core.c 197.9 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/highmem.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
37
#include <linux/capability.h>
L
Linus Torvalds 已提交
38 39
#include <linux/completion.h>
#include <linux/kernel_stat.h>
40
#include <linux/debug_locks.h>
41
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
57
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
58
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/unistd.h>
J
Jens Axboe 已提交
66
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
67
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
68
#include <linux/tick.h>
P
Peter Zijlstra 已提交
69 70
#include <linux/debugfs.h>
#include <linux/ctype.h>
71
#include <linux/ftrace.h>
72
#include <linux/slab.h>
73
#include <linux/init_task.h>
A
Al Viro 已提交
74
#include <linux/binfmts.h>
L
Linus Torvalds 已提交
75

76
#include <asm/switch_to.h>
77
#include <asm/tlb.h>
78
#include <asm/irq_regs.h>
79
#include <asm/mutex.h>
G
Glauber Costa 已提交
80 81 82
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
83

84
#include "sched.h"
85
#include "../workqueue_sched.h"
86

87
#define CREATE_TRACE_POINTS
88
#include <trace/events/sched.h>
89

90
void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
91
{
92 93
	unsigned long delta;
	ktime_t soft, hard, now;
94

95 96 97 98 99 100
	for (;;) {
		if (hrtimer_active(period_timer))
			break;

		now = hrtimer_cb_get_time(period_timer);
		hrtimer_forward(period_timer, now, period);
101

102 103 104 105 106 107 108 109
		soft = hrtimer_get_softexpires(period_timer);
		hard = hrtimer_get_expires(period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(period_timer, soft, delta,
					 HRTIMER_MODE_ABS_PINNED, 0);
	}
}

110 111
DEFINE_MUTEX(sched_domains_mutex);
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
112

113
static void update_rq_clock_task(struct rq *rq, s64 delta);
114

115
void update_rq_clock(struct rq *rq)
116
{
117
	s64 delta;
118

119
	if (rq->skip_clock_update > 0)
120
		return;
121

122 123 124
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
125 126
}

I
Ingo Molnar 已提交
127 128 129
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
130 131 132 133

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
134
const_debug unsigned int sysctl_sched_features =
135
#include "features.h"
P
Peter Zijlstra 已提交
136 137 138 139 140 141 142 143
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

144
static __read_mostly char *sched_feat_names[] = {
145
#include "features.h"
P
Peter Zijlstra 已提交
146 147 148 149 150
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
151
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
152 153 154
{
	int i;

155
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
L
Li Zefan 已提交
156 157 158
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
159
	}
L
Li Zefan 已提交
160
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
161

L
Li Zefan 已提交
162
	return 0;
P
Peter Zijlstra 已提交
163 164
}

165 166
#ifdef HAVE_JUMP_LABEL

167 168
#define jump_label_key__true  STATIC_KEY_INIT_TRUE
#define jump_label_key__false STATIC_KEY_INIT_FALSE
169 170 171 172

#define SCHED_FEAT(name, enabled)	\
	jump_label_key__##enabled ,

173
struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
174 175 176 177 178 179 180
#include "features.h"
};

#undef SCHED_FEAT

static void sched_feat_disable(int i)
{
181 182
	if (static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_dec(&sched_feat_keys[i]);
183 184 185 186
}

static void sched_feat_enable(int i)
{
187 188
	if (!static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_inc(&sched_feat_keys[i]);
189 190 191 192 193 194
}
#else
static void sched_feat_disable(int i) { };
static void sched_feat_enable(int i) { };
#endif /* HAVE_JUMP_LABEL */

P
Peter Zijlstra 已提交
195 196 197 198 199
static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
200
	char *cmp;
P
Peter Zijlstra 已提交
201 202 203 204 205 206 207 208 209 210
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
211
	cmp = strstrip(buf);
P
Peter Zijlstra 已提交
212

H
Hillf Danton 已提交
213
	if (strncmp(cmp, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
214 215 216 217
		neg = 1;
		cmp += 3;
	}

218
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
219
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
220
			if (neg) {
P
Peter Zijlstra 已提交
221
				sysctl_sched_features &= ~(1UL << i);
222 223
				sched_feat_disable(i);
			} else {
P
Peter Zijlstra 已提交
224
				sysctl_sched_features |= (1UL << i);
225 226
				sched_feat_enable(i);
			}
P
Peter Zijlstra 已提交
227 228 229 230
			break;
		}
	}

231
	if (i == __SCHED_FEAT_NR)
P
Peter Zijlstra 已提交
232 233
		return -EINVAL;

234
	*ppos += cnt;
P
Peter Zijlstra 已提交
235 236 237 238

	return cnt;
}

L
Li Zefan 已提交
239 240 241 242 243
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

244
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
245 246 247 248 249
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
250 251 252 253 254 255 256 257 258 259
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);
260
#endif /* CONFIG_SCHED_DEBUG */
I
Ingo Molnar 已提交
261

262 263 264 265 266 267
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

268 269 270 271 272 273 274 275
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
276
/*
P
Peter Zijlstra 已提交
277
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
278 279
 * default: 1s
 */
P
Peter Zijlstra 已提交
280
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
281

282
__read_mostly int scheduler_running;
283

P
Peter Zijlstra 已提交
284 285 286 287 288
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
289 290


L
Linus Torvalds 已提交
291

292
/*
293
 * __task_rq_lock - lock the rq @p resides on.
294
 */
295
static inline struct rq *__task_rq_lock(struct task_struct *p)
296 297
	__acquires(rq->lock)
{
298 299
	struct rq *rq;

300 301
	lockdep_assert_held(&p->pi_lock);

302
	for (;;) {
303
		rq = task_rq(p);
304
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
305
		if (likely(rq == task_rq(p)))
306
			return rq;
307
		raw_spin_unlock(&rq->lock);
308 309 310
	}
}

L
Linus Torvalds 已提交
311
/*
312
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
L
Linus Torvalds 已提交
313
 */
314
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
315
	__acquires(p->pi_lock)
L
Linus Torvalds 已提交
316 317
	__acquires(rq->lock)
{
318
	struct rq *rq;
L
Linus Torvalds 已提交
319

320
	for (;;) {
321
		raw_spin_lock_irqsave(&p->pi_lock, *flags);
322
		rq = task_rq(p);
323
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
324
		if (likely(rq == task_rq(p)))
325
			return rq;
326 327
		raw_spin_unlock(&rq->lock);
		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
328 329 330
	}
}

A
Alexey Dobriyan 已提交
331
static void __task_rq_unlock(struct rq *rq)
332 333
	__releases(rq->lock)
{
334
	raw_spin_unlock(&rq->lock);
335 336
}

337 338
static inline void
task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
339
	__releases(rq->lock)
340
	__releases(p->pi_lock)
L
Linus Torvalds 已提交
341
{
342 343
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
344 345 346
}

/*
347
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
348
 */
A
Alexey Dobriyan 已提交
349
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
350 351
	__acquires(rq->lock)
{
352
	struct rq *rq;
L
Linus Torvalds 已提交
353 354 355

	local_irq_disable();
	rq = this_rq();
356
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
357 358 359 360

	return rq;
}

P
Peter Zijlstra 已提交
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

389
	raw_spin_lock(&rq->lock);
390
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
391
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
392
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
393 394 395 396

	return HRTIMER_NORESTART;
}

397
#ifdef CONFIG_SMP
398 399 400 401
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
402
{
403
	struct rq *rq = arg;
404

405
	raw_spin_lock(&rq->lock);
406 407
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
408
	raw_spin_unlock(&rq->lock);
409 410
}

411 412 413 414 415
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
416
void hrtick_start(struct rq *rq, u64 delay)
417
{
418 419
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
420

421
	hrtimer_set_expires(timer, time);
422 423 424 425

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
426
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
427 428
		rq->hrtick_csd_pending = 1;
	}
429 430 431 432 433 434 435 436 437 438 439 440 441 442
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
443
		hrtick_clear(cpu_rq(cpu));
444 445 446 447 448 449
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

450
static __init void init_hrtick(void)
451 452 453
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
454 455 456 457 458 459
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
460
void hrtick_start(struct rq *rq, u64 delay)
461
{
462
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
463
			HRTIMER_MODE_REL_PINNED, 0);
464
}
465

A
Andrew Morton 已提交
466
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
467 468
{
}
469
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
470

471
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
472
{
473 474
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
475

476 477 478 479
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
480

481 482
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
483
}
A
Andrew Morton 已提交
484
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
485 486 487 488 489 490 491 492
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

493 494 495
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
496
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
497

I
Ingo Molnar 已提交
498 499 500 501 502 503 504 505 506 507 508 509 510
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

511
void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
512 513 514
{
	int cpu;

515
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
516

517
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
518 519
		return;

520
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
521 522 523 524 525 526 527 528 529 530 531

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

532
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
533 534 535 536
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

537
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
538 539
		return;
	resched_task(cpu_curr(cpu));
540
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
541
}
542 543

#ifdef CONFIG_NO_HZ
544 545 546 547 548 549 550 551 552 553 554 555 556 557
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
int get_nohz_timer_target(void)
{
	int cpu = smp_processor_id();
	int i;
	struct sched_domain *sd;

558
	rcu_read_lock();
559
	for_each_domain(cpu, sd) {
560 561 562 563 564 565
		for_each_cpu(i, sched_domain_span(sd)) {
			if (!idle_cpu(i)) {
				cpu = i;
				goto unlock;
			}
		}
566
	}
567 568
unlock:
	rcu_read_unlock();
569 570
	return cpu;
}
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;
597 598

	/*
599 600 601
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
602
	 */
603
	set_tsk_need_resched(rq->idle);
604

605 606 607 608
	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
609 610
}

611
static inline bool got_nohz_idle_kick(void)
612
{
613 614
	int cpu = smp_processor_id();
	return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
615 616
}

617
#else /* CONFIG_NO_HZ */
618

619
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
620
{
621
	return false;
P
Peter Zijlstra 已提交
622 623
}

624
#endif /* CONFIG_NO_HZ */
625

626
void sched_avg_update(struct rq *rq)
627
{
628 629 630
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
631 632 633 634 635 636
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
637 638 639
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
640 641
}

642
#else /* !CONFIG_SMP */
643
void resched_task(struct task_struct *p)
644
{
645
	assert_raw_spin_locked(&task_rq(p)->lock);
646
	set_tsk_need_resched(p);
647
}
648
#endif /* CONFIG_SMP */
649

650 651
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
652
/*
653 654 655 656
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
657
 */
658
int walk_tg_tree_from(struct task_group *from,
659
			     tg_visitor down, tg_visitor up, void *data)
660 661
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
662
	int ret;
663

664 665
	parent = from;

666
down:
P
Peter Zijlstra 已提交
667 668
	ret = (*down)(parent, data);
	if (ret)
669
		goto out;
670 671 672 673 674 675 676
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
677
	ret = (*up)(parent, data);
678 679
	if (ret || parent == from)
		goto out;
680 681 682 683 684

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
685
out:
P
Peter Zijlstra 已提交
686
	return ret;
687 688
}

689
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
690
{
691
	return 0;
P
Peter Zijlstra 已提交
692
}
693 694
#endif

695
void update_cpu_load(struct rq *this_rq);
696

697 698
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
699 700 701
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
702 703 704 705
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
706
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
707
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
708 709
		return;
	}
710

711
	load->weight = scale_load(prio_to_weight[prio]);
N
Nikhil Rao 已提交
712
	load->inv_weight = prio_to_wmult[prio];
713 714
}

715
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
716
{
717
	update_rq_clock(rq);
I
Ingo Molnar 已提交
718
	sched_info_queued(p);
719
	p->sched_class->enqueue_task(rq, p, flags);
720 721
}

722
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
723
{
724
	update_rq_clock(rq);
725
	sched_info_dequeued(p);
726
	p->sched_class->dequeue_task(rq, p, flags);
727 728
}

729
void activate_task(struct rq *rq, struct task_struct *p, int flags)
730 731 732 733
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

734
	enqueue_task(rq, p, flags);
735 736
}

737
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
738 739 740 741
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

742
	dequeue_task(rq, p, flags);
743 744
}

745 746
#ifdef CONFIG_IRQ_TIME_ACCOUNTING

747 748 749 750 751 752 753
/*
 * There are no locks covering percpu hardirq/softirq time.
 * They are only modified in account_system_vtime, on corresponding CPU
 * with interrupts disabled. So, writes are safe.
 * They are read and saved off onto struct rq in update_rq_clock().
 * This may result in other CPU reading this CPU's irq time and can
 * race with irq/account_system_vtime on this CPU. We would either get old
754 755 756
 * or new value with a side effect of accounting a slice of irq time to wrong
 * task when irq is in progress while we read rq->clock. That is a worthy
 * compromise in place of having locks on each irq in account_system_time.
757
 */
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
static DEFINE_PER_CPU(u64, cpu_hardirq_time);
static DEFINE_PER_CPU(u64, cpu_softirq_time);

static DEFINE_PER_CPU(u64, irq_start_time);
static int sched_clock_irqtime;

void enable_sched_clock_irqtime(void)
{
	sched_clock_irqtime = 1;
}

void disable_sched_clock_irqtime(void)
{
	sched_clock_irqtime = 0;
}

774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
#ifndef CONFIG_64BIT
static DEFINE_PER_CPU(seqcount_t, irq_time_seq);

static inline void irq_time_write_begin(void)
{
	__this_cpu_inc(irq_time_seq.sequence);
	smp_wmb();
}

static inline void irq_time_write_end(void)
{
	smp_wmb();
	__this_cpu_inc(irq_time_seq.sequence);
}

static inline u64 irq_time_read(int cpu)
{
	u64 irq_time;
	unsigned seq;

	do {
		seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
		irq_time = per_cpu(cpu_softirq_time, cpu) +
			   per_cpu(cpu_hardirq_time, cpu);
	} while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));

	return irq_time;
}
#else /* CONFIG_64BIT */
static inline void irq_time_write_begin(void)
{
}

static inline void irq_time_write_end(void)
{
}

static inline u64 irq_time_read(int cpu)
812 813 814
{
	return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
}
815
#endif /* CONFIG_64BIT */
816

817 818 819 820
/*
 * Called before incrementing preempt_count on {soft,}irq_enter
 * and before decrementing preempt_count on {soft,}irq_exit.
 */
821 822 823
void account_system_vtime(struct task_struct *curr)
{
	unsigned long flags;
824
	s64 delta;
825 826 827 828 829 830 831 832
	int cpu;

	if (!sched_clock_irqtime)
		return;

	local_irq_save(flags);

	cpu = smp_processor_id();
833 834 835
	delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
	__this_cpu_add(irq_start_time, delta);

836
	irq_time_write_begin();
837 838 839 840 841 842 843
	/*
	 * We do not account for softirq time from ksoftirqd here.
	 * We want to continue accounting softirq time to ksoftirqd thread
	 * in that case, so as not to confuse scheduler with a special task
	 * that do not consume any time, but still wants to run.
	 */
	if (hardirq_count())
844
		__this_cpu_add(cpu_hardirq_time, delta);
845
	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
846
		__this_cpu_add(cpu_softirq_time, delta);
847

848
	irq_time_write_end();
849 850
	local_irq_restore(flags);
}
I
Ingo Molnar 已提交
851
EXPORT_SYMBOL_GPL(account_system_vtime);
852

G
Glauber Costa 已提交
853 854 855 856
#endif /* CONFIG_IRQ_TIME_ACCOUNTING */

#ifdef CONFIG_PARAVIRT
static inline u64 steal_ticks(u64 steal)
857
{
G
Glauber Costa 已提交
858 859
	if (unlikely(steal > NSEC_PER_SEC))
		return div_u64(steal, TICK_NSEC);
860

G
Glauber Costa 已提交
861 862 863 864
	return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
}
#endif

865
static void update_rq_clock_task(struct rq *rq, s64 delta)
866
{
867 868 869 870 871 872 873 874
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
875
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
897 898
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
899
	if (static_key_false((&paravirt_steal_rq_enabled))) {
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
		u64 st;

		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		st = steal_ticks(steal);
		steal = st * TICK_NSEC;

		rq->prev_steal_time_rq += steal;

		delta -= steal;
	}
#endif

917 918
	rq->clock_task += delta;

919 920 921 922
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
923 924
}

925
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
926 927
static int irqtime_account_hi_update(void)
{
928
	u64 *cpustat = kcpustat_this_cpu->cpustat;
929 930 931 932 933 934
	unsigned long flags;
	u64 latest_ns;
	int ret = 0;

	local_irq_save(flags);
	latest_ns = this_cpu_read(cpu_hardirq_time);
935
	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
936 937 938 939 940 941 942
		ret = 1;
	local_irq_restore(flags);
	return ret;
}

static int irqtime_account_si_update(void)
{
943
	u64 *cpustat = kcpustat_this_cpu->cpustat;
944 945 946 947 948 949
	unsigned long flags;
	u64 latest_ns;
	int ret = 0;

	local_irq_save(flags);
	latest_ns = this_cpu_read(cpu_softirq_time);
950
	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
951 952 953 954 955
		ret = 1;
	local_irq_restore(flags);
	return ret;
}

956
#else /* CONFIG_IRQ_TIME_ACCOUNTING */
957

958 959
#define sched_clock_irqtime	(0)

960
#endif
961

962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

992
/*
I
Ingo Molnar 已提交
993
 * __normal_prio - return the priority that is based on the static prio
994 995 996
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
997
	return p->static_prio;
998 999
}

1000 1001 1002 1003 1004 1005 1006
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1007
static inline int normal_prio(struct task_struct *p)
1008 1009 1010
{
	int prio;

1011
	if (task_has_rt_policy(p))
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1025
static int effective_prio(struct task_struct *p)
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1038 1039 1040 1041
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1042
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1043 1044 1045 1046
{
	return cpu_curr(task_cpu(p)) == p;
}

1047 1048
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
1049
				       int oldprio)
1050 1051 1052
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
1053 1054 1055 1056
			prev_class->switched_from(rq, p);
		p->sched_class->switched_to(rq, p);
	} else if (oldprio != p->prio)
		p->sched_class->prio_changed(rq, p, oldprio);
1057 1058
}

1059
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
				resched_task(rq->curr);
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
P
Peter Zijlstra 已提交
1080
	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1081 1082 1083
		rq->skip_clock_update = 1;
}

L
Linus Torvalds 已提交
1084
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1085
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1086
{
1087 1088 1089 1090 1091
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
1092 1093
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
1094 1095

#ifdef CONFIG_LOCKDEP
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
	 * see set_task_rq().
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
1106 1107 1108
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
1109 1110
#endif

1111
	trace_sched_migrate_task(p, new_cpu);
1112

1113 1114
	if (task_cpu(p) != new_cpu) {
		p->se.nr_migrations++;
1115
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1116
	}
I
Ingo Molnar 已提交
1117 1118

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1119 1120
}

1121
struct migration_arg {
1122
	struct task_struct *task;
L
Linus Torvalds 已提交
1123
	int dest_cpu;
1124
};
L
Linus Torvalds 已提交
1125

1126 1127
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
1128 1129 1130
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1131 1132 1133 1134 1135 1136 1137
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1138 1139 1140 1141 1142 1143
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1144
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1145 1146
{
	unsigned long flags;
I
Ingo Molnar 已提交
1147
	int running, on_rq;
R
Roland McGrath 已提交
1148
	unsigned long ncsw;
1149
	struct rq *rq;
L
Linus Torvalds 已提交
1150

1151 1152 1153 1154 1155 1156 1157 1158
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1159

1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1171 1172 1173
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1174
			cpu_relax();
R
Roland McGrath 已提交
1175
		}
1176

1177 1178 1179 1180 1181 1182
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1183
		trace_sched_wait_task(p);
1184
		running = task_running(rq, p);
P
Peter Zijlstra 已提交
1185
		on_rq = p->on_rq;
R
Roland McGrath 已提交
1186
		ncsw = 0;
1187
		if (!match_state || p->state == match_state)
1188
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1189
		task_rq_unlock(rq, p, &flags);
1190

R
Roland McGrath 已提交
1191 1192 1193 1194 1195 1196
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1207

1208 1209 1210 1211 1212
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1213
		 * So if it was still runnable (but just not actively
1214 1215 1216 1217
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
1218 1219 1220 1221
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1222 1223
			continue;
		}
1224

1225 1226 1227 1228 1229 1230 1231
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1232 1233

	return ncsw;
L
Linus Torvalds 已提交
1234 1235 1236 1237 1238 1239 1240 1241 1242
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1243
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1244 1245 1246 1247 1248
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1249
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1250 1251 1252 1253 1254 1255 1256 1257 1258
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1259
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
1260
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1261

1262
#ifdef CONFIG_SMP
1263
/*
1264
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1265
 */
1266 1267 1268
static int select_fallback_rq(int cpu, struct task_struct *p)
{
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1269 1270
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1271 1272

	/* Look for allowed, online CPU in same node. */
1273
	for_each_cpu(dest_cpu, nodemask) {
1274 1275 1276 1277
		if (!cpu_online(dest_cpu))
			continue;
		if (!cpu_active(dest_cpu))
			continue;
1278
		if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1279
			return dest_cpu;
1280
	}
1281

1282 1283
	for (;;) {
		/* Any allowed, online CPU? */
1284
		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1285 1286 1287 1288 1289 1290
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			goto out;
		}
1291

1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
		switch (state) {
		case cpuset:
			/* No more Mr. Nice Guy. */
			cpuset_cpus_allowed_fallback(p);
			state = possible;
			break;

		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk_sched("process %d (%s) no longer affine to cpu%d\n",
					task_pid_nr(p), p->comm, cpu);
		}
1321 1322 1323 1324 1325
	}

	return dest_cpu;
}

1326
/*
1327
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1328
 */
1329
static inline
1330
int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1331
{
1332
	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1344
	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
P
Peter Zijlstra 已提交
1345
		     !cpu_online(cpu)))
1346
		cpu = select_fallback_rq(task_cpu(p), p);
1347 1348

	return cpu;
1349
}
1350 1351 1352 1353 1354 1355

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1356 1357
#endif

P
Peter Zijlstra 已提交
1358
static void
1359
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1360
{
P
Peter Zijlstra 已提交
1361
#ifdef CONFIG_SCHEDSTATS
1362 1363
	struct rq *rq = this_rq();

P
Peter Zijlstra 已提交
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
#ifdef CONFIG_SMP
	int this_cpu = smp_processor_id();

	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	} else {
		struct sched_domain *sd;

		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1374
		rcu_read_lock();
P
Peter Zijlstra 已提交
1375 1376 1377 1378 1379 1380
		for_each_domain(this_cpu, sd) {
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
1381
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1382
	}
1383 1384 1385 1386

	if (wake_flags & WF_MIGRATED)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);

P
Peter Zijlstra 已提交
1387 1388 1389
#endif /* CONFIG_SMP */

	schedstat_inc(rq, ttwu_count);
T
Tejun Heo 已提交
1390
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1391 1392

	if (wake_flags & WF_SYNC)
T
Tejun Heo 已提交
1393
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1394 1395 1396 1397 1398 1399

#endif /* CONFIG_SCHEDSTATS */
}

static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
{
T
Tejun Heo 已提交
1400
	activate_task(rq, p, en_flags);
P
Peter Zijlstra 已提交
1401
	p->on_rq = 1;
1402 1403 1404 1405

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1406 1407
}

1408 1409 1410
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1411
static void
1412
ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
T
Tejun Heo 已提交
1413
{
1414
	trace_sched_wakeup(p, true);
T
Tejun Heo 已提交
1415 1416 1417 1418 1419 1420 1421
	check_preempt_curr(rq, p, wake_flags);

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);

1422
	if (rq->idle_stamp) {
T
Tejun Heo 已提交
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
#endif
}

1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
static void
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
{
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
#endif

	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
	ttwu_do_wakeup(rq, p, wake_flags);
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
	if (p->on_rq) {
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;
}

1468
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1469
static void sched_ttwu_pending(void)
1470 1471
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1472 1473
	struct llist_node *llist = llist_del_all(&rq->wake_list);
	struct task_struct *p;
1474 1475 1476

	raw_spin_lock(&rq->lock);

P
Peter Zijlstra 已提交
1477 1478 1479
	while (llist) {
		p = llist_entry(llist, struct task_struct, wake_entry);
		llist = llist_next(llist);
1480 1481 1482 1483 1484 1485 1486 1487
		ttwu_do_activate(rq, p, 0);
	}

	raw_spin_unlock(&rq->lock);
}

void scheduler_ipi(void)
{
1488
	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
P
Peter Zijlstra 已提交
1505
	sched_ttwu_pending();
1506 1507 1508 1509

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1510 1511
	if (unlikely(got_nohz_idle_kick() && !need_resched())) {
		this_rq()->idle_balance = 1;
1512
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1513
	}
1514
	irq_exit();
1515 1516 1517 1518
}

static void ttwu_queue_remote(struct task_struct *p, int cpu)
{
P
Peter Zijlstra 已提交
1519
	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1520 1521
		smp_send_reschedule(cpu);
}
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540

#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
	if (p->on_cpu) {
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;

}
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1541

1542
bool cpus_share_cache(int this_cpu, int that_cpu)
1543 1544 1545
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1546
#endif /* CONFIG_SMP */
1547

1548 1549 1550 1551
static void ttwu_queue(struct task_struct *p, int cpu)
{
	struct rq *rq = cpu_rq(cpu);

1552
#if defined(CONFIG_SMP)
1553
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1554
		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1555 1556 1557 1558 1559
		ttwu_queue_remote(p, cpu);
		return;
	}
#endif

1560 1561 1562
	raw_spin_lock(&rq->lock);
	ttwu_do_activate(rq, p, 0);
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
1563 1564 1565
}

/**
L
Linus Torvalds 已提交
1566
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1567
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1568
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1569
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1570 1571 1572 1573 1574 1575 1576
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
T
Tejun Heo 已提交
1577 1578
 * Returns %true if @p was woken up, %false if it was already running
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
1579
 */
1580 1581
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1582 1583
{
	unsigned long flags;
1584
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1585

1586
	smp_wmb();
1587
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
1588
	if (!(p->state & state))
L
Linus Torvalds 已提交
1589 1590
		goto out;

1591
	success = 1; /* we're going to change ->state */
L
Linus Torvalds 已提交
1592 1593
	cpu = task_cpu(p);

1594 1595
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
1596 1597

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1598
	/*
1599 1600
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
P
Peter Zijlstra 已提交
1601
	 */
1602 1603 1604
	while (p->on_cpu) {
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
		/*
1605 1606 1607 1608 1609
		 * In case the architecture enables interrupts in
		 * context_switch(), we cannot busy wait, since that
		 * would lead to deadlocks when an interrupt hits and
		 * tries to wake up @prev. So bail and do a complete
		 * remote wakeup.
1610
		 */
1611
		if (ttwu_activate_remote(p, wake_flags))
1612
			goto stat;
1613
#else
1614
		cpu_relax();
1615
#endif
1616
	}
1617
	/*
1618
	 * Pairs with the smp_wmb() in finish_lock_switch().
1619
	 */
1620
	smp_rmb();
L
Linus Torvalds 已提交
1621

1622
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
1623
	p->state = TASK_WAKING;
1624

1625
	if (p->sched_class->task_waking)
1626
		p->sched_class->task_waking(p);
1627

1628
	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1629 1630
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
1631
		set_task_cpu(p, cpu);
1632
	}
L
Linus Torvalds 已提交
1633 1634
#endif /* CONFIG_SMP */

1635 1636
	ttwu_queue(p, cpu);
stat:
1637
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
1638
out:
1639
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
1640 1641 1642 1643

	return success;
}

T
Tejun Heo 已提交
1644 1645 1646 1647
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
1648
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
1649
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1650
 * the current task.
T
Tejun Heo 已提交
1651 1652 1653 1654 1655 1656 1657 1658 1659
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	BUG_ON(rq != this_rq());
	BUG_ON(p == current);
	lockdep_assert_held(&rq->lock);

1660 1661 1662 1663 1664 1665
	if (!raw_spin_trylock(&p->pi_lock)) {
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
	}

T
Tejun Heo 已提交
1666
	if (!(p->state & TASK_NORMAL))
1667
		goto out;
T
Tejun Heo 已提交
1668

P
Peter Zijlstra 已提交
1669
	if (!p->on_rq)
P
Peter Zijlstra 已提交
1670 1671
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

1672
	ttwu_do_wakeup(rq, p, 0);
1673
	ttwu_stat(p, smp_processor_id(), 0);
1674 1675
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
1676 1677
}

1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
1689
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1690
{
1691
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
1692 1693 1694
}
EXPORT_SYMBOL(wake_up_process);

1695
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1696 1697 1698 1699 1700 1701 1702
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1703 1704 1705 1706 1707
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
P
Peter Zijlstra 已提交
1708 1709 1710
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
1711 1712
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1713
	p->se.prev_sum_exec_runtime	= 0;
1714
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
1715
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
1716
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
1717 1718

#ifdef CONFIG_SCHEDSTATS
1719
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
1720
#endif
N
Nick Piggin 已提交
1721

P
Peter Zijlstra 已提交
1722
	INIT_LIST_HEAD(&p->rt.run_list);
N
Nick Piggin 已提交
1723

1724 1725 1726
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
I
Ingo Molnar 已提交
1727 1728 1729 1730 1731
}

/*
 * fork()/clone()-time setup:
 */
1732
void sched_fork(struct task_struct *p)
I
Ingo Molnar 已提交
1733
{
1734
	unsigned long flags;
I
Ingo Molnar 已提交
1735 1736 1737
	int cpu = get_cpu();

	__sched_fork(p);
1738
	/*
1739
	 * We mark the process as running here. This guarantees that
1740 1741 1742
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
1743
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1744

1745 1746 1747 1748 1749
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

1750 1751 1752 1753
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
1754
		if (task_has_rt_policy(p)) {
1755
			p->policy = SCHED_NORMAL;
1756
			p->static_prio = NICE_TO_PRIO(0);
1757 1758 1759 1760 1761 1762
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
1763

1764 1765 1766 1767 1768 1769
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
1770

H
Hiroshi Shimamoto 已提交
1771 1772
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
1773

P
Peter Zijlstra 已提交
1774 1775 1776
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

1777 1778 1779 1780 1781 1782 1783
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
1784
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1785
	set_task_cpu(p, cpu);
1786
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1787

1788
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1789
	if (likely(sched_info_on()))
1790
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1791
#endif
P
Peter Zijlstra 已提交
1792 1793
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
1794
#endif
1795
#ifdef CONFIG_PREEMPT_COUNT
1796
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1797
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1798
#endif
1799
#ifdef CONFIG_SMP
1800
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1801
#endif
1802

N
Nick Piggin 已提交
1803
	put_cpu();
L
Linus Torvalds 已提交
1804 1805 1806 1807 1808 1809 1810 1811 1812
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1813
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
1814 1815
{
	unsigned long flags;
I
Ingo Molnar 已提交
1816
	struct rq *rq;
1817

1818
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1819 1820 1821 1822 1823 1824
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 */
1825
	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1826 1827
#endif

1828
	rq = __task_rq_lock(p);
P
Peter Zijlstra 已提交
1829
	activate_task(rq, p, 0);
P
Peter Zijlstra 已提交
1830
	p->on_rq = 1;
1831
	trace_sched_wakeup_new(p, true);
P
Peter Zijlstra 已提交
1832
	check_preempt_curr(rq, p, WF_FORK);
1833
#ifdef CONFIG_SMP
1834 1835
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
1836
#endif
1837
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
1838 1839
}

1840 1841 1842
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
1843
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
1844
 * @notifier: notifier struct to register
1845 1846 1847 1848 1849 1850 1851 1852 1853
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1854
 * @notifier: notifier struct to unregister
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

1884
#else /* !CONFIG_PREEMPT_NOTIFIERS */
1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

1896
#endif /* CONFIG_PREEMPT_NOTIFIERS */
1897

1898 1899 1900
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1901
 * @prev: the current task that is being switched out
1902 1903 1904 1905 1906 1907 1908 1909 1910
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1911 1912 1913
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1914
{
1915 1916
	sched_info_switch(prev, next);
	perf_event_task_sched_out(prev, next);
1917
	fire_sched_out_preempt_notifiers(prev, next);
1918 1919
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
1920
	trace_sched_switch(prev, next);
1921 1922
}

L
Linus Torvalds 已提交
1923 1924
/**
 * finish_task_switch - clean up after a task-switch
1925
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1926 1927
 * @prev: the thread we just switched away from.
 *
1928 1929 1930 1931
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1932 1933
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
1934
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
1935 1936 1937
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
1938
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1939 1940 1941
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1942
	long prev_state;
L
Linus Torvalds 已提交
1943 1944 1945 1946 1947

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1948
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1949 1950
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1951
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1952 1953 1954 1955 1956
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1957
	prev_state = prev->state;
1958
	finish_arch_switch(prev);
1959 1960 1961
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_disable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1962
	perf_event_task_sched_in(prev, current);
1963 1964 1965
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1966
	finish_lock_switch(rq, prev);
1967
	finish_arch_post_lock_switch();
S
Steven Rostedt 已提交
1968

1969
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1970 1971
	if (mm)
		mmdrop(mm);
1972
	if (unlikely(prev_state == TASK_DEAD)) {
1973 1974 1975
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1976
		 */
1977
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1978
		put_task_struct(prev);
1979
	}
L
Linus Torvalds 已提交
1980 1981
}

1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

1997
		raw_spin_lock_irqsave(&rq->lock, flags);
1998 1999
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
2000
		raw_spin_unlock_irqrestore(&rq->lock, flags);
2001 2002 2003 2004 2005 2006

		rq->post_schedule = 0;
	}
}

#else
2007

2008 2009 2010 2011 2012 2013
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
2014 2015
}

2016 2017
#endif

L
Linus Torvalds 已提交
2018 2019 2020 2021
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2022
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2023 2024
	__releases(rq->lock)
{
2025 2026
	struct rq *rq = this_rq();

2027
	finish_task_switch(rq, prev);
2028

2029 2030 2031 2032 2033
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2034

2035 2036 2037 2038
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2039
	if (current->set_child_tid)
2040
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2041 2042 2043 2044 2045 2046
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2047
static inline void
2048
context_switch(struct rq *rq, struct task_struct *prev,
2049
	       struct task_struct *next)
L
Linus Torvalds 已提交
2050
{
I
Ingo Molnar 已提交
2051
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2052

2053
	prepare_task_switch(rq, prev, next);
2054

I
Ingo Molnar 已提交
2055 2056
	mm = next->mm;
	oldmm = prev->active_mm;
2057 2058 2059 2060 2061
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2062
	arch_start_context_switch(prev);
2063

2064
	if (!mm) {
L
Linus Torvalds 已提交
2065 2066 2067 2068 2069 2070
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2071
	if (!prev->mm) {
L
Linus Torvalds 已提交
2072 2073 2074
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2075 2076 2077 2078 2079 2080 2081
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2082
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2083
#endif
L
Linus Torvalds 已提交
2084 2085 2086 2087

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2088 2089 2090 2091 2092 2093 2094
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2112
}
L
Linus Torvalds 已提交
2113 2114

unsigned long nr_uninterruptible(void)
2115
{
L
Linus Torvalds 已提交
2116
	unsigned long i, sum = 0;
2117

2118
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2119
		sum += cpu_rq(i)->nr_uninterruptible;
2120 2121

	/*
L
Linus Torvalds 已提交
2122 2123
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
2124
	 */
L
Linus Torvalds 已提交
2125 2126
	if (unlikely((long)sum < 0))
		sum = 0;
2127

L
Linus Torvalds 已提交
2128
	return sum;
2129 2130
}

L
Linus Torvalds 已提交
2131
unsigned long long nr_context_switches(void)
2132
{
2133 2134
	int i;
	unsigned long long sum = 0;
2135

2136
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2137
		sum += cpu_rq(i)->nr_switches;
2138

L
Linus Torvalds 已提交
2139 2140
	return sum;
}
2141

L
Linus Torvalds 已提交
2142 2143 2144
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2145

2146
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2147
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2148

L
Linus Torvalds 已提交
2149 2150
	return sum;
}
2151

2152
unsigned long nr_iowait_cpu(int cpu)
2153
{
2154
	struct rq *this = cpu_rq(cpu);
2155 2156
	return atomic_read(&this->nr_iowait);
}
2157

2158 2159 2160 2161 2162
unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}
2163

2164

2165 2166 2167 2168 2169
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);
2170

2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
static long calc_load_fold_active(struct rq *this_rq)
{
	long nr_active, delta = 0;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
	}

	return delta;
}

2186 2187 2188 2189 2190 2191 2192 2193 2194
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
{
	load *= exp;
	load += active * (FIXED_1 - exp);
	load += 1UL << (FSHIFT - 1);
	return load >> FSHIFT;
}

2195 2196 2197 2198 2199 2200 2201 2202
#ifdef CONFIG_NO_HZ
/*
 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
 *
 * When making the ILB scale, we should try to pull this in as well.
 */
static atomic_long_t calc_load_tasks_idle;

2203
void calc_load_account_idle(struct rq *this_rq)
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
{
	long delta;

	delta = calc_load_fold_active(this_rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks_idle);
}

static long calc_load_fold_idle(void)
{
	long delta = 0;

	/*
	 * Its got a race, we don't care...
	 */
	if (atomic_long_read(&calc_load_tasks_idle))
		delta = atomic_long_xchg(&calc_load_tasks_idle, 0);

	return delta;
}
2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301

/**
 * fixed_power_int - compute: x^n, in O(log n) time
 *
 * @x:         base of the power
 * @frac_bits: fractional bits of @x
 * @n:         power to raise @x to.
 *
 * By exploiting the relation between the definition of the natural power
 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
 * (where: n_i \elem {0, 1}, the binary vector representing n),
 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
 * of course trivially computable in O(log_2 n), the length of our binary
 * vector.
 */
static unsigned long
fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
{
	unsigned long result = 1UL << frac_bits;

	if (n) for (;;) {
		if (n & 1) {
			result *= x;
			result += 1UL << (frac_bits - 1);
			result >>= frac_bits;
		}
		n >>= 1;
		if (!n)
			break;
		x *= x;
		x += 1UL << (frac_bits - 1);
		x >>= frac_bits;
	}

	return result;
}

/*
 * a1 = a0 * e + a * (1 - e)
 *
 * a2 = a1 * e + a * (1 - e)
 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
 *    = a0 * e^2 + a * (1 - e) * (1 + e)
 *
 * a3 = a2 * e + a * (1 - e)
 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
 *
 *  ...
 *
 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
 *    = a0 * e^n + a * (1 - e^n)
 *
 * [1] application of the geometric series:
 *
 *              n         1 - x^(n+1)
 *     S_n := \Sum x^i = -------------
 *             i=0          1 - x
 */
static unsigned long
calc_load_n(unsigned long load, unsigned long exp,
	    unsigned long active, unsigned int n)
{

	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
}

/*
 * NO_HZ can leave us missing all per-cpu ticks calling
 * calc_load_account_active(), but since an idle CPU folds its delta into
 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
 * in the pending idle delta if our idle period crossed a load cycle boundary.
 *
 * Once we've updated the global active value, we need to apply the exponential
 * weights adjusted to the number of cycles missed.
 */
2302
static void calc_global_nohz(void)
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
{
	long delta, active, n;

	/*
	 * If we crossed a calc_load_update boundary, make sure to fold
	 * any pending idle changes, the respective CPUs might have
	 * missed the tick driven calc_load_account_active() update
	 * due to NO_HZ.
	 */
	delta = calc_load_fold_idle();
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);

	/*
2317
	 * It could be the one fold was all it took, we done!
2318
	 */
2319 2320
	if (time_before(jiffies, calc_load_update + 10))
		return;
2321

2322 2323 2324 2325 2326
	/*
	 * Catch-up, fold however many we are behind still
	 */
	delta = jiffies - calc_load_update - 10;
	n = 1 + (delta / LOAD_FREQ);
2327

2328 2329
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
2330

2331 2332 2333
	avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
	avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
	avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2334

2335
	calc_load_update += n * LOAD_FREQ;
2336
}
2337
#else
2338
void calc_load_account_idle(struct rq *this_rq)
2339 2340 2341 2342 2343 2344 2345
{
}

static inline long calc_load_fold_idle(void)
{
	return 0;
}
2346

2347
static void calc_global_nohz(void)
2348 2349
{
}
2350 2351
#endif

2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
2365 2366 2367
}

/*
2368 2369
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
2370
 */
2371
void calc_global_load(unsigned long ticks)
2372
{
2373
	long active;
L
Linus Torvalds 已提交
2374

2375
	if (time_before(jiffies, calc_load_update + 10))
2376
		return;
L
Linus Torvalds 已提交
2377

2378 2379
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
L
Linus Torvalds 已提交
2380

2381 2382 2383
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
I
Ingo Molnar 已提交
2384

2385
	calc_load_update += LOAD_FREQ;
2386 2387 2388 2389 2390 2391 2392 2393 2394 2395

	/*
	 * Account one period with whatever state we found before
	 * folding in the nohz state and ageing the entire idle period.
	 *
	 * This avoids loosing a sample when we go idle between 
	 * calc_load_account_active() (10 ticks ago) and now and thus
	 * under-accounting.
	 */
	calc_global_nohz();
2396
}
L
Linus Torvalds 已提交
2397

2398
/*
2399 2400
 * Called from update_cpu_load() to periodically update this CPU's
 * active count.
2401 2402 2403
 */
static void calc_load_account_active(struct rq *this_rq)
{
2404
	long delta;
2405

2406 2407
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
2408

2409 2410 2411
	delta  = calc_load_fold_active(this_rq);
	delta += calc_load_fold_idle();
	if (delta)
2412
		atomic_long_add(delta, &calc_load_tasks);
2413 2414

	this_rq->calc_load_update += LOAD_FREQ;
2415 2416
}

2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483
/*
 * The exact cpuload at various idx values, calculated at every tick would be
 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
 *
 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
 * on nth tick when cpu may be busy, then we have:
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
 *
 * decay_load_missed() below does efficient calculation of
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
 *
 * The calculation is approximated on a 128 point scale.
 * degrade_zero_ticks is the number of ticks after which load at any
 * particular idx is approximated to be zero.
 * degrade_factor is a precomputed table, a row for each load idx.
 * Each column corresponds to degradation factor for a power of two ticks,
 * based on 128 point scale.
 * Example:
 * row 2, col 3 (=12) says that the degradation at load idx 2 after
 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
 *
 * With this power of 2 load factors, we can degrade the load n times
 * by looking at 1 bits in n and doing as many mult/shift instead of
 * n mult/shifts needed by the exact degradation.
 */
#define DEGRADE_SHIFT		7
static const unsigned char
		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const unsigned char
		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
					{0, 0, 0, 0, 0, 0, 0, 0},
					{64, 32, 8, 0, 0, 0, 0, 0},
					{96, 72, 40, 12, 1, 0, 0},
					{112, 98, 75, 43, 15, 1, 0},
					{120, 112, 98, 76, 45, 16, 2} };

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}

2484
/*
I
Ingo Molnar 已提交
2485
 * Update rq->cpu_load[] statistics. This function is usually called every
2486 2487
 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
 * every tick. We fix it up based on jiffies.
2488
 */
2489
void update_cpu_load(struct rq *this_rq)
2490
{
2491
	unsigned long this_load = this_rq->load.weight;
2492 2493
	unsigned long curr_jiffies = jiffies;
	unsigned long pending_updates;
I
Ingo Molnar 已提交
2494
	int i, scale;
2495

I
Ingo Molnar 已提交
2496
	this_rq->nr_load_updates++;
2497

2498 2499 2500 2501 2502 2503 2504
	/* Avoid repeated calls on same jiffy, when moving in and out of idle */
	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	this_rq->last_load_update_tick = curr_jiffies;

I
Ingo Molnar 已提交
2505
	/* Update our load: */
2506 2507
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
I
Ingo Molnar 已提交
2508
		unsigned long old_load, new_load;
2509

I
Ingo Molnar 已提交
2510
		/* scale is effectively 1 << i now, and >> i divides by scale */
2511

I
Ingo Molnar 已提交
2512
		old_load = this_rq->cpu_load[i];
2513
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
I
Ingo Molnar 已提交
2514
		new_load = this_load;
I
Ingo Molnar 已提交
2515 2516 2517 2518 2519 2520
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
2521 2522 2523
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
I
Ingo Molnar 已提交
2524
	}
2525 2526

	sched_avg_update(this_rq);
2527 2528 2529 2530 2531
}

static void update_cpu_load_active(struct rq *this_rq)
{
	update_cpu_load(this_rq);
2532

2533
	calc_load_account_active(this_rq);
2534 2535
}

I
Ingo Molnar 已提交
2536
#ifdef CONFIG_SMP
2537

2538
/*
P
Peter Zijlstra 已提交
2539 2540
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2541
 */
P
Peter Zijlstra 已提交
2542
void sched_exec(void)
2543
{
P
Peter Zijlstra 已提交
2544
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2545
	unsigned long flags;
2546
	int dest_cpu;
2547

2548
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2549
	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2550 2551
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2552

2553
	if (likely(cpu_active(dest_cpu))) {
2554
		struct migration_arg arg = { p, dest_cpu };
2555

2556 2557
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2558 2559
		return;
	}
2560
unlock:
2561
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2562
}
I
Ingo Molnar 已提交
2563

L
Linus Torvalds 已提交
2564 2565 2566
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2567
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
2568 2569

EXPORT_PER_CPU_SYMBOL(kstat);
2570
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
2571 2572

/*
2573
 * Return any ns on the sched_clock that have not yet been accounted in
2574
 * @p in case that task is currently running.
2575 2576
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
2577
 */
2578 2579 2580 2581 2582 2583
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
2584
		ns = rq->clock_task - p->se.exec_start;
2585 2586 2587 2588 2589 2590 2591
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

2592
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
2593 2594
{
	unsigned long flags;
2595
	struct rq *rq;
2596
	u64 ns = 0;
2597

2598
	rq = task_rq_lock(p, &flags);
2599
	ns = do_task_delta_exec(p, rq);
2600
	task_rq_unlock(rq, p, &flags);
2601

2602 2603
	return ns;
}
2604

2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2618
	task_rq_unlock(rq, p, &flags);
2619 2620 2621

	return ns;
}
2622

2623 2624 2625 2626 2627
#ifdef CONFIG_CGROUP_CPUACCT
struct cgroup_subsys cpuacct_subsys;
struct cpuacct root_cpuacct;
#endif

2628 2629
static inline void task_group_account_field(struct task_struct *p, int index,
					    u64 tmp)
2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658
{
#ifdef CONFIG_CGROUP_CPUACCT
	struct kernel_cpustat *kcpustat;
	struct cpuacct *ca;
#endif
	/*
	 * Since all updates are sure to touch the root cgroup, we
	 * get ourselves ahead and touch it first. If the root cgroup
	 * is the only cgroup, then nothing else should be necessary.
	 *
	 */
	__get_cpu_var(kernel_cpustat).cpustat[index] += tmp;

#ifdef CONFIG_CGROUP_CPUACCT
	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(p);
	while (ca && (ca != &root_cpuacct)) {
		kcpustat = this_cpu_ptr(ca->cpustat);
		kcpustat->cpustat[index] += tmp;
		ca = parent_ca(ca);
	}
	rcu_read_unlock();
#endif
}


L
Linus Torvalds 已提交
2659 2660 2661 2662
/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
2663
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
2664
 */
2665 2666
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
2667
{
2668
	int index;
L
Linus Torvalds 已提交
2669

2670
	/* Add user time to process. */
2671 2672
	p->utime += cputime;
	p->utimescaled += cputime_scaled;
2673
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
2674

2675
	index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
2676

L
Linus Torvalds 已提交
2677
	/* Add user time to cpustat. */
2678
	task_group_account_field(p, index, (__force u64) cputime);
2679

2680 2681
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
2682 2683
}

2684 2685 2686 2687
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
2688
 * @cputime_scaled: cputime scaled by cpu frequency
2689
 */
2690 2691
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
2692
{
2693
	u64 *cpustat = kcpustat_this_cpu->cpustat;
2694

2695
	/* Add guest time to process. */
2696 2697
	p->utime += cputime;
	p->utimescaled += cputime_scaled;
2698
	account_group_user_time(p, cputime);
2699
	p->gtime += cputime;
2700

2701
	/* Add guest time to cpustat. */
2702
	if (TASK_NICE(p) > 0) {
2703 2704
		cpustat[CPUTIME_NICE] += (__force u64) cputime;
		cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
2705
	} else {
2706 2707
		cpustat[CPUTIME_USER] += (__force u64) cputime;
		cpustat[CPUTIME_GUEST] += (__force u64) cputime;
2708
	}
2709 2710
}

2711 2712 2713 2714 2715 2716 2717 2718 2719
/*
 * Account system cpu time to a process and desired cpustat field
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in kernel space since the last update
 * @cputime_scaled: cputime scaled by cpu frequency
 * @target_cputime64: pointer to cpustat field that has to be updated
 */
static inline
void __account_system_time(struct task_struct *p, cputime_t cputime,
2720
			cputime_t cputime_scaled, int index)
2721 2722
{
	/* Add system time to process. */
2723 2724
	p->stime += cputime;
	p->stimescaled += cputime_scaled;
2725 2726 2727
	account_group_system_time(p, cputime);

	/* Add system time to cpustat. */
2728
	task_group_account_field(p, index, (__force u64) cputime);
2729 2730 2731 2732 2733

	/* Account for system time used */
	acct_update_integrals(p);
}

L
Linus Torvalds 已提交
2734 2735 2736 2737 2738
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
2739
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
2740 2741
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
2742
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
2743
{
2744
	int index;
L
Linus Torvalds 已提交
2745

2746
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
2747
		account_guest_time(p, cputime, cputime_scaled);
2748 2749
		return;
	}
2750

L
Linus Torvalds 已提交
2751
	if (hardirq_count() - hardirq_offset)
2752
		index = CPUTIME_IRQ;
2753
	else if (in_serving_softirq())
2754
		index = CPUTIME_SOFTIRQ;
L
Linus Torvalds 已提交
2755
	else
2756
		index = CPUTIME_SYSTEM;
2757

2758
	__account_system_time(p, cputime, cputime_scaled, index);
L
Linus Torvalds 已提交
2759 2760
}

2761
/*
L
Linus Torvalds 已提交
2762
 * Account for involuntary wait time.
2763
 * @cputime: the cpu time spent in involuntary wait
2764
 */
2765
void account_steal_time(cputime_t cputime)
2766
{
2767
	u64 *cpustat = kcpustat_this_cpu->cpustat;
2768

2769
	cpustat[CPUTIME_STEAL] += (__force u64) cputime;
2770 2771
}

L
Linus Torvalds 已提交
2772
/*
2773 2774
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
2775
 */
2776
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
2777
{
2778
	u64 *cpustat = kcpustat_this_cpu->cpustat;
2779
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
2780

2781
	if (atomic_read(&rq->nr_iowait) > 0)
2782
		cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
2783
	else
2784
		cpustat[CPUTIME_IDLE] += (__force u64) cputime;
L
Linus Torvalds 已提交
2785 2786
}

G
Glauber Costa 已提交
2787 2788 2789
static __always_inline bool steal_account_process_tick(void)
{
#ifdef CONFIG_PARAVIRT
2790
	if (static_key_false(&paravirt_steal_enabled)) {
G
Glauber Costa 已提交
2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805
		u64 steal, st = 0;

		steal = paravirt_steal_clock(smp_processor_id());
		steal -= this_rq()->prev_steal_time;

		st = steal_ticks(steal);
		this_rq()->prev_steal_time += st * TICK_NSEC;

		account_steal_time(st);
		return st;
	}
#endif
	return false;
}

2806 2807
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
/*
 * Account a tick to a process and cpustat
 * @p: the process that the cpu time gets accounted to
 * @user_tick: is the tick from userspace
 * @rq: the pointer to rq
 *
 * Tick demultiplexing follows the order
 * - pending hardirq update
 * - pending softirq update
 * - user_time
 * - idle_time
 * - system time
 *   - check for guest_time
 *   - else account as system_time
 *
 * Check for hardirq is done both for system and user time as there is
 * no timer going off while we are on hardirq and hence we may never get an
 * opportunity to update it solely in system time.
 * p->stime and friends are only updated on system time and not on irq
 * softirq as those do not count in task exec_runtime any more.
 */
static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
						struct rq *rq)
{
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2834
	u64 *cpustat = kcpustat_this_cpu->cpustat;
2835

G
Glauber Costa 已提交
2836 2837 2838
	if (steal_account_process_tick())
		return;

2839
	if (irqtime_account_hi_update()) {
2840
		cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
2841
	} else if (irqtime_account_si_update()) {
2842
		cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
2843 2844 2845 2846 2847 2848 2849
	} else if (this_cpu_ksoftirqd() == p) {
		/*
		 * ksoftirqd time do not get accounted in cpu_softirq_time.
		 * So, we have to handle it separately here.
		 * Also, p->stime needs to be updated for ksoftirqd.
		 */
		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2850
					CPUTIME_SOFTIRQ);
2851 2852 2853 2854 2855 2856 2857 2858
	} else if (user_tick) {
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
	} else if (p == rq->idle) {
		account_idle_time(cputime_one_jiffy);
	} else if (p->flags & PF_VCPU) { /* System time or guest time */
		account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
	} else {
		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2859
					CPUTIME_SYSTEM);
2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870
	}
}

static void irqtime_account_idle_ticks(int ticks)
{
	int i;
	struct rq *rq = this_rq();

	for (i = 0; i < ticks; i++)
		irqtime_account_process_tick(current, 0, rq);
}
2871
#else /* CONFIG_IRQ_TIME_ACCOUNTING */
2872 2873 2874
static void irqtime_account_idle_ticks(int ticks) {}
static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
						struct rq *rq) {}
2875
#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2876 2877 2878 2879 2880 2881 2882 2883

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
2884
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2885 2886
	struct rq *rq = this_rq();

2887 2888 2889 2890 2891
	if (sched_clock_irqtime) {
		irqtime_account_process_tick(p, user_tick, rq);
		return;
	}

G
Glauber Costa 已提交
2892 2893 2894
	if (steal_account_process_tick())
		return;

2895
	if (user_tick)
2896
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2897
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
2898
		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
2899 2900
				    one_jiffy_scaled);
	else
2901
		account_idle_time(cputime_one_jiffy);
2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
2920 2921 2922 2923 2924 2925

	if (sched_clock_irqtime) {
		irqtime_account_idle_ticks(ticks);
		return;
	}

2926
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
2927 2928
}

2929 2930
#endif

2931 2932 2933 2934
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
2935
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2936
{
2937 2938
	*ut = p->utime;
	*st = p->stime;
2939 2940
}

2941
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2942
{
2943 2944 2945 2946 2947 2948
	struct task_cputime cputime;

	thread_group_cputime(p, &cputime);

	*ut = cputime.utime;
	*st = cputime.stime;
2949 2950
}
#else
2951 2952

#ifndef nsecs_to_cputime
2953
# define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
2954 2955
#endif

2956
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2957
{
2958
	cputime_t rtime, utime = p->utime, total = utime + p->stime;
2959 2960 2961 2962

	/*
	 * Use CFS's precise accounting:
	 */
2963
	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
2964 2965

	if (total) {
2966
		u64 temp = (__force u64) rtime;
2967

2968 2969 2970
		temp *= (__force u64) utime;
		do_div(temp, (__force u32) total);
		utime = (__force cputime_t) temp;
2971 2972
	} else
		utime = rtime;
2973

2974 2975 2976
	/*
	 * Compare with previous values, to keep monotonicity:
	 */
2977
	p->prev_utime = max(p->prev_utime, utime);
2978
	p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
2979

2980 2981
	*ut = p->prev_utime;
	*st = p->prev_stime;
2982 2983
}

2984 2985 2986 2987
/*
 * Must be called with siglock held.
 */
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2988
{
2989 2990 2991
	struct signal_struct *sig = p->signal;
	struct task_cputime cputime;
	cputime_t rtime, utime, total;
2992

2993
	thread_group_cputime(p, &cputime);
2994

2995
	total = cputime.utime + cputime.stime;
2996
	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
2997

2998
	if (total) {
2999
		u64 temp = (__force u64) rtime;
3000

3001 3002 3003
		temp *= (__force u64) cputime.utime;
		do_div(temp, (__force u32) total);
		utime = (__force cputime_t) temp;
3004 3005 3006 3007
	} else
		utime = rtime;

	sig->prev_utime = max(sig->prev_utime, utime);
3008
	sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime);
3009 3010 3011

	*ut = sig->prev_utime;
	*st = sig->prev_stime;
3012 3013 3014
}
#endif

3015 3016 3017 3018 3019 3020 3021 3022
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3023
	struct task_struct *curr = rq->curr;
3024 3025

	sched_clock_tick();
I
Ingo Molnar 已提交
3026

3027
	raw_spin_lock(&rq->lock);
3028
	update_rq_clock(rq);
3029
	update_cpu_load_active(rq);
P
Peter Zijlstra 已提交
3030
	curr->sched_class->task_tick(rq, curr, 0);
3031
	raw_spin_unlock(&rq->lock);
3032

3033
	perf_event_task_tick();
3034

3035
#ifdef CONFIG_SMP
3036
	rq->idle_balance = idle_cpu(cpu);
I
Ingo Molnar 已提交
3037
	trigger_load_balance(rq, cpu);
3038
#endif
L
Linus Torvalds 已提交
3039 3040
}

3041
notrace unsigned long get_parent_ip(unsigned long addr)
3042 3043 3044 3045 3046 3047 3048 3049
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
3050

3051 3052 3053
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

3054
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
3055
{
3056
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3057 3058 3059
	/*
	 * Underflow?
	 */
3060 3061
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
3062
#endif
L
Linus Torvalds 已提交
3063
	preempt_count() += val;
3064
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3065 3066 3067
	/*
	 * Spinlock count overflowing soon?
	 */
3068 3069
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
3070 3071 3072
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3073 3074 3075
}
EXPORT_SYMBOL(add_preempt_count);

3076
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
3077
{
3078
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3079 3080 3081
	/*
	 * Underflow?
	 */
3082
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3083
		return;
L
Linus Torvalds 已提交
3084 3085 3086
	/*
	 * Is the spinlock portion underflowing?
	 */
3087 3088 3089
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
3090
#endif
3091

3092 3093
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3094 3095 3096 3097 3098 3099 3100
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3101
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3102
 */
I
Ingo Molnar 已提交
3103
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3104
{
3105 3106 3107
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
3108 3109
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
3110

I
Ingo Molnar 已提交
3111
	debug_show_held_locks(prev);
3112
	print_modules();
I
Ingo Molnar 已提交
3113 3114
	if (irqs_disabled())
		print_irqtrace_events(prev);
3115
	dump_stack();
I
Ingo Molnar 已提交
3116
}
L
Linus Torvalds 已提交
3117

I
Ingo Molnar 已提交
3118 3119 3120 3121 3122
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3123
	/*
I
Ingo Molnar 已提交
3124
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
3125 3126 3127
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
3128
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
3129
		__schedule_bug(prev);
3130
	rcu_sleep_check();
I
Ingo Molnar 已提交
3131

L
Linus Torvalds 已提交
3132 3133
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3134
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3135 3136
}

P
Peter Zijlstra 已提交
3137
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
3138
{
3139
	if (prev->on_rq || rq->skip_clock_update < 0)
3140
		update_rq_clock(rq);
P
Peter Zijlstra 已提交
3141
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
3142 3143
}

I
Ingo Molnar 已提交
3144 3145 3146 3147
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3148
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
3149
{
3150
	const struct sched_class *class;
I
Ingo Molnar 已提交
3151
	struct task_struct *p;
L
Linus Torvalds 已提交
3152 3153

	/*
I
Ingo Molnar 已提交
3154 3155
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3156
	 */
3157
	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
3158
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3159 3160
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3161 3162
	}

3163
	for_each_class(class) {
3164
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3165 3166 3167
		if (p)
			return p;
	}
3168 3169

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
3170
}
L
Linus Torvalds 已提交
3171

I
Ingo Molnar 已提交
3172
/*
3173
 * __schedule() is the main scheduler function.
I
Ingo Molnar 已提交
3174
 */
3175
static void __sched __schedule(void)
I
Ingo Molnar 已提交
3176 3177
{
	struct task_struct *prev, *next;
3178
	unsigned long *switch_count;
I
Ingo Molnar 已提交
3179
	struct rq *rq;
3180
	int cpu;
I
Ingo Molnar 已提交
3181

3182 3183
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
3184 3185
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
3186
	rcu_note_context_switch(cpu);
I
Ingo Molnar 已提交
3187 3188 3189
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
3190

3191
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
3192
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
3193

3194
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
3195

3196
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
3197
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
3198
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
3199
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
3200
		} else {
3201 3202 3203
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

T
Tejun Heo 已提交
3204
			/*
3205 3206 3207
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
3208 3209 3210 3211 3212 3213 3214 3215 3216
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
		}
I
Ingo Molnar 已提交
3217
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3218 3219
	}

3220
	pre_schedule(rq, prev);
3221

I
Ingo Molnar 已提交
3222
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3223 3224
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
3225
	put_prev_task(rq, prev);
3226
	next = pick_next_task(rq);
3227 3228
	clear_tsk_need_resched(prev);
	rq->skip_clock_update = 0;
L
Linus Torvalds 已提交
3229 3230 3231 3232 3233 3234

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3235
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
3236
		/*
3237 3238 3239 3240
		 * The context switch have flipped the stack from under us
		 * and restored the local variables which were saved when
		 * this task called schedule() in the past. prev == current
		 * is still correct, but it can be moved to another cpu/rq.
P
Peter Zijlstra 已提交
3241 3242 3243
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3244
	} else
3245
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
3246

3247
	post_schedule(rq);
L
Linus Torvalds 已提交
3248

3249
	sched_preempt_enable_no_resched();
3250
	if (need_resched())
L
Linus Torvalds 已提交
3251 3252
		goto need_resched;
}
3253

3254 3255
static inline void sched_submit_work(struct task_struct *tsk)
{
3256
	if (!tsk->state || tsk_is_pi_blocked(tsk))
3257 3258 3259 3260 3261 3262 3263 3264 3265
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

S
Simon Kirby 已提交
3266
asmlinkage void __sched schedule(void)
3267
{
3268 3269 3270
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
3271 3272
	__schedule();
}
L
Linus Torvalds 已提交
3273 3274
EXPORT_SYMBOL(schedule);

3275 3276 3277 3278 3279 3280 3281
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
3282
	sched_preempt_enable_no_resched();
3283 3284 3285 3286
	schedule();
	preempt_disable();
}

3287
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3288

3289 3290 3291
static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
{
	if (lock->owner != owner)
3292
		return false;
3293 3294

	/*
3295 3296 3297 3298
	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
	 * lock->owner still matches owner, if that fails, owner might
	 * point to free()d memory, if it still matches, the rcu_read_lock()
	 * ensures the memory stays valid.
3299
	 */
3300
	barrier();
3301

3302
	return owner->on_cpu;
3303
}
3304

3305 3306 3307 3308 3309 3310 3311 3312
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
{
	if (!sched_feat(OWNER_SPIN))
		return 0;
3313

3314
	rcu_read_lock();
3315 3316
	while (owner_running(lock, owner)) {
		if (need_resched())
3317
			break;
3318

3319
		arch_mutex_cpu_relax();
3320
	}
3321
	rcu_read_unlock();
3322

3323
	/*
3324 3325 3326
	 * We break out the loop above on need_resched() and when the
	 * owner changed, which is a sign for heavy contention. Return
	 * success only when lock->owner is NULL.
3327
	 */
3328
	return lock->owner == NULL;
3329 3330 3331
}
#endif

L
Linus Torvalds 已提交
3332 3333
#ifdef CONFIG_PREEMPT
/*
3334
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3335
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3336 3337
 * occur there and call schedule directly.
 */
3338
asmlinkage void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
3339 3340
{
	struct thread_info *ti = current_thread_info();
3341

L
Linus Torvalds 已提交
3342 3343
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3344
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3345
	 */
N
Nick Piggin 已提交
3346
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3347 3348
		return;

3349
	do {
3350
		add_preempt_count_notrace(PREEMPT_ACTIVE);
3351
		__schedule();
3352
		sub_preempt_count_notrace(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3353

3354 3355 3356 3357 3358
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3359
	} while (need_resched());
L
Linus Torvalds 已提交
3360 3361 3362 3363
}
EXPORT_SYMBOL(preempt_schedule);

/*
3364
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3365 3366 3367 3368 3369 3370 3371
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
3372

3373
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3374 3375
	BUG_ON(ti->preempt_count || !irqs_disabled());

3376 3377 3378
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
3379
		__schedule();
3380 3381
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3382

3383 3384 3385 3386 3387
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3388
	} while (need_resched());
L
Linus Torvalds 已提交
3389 3390 3391 3392
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
3393
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3394
			  void *key)
L
Linus Torvalds 已提交
3395
{
P
Peter Zijlstra 已提交
3396
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3397 3398 3399 3400
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
3401 3402
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
3403 3404 3405
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
3406
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
3407 3408
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
3409
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
3410
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
3411
{
3412
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3413

3414
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3415 3416
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
3417
		if (curr->func(curr, mode, wake_flags, key) &&
3418
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3419 3420 3421 3422 3423 3424 3425 3426 3427
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3428
 * @key: is directly passed to the wakeup function
3429 3430 3431
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3432
 */
3433
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3434
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
3447
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
L
Linus Torvalds 已提交
3448
{
3449
	__wake_up_common(q, mode, nr, 0, NULL);
L
Linus Torvalds 已提交
3450
}
3451
EXPORT_SYMBOL_GPL(__wake_up_locked);
L
Linus Torvalds 已提交
3452

3453 3454 3455 3456
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}
3457
EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3458

L
Linus Torvalds 已提交
3459
/**
3460
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3461 3462 3463
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3464
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
3465 3466 3467 3468 3469 3470 3471
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
3472 3473 3474
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3475
 */
3476 3477
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3478 3479
{
	unsigned long flags;
P
Peter Zijlstra 已提交
3480
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
3481 3482 3483 3484 3485

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
3486
		wake_flags = 0;
L
Linus Torvalds 已提交
3487 3488

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
3489
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
3490 3491
	spin_unlock_irqrestore(&q->lock, flags);
}
3492 3493 3494 3495 3496 3497 3498 3499 3500
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
3501 3502
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

3503 3504 3505 3506 3507 3508 3509 3510
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
3511 3512 3513
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3514
 */
3515
void complete(struct completion *x)
L
Linus Torvalds 已提交
3516 3517 3518 3519 3520
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
3521
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
3522 3523 3524 3525
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

3526 3527 3528 3529 3530
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
3531 3532 3533
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3534
 */
3535
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
3536 3537 3538 3539 3540
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
3541
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
3542 3543 3544 3545
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

3546 3547
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3548 3549 3550 3551
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

C
Changli Gao 已提交
3552
		__add_wait_queue_tail_exclusive(&x->wait, &wait);
L
Linus Torvalds 已提交
3553
		do {
3554
			if (signal_pending_state(state, current)) {
3555 3556
				timeout = -ERESTARTSYS;
				break;
3557 3558
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
3559 3560 3561
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
3562
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
3563
		__remove_wait_queue(&x->wait, &wait);
3564 3565
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
3566 3567
	}
	x->done--;
3568
	return timeout ?: 1;
L
Linus Torvalds 已提交
3569 3570
}

3571 3572
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3573 3574 3575 3576
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
3577
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
3578
	spin_unlock_irq(&x->wait.lock);
3579 3580
	return timeout;
}
L
Linus Torvalds 已提交
3581

3582 3583 3584 3585 3586 3587 3588 3589 3590 3591
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
3592
void __sched wait_for_completion(struct completion *x)
3593 3594
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3595
}
3596
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
3597

3598 3599 3600 3601 3602 3603 3604 3605
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
3606 3607 3608
 *
 * The return value is 0 if timed out, and positive (at least 1, or number of
 * jiffies left till timeout) if completed.
3609
 */
3610
unsigned long __sched
3611
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
3612
{
3613
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3614
}
3615
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
3616

3617 3618 3619 3620 3621 3622
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
3623 3624
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3625
 */
3626
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
3627
{
3628 3629 3630 3631
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
3632
}
3633
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
3634

3635 3636 3637 3638 3639 3640 3641
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3642 3643 3644
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
 * positive (at least 1, or number of jiffies left till timeout) if completed.
3645
 */
3646
long __sched
3647 3648
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
3649
{
3650
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
3651
}
3652
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
3653

3654 3655 3656 3657 3658 3659
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
3660 3661
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3662
 */
M
Matthew Wilcox 已提交
3663 3664 3665 3666 3667 3668 3669 3670 3671
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

3672 3673 3674 3675 3676 3677 3678 3679
/**
 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be
 * signaled or for a specified timeout to expire. It can be
 * interrupted by a kill signal. The timeout is in jiffies.
3680 3681 3682
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
 * positive (at least 1, or number of jiffies left till timeout) if completed.
3683
 */
3684
long __sched
3685 3686 3687 3688 3689 3690 3691
wait_for_completion_killable_timeout(struct completion *x,
				     unsigned long timeout)
{
	return wait_for_common(x, timeout, TASK_KILLABLE);
}
EXPORT_SYMBOL(wait_for_completion_killable_timeout);

3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
3706
	unsigned long flags;
3707 3708
	int ret = 1;

3709
	spin_lock_irqsave(&x->wait.lock, flags);
3710 3711 3712 3713
	if (!x->done)
		ret = 0;
	else
		x->done--;
3714
	spin_unlock_irqrestore(&x->wait.lock, flags);
3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
3729
	unsigned long flags;
3730 3731
	int ret = 1;

3732
	spin_lock_irqsave(&x->wait.lock, flags);
3733 3734
	if (!x->done)
		ret = 0;
3735
	spin_unlock_irqrestore(&x->wait.lock, flags);
3736 3737 3738 3739
	return ret;
}
EXPORT_SYMBOL(completion_done);

3740 3741
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
3742
{
I
Ingo Molnar 已提交
3743 3744 3745 3746
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3747

3748
	__set_current_state(state);
L
Linus Torvalds 已提交
3749

3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3764 3765 3766
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3767
long __sched
I
Ingo Molnar 已提交
3768
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3769
{
3770
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3771 3772 3773
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
3774
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3775
{
3776
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3777 3778 3779
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
3780
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3781
{
3782
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3783 3784 3785
}
EXPORT_SYMBOL(sleep_on_timeout);

3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
3798
void rt_mutex_setprio(struct task_struct *p, int prio)
3799
{
3800
	int oldprio, on_rq, running;
3801
	struct rq *rq;
3802
	const struct sched_class *prev_class;
3803 3804 3805

	BUG_ON(prio < 0 || prio > MAX_PRIO);

3806
	rq = __task_rq_lock(p);
3807

3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

3826
	trace_sched_pi_setprio(p, prio);
3827
	oldprio = p->prio;
3828
	prev_class = p->sched_class;
P
Peter Zijlstra 已提交
3829
	on_rq = p->on_rq;
3830
	running = task_current(rq, p);
3831
	if (on_rq)
3832
		dequeue_task(rq, p, 0);
3833 3834
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
3835 3836 3837 3838 3839 3840

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

3841 3842
	p->prio = prio;

3843 3844
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
3845
	if (on_rq)
3846
		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3847

P
Peter Zijlstra 已提交
3848
	check_class_changed(rq, p, prev_class, oldprio);
3849
out_unlock:
3850
	__task_rq_unlock(rq);
3851 3852
}
#endif
3853
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3854
{
I
Ingo Molnar 已提交
3855
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
3856
	unsigned long flags;
3857
	struct rq *rq;
L
Linus Torvalds 已提交
3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
3870
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
3871
	 */
3872
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3873 3874 3875
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
P
Peter Zijlstra 已提交
3876
	on_rq = p->on_rq;
3877
	if (on_rq)
3878
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
3879 3880

	p->static_prio = NICE_TO_PRIO(nice);
3881
	set_load_weight(p);
3882 3883 3884
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3885

I
Ingo Molnar 已提交
3886
	if (on_rq) {
3887
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
3888
		/*
3889 3890
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3891
		 */
3892
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
3893 3894 3895
			resched_task(rq->curr);
	}
out_unlock:
3896
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3897 3898 3899
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3900 3901 3902 3903 3904
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3905
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3906
{
3907 3908
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
3909

3910
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3911 3912 3913
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3914 3915 3916 3917 3918 3919 3920 3921 3922
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3923
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3924
{
3925
	long nice, retval;
L
Linus Torvalds 已提交
3926 3927 3928 3929 3930 3931

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
3932 3933
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
3934 3935 3936
	if (increment > 40)
		increment = 40;

3937
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
3938 3939 3940 3941 3942
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
3943 3944 3945
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3964
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3965 3966 3967 3968 3969 3970 3971 3972
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
3973
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
3974 3975 3976
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
3977
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
3978 3979 3980 3981 3982 3983 3984

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3999 4000 4001 4002 4003 4004
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4005
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4006 4007 4008 4009 4010 4011 4012 4013
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4014
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4015
{
4016
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4017 4018 4019
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4020 4021
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4022 4023 4024
{
	p->policy = policy;
	p->rt_priority = prio;
4025 4026 4027
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4028 4029 4030 4031
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
4032
	set_load_weight(p);
L
Linus Torvalds 已提交
4033 4034
}

4035 4036 4037 4038 4039 4040 4041 4042 4043 4044
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
4045 4046 4047 4048 4049
	if (cred->user->user_ns == pcred->user->user_ns)
		match = (cred->euid == pcred->euid ||
			 cred->euid == pcred->uid);
	else
		match = false;
4050 4051 4052 4053
	rcu_read_unlock();
	return match;
}

4054
static int __sched_setscheduler(struct task_struct *p, int policy,
4055
				const struct sched_param *param, bool user)
L
Linus Torvalds 已提交
4056
{
4057
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4058
	unsigned long flags;
4059
	const struct sched_class *prev_class;
4060
	struct rq *rq;
4061
	int reset_on_fork;
L
Linus Torvalds 已提交
4062

4063 4064
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4065 4066
recheck:
	/* double check policy once rq lock held */
4067 4068
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
4069
		policy = oldpolicy = p->policy;
4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
4080 4081
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4082 4083
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4084 4085
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4086
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4087
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4088
		return -EINVAL;
4089
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4090 4091
		return -EINVAL;

4092 4093 4094
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
4095
	if (user && !capable(CAP_SYS_NICE)) {
4096
		if (rt_policy(policy)) {
4097 4098
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
4099 4100 4101 4102 4103 4104 4105 4106 4107 4108

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
4109

I
Ingo Molnar 已提交
4110
		/*
4111 4112
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
4113
		 */
4114 4115 4116 4117
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
			if (!can_nice(p, TASK_NICE(p)))
				return -EPERM;
		}
4118

4119
		/* can't change other user's priorities */
4120
		if (!check_same_owner(p))
4121
			return -EPERM;
4122 4123 4124 4125

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
4126
	}
L
Linus Torvalds 已提交
4127

4128
	if (user) {
4129
		retval = security_task_setscheduler(p);
4130 4131 4132 4133
		if (retval)
			return retval;
	}

4134 4135 4136
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
4137
	 *
L
Lucas De Marchi 已提交
4138
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
4139 4140
	 * runqueue lock must be held.
	 */
4141
	rq = task_rq_lock(p, &flags);
4142

4143 4144 4145 4146
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
4147
		task_rq_unlock(rq, p, &flags);
4148 4149 4150
		return -EINVAL;
	}

4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161
	/*
	 * If not changing anything there's no need to proceed further:
	 */
	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
			param->sched_priority == p->rt_priority))) {

		__task_rq_unlock(rq);
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		return 0;
	}

4162 4163 4164 4165 4166 4167 4168
#ifdef CONFIG_RT_GROUP_SCHED
	if (user) {
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4169 4170
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
4171
			task_rq_unlock(rq, p, &flags);
4172 4173 4174 4175 4176
			return -EPERM;
		}
	}
#endif

L
Linus Torvalds 已提交
4177 4178 4179
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4180
		task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
4181 4182
		goto recheck;
	}
P
Peter Zijlstra 已提交
4183
	on_rq = p->on_rq;
4184
	running = task_current(rq, p);
4185
	if (on_rq)
4186
		dequeue_task(rq, p, 0);
4187 4188
	if (running)
		p->sched_class->put_prev_task(rq, p);
4189

4190 4191
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
4192
	oldprio = p->prio;
4193
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
4194
	__setscheduler(rq, p, policy, param->sched_priority);
4195

4196 4197
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
4198
	if (on_rq)
4199
		enqueue_task(rq, p, 0);
4200

P
Peter Zijlstra 已提交
4201
	check_class_changed(rq, p, prev_class, oldprio);
4202
	task_rq_unlock(rq, p, &flags);
4203

4204 4205
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4206 4207
	return 0;
}
4208 4209 4210 4211 4212 4213 4214 4215 4216 4217

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
4218
		       const struct sched_param *param)
4219 4220 4221
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
4222 4223
EXPORT_SYMBOL_GPL(sched_setscheduler);

4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4236
			       const struct sched_param *param)
4237 4238 4239 4240
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
4241 4242
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4243 4244 4245
{
	struct sched_param lparam;
	struct task_struct *p;
4246
	int retval;
L
Linus Torvalds 已提交
4247 4248 4249 4250 4251

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4252 4253 4254

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4255
	p = find_process_by_pid(pid);
4256 4257 4258
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4259

L
Linus Torvalds 已提交
4260 4261 4262 4263 4264 4265 4266 4267 4268
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
4269 4270
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
4271
{
4272 4273 4274 4275
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4276 4277 4278 4279 4280 4281 4282 4283
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
4284
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4285 4286 4287 4288 4289 4290 4291 4292
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
4293
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4294
{
4295
	struct task_struct *p;
4296
	int retval;
L
Linus Torvalds 已提交
4297 4298

	if (pid < 0)
4299
		return -EINVAL;
L
Linus Torvalds 已提交
4300 4301

	retval = -ESRCH;
4302
	rcu_read_lock();
L
Linus Torvalds 已提交
4303 4304 4305 4306
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4307 4308
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4309
	}
4310
	rcu_read_unlock();
L
Linus Torvalds 已提交
4311 4312 4313 4314
	return retval;
}

/**
4315
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4316 4317 4318
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
4319
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4320 4321
{
	struct sched_param lp;
4322
	struct task_struct *p;
4323
	int retval;
L
Linus Torvalds 已提交
4324 4325

	if (!param || pid < 0)
4326
		return -EINVAL;
L
Linus Torvalds 已提交
4327

4328
	rcu_read_lock();
L
Linus Torvalds 已提交
4329 4330 4331 4332 4333 4334 4335 4336 4337 4338
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
4339
	rcu_read_unlock();
L
Linus Torvalds 已提交
4340 4341 4342 4343 4344 4345 4346 4347 4348

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4349
	rcu_read_unlock();
L
Linus Torvalds 已提交
4350 4351 4352
	return retval;
}

4353
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4354
{
4355
	cpumask_var_t cpus_allowed, new_mask;
4356 4357
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4358

4359
	get_online_cpus();
4360
	rcu_read_lock();
L
Linus Torvalds 已提交
4361 4362 4363

	p = find_process_by_pid(pid);
	if (!p) {
4364
		rcu_read_unlock();
4365
		put_online_cpus();
L
Linus Torvalds 已提交
4366 4367 4368
		return -ESRCH;
	}

4369
	/* Prevent p going away */
L
Linus Torvalds 已提交
4370
	get_task_struct(p);
4371
	rcu_read_unlock();
L
Linus Torvalds 已提交
4372

4373 4374 4375 4376 4377 4378 4379 4380
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4381
	retval = -EPERM;
4382
	if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
L
Linus Torvalds 已提交
4383 4384
		goto out_unlock;

4385
	retval = security_task_setscheduler(p);
4386 4387 4388
	if (retval)
		goto out_unlock;

4389 4390
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Peter Zijlstra 已提交
4391
again:
4392
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
4393

P
Paul Menage 已提交
4394
	if (!retval) {
4395 4396
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4397 4398 4399 4400 4401
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4402
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4403 4404 4405
			goto again;
		}
	}
L
Linus Torvalds 已提交
4406
out_unlock:
4407 4408 4409 4410
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4411
	put_task_struct(p);
4412
	put_online_cpus();
L
Linus Torvalds 已提交
4413 4414 4415 4416
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4417
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4418
{
4419 4420 4421 4422 4423
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4424 4425 4426 4427 4428 4429 4430 4431 4432
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
4433 4434
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4435
{
4436
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4437 4438
	int retval;

4439 4440
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4441

4442 4443 4444 4445 4446
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4447 4448
}

4449
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4450
{
4451
	struct task_struct *p;
4452
	unsigned long flags;
L
Linus Torvalds 已提交
4453 4454
	int retval;

4455
	get_online_cpus();
4456
	rcu_read_lock();
L
Linus Torvalds 已提交
4457 4458 4459 4460 4461 4462

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4463 4464 4465 4466
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4467
	raw_spin_lock_irqsave(&p->pi_lock, flags);
4468
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4469
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4470 4471

out_unlock:
4472
	rcu_read_unlock();
4473
	put_online_cpus();
L
Linus Torvalds 已提交
4474

4475
	return retval;
L
Linus Torvalds 已提交
4476 4477 4478 4479 4480 4481 4482 4483
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
4484 4485
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4486 4487
{
	int ret;
4488
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4489

A
Anton Blanchard 已提交
4490
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4491 4492
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4493 4494
		return -EINVAL;

4495 4496
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4497

4498 4499
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4500
		size_t retlen = min_t(size_t, len, cpumask_size());
4501 4502

		if (copy_to_user(user_mask_ptr, mask, retlen))
4503 4504
			ret = -EFAULT;
		else
4505
			ret = retlen;
4506 4507
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4508

4509
	return ret;
L
Linus Torvalds 已提交
4510 4511 4512 4513 4514
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4515 4516
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4517
 */
4518
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4519
{
4520
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4521

4522
	schedstat_inc(rq, yld_count);
4523
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4524 4525 4526 4527 4528 4529

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4530
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4531
	do_raw_spin_unlock(&rq->lock);
4532
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
4533 4534 4535 4536 4537 4538

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
4539 4540 4541 4542 4543
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
4544
static void __cond_resched(void)
L
Linus Torvalds 已提交
4545
{
4546
	add_preempt_count(PREEMPT_ACTIVE);
4547
	__schedule();
4548
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4549 4550
}

4551
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4552
{
P
Peter Zijlstra 已提交
4553
	if (should_resched()) {
L
Linus Torvalds 已提交
4554 4555 4556 4557 4558
		__cond_resched();
		return 1;
	}
	return 0;
}
4559
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4560 4561

/*
4562
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4563 4564
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4565
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4566 4567 4568
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4569
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4570
{
P
Peter Zijlstra 已提交
4571
	int resched = should_resched();
J
Jan Kara 已提交
4572 4573
	int ret = 0;

4574 4575
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
4576
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4577
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4578
		if (resched)
N
Nick Piggin 已提交
4579 4580 4581
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
4582
		ret = 1;
L
Linus Torvalds 已提交
4583 4584
		spin_lock(lock);
	}
J
Jan Kara 已提交
4585
	return ret;
L
Linus Torvalds 已提交
4586
}
4587
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4588

4589
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4590 4591 4592
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
4593
	if (should_resched()) {
4594
		local_bh_enable();
L
Linus Torvalds 已提交
4595 4596 4597 4598 4599 4600
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
4601
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4602 4603 4604 4605

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
 * 	yield();
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
4624 4625 4626 4627 4628 4629 4630 4631
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

4632 4633 4634 4635
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
4636 4637
 * @p: target task
 * @preempt: whether task preemption is allowed or not
4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
 * Returns true if we indeed boosted the target task.
 */
bool __sched yield_to(struct task_struct *p, bool preempt)
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
	bool yielded = 0;

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
	double_rq_lock(rq, p_rq);
	while (task_rq(p) != p_rq) {
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
		goto out;

	if (curr->sched_class != p->sched_class)
		goto out;

	if (task_running(p_rq, p) || p->state)
		goto out;

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4672
	if (yielded) {
4673
		schedstat_inc(rq, yld_count);
4674 4675 4676 4677 4678 4679
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
			resched_task(p_rq->curr);
4680 4681 4682 4683 4684 4685 4686
	} else {
		/*
		 * We might have set it in task_yield_fair(), but are
		 * not going to schedule(), so don't want to skip
		 * the next update.
		 */
		rq->skip_clock_update = 0;
4687
	}
4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699

out:
	double_rq_unlock(rq, p_rq);
	local_irq_restore(flags);

	if (yielded)
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
4700
/*
I
Ingo Molnar 已提交
4701
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4702 4703 4704 4705
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
4706
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4707

4708
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4709
	atomic_inc(&rq->nr_iowait);
4710
	blk_flush_plug(current);
4711
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4712
	schedule();
4713
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4714
	atomic_dec(&rq->nr_iowait);
4715
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4716 4717 4718 4719 4720
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4721
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4722 4723
	long ret;

4724
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4725
	atomic_inc(&rq->nr_iowait);
4726
	blk_flush_plug(current);
4727
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4728
	ret = schedule_timeout(timeout);
4729
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4730
	atomic_dec(&rq->nr_iowait);
4731
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4732 4733 4734 4735 4736 4737 4738 4739 4740 4741
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
4742
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
4743 4744 4745 4746 4747 4748 4749 4750 4751
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4752
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4753
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
4767
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
4768 4769 4770 4771 4772 4773 4774 4775 4776
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4777
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4778
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
4792
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4793
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
4794
{
4795
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4796
	unsigned int time_slice;
4797 4798
	unsigned long flags;
	struct rq *rq;
4799
	int retval;
L
Linus Torvalds 已提交
4800 4801 4802
	struct timespec t;

	if (pid < 0)
4803
		return -EINVAL;
L
Linus Torvalds 已提交
4804 4805

	retval = -ESRCH;
4806
	rcu_read_lock();
L
Linus Torvalds 已提交
4807 4808 4809 4810 4811 4812 4813 4814
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4815 4816
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
4817
	task_rq_unlock(rq, p, &flags);
D
Dmitry Adamushko 已提交
4818

4819
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
4820
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4821 4822
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4823

L
Linus Torvalds 已提交
4824
out_unlock:
4825
	rcu_read_unlock();
L
Linus Torvalds 已提交
4826 4827 4828
	return retval;
}

4829
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4830

4831
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4832 4833
{
	unsigned long free = 0;
4834
	unsigned state;
L
Linus Torvalds 已提交
4835 4836

	state = p->state ? __ffs(p->state) + 1 : 0;
4837
	printk(KERN_INFO "%-15.15s %c", p->comm,
4838
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4839
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4840
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4841
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4842
	else
P
Peter Zijlstra 已提交
4843
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4844 4845
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4846
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4847
	else
P
Peter Zijlstra 已提交
4848
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4849 4850
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
4851
	free = stack_not_used(p);
L
Linus Torvalds 已提交
4852
#endif
P
Peter Zijlstra 已提交
4853
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4854
		task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
4855
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
4856

4857
	show_stack(p, NULL);
L
Linus Torvalds 已提交
4858 4859
}

I
Ingo Molnar 已提交
4860
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4861
{
4862
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4863

4864
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
4865 4866
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4867
#else
P
Peter Zijlstra 已提交
4868 4869
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4870
#endif
4871
	rcu_read_lock();
L
Linus Torvalds 已提交
4872 4873 4874
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
4875
		 * console might take a lot of time:
L
Linus Torvalds 已提交
4876 4877
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4878
		if (!state_filter || (p->state & state_filter))
4879
			sched_show_task(p);
L
Linus Torvalds 已提交
4880 4881
	} while_each_thread(g, p);

4882 4883
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4884 4885 4886
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
4887
	rcu_read_unlock();
I
Ingo Molnar 已提交
4888 4889 4890
	/*
	 * Only show locks if all tasks are dumped:
	 */
4891
	if (!state_filter)
I
Ingo Molnar 已提交
4892
		debug_show_all_locks();
L
Linus Torvalds 已提交
4893 4894
}

I
Ingo Molnar 已提交
4895 4896
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
4897
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4898 4899
}

4900 4901 4902 4903 4904 4905 4906 4907
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4908
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4909
{
4910
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4911 4912
	unsigned long flags;

4913
	raw_spin_lock_irqsave(&rq->lock, flags);
4914

I
Ingo Molnar 已提交
4915
	__sched_fork(idle);
4916
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
4917 4918
	idle->se.exec_start = sched_clock();

4919
	do_set_cpus_allowed(idle, cpumask_of(cpu));
4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
4931
	__set_task_cpu(idle, cpu);
4932
	rcu_read_unlock();
L
Linus Torvalds 已提交
4933 4934

	rq->curr = rq->idle = idle;
P
Peter Zijlstra 已提交
4935 4936
#if defined(CONFIG_SMP)
	idle->on_cpu = 1;
4937
#endif
4938
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
4939 4940

	/* Set the preempt count _outside_ the spinlocks! */
A
Al Viro 已提交
4941
	task_thread_info(idle)->preempt_count = 0;
4942

I
Ingo Molnar 已提交
4943 4944 4945 4946
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
4947
	ftrace_graph_init_idle_task(idle, cpu);
4948 4949 4950
#if defined(CONFIG_SMP)
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
4951 4952
}

L
Linus Torvalds 已提交
4953
#ifdef CONFIG_SMP
4954 4955 4956 4957
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
	if (p->sched_class && p->sched_class->set_cpus_allowed)
		p->sched_class->set_cpus_allowed(p, new_mask);
4958 4959 4960

	cpumask_copy(&p->cpus_allowed, new_mask);
	p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
4961 4962
}

L
Linus Torvalds 已提交
4963 4964 4965
/*
 * This is how migration works:
 *
4966 4967 4968 4969 4970 4971
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
4972
 *    it and puts it into the right queue.
4973 4974
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
4975 4976 4977 4978 4979 4980 4981 4982
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
4983
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
4984 4985
 * call is not atomic; no spinlocks may be held.
 */
4986
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
4987 4988
{
	unsigned long flags;
4989
	struct rq *rq;
4990
	unsigned int dest_cpu;
4991
	int ret = 0;
L
Linus Torvalds 已提交
4992 4993

	rq = task_rq_lock(p, &flags);
4994

4995 4996 4997
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

4998
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
4999 5000 5001 5002
		ret = -EINVAL;
		goto out;
	}

5003
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
5004 5005 5006 5007
		ret = -EINVAL;
		goto out;
	}

5008
	do_set_cpus_allowed(p, new_mask);
5009

L
Linus Torvalds 已提交
5010
	/* Can the task run on the task's current CPU? If so, we're done */
5011
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
5012 5013
		goto out;

5014
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5015
	if (p->on_rq) {
5016
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
5017
		/* Need help from migration thread: drop lock and wait. */
5018
		task_rq_unlock(rq, p, &flags);
5019
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
5020 5021 5022 5023
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
5024
	task_rq_unlock(rq, p, &flags);
5025

L
Linus Torvalds 已提交
5026 5027
	return ret;
}
5028
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
5029 5030

/*
I
Ingo Molnar 已提交
5031
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5032 5033 5034 5035 5036 5037
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5038 5039
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5040
 */
5041
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5042
{
5043
	struct rq *rq_dest, *rq_src;
5044
	int ret = 0;
L
Linus Torvalds 已提交
5045

5046
	if (unlikely(!cpu_active(dest_cpu)))
5047
		return ret;
L
Linus Torvalds 已提交
5048 5049 5050 5051

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

5052
	raw_spin_lock(&p->pi_lock);
L
Linus Torvalds 已提交
5053 5054 5055
	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
5056
		goto done;
L
Linus Torvalds 已提交
5057
	/* Affinity changed (again). */
5058
	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
L
Linus Torvalds 已提交
5059
		goto fail;
L
Linus Torvalds 已提交
5060

5061 5062 5063 5064
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
P
Peter Zijlstra 已提交
5065
	if (p->on_rq) {
5066
		dequeue_task(rq_src, p, 0);
5067
		set_task_cpu(p, dest_cpu);
5068
		enqueue_task(rq_dest, p, 0);
5069
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
5070
	}
L
Linus Torvalds 已提交
5071
done:
5072
	ret = 1;
L
Linus Torvalds 已提交
5073
fail:
L
Linus Torvalds 已提交
5074
	double_rq_unlock(rq_src, rq_dest);
5075
	raw_spin_unlock(&p->pi_lock);
5076
	return ret;
L
Linus Torvalds 已提交
5077 5078 5079
}

/*
5080 5081 5082
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
5083
 */
5084
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
5085
{
5086
	struct migration_arg *arg = data;
5087

5088 5089 5090 5091
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
5092
	local_irq_disable();
5093
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5094
	local_irq_enable();
L
Linus Torvalds 已提交
5095
	return 0;
5096 5097
}

L
Linus Torvalds 已提交
5098
#ifdef CONFIG_HOTPLUG_CPU
5099

5100
/*
5101 5102
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
5103
 */
5104
void idle_task_exit(void)
L
Linus Torvalds 已提交
5105
{
5106
	struct mm_struct *mm = current->active_mm;
5107

5108
	BUG_ON(cpu_online(smp_processor_id()));
5109

5110 5111 5112
	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
L
Linus Torvalds 已提交
5113 5114 5115 5116 5117 5118 5119 5120 5121
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5122
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5123
{
5124
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
L
Linus Torvalds 已提交
5125 5126 5127 5128 5129

	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
}

I
Ingo Molnar 已提交
5130
/*
5131
 * remove the tasks which were accounted by rq from calc_load_tasks.
L
Linus Torvalds 已提交
5132
 */
5133
static void calc_global_load_remove(struct rq *rq)
L
Linus Torvalds 已提交
5134
{
5135 5136
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
	rq->calc_load_active = 0;
L
Linus Torvalds 已提交
5137 5138
}

5139
/*
5140 5141 5142 5143 5144 5145
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
5146
 */
5147
static void migrate_tasks(unsigned int dead_cpu)
L
Linus Torvalds 已提交
5148
{
5149
	struct rq *rq = cpu_rq(dead_cpu);
5150 5151
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
5152 5153

	/*
5154 5155 5156 5157 5158 5159 5160
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
5161
	 */
5162
	rq->stop = NULL;
5163

5164 5165 5166
	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);

I
Ingo Molnar 已提交
5167
	for ( ; ; ) {
5168 5169 5170 5171 5172
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
5173
			break;
5174

5175
		next = pick_next_task(rq);
5176
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
5177
		next->sched_class->put_prev_task(rq, next);
5178

5179 5180 5181 5182 5183 5184 5185
		/* Find suitable destination for @next, with force if needed. */
		dest_cpu = select_fallback_rq(dead_cpu, next);
		raw_spin_unlock(&rq->lock);

		__migrate_task(next, dead_cpu, dest_cpu);

		raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
5186
	}
5187

5188
	rq->stop = stop;
5189
}
5190

L
Linus Torvalds 已提交
5191 5192
#endif /* CONFIG_HOTPLUG_CPU */

5193 5194 5195
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5196 5197
	{
		.procname	= "sched_domain",
5198
		.mode		= 0555,
5199
	},
5200
	{}
5201 5202 5203
};

static struct ctl_table sd_ctl_root[] = {
5204 5205
	{
		.procname	= "kernel",
5206
		.mode		= 0555,
5207 5208
		.child		= sd_ctl_dir,
	},
5209
	{}
5210 5211 5212 5213 5214
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5215
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5216 5217 5218 5219

	return entry;
}

5220 5221
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5222
	struct ctl_table *entry;
5223

5224 5225 5226
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5227
	 * will always be set. In the lowest directory the names are
5228 5229 5230
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5231 5232
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5233 5234 5235
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5236 5237 5238 5239 5240

	kfree(*tablep);
	*tablep = NULL;
}

5241
static void
5242
set_table_entry(struct ctl_table *entry,
5243
		const char *procname, void *data, int maxlen,
5244
		umode_t mode, proc_handler *proc_handler)
5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5256
	struct ctl_table *table = sd_alloc_ctl_entry(13);
5257

5258 5259 5260
	if (table == NULL)
		return NULL;

5261
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5262
		sizeof(long), 0644, proc_doulongvec_minmax);
5263
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5264
		sizeof(long), 0644, proc_doulongvec_minmax);
5265
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5266
		sizeof(int), 0644, proc_dointvec_minmax);
5267
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5268
		sizeof(int), 0644, proc_dointvec_minmax);
5269
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5270
		sizeof(int), 0644, proc_dointvec_minmax);
5271
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5272
		sizeof(int), 0644, proc_dointvec_minmax);
5273
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5274
		sizeof(int), 0644, proc_dointvec_minmax);
5275
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5276
		sizeof(int), 0644, proc_dointvec_minmax);
5277
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5278
		sizeof(int), 0644, proc_dointvec_minmax);
5279
	set_table_entry(&table[9], "cache_nice_tries",
5280 5281
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5282
	set_table_entry(&table[10], "flags", &sd->flags,
5283
		sizeof(int), 0644, proc_dointvec_minmax);
5284 5285 5286
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
5287 5288 5289 5290

	return table;
}

5291
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5292 5293 5294 5295 5296 5297 5298 5299 5300
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5301 5302
	if (table == NULL)
		return NULL;
5303 5304 5305 5306 5307

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5308
		entry->mode = 0555;
5309 5310 5311 5312 5313 5314 5315 5316
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5317
static void register_sched_domain_sysctl(void)
5318
{
5319
	int i, cpu_num = num_possible_cpus();
5320 5321 5322
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5323 5324 5325
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5326 5327 5328
	if (entry == NULL)
		return;

5329
	for_each_possible_cpu(i) {
5330 5331
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5332
		entry->mode = 0555;
5333
		entry->child = sd_alloc_ctl_cpu_table(i);
5334
		entry++;
5335
	}
5336 5337

	WARN_ON(sd_sysctl_header);
5338 5339
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5340

5341
/* may be called multiple times per register */
5342 5343
static void unregister_sched_domain_sysctl(void)
{
5344 5345
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5346
	sd_sysctl_header = NULL;
5347 5348
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5349
}
5350
#else
5351 5352 5353 5354
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5355 5356 5357 5358
{
}
#endif

5359 5360 5361 5362 5363
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5364
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5384
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5385 5386 5387 5388
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5389 5390 5391 5392
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5393 5394
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5395
{
5396
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5397
	unsigned long flags;
5398
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5399

5400
	switch (action & ~CPU_TASKS_FROZEN) {
5401

L
Linus Torvalds 已提交
5402
	case CPU_UP_PREPARE:
5403
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5404
		break;
5405

L
Linus Torvalds 已提交
5406
	case CPU_ONLINE:
5407
		/* Update our root-domain */
5408
		raw_spin_lock_irqsave(&rq->lock, flags);
5409
		if (rq->rd) {
5410
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5411 5412

			set_rq_online(rq);
5413
		}
5414
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5415
		break;
5416

L
Linus Torvalds 已提交
5417
#ifdef CONFIG_HOTPLUG_CPU
5418
	case CPU_DYING:
5419
		sched_ttwu_pending();
G
Gregory Haskins 已提交
5420
		/* Update our root-domain */
5421
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5422
		if (rq->rd) {
5423
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5424
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5425
		}
5426 5427
		migrate_tasks(cpu);
		BUG_ON(rq->nr_running != 1); /* the migration thread */
5428
		raw_spin_unlock_irqrestore(&rq->lock, flags);
5429 5430 5431

		migrate_nr_uninterruptible(rq);
		calc_global_load_remove(rq);
G
Gregory Haskins 已提交
5432
		break;
L
Linus Torvalds 已提交
5433 5434
#endif
	}
5435 5436 5437

	update_max_interval();

L
Linus Torvalds 已提交
5438 5439 5440
	return NOTIFY_OK;
}

5441 5442 5443
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5444
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5445
 */
5446
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5447
	.notifier_call = migration_call,
5448
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
5449 5450
};

5451 5452 5453 5454
static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
5455
	case CPU_STARTING:
5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		set_cpu_active((long)hcpu, false);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

5476
static int __init migration_init(void)
L
Linus Torvalds 已提交
5477 5478
{
	void *cpu = (void *)(long)smp_processor_id();
5479
	int err;
5480

5481
	/* Initialize migration for the boot CPU */
5482 5483
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5484 5485
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5486

5487 5488 5489 5490
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

5491
	return 0;
L
Linus Torvalds 已提交
5492
}
5493
early_initcall(migration_init);
L
Linus Torvalds 已提交
5494 5495 5496
#endif

#ifdef CONFIG_SMP
5497

5498 5499
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

5500
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5501

5502 5503 5504 5505 5506 5507 5508 5509 5510 5511
static __read_mostly int sched_domain_debug_enabled;

static int __init sched_domain_debug_setup(char *str)
{
	sched_domain_debug_enabled = 1;

	return 0;
}
early_param("sched_debug", sched_domain_debug_setup);

5512
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5513
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5514
{
I
Ingo Molnar 已提交
5515
	struct sched_group *group = sd->groups;
5516
	char str[256];
L
Linus Torvalds 已提交
5517

R
Rusty Russell 已提交
5518
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5519
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5520 5521 5522 5523

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5524
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5525
		if (sd->parent)
P
Peter Zijlstra 已提交
5526 5527
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5528
		return -1;
N
Nick Piggin 已提交
5529 5530
	}

P
Peter Zijlstra 已提交
5531
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
5532

5533
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5534 5535
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5536
	}
5537
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5538 5539
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5540
	}
L
Linus Torvalds 已提交
5541

I
Ingo Molnar 已提交
5542
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5543
	do {
I
Ingo Molnar 已提交
5544
		if (!group) {
P
Peter Zijlstra 已提交
5545 5546
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5547 5548 5549
			break;
		}

5550
		if (!group->sgp->power) {
P
Peter Zijlstra 已提交
5551 5552 5553
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
5554 5555
			break;
		}
L
Linus Torvalds 已提交
5556

5557
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5558 5559
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
5560 5561
			break;
		}
L
Linus Torvalds 已提交
5562

5563 5564
		if (!(sd->flags & SD_OVERLAP) &&
		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5565 5566
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
5567 5568
			break;
		}
L
Linus Torvalds 已提交
5569

5570
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
5571

R
Rusty Russell 已提交
5572
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5573

P
Peter Zijlstra 已提交
5574
		printk(KERN_CONT " %s", str);
5575
		if (group->sgp->power != SCHED_POWER_SCALE) {
P
Peter Zijlstra 已提交
5576
			printk(KERN_CONT " (cpu_power = %d)",
5577
				group->sgp->power);
5578
		}
L
Linus Torvalds 已提交
5579

I
Ingo Molnar 已提交
5580 5581
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
5582
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5583

5584
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
5585
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5586

5587 5588
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
5589 5590
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
5591 5592
	return 0;
}
L
Linus Torvalds 已提交
5593

I
Ingo Molnar 已提交
5594 5595 5596
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5597

5598 5599 5600
	if (!sched_domain_debug_enabled)
		return;

I
Ingo Molnar 已提交
5601 5602 5603 5604
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5605

I
Ingo Molnar 已提交
5606 5607 5608
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
5609
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
I
Ingo Molnar 已提交
5610
			break;
L
Linus Torvalds 已提交
5611 5612
		level++;
		sd = sd->parent;
5613
		if (!sd)
I
Ingo Molnar 已提交
5614 5615
			break;
	}
L
Linus Torvalds 已提交
5616
}
5617
#else /* !CONFIG_SCHED_DEBUG */
5618
# define sched_domain_debug(sd, cpu) do { } while (0)
5619
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
5620

5621
static int sd_degenerate(struct sched_domain *sd)
5622
{
5623
	if (cpumask_weight(sched_domain_span(sd)) == 1)
5624 5625 5626 5627 5628 5629
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5630 5631 5632
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5633 5634 5635 5636 5637
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
5638
	if (sd->flags & (SD_WAKE_AFFINE))
5639 5640 5641 5642 5643
		return 0;

	return 1;
}

5644 5645
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5646 5647 5648 5649 5650 5651
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

5652
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5653 5654 5655 5656 5657 5658 5659
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5660 5661 5662
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5663 5664
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
5665 5666 5667 5668 5669 5670 5671
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

5672
static void free_rootdomain(struct rcu_head *rcu)
5673
{
5674
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5675

5676
	cpupri_cleanup(&rd->cpupri);
5677 5678 5679 5680 5681 5682
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
5683 5684
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
5685
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
5686 5687
	unsigned long flags;

5688
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5689 5690

	if (rq->rd) {
I
Ingo Molnar 已提交
5691
		old_rd = rq->rd;
G
Gregory Haskins 已提交
5692

5693
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5694
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5695

5696
		cpumask_clear_cpu(rq->cpu, old_rd->span);
5697

I
Ingo Molnar 已提交
5698 5699 5700 5701 5702 5703 5704
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
5705 5706 5707 5708 5709
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

5710
	cpumask_set_cpu(rq->cpu, rd->span);
5711
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5712
		set_rq_online(rq);
G
Gregory Haskins 已提交
5713

5714
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
5715 5716

	if (old_rd)
5717
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
5718 5719
}

5720
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
5721 5722 5723
{
	memset(rd, 0, sizeof(*rd));

5724
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5725
		goto out;
5726
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5727
		goto free_span;
5728
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5729
		goto free_online;
5730

5731
	if (cpupri_init(&rd->cpupri) != 0)
5732
		goto free_rto_mask;
5733
	return 0;
5734

5735 5736
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
5737 5738 5739 5740
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
5741
out:
5742
	return -ENOMEM;
G
Gregory Haskins 已提交
5743 5744
}

5745 5746 5747 5748 5749 5750
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
struct root_domain def_root_domain;

G
Gregory Haskins 已提交
5751 5752
static void init_defrootdomain(void)
{
5753
	init_rootdomain(&def_root_domain);
5754

G
Gregory Haskins 已提交
5755 5756 5757
	atomic_set(&def_root_domain.refcount, 1);
}

5758
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
5759 5760 5761 5762 5763 5764 5765
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

5766
	if (init_rootdomain(rd) != 0) {
5767 5768 5769
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
5770 5771 5772 5773

	return rd;
}

5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792
static void free_sched_groups(struct sched_group *sg, int free_sgp)
{
	struct sched_group *tmp, *first;

	if (!sg)
		return;

	first = sg;
	do {
		tmp = sg->next;

		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
			kfree(sg->sgp);

		kfree(sg);
		sg = tmp;
	} while (sg != first);
}

5793 5794 5795
static void free_sched_domain(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5796 5797 5798 5799 5800 5801 5802 5803

	/*
	 * If its an overlapping domain it has private groups, iterate and
	 * nuke them all.
	 */
	if (sd->flags & SD_OVERLAP) {
		free_sched_groups(sd->groups, 1);
	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5804
		kfree(sd->groups->sgp);
5805
		kfree(sd->groups);
5806
	}
5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820
	kfree(sd);
}

static void destroy_sched_domain(struct sched_domain *sd, int cpu)
{
	call_rcu(&sd->rcu, free_sched_domain);
}

static void destroy_sched_domains(struct sched_domain *sd, int cpu)
{
	for (; sd; sd = sd->parent)
		destroy_sched_domain(sd, cpu);
}

5821 5822 5823 5824 5825 5826 5827
/*
 * Keep a special pointer to the highest sched_domain that has
 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 * allows us to avoid some pointer chasing select_idle_sibling().
 *
 * Also keep a unique ID per domain (we use the first cpu number in
 * the cpumask of the domain), this allows us to quickly tell if
5828
 * two cpus are in the same cache domain, see cpus_share_cache().
5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845
 */
DEFINE_PER_CPU(struct sched_domain *, sd_llc);
DEFINE_PER_CPU(int, sd_llc_id);

static void update_top_cache_domain(int cpu)
{
	struct sched_domain *sd;
	int id = cpu;

	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
	if (sd)
		id = cpumask_first(sched_domain_span(sd));

	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
	per_cpu(sd_llc_id, cpu) = id;
}

L
Linus Torvalds 已提交
5846
/*
I
Ingo Molnar 已提交
5847
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
5848 5849
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
5850 5851
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
5852
{
5853
	struct rq *rq = cpu_rq(cpu);
5854 5855 5856
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
5857
	for (tmp = sd; tmp; ) {
5858 5859 5860
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5861

5862
		if (sd_parent_degenerate(tmp, parent)) {
5863
			tmp->parent = parent->parent;
5864 5865
			if (parent->parent)
				parent->parent->child = tmp;
5866
			destroy_sched_domain(parent, cpu);
5867 5868
		} else
			tmp = tmp->parent;
5869 5870
	}

5871
	if (sd && sd_degenerate(sd)) {
5872
		tmp = sd;
5873
		sd = sd->parent;
5874
		destroy_sched_domain(tmp, cpu);
5875 5876 5877
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5878

5879
	sched_domain_debug(sd, cpu);
L
Linus Torvalds 已提交
5880

G
Gregory Haskins 已提交
5881
	rq_attach_root(rq, rd);
5882
	tmp = rq->sd;
N
Nick Piggin 已提交
5883
	rcu_assign_pointer(rq->sd, sd);
5884
	destroy_sched_domains(tmp, cpu);
5885 5886

	update_top_cache_domain(cpu);
L
Linus Torvalds 已提交
5887 5888 5889
}

/* cpus with isolated domains */
5890
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
5891 5892 5893 5894

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
5895
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
5896
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
5897 5898 5899
	return 1;
}

I
Ingo Molnar 已提交
5900
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5901

5902 5903 5904 5905 5906
static const struct cpumask *cpu_cpu_mask(int cpu)
{
	return cpumask_of_node(cpu_to_node(cpu));
}

5907
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5908

5909 5910 5911
struct sd_data {
	struct sched_domain **__percpu sd;
	struct sched_group **__percpu sg;
5912
	struct sched_group_power **__percpu sgp;
5913 5914
};

5915
struct s_data {
5916
	struct sched_domain ** __percpu sd;
5917 5918 5919
	struct root_domain	*rd;
};

5920 5921
enum s_alloc {
	sa_rootdomain,
5922
	sa_sd,
5923
	sa_sd_storage,
5924 5925 5926
	sa_none,
};

5927 5928 5929
struct sched_domain_topology_level;

typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5930 5931
typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);

5932 5933
#define SDTL_OVERLAP	0x01

5934
struct sched_domain_topology_level {
5935 5936
	sched_domain_init_f init;
	sched_domain_mask_f mask;
5937
	int		    flags;
5938
	int		    numa_level;
5939
	struct sd_data      data;
5940 5941
};

5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960
static int
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered = sched_domains_tmpmask;
	struct sd_data *sdd = sd->private;
	struct sched_domain *child;
	int i;

	cpumask_clear(covered);

	for_each_cpu(i, span) {
		struct cpumask *sg_span;

		if (cpumask_test_cpu(i, covered))
			continue;

		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5961
				GFP_KERNEL, cpu_to_node(cpu));
5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978

		if (!sg)
			goto fail;

		sg_span = sched_group_cpus(sg);

		child = *per_cpu_ptr(sdd->sd, i);
		if (child->child) {
			child = child->child;
			cpumask_copy(sg_span, sched_domain_span(child));
		} else
			cpumask_set_cpu(i, sg_span);

		cpumask_or(covered, covered, sg_span);

		sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
		atomic_inc(&sg->sgp->ref);
5979
		sg->balance_cpu = -1;
5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000

		if (cpumask_test_cpu(cpu, sg_span))
			groups = sg;

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
		last->next = first;
	}
	sd->groups = groups;

	return 0;

fail:
	free_sched_groups(first, 0);

	return -ENOMEM;
}

6001
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
6002
{
6003 6004
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
6005

6006 6007
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
6008

6009
	if (sg) {
6010
		*sg = *per_cpu_ptr(sdd->sg, cpu);
6011
		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
6012
		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
6013
	}
6014 6015

	return cpu;
6016 6017
}

6018
/*
6019 6020 6021
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
6022 6023
 *
 * Assumes the sched_domain tree is fully constructed
6024
 */
6025 6026
static int
build_sched_groups(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
6027
{
6028 6029 6030
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
6031
	struct cpumask *covered;
6032
	int i;
6033

6034 6035 6036 6037 6038 6039
	get_group(cpu, sdd, &sd->groups);
	atomic_inc(&sd->groups->ref);

	if (cpu != cpumask_first(sched_domain_span(sd)))
		return 0;

6040 6041 6042
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

6043
	cpumask_clear(covered);
6044

6045 6046 6047 6048
	for_each_cpu(i, span) {
		struct sched_group *sg;
		int group = get_group(i, sdd, &sg);
		int j;
6049

6050 6051
		if (cpumask_test_cpu(i, covered))
			continue;
6052

6053
		cpumask_clear(sched_group_cpus(sg));
6054
		sg->sgp->power = 0;
6055
		sg->balance_cpu = -1;
6056

6057 6058 6059
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
6060

6061 6062 6063
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
6064

6065 6066 6067 6068 6069 6070 6071
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
6072 6073

	return 0;
6074
}
6075

6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
6088
	struct sched_group *sg = sd->groups;
6089

6090 6091 6092 6093 6094 6095
	WARN_ON(!sd || !sg);

	do {
		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
		sg = sg->next;
	} while (sg != sd->groups);
6096

6097 6098
	if (cpu != group_first_cpu(sg))
		return;
6099

6100
	update_group_power(sd, cpu);
6101
	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
6102 6103
}

6104 6105 6106
int __weak arch_sd_sibling_asym_packing(void)
{
       return 0*SD_ASYM_PACKING;
6107 6108
}

6109 6110 6111 6112 6113
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

6114 6115 6116 6117 6118 6119
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

6120 6121 6122 6123 6124 6125 6126 6127 6128
#define SD_INIT_FUNC(type)						\
static noinline struct sched_domain *					\
sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
{									\
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
	*sd = SD_##type##_INIT;						\
	SD_INIT_NAME(sd, type);						\
	sd->private = &tl->data;					\
	return sd;							\
6129 6130 6131 6132 6133 6134 6135 6136 6137
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif
6138 6139 6140
#ifdef CONFIG_SCHED_BOOK
 SD_INIT_FUNC(BOOK)
#endif
6141

6142
static int default_relax_domain_level = -1;
6143
int sched_domain_level_max;
6144 6145 6146

static int __init setup_relax_domain_level(char *str)
{
6147 6148 6149
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
6150
	if (val < sched_domain_level_max)
6151 6152
		default_relax_domain_level = val;

6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
6171
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6172 6173
	} else {
		/* turn on idle balance on this domain */
6174
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6175 6176 6177
	}
}

6178 6179 6180
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

6181 6182 6183 6184 6185
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
6186 6187
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
6188 6189
	case sa_sd:
		free_percpu(d->sd); /* fall through */
6190
	case sa_sd_storage:
6191
		__sdt_free(cpu_map); /* fall through */
6192 6193 6194 6195
	case sa_none:
		break;
	}
}
6196

6197 6198 6199
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
6200 6201
	memset(d, 0, sizeof(*d));

6202 6203
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
6204 6205 6206
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
6207
	d->rd = alloc_rootdomain();
6208
	if (!d->rd)
6209
		return sa_sd;
6210 6211
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
6212

6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

6225
	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6226
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6227 6228

	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6229
		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
6230 6231
}

6232 6233
#ifdef CONFIG_SCHED_SMT
static const struct cpumask *cpu_smt_mask(int cpu)
6234
{
6235
	return topology_thread_cpumask(cpu);
6236
}
6237
#endif
6238

6239 6240 6241
/*
 * Topology list, bottom-up.
 */
6242
static struct sched_domain_topology_level default_topology[] = {
6243 6244
#ifdef CONFIG_SCHED_SMT
	{ sd_init_SIBLING, cpu_smt_mask, },
6245
#endif
6246
#ifdef CONFIG_SCHED_MC
6247
	{ sd_init_MC, cpu_coregroup_mask, },
6248
#endif
6249 6250 6251 6252
#ifdef CONFIG_SCHED_BOOK
	{ sd_init_BOOK, cpu_book_mask, },
#endif
	{ sd_init_CPU, cpu_cpu_mask, },
6253 6254 6255 6256 6257
	{ NULL, },
};

static struct sched_domain_topology_level *sched_domain_topology = default_topology;

6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437
#ifdef CONFIG_NUMA

static int sched_domains_numa_levels;
static int sched_domains_numa_scale;
static int *sched_domains_numa_distance;
static struct cpumask ***sched_domains_numa_masks;
static int sched_domains_curr_level;

static inline unsigned long numa_scale(unsigned long x, int level)
{
	return x * sched_domains_numa_distance[level] / sched_domains_numa_scale;
}

static inline int sd_local_flags(int level)
{
	if (sched_domains_numa_distance[level] > REMOTE_DISTANCE)
		return 0;

	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
}

static struct sched_domain *
sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
{
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
	int level = tl->numa_level;
	int sd_weight = cpumask_weight(
			sched_domains_numa_masks[level][cpu_to_node(cpu)]);

	*sd = (struct sched_domain){
		.min_interval		= sd_weight,
		.max_interval		= 2*sd_weight,
		.busy_factor		= 32,
		.imbalance_pct		= 100 + numa_scale(25, level),
		.cache_nice_tries	= 2,
		.busy_idx		= 3,
		.idle_idx		= 2,
		.newidle_idx		= 0,
		.wake_idx		= 0,
		.forkexec_idx		= 0,

		.flags			= 1*SD_LOAD_BALANCE
					| 1*SD_BALANCE_NEWIDLE
					| 0*SD_BALANCE_EXEC
					| 0*SD_BALANCE_FORK
					| 0*SD_BALANCE_WAKE
					| 0*SD_WAKE_AFFINE
					| 0*SD_PREFER_LOCAL
					| 0*SD_SHARE_CPUPOWER
					| 0*SD_POWERSAVINGS_BALANCE
					| 0*SD_SHARE_PKG_RESOURCES
					| 1*SD_SERIALIZE
					| 0*SD_PREFER_SIBLING
					| sd_local_flags(level)
					,
		.last_balance		= jiffies,
		.balance_interval	= sd_weight,
	};
	SD_INIT_NAME(sd, NUMA);
	sd->private = &tl->data;

	/*
	 * Ugly hack to pass state to sd_numa_mask()...
	 */
	sched_domains_curr_level = tl->numa_level;

	return sd;
}

static const struct cpumask *sd_numa_mask(int cpu)
{
	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
}

static void sched_init_numa(void)
{
	int next_distance, curr_distance = node_distance(0, 0);
	struct sched_domain_topology_level *tl;
	int level = 0;
	int i, j, k;

	sched_domains_numa_scale = curr_distance;
	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
	if (!sched_domains_numa_distance)
		return;

	/*
	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
	 * unique distances in the node_distance() table.
	 *
	 * Assumes node_distance(0,j) includes all distances in
	 * node_distance(i,j) in order to avoid cubic time.
	 *
	 * XXX: could be optimized to O(n log n) by using sort()
	 */
	next_distance = curr_distance;
	for (i = 0; i < nr_node_ids; i++) {
		for (j = 0; j < nr_node_ids; j++) {
			int distance = node_distance(0, j);
			if (distance > curr_distance &&
					(distance < next_distance ||
					 next_distance == curr_distance))
				next_distance = distance;
		}
		if (next_distance != curr_distance) {
			sched_domains_numa_distance[level++] = next_distance;
			sched_domains_numa_levels = level;
			curr_distance = next_distance;
		} else break;
	}
	/*
	 * 'level' contains the number of unique distances, excluding the
	 * identity distance node_distance(i,i).
	 *
	 * The sched_domains_nume_distance[] array includes the actual distance
	 * numbers.
	 */

	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
	if (!sched_domains_numa_masks)
		return;

	/*
	 * Now for each level, construct a mask per node which contains all
	 * cpus of nodes that are that many hops away from us.
	 */
	for (i = 0; i < level; i++) {
		sched_domains_numa_masks[i] =
			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
		if (!sched_domains_numa_masks[i])
			return;

		for (j = 0; j < nr_node_ids; j++) {
			struct cpumask *mask = kzalloc_node(cpumask_size(), GFP_KERNEL, j);
			if (!mask)
				return;

			sched_domains_numa_masks[i][j] = mask;

			for (k = 0; k < nr_node_ids; k++) {
				if (node_distance(cpu_to_node(j), k) >
						sched_domains_numa_distance[i])
					continue;

				cpumask_or(mask, mask, cpumask_of_node(k));
			}
		}
	}

	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
	if (!tl)
		return;

	/*
	 * Copy the default topology bits..
	 */
	for (i = 0; default_topology[i].init; i++)
		tl[i] = default_topology[i];

	/*
	 * .. and append 'j' levels of NUMA goodness.
	 */
	for (j = 0; j < level; i++, j++) {
		tl[i] = (struct sched_domain_topology_level){
			.init = sd_numa_init,
			.mask = sd_numa_mask,
			.flags = SDTL_OVERLAP,
			.numa_level = j,
		};
	}

	sched_domain_topology = tl;
}
#else
static inline void sched_init_numa(void)
{
}
#endif /* CONFIG_NUMA */

6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for (tl = sched_domain_topology; tl->init; tl++) {
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

6454 6455 6456 6457
		sdd->sgp = alloc_percpu(struct sched_group_power *);
		if (!sdd->sgp)
			return -ENOMEM;

6458 6459 6460
		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_group *sg;
6461
			struct sched_group_power *sgp;
6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475

		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sg, j) = sg;
6476 6477 6478 6479 6480 6481 6482

			sgp = kzalloc_node(sizeof(struct sched_group_power),
					GFP_KERNEL, cpu_to_node(j));
			if (!sgp)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sgp, j) = sgp;
6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for (tl = sched_domain_topology; tl->init; tl++) {
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510
			struct sched_domain *sd;

			if (sdd->sd) {
				sd = *per_cpu_ptr(sdd->sd, j);
				if (sd && (sd->flags & SD_OVERLAP))
					free_sched_groups(sd->groups, 0);
				kfree(*per_cpu_ptr(sdd->sd, j));
			}

			if (sdd->sg)
				kfree(*per_cpu_ptr(sdd->sg, j));
			if (sdd->sgp)
				kfree(*per_cpu_ptr(sdd->sgp, j));
6511 6512
		}
		free_percpu(sdd->sd);
6513
		sdd->sd = NULL;
6514
		free_percpu(sdd->sg);
6515
		sdd->sg = NULL;
6516
		free_percpu(sdd->sgp);
6517
		sdd->sgp = NULL;
6518 6519 6520
	}
}

6521 6522
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
		struct s_data *d, const struct cpumask *cpu_map,
6523
		struct sched_domain_attr *attr, struct sched_domain *child,
6524 6525
		int cpu)
{
6526
	struct sched_domain *sd = tl->init(tl, cpu);
6527
	if (!sd)
6528
		return child;
6529 6530 6531

	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6532 6533 6534
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6535
		child->parent = sd;
6536
	}
6537
	sd->child = child;
6538 6539 6540 6541

	return sd;
}

6542 6543 6544 6545
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
6546 6547
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
6548 6549
{
	enum s_alloc alloc_state = sa_none;
6550
	struct sched_domain *sd;
6551
	struct s_data d;
6552
	int i, ret = -ENOMEM;
6553

6554 6555 6556
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
6557

6558
	/* Set up domains for cpus specified by the cpu_map. */
6559
	for_each_cpu(i, cpu_map) {
6560 6561
		struct sched_domain_topology_level *tl;

6562
		sd = NULL;
6563
		for (tl = sched_domain_topology; tl->init; tl++) {
6564
			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6565 6566
			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
				sd->flags |= SD_OVERLAP;
6567 6568
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
				break;
6569
		}
6570

6571 6572 6573
		while (sd->child)
			sd = sd->child;

6574
		*per_cpu_ptr(d.sd, i) = sd;
6575 6576 6577 6578 6579 6580
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6581 6582 6583 6584 6585 6586 6587
			if (sd->flags & SD_OVERLAP) {
				if (build_overlap_sched_groups(sd, i))
					goto error;
			} else {
				if (build_sched_groups(sd, i))
					goto error;
			}
6588
		}
6589
	}
6590

L
Linus Torvalds 已提交
6591
	/* Calculate CPU power for physical packages and nodes */
6592 6593 6594
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
6595

6596 6597
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
6598
			init_sched_groups_power(i, sd);
6599
		}
6600
	}
6601

L
Linus Torvalds 已提交
6602
	/* Attach the domains */
6603
	rcu_read_lock();
6604
	for_each_cpu(i, cpu_map) {
6605
		sd = *per_cpu_ptr(d.sd, i);
6606
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
6607
	}
6608
	rcu_read_unlock();
6609

6610
	ret = 0;
6611
error:
6612
	__free_domain_allocs(&d, alloc_state, cpu_map);
6613
	return ret;
L
Linus Torvalds 已提交
6614
}
P
Paul Jackson 已提交
6615

6616
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
6617
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
6618 6619
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
6620 6621 6622

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
6623 6624
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
6625
 */
6626
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
6627

6628 6629 6630 6631 6632 6633
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
6634
{
6635
	return 0;
6636 6637
}

6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

6663
/*
I
Ingo Molnar 已提交
6664
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6665 6666
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6667
 */
6668
static int init_sched_domains(const struct cpumask *cpu_map)
6669
{
6670 6671
	int err;

6672
	arch_update_cpu_topology();
P
Paul Jackson 已提交
6673
	ndoms_cur = 1;
6674
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
6675
	if (!doms_cur)
6676 6677
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6678
	dattr_cur = NULL;
6679
	err = build_sched_domains(doms_cur[0], NULL);
6680
	register_sched_domain_sysctl();
6681 6682

	return err;
6683 6684 6685 6686 6687 6688
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6689
static void detach_destroy_domains(const struct cpumask *cpu_map)
6690 6691 6692
{
	int i;

6693
	rcu_read_lock();
6694
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
6695
		cpu_attach_domain(NULL, &def_root_domain, i);
6696
	rcu_read_unlock();
6697 6698
}

6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
6715 6716
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
6717
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
6718 6719 6720
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
6721
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
6722 6723 6724
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
6725 6726 6727
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
6728 6729 6730 6731 6732 6733
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
6734
 *
6735
 * If doms_new == NULL it will be replaced with cpu_online_mask.
6736 6737
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
6738
 *
P
Paul Jackson 已提交
6739 6740
 * Call with hotplug lock held
 */
6741
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6742
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
6743
{
6744
	int i, j, n;
6745
	int new_topology;
P
Paul Jackson 已提交
6746

6747
	mutex_lock(&sched_domains_mutex);
6748

6749 6750 6751
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

6752 6753 6754
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

6755
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
6756 6757 6758

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
6759
		for (j = 0; j < n && !new_topology; j++) {
6760
			if (cpumask_equal(doms_cur[i], doms_new[j])
6761
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
6762 6763 6764
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
6765
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
6766 6767 6768 6769
match1:
		;
	}

6770 6771
	if (doms_new == NULL) {
		ndoms_cur = 0;
6772
		doms_new = &fallback_doms;
6773
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6774
		WARN_ON_ONCE(dattr_new);
6775 6776
	}

P
Paul Jackson 已提交
6777 6778
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
6779
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6780
			if (cpumask_equal(doms_new[i], doms_cur[j])
6781
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
6782 6783 6784
				goto match2;
		}
		/* no match - add a new doms_new */
6785
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
6786 6787 6788 6789 6790
match2:
		;
	}

	/* Remember the new sched domains */
6791 6792
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
6793
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
6794
	doms_cur = doms_new;
6795
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
6796
	ndoms_cur = ndoms_new;
6797 6798

	register_sched_domain_sysctl();
6799

6800
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
6801 6802
}

6803
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6804
static void reinit_sched_domains(void)
6805
{
6806
	get_online_cpus();
6807 6808 6809 6810

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

6811
	rebuild_sched_domains();
6812
	put_online_cpus();
6813 6814 6815 6816
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
6817
	unsigned int level = 0;
6818

6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
6830 6831 6832
		return -EINVAL;

	if (smt)
6833
		sched_smt_power_savings = level;
6834
	else
6835
		sched_mc_power_savings = level;
6836

6837
	reinit_sched_domains();
6838

6839
	return count;
6840 6841 6842
}

#ifdef CONFIG_SCHED_MC
6843 6844 6845
static ssize_t sched_mc_power_savings_show(struct device *dev,
					   struct device_attribute *attr,
					   char *buf)
6846
{
6847
	return sprintf(buf, "%u\n", sched_mc_power_savings);
6848
}
6849 6850
static ssize_t sched_mc_power_savings_store(struct device *dev,
					    struct device_attribute *attr,
6851
					    const char *buf, size_t count)
6852 6853 6854
{
	return sched_power_savings_store(buf, count, 0);
}
6855 6856 6857
static DEVICE_ATTR(sched_mc_power_savings, 0644,
		   sched_mc_power_savings_show,
		   sched_mc_power_savings_store);
6858 6859 6860
#endif

#ifdef CONFIG_SCHED_SMT
6861 6862 6863
static ssize_t sched_smt_power_savings_show(struct device *dev,
					    struct device_attribute *attr,
					    char *buf)
6864
{
6865
	return sprintf(buf, "%u\n", sched_smt_power_savings);
6866
}
6867 6868
static ssize_t sched_smt_power_savings_store(struct device *dev,
					    struct device_attribute *attr,
6869
					     const char *buf, size_t count)
6870 6871 6872
{
	return sched_power_savings_store(buf, count, 1);
}
6873
static DEVICE_ATTR(sched_smt_power_savings, 0644,
6874
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
6875 6876 6877
		   sched_smt_power_savings_store);
#endif

6878
int __init sched_create_sysfs_power_savings_entries(struct device *dev)
A
Adrian Bunk 已提交
6879 6880 6881 6882 6883
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
6884
		err = device_create_file(dev, &dev_attr_sched_smt_power_savings);
A
Adrian Bunk 已提交
6885 6886 6887
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
6888
		err = device_create_file(dev, &dev_attr_sched_mc_power_savings);
A
Adrian Bunk 已提交
6889 6890 6891
#endif
	return err;
}
6892
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
6893

L
Linus Torvalds 已提交
6894
/*
6895 6896 6897
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
L
Linus Torvalds 已提交
6898
 */
6899 6900
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
6901
{
6902
	switch (action & ~CPU_TASKS_FROZEN) {
6903
	case CPU_ONLINE:
6904
	case CPU_DOWN_FAILED:
6905
		cpuset_update_active_cpus();
6906
		return NOTIFY_OK;
6907 6908 6909 6910
	default:
		return NOTIFY_DONE;
	}
}
6911

6912 6913
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
6914 6915 6916 6917 6918
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		cpuset_update_active_cpus();
		return NOTIFY_OK;
6919 6920 6921 6922 6923
	default:
		return NOTIFY_DONE;
	}
}

L
Linus Torvalds 已提交
6924 6925
void __init sched_init_smp(void)
{
6926 6927 6928
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6929
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6930

6931 6932
	sched_init_numa();

6933
	get_online_cpus();
6934
	mutex_lock(&sched_domains_mutex);
6935
	init_sched_domains(cpu_active_mask);
6936 6937 6938
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6939
	mutex_unlock(&sched_domains_mutex);
6940
	put_online_cpus();
6941

6942 6943
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6944 6945 6946 6947

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

6948
	init_hrtick();
6949 6950

	/* Move init over to a non-isolated CPU */
6951
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6952
		BUG();
I
Ingo Molnar 已提交
6953
	sched_init_granularity();
6954
	free_cpumask_var(non_isolated_cpus);
6955

6956
	init_sched_rt_class();
L
Linus Torvalds 已提交
6957 6958 6959 6960
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6961
	sched_init_granularity();
L
Linus Torvalds 已提交
6962 6963 6964
}
#endif /* CONFIG_SMP */

6965 6966
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
6967 6968 6969 6970 6971 6972 6973
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

6974 6975
#ifdef CONFIG_CGROUP_SCHED
struct task_group root_task_group;
6976
#endif
P
Peter Zijlstra 已提交
6977

6978
DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
P
Peter Zijlstra 已提交
6979

L
Linus Torvalds 已提交
6980 6981
void __init sched_init(void)
{
I
Ingo Molnar 已提交
6982
	int i, j;
6983 6984 6985 6986 6987 6988 6989
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6990
#endif
6991
#ifdef CONFIG_CPUMASK_OFFSTACK
6992
	alloc_size += num_possible_cpus() * cpumask_size();
6993 6994
#endif
	if (alloc_size) {
6995
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6996 6997

#ifdef CONFIG_FAIR_GROUP_SCHED
6998
		root_task_group.se = (struct sched_entity **)ptr;
6999 7000
		ptr += nr_cpu_ids * sizeof(void **);

7001
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7002
		ptr += nr_cpu_ids * sizeof(void **);
7003

7004
#endif /* CONFIG_FAIR_GROUP_SCHED */
7005
#ifdef CONFIG_RT_GROUP_SCHED
7006
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7007 7008
		ptr += nr_cpu_ids * sizeof(void **);

7009
		root_task_group.rt_rq = (struct rt_rq **)ptr;
7010 7011
		ptr += nr_cpu_ids * sizeof(void **);

7012
#endif /* CONFIG_RT_GROUP_SCHED */
7013 7014 7015 7016 7017 7018
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
7019
	}
I
Ingo Molnar 已提交
7020

G
Gregory Haskins 已提交
7021 7022 7023 7024
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7025 7026 7027 7028
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
7029
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7030
			global_rt_period(), global_rt_runtime());
7031
#endif /* CONFIG_RT_GROUP_SCHED */
7032

D
Dhaval Giani 已提交
7033
#ifdef CONFIG_CGROUP_SCHED
7034 7035
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
7036
	INIT_LIST_HEAD(&root_task_group.siblings);
7037
	autogroup_init(&init_task);
7038

D
Dhaval Giani 已提交
7039
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
7040

7041 7042 7043 7044 7045 7046
#ifdef CONFIG_CGROUP_CPUACCT
	root_cpuacct.cpustat = &kernel_cpustat;
	root_cpuacct.cpuusage = alloc_percpu(u64);
	/* Too early, not expected to fail */
	BUG_ON(!root_cpuacct.cpuusage);
#endif
7047
	for_each_possible_cpu(i) {
7048
		struct rq *rq;
L
Linus Torvalds 已提交
7049 7050

		rq = cpu_rq(i);
7051
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
7052
		rq->nr_running = 0;
7053 7054
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
7055
		init_cfs_rq(&rq->cfs);
P
Peter Zijlstra 已提交
7056
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
7057
#ifdef CONFIG_FAIR_GROUP_SCHED
7058
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
7059
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
7060
		/*
7061
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
7062 7063 7064 7065
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
7066
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
7067 7068 7069
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
7070
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
7071 7072 7073
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
7074
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
7075
		 *
7076 7077
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
7078
		 */
7079
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7080
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
7081 7082 7083
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7084
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7085
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7086
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
7087
#endif
L
Linus Torvalds 已提交
7088

I
Ingo Molnar 已提交
7089 7090
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
7091 7092 7093

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
7094
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7095
		rq->sd = NULL;
G
Gregory Haskins 已提交
7096
		rq->rd = NULL;
7097
		rq->cpu_power = SCHED_POWER_SCALE;
7098
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
7099
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7100
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7101
		rq->push_cpu = 0;
7102
		rq->cpu = i;
7103
		rq->online = 0;
7104 7105
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
7106 7107 7108

		INIT_LIST_HEAD(&rq->cfs_tasks);

7109
		rq_attach_root(rq, &def_root_domain);
7110
#ifdef CONFIG_NO_HZ
7111
		rq->nohz_flags = 0;
7112
#endif
L
Linus Torvalds 已提交
7113
#endif
P
Peter Zijlstra 已提交
7114
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7115 7116 7117
		atomic_set(&rq->nr_iowait, 0);
	}

7118
	set_load_weight(&init_task);
7119

7120 7121 7122 7123
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

7124
#ifdef CONFIG_RT_MUTEXES
7125
	plist_head_init(&init_task.pi_waiters);
7126 7127
#endif

L
Linus Torvalds 已提交
7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
7141 7142 7143

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
7144 7145 7146 7147
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
7148

7149
#ifdef CONFIG_SMP
7150
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
R
Rusty Russell 已提交
7151 7152 7153
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7154 7155
#endif
	init_sched_fair_class();
7156

7157
	scheduler_running = 1;
L
Linus Torvalds 已提交
7158 7159
}

7160
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7161 7162
static inline int preempt_count_equals(int preempt_offset)
{
7163
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7164

A
Arnd Bergmann 已提交
7165
	return (nested == preempt_offset);
7166 7167
}

7168
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7169 7170 7171
{
	static unsigned long prev_jiffy;	/* ratelimiting */

7172
	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7173 7174
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
7175 7176 7177 7178 7179
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
7180 7181 7182 7183 7184 7185 7186
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
7187 7188 7189 7190 7191

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
7192 7193 7194 7195 7196
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7197 7198
static void normalize_task(struct rq *rq, struct task_struct *p)
{
P
Peter Zijlstra 已提交
7199 7200
	const struct sched_class *prev_class = p->sched_class;
	int old_prio = p->prio;
7201
	int on_rq;
7202

P
Peter Zijlstra 已提交
7203
	on_rq = p->on_rq;
7204
	if (on_rq)
7205
		dequeue_task(rq, p, 0);
7206 7207
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
7208
		enqueue_task(rq, p, 0);
7209 7210
		resched_task(rq->curr);
	}
P
Peter Zijlstra 已提交
7211 7212

	check_class_changed(rq, p, prev_class, old_prio);
7213 7214
}

L
Linus Torvalds 已提交
7215 7216
void normalize_rt_tasks(void)
{
7217
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7218
	unsigned long flags;
7219
	struct rq *rq;
L
Linus Torvalds 已提交
7220

7221
	read_lock_irqsave(&tasklist_lock, flags);
7222
	do_each_thread(g, p) {
7223 7224 7225 7226 7227 7228
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
7229 7230
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
7231 7232 7233
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
7234
#endif
I
Ingo Molnar 已提交
7235 7236 7237 7238 7239 7240 7241 7242

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7243
			continue;
I
Ingo Molnar 已提交
7244
		}
L
Linus Torvalds 已提交
7245

7246
		raw_spin_lock(&p->pi_lock);
7247
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7248

7249
		normalize_task(rq, p);
7250

7251
		__task_rq_unlock(rq);
7252
		raw_spin_unlock(&p->pi_lock);
7253 7254
	} while_each_thread(g, p);

7255
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7256 7257 7258
}

#endif /* CONFIG_MAGIC_SYSRQ */
7259

7260
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7261
/*
7262
 * These functions are only useful for the IA64 MCA handling, or kdb.
7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7277
struct task_struct *curr_task(int cpu)
7278 7279 7280 7281
{
	return cpu_curr(cpu);
}

7282 7283 7284
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
7285 7286 7287 7288 7289 7290
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7291 7292
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7293 7294 7295 7296 7297 7298 7299
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7300
void set_curr_task(int cpu, struct task_struct *p)
7301 7302 7303 7304 7305
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7306

D
Dhaval Giani 已提交
7307
#ifdef CONFIG_CGROUP_SCHED
7308 7309 7310
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

7311 7312 7313 7314
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
7315
	autogroup_free(tg);
7316 7317 7318 7319
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
7320
struct task_group *sched_create_group(struct task_group *parent)
7321 7322 7323 7324 7325 7326 7327 7328
{
	struct task_group *tg;
	unsigned long flags;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

7329
	if (!alloc_fair_sched_group(tg, parent))
7330 7331
		goto err;

7332
	if (!alloc_rt_sched_group(tg, parent))
7333 7334
		goto err;

7335
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7336
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
7337 7338 7339 7340 7341

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
7342
	list_add_rcu(&tg->siblings, &parent->children);
7343
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7344

7345
	return tg;
S
Srivatsa Vaddagiri 已提交
7346 7347

err:
P
Peter Zijlstra 已提交
7348
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
7349 7350 7351
	return ERR_PTR(-ENOMEM);
}

7352
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
7353
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7354 7355
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
7356
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
7357 7358
}

7359
/* Destroy runqueue etc associated with a task group */
7360
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7361
{
7362
	unsigned long flags;
7363
	int i;
S
Srivatsa Vaddagiri 已提交
7364

7365 7366
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
7367
		unregister_fair_sched_group(tg, i);
7368 7369

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7370
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
7371
	list_del_rcu(&tg->siblings);
7372
	spin_unlock_irqrestore(&task_group_lock, flags);
7373 7374

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
7375
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
7376 7377
}

7378
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7379 7380 7381
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7382 7383
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7384 7385 7386 7387 7388 7389 7390
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

7391
	running = task_current(rq, tsk);
P
Peter Zijlstra 已提交
7392
	on_rq = tsk->on_rq;
S
Srivatsa Vaddagiri 已提交
7393

7394
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
7395
		dequeue_task(rq, tsk, 0);
7396 7397
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7398

P
Peter Zijlstra 已提交
7399
#ifdef CONFIG_FAIR_GROUP_SCHED
7400 7401 7402
	if (tsk->sched_class->task_move_group)
		tsk->sched_class->task_move_group(tsk, on_rq);
	else
P
Peter Zijlstra 已提交
7403
#endif
7404
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
7405

7406 7407 7408
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
7409
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
7410

7411
	task_rq_unlock(rq, tsk, &flags);
S
Srivatsa Vaddagiri 已提交
7412
}
D
Dhaval Giani 已提交
7413
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
7414

7415
#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
P
Peter Zijlstra 已提交
7416 7417 7418
static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7419
		return 1ULL << 20;
P
Peter Zijlstra 已提交
7420

P
Peter Zijlstra 已提交
7421
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
7422
}
7423 7424 7425 7426 7427 7428 7429
#endif

#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
P
Peter Zijlstra 已提交
7430

P
Peter Zijlstra 已提交
7431 7432
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
7433
{
P
Peter Zijlstra 已提交
7434
	struct task_struct *g, *p;
7435

P
Peter Zijlstra 已提交
7436
	do_each_thread(g, p) {
7437
		if (rt_task(p) && task_rq(p)->rt.tg == tg)
P
Peter Zijlstra 已提交
7438 7439
			return 1;
	} while_each_thread(g, p);
7440

P
Peter Zijlstra 已提交
7441 7442
	return 0;
}
7443

P
Peter Zijlstra 已提交
7444 7445 7446 7447 7448
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
7449

7450
static int tg_rt_schedulable(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
7451 7452 7453 7454 7455
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
7456

P
Peter Zijlstra 已提交
7457 7458
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
7459

P
Peter Zijlstra 已提交
7460 7461 7462
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
7463 7464
	}

7465 7466 7467 7468 7469
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
7470

7471 7472 7473
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
7474 7475
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
7476

P
Peter Zijlstra 已提交
7477
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7478

7479 7480 7481 7482 7483
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
7484

7485 7486 7487
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
7488 7489 7490
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7491

P
Peter Zijlstra 已提交
7492 7493 7494 7495
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
7496

P
Peter Zijlstra 已提交
7497
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7498
	}
P
Peter Zijlstra 已提交
7499

P
Peter Zijlstra 已提交
7500 7501 7502 7503
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
7504 7505
}

P
Peter Zijlstra 已提交
7506
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7507
{
7508 7509
	int ret;

P
Peter Zijlstra 已提交
7510 7511 7512 7513 7514 7515
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

7516 7517 7518 7519 7520
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7521 7522
}

7523
static int tg_set_rt_bandwidth(struct task_group *tg,
7524
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
7525
{
P
Peter Zijlstra 已提交
7526
	int i, err = 0;
P
Peter Zijlstra 已提交
7527 7528

	mutex_lock(&rt_constraints_mutex);
7529
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
7530 7531
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
7532
		goto unlock;
P
Peter Zijlstra 已提交
7533

7534
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7535 7536
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
7537 7538 7539 7540

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

7541
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7542
		rt_rq->rt_runtime = rt_runtime;
7543
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7544
	}
7545
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
7546
unlock:
7547
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
7548 7549 7550
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
7551 7552
}

7553 7554 7555 7556 7557 7558 7559 7560 7561
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

7562
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7563 7564
}

P
Peter Zijlstra 已提交
7565 7566 7567 7568
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

7569
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7570 7571
		return -1;

7572
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7573 7574 7575
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
7576 7577 7578 7579 7580 7581 7582 7583

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

7584 7585 7586
	if (rt_period == 0)
		return -EINVAL;

7587
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
7601
	u64 runtime, period;
7602 7603
	int ret = 0;

7604 7605 7606
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7607 7608 7609 7610 7611 7612 7613 7614
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
7615

7616
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
7617
	read_lock(&tasklist_lock);
7618
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
7619
	read_unlock(&tasklist_lock);
7620 7621 7622 7623
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
7624 7625 7626 7627 7628 7629 7630 7631 7632 7633

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

7634
#else /* !CONFIG_RT_GROUP_SCHED */
7635 7636
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
7637 7638 7639
	unsigned long flags;
	int i;

7640 7641 7642
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7643 7644 7645 7646 7647 7648 7649
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

7650
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7651 7652 7653
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

7654
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7655
		rt_rq->rt_runtime = global_rt_runtime();
7656
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7657
	}
7658
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7659

7660 7661
	return 0;
}
7662
#endif /* CONFIG_RT_GROUP_SCHED */
7663 7664

int sched_rt_handler(struct ctl_table *table, int write,
7665
		void __user *buffer, size_t *lenp,
7666 7667 7668 7669 7670 7671 7672 7673 7674 7675
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

7676
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
7693

7694
#ifdef CONFIG_CGROUP_SCHED
7695 7696

/* return corresponding task_group object of a cgroup */
7697
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7698
{
7699 7700
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
7701 7702
}

7703
static struct cgroup_subsys_state *cpu_cgroup_create(struct cgroup *cgrp)
7704
{
7705
	struct task_group *tg, *parent;
7706

7707
	if (!cgrp->parent) {
7708
		/* This is early initialization for the top cgroup */
7709
		return &root_task_group.css;
7710 7711
	}

7712 7713
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
7714 7715 7716 7717 7718 7719
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

7720
static void cpu_cgroup_destroy(struct cgroup *cgrp)
7721
{
7722
	struct task_group *tg = cgroup_tg(cgrp);
7723 7724 7725 7726

	sched_destroy_group(tg);
}

7727
static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7728
				 struct cgroup_taskset *tset)
7729
{
7730 7731 7732
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset) {
7733
#ifdef CONFIG_RT_GROUP_SCHED
7734 7735
		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
			return -EINVAL;
7736
#else
7737 7738 7739
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
7740
#endif
7741
	}
7742 7743
	return 0;
}
7744

7745
static void cpu_cgroup_attach(struct cgroup *cgrp,
7746
			      struct cgroup_taskset *tset)
7747
{
7748 7749 7750 7751
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset)
		sched_move_task(task);
7752 7753
}

7754
static void
7755 7756
cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
		struct task_struct *task)
7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	sched_move_task(task);
}

7769
#ifdef CONFIG_FAIR_GROUP_SCHED
7770
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7771
				u64 shareval)
7772
{
7773
	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7774 7775
}

7776
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7777
{
7778
	struct task_group *tg = cgroup_tg(cgrp);
7779

7780
	return (u64) scale_load_down(tg->shares);
7781
}
7782 7783

#ifdef CONFIG_CFS_BANDWIDTH
7784 7785
static DEFINE_MUTEX(cfs_constraints_mutex);

7786 7787 7788
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

7789 7790
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

7791 7792
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
7793
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7794
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

7815 7816 7817 7818 7819
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

7820
	runtime_enabled = quota != RUNTIME_INF;
7821 7822
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7823 7824 7825
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
7826

P
Paul Turner 已提交
7827
	__refill_cfs_bandwidth_runtime(cfs_b);
7828 7829 7830 7831 7832 7833
	/* restart the period timer (if active) to handle new period expiry */
	if (runtime_enabled && cfs_b->timer_active) {
		/* force a reprogram */
		cfs_b->timer_active = 0;
		__start_cfs_bandwidth(cfs_b);
	}
7834 7835 7836 7837
	raw_spin_unlock_irq(&cfs_b->lock);

	for_each_possible_cpu(i) {
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7838
		struct rq *rq = cfs_rq->rq;
7839 7840

		raw_spin_lock_irq(&rq->lock);
7841
		cfs_rq->runtime_enabled = runtime_enabled;
7842
		cfs_rq->runtime_remaining = 0;
7843

7844
		if (cfs_rq->throttled)
7845
			unthrottle_cfs_rq(cfs_rq);
7846 7847
		raw_spin_unlock_irq(&rq->lock);
	}
7848 7849
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
7850

7851
	return ret;
7852 7853 7854 7855 7856 7857
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

7858
	period = ktime_to_ns(tg->cfs_bandwidth.period);
7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

7871
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7872 7873
		return -1;

7874
	quota_us = tg->cfs_bandwidth.quota;
7875 7876 7877 7878 7879 7880 7881 7882 7883 7884
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
7885
	quota = tg->cfs_bandwidth.quota;
7886 7887 7888 7889 7890 7891 7892 7893

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

7894
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
{
	return tg_get_cfs_quota(cgroup_tg(cgrp));
}

static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
				s64 cfs_quota_us)
{
	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
}

static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
{
	return tg_get_cfs_period(cgroup_tg(cgrp));
}

static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
				u64 cfs_period_us)
{
	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
}

7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
7954
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7955 7956 7957 7958 7959
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
7960
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980

		quota = normalize_cfs_quota(tg, d);
		parent_quota = parent_b->hierarchal_quota;

		/*
		 * ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
	cfs_b->hierarchal_quota = quota;

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
7981
	int ret;
7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

7993 7994 7995 7996 7997
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7998
}
7999 8000 8001 8002 8003

static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct task_group *tg = cgroup_tg(cgrp);
8004
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8005 8006 8007 8008 8009 8010 8011

	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
	cb->fill(cb, "throttled_time", cfs_b->throttled_time);

	return 0;
}
8012
#endif /* CONFIG_CFS_BANDWIDTH */
8013
#endif /* CONFIG_FAIR_GROUP_SCHED */
8014

8015
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
8016
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8017
				s64 val)
P
Peter Zijlstra 已提交
8018
{
8019
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
8020 8021
}

8022
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
8023
{
8024
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
8025
}
8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
8037
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
8038

8039
static struct cftype cpu_files[] = {
8040
#ifdef CONFIG_FAIR_GROUP_SCHED
8041 8042
	{
		.name = "shares",
8043 8044
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8045
	},
8046
#endif
8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
8058 8059 8060 8061
	{
		.name = "stat",
		.read_map = cpu_stats_show,
	},
8062
#endif
8063
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8064
	{
P
Peter Zijlstra 已提交
8065
		.name = "rt_runtime_us",
8066 8067
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8068
	},
8069 8070
	{
		.name = "rt_period_us",
8071 8072
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8073
	},
8074
#endif
8075 8076 8077 8078
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
8079
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8080 8081 8082
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
8083 8084 8085
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
8086 8087
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
8088
	.exit		= cpu_cgroup_exit,
I
Ingo Molnar 已提交
8089 8090
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
8091 8092 8093
	.early_init	= 1,
};

8094
#endif	/* CONFIG_CGROUP_SCHED */
8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

/* create a new cpu accounting group */
8106
static struct cgroup_subsys_state *cpuacct_create(struct cgroup *cgrp)
8107
{
8108
	struct cpuacct *ca;
8109

8110 8111 8112 8113
	if (!cgrp->parent)
		return &root_cpuacct.css;

	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8114
	if (!ca)
8115
		goto out;
8116 8117

	ca->cpuusage = alloc_percpu(u64);
8118 8119 8120
	if (!ca->cpuusage)
		goto out_free_ca;

8121 8122 8123
	ca->cpustat = alloc_percpu(struct kernel_cpustat);
	if (!ca->cpustat)
		goto out_free_cpuusage;
8124

8125
	return &ca->css;
8126

8127
out_free_cpuusage:
8128 8129 8130 8131 8132
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
8133 8134 8135
}

/* destroy an existing cpu accounting group */
8136
static void cpuacct_destroy(struct cgroup *cgrp)
8137
{
8138
	struct cpuacct *ca = cgroup_ca(cgrp);
8139

8140
	free_percpu(ca->cpustat);
8141 8142 8143 8144
	free_percpu(ca->cpuusage);
	kfree(ca);
}

8145 8146
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
8147
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8148 8149 8150 8151 8152 8153
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
8154
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8155
	data = *cpuusage;
8156
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8157 8158 8159 8160 8161 8162 8163 8164 8165
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
8166
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8167 8168 8169 8170 8171

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
8172
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8173
	*cpuusage = val;
8174
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8175 8176 8177 8178 8179
#else
	*cpuusage = val;
#endif
}

8180
/* return total cpu usage (in nanoseconds) of a group */
8181
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8182
{
8183
	struct cpuacct *ca = cgroup_ca(cgrp);
8184 8185 8186
	u64 totalcpuusage = 0;
	int i;

8187 8188
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
8189 8190 8191 8192

	return totalcpuusage;
}

8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

8205 8206
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
8207 8208 8209 8210 8211

out:
	return err;
}

8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

8227 8228 8229 8230 8231 8232
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8233
			      struct cgroup_map_cb *cb)
8234 8235
{
	struct cpuacct *ca = cgroup_ca(cgrp);
8236 8237
	int cpu;
	s64 val = 0;
8238

8239 8240 8241 8242
	for_each_online_cpu(cpu) {
		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
		val += kcpustat->cpustat[CPUTIME_USER];
		val += kcpustat->cpustat[CPUTIME_NICE];
8243
	}
8244 8245
	val = cputime64_to_clock_t(val);
	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8246

8247 8248 8249 8250 8251 8252
	val = 0;
	for_each_online_cpu(cpu) {
		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
		val += kcpustat->cpustat[CPUTIME_SYSTEM];
		val += kcpustat->cpustat[CPUTIME_IRQ];
		val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8253
	}
8254 8255 8256 8257

	val = cputime64_to_clock_t(val);
	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);

8258 8259 8260
	return 0;
}

8261 8262 8263
static struct cftype files[] = {
	{
		.name = "usage",
8264 8265
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
8266
	},
8267 8268 8269 8270
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
8271 8272 8273 8274
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
8275 8276
};

8277
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8278
{
8279
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8280 8281 8282 8283 8284 8285 8286
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
8287
void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8288 8289
{
	struct cpuacct *ca;
8290
	int cpu;
8291

L
Li Zefan 已提交
8292
	if (unlikely(!cpuacct_subsys.active))
8293 8294
		return;

8295
	cpu = task_cpu(tsk);
8296 8297 8298

	rcu_read_lock();

8299 8300
	ca = task_ca(tsk);

8301
	for (; ca; ca = parent_ca(ca)) {
8302
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8303 8304
		*cpuusage += cputime;
	}
8305 8306

	rcu_read_unlock();
8307 8308 8309 8310 8311 8312 8313 8314 8315 8316
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */