sched preempt_schedule_irq(void)
L
Linus Torvalds 已提交
2943
{
2944
	enum ctx_state prev_state;
2945

2946
	/* Catch callers which need to be fixed */
2947
	BUG_ON(preempt_count() || !irqs_disabled());
L
Linus Torvalds 已提交
2948

2949 2950
	prev_state = exception_enter();

2951
	do {
2952
		__preempt_count_add(PREEMPT_ACTIVE);
2953
		local_irq_enable();
2954
		__schedule();
2955
		local_irq_disable();
2956
		__preempt_count_sub(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
2957

2958 2959 2960 2961 2962
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
2963
	} while (need_resched());
2964 2965

	exception_exit(prev_state);
L
Linus Torvalds 已提交
2966 2967
}

P
Peter Zijlstra 已提交
2968
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
2969
			  void *key)
L
Linus Torvalds 已提交
2970
{
P
Peter Zijlstra 已提交
2971
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
2972 2973 2974
}
EXPORT_SYMBOL(default_wake_function);

2975 2976 2977 2978 2979 2980 2981 2982 2983 2984
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
2985 2986
 * Used by the rt_mutex code to implement priority inheritance
 * logic. Call site only calls if the priority of the task changed.
2987
 */
2988
void rt_mutex_setprio(struct task_struct *p, int prio)
2989
{
2990
	int oldprio, queued, running, enqueue_flag = 0;
2991
	struct rq *rq;
2992
	const struct sched_class *prev_class;
2993

2994
	BUG_ON(prio > MAX_PRIO);
2995

2996
	rq = __task_rq_lock(p);
2997

2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

3016
	trace_sched_pi_setprio(p, prio);
3017
	oldprio = p->prio;
3018
	prev_class = p->sched_class;
3019
	queued = task_on_rq_queued(p);
3020
	running = task_current(rq, p);
3021
	if (queued)
3022
		dequeue_task(rq, p, 0);
3023
	if (running)
3024
		put_prev_task(rq, p);
I
Ingo Molnar 已提交
3025

3026 3027 3028 3029 3030 3031 3032 3033 3034 3035
	/*
	 * Boosting condition are:
	 * 1. -rt task is running and holds mutex A
	 *      --> -dl task blocks on mutex A
	 *
	 * 2. -dl task is running and holds mutex A
	 *      --> -dl task blocks on mutex A and could preempt the
	 *          running task
	 */
	if (dl_prio(prio)) {
3036 3037 3038
		struct task_struct *pi_task = rt_mutex_get_top_task(p);
		if (!dl_prio(p->normal_prio) ||
		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3039 3040 3041 3042 3043
			p->dl.dl_boosted = 1;
			p->dl.dl_throttled = 0;
			enqueue_flag = ENQUEUE_REPLENISH;
		} else
			p->dl.dl_boosted = 0;
3044
		p->sched_class = &dl_sched_class;
3045 3046 3047 3048 3049
	} else if (rt_prio(prio)) {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
		if (oldprio < prio)
			enqueue_flag = ENQUEUE_HEAD;
I
Ingo Molnar 已提交
3050
		p->sched_class = &rt_sched_class;
3051 3052 3053
	} else {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
3054 3055
		if (rt_prio(oldprio))
			p->rt.timeout = 0;
I
Ingo Molnar 已提交
3056
		p->sched_class = &fair_sched_class;
3057
	}
I
Ingo Molnar 已提交
3058

3059 3060
	p->prio = prio;

3061 3062
	if (running)
		p->sched_class->set_curr_task(rq);
3063
	if (queued)
3064
		enqueue_task(rq, p, enqueue_flag);
3065

P
Peter Zijlstra 已提交
3066
	check_class_changed(rq, p, prev_class, oldprio);
3067
out_unlock:
3068
	__task_rq_unlock(rq);
3069 3070
}
#endif
3071

3072
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3073
{
3074
	int old_prio, delta, queued;
L
Linus Torvalds 已提交
3075
	unsigned long flags;
3076
	struct rq *rq;
L
Linus Torvalds 已提交
3077

3078
	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
L
Linus Torvalds 已提交
3079 3080 3081 3082 3083 3084 3085 3086 3087 3088
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
3089
	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
L
Linus Torvalds 已提交
3090
	 */
3091
	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3092 3093 3094
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
3095 3096
	queued = task_on_rq_queued(p);
	if (queued)
3097
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
3098 3099

	p->static_prio = NICE_TO_PRIO(nice);
3100
	set_load_weight(p);
3101 3102 3103
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3104

3105
	if (queued) {
3106
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
3107
		/*
3108 3109
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3110
		 */
3111
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3112
			resched_curr(rq);
L
Linus Torvalds 已提交
3113 3114
	}
out_unlock:
3115
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3116 3117 3118
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3119 3120 3121 3122 3123
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3124
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3125
{
3126
	/* convert nice value [19,-20] to rlimit style value [1,40] */
3127
	int nice_rlim = nice_to_rlimit(nice);
3128

3129
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3130 3131 3132
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3133 3134 3135 3136 3137 3138 3139 3140 3141
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3142
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3143
{
3144
	long nice, retval;
L
Linus Torvalds 已提交
3145 3146 3147 3148 3149 3150

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
3151
	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3152
	nice = task_nice(current) + increment;
L
Linus Torvalds 已提交
3153

3154
	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
M
Matt Mackall 已提交
3155 3156 3157
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
3172
 * Return: The priority value as seen by users in /proc.
L
Linus Torvalds 已提交
3173 3174 3175
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3176
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3177 3178 3179 3180 3181 3182 3183
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
3184 3185
 *
 * Return: 1 if the CPU is currently idle. 0 otherwise.
L
Linus Torvalds 已提交
3186 3187 3188
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3203 3204 3205 3206 3207
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
3208 3209
 *
 * Return: The idle task for the cpu @cpu.
L
Linus Torvalds 已提交
3210
 */
3211
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3212 3213 3214 3215 3216 3217 3218
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
3219 3220
 *
 * The task of @pid, if found. %NULL otherwise.
L
Linus Torvalds 已提交
3221
 */
A
Alexey Dobriyan 已提交
3222
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
3223
{
3224
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
3225 3226
}

3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241
/*
 * This function initializes the sched_dl_entity of a newly becoming
 * SCHED_DEADLINE task.
 *
 * Only the static values are considered here, the actual runtime and the
 * absolute deadline will be properly calculated when the task is enqueued
 * for the first time with its new policy.
 */
static void
__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	dl_se->dl_runtime = attr->sched_runtime;
	dl_se->dl_deadline = attr->sched_deadline;
3242
	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3243
	dl_se->flags = attr->sched_flags;
3244
	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264

	/*
	 * Changing the parameters of a task is 'tricky' and we're not doing
	 * the correct thing -- also see task_dead_dl() and switched_from_dl().
	 *
	 * What we SHOULD do is delay the bandwidth release until the 0-lag
	 * point. This would include retaining the task_struct until that time
	 * and change dl_overflow() to not immediately decrement the current
	 * amount.
	 *
	 * Instead we retain the current runtime/deadline and let the new
	 * parameters take effect after the current reservation period lapses.
	 * This is safe (albeit pessimistic) because the 0-lag point is always
	 * before the current scheduling deadline.
	 *
	 * We can still have temporary overloads because we do not delay the
	 * change in bandwidth until that time; so admission control is
	 * not on the safe side. It does however guarantee tasks will never
	 * consume more than promised.
	 */
3265 3266
}

3267 3268 3269 3270 3271 3272
/*
 * sched_setparam() passes in -1 for its policy, to let the functions
 * it calls know not to change it.
 */
#define SETPARAM_POLICY	-1

3273 3274
static void __setscheduler_params(struct task_struct *p,
		const struct sched_attr *attr)
L
Linus Torvalds 已提交
3275
{
3276 3277
	int policy = attr->sched_policy;

3278
	if (policy == SETPARAM_POLICY)
3279 3280
		policy = p->policy;

L
Linus Torvalds 已提交
3281
	p->policy = policy;
3282

3283 3284
	if (dl_policy(policy))
		__setparam_dl(p, attr);
3285
	else if (fair_policy(policy))
3286 3287
		p->static_prio = NICE_TO_PRIO(attr->sched_nice);

3288 3289 3290 3291 3292 3293
	/*
	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
	 * !rt_policy. Always setting this ensures that things like
	 * getparam()/getattr() don't report silly values for !rt tasks.
	 */
	p->rt_priority = attr->sched_priority;
3294
	p->normal_prio = normal_prio(p);
3295 3296
	set_load_weight(p);
}
3297

3298 3299 3300 3301 3302
/* Actually do priority change: must hold pi & rq lock. */
static void __setscheduler(struct rq *rq, struct task_struct *p,
			   const struct sched_attr *attr)
{
	__setscheduler_params(p, attr);
3303

3304 3305 3306 3307 3308 3309
	/*
	 * If we get here, there was no pi waiters boosting the
	 * task. It is safe to use the normal prio.
	 */
	p->prio = normal_prio(p);

3310 3311 3312
	if (dl_prio(p->prio))
		p->sched_class = &dl_sched_class;
	else if (rt_prio(p->prio))
3313 3314 3315
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
3316
}
3317 3318 3319 3320 3321 3322 3323 3324 3325

static void
__getparam_dl(struct task_struct *p, struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	attr->sched_priority = p->rt_priority;
	attr->sched_runtime = dl_se->dl_runtime;
	attr->sched_deadline = dl_se->dl_deadline;
3326
	attr->sched_period = dl_se->dl_period;
3327 3328 3329 3330 3331 3332
	attr->sched_flags = dl_se->flags;
}

/*
 * This function validates the new parameters of a -deadline task.
 * We ask for the deadline not being zero, and greater or equal
3333
 * than the runtime, as well as the period of being zero or
3334
 * greater than deadline. Furthermore, we have to be sure that
3335 3336 3337 3338
 * user parameters are above the internal resolution of 1us (we
 * check sched_runtime only since it is always the smaller one) and
 * below 2^63 ns (we have to check both sched_deadline and
 * sched_period, as the latter can be zero).
3339 3340 3341 3342
 */
static bool
__checkparam_dl(const struct sched_attr *attr)
{
3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368
	/* deadline != 0 */
	if (attr->sched_deadline == 0)
		return false;

	/*
	 * Since we truncate DL_SCALE bits, make sure we're at least
	 * that big.
	 */
	if (attr->sched_runtime < (1ULL << DL_SCALE))
		return false;

	/*
	 * Since we use the MSB for wrap-around and sign issues, make
	 * sure it's not set (mind that period can be equal to zero).
	 */
	if (attr->sched_deadline & (1ULL << 63) ||
	    attr->sched_period & (1ULL << 63))
		return false;

	/* runtime <= deadline <= period (if period != 0) */
	if ((attr->sched_period != 0 &&
	     attr->sched_period < attr->sched_deadline) ||
	    attr->sched_deadline < attr->sched_runtime)
		return false;

	return true;
3369 3370
}

3371 3372 3373 3374 3375 3376 3377 3378 3379 3380
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
3381 3382
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
3383 3384 3385 3386
	rcu_read_unlock();
	return match;
}

3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400
static bool dl_param_changed(struct task_struct *p,
		const struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	if (dl_se->dl_runtime != attr->sched_runtime ||
		dl_se->dl_deadline != attr->sched_deadline ||
		dl_se->dl_period != attr->sched_period ||
		dl_se->flags != attr->sched_flags)
		return true;

	return false;
}

3401 3402 3403
static int __sched_setscheduler(struct task_struct *p,
				const struct sched_attr *attr,
				bool user)
L
Linus Torvalds 已提交
3404
{
3405 3406
	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
		      MAX_RT_PRIO - 1 - attr->sched_priority;
3407
	int retval, oldprio, oldpolicy = -1, queued, running;
3408
	int policy = attr->sched_policy;
L
Linus Torvalds 已提交
3409
	unsigned long flags;
3410
	const struct sched_class *prev_class;
3411
	struct rq *rq;
3412
	int reset_on_fork;
L
Linus Torvalds 已提交
3413

3414 3415
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
3416 3417
recheck:
	/* double check policy once rq lock held */
3418 3419
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
3420
		policy = oldpolicy = p->policy;
3421
	} else {
3422
		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3423

3424 3425
		if (policy != SCHED_DEADLINE &&
				policy != SCHED_FIFO && policy != SCHED_RR &&
3426 3427 3428 3429 3430
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

3431 3432 3433
	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
		return -EINVAL;

L
Linus Torvalds 已提交
3434 3435
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
3436 3437
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
3438
	 */
3439
	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3440
	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
3441
		return -EINVAL;
3442 3443
	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
	    (rt_policy(policy) != (attr->sched_priority != 0)))
L
Linus Torvalds 已提交
3444 3445
		return -EINVAL;

3446 3447 3448
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
3449
	if (user && !capable(CAP_SYS_NICE)) {
3450
		if (fair_policy(policy)) {
3451
			if (attr->sched_nice < task_nice(p) &&
3452
			    !can_nice(p, attr->sched_nice))
3453 3454 3455
				return -EPERM;
		}

3456
		if (rt_policy(policy)) {
3457 3458
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
3459 3460 3461 3462 3463 3464

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
3465 3466
			if (attr->sched_priority > p->rt_priority &&
			    attr->sched_priority > rlim_rtprio)
3467 3468
				return -EPERM;
		}
3469

3470 3471 3472 3473 3474 3475 3476 3477 3478
		 /*
		  * Can't set/change SCHED_DEADLINE policy at all for now
		  * (safest behavior); in the future we would like to allow
		  * unprivileged DL tasks to increase their relative deadline
		  * or reduce their runtime (both ways reducing utilization)
		  */
		if (dl_policy(policy))
			return -EPERM;

I
Ingo Molnar 已提交
3479
		/*
3480 3481
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
3482
		 */
3483
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3484
			if (!can_nice(p, task_nice(p)))
3485 3486
				return -EPERM;
		}
3487

3488
		/* can't change other user's priorities */
3489
		if (!check_same_owner(p))
3490
			return -EPERM;
3491 3492 3493 3494

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
3495
	}
L
Linus Torvalds 已提交
3496

3497
	if (user) {
3498
		retval = security_task_setscheduler(p);
3499 3500 3501 3502
		if (retval)
			return retval;
	}

3503 3504 3505
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
3506
	 *
L
Lucas De Marchi 已提交
3507
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
3508 3509
	 * runqueue lock must be held.
	 */
3510
	rq = task_rq_lock(p, &flags);
3511

3512 3513 3514 3515
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
3516
		task_rq_unlock(rq, p, &flags);
3517 3518 3519
		return -EINVAL;
	}

3520
	/*
3521 3522
	 * If not changing anything there's no need to proceed further,
	 * but store a possible modification of reset_on_fork.
3523
	 */
3524
	if (unlikely(policy == p->policy)) {
3525
		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3526 3527 3528
			goto change;
		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
			goto change;
3529
		if (dl_policy(policy) && dl_param_changed(p, attr))
3530
			goto change;
3531

3532
		p->sched_reset_on_fork = reset_on_fork;
3533
		task_rq_unlock(rq, p, &flags);
3534 3535
		return 0;
	}
3536
change:
3537

3538
	if (user) {
3539
#ifdef CONFIG_RT_GROUP_SCHED
3540 3541 3542 3543 3544
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3545 3546
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
3547
			task_rq_unlock(rq, p, &flags);
3548 3549 3550
			return -EPERM;
		}
#endif
3551 3552 3553 3554 3555 3556 3557 3558 3559
#ifdef CONFIG_SMP
		if (dl_bandwidth_enabled() && dl_policy(policy)) {
			cpumask_t *span = rq->rd->span;

			/*
			 * Don't allow tasks with an affinity mask smaller than
			 * the entire root_domain to become SCHED_DEADLINE. We
			 * will also fail if there's no bandwidth available.
			 */
3560 3561
			if (!cpumask_subset(span, &p->cpus_allowed) ||
			    rq->rd->dl_bw.bw == 0) {
3562 3563 3564 3565 3566 3567
				task_rq_unlock(rq, p, &flags);
				return -EPERM;
			}
		}
#endif
	}
3568

L
Linus Torvalds 已提交
3569 3570 3571
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
3572
		task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3573 3574
		goto recheck;
	}
3575 3576 3577 3578 3579 3580

	/*
	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
	 * is available.
	 */
3581
	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3582 3583 3584 3585
		task_rq_unlock(rq, p, &flags);
		return -EBUSY;
	}

3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603
	p->sched_reset_on_fork = reset_on_fork;
	oldprio = p->prio;

	/*
	 * Special case for priority boosted tasks.
	 *
	 * If the new priority is lower or equal (user space view)
	 * than the current (boosted) priority, we just store the new
	 * normal parameters and do not touch the scheduler class and
	 * the runqueue. This will be done when the task deboost
	 * itself.
	 */
	if (rt_mutex_check_prio(p, newprio)) {
		__setscheduler_params(p, attr);
		task_rq_unlock(rq, p, &flags);
		return 0;
	}

3604
	queued = task_on_rq_queued(p);
3605
	running = task_current(rq, p);
3606
	if (queued)
3607
		dequeue_task(rq, p, 0);
3608
	if (running)
3609
		put_prev_task(rq, p);
3610

3611
	prev_class = p->sched_class;
3612
	__setscheduler(rq, p, attr);
3613

3614 3615
	if (running)
		p->sched_class->set_curr_task(rq);
3616
	if (queued) {
3617 3618 3619 3620 3621 3622
		/*
		 * We enqueue to tail when the priority of a task is
		 * increased (user space view).
		 */
		enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
	}
3623

P
Peter Zijlstra 已提交
3624
	check_class_changed(rq, p, prev_class, oldprio);
3625
	task_rq_unlock(rq, p, &flags);
3626

3627 3628
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
3629 3630
	return 0;
}
3631

3632 3633 3634 3635 3636 3637 3638 3639 3640
static int _sched_setscheduler(struct task_struct *p, int policy,
			       const struct sched_param *param, bool check)
{
	struct sched_attr attr = {
		.sched_policy   = policy,
		.sched_priority = param->sched_priority,
		.sched_nice	= PRIO_TO_NICE(p->static_prio),
	};

3641 3642
	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
3643 3644 3645 3646 3647 3648 3649
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
		policy &= ~SCHED_RESET_ON_FORK;
		attr.sched_policy = policy;
	}

	return __sched_setscheduler(p, &attr, check);
}
3650 3651 3652 3653 3654 3655
/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
3656 3657
 * Return: 0 on success. An error code otherwise.
 *
3658 3659 3660
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
3661
		       const struct sched_param *param)
3662
{
3663
	return _sched_setscheduler(p, policy, param, true);
3664
}
L
Linus Torvalds 已提交
3665 3666
EXPORT_SYMBOL_GPL(sched_setscheduler);

3667 3668 3669 3670 3671 3672
int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
{
	return __sched_setscheduler(p, attr, true);
}
EXPORT_SYMBOL_GPL(sched_setattr);

3673 3674 3675 3676 3677 3678 3679 3680 3681 3682
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
3683 3684
 *
 * Return: 0 on success. An error code otherwise.
3685 3686
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3687
			       const struct sched_param *param)
3688
{
3689
	return _sched_setscheduler(p, policy, param, false);
3690 3691
}

I
Ingo Molnar 已提交
3692 3693
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
3694 3695 3696
{
	struct sched_param lparam;
	struct task_struct *p;
3697
	int retval;
L
Linus Torvalds 已提交
3698 3699 3700 3701 3702

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
3703 3704 3705

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
3706
	p = find_process_by_pid(pid);
3707 3708 3709
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
3710

L
Linus Torvalds 已提交
3711 3712 3713
	return retval;
}

3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775
/*
 * Mimics kernel/events/core.c perf_copy_attr().
 */
static int sched_copy_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr)
{
	u32 size;
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = SCHED_ATTR_SIZE_VER0;

	if (size < SCHED_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
	 */
	if (size > sizeof(*attr)) {
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;

		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;

		for (; addr < end; addr++) {
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
		size = sizeof(*attr);
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * XXX: do we want to be lenient like existing syscalls; or do we want
	 * to be strict and return an error on out-of-bounds values?
	 */
3776
	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3777

3778
	return 0;
3779 3780 3781

err_size:
	put_user(sizeof(*attr), &uattr->size);
3782
	return -E2BIG;
3783 3784
}

L
Linus Torvalds 已提交
3785 3786 3787 3788 3789
/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
3790 3791
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
3792
 */
3793 3794
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
3795
{
3796 3797 3798 3799
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
3800 3801 3802 3803 3804 3805 3806
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
3807 3808
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
3809
 */
3810
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
3811
{
3812
	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
L
Linus Torvalds 已提交
3813 3814
}

3815 3816 3817
/**
 * sys_sched_setattr - same as above, but with extended sched_attr
 * @pid: the pid in question.
J
Juri Lelli 已提交
3818
 * @uattr: structure containing the extended parameters.
3819
 * @flags: for future extension.
3820
 */
3821 3822
SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
			       unsigned int, flags)
3823 3824 3825 3826 3827
{
	struct sched_attr attr;
	struct task_struct *p;
	int retval;

3828
	if (!uattr || pid < 0 || flags)
3829 3830
		return -EINVAL;

3831 3832 3833
	retval = sched_copy_attr(uattr, &attr);
	if (retval)
		return retval;
3834

3835
	if ((int)attr.sched_policy < 0)
3836
		return -EINVAL;
3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847

	rcu_read_lock();
	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (p != NULL)
		retval = sched_setattr(p, &attr);
	rcu_read_unlock();

	return retval;
}

L
Linus Torvalds 已提交
3848 3849 3850
/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
3851 3852 3853
 *
 * Return: On success, the policy of the thread. Otherwise, a negative error
 * code.
L
Linus Torvalds 已提交
3854
 */
3855
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
3856
{
3857
	struct task_struct *p;
3858
	int retval;
L
Linus Torvalds 已提交
3859 3860

	if (pid < 0)
3861
		return -EINVAL;
L
Linus Torvalds 已提交
3862 3863

	retval = -ESRCH;
3864
	rcu_read_lock();
L
Linus Torvalds 已提交
3865 3866 3867 3868
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
3869 3870
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
3871
	}
3872
	rcu_read_unlock();
L
Linus Torvalds 已提交
3873 3874 3875 3876
	return retval;
}

/**
3877
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
3878 3879
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
3880 3881 3882
 *
 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
 * code.
L
Linus Torvalds 已提交
3883
 */
3884
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
3885
{
3886
	struct sched_param lp = { .sched_priority = 0 };
3887
	struct task_struct *p;
3888
	int retval;
L
Linus Torvalds 已提交
3889 3890

	if (!param || pid < 0)
3891
		return -EINVAL;
L
Linus Torvalds 已提交
3892

3893
	rcu_read_lock();
L
Linus Torvalds 已提交
3894 3895 3896 3897 3898 3899 3900 3901 3902
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

3903 3904
	if (task_has_rt_policy(p))
		lp.sched_priority = p->rt_priority;
3905
	rcu_read_unlock();
L
Linus Torvalds 已提交
3906 3907 3908 3909 3910 3911 3912 3913 3914

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
3915
	rcu_read_unlock();
L
Linus Torvalds 已提交
3916 3917 3918
	return retval;
}

3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941
static int sched_read_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr,
			   unsigned int usize)
{
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, usize))
		return -EFAULT;

	/*
	 * If we're handed a smaller struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. old
	 * user-space does not get uncomplete information.
	 */
	if (usize < sizeof(*attr)) {
		unsigned char *addr;
		unsigned char *end;

		addr = (void *)attr + usize;
		end  = (void *)attr + sizeof(*attr);

		for (; addr < end; addr++) {
			if (*addr)
3942
				return -EFBIG;
3943 3944 3945 3946 3947
		}

		attr->size = usize;
	}

3948
	ret = copy_to_user(uattr, attr, attr->size);
3949 3950 3951
	if (ret)
		return -EFAULT;

3952
	return 0;
3953 3954 3955
}

/**
3956
 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3957
 * @pid: the pid in question.
J
Juri Lelli 已提交
3958
 * @uattr: structure containing the extended parameters.
3959
 * @size: sizeof(attr) for fwd/bwd comp.
3960
 * @flags: for future extension.
3961
 */
3962 3963
SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
		unsigned int, size, unsigned int, flags)
3964 3965 3966 3967 3968 3969 3970 3971
{
	struct sched_attr attr = {
		.size = sizeof(struct sched_attr),
	};
	struct task_struct *p;
	int retval;

	if (!uattr || pid < 0 || size > PAGE_SIZE ||
3972
	    size < SCHED_ATTR_SIZE_VER0 || flags)
3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985
		return -EINVAL;

	rcu_read_lock();
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	attr.sched_policy = p->policy;
3986 3987
	if (p->sched_reset_on_fork)
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3988 3989 3990
	if (task_has_dl_policy(p))
		__getparam_dl(p, &attr);
	else if (task_has_rt_policy(p))
3991 3992
		attr.sched_priority = p->rt_priority;
	else
3993
		attr.sched_nice = task_nice(p);
3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004

	rcu_read_unlock();

	retval = sched_read_attr(uattr, &attr, size);
	return retval;

out_unlock:
	rcu_read_unlock();
	return retval;
}

4005
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4006
{
4007
	cpumask_var_t cpus_allowed, new_mask;
4008 4009
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4010

4011
	rcu_read_lock();
L
Linus Torvalds 已提交
4012 4013 4014

	p = find_process_by_pid(pid);
	if (!p) {
4015
		rcu_read_unlock();
L
Linus Torvalds 已提交
4016 4017 4018
		return -ESRCH;
	}

4019
	/* Prevent p going away */
L
Linus Torvalds 已提交
4020
	get_task_struct(p);
4021
	rcu_read_unlock();
L
Linus Torvalds 已提交
4022

4023 4024 4025 4026
	if (p->flags & PF_NO_SETAFFINITY) {
		retval = -EINVAL;
		goto out_put_task;
	}
4027 4028 4029 4030 4031 4032 4033 4034
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4035
	retval = -EPERM;
E
Eric W. Biederman 已提交
4036 4037 4038 4039
	if (!check_same_owner(p)) {
		rcu_read_lock();
		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
			rcu_read_unlock();
4040
			goto out_free_new_mask;
E
Eric W. Biederman 已提交
4041 4042 4043
		}
		rcu_read_unlock();
	}
L
Linus Torvalds 已提交
4044

4045
	retval = security_task_setscheduler(p);
4046
	if (retval)
4047
		goto out_free_new_mask;
4048

4049 4050 4051 4052

	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);

4053 4054 4055 4056 4057 4058 4059
	/*
	 * Since bandwidth control happens on root_domain basis,
	 * if admission test is enabled, we only admit -deadline
	 * tasks allowed to run on all the CPUs in the task's
	 * root_domain.
	 */
#ifdef CONFIG_SMP
4060 4061 4062
	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
		rcu_read_lock();
		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4063
			retval = -EBUSY;
4064
			rcu_read_unlock();
4065
			goto out_free_new_mask;
4066
		}
4067
		rcu_read_unlock();
4068 4069
	}
#endif
P
Peter Zijlstra 已提交
4070
again:
4071
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
4072

P
Paul Menage 已提交
4073
	if (!retval) {
4074 4075
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4076 4077 4078 4079 4080
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4081
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4082 4083 4084
			goto again;
		}
	}
4085
out_free_new_mask:
4086 4087 4088 4089
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4090 4091 4092 4093 4094
	put_task_struct(p);
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4095
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4096
{
4097 4098 4099 4100 4101
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4102 4103 4104 4105 4106 4107 4108 4109
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
4110 4111
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4112
 */
4113 4114
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4115
{
4116
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4117 4118
	int retval;

4119 4120
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4121

4122 4123 4124 4125 4126
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4127 4128
}

4129
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4130
{
4131
	struct task_struct *p;
4132
	unsigned long flags;
L
Linus Torvalds 已提交
4133 4134
	int retval;

4135
	rcu_read_lock();
L
Linus Torvalds 已提交
4136 4137 4138 4139 4140 4141

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4142 4143 4144 4145
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4146
	raw_spin_lock_irqsave(&p->pi_lock, flags);
4147
	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4148
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4149 4150

out_unlock:
4151
	rcu_read_unlock();
L
Linus Torvalds 已提交
4152

4153
	return retval;
L
Linus Torvalds 已提交
4154 4155 4156 4157 4158 4159 4160
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4161 4162
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4163
 */
4164 4165
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4166 4167
{
	int ret;
4168
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4169

A
Anton Blanchard 已提交
4170
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4171 4172
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4173 4174
		return -EINVAL;

4175 4176
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4177

4178 4179
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4180
		size_t retlen = min_t(size_t, len, cpumask_size());
4181 4182

		if (copy_to_user(user_mask_ptr, mask, retlen))
4183 4184
			ret = -EFAULT;
		else
4185
			ret = retlen;
4186 4187
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4188

4189
	return ret;
L
Linus Torvalds 已提交
4190 4191 4192 4193 4194
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4195 4196
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
4197 4198
 *
 * Return: 0.
L
Linus Torvalds 已提交
4199
 */
4200
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4201
{
4202
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4203

4204
	schedstat_inc(rq, yld_count);
4205
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4206 4207 4208 4209 4210 4211

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4212
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4213
	do_raw_spin_unlock(&rq->lock);
4214
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
4215 4216 4217 4218 4219 4220

	schedule();

	return 0;
}

4221
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4222
{
P
Peter Zijlstra 已提交
4223
	if (should_resched()) {
4224
		preempt_schedule_common();
L
Linus Torvalds 已提交
4225 4226 4227 4228
		return 1;
	}
	return 0;
}
4229
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4230 4231

/*
4232
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4233 4234
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4235
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4236 4237 4238
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4239
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4240
{
P
Peter Zijlstra 已提交
4241
	int resched = should_resched();
J
Jan Kara 已提交
4242 4243
	int ret = 0;

4244 4245
	lockdep_assert_held(lock);

4246
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4247
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4248
		if (resched)
4249
			preempt_schedule_common();
N
Nick Piggin 已提交
4250 4251
		else
			cpu_relax();
J
Jan Kara 已提交
4252
		ret = 1;
L
Linus Torvalds 已提交
4253 4254
		spin_lock(lock);
	}
J
Jan Kara 已提交
4255
	return ret;
L
Linus Torvalds 已提交
4256
}
4257
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4258

4259
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4260 4261 4262
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
4263
	if (should_resched()) {
4264
		local_bh_enable();
4265
		preempt_schedule_common();
L
Linus Torvalds 已提交
4266 4267 4268 4269 4270
		local_bh_disable();
		return 1;
	}
	return 0;
}
4271
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4272 4273 4274 4275

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
 * 	yield();
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
4294 4295 4296 4297 4298 4299 4300 4301
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

4302 4303 4304 4305
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
4306 4307
 * @p: target task
 * @preempt: whether task preemption is allowed or not
4308 4309 4310 4311
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
4312
 * Return:
4313 4314 4315
 *	true (>0) if we indeed boosted the target task.
 *	false (0) if we failed to boost the target.
 *	-ESRCH if there's no task to yield to.
4316
 */
4317
int __sched yield_to(struct task_struct *p, bool preempt)
4318 4319 4320 4321
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
4322
	int yielded = 0;
4323 4324 4325 4326 4327 4328

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
4329 4330 4331 4332 4333 4334 4335 4336 4337
	/*
	 * If we're the only runnable task on the rq and target rq also
	 * has only one task, there's absolutely no point in yielding.
	 */
	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
		yielded = -ESRCH;
		goto out_irq;
	}

4338
	double_rq_lock(rq, p_rq);
4339
	if (task_rq(p) != p_rq) {
4340 4341 4342 4343 4344
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
4345
		goto out_unlock;
4346 4347

	if (curr->sched_class != p->sched_class)
4348
		goto out_unlock;
4349 4350

	if (task_running(p_rq, p) || p->state)
4351
		goto out_unlock;
4352 4353

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4354
	if (yielded) {
4355
		schedstat_inc(rq, yld_count);
4356 4357 4358 4359 4360
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
4361
			resched_curr(p_rq);
4362
	}
4363

4364
out_unlock:
4365
	double_rq_unlock(rq, p_rq);
4366
out_irq:
4367 4368
	local_irq_restore(flags);

4369
	if (yielded > 0)
4370 4371 4372 4373 4374 4375
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
4376
/*
I
Ingo Molnar 已提交
4377
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4378 4379 4380 4381
 * that process accounting knows that this is a task in IO wait state.
 */
long __sched io_schedule_timeout(long timeout)
{
4382 4383
	int old_iowait = current->in_iowait;
	struct rq *rq;
L
Linus Torvalds 已提交
4384 4385
	long ret;

4386 4387 4388 4389 4390 4391
	current->in_iowait = 1;
	if (old_iowait)
		blk_schedule_flush_plug(current);
	else
		blk_flush_plug(current);

4392
	delayacct_blkio_start();
4393
	rq = raw_rq();
L
Linus Torvalds 已提交
4394 4395
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
4396
	current->in_iowait = old_iowait;
L
Linus Torvalds 已提交
4397
	atomic_dec(&rq->nr_iowait);
4398
	delayacct_blkio_end();
4399

L
Linus Torvalds 已提交
4400 4401
	return ret;
}
4402
EXPORT_SYMBOL(io_schedule_timeout);
L
Linus Torvalds 已提交
4403 4404 4405 4406 4407

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
4408 4409 4410
 * Return: On success, this syscall returns the maximum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
4411
 */
4412
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
4413 4414 4415 4416 4417 4418 4419 4420
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
4421
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
4422
	case SCHED_NORMAL:
4423
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4424
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4425 4426 4427 4428 4429 4430 4431 4432 4433 4434
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
4435 4436 4437
 * Return: On success, this syscall returns the minimum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
4438
 */
4439
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
4440 4441 4442 4443 4444 4445 4446 4447
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
4448
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
4449
	case SCHED_NORMAL:
4450
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4451
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
4464 4465 4466
 *
 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
 * an error code.
L
Linus Torvalds 已提交
4467
 */
4468
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4469
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
4470
{
4471
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4472
	unsigned int time_slice;
4473 4474
	unsigned long flags;
	struct rq *rq;
4475
	int retval;
L
Linus Torvalds 已提交
4476 4477 4478
	struct timespec t;

	if (pid < 0)
4479
		return -EINVAL;
L
Linus Torvalds 已提交
4480 4481

	retval = -ESRCH;
4482
	rcu_read_lock();
L
Linus Torvalds 已提交
4483 4484 4485 4486 4487 4488 4489 4490
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4491
	rq = task_rq_lock(p, &flags);
4492 4493 4494
	time_slice = 0;
	if (p->sched_class->get_rr_interval)
		time_slice = p->sched_class->get_rr_interval(rq, p);
4495
	task_rq_unlock(rq, p, &flags);
D
Dmitry Adamushko 已提交
4496

4497
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
4498
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4499 4500
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4501

L
Linus Torvalds 已提交
4502
out_unlock:
4503
	rcu_read_unlock();
L
Linus Torvalds 已提交
4504 4505 4506
	return retval;
}

4507
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4508

4509
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4510 4511
{
	unsigned long free = 0;
4512
	int ppid;
4513
	unsigned long state = p->state;
L
Linus Torvalds 已提交
4514

4515 4516
	if (state)
		state = __ffs(state) + 1;
4517
	printk(KERN_INFO "%-15.15s %c", p->comm,
4518
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4519
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4520
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4521
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4522
	else
P
Peter Zijlstra 已提交
4523
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4524 4525
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4526
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4527
	else
P
Peter Zijlstra 已提交
4528
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4529 4530
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
4531
	free = stack_not_used(p);
L
Linus Torvalds 已提交
4532
#endif
4533
	ppid = 0;
4534
	rcu_read_lock();
4535 4536
	if (pid_alive(p))
		ppid = task_pid_nr(rcu_dereference(p->real_parent));
4537
	rcu_read_unlock();
P
Peter Zijlstra 已提交
4538
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4539
		task_pid_nr(p), ppid,
4540
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
4541

4542
	print_worker_info(KERN_INFO, p);
4543
	show_stack(p, NULL);
L
Linus Torvalds 已提交
4544 4545
}

I
Ingo Molnar 已提交
4546
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4547
{
4548
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4549

4550
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
4551 4552
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4553
#else
P
Peter Zijlstra 已提交
4554 4555
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4556
#endif
4557
	rcu_read_lock();
4558
	for_each_process_thread(g, p) {
L
Linus Torvalds 已提交
4559 4560
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
4561
		 * console might take a lot of time:
L
Linus Torvalds 已提交
4562 4563
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4564
		if (!state_filter || (p->state & state_filter))
4565
			sched_show_task(p);
4566
	}
L
Linus Torvalds 已提交
4567

4568 4569
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4570 4571 4572
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
4573
	rcu_read_unlock();
I
Ingo Molnar 已提交
4574 4575 4576
	/*
	 * Only show locks if all tasks are dumped:
	 */
4577
	if (!state_filter)
I
Ingo Molnar 已提交
4578
		debug_show_all_locks();
L
Linus Torvalds 已提交
4579 4580
}

4581
void init_idle_bootup_task(struct task_struct *idle)
I
Ingo Molnar 已提交
4582
{
I
Ingo Molnar 已提交
4583
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4584 4585
}

4586 4587 4588 4589 4590 4591 4592 4593
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4594
void init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4595
{
4596
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4597 4598
	unsigned long flags;

4599
	raw_spin_lock_irqsave(&rq->lock, flags);
4600

4601
	__sched_fork(0, idle);
4602
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
4603 4604
	idle->se.exec_start = sched_clock();

4605
	do_set_cpus_allowed(idle, cpumask_of(cpu));
4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
4617
	__set_task_cpu(idle, cpu);
4618
	rcu_read_unlock();
L
Linus Torvalds 已提交
4619 4620

	rq->curr = rq->idle = idle;
4621
	idle->on_rq = TASK_ON_RQ_QUEUED;
P
Peter Zijlstra 已提交
4622 4623
#if defined(CONFIG_SMP)
	idle->on_cpu = 1;
4624
#endif
4625
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
4626 4627

	/* Set the preempt count _outside_ the spinlocks! */
4628
	init_idle_preempt_count(idle, cpu);
4629

I
Ingo Molnar 已提交
4630 4631 4632 4633
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
4634
	ftrace_graph_init_idle_task(idle, cpu);
4635
	vtime_init_idle(idle, cpu);
4636 4637 4638
#if defined(CONFIG_SMP)
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
4639 4640
}

4641 4642 4643 4644 4645 4646 4647
int cpuset_cpumask_can_shrink(const struct cpumask *cur,
			      const struct cpumask *trial)
{
	int ret = 1, trial_cpus;
	struct dl_bw *cur_dl_b;
	unsigned long flags;

4648 4649 4650
	if (!cpumask_weight(cur))
		return ret;

4651
	rcu_read_lock_sched();
4652 4653 4654 4655 4656 4657 4658 4659
	cur_dl_b = dl_bw_of(cpumask_any(cur));
	trial_cpus = cpumask_weight(trial);

	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
	if (cur_dl_b->bw != -1 &&
	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
		ret = 0;
	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
4660
	rcu_read_unlock_sched();
4661 4662 4663 4664

	return ret;
}

4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688
int task_can_attach(struct task_struct *p,
		    const struct cpumask *cs_cpus_allowed)
{
	int ret = 0;

	/*
	 * Kthreads which disallow setaffinity shouldn't be moved
	 * to a new cpuset; we don't want to change their cpu
	 * affinity and isolating such threads by their set of
	 * allowed nodes is unnecessary.  Thus, cpusets are not
	 * applicable for such threads.  This prevents checking for
	 * success of set_cpus_allowed_ptr() on all attached tasks
	 * before cpus_allowed may be changed.
	 */
	if (p->flags & PF_NO_SETAFFINITY) {
		ret = -EINVAL;
		goto out;
	}

#ifdef CONFIG_SMP
	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
					      cs_cpus_allowed)) {
		unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
							cs_cpus_allowed);
4689
		struct dl_bw *dl_b;
4690 4691 4692 4693
		bool overflow;
		int cpus;
		unsigned long flags;

4694 4695
		rcu_read_lock_sched();
		dl_b = dl_bw_of(dest_cpu);
4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710
		raw_spin_lock_irqsave(&dl_b->lock, flags);
		cpus = dl_bw_cpus(dest_cpu);
		overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
		if (overflow)
			ret = -EBUSY;
		else {
			/*
			 * We reserve space for this task in the destination
			 * root_domain, as we can't fail after this point.
			 * We will free resources in the source root_domain
			 * later on (see set_cpus_allowed_dl()).
			 */
			__dl_add(dl_b, p->dl.dl_bw);
		}
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
4711
		rcu_read_unlock_sched();
4712 4713 4714 4715 4716 4717 4718

	}
#endif
out:
	return ret;
}

L
Linus Torvalds 已提交
4719
#ifdef CONFIG_SMP
4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746
/*
 * move_queued_task - move a queued task to new rq.
 *
 * Returns (locked) new rq. Old rq's lock is released.
 */
static struct rq *move_queued_task(struct task_struct *p, int new_cpu)
{
	struct rq *rq = task_rq(p);

	lockdep_assert_held(&rq->lock);

	dequeue_task(rq, p, 0);
	p->on_rq = TASK_ON_RQ_MIGRATING;
	set_task_cpu(p, new_cpu);
	raw_spin_unlock(&rq->lock);

	rq = cpu_rq(new_cpu);

	raw_spin_lock(&rq->lock);
	BUG_ON(task_cpu(p) != new_cpu);
	p->on_rq = TASK_ON_RQ_QUEUED;
	enqueue_task(rq, p, 0);
	check_preempt_curr(rq, p, 0);

	return rq;
}

4747 4748
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
4749
	if (p->sched_class->set_cpus_allowed)
4750
		p->sched_class->set_cpus_allowed(p, new_mask);
4751 4752

	cpumask_copy(&p->cpus_allowed, new_mask);
4753
	p->nr_cpus_allowed = cpumask_weight(new_mask);
4754 4755
}

L
Linus Torvalds 已提交
4756 4757 4758
/*
 * This is how migration works:
 *
4759 4760 4761 4762 4763 4764
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
4765
 *    it and puts it into the right queue.
4766 4767
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
4768 4769 4770 4771 4772 4773 4774 4775
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
4776
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
4777 4778
 * call is not atomic; no spinlocks may be held.
 */
4779
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
4780 4781
{
	unsigned long flags;
4782
	struct rq *rq;
4783
	unsigned int dest_cpu;
4784
	int ret = 0;
L
Linus Torvalds 已提交
4785 4786

	rq = task_rq_lock(p, &flags);
4787

4788 4789 4790
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

4791
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
4792 4793 4794 4795
		ret = -EINVAL;
		goto out;
	}

4796
	do_set_cpus_allowed(p, new_mask);
4797

L
Linus Torvalds 已提交
4798
	/* Can the task run on the task's current CPU? If so, we're done */
4799
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
4800 4801
		goto out;

4802
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4803
	if (task_running(rq, p) || p->state == TASK_WAKING) {
4804
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
4805
		/* Need help from migration thread: drop lock and wait. */
4806
		task_rq_unlock(rq, p, &flags);
4807
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
4808 4809
		tlb_migrate_finish(p->mm);
		return 0;
4810 4811
	} else if (task_on_rq_queued(p))
		rq = move_queued_task(p, dest_cpu);
L
Linus Torvalds 已提交
4812
out:
4813
	task_rq_unlock(rq, p, &flags);
4814

L
Linus Torvalds 已提交
4815 4816
	return ret;
}
4817
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
4818 4819

/*
I
Ingo Molnar 已提交
4820
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
4821 4822 4823 4824 4825 4826
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4827 4828
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4829
 */
4830
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4831
{
4832
	struct rq *rq;
4833
	int ret = 0;
L
Linus Torvalds 已提交
4834

4835
	if (unlikely(!cpu_active(dest_cpu)))
4836
		return ret;
L
Linus Torvalds 已提交
4837

4838
	rq = cpu_rq(src_cpu);
L
Linus Torvalds 已提交
4839

4840
	raw_spin_lock(&p->pi_lock);
4841
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
4842 4843
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
4844
		goto done;
4845

L
Linus Torvalds 已提交
4846
	/* Affinity changed (again). */
4847
	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
L
Linus Torvalds 已提交
4848
		goto fail;
L
Linus Torvalds 已提交
4849

4850 4851 4852 4853
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
4854 4855
	if (task_on_rq_queued(p))
		rq = move_queued_task(p, dest_cpu);
L
Linus Torvalds 已提交
4856
done:
4857
	ret = 1;
L
Linus Torvalds 已提交
4858
fail:
4859
	raw_spin_unlock(&rq->lock);
4860
	raw_spin_unlock(&p->pi_lock);
4861
	return ret;
L
Linus Torvalds 已提交
4862 4863
}

4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878
#ifdef CONFIG_NUMA_BALANCING
/* Migrate current task p to target_cpu */
int migrate_task_to(struct task_struct *p, int target_cpu)
{
	struct migration_arg arg = { p, target_cpu };
	int curr_cpu = task_cpu(p);

	if (curr_cpu == target_cpu)
		return 0;

	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
		return -EINVAL;

	/* TODO: This is not properly updating schedstats */

4879
	trace_sched_move_numa(p, curr_cpu, target_cpu);
4880 4881
	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
}
4882 4883 4884 4885 4886 4887 4888 4889 4890

/*
 * Requeue a task on a given node and accurately track the number of NUMA
 * tasks on the runqueues
 */
void sched_setnuma(struct task_struct *p, int nid)
{
	struct rq *rq;
	unsigned long flags;
4891
	bool queued, running;
4892 4893

	rq = task_rq_lock(p, &flags);
4894
	queued = task_on_rq_queued(p);
4895 4896
	running = task_current(rq, p);

4897
	if (queued)
4898 4899
		dequeue_task(rq, p, 0);
	if (running)
4900
		put_prev_task(rq, p);
4901 4902 4903 4904 4905

	p->numa_preferred_nid = nid;

	if (running)
		p->sched_class->set_curr_task(rq);
4906
	if (queued)
4907 4908 4909
		enqueue_task(rq, p, 0);
	task_rq_unlock(rq, p, &flags);
}
4910 4911
#endif

L
Linus Torvalds 已提交
4912
/*
4913 4914 4915
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
4916
 */
4917
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
4918
{
4919
	struct migration_arg *arg = data;
4920

4921 4922 4923 4924
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
4925
	local_irq_disable();
L
Lai Jiangshan 已提交
4926 4927 4928 4929 4930 4931
	/*
	 * We need to explicitly wake pending tasks before running
	 * __migrate_task() such that we will not miss enforcing cpus_allowed
	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
	 */
	sched_ttwu_pending();
4932
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4933
	local_irq_enable();
L
Linus Torvalds 已提交
4934
	return 0;
4935 4936
}

L
Linus Torvalds 已提交
4937
#ifdef CONFIG_HOTPLUG_CPU
4938

4939
/*
4940 4941
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
4942
 */
4943
void idle_task_exit(void)
L
Linus Torvalds 已提交
4944
{
4945
	struct mm_struct *mm = current->active_mm;
4946

4947
	BUG_ON(cpu_online(smp_processor_id()));
4948

4949
	if (mm != &init_mm) {
4950
		switch_mm(mm, &init_mm, current);
4951 4952
		finish_arch_post_lock_switch();
	}
4953
	mmdrop(mm);
L
Linus Torvalds 已提交
4954 4955 4956
}

/*
4957 4958 4959 4960 4961
 * Since this CPU is going 'away' for a while, fold any nr_active delta
 * we might have. Assumes we're called after migrate_tasks() so that the
 * nr_active count is stable.
 *
 * Also see the comment "Global load-average calculations".
L
Linus Torvalds 已提交
4962
 */
4963
static void calc_load_migrate(struct rq *rq)
L
Linus Torvalds 已提交
4964
{
4965 4966 4967
	long delta = calc_load_fold_active(rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
4968 4969
}

4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985
static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
{
}

static const struct sched_class fake_sched_class = {
	.put_prev_task = put_prev_task_fake,
};

static struct task_struct fake_task = {
	/*
	 * Avoid pull_{rt,dl}_task()
	 */
	.prio = MAX_PRIO + 1,
	.sched_class = &fake_sched_class,
};

4986
/*
4987 4988 4989 4990 4991 4992
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
4993
 */
4994
static void migrate_tasks(unsigned int dead_cpu)
L
Linus Torvalds 已提交
4995
{
4996
	struct rq *rq = cpu_rq(dead_cpu);
4997 4998
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
4999 5000

	/*
5001 5002 5003 5004 5005 5006 5007
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
5008
	 */
5009
	rq->stop = NULL;
5010

5011 5012 5013 5014 5015 5016 5017
	/*
	 * put_prev_task() and pick_next_task() sched
	 * class method both need to have an up-to-date
	 * value of rq->clock[_task]
	 */
	update_rq_clock(rq);

I
Ingo Molnar 已提交
5018
	for ( ; ; ) {
5019 5020 5021 5022 5023
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
5024
			break;
5025

5026
		next = pick_next_task(rq, &fake_task);
5027
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
5028
		next->sched_class->put_prev_task(rq, next);
5029

5030 5031 5032 5033 5034 5035 5036
		/* Find suitable destination for @next, with force if needed. */
		dest_cpu = select_fallback_rq(dead_cpu, next);
		raw_spin_unlock(&rq->lock);

		__migrate_task(next, dead_cpu, dest_cpu);

		raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
5037
	}
5038

5039
	rq->stop = stop;
5040
}
5041

L
Linus Torvalds 已提交
5042 5043
#endif /* CONFIG_HOTPLUG_CPU */

5044 5045 5046
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5047 5048
	{
		.procname	= "sched_domain",
5049
		.mode		= 0555,
5050
	},
5051
	{}
5052 5053 5054
};

static struct ctl_table sd_ctl_root[] = {
5055 5056
	{
		.procname	= "kernel",
5057
		.mode		= 0555,
5058 5059
		.child		= sd_ctl_dir,
	},
5060
	{}
5061 5062 5063 5064 5065
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5066
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5067 5068 5069 5070

	return entry;
}

5071 5072
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5073
	struct ctl_table *entry;
5074

5075 5076 5077
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5078
	 * will always be set. In the lowest directory the names are
5079 5080 5081
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5082 5083
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5084 5085 5086
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5087 5088 5089 5090 5091

	kfree(*tablep);
	*tablep = NULL;
}

5092
static int min_load_idx = 0;
5093
static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5094

5095
static void
5096
set_table_entry(struct ctl_table *entry,
5097
		const char *procname, void *data, int maxlen,
5098 5099
		umode_t mode, proc_handler *proc_handler,
		bool load_idx)
5100 5101 5102 5103 5104 5105
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
5106 5107 5108 5109 5110

	if (load_idx) {
		entry->extra1 = &min_load_idx;
		entry->extra2 = &max_load_idx;
	}
5111 5112 5113 5114 5115
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5116
	struct ctl_table *table = sd_alloc_ctl_entry(14);
5117

5118 5119 5120
	if (table == NULL)
		return NULL;

5121
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5122
		sizeof(long), 0644, proc_doulongvec_minmax, false);
5123
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5124
		sizeof(long), 0644, proc_doulongvec_minmax, false);
5125
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5126
		sizeof(int), 0644, proc_dointvec_minmax, true);
5127
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5128
		sizeof(int), 0644, proc_dointvec_minmax, true);
5129
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5130
		sizeof(int), 0644, proc_dointvec_minmax, true);
5131
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5132
		sizeof(int), 0644, proc_dointvec_minmax, true);
5133
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5134
		sizeof(int), 0644, proc_dointvec_minmax, true);
5135
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5136
		sizeof(int), 0644, proc_dointvec_minmax, false);
5137
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5138
		sizeof(int), 0644, proc_dointvec_minmax, false);
5139
	set_table_entry(&table[9], "cache_nice_tries",
5140
		&sd->cache_nice_tries,
5141
		sizeof(int), 0644, proc_dointvec_minmax, false);
5142
	set_table_entry(&table[10], "flags", &sd->flags,
5143
		sizeof(int), 0644, proc_dointvec_minmax, false);
5144 5145 5146 5147
	set_table_entry(&table[11], "max_newidle_lb_cost",
		&sd->max_newidle_lb_cost,
		sizeof(long), 0644, proc_doulongvec_minmax, false);
	set_table_entry(&table[12], "name", sd->name,
5148
		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5149
	/* &table[13] is terminator */
5150 5151 5152 5153

	return table;
}

5154
static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5155 5156 5157 5158 5159 5160 5161 5162 5163
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5164 5165
	if (table == NULL)
		return NULL;
5166 5167 5168 5169 5170

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5171
		entry->mode = 0555;
5172 5173 5174 5175 5176 5177 5178 5179
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5180
static void register_sched_domain_sysctl(void)
5181
{
5182
	int i, cpu_num = num_possible_cpus();
5183 5184 5185
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5186 5187 5188
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5189 5190 5191
	if (entry == NULL)
		return;

5192
	for_each_possible_cpu(i) {
5193 5194
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5195
		entry->mode = 0555;
5196
		entry->child = sd_alloc_ctl_cpu_table(i);
5197
		entry++;
5198
	}
5199 5200

	WARN_ON(sd_sysctl_header);
5201 5202
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5203

5204
/* may be called multiple times per register */
5205 5206
static void unregister_sched_domain_sysctl(void)
{
5207 5208
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5209
	sd_sysctl_header = NULL;
5210 5211
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5212
}
5213
#else
5214 5215 5216 5217
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5218 5219 5220 5221
{
}
#endif

5222 5223 5224 5225 5226
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5227
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5247
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5248 5249 5250 5251
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5252 5253 5254 5255
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5256
static int
5257
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5258
{
5259
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5260
	unsigned long flags;
5261
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5262

5263
	switch (action & ~CPU_TASKS_FROZEN) {
5264

L
Linus Torvalds 已提交
5265
	case CPU_UP_PREPARE:
5266
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5267
		break;
5268

L
Linus Torvalds 已提交
5269
	case CPU_ONLINE:
5270
		/* Update our root-domain */
5271
		raw_spin_lock_irqsave(&rq->lock, flags);
5272
		if (rq->rd) {
5273
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5274 5275

			set_rq_online(rq);
5276
		}
5277
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5278
		break;
5279

L
Linus Torvalds 已提交
5280
#ifdef CONFIG_HOTPLUG_CPU
5281
	case CPU_DYING:
5282
		sched_ttwu_pending();
G
Gregory Haskins 已提交
5283
		/* Update our root-domain */
5284
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5285
		if (rq->rd) {
5286
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5287
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5288
		}
5289 5290
		migrate_tasks(cpu);
		BUG_ON(rq->nr_running != 1); /* the migration thread */
5291
		raw_spin_unlock_irqrestore(&rq->lock, flags);
5292
		break;
5293

5294
	case CPU_DEAD:
5295
		calc_load_migrate(rq);
G
Gregory Haskins 已提交
5296
		break;
L
Linus Torvalds 已提交
5297 5298
#endif
	}
5299 5300 5301

	update_max_interval();

L
Linus Torvalds 已提交
5302 5303 5304
	return NOTIFY_OK;
}

5305 5306 5307
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5308
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5309
 */
5310
static struct notifier_block migration_notifier = {
L
Linus Torvalds 已提交
5311
	.notifier_call = migration_call,
5312
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
5313 5314
};

5315 5316 5317 5318 5319 5320 5321
static void __cpuinit set_cpu_rq_start_time(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
	rq->age_stamp = sched_clock_cpu(cpu);
}

5322
static int sched_cpu_active(struct notifier_block *nfb,
5323 5324 5325
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
5326 5327 5328
	case CPU_STARTING:
		set_cpu_rq_start_time();
		return NOTIFY_OK;
5329 5330 5331 5332 5333 5334 5335 5336
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

5337
static int sched_cpu_inactive(struct notifier_block *nfb,
5338 5339
					unsigned long action, void *hcpu)
{
5340 5341
	unsigned long flags;
	long cpu = (long)hcpu;
5342
	struct dl_bw *dl_b;
5343

5344 5345
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
5346 5347 5348 5349 5350 5351 5352
		set_cpu_active(cpu, false);

		/* explicitly allow suspend */
		if (!(action & CPU_TASKS_FROZEN)) {
			bool overflow;
			int cpus;

5353 5354 5355
			rcu_read_lock_sched();
			dl_b = dl_bw_of(cpu);

5356 5357 5358 5359 5360
			raw_spin_lock_irqsave(&dl_b->lock, flags);
			cpus = dl_bw_cpus(cpu);
			overflow = __dl_overflow(dl_b, cpus, 0, 0);
			raw_spin_unlock_irqrestore(&dl_b->lock, flags);

5361 5362
			rcu_read_unlock_sched();

5363 5364 5365
			if (overflow)
				return notifier_from_errno(-EBUSY);
		}
5366 5367
		return NOTIFY_OK;
	}
5368 5369

	return NOTIFY_DONE;
5370 5371
}

5372
static int __init migration_init(void)
L
Linus Torvalds 已提交
5373 5374
{
	void *cpu = (void *)(long)smp_processor_id();
5375
	int err;
5376

5377
	/* Initialize migration for the boot CPU */
5378 5379
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5380 5381
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5382

5383 5384 5385 5386
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

5387
	return 0;
L
Linus Torvalds 已提交
5388
}
5389
early_initcall(migration_init);
L
Linus Torvalds 已提交
5390 5391 5392
#endif

#ifdef CONFIG_SMP
5393

5394 5395
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

5396
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5397

5398
static __read_mostly int sched_debug_enabled;
5399

5400
static int __init sched_debug_setup(char *str)
5401
{
5402
	sched_debug_enabled = 1;
5403 5404 5405

	return 0;
}
5406 5407 5408 5409 5410 5411
early_param("sched_debug", sched_debug_setup);

static inline bool sched_debug(void)
{
	return sched_debug_enabled;
}
5412

5413
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5414
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5415
{
I
Ingo Molnar 已提交
5416
	struct sched_group *group = sd->groups;
L
Linus Torvalds 已提交
5417

5418
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5419 5420 5421 5422

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5423
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5424
		if (sd->parent)
P
Peter Zijlstra 已提交
5425 5426
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5427
		return -1;
N
Nick Piggin 已提交
5428 5429
	}

5430 5431
	printk(KERN_CONT "span %*pbl level %s\n",
	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
I
Ingo Molnar 已提交
5432

5433
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5434 5435
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5436
	}
5437
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5438 5439
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5440
	}
L
Linus Torvalds 已提交
5441

I
Ingo Molnar 已提交
5442
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5443
	do {
I
Ingo Molnar 已提交
5444
		if (!group) {
P
Peter Zijlstra 已提交
5445 5446
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5447 5448 5449
			break;
		}

5450
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5451 5452
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
5453 5454
			break;
		}
L
Linus Torvalds 已提交
5455

5456 5457
		if (!(sd->flags & SD_OVERLAP) &&
		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5458 5459
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
5460 5461
			break;
		}
L
Linus Torvalds 已提交
5462

5463
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
5464

5465 5466
		printk(KERN_CONT " %*pbl",
		       cpumask_pr_args(sched_group_cpus(group)));
5467
		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5468 5469
			printk(KERN_CONT " (cpu_capacity = %d)",
				group->sgc->capacity);
5470
		}
L
Linus Torvalds 已提交
5471

I
Ingo Molnar 已提交
5472 5473
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
5474
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5475

5476
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
5477
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5478

5479 5480
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
5481 5482
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
5483 5484
	return 0;
}
L
Linus Torvalds 已提交
5485

I
Ingo Molnar 已提交
5486 5487 5488
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5489

5490
	if (!sched_debug_enabled)
5491 5492
		return;

I
Ingo Molnar 已提交
5493 5494 5495 5496
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5497

I
Ingo Molnar 已提交
5498 5499 5500
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
5501
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
I
Ingo Molnar 已提交
5502
			break;
L
Linus Torvalds 已提交
5503 5504
		level++;
		sd = sd->parent;
5505
		if (!sd)
I
Ingo Molnar 已提交
5506 5507
			break;
	}
L
Linus Torvalds 已提交
5508
}
5509
#else /* !CONFIG_SCHED_DEBUG */
5510
# define sched_domain_debug(sd, cpu) do { } while (0)
5511 5512 5513 5514
static inline bool sched_debug(void)
{
	return false;
}
5515
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
5516

5517
static int sd_degenerate(struct sched_domain *sd)
5518
{
5519
	if (cpumask_weight(sched_domain_span(sd)) == 1)
5520 5521 5522 5523 5524 5525
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5526
			 SD_BALANCE_EXEC |
5527
			 SD_SHARE_CPUCAPACITY |
5528 5529
			 SD_SHARE_PKG_RESOURCES |
			 SD_SHARE_POWERDOMAIN)) {
5530 5531 5532 5533 5534
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
5535
	if (sd->flags & (SD_WAKE_AFFINE))
5536 5537 5538 5539 5540
		return 0;

	return 1;
}

5541 5542
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5543 5544 5545 5546 5547 5548
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

5549
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5550 5551 5552 5553 5554 5555 5556
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5557
				SD_BALANCE_EXEC |
5558
				SD_SHARE_CPUCAPACITY |
5559
				SD_SHARE_PKG_RESOURCES |
5560 5561
				SD_PREFER_SIBLING |
				SD_SHARE_POWERDOMAIN);
5562 5563
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
5564 5565 5566 5567 5568 5569 5570
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

5571
static void free_rootdomain(struct rcu_head *rcu)
5572
{
5573
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5574

5575
	cpupri_cleanup(&rd->cpupri);
5576
	cpudl_cleanup(&rd->cpudl);
5577
	free_cpumask_var(rd->dlo_mask);
5578 5579 5580 5581 5582 5583
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
5584 5585
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
5586
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
5587 5588
	unsigned long flags;

5589
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5590 5591

	if (rq->rd) {
I
Ingo Molnar 已提交
5592
		old_rd = rq->rd;
G
Gregory Haskins 已提交
5593

5594
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5595
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5596

5597
		cpumask_clear_cpu(rq->cpu, old_rd->span);
5598

I
Ingo Molnar 已提交
5599
		/*
5600
		 * If we dont want to free the old_rd yet then
I
Ingo Molnar 已提交
5601 5602 5603 5604 5605
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
5606 5607 5608 5609 5610
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

5611
	cpumask_set_cpu(rq->cpu, rd->span);
5612
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5613
		set_rq_online(rq);
G
Gregory Haskins 已提交
5614

5615
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
5616 5617

	if (old_rd)
5618
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
5619 5620
}

5621
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
5622 5623 5624
{
	memset(rd, 0, sizeof(*rd));

5625
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5626
		goto out;
5627
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5628
		goto free_span;
5629
	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5630
		goto free_online;
5631 5632
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
		goto free_dlo_mask;
5633

5634
	init_dl_bw(&rd->dl_bw);
5635 5636
	if (cpudl_init(&rd->cpudl) != 0)
		goto free_dlo_mask;
5637

5638
	if (cpupri_init(&rd->cpupri) != 0)
5639
		goto free_rto_mask;
5640
	return 0;
5641

5642 5643
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
5644 5645
free_dlo_mask:
	free_cpumask_var(rd->dlo_mask);
5646 5647 5648 5649
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
5650
out:
5651
	return -ENOMEM;
G
Gregory Haskins 已提交
5652 5653
}

5654 5655 5656 5657 5658 5659
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
struct root_domain def_root_domain;

G
Gregory Haskins 已提交
5660 5661
static void init_defrootdomain(void)
{
5662
	init_rootdomain(&def_root_domain);
5663

G
Gregory Haskins 已提交
5664 5665 5666
	atomic_set(&def_root_domain.refcount, 1);
}

5667
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
5668 5669 5670 5671 5672 5673 5674
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

5675
	if (init_rootdomain(rd) != 0) {
5676 5677 5678
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
5679 5680 5681 5682

	return rd;
}

5683
static void free_sched_groups(struct sched_group *sg, int free_sgc)
5684 5685 5686 5687 5688 5689 5690 5691 5692 5693
{
	struct sched_group *tmp, *first;

	if (!sg)
		return;

	first = sg;
	do {
		tmp = sg->next;

5694 5695
		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
			kfree(sg->sgc);
5696 5697 5698 5699 5700 5701

		kfree(sg);
		sg = tmp;
	} while (sg != first);
}

5702 5703 5704
static void free_sched_domain(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5705 5706 5707 5708 5709 5710 5711 5712

	/*
	 * If its an overlapping domain it has private groups, iterate and
	 * nuke them all.
	 */
	if (sd->flags & SD_OVERLAP) {
		free_sched_groups(sd->groups, 1);
	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5713
		kfree(sd->groups->sgc);
5714
		kfree(sd->groups);
5715
	}
5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729
	kfree(sd);
}

static void destroy_sched_domain(struct sched_domain *sd, int cpu)
{
	call_rcu(&sd->rcu, free_sched_domain);
}

static void destroy_sched_domains(struct sched_domain *sd, int cpu)
{
	for (; sd; sd = sd->parent)
		destroy_sched_domain(sd, cpu);
}

5730 5731 5732 5733 5734 5735 5736
/*
 * Keep a special pointer to the highest sched_domain that has
 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 * allows us to avoid some pointer chasing select_idle_sibling().
 *
 * Also keep a unique ID per domain (we use the first cpu number in
 * the cpumask of the domain), this allows us to quickly tell if
5737
 * two cpus are in the same cache domain, see cpus_share_cache().
5738 5739
 */
DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5740
DEFINE_PER_CPU(int, sd_llc_size);
5741
DEFINE_PER_CPU(int, sd_llc_id);
5742
DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5743 5744
DEFINE_PER_CPU(struct sched_domain *, sd_busy);
DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5745 5746 5747 5748

static void update_top_cache_domain(int cpu)
{
	struct sched_domain *sd;
5749
	struct sched_domain *busy_sd = NULL;
5750
	int id = cpu;
5751
	int size = 1;
5752 5753

	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5754
	if (sd) {
5755
		id = cpumask_first(sched_domain_span(sd));
5756
		size = cpumask_weight(sched_domain_span(sd));
5757
		busy_sd = sd->parent; /* sd_busy */
5758
	}
5759
	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5760 5761

	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5762
	per_cpu(sd_llc_size, cpu) = size;
5763
	per_cpu(sd_llc_id, cpu) = id;
5764 5765 5766

	sd = lowest_flag_domain(cpu, SD_NUMA);
	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5767 5768 5769

	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5770 5771
}

L
Linus Torvalds 已提交
5772
/*
I
Ingo Molnar 已提交
5773
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
5774 5775
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
5776 5777
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
5778
{
5779
	struct rq *rq = cpu_rq(cpu);
5780 5781 5782
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
5783
	for (tmp = sd; tmp; ) {
5784 5785 5786
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5787

5788
		if (sd_parent_degenerate(tmp, parent)) {
5789
			tmp->parent = parent->parent;
5790 5791
			if (parent->parent)
				parent->parent->child = tmp;
5792 5793 5794 5795 5796 5797 5798
			/*
			 * Transfer SD_PREFER_SIBLING down in case of a
			 * degenerate parent; the spans match for this
			 * so the property transfers.
			 */
			if (parent->flags & SD_PREFER_SIBLING)
				tmp->flags |= SD_PREFER_SIBLING;
5799
			destroy_sched_domain(parent, cpu);
5800 5801
		} else
			tmp = tmp->parent;
5802 5803
	}

5804
	if (sd && sd_degenerate(sd)) {
5805
		tmp = sd;
5806
		sd = sd->parent;
5807
		destroy_sched_domain(tmp, cpu);
5808 5809 5810
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5811

5812
	sched_domain_debug(sd, cpu);
L
Linus Torvalds 已提交
5813

G
Gregory Haskins 已提交
5814
	rq_attach_root(rq, rd);
5815
	tmp = rq->sd;
N
Nick Piggin 已提交
5816
	rcu_assign_pointer(rq->sd, sd);
5817
	destroy_sched_domains(tmp, cpu);
5818 5819

	update_top_cache_domain(cpu);
L
Linus Torvalds 已提交
5820 5821 5822
}

/* cpus with isolated domains */
5823
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
5824 5825 5826 5827

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
5828
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
5829
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
5830 5831 5832
	return 1;
}

I
Ingo Molnar 已提交
5833
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5834

5835
struct s_data {
5836
	struct sched_domain ** __percpu sd;
5837 5838 5839
	struct root_domain	*rd;
};

5840 5841
enum s_alloc {
	sa_rootdomain,
5842
	sa_sd,
5843
	sa_sd_storage,
5844 5845 5846
	sa_none,
};

P
Peter Zijlstra 已提交
5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884
/*
 * Build an iteration mask that can exclude certain CPUs from the upwards
 * domain traversal.
 *
 * Asymmetric node setups can result in situations where the domain tree is of
 * unequal depth, make sure to skip domains that already cover the entire
 * range.
 *
 * In that case build_sched_domains() will have terminated the iteration early
 * and our sibling sd spans will be empty. Domains should always include the
 * cpu they're built on, so check that.
 *
 */
static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
{
	const struct cpumask *span = sched_domain_span(sd);
	struct sd_data *sdd = sd->private;
	struct sched_domain *sibling;
	int i;

	for_each_cpu(i, span) {
		sibling = *per_cpu_ptr(sdd->sd, i);
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
			continue;

		cpumask_set_cpu(i, sched_group_mask(sg));
	}
}

/*
 * Return the canonical balance cpu for this group, this is the first cpu
 * of this group that's also in the iteration mask.
 */
int group_balance_cpu(struct sched_group *sg)
{
	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
}

5885 5886 5887 5888 5889 5890 5891
static int
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered = sched_domains_tmpmask;
	struct sd_data *sdd = sd->private;
5892
	struct sched_domain *sibling;
5893 5894 5895 5896 5897 5898 5899 5900 5901 5902
	int i;

	cpumask_clear(covered);

	for_each_cpu(i, span) {
		struct cpumask *sg_span;

		if (cpumask_test_cpu(i, covered))
			continue;

5903
		sibling = *per_cpu_ptr(sdd->sd, i);
P
Peter Zijlstra 已提交
5904 5905

		/* See the comment near build_group_mask(). */
5906
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
P
Peter Zijlstra 已提交
5907 5908
			continue;

5909
		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5910
				GFP_KERNEL, cpu_to_node(cpu));
5911 5912 5913 5914 5915

		if (!sg)
			goto fail;

		sg_span = sched_group_cpus(sg);
5916 5917 5918
		if (sibling->child)
			cpumask_copy(sg_span, sched_domain_span(sibling->child));
		else
5919 5920 5921 5922
			cpumask_set_cpu(i, sg_span);

		cpumask_or(covered, covered, sg_span);

5923 5924
		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
		if (atomic_inc_return(&sg->sgc->ref) == 1)
P
Peter Zijlstra 已提交
5925 5926
			build_group_mask(sd, sg);

5927
		/*
5928
		 * Initialize sgc->capacity such that even if we mess up the
5929 5930 5931
		 * domains and no possible iteration will get us here, we won't
		 * die on a /0 trap.
		 */
5932
		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
5933

P
Peter Zijlstra 已提交
5934 5935 5936 5937 5938
		/*
		 * Make sure the first group of this domain contains the
		 * canonical balance cpu. Otherwise the sched_domain iteration
		 * breaks. See update_sg_lb_stats().
		 */
P
Peter Zijlstra 已提交
5939
		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
P
Peter Zijlstra 已提交
5940
		    group_balance_cpu(sg) == cpu)
5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959
			groups = sg;

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
		last->next = first;
	}
	sd->groups = groups;

	return 0;

fail:
	free_sched_groups(first, 0);

	return -ENOMEM;
}

5960
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
5961
{
5962 5963
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
5964

5965 5966
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
5967

5968
	if (sg) {
5969
		*sg = *per_cpu_ptr(sdd->sg, cpu);
5970 5971
		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
5972
	}
5973 5974

	return cpu;
5975 5976
}

5977
/*
5978 5979
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
5980
 * and ->cpu_capacity to 0.
5981 5982
 *
 * Assumes the sched_domain tree is fully constructed
5983
 */
5984 5985
static int
build_sched_groups(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5986
{
5987 5988 5989
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
5990
	struct cpumask *covered;
5991
	int i;
5992

5993 5994 5995
	get_group(cpu, sdd, &sd->groups);
	atomic_inc(&sd->groups->ref);

5996
	if (cpu != cpumask_first(span))
5997 5998
		return 0;

5999 6000 6001
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

6002
	cpumask_clear(covered);
6003

6004 6005
	for_each_cpu(i, span) {
		struct sched_group *sg;
6006
		int group, j;
6007

6008 6009
		if (cpumask_test_cpu(i, covered))
			continue;
6010

6011
		group = get_group(i, sdd, &sg);
P
Peter Zijlstra 已提交
6012
		cpumask_setall(sched_group_mask(sg));
6013

6014 6015 6016
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
6017

6018 6019 6020
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
6021

6022 6023 6024 6025 6026 6027 6028
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
6029 6030

	return 0;
6031
}
6032

6033
/*
6034
 * Initialize sched groups cpu_capacity.
6035
 *
6036
 * cpu_capacity indicates the capacity of sched group, which is used while
6037
 * distributing the load between different sched groups in a sched domain.
6038 6039 6040 6041
 * Typically cpu_capacity for all the groups in a sched domain will be same
 * unless there are asymmetries in the topology. If there are asymmetries,
 * group having more cpu_capacity will pickup more load compared to the
 * group having less cpu_capacity.
6042
 */
6043
static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6044
{
6045
	struct sched_group *sg = sd->groups;
6046

6047
	WARN_ON(!sg);
6048 6049 6050 6051 6052

	do {
		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
		sg = sg->next;
	} while (sg != sd->groups);
6053

P
Peter Zijlstra 已提交
6054
	if (cpu != group_balance_cpu(sg))
6055
		return;
6056

6057 6058
	update_group_capacity(sd, cpu);
	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6059 6060
}

6061 6062 6063 6064 6065
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

6066
static int default_relax_domain_level = -1;
6067
int sched_domain_level_max;
6068 6069 6070

static int __init setup_relax_domain_level(char *str)
{
6071 6072
	if (kstrtoint(str, 0, &default_relax_domain_level))
		pr_warn("Unable to set relax_domain_level\n");
6073

6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
6092
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6093 6094
	} else {
		/* turn on idle balance on this domain */
6095
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6096 6097 6098
	}
}

6099 6100 6101
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

6102 6103 6104 6105 6106
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
6107 6108
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
6109 6110
	case sa_sd:
		free_percpu(d->sd); /* fall through */
6111
	case sa_sd_storage:
6112
		__sdt_free(cpu_map); /* fall through */
6113 6114 6115 6116
	case sa_none:
		break;
	}
}
6117

6118 6119 6120
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
6121 6122
	memset(d, 0, sizeof(*d));

6123 6124
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
6125 6126 6127
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
6128
	d->rd = alloc_rootdomain();
6129
	if (!d->rd)
6130
		return sa_sd;
6131 6132
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
6133

6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

6146
	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6147
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6148

6149 6150
	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6151 6152
}

6153 6154
#ifdef CONFIG_NUMA
static int sched_domains_numa_levels;
6155
enum numa_topology_type sched_numa_topology_type;
6156
static int *sched_domains_numa_distance;
6157
int sched_max_numa_distance;
6158 6159
static struct cpumask ***sched_domains_numa_masks;
static int sched_domains_curr_level;
6160
#endif
6161

6162 6163 6164
/*
 * SD_flags allowed in topology descriptions.
 *
6165
 * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6166 6167
 * SD_SHARE_PKG_RESOURCES - describes shared caches
 * SD_NUMA                - describes NUMA topologies
6168
 * SD_SHARE_POWERDOMAIN   - describes shared power domain
6169 6170 6171 6172 6173
 *
 * Odd one out:
 * SD_ASYM_PACKING        - describes SMT quirks
 */
#define TOPOLOGY_SD_FLAGS		\
6174
	(SD_SHARE_CPUCAPACITY |		\
6175 6176
	 SD_SHARE_PKG_RESOURCES |	\
	 SD_NUMA |			\
6177 6178
	 SD_ASYM_PACKING |		\
	 SD_SHARE_POWERDOMAIN)
6179 6180

static struct sched_domain *
6181
sd_init(struct sched_domain_topology_level *tl, int cpu)
6182 6183
{
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199
	int sd_weight, sd_flags = 0;

#ifdef CONFIG_NUMA
	/*
	 * Ugly hack to pass state to sd_numa_mask()...
	 */
	sched_domains_curr_level = tl->numa_level;
#endif

	sd_weight = cpumask_weight(tl->mask(cpu));

	if (tl->sd_flags)
		sd_flags = (*tl->sd_flags)();
	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
			"wrong sd_flags in topology description\n"))
		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6200 6201 6202 6203 6204

	*sd = (struct sched_domain){
		.min_interval		= sd_weight,
		.max_interval		= 2*sd_weight,
		.busy_factor		= 32,
6205
		.imbalance_pct		= 125,
6206 6207 6208 6209

		.cache_nice_tries	= 0,
		.busy_idx		= 0,
		.idle_idx		= 0,
6210 6211 6212 6213 6214 6215
		.newidle_idx		= 0,
		.wake_idx		= 0,
		.forkexec_idx		= 0,

		.flags			= 1*SD_LOAD_BALANCE
					| 1*SD_BALANCE_NEWIDLE
6216 6217
					| 1*SD_BALANCE_EXEC
					| 1*SD_BALANCE_FORK
6218
					| 0*SD_BALANCE_WAKE
6219
					| 1*SD_WAKE_AFFINE
6220
					| 0*SD_SHARE_CPUCAPACITY
6221
					| 0*SD_SHARE_PKG_RESOURCES
6222
					| 0*SD_SERIALIZE
6223
					| 0*SD_PREFER_SIBLING
6224 6225
					| 0*SD_NUMA
					| sd_flags
6226
					,
6227

6228 6229
		.last_balance		= jiffies,
		.balance_interval	= sd_weight,
6230
		.smt_gain		= 0,
6231 6232
		.max_newidle_lb_cost	= 0,
		.next_decay_max_lb_cost	= jiffies,
6233 6234 6235
#ifdef CONFIG_SCHED_DEBUG
		.name			= tl->name,
#endif
6236 6237 6238
	};

	/*
6239
	 * Convert topological properties into behaviour.
6240
	 */
6241

6242
	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6243
		sd->flags |= SD_PREFER_SIBLING;
6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273
		sd->imbalance_pct = 110;
		sd->smt_gain = 1178; /* ~15% */

	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
		sd->imbalance_pct = 117;
		sd->cache_nice_tries = 1;
		sd->busy_idx = 2;

#ifdef CONFIG_NUMA
	} else if (sd->flags & SD_NUMA) {
		sd->cache_nice_tries = 2;
		sd->busy_idx = 3;
		sd->idle_idx = 2;

		sd->flags |= SD_SERIALIZE;
		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
			sd->flags &= ~(SD_BALANCE_EXEC |
				       SD_BALANCE_FORK |
				       SD_WAKE_AFFINE);
		}

#endif
	} else {
		sd->flags |= SD_PREFER_SIBLING;
		sd->cache_nice_tries = 1;
		sd->busy_idx = 2;
		sd->idle_idx = 1;
	}

	sd->private = &tl->data;
6274 6275 6276 6277

	return sd;
}

6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303
/*
 * Topology list, bottom-up.
 */
static struct sched_domain_topology_level default_topology[] = {
#ifdef CONFIG_SCHED_SMT
	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
#endif
#ifdef CONFIG_SCHED_MC
	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
#endif
	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
	{ NULL, },
};

struct sched_domain_topology_level *sched_domain_topology = default_topology;

#define for_each_sd_topology(tl)			\
	for (tl = sched_domain_topology; tl->mask; tl++)

void set_sched_topology(struct sched_domain_topology_level *tl)
{
	sched_domain_topology = tl;
}

#ifdef CONFIG_NUMA

6304 6305 6306 6307 6308
static const struct cpumask *sd_numa_mask(int cpu)
{
	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
}

6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329
static void sched_numa_warn(const char *str)
{
	static int done = false;
	int i,j;

	if (done)
		return;

	done = true;

	printk(KERN_WARNING "ERROR: %s\n\n", str);

	for (i = 0; i < nr_node_ids; i++) {
		printk(KERN_WARNING "  ");
		for (j = 0; j < nr_node_ids; j++)
			printk(KERN_CONT "%02d ", node_distance(i,j));
		printk(KERN_CONT "\n");
	}
	printk(KERN_WARNING "\n");
}

6330
bool find_numa_distance(int distance)
6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344
{
	int i;

	if (distance == node_distance(0, 0))
		return true;

	for (i = 0; i < sched_domains_numa_levels; i++) {
		if (sched_domains_numa_distance[i] == distance)
			return true;
	}

	return false;
}

6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394
/*
 * A system can have three types of NUMA topology:
 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
 *
 * The difference between a glueless mesh topology and a backplane
 * topology lies in whether communication between not directly
 * connected nodes goes through intermediary nodes (where programs
 * could run), or through backplane controllers. This affects
 * placement of programs.
 *
 * The type of topology can be discerned with the following tests:
 * - If the maximum distance between any nodes is 1 hop, the system
 *   is directly connected.
 * - If for two nodes A and B, located N > 1 hops away from each other,
 *   there is an intermediary node C, which is < N hops away from both
 *   nodes A and B, the system is a glueless mesh.
 */
static void init_numa_topology_type(void)
{
	int a, b, c, n;

	n = sched_max_numa_distance;

	if (n <= 1)
		sched_numa_topology_type = NUMA_DIRECT;

	for_each_online_node(a) {
		for_each_online_node(b) {
			/* Find two nodes furthest removed from each other. */
			if (node_distance(a, b) < n)
				continue;

			/* Is there an intermediary node between a and b? */
			for_each_online_node(c) {
				if (node_distance(a, c) < n &&
				    node_distance(b, c) < n) {
					sched_numa_topology_type =
							NUMA_GLUELESS_MESH;
					return;
				}
			}

			sched_numa_topology_type = NUMA_BACKPLANE;
			return;
		}
	}
}

6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415
static void sched_init_numa(void)
{
	int next_distance, curr_distance = node_distance(0, 0);
	struct sched_domain_topology_level *tl;
	int level = 0;
	int i, j, k;

	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
	if (!sched_domains_numa_distance)
		return;

	/*
	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
	 * unique distances in the node_distance() table.
	 *
	 * Assumes node_distance(0,j) includes all distances in
	 * node_distance(i,j) in order to avoid cubic time.
	 */
	next_distance = curr_distance;
	for (i = 0; i < nr_node_ids; i++) {
		for (j = 0; j < nr_node_ids; j++) {
6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439
			for (k = 0; k < nr_node_ids; k++) {
				int distance = node_distance(i, k);

				if (distance > curr_distance &&
				    (distance < next_distance ||
				     next_distance == curr_distance))
					next_distance = distance;

				/*
				 * While not a strong assumption it would be nice to know
				 * about cases where if node A is connected to B, B is not
				 * equally connected to A.
				 */
				if (sched_debug() && node_distance(k, i) != distance)
					sched_numa_warn("Node-distance not symmetric");

				if (sched_debug() && i && !find_numa_distance(distance))
					sched_numa_warn("Node-0 not representative");
			}
			if (next_distance != curr_distance) {
				sched_domains_numa_distance[level++] = next_distance;
				sched_domains_numa_levels = level;
				curr_distance = next_distance;
			} else break;
6440
		}
6441 6442 6443 6444 6445 6446

		/*
		 * In case of sched_debug() we verify the above assumption.
		 */
		if (!sched_debug())
			break;
6447
	}
6448 6449 6450 6451

	if (!level)
		return;

6452 6453 6454 6455
	/*
	 * 'level' contains the number of unique distances, excluding the
	 * identity distance node_distance(i,i).
	 *
V
Viresh Kumar 已提交
6456
	 * The sched_domains_numa_distance[] array includes the actual distance
6457 6458 6459
	 * numbers.
	 */

6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470
	/*
	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
	 * the array will contain less then 'level' members. This could be
	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
	 * in other functions.
	 *
	 * We reset it to 'level' at the end of this function.
	 */
	sched_domains_numa_levels = 0;

6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485
	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
	if (!sched_domains_numa_masks)
		return;

	/*
	 * Now for each level, construct a mask per node which contains all
	 * cpus of nodes that are that many hops away from us.
	 */
	for (i = 0; i < level; i++) {
		sched_domains_numa_masks[i] =
			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
		if (!sched_domains_numa_masks[i])
			return;

		for (j = 0; j < nr_node_ids; j++) {
6486
			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6487 6488 6489 6490 6491 6492
			if (!mask)
				return;

			sched_domains_numa_masks[i][j] = mask;

			for (k = 0; k < nr_node_ids; k++) {
6493
				if (node_distance(j, k) > sched_domains_numa_distance[i])
6494 6495 6496 6497 6498 6499 6500
					continue;

				cpumask_or(mask, mask, cpumask_of_node(k));
			}
		}
	}

6501 6502 6503
	/* Compute default topology size */
	for (i = 0; sched_domain_topology[i].mask; i++);

6504
	tl = kzalloc((i + level + 1) *
6505 6506 6507 6508 6509 6510 6511
			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
	if (!tl)
		return;

	/*
	 * Copy the default topology bits..
	 */
6512 6513
	for (i = 0; sched_domain_topology[i].mask; i++)
		tl[i] = sched_domain_topology[i];
6514 6515 6516 6517 6518 6519 6520

	/*
	 * .. and append 'j' levels of NUMA goodness.
	 */
	for (j = 0; j < level; i++, j++) {
		tl[i] = (struct sched_domain_topology_level){
			.mask = sd_numa_mask,
6521
			.sd_flags = cpu_numa_flags,
6522 6523
			.flags = SDTL_OVERLAP,
			.numa_level = j,
6524
			SD_INIT_NAME(NUMA)
6525 6526 6527 6528
		};
	}

	sched_domain_topology = tl;
6529 6530

	sched_domains_numa_levels = level;
6531
	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6532 6533

	init_numa_topology_type();
6534
}
6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581

static void sched_domains_numa_masks_set(int cpu)
{
	int i, j;
	int node = cpu_to_node(cpu);

	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++) {
			if (node_distance(j, node) <= sched_domains_numa_distance[i])
				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
		}
	}
}

static void sched_domains_numa_masks_clear(int cpu)
{
	int i, j;
	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++)
			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
	}
}

/*
 * Update sched_domains_numa_masks[level][node] array when new cpus
 * are onlined.
 */
static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	int cpu = (long)hcpu;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
		sched_domains_numa_masks_set(cpu);
		break;

	case CPU_DEAD:
		sched_domains_numa_masks_clear(cpu);
		break;

	default:
		return NOTIFY_DONE;
	}

	return NOTIFY_OK;
6582 6583 6584 6585 6586
}
#else
static inline void sched_init_numa(void)
{
}
6587 6588 6589 6590 6591 6592 6593

static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	return 0;
}
6594 6595
#endif /* CONFIG_NUMA */

6596 6597 6598 6599 6600
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

6601
	for_each_sd_topology(tl) {
6602 6603 6604 6605 6606 6607 6608 6609 6610 6611
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

6612 6613
		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
		if (!sdd->sgc)
6614 6615
			return -ENOMEM;

6616 6617 6618
		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_group *sg;
6619
			struct sched_group_capacity *sgc;
6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632

		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

6633 6634
			sg->next = sg;

6635
			*per_cpu_ptr(sdd->sg, j) = sg;
6636

6637
			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6638
					GFP_KERNEL, cpu_to_node(j));
6639
			if (!sgc)
6640 6641
				return -ENOMEM;

6642
			*per_cpu_ptr(sdd->sgc, j) = sgc;
6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

6654
	for_each_sd_topology(tl) {
6655 6656 6657
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668
			struct sched_domain *sd;

			if (sdd->sd) {
				sd = *per_cpu_ptr(sdd->sd, j);
				if (sd && (sd->flags & SD_OVERLAP))
					free_sched_groups(sd->groups, 0);
				kfree(*per_cpu_ptr(sdd->sd, j));
			}

			if (sdd->sg)
				kfree(*per_cpu_ptr(sdd->sg, j));
6669 6670
			if (sdd->sgc)
				kfree(*per_cpu_ptr(sdd->sgc, j));
6671 6672
		}
		free_percpu(sdd->sd);
6673
		sdd->sd = NULL;
6674
		free_percpu(sdd->sg);
6675
		sdd->sg = NULL;
6676 6677
		free_percpu(sdd->sgc);
		sdd->sgc = NULL;
6678 6679 6680
	}
}

6681
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6682 6683
		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
		struct sched_domain *child, int cpu)
6684
{
6685
	struct sched_domain *sd = sd_init(tl, cpu);
6686
	if (!sd)
6687
		return child;
6688 6689

	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6690 6691 6692
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6693
		child->parent = sd;
6694
		sd->child = child;
P
Peter Zijlstra 已提交
6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708

		if (!cpumask_subset(sched_domain_span(child),
				    sched_domain_span(sd))) {
			pr_err("BUG: arch topology borken\n");
#ifdef CONFIG_SCHED_DEBUG
			pr_err("     the %s domain not a subset of the %s domain\n",
					child->name, sd->name);
#endif
			/* Fixup, ensure @sd has at least @child cpus. */
			cpumask_or(sched_domain_span(sd),
				   sched_domain_span(sd),
				   sched_domain_span(child));
		}

6709
	}
6710
	set_domain_attribute(sd, attr);
6711 6712 6713 6714

	return sd;
}

6715 6716 6717 6718
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
6719 6720
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
6721
{
6722
	enum s_alloc alloc_state;
6723
	struct sched_domain *sd;
6724
	struct s_data d;
6725
	int i, ret = -ENOMEM;
6726

6727 6728 6729
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
6730

6731
	/* Set up domains for cpus specified by the cpu_map. */
6732
	for_each_cpu(i, cpu_map) {
6733 6734
		struct sched_domain_topology_level *tl;

6735
		sd = NULL;
6736
		for_each_sd_topology(tl) {
6737
			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6738 6739
			if (tl == sched_domain_topology)
				*per_cpu_ptr(d.sd, i) = sd;
6740 6741
			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
				sd->flags |= SD_OVERLAP;
6742 6743
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
				break;
6744
		}
6745 6746 6747 6748 6749 6750
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6751 6752 6753 6754 6755 6756 6757
			if (sd->flags & SD_OVERLAP) {
				if (build_overlap_sched_groups(sd, i))
					goto error;
			} else {
				if (build_sched_groups(sd, i))
					goto error;
			}
6758
		}
6759
	}
6760

6761
	/* Calculate CPU capacity for physical packages and nodes */
6762 6763 6764
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
6765

6766 6767
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
6768
			init_sched_groups_capacity(i, sd);
6769
		}
6770
	}
6771

L
Linus Torvalds 已提交
6772
	/* Attach the domains */
6773
	rcu_read_lock();
6774
	for_each_cpu(i, cpu_map) {
6775
		sd = *per_cpu_ptr(d.sd, i);
6776
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
6777
	}
6778
	rcu_read_unlock();
6779

6780
	ret = 0;
6781
error:
6782
	__free_domain_allocs(&d, alloc_state, cpu_map);
6783
	return ret;
L
Linus Torvalds 已提交
6784
}
P
Paul Jackson 已提交
6785

6786
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
6787
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
6788 6789
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
6790 6791 6792

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
6793 6794
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
6795
 */
6796
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
6797

6798 6799 6800 6801 6802
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
6803
int __weak arch_update_cpu_topology(void)
6804
{
6805
	return 0;
6806 6807
}

6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

6833
/*
I
Ingo Molnar 已提交
6834
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6835 6836
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6837
 */
6838
static int init_sched_domains(const struct cpumask *cpu_map)
6839
{
6840 6841
	int err;

6842
	arch_update_cpu_topology();
P
Paul Jackson 已提交
6843
	ndoms_cur = 1;
6844
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
6845
	if (!doms_cur)
6846 6847
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6848
	err = build_sched_domains(doms_cur[0], NULL);
6849
	register_sched_domain_sysctl();
6850 6851

	return err;
6852 6853 6854 6855 6856 6857
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6858
static void detach_destroy_domains(const struct cpumask *cpu_map)
6859 6860 6861
{
	int i;

6862
	rcu_read_lock();
6863
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
6864
		cpu_attach_domain(NULL, &def_root_domain, i);
6865
	rcu_read_unlock();
6866 6867
}

6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
6884 6885
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
6886
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
6887 6888 6889
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
6890
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
6891 6892 6893
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
6894 6895 6896
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
6897 6898 6899 6900 6901 6902
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
6903
 *
6904
 * If doms_new == NULL it will be replaced with cpu_online_mask.
6905 6906
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
6907
 *
P
Paul Jackson 已提交
6908 6909
 * Call with hotplug lock held
 */
6910
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6911
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
6912
{
6913
	int i, j, n;
6914
	int new_topology;
P
Paul Jackson 已提交
6915

6916
	mutex_lock(&sched_domains_mutex);
6917

6918 6919 6920
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

6921 6922 6923
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

6924
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
6925 6926 6927

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
6928
		for (j = 0; j < n && !new_topology; j++) {
6929
			if (cpumask_equal(doms_cur[i], doms_new[j])
6930
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
6931 6932 6933
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
6934
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
6935 6936 6937 6938
match1:
		;
	}

6939
	n = ndoms_cur;
6940
	if (doms_new == NULL) {
6941
		n = 0;
6942
		doms_new = &fallback_doms;
6943
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6944
		WARN_ON_ONCE(dattr_new);
6945 6946
	}

P
Paul Jackson 已提交
6947 6948
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
6949
		for (j = 0; j < n && !new_topology; j++) {
6950
			if (cpumask_equal(doms_new[i], doms_cur[j])
6951
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
6952 6953 6954
				goto match2;
		}
		/* no match - add a new doms_new */
6955
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
6956 6957 6958 6959 6960
match2:
		;
	}

	/* Remember the new sched domains */
6961 6962
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
6963
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
6964
	doms_cur = doms_new;
6965
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
6966
	ndoms_cur = ndoms_new;
6967 6968

	register_sched_domain_sysctl();
6969

6970
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
6971 6972
}

6973 6974
static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */

L
Linus Torvalds 已提交
6975
/*
6976 6977 6978
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
6979 6980 6981
 *
 * If we come here as part of a suspend/resume, don't touch cpusets because we
 * want to restore it back to its original state upon resume anyway.
L
Linus Torvalds 已提交
6982
 */
6983 6984
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
6985
{
6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007
	switch (action) {
	case CPU_ONLINE_FROZEN:
	case CPU_DOWN_FAILED_FROZEN:

		/*
		 * num_cpus_frozen tracks how many CPUs are involved in suspend
		 * resume sequence. As long as this is not the last online
		 * operation in the resume sequence, just build a single sched
		 * domain, ignoring cpusets.
		 */
		num_cpus_frozen--;
		if (likely(num_cpus_frozen)) {
			partition_sched_domains(1, NULL, NULL);
			break;
		}

		/*
		 * This is the last CPU online operation. So fall through and
		 * restore the original sched domains by considering the
		 * cpuset configurations.
		 */

7008
	case CPU_ONLINE:
7009
	case CPU_DOWN_FAILED:
7010
		cpuset_update_active_cpus(true);
7011
		break;
7012 7013 7014
	default:
		return NOTIFY_DONE;
	}
7015
	return NOTIFY_OK;
7016
}
7017

7018 7019
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
7020
{
7021
	switch (action) {
7022
	case CPU_DOWN_PREPARE:
7023
		cpuset_update_active_cpus(false);
7024 7025 7026 7027 7028
		break;
	case CPU_DOWN_PREPARE_FROZEN:
		num_cpus_frozen++;
		partition_sched_domains(1, NULL, NULL);
		break;
7029 7030 7031
	default:
		return NOTIFY_DONE;
	}
7032
	return NOTIFY_OK;
7033 7034
}

L
Linus Torvalds 已提交
7035 7036
void __init sched_init_smp(void)
{
7037 7038 7039
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7040
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7041

7042 7043
	sched_init_numa();

7044 7045 7046 7047 7048
	/*
	 * There's no userspace yet to cause hotplug operations; hence all the
	 * cpu masks are stable and all blatant races in the below code cannot
	 * happen.
	 */
7049
	mutex_lock(&sched_domains_mutex);
7050
	init_sched_domains(cpu_active_mask);
7051 7052 7053
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7054
	mutex_unlock(&sched_domains_mutex);
7055

7056
	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7057 7058
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7059

7060
	init_hrtick();
7061 7062

	/* Move init over to a non-isolated CPU */
7063
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7064
		BUG();
I
Ingo Molnar 已提交
7065
	sched_init_granularity();
7066
	free_cpumask_var(non_isolated_cpus);
7067

7068
	init_sched_rt_class();
7069
	init_sched_dl_class();
L
Linus Torvalds 已提交
7070 7071 7072 7073
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7074
	sched_init_granularity();
L
Linus Torvalds 已提交
7075 7076 7077
}
#endif /* CONFIG_SMP */

7078 7079
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
7080 7081 7082 7083 7084 7085 7086
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

7087
#ifdef CONFIG_CGROUP_SCHED
7088 7089 7090 7091
/*
 * Default task group.
 * Every task in system belongs to this group at bootup.
 */
7092
struct task_group root_task_group;
7093
LIST_HEAD(task_groups);
7094
#endif
P
Peter Zijlstra 已提交
7095

7096
DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
P
Peter Zijlstra 已提交
7097

L
Linus Torvalds 已提交
7098 7099
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7100
	int i, j;
7101 7102 7103 7104 7105 7106 7107 7108 7109
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
	if (alloc_size) {
7110
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7111 7112

#ifdef CONFIG_FAIR_GROUP_SCHED
7113
		root_task_group.se = (struct sched_entity **)ptr;
7114 7115
		ptr += nr_cpu_ids * sizeof(void **);

7116
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7117
		ptr += nr_cpu_ids * sizeof(void **);
7118

7119
#endif /* CONFIG_FAIR_GROUP_SCHED */
7120
#ifdef CONFIG_RT_GROUP_SCHED
7121
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7122 7123
		ptr += nr_cpu_ids * sizeof(void **);

7124
		root_task_group.rt_rq = (struct rt_rq **)ptr;
7125 7126
		ptr += nr_cpu_ids * sizeof(void **);

7127
#endif /* CONFIG_RT_GROUP_SCHED */
7128
	}
7129
#ifdef CONFIG_CPUMASK_OFFSTACK
7130 7131 7132
	for_each_possible_cpu(i) {
		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7133
	}
7134
#endif /* CONFIG_CPUMASK_OFFSTACK */
I
Ingo Molnar 已提交
7135

7136 7137 7138
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());
	init_dl_bandwidth(&def_dl_bandwidth,
7139
			global_rt_period(), global_rt_runtime());
7140

G
Gregory Haskins 已提交
7141 7142 7143 7144
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7145
#ifdef CONFIG_RT_GROUP_SCHED
7146
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7147
			global_rt_period(), global_rt_runtime());
7148
#endif /* CONFIG_RT_GROUP_SCHED */
7149

D
Dhaval Giani 已提交
7150
#ifdef CONFIG_CGROUP_SCHED
7151 7152
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
7153
	INIT_LIST_HEAD(&root_task_group.siblings);
7154
	autogroup_init(&init_task);
7155

D
Dhaval Giani 已提交
7156
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
7157

7158
	for_each_possible_cpu(i) {
7159
		struct rq *rq;
L
Linus Torvalds 已提交
7160 7161

		rq = cpu_rq(i);
7162
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
7163
		rq->nr_running = 0;
7164 7165
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
7166
		init_cfs_rq(&rq->cfs);
7167 7168
		init_rt_rq(&rq->rt);
		init_dl_rq(&rq->dl);
I
Ingo Molnar 已提交
7169
#ifdef CONFIG_FAIR_GROUP_SCHED
7170
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
7171
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
7172
		/*
7173
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
7174 7175 7176 7177
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
7178
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
7179 7180 7181
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
7182
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
7183 7184 7185
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
7186
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
7187
		 *
7188 7189
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
7190
		 */
7191
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7192
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
7193 7194 7195
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7196
#ifdef CONFIG_RT_GROUP_SCHED
7197
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
7198
#endif
L
Linus Torvalds 已提交
7199

I
Ingo Molnar 已提交
7200 7201
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
7202 7203 7204

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
7205
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7206
		rq->sd = NULL;
G
Gregory Haskins 已提交
7207
		rq->rd = NULL;
7208
		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7209
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
7210
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7211
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7212
		rq->push_cpu = 0;
7213
		rq->cpu = i;
7214
		rq->online = 0;
7215 7216
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
7217
		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7218 7219 7220

		INIT_LIST_HEAD(&rq->cfs_tasks);

7221
		rq_attach_root(rq, &def_root_domain);
7222
#ifdef CONFIG_NO_HZ_COMMON
7223
		rq->nohz_flags = 0;
7224
#endif
7225 7226 7227
#ifdef CONFIG_NO_HZ_FULL
		rq->last_sched_tick = 0;
#endif
L
Linus Torvalds 已提交
7228
#endif
P
Peter Zijlstra 已提交
7229
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7230 7231 7232
		atomic_set(&rq->nr_iowait, 0);
	}

7233
	set_load_weight(&init_task);
7234

7235 7236 7237 7238
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

L
Linus Torvalds 已提交
7239 7240 7241 7242 7243 7244
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

7245 7246 7247 7248 7249
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;

L
Linus Torvalds 已提交
7250 7251 7252 7253 7254 7255 7256
	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
7257 7258 7259

	calc_load_update = jiffies + LOAD_FREQ;

7260
#ifdef CONFIG_SMP
7261
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
R
Rusty Russell 已提交
7262 7263 7264
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7265
	idle_thread_set_boot_cpu();
7266
	set_cpu_rq_start_time();
7267 7268
#endif
	init_sched_fair_class();
7269

7270
	scheduler_running = 1;
L
Linus Torvalds 已提交
7271 7272
}

7273
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7274 7275
static inline int preempt_count_equals(int preempt_offset)
{
7276
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7277

A
Arnd Bergmann 已提交
7278
	return (nested == preempt_offset);
7279 7280
}

7281
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7282
{
P
Peter Zijlstra 已提交
7283 7284 7285 7286 7287
	/*
	 * Blocking primitives will set (and therefore destroy) current->state,
	 * since we will exit with TASK_RUNNING make sure we enter with it,
	 * otherwise we will destroy state.
	 */
7288
	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
P
Peter Zijlstra 已提交
7289 7290 7291 7292
			"do not call blocking ops when !TASK_RUNNING; "
			"state=%lx set at [<%p>] %pS\n",
			current->state,
			(void *)current->task_state_change,
7293
			(void *)current->task_state_change);
P
Peter Zijlstra 已提交
7294

7295 7296 7297 7298 7299
	___might_sleep(file, line, preempt_offset);
}
EXPORT_SYMBOL(__might_sleep);

void ___might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7300 7301 7302
{
	static unsigned long prev_jiffy;	/* ratelimiting */

7303
	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7304 7305
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
	     !is_idle_task(current)) ||
7306
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
7307 7308 7309 7310 7311
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
7312 7313 7314 7315 7316 7317 7318
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
7319

7320 7321 7322
	if (task_stack_end_corrupted(current))
		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");

I
Ingo Molnar 已提交
7323 7324 7325
	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
7326 7327 7328 7329 7330 7331 7332
#ifdef CONFIG_DEBUG_PREEMPT
	if (!preempt_count_equals(preempt_offset)) {
		pr_err("Preemption disabled at:");
		print_ip_sym(current->preempt_disable_ip);
		pr_cont("\n");
	}
#endif
I
Ingo Molnar 已提交
7333
	dump_stack();
L
Linus Torvalds 已提交
7334
}
7335
EXPORT_SYMBOL(___might_sleep);
L
Linus Torvalds 已提交
7336 7337 7338
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7339 7340
static void normalize_task(struct rq *rq, struct task_struct *p)
{
P
Peter Zijlstra 已提交
7341
	const struct sched_class *prev_class = p->sched_class;
7342 7343 7344
	struct sched_attr attr = {
		.sched_policy = SCHED_NORMAL,
	};
P
Peter Zijlstra 已提交
7345
	int old_prio = p->prio;
7346
	int queued;
7347

7348 7349
	queued = task_on_rq_queued(p);
	if (queued)
7350
		dequeue_task(rq, p, 0);
7351
	__setscheduler(rq, p, &attr);
7352
	if (queued) {
7353
		enqueue_task(rq, p, 0);
7354
		resched_curr(rq);
7355
	}
P
Peter Zijlstra 已提交
7356 7357

	check_class_changed(rq, p, prev_class, old_prio);
7358 7359
}

L
Linus Torvalds 已提交
7360 7361
void normalize_rt_tasks(void)
{
7362
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7363
	unsigned long flags;
7364
	struct rq *rq;
L
Linus Torvalds 已提交
7365

7366
	read_lock(&tasklist_lock);
7367
	for_each_process_thread(g, p) {
7368 7369 7370
		/*
		 * Only normalize user tasks:
		 */
7371
		if (p->flags & PF_KTHREAD)
7372 7373
			continue;

I
Ingo Molnar 已提交
7374 7375
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
7376 7377 7378
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
7379
#endif
I
Ingo Molnar 已提交
7380

7381
		if (!dl_task(p) && !rt_task(p)) {
I
Ingo Molnar 已提交
7382 7383 7384 7385
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
7386
			if (task_nice(p) < 0)
I
Ingo Molnar 已提交
7387
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7388
			continue;
I
Ingo Molnar 已提交
7389
		}
L
Linus Torvalds 已提交
7390

7391
		rq = task_rq_lock(p, &flags);
7392
		normalize_task(rq, p);
7393
		task_rq_unlock(rq, p, &flags);
7394
	}
7395
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
7396 7397 7398
}

#endif /* CONFIG_MAGIC_SYSRQ */
7399

7400
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7401
/*
7402
 * These functions are only useful for the IA64 MCA handling, or kdb.
7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7416 7417
 *
 * Return: The current task for @cpu.
7418
 */
7419
struct task_struct *curr_task(int cpu)
7420 7421 7422 7423
{
	return cpu_curr(cpu);
}

7424 7425 7426
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
7427 7428 7429 7430 7431 7432
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7433 7434
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7435 7436 7437 7438 7439 7440 7441
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7442
void set_curr_task(int cpu, struct task_struct *p)
7443 7444 7445 7446 7447
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7448

D
Dhaval Giani 已提交
7449
#ifdef CONFIG_CGROUP_SCHED
7450 7451 7452
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

7453 7454 7455 7456
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
7457
	autogroup_free(tg);
7458 7459 7460 7461
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
7462
struct task_group *sched_create_group(struct task_group *parent)
7463 7464 7465 7466 7467 7468 7469
{
	struct task_group *tg;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

7470
	if (!alloc_fair_sched_group(tg, parent))
7471 7472
		goto err;

7473
	if (!alloc_rt_sched_group(tg, parent))
7474 7475
		goto err;

7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486
	return tg;

err:
	free_sched_group(tg);
	return ERR_PTR(-ENOMEM);
}

void sched_online_group(struct task_group *tg, struct task_group *parent)
{
	unsigned long flags;

7487
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7488
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
7489 7490 7491 7492 7493

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
7494
	list_add_rcu(&tg->siblings, &parent->children);
7495
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7496 7497
}

7498
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
7499
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7500 7501
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
7502
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
7503 7504
}

7505
/* Destroy runqueue etc associated with a task group */
7506
void sched_destroy_group(struct task_group *tg)
7507 7508 7509 7510 7511 7512
{
	/* wait for possible concurrent references to cfs_rqs complete */
	call_rcu(&tg->rcu, free_sched_group_rcu);
}

void sched_offline_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7513
{
7514
	unsigned long flags;
7515
	int i;
S
Srivatsa Vaddagiri 已提交
7516

7517 7518
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
7519
		unregister_fair_sched_group(tg, i);
7520 7521

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7522
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
7523
	list_del_rcu(&tg->siblings);
7524
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7525 7526
}

7527
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7528 7529 7530
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7531 7532
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7533
{
P
Peter Zijlstra 已提交
7534
	struct task_group *tg;
7535
	int queued, running;
S
Srivatsa Vaddagiri 已提交
7536 7537 7538 7539 7540
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

7541
	running = task_current(rq, tsk);
7542
	queued = task_on_rq_queued(tsk);
S
Srivatsa Vaddagiri 已提交
7543

7544
	if (queued)
S
Srivatsa Vaddagiri 已提交
7545
		dequeue_task(rq, tsk, 0);
7546
	if (unlikely(running))
7547
		put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7548

7549 7550 7551 7552 7553 7554
	/*
	 * All callers are synchronized by task_rq_lock(); we do not use RCU
	 * which is pointless here. Thus, we pass "true" to task_css_check()
	 * to prevent lockdep warnings.
	 */
	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
P
Peter Zijlstra 已提交
7555 7556 7557 7558
			  struct task_group, css);
	tg = autogroup_task_group(tsk, tg);
	tsk->sched_task_group = tg;

P
Peter Zijlstra 已提交
7559
#ifdef CONFIG_FAIR_GROUP_SCHED
7560
	if (tsk->sched_class->task_move_group)
7561
		tsk->sched_class->task_move_group(tsk, queued);
7562
	else
P
Peter Zijlstra 已提交
7563
#endif
7564
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
7565

7566 7567
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
7568
	if (queued)
7569
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
7570

7571
	task_rq_unlock(rq, tsk, &flags);
S
Srivatsa Vaddagiri 已提交
7572
}
D
Dhaval Giani 已提交
7573
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
7574

7575 7576 7577 7578 7579
#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
P
Peter Zijlstra 已提交
7580

P
Peter Zijlstra 已提交
7581 7582
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
7583
{
P
Peter Zijlstra 已提交
7584
	struct task_struct *g, *p;
7585

7586 7587 7588 7589 7590 7591
	/*
	 * Autogroups do not have RT tasks; see autogroup_create().
	 */
	if (task_group_is_autogroup(tg))
		return 0;

7592
	for_each_process_thread(g, p) {
7593
		if (rt_task(p) && task_group(p) == tg)
P
Peter Zijlstra 已提交
7594
			return 1;
7595
	}
7596

P
Peter Zijlstra 已提交
7597 7598
	return 0;
}
7599

P
Peter Zijlstra 已提交
7600 7601 7602 7603 7604
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
7605

7606
static int tg_rt_schedulable(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
7607 7608 7609 7610 7611
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
7612

P
Peter Zijlstra 已提交
7613 7614
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
7615

P
Peter Zijlstra 已提交
7616 7617 7618
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
7619 7620
	}

7621 7622 7623 7624 7625
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
7626

7627 7628 7629
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
7630 7631
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
7632

P
Peter Zijlstra 已提交
7633
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7634

7635 7636 7637 7638 7639
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
7640

7641 7642 7643
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
7644 7645 7646
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7647

P
Peter Zijlstra 已提交
7648 7649 7650 7651
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
7652

P
Peter Zijlstra 已提交
7653
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7654
	}
P
Peter Zijlstra 已提交
7655

P
Peter Zijlstra 已提交
7656 7657 7658 7659
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
7660 7661
}

P
Peter Zijlstra 已提交
7662
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7663
{
7664 7665
	int ret;

P
Peter Zijlstra 已提交
7666 7667 7668 7669 7670 7671
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

7672 7673 7674 7675 7676
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7677 7678
}

7679
static int tg_set_rt_bandwidth(struct task_group *tg,
7680
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
7681
{
P
Peter Zijlstra 已提交
7682
	int i, err = 0;
P
Peter Zijlstra 已提交
7683

7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694
	/*
	 * Disallowing the root group RT runtime is BAD, it would disallow the
	 * kernel creating (and or operating) RT threads.
	 */
	if (tg == &root_task_group && rt_runtime == 0)
		return -EINVAL;

	/* No period doesn't make any sense. */
	if (rt_period == 0)
		return -EINVAL;

P
Peter Zijlstra 已提交
7695
	mutex_lock(&rt_constraints_mutex);
7696
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
7697 7698
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
7699
		goto unlock;
P
Peter Zijlstra 已提交
7700

7701
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7702 7703
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
7704 7705 7706 7707

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

7708
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7709
		rt_rq->rt_runtime = rt_runtime;
7710
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7711
	}
7712
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
7713
unlock:
7714
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
7715 7716 7717
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
7718 7719
}

7720
static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7721 7722 7723 7724 7725 7726 7727 7728
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

7729
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7730 7731
}

7732
static long sched_group_rt_runtime(struct task_group *tg)
P
Peter Zijlstra 已提交
7733 7734 7735
{
	u64 rt_runtime_us;

7736
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7737 7738
		return -1;

7739
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7740 7741 7742
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
7743

7744
static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7745 7746 7747 7748 7749 7750
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

7751
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7752 7753
}

7754
static long sched_group_rt_period(struct task_group *tg)
7755 7756 7757 7758 7759 7760 7761
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}
7762
#endif /* CONFIG_RT_GROUP_SCHED */
7763

7764
#ifdef CONFIG_RT_GROUP_SCHED
7765 7766 7767 7768 7769
static int sched_rt_global_constraints(void)
{
	int ret = 0;

	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
7770
	read_lock(&tasklist_lock);
7771
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
7772
	read_unlock(&tasklist_lock);
7773 7774 7775 7776
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
7777

7778
static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7779 7780 7781 7782 7783 7784 7785 7786
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

7787
#else /* !CONFIG_RT_GROUP_SCHED */
7788 7789
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
7790
	unsigned long flags;
7791
	int i, ret = 0;
7792

7793
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7794 7795 7796
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

7797
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7798
		rt_rq->rt_runtime = global_rt_runtime();
7799
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7800
	}
7801
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7802

7803
	return ret;
7804
}
7805
#endif /* CONFIG_RT_GROUP_SCHED */
7806

7807
static int sched_dl_global_validate(void)
7808
{
7809 7810
	u64 runtime = global_rt_runtime();
	u64 period = global_rt_period();
7811
	u64 new_bw = to_ratio(period, runtime);
7812
	struct dl_bw *dl_b;
7813
	int cpu, ret = 0;
7814
	unsigned long flags;
7815 7816 7817 7818 7819 7820 7821 7822 7823 7824

	/*
	 * Here we want to check the bandwidth not being set to some
	 * value smaller than the currently allocated bandwidth in
	 * any of the root_domains.
	 *
	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
	 * cycling on root_domains... Discussion on different/better
	 * solutions is welcome!
	 */
7825
	for_each_possible_cpu(cpu) {
7826 7827
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);
7828

7829
		raw_spin_lock_irqsave(&dl_b->lock, flags);
7830 7831
		if (new_bw < dl_b->total_bw)
			ret = -EBUSY;
7832
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7833

7834 7835
		rcu_read_unlock_sched();

7836 7837
		if (ret)
			break;
7838 7839
	}

7840
	return ret;
7841 7842
}

7843
static void sched_dl_do_global(void)
7844
{
7845
	u64 new_bw = -1;
7846
	struct dl_bw *dl_b;
7847
	int cpu;
7848
	unsigned long flags;
7849

7850 7851 7852 7853 7854 7855 7856 7857 7858 7859
	def_dl_bandwidth.dl_period = global_rt_period();
	def_dl_bandwidth.dl_runtime = global_rt_runtime();

	if (global_rt_runtime() != RUNTIME_INF)
		new_bw = to_ratio(global_rt_period(), global_rt_runtime());

	/*
	 * FIXME: As above...
	 */
	for_each_possible_cpu(cpu) {
7860 7861
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);
7862

7863
		raw_spin_lock_irqsave(&dl_b->lock, flags);
7864
		dl_b->bw = new_bw;
7865
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7866 7867

		rcu_read_unlock_sched();
7868
	}
7869 7870 7871 7872 7873 7874 7875
}

static int sched_rt_global_validate(void)
{
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7876 7877
	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7878 7879 7880 7881 7882 7883 7884 7885 7886
		return -EINVAL;

	return 0;
}

static void sched_rt_do_global(void)
{
	def_rt_bandwidth.rt_runtime = global_rt_runtime();
	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7887 7888
}

7889
int sched_rt_handler(struct ctl_table *table, int write,
7890
		void __user *buffer, size_t *lenp,
7891 7892 7893 7894
		loff_t *ppos)
{
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);
7895
	int ret;
7896 7897 7898 7899 7900

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

7901
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7902 7903

	if (!ret && write) {
7904 7905 7906 7907
		ret = sched_rt_global_validate();
		if (ret)
			goto undo;

7908
		ret = sched_dl_global_validate();
7909 7910 7911
		if (ret)
			goto undo;

7912
		ret = sched_rt_global_constraints();
7913 7914 7915 7916 7917 7918 7919 7920 7921 7922
		if (ret)
			goto undo;

		sched_rt_do_global();
		sched_dl_do_global();
	}
	if (0) {
undo:
		sysctl_sched_rt_period = old_period;
		sysctl_sched_rt_runtime = old_runtime;
7923 7924 7925 7926 7927
	}
	mutex_unlock(&mutex);

	return ret;
}
7928

7929
int sched_rr_handler(struct ctl_table *table, int write,
7930 7931 7932 7933 7934 7935 7936 7937
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7938 7939
	/* make sure that internally we keep jiffies */
	/* also, writing zero resets timeslice to default */
7940
	if (!ret && write) {
7941 7942
		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7943 7944 7945 7946 7947
	}
	mutex_unlock(&mutex);
	return ret;
}

7948
#ifdef CONFIG_CGROUP_SCHED
7949

7950
static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7951
{
7952
	return css ? container_of(css, struct task_group, css) : NULL;
7953 7954
}

7955 7956
static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7957
{
7958 7959
	struct task_group *parent = css_tg(parent_css);
	struct task_group *tg;
7960

7961
	if (!parent) {
7962
		/* This is early initialization for the top cgroup */
7963
		return &root_task_group.css;
7964 7965
	}

7966
	tg = sched_create_group(parent);
7967 7968 7969 7970 7971 7972
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

7973
static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7974
{
7975
	struct task_group *tg = css_tg(css);
T
Tejun Heo 已提交
7976
	struct task_group *parent = css_tg(css->parent);
7977

T
Tejun Heo 已提交
7978 7979
	if (parent)
		sched_online_group(tg, parent);
7980 7981 7982
	return 0;
}

7983
static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7984
{
7985
	struct task_group *tg = css_tg(css);
7986 7987 7988 7989

	sched_destroy_group(tg);
}

7990
static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7991
{
7992
	struct task_group *tg = css_tg(css);
7993 7994 7995 7996

	sched_offline_group(tg);
}

7997 7998 7999 8000 8001
static void cpu_cgroup_fork(struct task_struct *task)
{
	sched_move_task(task);
}

8002
static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
8003
				 struct cgroup_taskset *tset)
8004
{
8005 8006
	struct task_struct *task;

8007
	cgroup_taskset_for_each(task, tset) {
8008
#ifdef CONFIG_RT_GROUP_SCHED
8009
		if (!sched_rt_can_attach(css_tg(css), task))
8010
			return -EINVAL;
8011
#else
8012 8013 8014
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
8015
#endif
8016
	}
8017 8018
	return 0;
}
8019

8020
static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
8021
			      struct cgroup_taskset *tset)
8022
{
8023 8024
	struct task_struct *task;

8025
	cgroup_taskset_for_each(task, tset)
8026
		sched_move_task(task);
8027 8028
}

8029 8030 8031
static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
			    struct cgroup_subsys_state *old_css,
			    struct task_struct *task)
8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	sched_move_task(task);
}

8044
#ifdef CONFIG_FAIR_GROUP_SCHED
8045 8046
static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
				struct cftype *cftype, u64 shareval)
8047
{
8048
	return sched_group_set_shares(css_tg(css), scale_load(shareval));
8049 8050
}

8051 8052
static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
			       struct cftype *cft)
8053
{
8054
	struct task_group *tg = css_tg(css);
8055

8056
	return (u64) scale_load_down(tg->shares);
8057
}
8058 8059

#ifdef CONFIG_CFS_BANDWIDTH
8060 8061
static DEFINE_MUTEX(cfs_constraints_mutex);

8062 8063 8064
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

8065 8066
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

8067 8068
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
8069
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8070
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

8091 8092 8093 8094 8095
	/*
	 * Prevent race between setting of cfs_rq->runtime_enabled and
	 * unthrottle_offline_cfs_rqs().
	 */
	get_online_cpus();
8096 8097 8098 8099 8100
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

8101
	runtime_enabled = quota != RUNTIME_INF;
8102
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8103 8104 8105 8106 8107 8108
	/*
	 * If we need to toggle cfs_bandwidth_used, off->on must occur
	 * before making related changes, and on->off must occur afterwards
	 */
	if (runtime_enabled && !runtime_was_enabled)
		cfs_bandwidth_usage_inc();
8109 8110 8111
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
8112

P
Paul Turner 已提交
8113
	__refill_cfs_bandwidth_runtime(cfs_b);
8114 8115 8116
	/* restart the period timer (if active) to handle new period expiry */
	if (runtime_enabled && cfs_b->timer_active) {
		/* force a reprogram */
8117
		__start_cfs_bandwidth(cfs_b, true);
8118
	}
8119 8120
	raw_spin_unlock_irq(&cfs_b->lock);

8121
	for_each_online_cpu(i) {
8122
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8123
		struct rq *rq = cfs_rq->rq;
8124 8125

		raw_spin_lock_irq(&rq->lock);
8126
		cfs_rq->runtime_enabled = runtime_enabled;
8127
		cfs_rq->runtime_remaining = 0;
8128

8129
		if (cfs_rq->throttled)
8130
			unthrottle_cfs_rq(cfs_rq);
8131 8132
		raw_spin_unlock_irq(&rq->lock);
	}
8133 8134
	if (runtime_was_enabled && !runtime_enabled)
		cfs_bandwidth_usage_dec();
8135 8136
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
8137
	put_online_cpus();
8138

8139
	return ret;
8140 8141 8142 8143 8144 8145
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

8146
	period = ktime_to_ns(tg->cfs_bandwidth.period);
8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

8159
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8160 8161
		return -1;

8162
	quota_us = tg->cfs_bandwidth.quota;
8163 8164 8165 8166 8167 8168 8169 8170 8171 8172
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
8173
	quota = tg->cfs_bandwidth.quota;
8174 8175 8176 8177 8178 8179 8180 8181

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

8182
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8183 8184 8185 8186 8187
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

8188 8189
static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
				  struct cftype *cft)
8190
{
8191
	return tg_get_cfs_quota(css_tg(css));
8192 8193
}

8194 8195
static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
				   struct cftype *cftype, s64 cfs_quota_us)
8196
{
8197
	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8198 8199
}

8200 8201
static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
				   struct cftype *cft)
8202
{
8203
	return tg_get_cfs_period(css_tg(css));
8204 8205
}

8206 8207
static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 cfs_period_us)
8208
{
8209
	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8210 8211
}

8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
8244
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8245 8246 8247 8248 8249
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
8250
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8251 8252

		quota = normalize_cfs_quota(tg, d);
8253
		parent_quota = parent_b->hierarchical_quota;
8254 8255 8256 8257 8258 8259 8260 8261 8262 8263

		/*
		 * ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
8264
	cfs_b->hierarchical_quota = quota;
8265 8266 8267 8268 8269 8270

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
8271
	int ret;
8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

8283 8284 8285 8286 8287
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
8288
}
8289

8290
static int cpu_stats_show(struct seq_file *sf, void *v)
8291
{
8292
	struct task_group *tg = css_tg(seq_css(sf));
8293
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8294

8295 8296 8297
	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8298 8299 8300

	return 0;
}
8301
#endif /* CONFIG_CFS_BANDWIDTH */
8302
#endif /* CONFIG_FAIR_GROUP_SCHED */
8303

8304
#ifdef CONFIG_RT_GROUP_SCHED
8305 8306
static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
				struct cftype *cft, s64 val)
P
Peter Zijlstra 已提交
8307
{
8308
	return sched_group_set_rt_runtime(css_tg(css), val);
P
Peter Zijlstra 已提交
8309 8310
}

8311 8312
static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
P
Peter Zijlstra 已提交
8313
{
8314
	return sched_group_rt_runtime(css_tg(css));
P
Peter Zijlstra 已提交
8315
}
8316

8317 8318
static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 rt_period_us)
8319
{
8320
	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8321 8322
}

8323 8324
static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
				   struct cftype *cft)
8325
{
8326
	return sched_group_rt_period(css_tg(css));
8327
}
8328
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
8329

8330
static struct cftype cpu_files[] = {
8331
#ifdef CONFIG_FAIR_GROUP_SCHED
8332 8333
	{
		.name = "shares",
8334 8335
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8336
	},
8337
#endif
8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
8349 8350
	{
		.name = "stat",
8351
		.seq_show = cpu_stats_show,
8352
	},
8353
#endif
8354
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8355
	{
P
Peter Zijlstra 已提交
8356
		.name = "rt_runtime_us",
8357 8358
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8359
	},
8360 8361
	{
		.name = "rt_period_us",
8362 8363
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8364
	},
8365
#endif
8366
	{ }	/* terminate */
8367 8368
};

8369
struct cgroup_subsys cpu_cgrp_subsys = {
8370 8371
	.css_alloc	= cpu_cgroup_css_alloc,
	.css_free	= cpu_cgroup_css_free,
8372 8373
	.css_online	= cpu_cgroup_css_online,
	.css_offline	= cpu_cgroup_css_offline,
8374
	.fork		= cpu_cgroup_fork,
8375 8376
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
8377
	.exit		= cpu_cgroup_exit,
8378
	.legacy_cftypes	= cpu_files,
8379 8380 8381
	.early_init	= 1,
};

8382
#endif	/* CONFIG_CGROUP_SCHED */
8383

8384 8385 8386 8387 8388
void dump_cpu_task(int cpu)
{
	pr_info("Task dump for CPU %d:\n", cpu);
	sched_show_task(cpu_curr(cpu));
}