core.c 180.0 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/highmem.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
37
#include <linux/capability.h>
L
Linus Torvalds 已提交
38 39
#include <linux/completion.h>
#include <linux/kernel_stat.h>
40
#include <linux/debug_locks.h>
41
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
57
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
58
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/unistd.h>
J
Jens Axboe 已提交
66
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
67
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
68
#include <linux/tick.h>
P
Peter Zijlstra 已提交
69 70
#include <linux/debugfs.h>
#include <linux/ctype.h>
71
#include <linux/ftrace.h>
72
#include <linux/slab.h>
73
#include <linux/init_task.h>
A
Al Viro 已提交
74
#include <linux/binfmts.h>
75
#include <linux/context_tracking.h>
L
Linus Torvalds 已提交
76

77
#include <asm/switch_to.h>
78
#include <asm/tlb.h>
79
#include <asm/irq_regs.h>
80
#include <asm/mutex.h>
G
Glauber Costa 已提交
81 82 83
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
84

85
#include "sched.h"
86
#include "../workqueue_internal.h"
87
#include "../smpboot.h"
88

89
#define CREATE_TRACE_POINTS
90
#include <trace/events/sched.h>
91

92
void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93
{
94 95
	unsigned long delta;
	ktime_t soft, hard, now;
96

97 98 99 100 101 102
	for (;;) {
		if (hrtimer_active(period_timer))
			break;

		now = hrtimer_cb_get_time(period_timer);
		hrtimer_forward(period_timer, now, period);
103

104 105 106 107 108 109 110 111
		soft = hrtimer_get_softexpires(period_timer);
		hard = hrtimer_get_expires(period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(period_timer, soft, delta,
					 HRTIMER_MODE_ABS_PINNED, 0);
	}
}

112 113
DEFINE_MUTEX(sched_domains_mutex);
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114

115
static void update_rq_clock_task(struct rq *rq, s64 delta);
116

117
void update_rq_clock(struct rq *rq)
118
{
119
	s64 delta;
120

121
	if (rq->skip_clock_update > 0)
122
		return;
123

124 125 126
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
127 128
}

I
Ingo Molnar 已提交
129 130 131
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
132 133 134 135

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
136
const_debug unsigned int sysctl_sched_features =
137
#include "features.h"
P
Peter Zijlstra 已提交
138 139 140 141 142 143 144 145
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

146
static const char * const sched_feat_names[] = {
147
#include "features.h"
P
Peter Zijlstra 已提交
148 149 150 151
};

#undef SCHED_FEAT

L
Li Zefan 已提交
152
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
153 154 155
{
	int i;

156
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
L
Li Zefan 已提交
157 158 159
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
160
	}
L
Li Zefan 已提交
161
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
162

L
Li Zefan 已提交
163
	return 0;
P
Peter Zijlstra 已提交
164 165
}

166 167
#ifdef HAVE_JUMP_LABEL

168 169
#define jump_label_key__true  STATIC_KEY_INIT_TRUE
#define jump_label_key__false STATIC_KEY_INIT_FALSE
170 171 172 173

#define SCHED_FEAT(name, enabled)	\
	jump_label_key__##enabled ,

174
struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175 176 177 178 179 180 181
#include "features.h"
};

#undef SCHED_FEAT

static void sched_feat_disable(int i)
{
182 183
	if (static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_dec(&sched_feat_keys[i]);
184 185 186 187
}

static void sched_feat_enable(int i)
{
188 189
	if (!static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_inc(&sched_feat_keys[i]);
190 191 192 193 194 195
}
#else
static void sched_feat_disable(int i) { };
static void sched_feat_enable(int i) { };
#endif /* HAVE_JUMP_LABEL */

196
static int sched_feat_set(char *cmp)
P
Peter Zijlstra 已提交
197 198
{
	int i;
199
	int neg = 0;
P
Peter Zijlstra 已提交
200

H
Hillf Danton 已提交
201
	if (strncmp(cmp, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
202 203 204 205
		neg = 1;
		cmp += 3;
	}

206
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
207
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
208
			if (neg) {
P
Peter Zijlstra 已提交
209
				sysctl_sched_features &= ~(1UL << i);
210 211
				sched_feat_disable(i);
			} else {
P
Peter Zijlstra 已提交
212
				sysctl_sched_features |= (1UL << i);
213 214
				sched_feat_enable(i);
			}
P
Peter Zijlstra 已提交
215 216 217 218
			break;
		}
	}

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
	return i;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
	cmp = strstrip(buf);

	i = sched_feat_set(cmp);
240
	if (i == __SCHED_FEAT_NR)
P
Peter Zijlstra 已提交
241 242
		return -EINVAL;

243
	*ppos += cnt;
P
Peter Zijlstra 已提交
244 245 246 247

	return cnt;
}

L
Li Zefan 已提交
248 249 250 251 252
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

253
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
254 255 256 257 258
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
259 260 261 262 263 264 265 266 267 268
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);
269
#endif /* CONFIG_SCHED_DEBUG */
I
Ingo Molnar 已提交
270

271 272 273 274 275 276
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

277 278 279 280 281 282 283 284
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
285
/*
P
Peter Zijlstra 已提交
286
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
287 288
 * default: 1s
 */
P
Peter Zijlstra 已提交
289
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
290

291
__read_mostly int scheduler_running;
292

P
Peter Zijlstra 已提交
293 294 295 296 297
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
298 299


L
Linus Torvalds 已提交
300

301
/*
302
 * __task_rq_lock - lock the rq @p resides on.
303
 */
304
static inline struct rq *__task_rq_lock(struct task_struct *p)
305 306
	__acquires(rq->lock)
{
307 308
	struct rq *rq;

309 310
	lockdep_assert_held(&p->pi_lock);

311
	for (;;) {
312
		rq = task_rq(p);
313
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
314
		if (likely(rq == task_rq(p)))
315
			return rq;
316
		raw_spin_unlock(&rq->lock);
317 318 319
	}
}

L
Linus Torvalds 已提交
320
/*
321
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
L
Linus Torvalds 已提交
322
 */
323
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
324
	__acquires(p->pi_lock)
L
Linus Torvalds 已提交
325 326
	__acquires(rq->lock)
{
327
	struct rq *rq;
L
Linus Torvalds 已提交
328

329
	for (;;) {
330
		raw_spin_lock_irqsave(&p->pi_lock, *flags);
331
		rq = task_rq(p);
332
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
333
		if (likely(rq == task_rq(p)))
334
			return rq;
335 336
		raw_spin_unlock(&rq->lock);
		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
337 338 339
	}
}

A
Alexey Dobriyan 已提交
340
static void __task_rq_unlock(struct rq *rq)
341 342
	__releases(rq->lock)
{
343
	raw_spin_unlock(&rq->lock);
344 345
}

346 347
static inline void
task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
348
	__releases(rq->lock)
349
	__releases(p->pi_lock)
L
Linus Torvalds 已提交
350
{
351 352
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
353 354 355
}

/*
356
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
357
 */
A
Alexey Dobriyan 已提交
358
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
359 360
	__acquires(rq->lock)
{
361
	struct rq *rq;
L
Linus Torvalds 已提交
362 363 364

	local_irq_disable();
	rq = this_rq();
365
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
366 367 368 369

	return rq;
}

P
Peter Zijlstra 已提交
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

391
	raw_spin_lock(&rq->lock);
392
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
393
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
394
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
395 396 397 398

	return HRTIMER_NORESTART;
}

399
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
400 401 402 403 404 405 406 407 408

static int __hrtick_restart(struct rq *rq)
{
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = hrtimer_get_softexpires(timer);

	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
}

409 410 411 412
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
413
{
414
	struct rq *rq = arg;
415

416
	raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
417
	__hrtick_restart(rq);
418
	rq->hrtick_csd_pending = 0;
419
	raw_spin_unlock(&rq->lock);
420 421
}

422 423 424 425 426
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
427
void hrtick_start(struct rq *rq, u64 delay)
428
{
429 430
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
431

432
	hrtimer_set_expires(timer, time);
433 434

	if (rq == this_rq()) {
P
Peter Zijlstra 已提交
435
		__hrtick_restart(rq);
436
	} else if (!rq->hrtick_csd_pending) {
437
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
438 439
		rq->hrtick_csd_pending = 1;
	}
440 441 442 443 444 445 446 447 448 449 450 451 452 453
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
454
		hrtick_clear(cpu_rq(cpu));
455 456 457 458 459 460
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

461
static __init void init_hrtick(void)
462 463 464
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
465 466 467 468 469 470
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
471
void hrtick_start(struct rq *rq, u64 delay)
472
{
473
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
474
			HRTIMER_MODE_REL_PINNED, 0);
475
}
476

A
Andrew Morton 已提交
477
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
478 479
{
}
480
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
481

482
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
483
{
484 485
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
486

487 488 489 490
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
491

492 493
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
494
}
A
Andrew Morton 已提交
495
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
496 497 498 499 500 501 502 503
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

504 505 506
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
507
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
508

I
Ingo Molnar 已提交
509 510 511 512 513 514 515
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
516
void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
517 518 519
{
	int cpu;

520
	lockdep_assert_held(&task_rq(p)->lock);
I
Ingo Molnar 已提交
521

522
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
523 524
		return;

525
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
526 527

	cpu = task_cpu(p);
528 529
	if (cpu == smp_processor_id()) {
		set_preempt_need_resched();
I
Ingo Molnar 已提交
530
		return;
531
	}
I
Ingo Molnar 已提交
532 533 534 535 536 537 538

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

539
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
540 541 542 543
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

544
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
545 546
		return;
	resched_task(cpu_curr(cpu));
547
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
548
}
549

550
#ifdef CONFIG_SMP
551
#ifdef CONFIG_NO_HZ_COMMON
552 553 554 555 556 557 558 559 560 561 562 563 564 565
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
int get_nohz_timer_target(void)
{
	int cpu = smp_processor_id();
	int i;
	struct sched_domain *sd;

566
	rcu_read_lock();
567
	for_each_domain(cpu, sd) {
568 569 570 571 572 573
		for_each_cpu(i, sched_domain_span(sd)) {
			if (!idle_cpu(i)) {
				cpu = i;
				goto unlock;
			}
		}
574
	}
575 576
unlock:
	rcu_read_unlock();
577 578
	return cpu;
}
579 580 581 582 583 584 585 586 587 588
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
589
static void wake_up_idle_cpu(int cpu)
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;
605 606

	/*
607 608 609
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
610
	 */
611
	set_tsk_need_resched(rq->idle);
612

613 614 615 616
	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
617 618
}

619
static bool wake_up_full_nohz_cpu(int cpu)
620
{
621
	if (tick_nohz_full_cpu(cpu)) {
622 623 624 625 626 627 628 629 630 631 632
		if (cpu != smp_processor_id() ||
		    tick_nohz_tick_stopped())
			smp_send_reschedule(cpu);
		return true;
	}

	return false;
}

void wake_up_nohz_cpu(int cpu)
{
633
	if (!wake_up_full_nohz_cpu(cpu))
634 635 636
		wake_up_idle_cpu(cpu);
}

637
static inline bool got_nohz_idle_kick(void)
638
{
639
	int cpu = smp_processor_id();
640 641 642 643 644 645 646 647 648 649 650 651 652

	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
		return false;

	if (idle_cpu(cpu) && !need_resched())
		return true;

	/*
	 * We can't run Idle Load Balance on this CPU for this time so we
	 * cancel it and clear NOHZ_BALANCE_KICK
	 */
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
	return false;
653 654
}

655
#else /* CONFIG_NO_HZ_COMMON */
656

657
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
658
{
659
	return false;
P
Peter Zijlstra 已提交
660 661
}

662
#endif /* CONFIG_NO_HZ_COMMON */
663

664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
#ifdef CONFIG_NO_HZ_FULL
bool sched_can_stop_tick(void)
{
       struct rq *rq;

       rq = this_rq();

       /* Make sure rq->nr_running update is visible after the IPI */
       smp_rmb();

       /* More than one running task need preemption */
       if (rq->nr_running > 1)
               return false;

       return true;
}
#endif /* CONFIG_NO_HZ_FULL */
681

682
void sched_avg_update(struct rq *rq)
683
{
684 685
	s64 period = sched_avg_period();

686
	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
687 688 689 690 691 692
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
693 694 695
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
696 697
}

698
#endif /* CONFIG_SMP */
699

700 701
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
702
/*
703 704 705 706
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
707
 */
708
int walk_tg_tree_from(struct task_group *from,
709
			     tg_visitor down, tg_visitor up, void *data)
710 711
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
712
	int ret;
713

714 715
	parent = from;

716
down:
P
Peter Zijlstra 已提交
717 718
	ret = (*down)(parent, data);
	if (ret)
719
		goto out;
720 721 722 723 724 725 726
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
727
	ret = (*up)(parent, data);
728 729
	if (ret || parent == from)
		goto out;
730 731 732 733 734

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
735
out:
P
Peter Zijlstra 已提交
736
	return ret;
737 738
}

739
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
740
{
741
	return 0;
P
Peter Zijlstra 已提交
742
}
743 744
#endif

745 746
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
747 748 749
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
750 751 752 753
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
754
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
755
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
756 757
		return;
	}
758

759
	load->weight = scale_load(prio_to_weight[prio]);
N
Nikhil Rao 已提交
760
	load->inv_weight = prio_to_wmult[prio];
761 762
}

763
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
764
{
765
	update_rq_clock(rq);
766
	sched_info_queued(rq, p);
767
	p->sched_class->enqueue_task(rq, p, flags);
768 769
}

770
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
771
{
772
	update_rq_clock(rq);
773
	sched_info_dequeued(rq, p);
774
	p->sched_class->dequeue_task(rq, p, flags);
775 776
}

777
void activate_task(struct rq *rq, struct task_struct *p, int flags)
778 779 780 781
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

782
	enqueue_task(rq, p, flags);
783 784
}

785
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
786 787 788 789
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

790
	dequeue_task(rq, p, flags);
791 792
}

793
static void update_rq_clock_task(struct rq *rq, s64 delta)
794
{
795 796 797 798 799 800 801 802
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
803
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
825 826
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
827
	if (static_key_false((&paravirt_steal_rq_enabled))) {
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
		u64 st;

		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		st = steal_ticks(steal);
		steal = st * TICK_NSEC;

		rq->prev_steal_time_rq += steal;

		delta -= steal;
	}
#endif

845 846
	rq->clock_task += delta;

847 848 849 850
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
851 852
}

853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

883
/*
I
Ingo Molnar 已提交
884
 * __normal_prio - return the priority that is based on the static prio
885 886 887
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
888
	return p->static_prio;
889 890
}

891 892 893 894 895 896 897
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
898
static inline int normal_prio(struct task_struct *p)
899 900 901
{
	int prio;

902
	if (task_has_rt_policy(p))
903 904 905 906 907 908 909 910 911 912 913 914 915
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
916
static int effective_prio(struct task_struct *p)
917 918 919 920 921 922 923 924 925 926 927 928
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
929 930 931
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
932 933
 *
 * Return: 1 if the task is currently executing. 0 otherwise.
L
Linus Torvalds 已提交
934
 */
935
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
936 937 938 939
{
	return cpu_curr(task_cpu(p)) == p;
}

940 941
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
942
				       int oldprio)
943 944 945
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
946 947 948 949
			prev_class->switched_from(rq, p);
		p->sched_class->switched_to(rq, p);
	} else if (oldprio != p->prio)
		p->sched_class->prio_changed(rq, p, oldprio);
950 951
}

952
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
				resched_task(rq->curr);
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
P
Peter Zijlstra 已提交
973
	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
974 975 976
		rq->skip_clock_update = 1;
}

L
Linus Torvalds 已提交
977
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
978
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
979
{
980 981 982 983 984
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
985
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
986
			!(task_preempt_count(p) & PREEMPT_ACTIVE));
987 988

#ifdef CONFIG_LOCKDEP
989 990 991 992 993
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
P
Peter Zijlstra 已提交
994
	 * see task_group().
995 996 997 998
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
999 1000 1001
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
1002 1003
#endif

1004
	trace_sched_migrate_task(p, new_cpu);
1005

1006
	if (task_cpu(p) != new_cpu) {
1007 1008
		if (p->sched_class->migrate_task_rq)
			p->sched_class->migrate_task_rq(p, new_cpu);
1009
		p->se.nr_migrations++;
1010
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1011
	}
I
Ingo Molnar 已提交
1012 1013

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1014 1015
}

1016
struct migration_arg {
1017
	struct task_struct *task;
L
Linus Torvalds 已提交
1018
	int dest_cpu;
1019
};
L
Linus Torvalds 已提交
1020

1021 1022
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
1023 1024 1025
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1026 1027 1028 1029 1030 1031 1032
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1033 1034 1035 1036 1037 1038
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1039
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1040 1041
{
	unsigned long flags;
I
Ingo Molnar 已提交
1042
	int running, on_rq;
R
Roland McGrath 已提交
1043
	unsigned long ncsw;
1044
	struct rq *rq;
L
Linus Torvalds 已提交
1045

1046 1047 1048 1049 1050 1051 1052 1053
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1054

1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1066 1067 1068
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1069
			cpu_relax();
R
Roland McGrath 已提交
1070
		}
1071

1072 1073 1074 1075 1076 1077
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1078
		trace_sched_wait_task(p);
1079
		running = task_running(rq, p);
P
Peter Zijlstra 已提交
1080
		on_rq = p->on_rq;
R
Roland McGrath 已提交
1081
		ncsw = 0;
1082
		if (!match_state || p->state == match_state)
1083
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1084
		task_rq_unlock(rq, p, &flags);
1085

R
Roland McGrath 已提交
1086 1087 1088 1089 1090 1091
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1102

1103 1104 1105 1106 1107
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1108
		 * So if it was still runnable (but just not actively
1109 1110 1111 1112
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
1113 1114 1115 1116
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1117 1118
			continue;
		}
1119

1120 1121 1122 1123 1124 1125 1126
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1127 1128

	return ncsw;
L
Linus Torvalds 已提交
1129 1130 1131 1132 1133 1134 1135 1136 1137
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1138
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1139 1140 1141 1142 1143
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1144
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1145 1146 1147 1148 1149 1150 1151 1152 1153
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1154
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
1155
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1156

1157
#ifdef CONFIG_SMP
1158
/*
1159
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1160
 */
1161 1162
static int select_fallback_rq(int cpu, struct task_struct *p)
{
1163 1164
	int nid = cpu_to_node(cpu);
	const struct cpumask *nodemask = NULL;
1165 1166
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1167

1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
	/*
	 * If the node that the cpu is on has been offlined, cpu_to_node()
	 * will return -1. There is no cpu on the node, and we should
	 * select the cpu on the other node.
	 */
	if (nid != -1) {
		nodemask = cpumask_of_node(nid);

		/* Look for allowed, online CPU in same node. */
		for_each_cpu(dest_cpu, nodemask) {
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
				return dest_cpu;
		}
1185
	}
1186

1187 1188
	for (;;) {
		/* Any allowed, online CPU? */
1189
		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1190 1191 1192 1193 1194 1195
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			goto out;
		}
1196

1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
		switch (state) {
		case cpuset:
			/* No more Mr. Nice Guy. */
			cpuset_cpus_allowed_fallback(p);
			state = possible;
			break;

		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk_sched("process %d (%s) no longer affine to cpu%d\n",
					task_pid_nr(p), p->comm, cpu);
		}
1226 1227 1228 1229 1230
	}

	return dest_cpu;
}

1231
/*
1232
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1233
 */
1234
static inline
1235
int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1236
{
1237
	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1249
	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
P
Peter Zijlstra 已提交
1250
		     !cpu_online(cpu)))
1251
		cpu = select_fallback_rq(task_cpu(p), p);
1252 1253

	return cpu;
1254
}
1255 1256 1257 1258 1259 1260

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1261 1262
#endif

P
Peter Zijlstra 已提交
1263
static void
1264
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1265
{
P
Peter Zijlstra 已提交
1266
#ifdef CONFIG_SCHEDSTATS
1267 1268
	struct rq *rq = this_rq();

P
Peter Zijlstra 已提交
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
#ifdef CONFIG_SMP
	int this_cpu = smp_processor_id();

	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	} else {
		struct sched_domain *sd;

		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1279
		rcu_read_lock();
P
Peter Zijlstra 已提交
1280 1281 1282 1283 1284 1285
		for_each_domain(this_cpu, sd) {
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
1286
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1287
	}
1288 1289 1290 1291

	if (wake_flags & WF_MIGRATED)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);

P
Peter Zijlstra 已提交
1292 1293 1294
#endif /* CONFIG_SMP */

	schedstat_inc(rq, ttwu_count);
T
Tejun Heo 已提交
1295
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1296 1297

	if (wake_flags & WF_SYNC)
T
Tejun Heo 已提交
1298
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1299 1300 1301 1302 1303 1304

#endif /* CONFIG_SCHEDSTATS */
}

static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
{
T
Tejun Heo 已提交
1305
	activate_task(rq, p, en_flags);
P
Peter Zijlstra 已提交
1306
	p->on_rq = 1;
1307 1308 1309 1310

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1311 1312
}

1313 1314 1315
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1316
static void
1317
ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
T
Tejun Heo 已提交
1318 1319
{
	check_preempt_curr(rq, p, wake_flags);
1320
	trace_sched_wakeup(p, true);
T
Tejun Heo 已提交
1321 1322 1323 1324 1325 1326

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);

1327
	if (rq->idle_stamp) {
1328
		u64 delta = rq_clock(rq) - rq->idle_stamp;
1329
		u64 max = 2*rq->max_idle_balance_cost;
T
Tejun Heo 已提交
1330

1331 1332 1333
		update_avg(&rq->avg_idle, delta);

		if (rq->avg_idle > max)
T
Tejun Heo 已提交
1334
			rq->avg_idle = max;
1335

T
Tejun Heo 已提交
1336 1337 1338 1339 1340
		rq->idle_stamp = 0;
	}
#endif
}

1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
static void
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
{
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
#endif

	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
	ttwu_do_wakeup(rq, p, wake_flags);
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
	if (p->on_rq) {
1366 1367
		/* check_preempt_curr() may use rq clock */
		update_rq_clock(rq);
1368 1369 1370 1371 1372 1373 1374 1375
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;
}

1376
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1377
static void sched_ttwu_pending(void)
1378 1379
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1380 1381
	struct llist_node *llist = llist_del_all(&rq->wake_list);
	struct task_struct *p;
1382 1383 1384

	raw_spin_lock(&rq->lock);

P
Peter Zijlstra 已提交
1385 1386 1387
	while (llist) {
		p = llist_entry(llist, struct task_struct, wake_entry);
		llist = llist_next(llist);
1388 1389 1390 1391 1392 1393 1394 1395
		ttwu_do_activate(rq, p, 0);
	}

	raw_spin_unlock(&rq->lock);
}

void scheduler_ipi(void)
{
1396 1397 1398 1399 1400 1401 1402 1403
	/*
	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
	 * TIF_NEED_RESCHED remotely (for the first time) will also send
	 * this IPI.
	 */
	if (tif_need_resched())
		set_preempt_need_resched();

1404 1405 1406
	if (llist_empty(&this_rq()->wake_list)
			&& !tick_nohz_full_cpu(smp_processor_id())
			&& !got_nohz_idle_kick())
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
1423
	tick_nohz_full_check();
P
Peter Zijlstra 已提交
1424
	sched_ttwu_pending();
1425 1426 1427 1428

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1429
	if (unlikely(got_nohz_idle_kick())) {
1430
		this_rq()->idle_balance = 1;
1431
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1432
	}
1433
	irq_exit();
1434 1435 1436 1437
}

static void ttwu_queue_remote(struct task_struct *p, int cpu)
{
P
Peter Zijlstra 已提交
1438
	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1439 1440
		smp_send_reschedule(cpu);
}
1441

1442
bool cpus_share_cache(int this_cpu, int that_cpu)
1443 1444 1445
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1446
#endif /* CONFIG_SMP */
1447

1448 1449 1450 1451
static void ttwu_queue(struct task_struct *p, int cpu)
{
	struct rq *rq = cpu_rq(cpu);

1452
#if defined(CONFIG_SMP)
1453
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1454
		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1455 1456 1457 1458 1459
		ttwu_queue_remote(p, cpu);
		return;
	}
#endif

1460 1461 1462
	raw_spin_lock(&rq->lock);
	ttwu_do_activate(rq, p, 0);
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
1463 1464 1465
}

/**
L
Linus Torvalds 已提交
1466
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1467
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1468
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1469
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1470 1471 1472 1473 1474 1475 1476
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
1477
 * Return: %true if @p was woken up, %false if it was already running.
T
Tejun Heo 已提交
1478
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
1479
 */
1480 1481
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1482 1483
{
	unsigned long flags;
1484
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1485

1486 1487 1488 1489 1490 1491 1492
	/*
	 * If we are going to wake up a thread waiting for CONDITION we
	 * need to ensure that CONDITION=1 done by the caller can not be
	 * reordered with p->state check below. This pairs with mb() in
	 * set_current_state() the waiting thread does.
	 */
	smp_mb__before_spinlock();
1493
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
1494
	if (!(p->state & state))
L
Linus Torvalds 已提交
1495 1496
		goto out;

1497
	success = 1; /* we're going to change ->state */
L
Linus Torvalds 已提交
1498 1499
	cpu = task_cpu(p);

1500 1501
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
1502 1503

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1504
	/*
1505 1506
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
P
Peter Zijlstra 已提交
1507
	 */
1508
	while (p->on_cpu)
1509
		cpu_relax();
1510
	/*
1511
	 * Pairs with the smp_wmb() in finish_lock_switch().
1512
	 */
1513
	smp_rmb();
L
Linus Torvalds 已提交
1514

1515
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
1516
	p->state = TASK_WAKING;
1517

1518
	if (p->sched_class->task_waking)
1519
		p->sched_class->task_waking(p);
1520

1521
	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1522 1523
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
1524
		set_task_cpu(p, cpu);
1525
	}
L
Linus Torvalds 已提交
1526 1527
#endif /* CONFIG_SMP */

1528 1529
	ttwu_queue(p, cpu);
stat:
1530
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
1531
out:
1532
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
1533 1534 1535 1536

	return success;
}

T
Tejun Heo 已提交
1537 1538 1539 1540
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
1541
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
1542
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1543
 * the current task.
T
Tejun Heo 已提交
1544 1545 1546 1547 1548
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

1549 1550 1551 1552
	if (WARN_ON_ONCE(rq != this_rq()) ||
	    WARN_ON_ONCE(p == current))
		return;

T
Tejun Heo 已提交
1553 1554
	lockdep_assert_held(&rq->lock);

1555 1556 1557 1558 1559 1560
	if (!raw_spin_trylock(&p->pi_lock)) {
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
	}

T
Tejun Heo 已提交
1561
	if (!(p->state & TASK_NORMAL))
1562
		goto out;
T
Tejun Heo 已提交
1563

P
Peter Zijlstra 已提交
1564
	if (!p->on_rq)
P
Peter Zijlstra 已提交
1565 1566
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

1567
	ttwu_do_wakeup(rq, p, 0);
1568
	ttwu_stat(p, smp_processor_id(), 0);
1569 1570
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
1571 1572
}

1573 1574 1575 1576 1577
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
1578 1579 1580
 * processes.
 *
 * Return: 1 if the process was woken up, 0 if it was already running.
1581 1582 1583 1584
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
1585
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1586
{
1587 1588
	WARN_ON(task_is_stopped_or_traced(p));
	return try_to_wake_up(p, TASK_NORMAL, 0);
L
Linus Torvalds 已提交
1589 1590 1591
}
EXPORT_SYMBOL(wake_up_process);

1592
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1593 1594 1595 1596 1597 1598 1599
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1600 1601 1602 1603 1604
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
P
Peter Zijlstra 已提交
1605 1606 1607
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
1608 1609
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1610
	p->se.prev_sum_exec_runtime	= 0;
1611
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
1612
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
1613
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
1614 1615

#ifdef CONFIG_SCHEDSTATS
1616
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
1617
#endif
N
Nick Piggin 已提交
1618

P
Peter Zijlstra 已提交
1619
	INIT_LIST_HEAD(&p->rt.run_list);
N
Nick Piggin 已提交
1620

1621 1622 1623
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
1624 1625 1626 1627

#ifdef CONFIG_NUMA_BALANCING
	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
		p->mm->numa_next_scan = jiffies;
1628
		p->mm->numa_next_reset = jiffies;
1629 1630 1631 1632 1633 1634
		p->mm->numa_scan_seq = 0;
	}

	p->node_stamp = 0ULL;
	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
	p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
1635
	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1636 1637
	p->numa_work.next = &p->numa_work;
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
1638 1639
}

1640
#ifdef CONFIG_NUMA_BALANCING
1641
#ifdef CONFIG_SCHED_DEBUG
1642 1643 1644 1645 1646 1647 1648
void set_numabalancing_state(bool enabled)
{
	if (enabled)
		sched_feat_set("NUMA");
	else
		sched_feat_set("NO_NUMA");
}
1649 1650 1651 1652 1653 1654
#else
__read_mostly bool numabalancing_enabled;

void set_numabalancing_state(bool enabled)
{
	numabalancing_enabled = enabled;
I
Ingo Molnar 已提交
1655
}
1656
#endif /* CONFIG_SCHED_DEBUG */
1657
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
1658 1659 1660 1661

/*
 * fork()/clone()-time setup:
 */
1662
void sched_fork(struct task_struct *p)
I
Ingo Molnar 已提交
1663
{
1664
	unsigned long flags;
I
Ingo Molnar 已提交
1665 1666 1667
	int cpu = get_cpu();

	__sched_fork(p);
1668
	/*
1669
	 * We mark the process as running here. This guarantees that
1670 1671 1672
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
1673
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1674

1675 1676 1677 1678 1679
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

1680 1681 1682 1683
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
1684
		if (task_has_rt_policy(p)) {
1685
			p->policy = SCHED_NORMAL;
1686
			p->static_prio = NICE_TO_PRIO(0);
1687 1688 1689 1690 1691 1692
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
1693

1694 1695 1696 1697 1698 1699
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
1700

H
Hiroshi Shimamoto 已提交
1701 1702
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
1703

P
Peter Zijlstra 已提交
1704 1705 1706
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

1707 1708 1709 1710 1711 1712 1713
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
1714
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1715
	set_task_cpu(p, cpu);
1716
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1717

1718
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1719
	if (likely(sched_info_on()))
1720
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1721
#endif
P
Peter Zijlstra 已提交
1722 1723
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
1724
#endif
1725
	init_task_preempt_count(p);
1726
#ifdef CONFIG_SMP
1727
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1728
#endif
1729

N
Nick Piggin 已提交
1730
	put_cpu();
L
Linus Torvalds 已提交
1731 1732 1733 1734 1735 1736 1737 1738 1739
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1740
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
1741 1742
{
	unsigned long flags;
I
Ingo Molnar 已提交
1743
	struct rq *rq;
1744

1745
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1746 1747 1748 1749 1750 1751
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 */
1752
	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1753 1754
#endif

1755 1756
	/* Initialize new task's runnable average */
	init_task_runnable_average(p);
1757
	rq = __task_rq_lock(p);
P
Peter Zijlstra 已提交
1758
	activate_task(rq, p, 0);
P
Peter Zijlstra 已提交
1759
	p->on_rq = 1;
1760
	trace_sched_wakeup_new(p, true);
P
Peter Zijlstra 已提交
1761
	check_preempt_curr(rq, p, WF_FORK);
1762
#ifdef CONFIG_SMP
1763 1764
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
1765
#endif
1766
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
1767 1768
}

1769 1770 1771
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
1772
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
1773
 * @notifier: notifier struct to register
1774 1775 1776 1777 1778 1779 1780 1781 1782
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1783
 * @notifier: notifier struct to unregister
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;

1797
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1798 1799 1800 1801 1802 1803 1804 1805 1806
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;

1807
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1808 1809 1810
		notifier->ops->sched_out(notifier, next);
}

1811
#else /* !CONFIG_PREEMPT_NOTIFIERS */
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

1823
#endif /* CONFIG_PREEMPT_NOTIFIERS */
1824

1825 1826 1827
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1828
 * @prev: the current task that is being switched out
1829 1830 1831 1832 1833 1834 1835 1836 1837
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1838 1839 1840
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1841
{
1842
	trace_sched_switch(prev, next);
1843
	sched_info_switch(rq, prev, next);
1844
	perf_event_task_sched_out(prev, next);
1845
	fire_sched_out_preempt_notifiers(prev, next);
1846 1847 1848 1849
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1850 1851
/**
 * finish_task_switch - clean up after a task-switch
1852
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1853 1854
 * @prev: the thread we just switched away from.
 *
1855 1856 1857 1858
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1859 1860
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
1861
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
1862 1863 1864
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
1865
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1866 1867 1868
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1869
	long prev_state;
L
Linus Torvalds 已提交
1870 1871 1872 1873 1874

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1875
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1876 1877
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1878
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1879 1880 1881 1882 1883
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1884
	prev_state = prev->state;
1885
	vtime_task_switch(prev);
1886
	finish_arch_switch(prev);
1887
	perf_event_task_sched_in(prev, current);
1888
	finish_lock_switch(rq, prev);
1889
	finish_arch_post_lock_switch();
S
Steven Rostedt 已提交
1890

1891
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1892 1893
	if (mm)
		mmdrop(mm);
1894
	if (unlikely(prev_state == TASK_DEAD)) {
1895 1896 1897
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1898
		 */
1899
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1900
		put_task_struct(prev);
1901
	}
1902 1903

	tick_nohz_task_switch(current);
L
Linus Torvalds 已提交
1904 1905
}

1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

1921
		raw_spin_lock_irqsave(&rq->lock, flags);
1922 1923
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
1924
		raw_spin_unlock_irqrestore(&rq->lock, flags);
1925 1926 1927 1928 1929 1930

		rq->post_schedule = 0;
	}
}

#else
1931

1932 1933 1934 1935 1936 1937
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
1938 1939
}

1940 1941
#endif

L
Linus Torvalds 已提交
1942 1943 1944 1945
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1946
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1947 1948
	__releases(rq->lock)
{
1949 1950
	struct rq *rq = this_rq();

1951
	finish_task_switch(rq, prev);
1952

1953 1954 1955 1956 1957
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
1958

1959 1960 1961 1962
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1963
	if (current->set_child_tid)
1964
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
1965 1966 1967 1968 1969 1970
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
1971
static inline void
1972
context_switch(struct rq *rq, struct task_struct *prev,
1973
	       struct task_struct *next)
L
Linus Torvalds 已提交
1974
{
I
Ingo Molnar 已提交
1975
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
1976

1977
	prepare_task_switch(rq, prev, next);
1978

I
Ingo Molnar 已提交
1979 1980
	mm = next->mm;
	oldmm = prev->active_mm;
1981 1982 1983 1984 1985
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
1986
	arch_start_context_switch(prev);
1987

1988
	if (!mm) {
L
Linus Torvalds 已提交
1989 1990 1991 1992 1993 1994
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

1995
	if (!prev->mm) {
L
Linus Torvalds 已提交
1996 1997 1998
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
1999 2000 2001 2002 2003 2004 2005
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2006
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2007
#endif
L
Linus Torvalds 已提交
2008

2009
	context_tracking_task_switch(prev, next);
L
Linus Torvalds 已提交
2010 2011 2012
	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2013 2014 2015 2016 2017 2018 2019
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2020 2021 2022
}

/*
2023
 * nr_running and nr_context_switches:
L
Linus Torvalds 已提交
2024 2025
 *
 * externally visible scheduler statistics: current number of runnable
2026
 * threads, total number of context switches performed since bootup.
L
Linus Torvalds 已提交
2027 2028 2029 2030 2031 2032 2033 2034 2035
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2036
}
L
Linus Torvalds 已提交
2037 2038

unsigned long long nr_context_switches(void)
2039
{
2040 2041
	int i;
	unsigned long long sum = 0;
2042

2043
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2044
		sum += cpu_rq(i)->nr_switches;
2045

L
Linus Torvalds 已提交
2046 2047
	return sum;
}
2048

L
Linus Torvalds 已提交
2049 2050 2051
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2052

2053
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2054
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2055

L
Linus Torvalds 已提交
2056 2057
	return sum;
}
2058

2059
unsigned long nr_iowait_cpu(int cpu)
2060
{
2061
	struct rq *this = cpu_rq(cpu);
2062 2063
	return atomic_read(&this->nr_iowait);
}
2064

I
Ingo Molnar 已提交
2065
#ifdef CONFIG_SMP
2066

2067
/*
P
Peter Zijlstra 已提交
2068 2069
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2070
 */
P
Peter Zijlstra 已提交
2071
void sched_exec(void)
2072
{
P
Peter Zijlstra 已提交
2073
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2074
	unsigned long flags;
2075
	int dest_cpu;
2076

2077
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2078
	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2079 2080
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2081

2082
	if (likely(cpu_active(dest_cpu))) {
2083
		struct migration_arg arg = { p, dest_cpu };
2084

2085 2086
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2087 2088
		return;
	}
2089
unlock:
2090
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2091
}
I
Ingo Molnar 已提交
2092

L
Linus Torvalds 已提交
2093 2094 2095
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2096
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
2097 2098

EXPORT_PER_CPU_SYMBOL(kstat);
2099
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
2100 2101

/*
2102
 * Return any ns on the sched_clock that have not yet been accounted in
2103
 * @p in case that task is currently running.
2104 2105
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
2106
 */
2107 2108 2109 2110 2111 2112
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
2113
		ns = rq_clock_task(rq) - p->se.exec_start;
2114 2115 2116 2117 2118 2119 2120
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

2121
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
2122 2123
{
	unsigned long flags;
2124
	struct rq *rq;
2125
	u64 ns = 0;
2126

2127
	rq = task_rq_lock(p, &flags);
2128
	ns = do_task_delta_exec(p, rq);
2129
	task_rq_unlock(rq, p, &flags);
2130

2131 2132
	return ns;
}
2133

2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2147
	task_rq_unlock(rq, p, &flags);
2148 2149 2150

	return ns;
}
2151

2152 2153 2154 2155 2156 2157 2158 2159
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2160
	struct task_struct *curr = rq->curr;
2161 2162

	sched_clock_tick();
I
Ingo Molnar 已提交
2163

2164
	raw_spin_lock(&rq->lock);
2165
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
2166
	curr->sched_class->task_tick(rq, curr, 0);
2167
	update_cpu_load_active(rq);
2168
	raw_spin_unlock(&rq->lock);
2169

2170
	perf_event_task_tick();
2171

2172
#ifdef CONFIG_SMP
2173
	rq->idle_balance = idle_cpu(cpu);
I
Ingo Molnar 已提交
2174
	trigger_load_balance(rq, cpu);
2175
#endif
2176
	rq_last_tick_reset(rq);
L
Linus Torvalds 已提交
2177 2178
}

2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
#ifdef CONFIG_NO_HZ_FULL
/**
 * scheduler_tick_max_deferment
 *
 * Keep at least one tick per second when a single
 * active task is running because the scheduler doesn't
 * yet completely support full dynticks environment.
 *
 * This makes sure that uptime, CFS vruntime, load
 * balancing, etc... continue to move forward, even
 * with a very low granularity.
2190 2191
 *
 * Return: Maximum deferment in nanoseconds.
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
 */
u64 scheduler_tick_max_deferment(void)
{
	struct rq *rq = this_rq();
	unsigned long next, now = ACCESS_ONCE(jiffies);

	next = rq->last_sched_tick + HZ;

	if (time_before_eq(next, now))
		return 0;

	return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
L
Linus Torvalds 已提交
2204
}
2205
#endif
L
Linus Torvalds 已提交
2206

2207
notrace unsigned long get_parent_ip(unsigned long addr)
2208 2209 2210 2211 2212 2213 2214 2215
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
2216

2217 2218 2219
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

2220
void __kprobes preempt_count_add(int val)
L
Linus Torvalds 已提交
2221
{
2222
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2223 2224 2225
	/*
	 * Underflow?
	 */
2226 2227
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
2228
#endif
2229
	__preempt_count_add(val);
2230
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2231 2232 2233
	/*
	 * Spinlock count overflowing soon?
	 */
2234 2235
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
2236 2237 2238
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
2239
}
2240
EXPORT_SYMBOL(preempt_count_add);
L
Linus Torvalds 已提交
2241

2242
void __kprobes preempt_count_sub(int val)
L
Linus Torvalds 已提交
2243
{
2244
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2245 2246 2247
	/*
	 * Underflow?
	 */
2248
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2249
		return;
L
Linus Torvalds 已提交
2250 2251 2252
	/*
	 * Is the spinlock portion underflowing?
	 */
2253 2254 2255
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
2256
#endif
2257

2258 2259
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2260
	__preempt_count_sub(val);
L
Linus Torvalds 已提交
2261
}
2262
EXPORT_SYMBOL(preempt_count_sub);
L
Linus Torvalds 已提交
2263 2264 2265 2266

#endif

/*
I
Ingo Molnar 已提交
2267
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
2268
 */
I
Ingo Molnar 已提交
2269
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
2270
{
2271 2272 2273
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
2274 2275
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
2276

I
Ingo Molnar 已提交
2277
	debug_show_held_locks(prev);
2278
	print_modules();
I
Ingo Molnar 已提交
2279 2280
	if (irqs_disabled())
		print_irqtrace_events(prev);
2281
	dump_stack();
2282
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
I
Ingo Molnar 已提交
2283
}
L
Linus Torvalds 已提交
2284

I
Ingo Molnar 已提交
2285 2286 2287 2288 2289
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
2290
	/*
I
Ingo Molnar 已提交
2291
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
2292 2293 2294
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
2295
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
2296
		__schedule_bug(prev);
2297
	rcu_sleep_check();
I
Ingo Molnar 已提交
2298

L
Linus Torvalds 已提交
2299 2300
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

2301
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
2302 2303
}

P
Peter Zijlstra 已提交
2304
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
2305
{
2306
	if (prev->on_rq || rq->skip_clock_update < 0)
2307
		update_rq_clock(rq);
P
Peter Zijlstra 已提交
2308
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
2309 2310
}

I
Ingo Molnar 已提交
2311 2312 2313 2314
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
2315
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
2316
{
2317
	const struct sched_class *class;
I
Ingo Molnar 已提交
2318
	struct task_struct *p;
L
Linus Torvalds 已提交
2319 2320

	/*
I
Ingo Molnar 已提交
2321 2322
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
2323
	 */
2324
	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2325
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
2326 2327
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
2328 2329
	}

2330
	for_each_class(class) {
2331
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
2332 2333 2334
		if (p)
			return p;
	}
2335 2336

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
2337
}
L
Linus Torvalds 已提交
2338

I
Ingo Molnar 已提交
2339
/*
2340
 * __schedule() is the main scheduler function.
2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374
 *
 * The main means of driving the scheduler and thus entering this function are:
 *
 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 *      paths. For example, see arch/x86/entry_64.S.
 *
 *      To drive preemption between tasks, the scheduler sets the flag in timer
 *      interrupt handler scheduler_tick().
 *
 *   3. Wakeups don't really cause entry into schedule(). They add a
 *      task to the run-queue and that's it.
 *
 *      Now, if the new task added to the run-queue preempts the current
 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 *      called on the nearest possible occasion:
 *
 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
 *
 *         - in syscall or exception context, at the next outmost
 *           preempt_enable(). (this might be as soon as the wake_up()'s
 *           spin_unlock()!)
 *
 *         - in IRQ context, return from interrupt-handler to
 *           preemptible context
 *
 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
 *         then at the next:
 *
 *          - cond_resched() call
 *          - explicit schedule() call
 *          - return from syscall or exception to user-space
 *          - return from interrupt-handler to user-space
I
Ingo Molnar 已提交
2375
 */
2376
static void __sched __schedule(void)
I
Ingo Molnar 已提交
2377 2378
{
	struct task_struct *prev, *next;
2379
	unsigned long *switch_count;
I
Ingo Molnar 已提交
2380
	struct rq *rq;
2381
	int cpu;
I
Ingo Molnar 已提交
2382

2383 2384
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
2385 2386
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
2387
	rcu_note_context_switch(cpu);
I
Ingo Molnar 已提交
2388 2389 2390
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
2391

2392
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
2393
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
2394

2395 2396 2397 2398 2399 2400
	/*
	 * Make sure that signal_pending_state()->signal_pending() below
	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
	 * done by the caller to avoid the race with signal_wake_up().
	 */
	smp_mb__before_spinlock();
2401
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
2402

2403
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
2404
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
2405
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
2406
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
2407
		} else {
2408 2409 2410
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

T
Tejun Heo 已提交
2411
			/*
2412 2413 2414
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
2415 2416 2417 2418 2419 2420 2421 2422 2423
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
		}
I
Ingo Molnar 已提交
2424
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
2425 2426
	}

2427
	pre_schedule(rq, prev);
2428

I
Ingo Molnar 已提交
2429
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
2430 2431
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
2432
	put_prev_task(rq, prev);
2433
	next = pick_next_task(rq);
2434
	clear_tsk_need_resched(prev);
2435
	clear_preempt_need_resched();
2436
	rq->skip_clock_update = 0;
L
Linus Torvalds 已提交
2437 2438 2439 2440 2441 2442

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
2443
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
2444
		/*
2445 2446 2447 2448
		 * The context switch have flipped the stack from under us
		 * and restored the local variables which were saved when
		 * this task called schedule() in the past. prev == current
		 * is still correct, but it can be moved to another cpu/rq.
P
Peter Zijlstra 已提交
2449 2450 2451
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
2452
	} else
2453
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
2454

2455
	post_schedule(rq);
L
Linus Torvalds 已提交
2456

2457
	sched_preempt_enable_no_resched();
2458
	if (need_resched())
L
Linus Torvalds 已提交
2459 2460
		goto need_resched;
}
2461

2462 2463
static inline void sched_submit_work(struct task_struct *tsk)
{
2464
	if (!tsk->state || tsk_is_pi_blocked(tsk))
2465 2466 2467 2468 2469 2470 2471 2472 2473
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

S
Simon Kirby 已提交
2474
asmlinkage void __sched schedule(void)
2475
{
2476 2477 2478
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
2479 2480
	__schedule();
}
L
Linus Torvalds 已提交
2481 2482
EXPORT_SYMBOL(schedule);

2483
#ifdef CONFIG_CONTEXT_TRACKING
2484 2485 2486 2487 2488 2489 2490 2491
asmlinkage void __sched schedule_user(void)
{
	/*
	 * If we come here after a random call to set_need_resched(),
	 * or we have been woken up remotely but the IPI has not yet arrived,
	 * we haven't yet exited the RCU idle mode. Do it here manually until
	 * we find a better solution.
	 */
2492
	user_exit();
2493
	schedule();
2494
	user_enter();
2495 2496 2497
}
#endif

2498 2499 2500 2501 2502 2503 2504
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
2505
	sched_preempt_enable_no_resched();
2506 2507 2508 2509
	schedule();
	preempt_disable();
}

L
Linus Torvalds 已提交
2510 2511
#ifdef CONFIG_PREEMPT
/*
2512
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
2513
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
2514 2515
 * occur there and call schedule directly.
 */
2516
asmlinkage void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
2517 2518 2519
{
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
2520
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
2521
	 */
2522
	if (likely(!preemptible()))
L
Linus Torvalds 已提交
2523 2524
		return;

2525
	do {
2526
		__preempt_count_add(PREEMPT_ACTIVE);
2527
		__schedule();
2528
		__preempt_count_sub(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
2529

2530 2531 2532 2533 2534
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
2535
	} while (need_resched());
L
Linus Torvalds 已提交
2536 2537 2538 2539
}
EXPORT_SYMBOL(preempt_schedule);

/*
2540
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
2541 2542 2543 2544 2545 2546
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
2547
	enum ctx_state prev_state;
2548

2549
	/* Catch callers which need to be fixed */
2550
	BUG_ON(preempt_count() || !irqs_disabled());
L
Linus Torvalds 已提交
2551

2552 2553
	prev_state = exception_enter();

2554
	do {
2555
		__preempt_count_add(PREEMPT_ACTIVE);
2556
		local_irq_enable();
2557
		__schedule();
2558
		local_irq_disable();
2559
		__preempt_count_sub(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
2560

2561 2562 2563 2564 2565
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
2566
	} while (need_resched());
2567 2568

	exception_exit(prev_state);
L
Linus Torvalds 已提交
2569 2570 2571 2572
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
2573
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
2574
			  void *key)
L
Linus Torvalds 已提交
2575
{
P
Peter Zijlstra 已提交
2576
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
2577 2578 2579 2580
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
2581 2582
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
2583 2584 2585
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
2586
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
2587 2588
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
2589
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
2590
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
2591
{
2592
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
2593

2594
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
2595 2596
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
2597
		if (curr->func(curr, mode, wake_flags, key) &&
2598
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
2599 2600 2601 2602 2603 2604 2605 2606 2607
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
2608
 * @key: is directly passed to the wakeup function
2609 2610 2611
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
2612
 */
2613
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
2614
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
2627
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
L
Linus Torvalds 已提交
2628
{
2629
	__wake_up_common(q, mode, nr, 0, NULL);
L
Linus Torvalds 已提交
2630
}
2631
EXPORT_SYMBOL_GPL(__wake_up_locked);
L
Linus Torvalds 已提交
2632

2633 2634 2635 2636
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}
2637
EXPORT_SYMBOL_GPL(__wake_up_locked_key);
2638

L
Linus Torvalds 已提交
2639
/**
2640
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
2641 2642 2643
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
2644
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
2645 2646 2647 2648 2649 2650 2651
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
2652 2653 2654
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
2655
 */
2656 2657
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
2658 2659
{
	unsigned long flags;
P
Peter Zijlstra 已提交
2660
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
2661 2662 2663 2664

	if (unlikely(!q))
		return;

2665
	if (unlikely(nr_exclusive != 1))
P
Peter Zijlstra 已提交
2666
		wake_flags = 0;
L
Linus Torvalds 已提交
2667 2668

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
2669
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
2670 2671
	spin_unlock_irqrestore(&q->lock, flags);
}
2672 2673 2674 2675 2676 2677 2678 2679 2680
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
2681 2682
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

2683 2684 2685 2686 2687 2688 2689 2690
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
2691 2692 2693
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
2694
 */
2695
void complete(struct completion *x)
L
Linus Torvalds 已提交
2696 2697 2698 2699 2700
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
2701
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
2702 2703 2704 2705
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

2706 2707 2708 2709 2710
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
2711 2712 2713
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
2714
 */
2715
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
2716 2717 2718 2719 2720
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
2721
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
2722 2723 2724 2725
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

2726
static inline long __sched
2727 2728
do_wait_for_common(struct completion *x,
		   long (*action)(long), long timeout, int state)
L
Linus Torvalds 已提交
2729 2730 2731 2732
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

C
Changli Gao 已提交
2733
		__add_wait_queue_tail_exclusive(&x->wait, &wait);
L
Linus Torvalds 已提交
2734
		do {
2735
			if (signal_pending_state(state, current)) {
2736 2737
				timeout = -ERESTARTSYS;
				break;
2738 2739
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
2740
			spin_unlock_irq(&x->wait.lock);
2741
			timeout = action(timeout);
L
Linus Torvalds 已提交
2742
			spin_lock_irq(&x->wait.lock);
2743
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
2744
		__remove_wait_queue(&x->wait, &wait);
2745 2746
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
2747 2748
	}
	x->done--;
2749
	return timeout ?: 1;
L
Linus Torvalds 已提交
2750 2751
}

2752 2753 2754
static inline long __sched
__wait_for_common(struct completion *x,
		  long (*action)(long), long timeout, int state)
L
Linus Torvalds 已提交
2755 2756 2757 2758
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
2759
	timeout = do_wait_for_common(x, action, timeout, state);
L
Linus Torvalds 已提交
2760
	spin_unlock_irq(&x->wait.lock);
2761 2762
	return timeout;
}
L
Linus Torvalds 已提交
2763

2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
{
	return __wait_for_common(x, schedule_timeout, timeout, state);
}

static long __sched
wait_for_common_io(struct completion *x, long timeout, int state)
{
	return __wait_for_common(x, io_schedule_timeout, timeout, state);
}

2776 2777 2778 2779 2780 2781 2782 2783 2784 2785
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
2786
void __sched wait_for_completion(struct completion *x)
2787 2788
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
2789
}
2790
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
2791

2792 2793 2794 2795 2796 2797 2798 2799
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
2800
 *
2801 2802
 * Return: 0 if timed out, and positive (at least 1, or number of jiffies left
 * till timeout) if completed.
2803
 */
2804
unsigned long __sched
2805
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
2806
{
2807
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
2808
}
2809
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
2810

2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
/**
 * wait_for_completion_io: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout. The caller is accounted as waiting
 * for IO.
 */
void __sched wait_for_completion_io(struct completion *x)
{
	wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
}
EXPORT_SYMBOL(wait_for_completion_io);

/**
 * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible. The caller is accounted as waiting for IO.
 *
2834 2835
 * Return: 0 if timed out, and positive (at least 1, or number of jiffies left
 * till timeout) if completed.
2836 2837 2838 2839 2840 2841 2842 2843
 */
unsigned long __sched
wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
{
	return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
}
EXPORT_SYMBOL(wait_for_completion_io_timeout);

2844 2845 2846 2847 2848 2849
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
2850
 *
2851
 * Return: -ERESTARTSYS if interrupted, 0 if completed.
2852
 */
2853
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
2854
{
2855 2856 2857 2858
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
2859
}
2860
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
2861

2862 2863 2864 2865 2866 2867 2868
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
2869
 *
2870 2871
 * Return: -ERESTARTSYS if interrupted, 0 if timed out, positive (at least 1,
 * or number of jiffies left till timeout) if completed.
2872
 */
2873
long __sched
2874 2875
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
2876
{
2877
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
2878
}
2879
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
2880

2881 2882 2883 2884 2885 2886
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
2887
 *
2888
 * Return: -ERESTARTSYS if interrupted, 0 if completed.
2889
 */
M
Matthew Wilcox 已提交
2890 2891 2892 2893 2894 2895 2896 2897 2898
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

2899 2900 2901 2902 2903 2904 2905 2906
/**
 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be
 * signaled or for a specified timeout to expire. It can be
 * interrupted by a kill signal. The timeout is in jiffies.
2907
 *
2908 2909
 * Return: -ERESTARTSYS if interrupted, 0 if timed out, positive (at least 1,
 * or number of jiffies left till timeout) if completed.
2910
 */
2911
long __sched
2912 2913 2914 2915 2916 2917 2918
wait_for_completion_killable_timeout(struct completion *x,
				     unsigned long timeout)
{
	return wait_for_common(x, timeout, TASK_KILLABLE);
}
EXPORT_SYMBOL(wait_for_completion_killable_timeout);

2919 2920 2921 2922
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
2923
 *	Return: 0 if a decrement cannot be done without blocking
2924 2925 2926 2927 2928 2929 2930 2931 2932
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
2933
	unsigned long flags;
2934 2935
	int ret = 1;

2936
	spin_lock_irqsave(&x->wait.lock, flags);
2937 2938 2939 2940
	if (!x->done)
		ret = 0;
	else
		x->done--;
2941
	spin_unlock_irqrestore(&x->wait.lock, flags);
2942 2943 2944 2945 2946 2947 2948 2949
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
2950
 *	Return: 0 if there are waiters (wait_for_completion() in progress)
2951 2952 2953 2954 2955
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
2956
	unsigned long flags;
2957 2958
	int ret = 1;

2959
	spin_lock_irqsave(&x->wait.lock, flags);
2960 2961
	if (!x->done)
		ret = 0;
2962
	spin_unlock_irqrestore(&x->wait.lock, flags);
2963 2964 2965 2966
	return ret;
}
EXPORT_SYMBOL(completion_done);

2967 2968
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
2969
{
I
Ingo Molnar 已提交
2970 2971 2972 2973
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
2974

2975
	__set_current_state(state);
L
Linus Torvalds 已提交
2976

2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
2991 2992 2993
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
2994
long __sched
I
Ingo Molnar 已提交
2995
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
2996
{
2997
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
2998 2999 3000
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
3001
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3002
{
3003
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3004 3005 3006
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
3007
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3008
{
3009
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3010 3011 3012
}
EXPORT_SYMBOL(sleep_on_timeout);

3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
3025
void rt_mutex_setprio(struct task_struct *p, int prio)
3026
{
3027
	int oldprio, on_rq, running;
3028
	struct rq *rq;
3029
	const struct sched_class *prev_class;
3030 3031 3032

	BUG_ON(prio < 0 || prio > MAX_PRIO);

3033
	rq = __task_rq_lock(p);
3034

3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

3053
	trace_sched_pi_setprio(p, prio);
3054
	oldprio = p->prio;
3055
	prev_class = p->sched_class;
P
Peter Zijlstra 已提交
3056
	on_rq = p->on_rq;
3057
	running = task_current(rq, p);
3058
	if (on_rq)
3059
		dequeue_task(rq, p, 0);
3060 3061
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
3062 3063 3064 3065 3066 3067

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

3068 3069
	p->prio = prio;

3070 3071
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
3072
	if (on_rq)
3073
		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3074

P
Peter Zijlstra 已提交
3075
	check_class_changed(rq, p, prev_class, oldprio);
3076
out_unlock:
3077
	__task_rq_unlock(rq);
3078 3079
}
#endif
3080
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3081
{
I
Ingo Molnar 已提交
3082
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
3083
	unsigned long flags;
3084
	struct rq *rq;
L
Linus Torvalds 已提交
3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
3097
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
3098
	 */
3099
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3100 3101 3102
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
P
Peter Zijlstra 已提交
3103
	on_rq = p->on_rq;
3104
	if (on_rq)
3105
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
3106 3107

	p->static_prio = NICE_TO_PRIO(nice);
3108
	set_load_weight(p);
3109 3110 3111
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3112

I
Ingo Molnar 已提交
3113
	if (on_rq) {
3114
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
3115
		/*
3116 3117
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3118
		 */
3119
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
3120 3121 3122
			resched_task(rq->curr);
	}
out_unlock:
3123
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3124 3125 3126
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3127 3128 3129 3130 3131
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3132
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3133
{
3134 3135
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
3136

3137
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3138 3139 3140
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3141 3142 3143 3144 3145 3146 3147 3148 3149
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3150
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3151
{
3152
	long nice, retval;
L
Linus Torvalds 已提交
3153 3154 3155 3156 3157 3158

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
3159 3160
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
3161 3162 3163
	if (increment > 40)
		increment = 40;

3164
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
3165 3166 3167 3168 3169
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
3170 3171 3172
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
3187
 * Return: The priority value as seen by users in /proc.
L
Linus Torvalds 已提交
3188 3189 3190
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3191
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3192 3193 3194 3195 3196 3197 3198
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
3199 3200
 *
 * Return: The nice value [ -20 ... 0 ... 19 ].
L
Linus Torvalds 已提交
3201
 */
3202
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
3203 3204 3205
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
3206
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
3207 3208 3209 3210

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
3211 3212
 *
 * Return: 1 if the CPU is currently idle. 0 otherwise.
L
Linus Torvalds 已提交
3213 3214 3215
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3230 3231 3232 3233 3234
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
3235 3236
 *
 * Return: The idle task for the cpu @cpu.
L
Linus Torvalds 已提交
3237
 */
3238
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3239 3240 3241 3242 3243 3244 3245
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
3246 3247
 *
 * The task of @pid, if found. %NULL otherwise.
L
Linus Torvalds 已提交
3248
 */
A
Alexey Dobriyan 已提交
3249
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
3250
{
3251
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
3252 3253 3254
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
3255 3256
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
3257 3258 3259
{
	p->policy = policy;
	p->rt_priority = prio;
3260 3261 3262
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
3263 3264 3265 3266
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
3267
	set_load_weight(p);
L
Linus Torvalds 已提交
3268 3269
}

3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
3280 3281
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
3282 3283 3284 3285
	rcu_read_unlock();
	return match;
}

3286
static int __sched_setscheduler(struct task_struct *p, int policy,
3287
				const struct sched_param *param, bool user)
L
Linus Torvalds 已提交
3288
{
3289
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
3290
	unsigned long flags;
3291
	const struct sched_class *prev_class;
3292
	struct rq *rq;
3293
	int reset_on_fork;
L
Linus Torvalds 已提交
3294

3295 3296
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
3297 3298
recheck:
	/* double check policy once rq lock held */
3299 3300
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
3301
		policy = oldpolicy = p->policy;
3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
3312 3313
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
3314 3315
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
3316 3317
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
3318
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3319
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
3320
		return -EINVAL;
3321
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
3322 3323
		return -EINVAL;

3324 3325 3326
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
3327
	if (user && !capable(CAP_SYS_NICE)) {
3328
		if (rt_policy(policy)) {
3329 3330
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
3331 3332 3333 3334 3335 3336 3337 3338 3339 3340

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
3341

I
Ingo Molnar 已提交
3342
		/*
3343 3344
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
3345
		 */
3346 3347 3348 3349
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
			if (!can_nice(p, TASK_NICE(p)))
				return -EPERM;
		}
3350

3351
		/* can't change other user's priorities */
3352
		if (!check_same_owner(p))
3353
			return -EPERM;
3354 3355 3356 3357

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
3358
	}
L
Linus Torvalds 已提交
3359

3360
	if (user) {
3361
		retval = security_task_setscheduler(p);
3362 3363 3364 3365
		if (retval)
			return retval;
	}

3366 3367 3368
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
3369
	 *
L
Lucas De Marchi 已提交
3370
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
3371 3372
	 * runqueue lock must be held.
	 */
3373
	rq = task_rq_lock(p, &flags);
3374

3375 3376 3377 3378
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
3379
		task_rq_unlock(rq, p, &flags);
3380 3381 3382
		return -EINVAL;
	}

3383 3384 3385 3386 3387
	/*
	 * If not changing anything there's no need to proceed further:
	 */
	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
			param->sched_priority == p->rt_priority))) {
3388
		task_rq_unlock(rq, p, &flags);
3389 3390 3391
		return 0;
	}

3392 3393 3394 3395 3396 3397 3398
#ifdef CONFIG_RT_GROUP_SCHED
	if (user) {
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3399 3400
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
3401
			task_rq_unlock(rq, p, &flags);
3402 3403 3404 3405 3406
			return -EPERM;
		}
	}
#endif

L
Linus Torvalds 已提交
3407 3408 3409
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
3410
		task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3411 3412
		goto recheck;
	}
P
Peter Zijlstra 已提交
3413
	on_rq = p->on_rq;
3414
	running = task_current(rq, p);
3415
	if (on_rq)
3416
		dequeue_task(rq, p, 0);
3417 3418
	if (running)
		p->sched_class->put_prev_task(rq, p);
3419

3420 3421
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
3422
	oldprio = p->prio;
3423
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
3424
	__setscheduler(rq, p, policy, param->sched_priority);
3425

3426 3427
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
3428
	if (on_rq)
3429
		enqueue_task(rq, p, 0);
3430

P
Peter Zijlstra 已提交
3431
	check_class_changed(rq, p, prev_class, oldprio);
3432
	task_rq_unlock(rq, p, &flags);
3433

3434 3435
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
3436 3437
	return 0;
}
3438 3439 3440 3441 3442 3443 3444

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
3445 3446
 * Return: 0 on success. An error code otherwise.
 *
3447 3448 3449
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
3450
		       const struct sched_param *param)
3451 3452 3453
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
3454 3455
EXPORT_SYMBOL_GPL(sched_setscheduler);

3456 3457 3458 3459 3460 3461 3462 3463 3464 3465
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
3466 3467
 *
 * Return: 0 on success. An error code otherwise.
3468 3469
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3470
			       const struct sched_param *param)
3471 3472 3473 3474
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
3475 3476
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
3477 3478 3479
{
	struct sched_param lparam;
	struct task_struct *p;
3480
	int retval;
L
Linus Torvalds 已提交
3481 3482 3483 3484 3485

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
3486 3487 3488

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
3489
	p = find_process_by_pid(pid);
3490 3491 3492
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
3493

L
Linus Torvalds 已提交
3494 3495 3496 3497 3498 3499 3500 3501
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
3502 3503
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
3504
 */
3505 3506
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
3507
{
3508 3509 3510 3511
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
3512 3513 3514 3515 3516 3517 3518
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
3519 3520
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
3521
 */
3522
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
3523 3524 3525 3526 3527 3528 3529
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
3530 3531 3532
 *
 * Return: On success, the policy of the thread. Otherwise, a negative error
 * code.
L
Linus Torvalds 已提交
3533
 */
3534
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
3535
{
3536
	struct task_struct *p;
3537
	int retval;
L
Linus Torvalds 已提交
3538 3539

	if (pid < 0)
3540
		return -EINVAL;
L
Linus Torvalds 已提交
3541 3542

	retval = -ESRCH;
3543
	rcu_read_lock();
L
Linus Torvalds 已提交
3544 3545 3546 3547
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
3548 3549
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
3550
	}
3551
	rcu_read_unlock();
L
Linus Torvalds 已提交
3552 3553 3554 3555
	return retval;
}

/**
3556
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
3557 3558
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
3559 3560 3561
 *
 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
 * code.
L
Linus Torvalds 已提交
3562
 */
3563
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
3564 3565
{
	struct sched_param lp;
3566
	struct task_struct *p;
3567
	int retval;
L
Linus Torvalds 已提交
3568 3569

	if (!param || pid < 0)
3570
		return -EINVAL;
L
Linus Torvalds 已提交
3571

3572
	rcu_read_lock();
L
Linus Torvalds 已提交
3573 3574 3575 3576 3577 3578 3579 3580 3581 3582
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
3583
	rcu_read_unlock();
L
Linus Torvalds 已提交
3584 3585 3586 3587 3588 3589 3590 3591 3592

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
3593
	rcu_read_unlock();
L
Linus Torvalds 已提交
3594 3595 3596
	return retval;
}

3597
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
3598
{
3599
	cpumask_var_t cpus_allowed, new_mask;
3600 3601
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
3602

3603
	get_online_cpus();
3604
	rcu_read_lock();
L
Linus Torvalds 已提交
3605 3606 3607

	p = find_process_by_pid(pid);
	if (!p) {
3608
		rcu_read_unlock();
3609
		put_online_cpus();
L
Linus Torvalds 已提交
3610 3611 3612
		return -ESRCH;
	}

3613
	/* Prevent p going away */
L
Linus Torvalds 已提交
3614
	get_task_struct(p);
3615
	rcu_read_unlock();
L
Linus Torvalds 已提交
3616

3617 3618 3619 3620
	if (p->flags & PF_NO_SETAFFINITY) {
		retval = -EINVAL;
		goto out_put_task;
	}
3621 3622 3623 3624 3625 3626 3627 3628
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
3629
	retval = -EPERM;
E
Eric W. Biederman 已提交
3630 3631 3632 3633 3634 3635 3636 3637
	if (!check_same_owner(p)) {
		rcu_read_lock();
		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
			rcu_read_unlock();
			goto out_unlock;
		}
		rcu_read_unlock();
	}
L
Linus Torvalds 已提交
3638

3639
	retval = security_task_setscheduler(p);
3640 3641 3642
	if (retval)
		goto out_unlock;

3643 3644
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Peter Zijlstra 已提交
3645
again:
3646
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
3647

P
Paul Menage 已提交
3648
	if (!retval) {
3649 3650
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
3651 3652 3653 3654 3655
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
3656
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
3657 3658 3659
			goto again;
		}
	}
L
Linus Torvalds 已提交
3660
out_unlock:
3661 3662 3663 3664
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
3665
	put_task_struct(p);
3666
	put_online_cpus();
L
Linus Torvalds 已提交
3667 3668 3669 3670
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3671
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
3672
{
3673 3674 3675 3676 3677
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
3678 3679 3680 3681 3682 3683 3684 3685
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
3686 3687
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
3688
 */
3689 3690
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
3691
{
3692
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
3693 3694
	int retval;

3695 3696
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
3697

3698 3699 3700 3701 3702
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
3703 3704
}

3705
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
3706
{
3707
	struct task_struct *p;
3708
	unsigned long flags;
L
Linus Torvalds 已提交
3709 3710
	int retval;

3711
	get_online_cpus();
3712
	rcu_read_lock();
L
Linus Torvalds 已提交
3713 3714 3715 3716 3717 3718

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

3719 3720 3721 3722
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

3723
	raw_spin_lock_irqsave(&p->pi_lock, flags);
3724
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
3725
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
3726 3727

out_unlock:
3728
	rcu_read_unlock();
3729
	put_online_cpus();
L
Linus Torvalds 已提交
3730

3731
	return retval;
L
Linus Torvalds 已提交
3732 3733 3734 3735 3736 3737 3738
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3739 3740
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
3741
 */
3742 3743
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
3744 3745
{
	int ret;
3746
	cpumask_var_t mask;
L
Linus Torvalds 已提交
3747

A
Anton Blanchard 已提交
3748
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
3749 3750
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
3751 3752
		return -EINVAL;

3753 3754
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
3755

3756 3757
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
3758
		size_t retlen = min_t(size_t, len, cpumask_size());
3759 3760

		if (copy_to_user(user_mask_ptr, mask, retlen))
3761 3762
			ret = -EFAULT;
		else
3763
			ret = retlen;
3764 3765
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
3766

3767
	return ret;
L
Linus Torvalds 已提交
3768 3769 3770 3771 3772
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
3773 3774
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
3775 3776
 *
 * Return: 0.
L
Linus Torvalds 已提交
3777
 */
3778
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
3779
{
3780
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
3781

3782
	schedstat_inc(rq, yld_count);
3783
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
3784 3785 3786 3787 3788 3789

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
3790
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3791
	do_raw_spin_unlock(&rq->lock);
3792
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
3793 3794 3795 3796 3797 3798

	schedule();

	return 0;
}

A
Andrew Morton 已提交
3799
static void __cond_resched(void)
L
Linus Torvalds 已提交
3800
{
3801
	__preempt_count_add(PREEMPT_ACTIVE);
3802
	__schedule();
3803
	__preempt_count_sub(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3804 3805
}

3806
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
3807
{
P
Peter Zijlstra 已提交
3808
	if (should_resched()) {
L
Linus Torvalds 已提交
3809 3810 3811 3812 3813
		__cond_resched();
		return 1;
	}
	return 0;
}
3814
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
3815 3816

/*
3817
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
3818 3819
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
3820
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
3821 3822 3823
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
3824
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
3825
{
P
Peter Zijlstra 已提交
3826
	int resched = should_resched();
J
Jan Kara 已提交
3827 3828
	int ret = 0;

3829 3830
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
3831
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
3832
		spin_unlock(lock);
P
Peter Zijlstra 已提交
3833
		if (resched)
N
Nick Piggin 已提交
3834 3835 3836
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
3837
		ret = 1;
L
Linus Torvalds 已提交
3838 3839
		spin_lock(lock);
	}
J
Jan Kara 已提交
3840
	return ret;
L
Linus Torvalds 已提交
3841
}
3842
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
3843

3844
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
3845 3846 3847
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
3848
	if (should_resched()) {
3849
		local_bh_enable();
L
Linus Torvalds 已提交
3850 3851 3852 3853 3854 3855
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
3856
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
3857 3858 3859 3860

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
 * 	yield();
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
3879 3880 3881 3882 3883 3884 3885 3886
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

3887 3888 3889 3890
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
3891 3892
 * @p: target task
 * @preempt: whether task preemption is allowed or not
3893 3894 3895 3896
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
3897
 * Return:
3898 3899 3900
 *	true (>0) if we indeed boosted the target task.
 *	false (0) if we failed to boost the target.
 *	-ESRCH if there's no task to yield to.
3901 3902 3903 3904 3905 3906
 */
bool __sched yield_to(struct task_struct *p, bool preempt)
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
3907
	int yielded = 0;
3908 3909 3910 3911 3912 3913

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
3914 3915 3916 3917 3918 3919 3920 3921 3922
	/*
	 * If we're the only runnable task on the rq and target rq also
	 * has only one task, there's absolutely no point in yielding.
	 */
	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
		yielded = -ESRCH;
		goto out_irq;
	}

3923 3924 3925 3926 3927 3928 3929
	double_rq_lock(rq, p_rq);
	while (task_rq(p) != p_rq) {
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
3930
		goto out_unlock;
3931 3932

	if (curr->sched_class != p->sched_class)
3933
		goto out_unlock;
3934 3935

	if (task_running(p_rq, p) || p->state)
3936
		goto out_unlock;
3937 3938

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
3939
	if (yielded) {
3940
		schedstat_inc(rq, yld_count);
3941 3942 3943 3944 3945 3946 3947
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
			resched_task(p_rq->curr);
	}
3948

3949
out_unlock:
3950
	double_rq_unlock(rq, p_rq);
3951
out_irq:
3952 3953
	local_irq_restore(flags);

3954
	if (yielded > 0)
3955 3956 3957 3958 3959 3960
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
3961
/*
I
Ingo Molnar 已提交
3962
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
3963 3964 3965 3966
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
3967
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
3968

3969
	delayacct_blkio_start();
L
Linus Torvalds 已提交
3970
	atomic_inc(&rq->nr_iowait);
3971
	blk_flush_plug(current);
3972
	current->in_iowait = 1;
L
Linus Torvalds 已提交
3973
	schedule();
3974
	current->in_iowait = 0;
L
Linus Torvalds 已提交
3975
	atomic_dec(&rq->nr_iowait);
3976
	delayacct_blkio_end();
L
Linus Torvalds 已提交
3977 3978 3979 3980 3981
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
3982
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
3983 3984
	long ret;

3985
	delayacct_blkio_start();
L
Linus Torvalds 已提交
3986
	atomic_inc(&rq->nr_iowait);
3987
	blk_flush_plug(current);
3988
	current->in_iowait = 1;
L
Linus Torvalds 已提交
3989
	ret = schedule_timeout(timeout);
3990
	current->in_iowait = 0;
L
Linus Torvalds 已提交
3991
	atomic_dec(&rq->nr_iowait);
3992
	delayacct_blkio_end();
L
Linus Torvalds 已提交
3993 3994 3995 3996 3997 3998 3999
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
4000 4001 4002
 * Return: On success, this syscall returns the maximum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
4003
 */
4004
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
4005 4006 4007 4008 4009 4010 4011 4012 4013
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4014
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4015
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4016 4017 4018 4019 4020 4021 4022 4023 4024 4025
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
4026 4027 4028
 * Return: On success, this syscall returns the minimum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
4029
 */
4030
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
4031 4032 4033 4034 4035 4036 4037 4038 4039
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4040
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4041
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
4054 4055 4056
 *
 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
 * an error code.
L
Linus Torvalds 已提交
4057
 */
4058
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4059
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
4060
{
4061
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4062
	unsigned int time_slice;
4063 4064
	unsigned long flags;
	struct rq *rq;
4065
	int retval;
L
Linus Torvalds 已提交
4066 4067 4068
	struct timespec t;

	if (pid < 0)
4069
		return -EINVAL;
L
Linus Torvalds 已提交
4070 4071

	retval = -ESRCH;
4072
	rcu_read_lock();
L
Linus Torvalds 已提交
4073 4074 4075 4076 4077 4078 4079 4080
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4081 4082
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
4083
	task_rq_unlock(rq, p, &flags);
D
Dmitry Adamushko 已提交
4084

4085
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
4086
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4087 4088
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4089

L
Linus Torvalds 已提交
4090
out_unlock:
4091
	rcu_read_unlock();
L
Linus Torvalds 已提交
4092 4093 4094
	return retval;
}

4095
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4096

4097
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4098 4099
{
	unsigned long free = 0;
4100
	int ppid;
4101
	unsigned state;
L
Linus Torvalds 已提交
4102 4103

	state = p->state ? __ffs(p->state) + 1 : 0;
4104
	printk(KERN_INFO "%-15.15s %c", p->comm,
4105
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4106
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4107
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4108
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4109
	else
P
Peter Zijlstra 已提交
4110
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4111 4112
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4113
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4114
	else
P
Peter Zijlstra 已提交
4115
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4116 4117
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
4118
	free = stack_not_used(p);
L
Linus Torvalds 已提交
4119
#endif
4120 4121 4122
	rcu_read_lock();
	ppid = task_pid_nr(rcu_dereference(p->real_parent));
	rcu_read_unlock();
P
Peter Zijlstra 已提交
4123
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4124
		task_pid_nr(p), ppid,
4125
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
4126

4127
	print_worker_info(KERN_INFO, p);
4128
	show_stack(p, NULL);
L
Linus Torvalds 已提交
4129 4130
}

I
Ingo Molnar 已提交
4131
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4132
{
4133
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4134

4135
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
4136 4137
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4138
#else
P
Peter Zijlstra 已提交
4139 4140
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4141
#endif
4142
	rcu_read_lock();
L
Linus Torvalds 已提交
4143 4144 4145
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
4146
		 * console might take a lot of time:
L
Linus Torvalds 已提交
4147 4148
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4149
		if (!state_filter || (p->state & state_filter))
4150
			sched_show_task(p);
L
Linus Torvalds 已提交
4151 4152
	} while_each_thread(g, p);

4153 4154
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4155 4156 4157
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
4158
	rcu_read_unlock();
I
Ingo Molnar 已提交
4159 4160 4161
	/*
	 * Only show locks if all tasks are dumped:
	 */
4162
	if (!state_filter)
I
Ingo Molnar 已提交
4163
		debug_show_all_locks();
L
Linus Torvalds 已提交
4164 4165
}

4166
void init_idle_bootup_task(struct task_struct *idle)
I
Ingo Molnar 已提交
4167
{
I
Ingo Molnar 已提交
4168
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4169 4170
}

4171 4172 4173 4174 4175 4176 4177 4178
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4179
void init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4180
{
4181
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4182 4183
	unsigned long flags;

4184
	raw_spin_lock_irqsave(&rq->lock, flags);
4185

I
Ingo Molnar 已提交
4186
	__sched_fork(idle);
4187
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
4188 4189
	idle->se.exec_start = sched_clock();

4190
	do_set_cpus_allowed(idle, cpumask_of(cpu));
4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
4202
	__set_task_cpu(idle, cpu);
4203
	rcu_read_unlock();
L
Linus Torvalds 已提交
4204 4205

	rq->curr = rq->idle = idle;
P
Peter Zijlstra 已提交
4206 4207
#if defined(CONFIG_SMP)
	idle->on_cpu = 1;
4208
#endif
4209
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
4210 4211

	/* Set the preempt count _outside_ the spinlocks! */
4212
	init_idle_preempt_count(idle, cpu);
4213

I
Ingo Molnar 已提交
4214 4215 4216 4217
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
4218
	ftrace_graph_init_idle_task(idle, cpu);
4219
	vtime_init_idle(idle, cpu);
4220 4221 4222
#if defined(CONFIG_SMP)
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
4223 4224
}

L
Linus Torvalds 已提交
4225
#ifdef CONFIG_SMP
4226 4227 4228 4229
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
	if (p->sched_class && p->sched_class->set_cpus_allowed)
		p->sched_class->set_cpus_allowed(p, new_mask);
4230 4231

	cpumask_copy(&p->cpus_allowed, new_mask);
4232
	p->nr_cpus_allowed = cpumask_weight(new_mask);
4233 4234
}

L
Linus Torvalds 已提交
4235 4236 4237
/*
 * This is how migration works:
 *
4238 4239 4240 4241 4242 4243
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
4244
 *    it and puts it into the right queue.
4245 4246
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
4247 4248 4249 4250 4251 4252 4253 4254
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
4255
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
4256 4257
 * call is not atomic; no spinlocks may be held.
 */
4258
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
4259 4260
{
	unsigned long flags;
4261
	struct rq *rq;
4262
	unsigned int dest_cpu;
4263
	int ret = 0;
L
Linus Torvalds 已提交
4264 4265

	rq = task_rq_lock(p, &flags);
4266

4267 4268 4269
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

4270
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
4271 4272 4273 4274
		ret = -EINVAL;
		goto out;
	}

4275
	do_set_cpus_allowed(p, new_mask);
4276

L
Linus Torvalds 已提交
4277
	/* Can the task run on the task's current CPU? If so, we're done */
4278
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
4279 4280
		goto out;

4281
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4282
	if (p->on_rq) {
4283
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
4284
		/* Need help from migration thread: drop lock and wait. */
4285
		task_rq_unlock(rq, p, &flags);
4286
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
4287 4288 4289 4290
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
4291
	task_rq_unlock(rq, p, &flags);
4292

L
Linus Torvalds 已提交
4293 4294
	return ret;
}
4295
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
4296 4297

/*
I
Ingo Molnar 已提交
4298
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
4299 4300 4301 4302 4303 4304
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4305 4306
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4307
 */
4308
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4309
{
4310
	struct rq *rq_dest, *rq_src;
4311
	int ret = 0;
L
Linus Torvalds 已提交
4312

4313
	if (unlikely(!cpu_active(dest_cpu)))
4314
		return ret;
L
Linus Torvalds 已提交
4315 4316 4317 4318

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

4319
	raw_spin_lock(&p->pi_lock);
L
Linus Torvalds 已提交
4320 4321 4322
	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
4323
		goto done;
L
Linus Torvalds 已提交
4324
	/* Affinity changed (again). */
4325
	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
L
Linus Torvalds 已提交
4326
		goto fail;
L
Linus Torvalds 已提交
4327

4328 4329 4330 4331
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
P
Peter Zijlstra 已提交
4332
	if (p->on_rq) {
4333
		dequeue_task(rq_src, p, 0);
4334
		set_task_cpu(p, dest_cpu);
4335
		enqueue_task(rq_dest, p, 0);
4336
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
4337
	}
L
Linus Torvalds 已提交
4338
done:
4339
	ret = 1;
L
Linus Torvalds 已提交
4340
fail:
L
Linus Torvalds 已提交
4341
	double_rq_unlock(rq_src, rq_dest);
4342
	raw_spin_unlock(&p->pi_lock);
4343
	return ret;
L
Linus Torvalds 已提交
4344 4345 4346
}

/*
4347 4348 4349
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
4350
 */
4351
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
4352
{
4353
	struct migration_arg *arg = data;
4354

4355 4356 4357 4358
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
4359
	local_irq_disable();
4360
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4361
	local_irq_enable();
L
Linus Torvalds 已提交
4362
	return 0;
4363 4364
}

L
Linus Torvalds 已提交
4365
#ifdef CONFIG_HOTPLUG_CPU
4366

4367
/*
4368 4369
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
4370
 */
4371
void idle_task_exit(void)
L
Linus Torvalds 已提交
4372
{
4373
	struct mm_struct *mm = current->active_mm;
4374

4375
	BUG_ON(cpu_online(smp_processor_id()));
4376

4377 4378 4379
	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
L
Linus Torvalds 已提交
4380 4381 4382
}

/*
4383 4384 4385 4386 4387
 * Since this CPU is going 'away' for a while, fold any nr_active delta
 * we might have. Assumes we're called after migrate_tasks() so that the
 * nr_active count is stable.
 *
 * Also see the comment "Global load-average calculations".
L
Linus Torvalds 已提交
4388
 */
4389
static void calc_load_migrate(struct rq *rq)
L
Linus Torvalds 已提交
4390
{
4391 4392 4393
	long delta = calc_load_fold_active(rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
4394 4395
}

4396
/*
4397 4398 4399 4400 4401 4402
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
4403
 */
4404
static void migrate_tasks(unsigned int dead_cpu)
L
Linus Torvalds 已提交
4405
{
4406
	struct rq *rq = cpu_rq(dead_cpu);
4407 4408
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
4409 4410

	/*
4411 4412 4413 4414 4415 4416 4417
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
4418
	 */
4419
	rq->stop = NULL;
4420

4421 4422 4423 4424 4425 4426 4427
	/*
	 * put_prev_task() and pick_next_task() sched
	 * class method both need to have an up-to-date
	 * value of rq->clock[_task]
	 */
	update_rq_clock(rq);

I
Ingo Molnar 已提交
4428
	for ( ; ; ) {
4429 4430 4431 4432 4433
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
4434
			break;
4435

4436
		next = pick_next_task(rq);
4437
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
4438
		next->sched_class->put_prev_task(rq, next);
4439

4440 4441 4442 4443 4444 4445 4446
		/* Find suitable destination for @next, with force if needed. */
		dest_cpu = select_fallback_rq(dead_cpu, next);
		raw_spin_unlock(&rq->lock);

		__migrate_task(next, dead_cpu, dest_cpu);

		raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
4447
	}
4448

4449
	rq->stop = stop;
4450
}
4451

L
Linus Torvalds 已提交
4452 4453
#endif /* CONFIG_HOTPLUG_CPU */

4454 4455 4456
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
4457 4458
	{
		.procname	= "sched_domain",
4459
		.mode		= 0555,
4460
	},
4461
	{}
4462 4463 4464
};

static struct ctl_table sd_ctl_root[] = {
4465 4466
	{
		.procname	= "kernel",
4467
		.mode		= 0555,
4468 4469
		.child		= sd_ctl_dir,
	},
4470
	{}
4471 4472 4473 4474 4475
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
4476
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4477 4478 4479 4480

	return entry;
}

4481 4482
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
4483
	struct ctl_table *entry;
4484

4485 4486 4487
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
4488
	 * will always be set. In the lowest directory the names are
4489 4490 4491
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
4492 4493
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
4494 4495 4496
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
4497 4498 4499 4500 4501

	kfree(*tablep);
	*tablep = NULL;
}

4502
static int min_load_idx = 0;
4503
static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4504

4505
static void
4506
set_table_entry(struct ctl_table *entry,
4507
		const char *procname, void *data, int maxlen,
4508 4509
		umode_t mode, proc_handler *proc_handler,
		bool load_idx)
4510 4511 4512 4513 4514 4515
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
4516 4517 4518 4519 4520

	if (load_idx) {
		entry->extra1 = &min_load_idx;
		entry->extra2 = &max_load_idx;
	}
4521 4522 4523 4524 4525
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
4526
	struct ctl_table *table = sd_alloc_ctl_entry(13);
4527

4528 4529 4530
	if (table == NULL)
		return NULL;

4531
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4532
		sizeof(long), 0644, proc_doulongvec_minmax, false);
4533
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4534
		sizeof(long), 0644, proc_doulongvec_minmax, false);
4535
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4536
		sizeof(int), 0644, proc_dointvec_minmax, true);
4537
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4538
		sizeof(int), 0644, proc_dointvec_minmax, true);
4539
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4540
		sizeof(int), 0644, proc_dointvec_minmax, true);
4541
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4542
		sizeof(int), 0644, proc_dointvec_minmax, true);
4543
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4544
		sizeof(int), 0644, proc_dointvec_minmax, true);
4545
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4546
		sizeof(int), 0644, proc_dointvec_minmax, false);
4547
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4548
		sizeof(int), 0644, proc_dointvec_minmax, false);
4549
	set_table_entry(&table[9], "cache_nice_tries",
4550
		&sd->cache_nice_tries,
4551
		sizeof(int), 0644, proc_dointvec_minmax, false);
4552
	set_table_entry(&table[10], "flags", &sd->flags,
4553
		sizeof(int), 0644, proc_dointvec_minmax, false);
4554
	set_table_entry(&table[11], "name", sd->name,
4555
		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4556
	/* &table[12] is terminator */
4557 4558 4559 4560

	return table;
}

4561
static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4562 4563 4564 4565 4566 4567 4568 4569 4570
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4571 4572
	if (table == NULL)
		return NULL;
4573 4574 4575 4576 4577

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
4578
		entry->mode = 0555;
4579 4580 4581 4582 4583 4584 4585 4586
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
4587
static void register_sched_domain_sysctl(void)
4588
{
4589
	int i, cpu_num = num_possible_cpus();
4590 4591 4592
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

4593 4594 4595
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

4596 4597 4598
	if (entry == NULL)
		return;

4599
	for_each_possible_cpu(i) {
4600 4601
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
4602
		entry->mode = 0555;
4603
		entry->child = sd_alloc_ctl_cpu_table(i);
4604
		entry++;
4605
	}
4606 4607

	WARN_ON(sd_sysctl_header);
4608 4609
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
4610

4611
/* may be called multiple times per register */
4612 4613
static void unregister_sched_domain_sysctl(void)
{
4614 4615
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
4616
	sd_sysctl_header = NULL;
4617 4618
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
4619
}
4620
#else
4621 4622 4623 4624
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
4625 4626 4627 4628
{
}
#endif

4629 4630 4631 4632 4633
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

4634
		cpumask_set_cpu(rq->cpu, rq->rd->online);
4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

4654
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
4655 4656 4657 4658
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
4659 4660 4661 4662
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
4663
static int
4664
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
4665
{
4666
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
4667
	unsigned long flags;
4668
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4669

4670
	switch (action & ~CPU_TASKS_FROZEN) {
4671

L
Linus Torvalds 已提交
4672
	case CPU_UP_PREPARE:
4673
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
4674
		break;
4675

L
Linus Torvalds 已提交
4676
	case CPU_ONLINE:
4677
		/* Update our root-domain */
4678
		raw_spin_lock_irqsave(&rq->lock, flags);
4679
		if (rq->rd) {
4680
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4681 4682

			set_rq_online(rq);
4683
		}
4684
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
4685
		break;
4686

L
Linus Torvalds 已提交
4687
#ifdef CONFIG_HOTPLUG_CPU
4688
	case CPU_DYING:
4689
		sched_ttwu_pending();
G
Gregory Haskins 已提交
4690
		/* Update our root-domain */
4691
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
4692
		if (rq->rd) {
4693
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4694
			set_rq_offline(rq);
G
Gregory Haskins 已提交
4695
		}
4696 4697
		migrate_tasks(cpu);
		BUG_ON(rq->nr_running != 1); /* the migration thread */
4698
		raw_spin_unlock_irqrestore(&rq->lock, flags);
4699
		break;
4700

4701
	case CPU_DEAD:
4702
		calc_load_migrate(rq);
G
Gregory Haskins 已提交
4703
		break;
L
Linus Torvalds 已提交
4704 4705
#endif
	}
4706 4707 4708

	update_max_interval();

L
Linus Torvalds 已提交
4709 4710 4711
	return NOTIFY_OK;
}

4712 4713 4714
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
4715
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
4716
 */
4717
static struct notifier_block migration_notifier = {
L
Linus Torvalds 已提交
4718
	.notifier_call = migration_call,
4719
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
4720 4721
};

4722
static int sched_cpu_active(struct notifier_block *nfb,
4723 4724 4725
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
4726
	case CPU_STARTING:
4727 4728 4729 4730 4731 4732 4733 4734
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

4735
static int sched_cpu_inactive(struct notifier_block *nfb,
4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		set_cpu_active((long)hcpu, false);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

4747
static int __init migration_init(void)
L
Linus Torvalds 已提交
4748 4749
{
	void *cpu = (void *)(long)smp_processor_id();
4750
	int err;
4751

4752
	/* Initialize migration for the boot CPU */
4753 4754
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
4755 4756
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
4757

4758 4759 4760 4761
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

4762
	return 0;
L
Linus Torvalds 已提交
4763
}
4764
early_initcall(migration_init);
L
Linus Torvalds 已提交
4765 4766 4767
#endif

#ifdef CONFIG_SMP
4768

4769 4770
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

4771
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
4772

4773
static __read_mostly int sched_debug_enabled;
4774

4775
static int __init sched_debug_setup(char *str)
4776
{
4777
	sched_debug_enabled = 1;
4778 4779 4780

	return 0;
}
4781 4782 4783 4784 4785 4786
early_param("sched_debug", sched_debug_setup);

static inline bool sched_debug(void)
{
	return sched_debug_enabled;
}
4787

4788
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
4789
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
4790
{
I
Ingo Molnar 已提交
4791
	struct sched_group *group = sd->groups;
4792
	char str[256];
L
Linus Torvalds 已提交
4793

R
Rusty Russell 已提交
4794
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
4795
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
4796 4797 4798 4799

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
4800
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
4801
		if (sd->parent)
P
Peter Zijlstra 已提交
4802 4803
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
4804
		return -1;
N
Nick Piggin 已提交
4805 4806
	}

P
Peter Zijlstra 已提交
4807
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
4808

4809
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
4810 4811
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
4812
	}
4813
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
4814 4815
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
4816
	}
L
Linus Torvalds 已提交
4817

I
Ingo Molnar 已提交
4818
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
4819
	do {
I
Ingo Molnar 已提交
4820
		if (!group) {
P
Peter Zijlstra 已提交
4821 4822
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
4823 4824 4825
			break;
		}

4826 4827 4828 4829 4830 4831
		/*
		 * Even though we initialize ->power to something semi-sane,
		 * we leave power_orig unset. This allows us to detect if
		 * domain iteration is still funny without causing /0 traps.
		 */
		if (!group->sgp->power_orig) {
P
Peter Zijlstra 已提交
4832 4833 4834
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
4835 4836
			break;
		}
L
Linus Torvalds 已提交
4837

4838
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
4839 4840
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
4841 4842
			break;
		}
L
Linus Torvalds 已提交
4843

4844 4845
		if (!(sd->flags & SD_OVERLAP) &&
		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
4846 4847
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
4848 4849
			break;
		}
L
Linus Torvalds 已提交
4850

4851
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
4852

R
Rusty Russell 已提交
4853
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
4854

P
Peter Zijlstra 已提交
4855
		printk(KERN_CONT " %s", str);
4856
		if (group->sgp->power != SCHED_POWER_SCALE) {
P
Peter Zijlstra 已提交
4857
			printk(KERN_CONT " (cpu_power = %d)",
4858
				group->sgp->power);
4859
		}
L
Linus Torvalds 已提交
4860

I
Ingo Molnar 已提交
4861 4862
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
4863
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
4864

4865
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
4866
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
4867

4868 4869
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
4870 4871
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
4872 4873
	return 0;
}
L
Linus Torvalds 已提交
4874

I
Ingo Molnar 已提交
4875 4876 4877
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
4878

4879
	if (!sched_debug_enabled)
4880 4881
		return;

I
Ingo Molnar 已提交
4882 4883 4884 4885
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
4886

I
Ingo Molnar 已提交
4887 4888 4889
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
4890
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
I
Ingo Molnar 已提交
4891
			break;
L
Linus Torvalds 已提交
4892 4893
		level++;
		sd = sd->parent;
4894
		if (!sd)
I
Ingo Molnar 已提交
4895 4896
			break;
	}
L
Linus Torvalds 已提交
4897
}
4898
#else /* !CONFIG_SCHED_DEBUG */
4899
# define sched_domain_debug(sd, cpu) do { } while (0)
4900 4901 4902 4903
static inline bool sched_debug(void)
{
	return false;
}
4904
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
4905

4906
static int sd_degenerate(struct sched_domain *sd)
4907
{
4908
	if (cpumask_weight(sched_domain_span(sd)) == 1)
4909 4910 4911 4912 4913 4914
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
4915 4916 4917
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
4918 4919 4920 4921 4922
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
4923
	if (sd->flags & (SD_WAKE_AFFINE))
4924 4925 4926 4927 4928
		return 0;

	return 1;
}

4929 4930
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
4931 4932 4933 4934 4935 4936
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

4937
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
4938 4939 4940 4941 4942 4943 4944
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
4945 4946
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
4947 4948
				SD_SHARE_PKG_RESOURCES |
				SD_PREFER_SIBLING);
4949 4950
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
4951 4952 4953 4954 4955 4956 4957
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

4958
static void free_rootdomain(struct rcu_head *rcu)
4959
{
4960
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
4961

4962
	cpupri_cleanup(&rd->cpupri);
4963 4964 4965 4966 4967 4968
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
4969 4970
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
4971
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
4972 4973
	unsigned long flags;

4974
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
4975 4976

	if (rq->rd) {
I
Ingo Molnar 已提交
4977
		old_rd = rq->rd;
G
Gregory Haskins 已提交
4978

4979
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
4980
			set_rq_offline(rq);
G
Gregory Haskins 已提交
4981

4982
		cpumask_clear_cpu(rq->cpu, old_rd->span);
4983

I
Ingo Molnar 已提交
4984 4985 4986 4987 4988 4989 4990
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
4991 4992 4993 4994 4995
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

4996
	cpumask_set_cpu(rq->cpu, rd->span);
4997
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
4998
		set_rq_online(rq);
G
Gregory Haskins 已提交
4999

5000
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
5001 5002

	if (old_rd)
5003
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
5004 5005
}

5006
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
5007 5008 5009
{
	memset(rd, 0, sizeof(*rd));

5010
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5011
		goto out;
5012
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5013
		goto free_span;
5014
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5015
		goto free_online;
5016

5017
	if (cpupri_init(&rd->cpupri) != 0)
5018
		goto free_rto_mask;
5019
	return 0;
5020

5021 5022
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
5023 5024 5025 5026
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
5027
out:
5028
	return -ENOMEM;
G
Gregory Haskins 已提交
5029 5030
}

5031 5032 5033 5034 5035 5036
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
struct root_domain def_root_domain;

G
Gregory Haskins 已提交
5037 5038
static void init_defrootdomain(void)
{
5039
	init_rootdomain(&def_root_domain);
5040

G
Gregory Haskins 已提交
5041 5042 5043
	atomic_set(&def_root_domain.refcount, 1);
}

5044
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
5045 5046 5047 5048 5049 5050 5051
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

5052
	if (init_rootdomain(rd) != 0) {
5053 5054 5055
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
5056 5057 5058 5059

	return rd;
}

5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078
static void free_sched_groups(struct sched_group *sg, int free_sgp)
{
	struct sched_group *tmp, *first;

	if (!sg)
		return;

	first = sg;
	do {
		tmp = sg->next;

		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
			kfree(sg->sgp);

		kfree(sg);
		sg = tmp;
	} while (sg != first);
}

5079 5080 5081
static void free_sched_domain(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5082 5083 5084 5085 5086 5087 5088 5089

	/*
	 * If its an overlapping domain it has private groups, iterate and
	 * nuke them all.
	 */
	if (sd->flags & SD_OVERLAP) {
		free_sched_groups(sd->groups, 1);
	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5090
		kfree(sd->groups->sgp);
5091
		kfree(sd->groups);
5092
	}
5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106
	kfree(sd);
}

static void destroy_sched_domain(struct sched_domain *sd, int cpu)
{
	call_rcu(&sd->rcu, free_sched_domain);
}

static void destroy_sched_domains(struct sched_domain *sd, int cpu)
{
	for (; sd; sd = sd->parent)
		destroy_sched_domain(sd, cpu);
}

5107 5108 5109 5110 5111 5112 5113
/*
 * Keep a special pointer to the highest sched_domain that has
 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 * allows us to avoid some pointer chasing select_idle_sibling().
 *
 * Also keep a unique ID per domain (we use the first cpu number in
 * the cpumask of the domain), this allows us to quickly tell if
5114
 * two cpus are in the same cache domain, see cpus_share_cache().
5115 5116
 */
DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5117
DEFINE_PER_CPU(int, sd_llc_size);
5118 5119 5120 5121 5122 5123
DEFINE_PER_CPU(int, sd_llc_id);

static void update_top_cache_domain(int cpu)
{
	struct sched_domain *sd;
	int id = cpu;
5124
	int size = 1;
5125 5126

	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5127
	if (sd) {
5128
		id = cpumask_first(sched_domain_span(sd));
5129 5130
		size = cpumask_weight(sched_domain_span(sd));
	}
5131 5132

	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5133
	per_cpu(sd_llc_size, cpu) = size;
5134 5135 5136
	per_cpu(sd_llc_id, cpu) = id;
}

L
Linus Torvalds 已提交
5137
/*
I
Ingo Molnar 已提交
5138
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
5139 5140
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
5141 5142
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
5143
{
5144
	struct rq *rq = cpu_rq(cpu);
5145 5146 5147
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
5148
	for (tmp = sd; tmp; ) {
5149 5150 5151
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5152

5153
		if (sd_parent_degenerate(tmp, parent)) {
5154
			tmp->parent = parent->parent;
5155 5156
			if (parent->parent)
				parent->parent->child = tmp;
5157 5158 5159 5160 5161 5162 5163
			/*
			 * Transfer SD_PREFER_SIBLING down in case of a
			 * degenerate parent; the spans match for this
			 * so the property transfers.
			 */
			if (parent->flags & SD_PREFER_SIBLING)
				tmp->flags |= SD_PREFER_SIBLING;
5164
			destroy_sched_domain(parent, cpu);
5165 5166
		} else
			tmp = tmp->parent;
5167 5168
	}

5169
	if (sd && sd_degenerate(sd)) {
5170
		tmp = sd;
5171
		sd = sd->parent;
5172
		destroy_sched_domain(tmp, cpu);
5173 5174 5175
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5176

5177
	sched_domain_debug(sd, cpu);
L
Linus Torvalds 已提交
5178

G
Gregory Haskins 已提交
5179
	rq_attach_root(rq, rd);
5180
	tmp = rq->sd;
N
Nick Piggin 已提交
5181
	rcu_assign_pointer(rq->sd, sd);
5182
	destroy_sched_domains(tmp, cpu);
5183 5184

	update_top_cache_domain(cpu);
L
Linus Torvalds 已提交
5185 5186 5187
}

/* cpus with isolated domains */
5188
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
5189 5190 5191 5192

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
5193
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
5194
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
5195 5196 5197
	return 1;
}

I
Ingo Molnar 已提交
5198
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5199

5200 5201 5202 5203 5204
static const struct cpumask *cpu_cpu_mask(int cpu)
{
	return cpumask_of_node(cpu_to_node(cpu));
}

5205 5206 5207
struct sd_data {
	struct sched_domain **__percpu sd;
	struct sched_group **__percpu sg;
5208
	struct sched_group_power **__percpu sgp;
5209 5210
};

5211
struct s_data {
5212
	struct sched_domain ** __percpu sd;
5213 5214 5215
	struct root_domain	*rd;
};

5216 5217
enum s_alloc {
	sa_rootdomain,
5218
	sa_sd,
5219
	sa_sd_storage,
5220 5221 5222
	sa_none,
};

5223 5224 5225
struct sched_domain_topology_level;

typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5226 5227
typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);

5228 5229
#define SDTL_OVERLAP	0x01

5230
struct sched_domain_topology_level {
5231 5232
	sched_domain_init_f init;
	sched_domain_mask_f mask;
5233
	int		    flags;
5234
	int		    numa_level;
5235
	struct sd_data      data;
5236 5237
};

P
Peter Zijlstra 已提交
5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275
/*
 * Build an iteration mask that can exclude certain CPUs from the upwards
 * domain traversal.
 *
 * Asymmetric node setups can result in situations where the domain tree is of
 * unequal depth, make sure to skip domains that already cover the entire
 * range.
 *
 * In that case build_sched_domains() will have terminated the iteration early
 * and our sibling sd spans will be empty. Domains should always include the
 * cpu they're built on, so check that.
 *
 */
static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
{
	const struct cpumask *span = sched_domain_span(sd);
	struct sd_data *sdd = sd->private;
	struct sched_domain *sibling;
	int i;

	for_each_cpu(i, span) {
		sibling = *per_cpu_ptr(sdd->sd, i);
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
			continue;

		cpumask_set_cpu(i, sched_group_mask(sg));
	}
}

/*
 * Return the canonical balance cpu for this group, this is the first cpu
 * of this group that's also in the iteration mask.
 */
int group_balance_cpu(struct sched_group *sg)
{
	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
}

5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293
static int
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered = sched_domains_tmpmask;
	struct sd_data *sdd = sd->private;
	struct sched_domain *child;
	int i;

	cpumask_clear(covered);

	for_each_cpu(i, span) {
		struct cpumask *sg_span;

		if (cpumask_test_cpu(i, covered))
			continue;

P
Peter Zijlstra 已提交
5294 5295 5296 5297 5298 5299
		child = *per_cpu_ptr(sdd->sd, i);

		/* See the comment near build_group_mask(). */
		if (!cpumask_test_cpu(i, sched_domain_span(child)))
			continue;

5300
		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5301
				GFP_KERNEL, cpu_to_node(cpu));
5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314

		if (!sg)
			goto fail;

		sg_span = sched_group_cpus(sg);
		if (child->child) {
			child = child->child;
			cpumask_copy(sg_span, sched_domain_span(child));
		} else
			cpumask_set_cpu(i, sg_span);

		cpumask_or(covered, covered, sg_span);

P
Peter Zijlstra 已提交
5315
		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
P
Peter Zijlstra 已提交
5316 5317 5318
		if (atomic_inc_return(&sg->sgp->ref) == 1)
			build_group_mask(sd, sg);

5319 5320 5321 5322 5323 5324
		/*
		 * Initialize sgp->power such that even if we mess up the
		 * domains and no possible iteration will get us here, we won't
		 * die on a /0 trap.
		 */
		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5325

P
Peter Zijlstra 已提交
5326 5327 5328 5329 5330
		/*
		 * Make sure the first group of this domain contains the
		 * canonical balance cpu. Otherwise the sched_domain iteration
		 * breaks. See update_sg_lb_stats().
		 */
P
Peter Zijlstra 已提交
5331
		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
P
Peter Zijlstra 已提交
5332
		    group_balance_cpu(sg) == cpu)
5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351
			groups = sg;

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
		last->next = first;
	}
	sd->groups = groups;

	return 0;

fail:
	free_sched_groups(first, 0);

	return -ENOMEM;
}

5352
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
5353
{
5354 5355
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
5356

5357 5358
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
5359

5360
	if (sg) {
5361
		*sg = *per_cpu_ptr(sdd->sg, cpu);
5362
		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5363
		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5364
	}
5365 5366

	return cpu;
5367 5368
}

5369
/*
5370 5371 5372
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
5373 5374
 *
 * Assumes the sched_domain tree is fully constructed
5375
 */
5376 5377
static int
build_sched_groups(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5378
{
5379 5380 5381
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
5382
	struct cpumask *covered;
5383
	int i;
5384

5385 5386 5387
	get_group(cpu, sdd, &sd->groups);
	atomic_inc(&sd->groups->ref);

5388
	if (cpu != cpumask_first(span))
5389 5390
		return 0;

5391 5392 5393
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

5394
	cpumask_clear(covered);
5395

5396 5397
	for_each_cpu(i, span) {
		struct sched_group *sg;
5398
		int group, j;
5399

5400 5401
		if (cpumask_test_cpu(i, covered))
			continue;
5402

5403
		group = get_group(i, sdd, &sg);
5404
		cpumask_clear(sched_group_cpus(sg));
5405
		sg->sgp->power = 0;
P
Peter Zijlstra 已提交
5406
		cpumask_setall(sched_group_mask(sg));
5407

5408 5409 5410
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
5411

5412 5413 5414
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
5415

5416 5417 5418 5419 5420 5421 5422
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
5423 5424

	return 0;
5425
}
5426

5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
5439
	struct sched_group *sg = sd->groups;
5440

5441
	WARN_ON(!sg);
5442 5443 5444 5445 5446

	do {
		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
		sg = sg->next;
	} while (sg != sd->groups);
5447

P
Peter Zijlstra 已提交
5448
	if (cpu != group_balance_cpu(sg))
5449
		return;
5450

5451
	update_group_power(sd, cpu);
5452
	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5453 5454
}

5455 5456 5457
int __weak arch_sd_sibling_asym_packing(void)
{
       return 0*SD_ASYM_PACKING;
5458 5459
}

5460 5461 5462 5463 5464
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

5465 5466 5467 5468 5469 5470
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

5471 5472 5473 5474 5475 5476 5477 5478 5479
#define SD_INIT_FUNC(type)						\
static noinline struct sched_domain *					\
sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
{									\
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
	*sd = SD_##type##_INIT;						\
	SD_INIT_NAME(sd, type);						\
	sd->private = &tl->data;					\
	return sd;							\
5480 5481 5482 5483 5484 5485 5486 5487 5488
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif
5489 5490 5491
#ifdef CONFIG_SCHED_BOOK
 SD_INIT_FUNC(BOOK)
#endif
5492

5493
static int default_relax_domain_level = -1;
5494
int sched_domain_level_max;
5495 5496 5497

static int __init setup_relax_domain_level(char *str)
{
5498 5499
	if (kstrtoint(str, 0, &default_relax_domain_level))
		pr_warn("Unable to set relax_domain_level\n");
5500

5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
5519
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5520 5521
	} else {
		/* turn on idle balance on this domain */
5522
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5523 5524 5525
	}
}

5526 5527 5528
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

5529 5530 5531 5532 5533
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
5534 5535
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
5536 5537
	case sa_sd:
		free_percpu(d->sd); /* fall through */
5538
	case sa_sd_storage:
5539
		__sdt_free(cpu_map); /* fall through */
5540 5541 5542 5543
	case sa_none:
		break;
	}
}
5544

5545 5546 5547
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
5548 5549
	memset(d, 0, sizeof(*d));

5550 5551
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
5552 5553 5554
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
5555
	d->rd = alloc_rootdomain();
5556
	if (!d->rd)
5557
		return sa_sd;
5558 5559
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
5560

5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

5573
	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5574
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5575 5576

	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5577
		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
5578 5579
}

5580 5581
#ifdef CONFIG_SCHED_SMT
static const struct cpumask *cpu_smt_mask(int cpu)
5582
{
5583
	return topology_thread_cpumask(cpu);
5584
}
5585
#endif
5586

5587 5588 5589
/*
 * Topology list, bottom-up.
 */
5590
static struct sched_domain_topology_level default_topology[] = {
5591 5592
#ifdef CONFIG_SCHED_SMT
	{ sd_init_SIBLING, cpu_smt_mask, },
5593
#endif
5594
#ifdef CONFIG_SCHED_MC
5595
	{ sd_init_MC, cpu_coregroup_mask, },
5596
#endif
5597 5598 5599 5600
#ifdef CONFIG_SCHED_BOOK
	{ sd_init_BOOK, cpu_book_mask, },
#endif
	{ sd_init_CPU, cpu_cpu_mask, },
5601 5602 5603 5604 5605
	{ NULL, },
};

static struct sched_domain_topology_level *sched_domain_topology = default_topology;

5606 5607 5608
#define for_each_sd_topology(tl)			\
	for (tl = sched_domain_topology; tl->init; tl++)

5609 5610 5611 5612 5613 5614 5615 5616 5617
#ifdef CONFIG_NUMA

static int sched_domains_numa_levels;
static int *sched_domains_numa_distance;
static struct cpumask ***sched_domains_numa_masks;
static int sched_domains_curr_level;

static inline int sd_local_flags(int level)
{
5618
	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635
		return 0;

	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
}

static struct sched_domain *
sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
{
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
	int level = tl->numa_level;
	int sd_weight = cpumask_weight(
			sched_domains_numa_masks[level][cpu_to_node(cpu)]);

	*sd = (struct sched_domain){
		.min_interval		= sd_weight,
		.max_interval		= 2*sd_weight,
		.busy_factor		= 32,
5636
		.imbalance_pct		= 125,
5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674
		.cache_nice_tries	= 2,
		.busy_idx		= 3,
		.idle_idx		= 2,
		.newidle_idx		= 0,
		.wake_idx		= 0,
		.forkexec_idx		= 0,

		.flags			= 1*SD_LOAD_BALANCE
					| 1*SD_BALANCE_NEWIDLE
					| 0*SD_BALANCE_EXEC
					| 0*SD_BALANCE_FORK
					| 0*SD_BALANCE_WAKE
					| 0*SD_WAKE_AFFINE
					| 0*SD_SHARE_CPUPOWER
					| 0*SD_SHARE_PKG_RESOURCES
					| 1*SD_SERIALIZE
					| 0*SD_PREFER_SIBLING
					| sd_local_flags(level)
					,
		.last_balance		= jiffies,
		.balance_interval	= sd_weight,
	};
	SD_INIT_NAME(sd, NUMA);
	sd->private = &tl->data;

	/*
	 * Ugly hack to pass state to sd_numa_mask()...
	 */
	sched_domains_curr_level = tl->numa_level;

	return sd;
}

static const struct cpumask *sd_numa_mask(int cpu)
{
	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
}

5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710
static void sched_numa_warn(const char *str)
{
	static int done = false;
	int i,j;

	if (done)
		return;

	done = true;

	printk(KERN_WARNING "ERROR: %s\n\n", str);

	for (i = 0; i < nr_node_ids; i++) {
		printk(KERN_WARNING "  ");
		for (j = 0; j < nr_node_ids; j++)
			printk(KERN_CONT "%02d ", node_distance(i,j));
		printk(KERN_CONT "\n");
	}
	printk(KERN_WARNING "\n");
}

static bool find_numa_distance(int distance)
{
	int i;

	if (distance == node_distance(0, 0))
		return true;

	for (i = 0; i < sched_domains_numa_levels; i++) {
		if (sched_domains_numa_distance[i] == distance)
			return true;
	}

	return false;
}

5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731
static void sched_init_numa(void)
{
	int next_distance, curr_distance = node_distance(0, 0);
	struct sched_domain_topology_level *tl;
	int level = 0;
	int i, j, k;

	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
	if (!sched_domains_numa_distance)
		return;

	/*
	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
	 * unique distances in the node_distance() table.
	 *
	 * Assumes node_distance(0,j) includes all distances in
	 * node_distance(i,j) in order to avoid cubic time.
	 */
	next_distance = curr_distance;
	for (i = 0; i < nr_node_ids; i++) {
		for (j = 0; j < nr_node_ids; j++) {
5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755
			for (k = 0; k < nr_node_ids; k++) {
				int distance = node_distance(i, k);

				if (distance > curr_distance &&
				    (distance < next_distance ||
				     next_distance == curr_distance))
					next_distance = distance;

				/*
				 * While not a strong assumption it would be nice to know
				 * about cases where if node A is connected to B, B is not
				 * equally connected to A.
				 */
				if (sched_debug() && node_distance(k, i) != distance)
					sched_numa_warn("Node-distance not symmetric");

				if (sched_debug() && i && !find_numa_distance(distance))
					sched_numa_warn("Node-0 not representative");
			}
			if (next_distance != curr_distance) {
				sched_domains_numa_distance[level++] = next_distance;
				sched_domains_numa_levels = level;
				curr_distance = next_distance;
			} else break;
5756
		}
5757 5758 5759 5760 5761 5762

		/*
		 * In case of sched_debug() we verify the above assumption.
		 */
		if (!sched_debug())
			break;
5763 5764 5765 5766 5767
	}
	/*
	 * 'level' contains the number of unique distances, excluding the
	 * identity distance node_distance(i,i).
	 *
V
Viresh Kumar 已提交
5768
	 * The sched_domains_numa_distance[] array includes the actual distance
5769 5770 5771
	 * numbers.
	 */

5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782
	/*
	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
	 * the array will contain less then 'level' members. This could be
	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
	 * in other functions.
	 *
	 * We reset it to 'level' at the end of this function.
	 */
	sched_domains_numa_levels = 0;

5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797
	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
	if (!sched_domains_numa_masks)
		return;

	/*
	 * Now for each level, construct a mask per node which contains all
	 * cpus of nodes that are that many hops away from us.
	 */
	for (i = 0; i < level; i++) {
		sched_domains_numa_masks[i] =
			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
		if (!sched_domains_numa_masks[i])
			return;

		for (j = 0; j < nr_node_ids; j++) {
5798
			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
5799 5800 5801 5802 5803 5804
			if (!mask)
				return;

			sched_domains_numa_masks[i][j] = mask;

			for (k = 0; k < nr_node_ids; k++) {
5805
				if (node_distance(j, k) > sched_domains_numa_distance[i])
5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836
					continue;

				cpumask_or(mask, mask, cpumask_of_node(k));
			}
		}
	}

	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
	if (!tl)
		return;

	/*
	 * Copy the default topology bits..
	 */
	for (i = 0; default_topology[i].init; i++)
		tl[i] = default_topology[i];

	/*
	 * .. and append 'j' levels of NUMA goodness.
	 */
	for (j = 0; j < level; i++, j++) {
		tl[i] = (struct sched_domain_topology_level){
			.init = sd_numa_init,
			.mask = sd_numa_mask,
			.flags = SDTL_OVERLAP,
			.numa_level = j,
		};
	}

	sched_domain_topology = tl;
5837 5838

	sched_domains_numa_levels = level;
5839
}
5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886

static void sched_domains_numa_masks_set(int cpu)
{
	int i, j;
	int node = cpu_to_node(cpu);

	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++) {
			if (node_distance(j, node) <= sched_domains_numa_distance[i])
				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
		}
	}
}

static void sched_domains_numa_masks_clear(int cpu)
{
	int i, j;
	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++)
			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
	}
}

/*
 * Update sched_domains_numa_masks[level][node] array when new cpus
 * are onlined.
 */
static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	int cpu = (long)hcpu;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
		sched_domains_numa_masks_set(cpu);
		break;

	case CPU_DEAD:
		sched_domains_numa_masks_clear(cpu);
		break;

	default:
		return NOTIFY_DONE;
	}

	return NOTIFY_OK;
5887 5888 5889 5890 5891
}
#else
static inline void sched_init_numa(void)
{
}
5892 5893 5894 5895 5896 5897 5898

static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	return 0;
}
5899 5900
#endif /* CONFIG_NUMA */

5901 5902 5903 5904 5905
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

5906
	for_each_sd_topology(tl) {
5907 5908 5909 5910 5911 5912 5913 5914 5915 5916
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

5917 5918 5919 5920
		sdd->sgp = alloc_percpu(struct sched_group_power *);
		if (!sdd->sgp)
			return -ENOMEM;

5921 5922 5923
		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_group *sg;
5924
			struct sched_group_power *sgp;
5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937

		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

5938 5939
			sg->next = sg;

5940
			*per_cpu_ptr(sdd->sg, j) = sg;
5941

P
Peter Zijlstra 已提交
5942
			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
5943 5944 5945 5946 5947
					GFP_KERNEL, cpu_to_node(j));
			if (!sgp)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sgp, j) = sgp;
5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

5959
	for_each_sd_topology(tl) {
5960 5961 5962
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975
			struct sched_domain *sd;

			if (sdd->sd) {
				sd = *per_cpu_ptr(sdd->sd, j);
				if (sd && (sd->flags & SD_OVERLAP))
					free_sched_groups(sd->groups, 0);
				kfree(*per_cpu_ptr(sdd->sd, j));
			}

			if (sdd->sg)
				kfree(*per_cpu_ptr(sdd->sg, j));
			if (sdd->sgp)
				kfree(*per_cpu_ptr(sdd->sgp, j));
5976 5977
		}
		free_percpu(sdd->sd);
5978
		sdd->sd = NULL;
5979
		free_percpu(sdd->sg);
5980
		sdd->sg = NULL;
5981
		free_percpu(sdd->sgp);
5982
		sdd->sgp = NULL;
5983 5984 5985
	}
}

5986
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
5987 5988
		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
		struct sched_domain *child, int cpu)
5989
{
5990
	struct sched_domain *sd = tl->init(tl, cpu);
5991
	if (!sd)
5992
		return child;
5993 5994

	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
5995 5996 5997
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
5998
		child->parent = sd;
5999
		sd->child = child;
6000
	}
6001
	set_domain_attribute(sd, attr);
6002 6003 6004 6005

	return sd;
}

6006 6007 6008 6009
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
6010 6011
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
6012
{
6013
	enum s_alloc alloc_state;
6014
	struct sched_domain *sd;
6015
	struct s_data d;
6016
	int i, ret = -ENOMEM;
6017

6018 6019 6020
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
6021

6022
	/* Set up domains for cpus specified by the cpu_map. */
6023
	for_each_cpu(i, cpu_map) {
6024 6025
		struct sched_domain_topology_level *tl;

6026
		sd = NULL;
6027
		for_each_sd_topology(tl) {
6028
			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6029 6030
			if (tl == sched_domain_topology)
				*per_cpu_ptr(d.sd, i) = sd;
6031 6032
			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
				sd->flags |= SD_OVERLAP;
6033 6034
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
				break;
6035
		}
6036 6037 6038 6039 6040 6041
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6042 6043 6044 6045 6046 6047 6048
			if (sd->flags & SD_OVERLAP) {
				if (build_overlap_sched_groups(sd, i))
					goto error;
			} else {
				if (build_sched_groups(sd, i))
					goto error;
			}
6049
		}
6050
	}
6051

L
Linus Torvalds 已提交
6052
	/* Calculate CPU power for physical packages and nodes */
6053 6054 6055
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
6056

6057 6058
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
6059
			init_sched_groups_power(i, sd);
6060
		}
6061
	}
6062

L
Linus Torvalds 已提交
6063
	/* Attach the domains */
6064
	rcu_read_lock();
6065
	for_each_cpu(i, cpu_map) {
6066
		sd = *per_cpu_ptr(d.sd, i);
6067
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
6068
	}
6069
	rcu_read_unlock();
6070

6071
	ret = 0;
6072
error:
6073
	__free_domain_allocs(&d, alloc_state, cpu_map);
6074
	return ret;
L
Linus Torvalds 已提交
6075
}
P
Paul Jackson 已提交
6076

6077
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
6078
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
6079 6080
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
6081 6082 6083

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
6084 6085
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
6086
 */
6087
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
6088

6089 6090 6091 6092 6093 6094
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
6095
{
6096
	return 0;
6097 6098
}

6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

6124
/*
I
Ingo Molnar 已提交
6125
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6126 6127
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6128
 */
6129
static int init_sched_domains(const struct cpumask *cpu_map)
6130
{
6131 6132
	int err;

6133
	arch_update_cpu_topology();
P
Paul Jackson 已提交
6134
	ndoms_cur = 1;
6135
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
6136
	if (!doms_cur)
6137 6138
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6139
	err = build_sched_domains(doms_cur[0], NULL);
6140
	register_sched_domain_sysctl();
6141 6142

	return err;
6143 6144 6145 6146 6147 6148
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6149
static void detach_destroy_domains(const struct cpumask *cpu_map)
6150 6151 6152
{
	int i;

6153
	rcu_read_lock();
6154
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
6155
		cpu_attach_domain(NULL, &def_root_domain, i);
6156
	rcu_read_unlock();
6157 6158
}

6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
6175 6176
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
6177
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
6178 6179 6180
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
6181
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
6182 6183 6184
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
6185 6186 6187
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
6188 6189 6190 6191 6192 6193
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
6194
 *
6195
 * If doms_new == NULL it will be replaced with cpu_online_mask.
6196 6197
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
6198
 *
P
Paul Jackson 已提交
6199 6200
 * Call with hotplug lock held
 */
6201
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6202
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
6203
{
6204
	int i, j, n;
6205
	int new_topology;
P
Paul Jackson 已提交
6206

6207
	mutex_lock(&sched_domains_mutex);
6208

6209 6210 6211
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

6212 6213 6214
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

6215
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
6216 6217 6218

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
6219
		for (j = 0; j < n && !new_topology; j++) {
6220
			if (cpumask_equal(doms_cur[i], doms_new[j])
6221
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
6222 6223 6224
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
6225
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
6226 6227 6228 6229
match1:
		;
	}

6230
	n = ndoms_cur;
6231
	if (doms_new == NULL) {
6232
		n = 0;
6233
		doms_new = &fallback_doms;
6234
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6235
		WARN_ON_ONCE(dattr_new);
6236 6237
	}

P
Paul Jackson 已提交
6238 6239
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
6240
		for (j = 0; j < n && !new_topology; j++) {
6241
			if (cpumask_equal(doms_new[i], doms_cur[j])
6242
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
6243 6244 6245
				goto match2;
		}
		/* no match - add a new doms_new */
6246
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
6247 6248 6249 6250 6251
match2:
		;
	}

	/* Remember the new sched domains */
6252 6253
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
6254
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
6255
	doms_cur = doms_new;
6256
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
6257
	ndoms_cur = ndoms_new;
6258 6259

	register_sched_domain_sysctl();
6260

6261
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
6262 6263
}

6264 6265
static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */

L
Linus Torvalds 已提交
6266
/*
6267 6268 6269
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
6270 6271 6272
 *
 * If we come here as part of a suspend/resume, don't touch cpusets because we
 * want to restore it back to its original state upon resume anyway.
L
Linus Torvalds 已提交
6273
 */
6274 6275
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
6276
{
6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298
	switch (action) {
	case CPU_ONLINE_FROZEN:
	case CPU_DOWN_FAILED_FROZEN:

		/*
		 * num_cpus_frozen tracks how many CPUs are involved in suspend
		 * resume sequence. As long as this is not the last online
		 * operation in the resume sequence, just build a single sched
		 * domain, ignoring cpusets.
		 */
		num_cpus_frozen--;
		if (likely(num_cpus_frozen)) {
			partition_sched_domains(1, NULL, NULL);
			break;
		}

		/*
		 * This is the last CPU online operation. So fall through and
		 * restore the original sched domains by considering the
		 * cpuset configurations.
		 */

6299
	case CPU_ONLINE:
6300
	case CPU_DOWN_FAILED:
6301
		cpuset_update_active_cpus(true);
6302
		break;
6303 6304 6305
	default:
		return NOTIFY_DONE;
	}
6306
	return NOTIFY_OK;
6307
}
6308

6309 6310
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
6311
{
6312
	switch (action) {
6313
	case CPU_DOWN_PREPARE:
6314
		cpuset_update_active_cpus(false);
6315 6316 6317 6318 6319
		break;
	case CPU_DOWN_PREPARE_FROZEN:
		num_cpus_frozen++;
		partition_sched_domains(1, NULL, NULL);
		break;
6320 6321 6322
	default:
		return NOTIFY_DONE;
	}
6323
	return NOTIFY_OK;
6324 6325
}

L
Linus Torvalds 已提交
6326 6327
void __init sched_init_smp(void)
{
6328 6329 6330
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6331
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6332

6333 6334
	sched_init_numa();

6335
	get_online_cpus();
6336
	mutex_lock(&sched_domains_mutex);
6337
	init_sched_domains(cpu_active_mask);
6338 6339 6340
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6341
	mutex_unlock(&sched_domains_mutex);
6342
	put_online_cpus();
6343

6344
	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6345 6346
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6347

6348
	init_hrtick();
6349 6350

	/* Move init over to a non-isolated CPU */
6351
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6352
		BUG();
I
Ingo Molnar 已提交
6353
	sched_init_granularity();
6354
	free_cpumask_var(non_isolated_cpus);
6355

6356
	init_sched_rt_class();
L
Linus Torvalds 已提交
6357 6358 6359 6360
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6361
	sched_init_granularity();
L
Linus Torvalds 已提交
6362 6363 6364
}
#endif /* CONFIG_SMP */

6365 6366
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
6367 6368 6369 6370 6371 6372 6373
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

6374
#ifdef CONFIG_CGROUP_SCHED
6375 6376 6377 6378
/*
 * Default task group.
 * Every task in system belongs to this group at bootup.
 */
6379
struct task_group root_task_group;
6380
LIST_HEAD(task_groups);
6381
#endif
P
Peter Zijlstra 已提交
6382

6383
DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
P
Peter Zijlstra 已提交
6384

L
Linus Torvalds 已提交
6385 6386
void __init sched_init(void)
{
I
Ingo Molnar 已提交
6387
	int i, j;
6388 6389 6390 6391 6392 6393 6394
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6395
#endif
6396
#ifdef CONFIG_CPUMASK_OFFSTACK
6397
	alloc_size += num_possible_cpus() * cpumask_size();
6398 6399
#endif
	if (alloc_size) {
6400
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6401 6402

#ifdef CONFIG_FAIR_GROUP_SCHED
6403
		root_task_group.se = (struct sched_entity **)ptr;
6404 6405
		ptr += nr_cpu_ids * sizeof(void **);

6406
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6407
		ptr += nr_cpu_ids * sizeof(void **);
6408

6409
#endif /* CONFIG_FAIR_GROUP_SCHED */
6410
#ifdef CONFIG_RT_GROUP_SCHED
6411
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6412 6413
		ptr += nr_cpu_ids * sizeof(void **);

6414
		root_task_group.rt_rq = (struct rt_rq **)ptr;
6415 6416
		ptr += nr_cpu_ids * sizeof(void **);

6417
#endif /* CONFIG_RT_GROUP_SCHED */
6418 6419
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
6420
			per_cpu(load_balance_mask, i) = (void *)ptr;
6421 6422 6423
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
6424
	}
I
Ingo Molnar 已提交
6425

G
Gregory Haskins 已提交
6426 6427 6428 6429
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

6430 6431 6432 6433
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
6434
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6435
			global_rt_period(), global_rt_runtime());
6436
#endif /* CONFIG_RT_GROUP_SCHED */
6437

D
Dhaval Giani 已提交
6438
#ifdef CONFIG_CGROUP_SCHED
6439 6440
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
6441
	INIT_LIST_HEAD(&root_task_group.siblings);
6442
	autogroup_init(&init_task);
6443

D
Dhaval Giani 已提交
6444
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
6445

6446
	for_each_possible_cpu(i) {
6447
		struct rq *rq;
L
Linus Torvalds 已提交
6448 6449

		rq = cpu_rq(i);
6450
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
6451
		rq->nr_running = 0;
6452 6453
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
6454
		init_cfs_rq(&rq->cfs);
P
Peter Zijlstra 已提交
6455
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
6456
#ifdef CONFIG_FAIR_GROUP_SCHED
6457
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
6458
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
6459
		/*
6460
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
6461 6462 6463 6464
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
6465
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
6466 6467 6468
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
6469
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
6470 6471 6472
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
6473
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
6474
		 *
6475 6476
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
6477
		 */
6478
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6479
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
6480 6481 6482
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6483
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
6484
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6485
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
6486
#endif
L
Linus Torvalds 已提交
6487

I
Ingo Molnar 已提交
6488 6489
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
6490 6491 6492

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
6493
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6494
		rq->sd = NULL;
G
Gregory Haskins 已提交
6495
		rq->rd = NULL;
6496
		rq->cpu_power = SCHED_POWER_SCALE;
6497
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
6498
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6499
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6500
		rq->push_cpu = 0;
6501
		rq->cpu = i;
6502
		rq->online = 0;
6503 6504
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
6505
		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6506 6507 6508

		INIT_LIST_HEAD(&rq->cfs_tasks);

6509
		rq_attach_root(rq, &def_root_domain);
6510
#ifdef CONFIG_NO_HZ_COMMON
6511
		rq->nohz_flags = 0;
6512
#endif
6513 6514 6515
#ifdef CONFIG_NO_HZ_FULL
		rq->last_sched_tick = 0;
#endif
L
Linus Torvalds 已提交
6516
#endif
P
Peter Zijlstra 已提交
6517
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
6518 6519 6520
		atomic_set(&rq->nr_iowait, 0);
	}

6521
	set_load_weight(&init_task);
6522

6523 6524 6525 6526
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

6527
#ifdef CONFIG_RT_MUTEXES
6528
	plist_head_init(&init_task.pi_waiters);
6529 6530
#endif

L
Linus Torvalds 已提交
6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
6544 6545 6546

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
6547 6548 6549 6550
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
6551

6552
#ifdef CONFIG_SMP
6553
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
R
Rusty Russell 已提交
6554 6555 6556
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6557
	idle_thread_set_boot_cpu();
6558 6559
#endif
	init_sched_fair_class();
6560

6561
	scheduler_running = 1;
L
Linus Torvalds 已提交
6562 6563
}

6564
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6565 6566
static inline int preempt_count_equals(int preempt_offset)
{
6567
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6568

A
Arnd Bergmann 已提交
6569
	return (nested == preempt_offset);
6570 6571
}

6572
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
6573 6574 6575
{
	static unsigned long prev_jiffy;	/* ratelimiting */

6576
	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6577 6578
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
6579 6580 6581 6582 6583
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
6584 6585 6586 6587 6588 6589 6590
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
6591 6592 6593 6594 6595

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
6596 6597 6598 6599 6600
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
6601 6602
static void normalize_task(struct rq *rq, struct task_struct *p)
{
P
Peter Zijlstra 已提交
6603 6604
	const struct sched_class *prev_class = p->sched_class;
	int old_prio = p->prio;
6605
	int on_rq;
6606

P
Peter Zijlstra 已提交
6607
	on_rq = p->on_rq;
6608
	if (on_rq)
6609
		dequeue_task(rq, p, 0);
6610 6611
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
6612
		enqueue_task(rq, p, 0);
6613 6614
		resched_task(rq->curr);
	}
P
Peter Zijlstra 已提交
6615 6616

	check_class_changed(rq, p, prev_class, old_prio);
6617 6618
}

L
Linus Torvalds 已提交
6619 6620
void normalize_rt_tasks(void)
{
6621
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6622
	unsigned long flags;
6623
	struct rq *rq;
L
Linus Torvalds 已提交
6624

6625
	read_lock_irqsave(&tasklist_lock, flags);
6626
	do_each_thread(g, p) {
6627 6628 6629 6630 6631 6632
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
6633 6634
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
6635 6636 6637
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
6638
#endif
I
Ingo Molnar 已提交
6639 6640 6641 6642 6643 6644 6645 6646

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
6647
			continue;
I
Ingo Molnar 已提交
6648
		}
L
Linus Torvalds 已提交
6649

6650
		raw_spin_lock(&p->pi_lock);
6651
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
6652

6653
		normalize_task(rq, p);
6654

6655
		__task_rq_unlock(rq);
6656
		raw_spin_unlock(&p->pi_lock);
6657 6658
	} while_each_thread(g, p);

6659
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
6660 6661 6662
}

#endif /* CONFIG_MAGIC_SYSRQ */
6663

6664
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6665
/*
6666
 * These functions are only useful for the IA64 MCA handling, or kdb.
6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6680 6681
 *
 * Return: The current task for @cpu.
6682
 */
6683
struct task_struct *curr_task(int cpu)
6684 6685 6686 6687
{
	return cpu_curr(cpu);
}

6688 6689 6690
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
6691 6692 6693 6694 6695 6696
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
6697 6698
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
6699 6700 6701 6702 6703 6704 6705
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6706
void set_curr_task(int cpu, struct task_struct *p)
6707 6708 6709 6710 6711
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
6712

D
Dhaval Giani 已提交
6713
#ifdef CONFIG_CGROUP_SCHED
6714 6715 6716
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

6717 6718 6719 6720
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
6721
	autogroup_free(tg);
6722 6723 6724 6725
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
6726
struct task_group *sched_create_group(struct task_group *parent)
6727 6728 6729 6730 6731 6732 6733
{
	struct task_group *tg;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

6734
	if (!alloc_fair_sched_group(tg, parent))
6735 6736
		goto err;

6737
	if (!alloc_rt_sched_group(tg, parent))
6738 6739
		goto err;

6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750
	return tg;

err:
	free_sched_group(tg);
	return ERR_PTR(-ENOMEM);
}

void sched_online_group(struct task_group *tg, struct task_group *parent)
{
	unsigned long flags;

6751
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
6752
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
6753 6754 6755 6756 6757

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
6758
	list_add_rcu(&tg->siblings, &parent->children);
6759
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
6760 6761
}

6762
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
6763
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
6764 6765
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
6766
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
6767 6768
}

6769
/* Destroy runqueue etc associated with a task group */
6770
void sched_destroy_group(struct task_group *tg)
6771 6772 6773 6774 6775 6776
{
	/* wait for possible concurrent references to cfs_rqs complete */
	call_rcu(&tg->rcu, free_sched_group_rcu);
}

void sched_offline_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
6777
{
6778
	unsigned long flags;
6779
	int i;
S
Srivatsa Vaddagiri 已提交
6780

6781 6782
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
6783
		unregister_fair_sched_group(tg, i);
6784 6785

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
6786
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
6787
	list_del_rcu(&tg->siblings);
6788
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
6789 6790
}

6791
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
6792 6793 6794
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
6795 6796
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
6797
{
P
Peter Zijlstra 已提交
6798
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
6799 6800 6801 6802 6803 6804
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

6805
	running = task_current(rq, tsk);
P
Peter Zijlstra 已提交
6806
	on_rq = tsk->on_rq;
S
Srivatsa Vaddagiri 已提交
6807

6808
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
6809
		dequeue_task(rq, tsk, 0);
6810 6811
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
6812

6813
	tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
P
Peter Zijlstra 已提交
6814 6815 6816 6817 6818
				lockdep_is_held(&tsk->sighand->siglock)),
			  struct task_group, css);
	tg = autogroup_task_group(tsk, tg);
	tsk->sched_task_group = tg;

P
Peter Zijlstra 已提交
6819
#ifdef CONFIG_FAIR_GROUP_SCHED
6820 6821 6822
	if (tsk->sched_class->task_move_group)
		tsk->sched_class->task_move_group(tsk, on_rq);
	else
P
Peter Zijlstra 已提交
6823
#endif
6824
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
6825

6826 6827 6828
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
6829
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
6830

6831
	task_rq_unlock(rq, tsk, &flags);
S
Srivatsa Vaddagiri 已提交
6832
}
D
Dhaval Giani 已提交
6833
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
6834

6835
#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
P
Peter Zijlstra 已提交
6836 6837 6838
static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
6839
		return 1ULL << 20;
P
Peter Zijlstra 已提交
6840

P
Peter Zijlstra 已提交
6841
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
6842
}
6843 6844 6845 6846 6847 6848 6849
#endif

#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
P
Peter Zijlstra 已提交
6850

P
Peter Zijlstra 已提交
6851 6852
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
6853
{
P
Peter Zijlstra 已提交
6854
	struct task_struct *g, *p;
6855

P
Peter Zijlstra 已提交
6856
	do_each_thread(g, p) {
6857
		if (rt_task(p) && task_rq(p)->rt.tg == tg)
P
Peter Zijlstra 已提交
6858 6859
			return 1;
	} while_each_thread(g, p);
6860

P
Peter Zijlstra 已提交
6861 6862
	return 0;
}
6863

P
Peter Zijlstra 已提交
6864 6865 6866 6867 6868
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
6869

6870
static int tg_rt_schedulable(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
6871 6872 6873 6874 6875
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
6876

P
Peter Zijlstra 已提交
6877 6878
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
6879

P
Peter Zijlstra 已提交
6880 6881 6882
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
6883 6884
	}

6885 6886 6887 6888 6889
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
6890

6891 6892 6893
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
6894 6895
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
6896

P
Peter Zijlstra 已提交
6897
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
6898

6899 6900 6901 6902 6903
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
6904

6905 6906 6907
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
6908 6909 6910
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
6911

P
Peter Zijlstra 已提交
6912 6913 6914 6915
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
6916

P
Peter Zijlstra 已提交
6917
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
6918
	}
P
Peter Zijlstra 已提交
6919

P
Peter Zijlstra 已提交
6920 6921 6922 6923
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
6924 6925
}

P
Peter Zijlstra 已提交
6926
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6927
{
6928 6929
	int ret;

P
Peter Zijlstra 已提交
6930 6931 6932 6933 6934 6935
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

6936 6937 6938 6939 6940
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
6941 6942
}

6943
static int tg_set_rt_bandwidth(struct task_group *tg,
6944
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
6945
{
P
Peter Zijlstra 已提交
6946
	int i, err = 0;
P
Peter Zijlstra 已提交
6947 6948

	mutex_lock(&rt_constraints_mutex);
6949
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
6950 6951
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
6952
		goto unlock;
P
Peter Zijlstra 已提交
6953

6954
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
6955 6956
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
6957 6958 6959 6960

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

6961
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
6962
		rt_rq->rt_runtime = rt_runtime;
6963
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
6964
	}
6965
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
6966
unlock:
6967
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
6968 6969 6970
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
6971 6972
}

6973
static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
6974 6975 6976 6977 6978 6979 6980 6981
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

6982
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
6983 6984
}

6985
static long sched_group_rt_runtime(struct task_group *tg)
P
Peter Zijlstra 已提交
6986 6987 6988
{
	u64 rt_runtime_us;

6989
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
6990 6991
		return -1;

6992
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
6993 6994 6995
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
6996

6997
static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
6998 6999 7000 7001 7002 7003
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

7004 7005 7006
	if (rt_period == 0)
		return -EINVAL;

7007
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7008 7009
}

7010
static long sched_group_rt_period(struct task_group *tg)
7011 7012 7013 7014 7015 7016 7017 7018 7019 7020
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
7021
	u64 runtime, period;
7022 7023
	int ret = 0;

7024 7025 7026
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7027 7028 7029 7030 7031 7032 7033 7034
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
7035

7036
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
7037
	read_lock(&tasklist_lock);
7038
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
7039
	read_unlock(&tasklist_lock);
7040 7041 7042 7043
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
7044

7045
static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7046 7047 7048 7049 7050 7051 7052 7053
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

7054
#else /* !CONFIG_RT_GROUP_SCHED */
7055 7056
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
7057 7058 7059
	unsigned long flags;
	int i;

7060 7061 7062
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7063 7064 7065 7066 7067 7068 7069
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

7070
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7071 7072 7073
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

7074
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7075
		rt_rq->rt_runtime = global_rt_runtime();
7076
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7077
	}
7078
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7079

7080 7081
	return 0;
}
7082
#endif /* CONFIG_RT_GROUP_SCHED */
7083

7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102
int sched_rr_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
	/* make sure that internally we keep jiffies */
	/* also, writing zero resets timeslice to default */
	if (!ret && write) {
		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
	}
	mutex_unlock(&mutex);
	return ret;
}

7103
int sched_rt_handler(struct ctl_table *table, int write,
7104
		void __user *buffer, size_t *lenp,
7105 7106 7107 7108 7109 7110 7111 7112 7113 7114
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

7115
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
7132

7133
#ifdef CONFIG_CGROUP_SCHED
7134

7135
static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7136
{
7137
	return css ? container_of(css, struct task_group, css) : NULL;
7138 7139
}

7140 7141
static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7142
{
7143 7144
	struct task_group *parent = css_tg(parent_css);
	struct task_group *tg;
7145

7146
	if (!parent) {
7147
		/* This is early initialization for the top cgroup */
7148
		return &root_task_group.css;
7149 7150
	}

7151
	tg = sched_create_group(parent);
7152 7153 7154 7155 7156 7157
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

7158
static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7159
{
7160 7161
	struct task_group *tg = css_tg(css);
	struct task_group *parent = css_tg(css_parent(css));
7162

T
Tejun Heo 已提交
7163 7164
	if (parent)
		sched_online_group(tg, parent);
7165 7166 7167
	return 0;
}

7168
static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7169
{
7170
	struct task_group *tg = css_tg(css);
7171 7172 7173 7174

	sched_destroy_group(tg);
}

7175
static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7176
{
7177
	struct task_group *tg = css_tg(css);
7178 7179 7180 7181

	sched_offline_group(tg);
}

7182
static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7183
				 struct cgroup_taskset *tset)
7184
{
7185 7186
	struct task_struct *task;

7187
	cgroup_taskset_for_each(task, css, tset) {
7188
#ifdef CONFIG_RT_GROUP_SCHED
7189
		if (!sched_rt_can_attach(css_tg(css), task))
7190
			return -EINVAL;
7191
#else
7192 7193 7194
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
7195
#endif
7196
	}
7197 7198
	return 0;
}
7199

7200
static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7201
			      struct cgroup_taskset *tset)
7202
{
7203 7204
	struct task_struct *task;

7205
	cgroup_taskset_for_each(task, css, tset)
7206
		sched_move_task(task);
7207 7208
}

7209 7210 7211
static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
			    struct cgroup_subsys_state *old_css,
			    struct task_struct *task)
7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	sched_move_task(task);
}

7224
#ifdef CONFIG_FAIR_GROUP_SCHED
7225 7226
static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
				struct cftype *cftype, u64 shareval)
7227
{
7228
	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7229 7230
}

7231 7232
static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
			       struct cftype *cft)
7233
{
7234
	struct task_group *tg = css_tg(css);
7235

7236
	return (u64) scale_load_down(tg->shares);
7237
}
7238 7239

#ifdef CONFIG_CFS_BANDWIDTH
7240 7241
static DEFINE_MUTEX(cfs_constraints_mutex);

7242 7243 7244
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

7245 7246
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

7247 7248
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
7249
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7250
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

7271 7272 7273 7274 7275
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

7276
	runtime_enabled = quota != RUNTIME_INF;
7277 7278
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7279 7280 7281
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
7282

P
Paul Turner 已提交
7283
	__refill_cfs_bandwidth_runtime(cfs_b);
7284 7285 7286 7287 7288 7289
	/* restart the period timer (if active) to handle new period expiry */
	if (runtime_enabled && cfs_b->timer_active) {
		/* force a reprogram */
		cfs_b->timer_active = 0;
		__start_cfs_bandwidth(cfs_b);
	}
7290 7291 7292 7293
	raw_spin_unlock_irq(&cfs_b->lock);

	for_each_possible_cpu(i) {
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7294
		struct rq *rq = cfs_rq->rq;
7295 7296

		raw_spin_lock_irq(&rq->lock);
7297
		cfs_rq->runtime_enabled = runtime_enabled;
7298
		cfs_rq->runtime_remaining = 0;
7299

7300
		if (cfs_rq->throttled)
7301
			unthrottle_cfs_rq(cfs_rq);
7302 7303
		raw_spin_unlock_irq(&rq->lock);
	}
7304 7305
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
7306

7307
	return ret;
7308 7309 7310 7311 7312 7313
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

7314
	period = ktime_to_ns(tg->cfs_bandwidth.period);
7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

7327
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7328 7329
		return -1;

7330
	quota_us = tg->cfs_bandwidth.quota;
7331 7332 7333 7334 7335 7336 7337 7338 7339 7340
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
7341
	quota = tg->cfs_bandwidth.quota;
7342 7343 7344 7345 7346 7347 7348 7349

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

7350
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7351 7352 7353 7354 7355
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

7356 7357
static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
				  struct cftype *cft)
7358
{
7359
	return tg_get_cfs_quota(css_tg(css));
7360 7361
}

7362 7363
static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
				   struct cftype *cftype, s64 cfs_quota_us)
7364
{
7365
	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7366 7367
}

7368 7369
static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
				   struct cftype *cft)
7370
{
7371
	return tg_get_cfs_period(css_tg(css));
7372 7373
}

7374 7375
static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 cfs_period_us)
7376
{
7377
	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7378 7379
}

7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
7412
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7413 7414 7415 7416 7417
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
7418
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438

		quota = normalize_cfs_quota(tg, d);
		parent_quota = parent_b->hierarchal_quota;

		/*
		 * ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
	cfs_b->hierarchal_quota = quota;

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
7439
	int ret;
7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

7451 7452 7453 7454 7455
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7456
}
7457

7458
static int cpu_stats_show(struct cgroup_subsys_state *css, struct cftype *cft,
7459 7460
		struct cgroup_map_cb *cb)
{
7461
	struct task_group *tg = css_tg(css);
7462
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7463 7464 7465 7466 7467 7468 7469

	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
	cb->fill(cb, "throttled_time", cfs_b->throttled_time);

	return 0;
}
7470
#endif /* CONFIG_CFS_BANDWIDTH */
7471
#endif /* CONFIG_FAIR_GROUP_SCHED */
7472

7473
#ifdef CONFIG_RT_GROUP_SCHED
7474 7475
static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
				struct cftype *cft, s64 val)
P
Peter Zijlstra 已提交
7476
{
7477
	return sched_group_set_rt_runtime(css_tg(css), val);
P
Peter Zijlstra 已提交
7478 7479
}

7480 7481
static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
P
Peter Zijlstra 已提交
7482
{
7483
	return sched_group_rt_runtime(css_tg(css));
P
Peter Zijlstra 已提交
7484
}
7485

7486 7487
static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 rt_period_us)
7488
{
7489
	return sched_group_set_rt_period(css_tg(css), rt_period_us);
7490 7491
}

7492 7493
static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
				   struct cftype *cft)
7494
{
7495
	return sched_group_rt_period(css_tg(css));
7496
}
7497
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
7498

7499
static struct cftype cpu_files[] = {
7500
#ifdef CONFIG_FAIR_GROUP_SCHED
7501 7502
	{
		.name = "shares",
7503 7504
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
7505
	},
7506
#endif
7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
7518 7519 7520 7521
	{
		.name = "stat",
		.read_map = cpu_stats_show,
	},
7522
#endif
7523
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7524
	{
P
Peter Zijlstra 已提交
7525
		.name = "rt_runtime_us",
7526 7527
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
7528
	},
7529 7530
	{
		.name = "rt_period_us",
7531 7532
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
7533
	},
7534
#endif
7535
	{ }	/* terminate */
7536 7537 7538
};

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
7539
	.name		= "cpu",
7540 7541
	.css_alloc	= cpu_cgroup_css_alloc,
	.css_free	= cpu_cgroup_css_free,
7542 7543
	.css_online	= cpu_cgroup_css_online,
	.css_offline	= cpu_cgroup_css_offline,
7544 7545
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
7546
	.exit		= cpu_cgroup_exit,
I
Ingo Molnar 已提交
7547
	.subsys_id	= cpu_cgroup_subsys_id,
7548
	.base_cftypes	= cpu_files,
7549 7550 7551
	.early_init	= 1,
};

7552
#endif	/* CONFIG_CGROUP_SCHED */
7553

7554 7555 7556 7557 7558
void dump_cpu_task(int cpu)
{
	pr_info("Task dump for CPU %d:\n", cpu);
	sched_show_task(cpu_curr(cpu));
}