core.c 211.8 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/highmem.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
37
#include <linux/capability.h>
L
Linus Torvalds 已提交
38 39
#include <linux/completion.h>
#include <linux/kernel_stat.h>
40
#include <linux/debug_locks.h>
41
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
57
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
58
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/unistd.h>
J
Jens Axboe 已提交
66
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
67
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
68
#include <linux/tick.h>
P
Peter Zijlstra 已提交
69 70
#include <linux/debugfs.h>
#include <linux/ctype.h>
71
#include <linux/ftrace.h>
72
#include <linux/slab.h>
73
#include <linux/init_task.h>
A
Al Viro 已提交
74
#include <linux/binfmts.h>
75
#include <linux/context_tracking.h>
76
#include <linux/compiler.h>
L
Linus Torvalds 已提交
77

78
#include <asm/switch_to.h>
79
#include <asm/tlb.h>
80
#include <asm/irq_regs.h>
81
#include <asm/mutex.h>
G
Glauber Costa 已提交
82 83 84
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
85

86
#include "sched.h"
87
#include "../workqueue_internal.h"
88
#include "../smpboot.h"
89

90
#define CREATE_TRACE_POINTS
91
#include <trace/events/sched.h>
92

93 94
DEFINE_MUTEX(sched_domains_mutex);
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
95

96
static void update_rq_clock_task(struct rq *rq, s64 delta);
97

98
void update_rq_clock(struct rq *rq)
99
{
100
	s64 delta;
101

102 103 104
	lockdep_assert_held(&rq->lock);

	if (rq->clock_skip_update & RQCF_ACT_SKIP)
105
		return;
106

107
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
108 109
	if (delta < 0)
		return;
110 111
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
112 113
}

I
Ingo Molnar 已提交
114 115 116
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
117 118 119 120

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
121
const_debug unsigned int sysctl_sched_features =
122
#include "features.h"
P
Peter Zijlstra 已提交
123 124 125 126 127 128 129 130
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

131
static const char * const sched_feat_names[] = {
132
#include "features.h"
P
Peter Zijlstra 已提交
133 134 135 136
};

#undef SCHED_FEAT

L
Li Zefan 已提交
137
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
138 139 140
{
	int i;

141
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
L
Li Zefan 已提交
142 143 144
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
145
	}
L
Li Zefan 已提交
146
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
147

L
Li Zefan 已提交
148
	return 0;
P
Peter Zijlstra 已提交
149 150
}

151 152
#ifdef HAVE_JUMP_LABEL

153 154
#define jump_label_key__true  STATIC_KEY_INIT_TRUE
#define jump_label_key__false STATIC_KEY_INIT_FALSE
155 156 157 158

#define SCHED_FEAT(name, enabled)	\
	jump_label_key__##enabled ,

159
struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
160 161 162 163 164 165 166
#include "features.h"
};

#undef SCHED_FEAT

static void sched_feat_disable(int i)
{
167
	static_key_disable(&sched_feat_keys[i]);
168 169 170 171
}

static void sched_feat_enable(int i)
{
172
	static_key_enable(&sched_feat_keys[i]);
173 174 175 176 177 178
}
#else
static void sched_feat_disable(int i) { };
static void sched_feat_enable(int i) { };
#endif /* HAVE_JUMP_LABEL */

179
static int sched_feat_set(char *cmp)
P
Peter Zijlstra 已提交
180 181
{
	int i;
182
	int neg = 0;
P
Peter Zijlstra 已提交
183

H
Hillf Danton 已提交
184
	if (strncmp(cmp, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
185 186 187 188
		neg = 1;
		cmp += 3;
	}

189
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
190
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
191
			if (neg) {
P
Peter Zijlstra 已提交
192
				sysctl_sched_features &= ~(1UL << i);
193 194
				sched_feat_disable(i);
			} else {
P
Peter Zijlstra 已提交
195
				sysctl_sched_features |= (1UL << i);
196 197
				sched_feat_enable(i);
			}
P
Peter Zijlstra 已提交
198 199 200 201
			break;
		}
	}

202 203 204 205 206 207 208 209 210 211
	return i;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp;
	int i;
212
	struct inode *inode;
213 214 215 216 217 218 219 220 221 222

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
	cmp = strstrip(buf);

223 224
	/* Ensure the static_key remains in a consistent state */
	inode = file_inode(filp);
A
Al Viro 已提交
225
	inode_lock(inode);
226
	i = sched_feat_set(cmp);
A
Al Viro 已提交
227
	inode_unlock(inode);
228
	if (i == __SCHED_FEAT_NR)
P
Peter Zijlstra 已提交
229 230
		return -EINVAL;

231
	*ppos += cnt;
P
Peter Zijlstra 已提交
232 233 234 235

	return cnt;
}

L
Li Zefan 已提交
236 237 238 239 240
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

241
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
242 243 244 245 246
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
247 248 249 250 251 252 253 254 255 256
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);
257
#endif /* CONFIG_SCHED_DEBUG */
I
Ingo Molnar 已提交
258

259 260 261 262 263 264
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

265 266 267 268 269 270 271 272
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
273
/*
P
Peter Zijlstra 已提交
274
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
275 276
 * default: 1s
 */
P
Peter Zijlstra 已提交
277
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
278

279
__read_mostly int scheduler_running;
280

P
Peter Zijlstra 已提交
281 282 283 284 285
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
286

287 288 289
/* cpus with isolated domains */
cpumask_var_t cpu_isolated_map;

L
Linus Torvalds 已提交
290
/*
291
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
292
 */
A
Alexey Dobriyan 已提交
293
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
294 295
	__acquires(rq->lock)
{
296
	struct rq *rq;
L
Linus Torvalds 已提交
297 298 299

	local_irq_disable();
	rq = this_rq();
300
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
301 302 303 304

	return rq;
}

P
Peter Zijlstra 已提交
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

326
	raw_spin_lock(&rq->lock);
327
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
328
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
329
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
330 331 332 333

	return HRTIMER_NORESTART;
}

334
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
335

336
static void __hrtick_restart(struct rq *rq)
P
Peter Zijlstra 已提交
337 338 339
{
	struct hrtimer *timer = &rq->hrtick_timer;

340
	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
P
Peter Zijlstra 已提交
341 342
}

343 344 345 346
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
347
{
348
	struct rq *rq = arg;
349

350
	raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
351
	__hrtick_restart(rq);
352
	rq->hrtick_csd_pending = 0;
353
	raw_spin_unlock(&rq->lock);
354 355
}

356 357 358 359 360
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
361
void hrtick_start(struct rq *rq, u64 delay)
362
{
363
	struct hrtimer *timer = &rq->hrtick_timer;
364 365 366 367 368 369 370 371 372
	ktime_t time;
	s64 delta;

	/*
	 * Don't schedule slices shorter than 10000ns, that just
	 * doesn't make sense and can cause timer DoS.
	 */
	delta = max_t(s64, delay, 10000LL);
	time = ktime_add_ns(timer->base->get_time(), delta);
373

374
	hrtimer_set_expires(timer, time);
375 376

	if (rq == this_rq()) {
P
Peter Zijlstra 已提交
377
		__hrtick_restart(rq);
378
	} else if (!rq->hrtick_csd_pending) {
379
		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
380 381
		rq->hrtick_csd_pending = 1;
	}
382 383 384 385 386 387 388 389 390 391 392 393 394 395
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
396
		hrtick_clear(cpu_rq(cpu));
397 398 399 400 401 402
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

403
static __init void init_hrtick(void)
404 405 406
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
407 408 409 410 411 412
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
413
void hrtick_start(struct rq *rq, u64 delay)
414
{
W
Wanpeng Li 已提交
415 416 417 418 419
	/*
	 * Don't schedule slices shorter than 10000ns, that just
	 * doesn't make sense. Rely on vruntime for fairness.
	 */
	delay = max_t(u64, delay, 10000LL);
420 421
	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
		      HRTIMER_MODE_REL_PINNED);
422
}
423

A
Andrew Morton 已提交
424
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
425 426
{
}
427
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
428

429
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
430
{
431 432
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
433

434 435 436 437
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
438

439 440
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
441
}
A
Andrew Morton 已提交
442
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
443 444 445 446 447 448 449 450
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

451 452 453
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
454
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
455

456 457 458 459 460 461 462 463 464 465 466 467 468 469
/*
 * cmpxchg based fetch_or, macro so it works for different integer types
 */
#define fetch_or(ptr, val)						\
({	typeof(*(ptr)) __old, __val = *(ptr);				\
 	for (;;) {							\
 		__old = cmpxchg((ptr), __val, __val | (val));		\
 		if (__old == __val)					\
 			break;						\
 		__val = __old;						\
 	}								\
 	__old;								\
})

470
#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
471 472 473 474 475 476 477 478 479 480
/*
 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
 * this avoids any races wrt polling state changes and thereby avoids
 * spurious IPIs.
 */
static bool set_nr_and_not_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
}
481 482 483 484 485 486 487 488 489 490

/*
 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
 *
 * If this returns true, then the idle task promises to call
 * sched_ttwu_pending() and reschedule soon.
 */
static bool set_nr_if_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
491
	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
492 493 494 495 496 497 498 499 500 501 502 503 504 505

	for (;;) {
		if (!(val & _TIF_POLLING_NRFLAG))
			return false;
		if (val & _TIF_NEED_RESCHED)
			return true;
		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
		if (old == val)
			break;
		val = old;
	}
	return true;
}

506 507 508 509 510 511
#else
static bool set_nr_and_not_polling(struct task_struct *p)
{
	set_tsk_need_resched(p);
	return true;
}
512 513 514 515 516 517 518

#ifdef CONFIG_SMP
static bool set_nr_if_polling(struct task_struct *p)
{
	return false;
}
#endif
519 520
#endif

521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
void wake_q_add(struct wake_q_head *head, struct task_struct *task)
{
	struct wake_q_node *node = &task->wake_q;

	/*
	 * Atomically grab the task, if ->wake_q is !nil already it means
	 * its already queued (either by us or someone else) and will get the
	 * wakeup due to that.
	 *
	 * This cmpxchg() implies a full barrier, which pairs with the write
	 * barrier implied by the wakeup in wake_up_list().
	 */
	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
		return;

	get_task_struct(task);

	/*
	 * The head is context local, there can be no concurrency.
	 */
	*head->lastp = node;
	head->lastp = &node->next;
}

void wake_up_q(struct wake_q_head *head)
{
	struct wake_q_node *node = head->first;

	while (node != WAKE_Q_TAIL) {
		struct task_struct *task;

		task = container_of(node, struct task_struct, wake_q);
		BUG_ON(!task);
		/* task can safely be re-inserted now */
		node = node->next;
		task->wake_q.next = NULL;

		/*
		 * wake_up_process() implies a wmb() to pair with the queueing
		 * in wake_q_add() so as not to miss wakeups.
		 */
		wake_up_process(task);
		put_task_struct(task);
	}
}

I
Ingo Molnar 已提交
567
/*
568
 * resched_curr - mark rq's current task 'to be rescheduled now'.
I
Ingo Molnar 已提交
569 570 571 572 573
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
574
void resched_curr(struct rq *rq)
I
Ingo Molnar 已提交
575
{
576
	struct task_struct *curr = rq->curr;
I
Ingo Molnar 已提交
577 578
	int cpu;

579
	lockdep_assert_held(&rq->lock);
I
Ingo Molnar 已提交
580

581
	if (test_tsk_need_resched(curr))
I
Ingo Molnar 已提交
582 583
		return;

584
	cpu = cpu_of(rq);
585

586
	if (cpu == smp_processor_id()) {
587
		set_tsk_need_resched(curr);
588
		set_preempt_need_resched();
I
Ingo Molnar 已提交
589
		return;
590
	}
I
Ingo Molnar 已提交
591

592
	if (set_nr_and_not_polling(curr))
I
Ingo Molnar 已提交
593
		smp_send_reschedule(cpu);
594 595
	else
		trace_sched_wake_idle_without_ipi(cpu);
I
Ingo Molnar 已提交
596 597
}

598
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
599 600 601 602
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

603
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
604
		return;
605
	resched_curr(rq);
606
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
607
}
608

609
#ifdef CONFIG_SMP
610
#ifdef CONFIG_NO_HZ_COMMON
611 612 613 614 615 616 617 618
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
619
int get_nohz_timer_target(void)
620
{
621
	int i, cpu = smp_processor_id();
622 623
	struct sched_domain *sd;

624
	if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
625 626
		return cpu;

627
	rcu_read_lock();
628
	for_each_domain(cpu, sd) {
629
		for_each_cpu(i, sched_domain_span(sd)) {
630
			if (!idle_cpu(i) && is_housekeeping_cpu(cpu)) {
631 632 633 634
				cpu = i;
				goto unlock;
			}
		}
635
	}
636 637 638

	if (!is_housekeeping_cpu(cpu))
		cpu = housekeeping_any_cpu();
639 640
unlock:
	rcu_read_unlock();
641 642
	return cpu;
}
643 644 645 646 647 648 649 650 651 652
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
653
static void wake_up_idle_cpu(int cpu)
654 655 656 657 658 659
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

660
	if (set_nr_and_not_polling(rq->idle))
661
		smp_send_reschedule(cpu);
662 663
	else
		trace_sched_wake_idle_without_ipi(cpu);
664 665
}

666
static bool wake_up_full_nohz_cpu(int cpu)
667
{
668 669 670 671 672 673
	/*
	 * We just need the target to call irq_exit() and re-evaluate
	 * the next tick. The nohz full kick at least implies that.
	 * If needed we can still optimize that later with an
	 * empty IRQ.
	 */
674
	if (tick_nohz_full_cpu(cpu)) {
675 676
		if (cpu != smp_processor_id() ||
		    tick_nohz_tick_stopped())
677
			tick_nohz_full_kick_cpu(cpu);
678 679 680 681 682 683 684 685
		return true;
	}

	return false;
}

void wake_up_nohz_cpu(int cpu)
{
686
	if (!wake_up_full_nohz_cpu(cpu))
687 688 689
		wake_up_idle_cpu(cpu);
}

690
static inline bool got_nohz_idle_kick(void)
691
{
692
	int cpu = smp_processor_id();
693 694 695 696 697 698 699 700 701 702 703 704 705

	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
		return false;

	if (idle_cpu(cpu) && !need_resched())
		return true;

	/*
	 * We can't run Idle Load Balance on this CPU for this time so we
	 * cancel it and clear NOHZ_BALANCE_KICK
	 */
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
	return false;
706 707
}

708
#else /* CONFIG_NO_HZ_COMMON */
709

710
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
711
{
712
	return false;
P
Peter Zijlstra 已提交
713 714
}

715
#endif /* CONFIG_NO_HZ_COMMON */
716

717 718 719
#ifdef CONFIG_NO_HZ_FULL
bool sched_can_stop_tick(void)
{
720 721 722 723 724 725 726 727 728 729 730 731 732 733
	/*
	 * FIFO realtime policy runs the highest priority task. Other runnable
	 * tasks are of a lower priority. The scheduler tick does nothing.
	 */
	if (current->policy == SCHED_FIFO)
		return true;

	/*
	 * Round-robin realtime tasks time slice with other tasks at the same
	 * realtime priority. Is this task the only one at this priority?
	 */
	if (current->policy == SCHED_RR) {
		struct sched_rt_entity *rt_se = &current->rt;

734
		return list_is_singular(&rt_se->run_list);
735 736
	}

737 738 739 740 741
	/*
	 * More than one running task need preemption.
	 * nr_running update is assumed to be visible
	 * after IPI is sent from wakers.
	 */
742 743
	if (this_rq()->nr_running > 1)
		return false;
744

745
	return true;
746 747
}
#endif /* CONFIG_NO_HZ_FULL */
748

749
void sched_avg_update(struct rq *rq)
750
{
751 752
	s64 period = sched_avg_period();

753
	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
754 755 756 757 758 759
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
760 761 762
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
763 764
}

765
#endif /* CONFIG_SMP */
766

767 768
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
769
/*
770 771 772 773
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
774
 */
775
int walk_tg_tree_from(struct task_group *from,
776
			     tg_visitor down, tg_visitor up, void *data)
777 778
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
779
	int ret;
780

781 782
	parent = from;

783
down:
P
Peter Zijlstra 已提交
784 785
	ret = (*down)(parent, data);
	if (ret)
786
		goto out;
787 788 789 790 791 792 793
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
794
	ret = (*up)(parent, data);
795 796
	if (ret || parent == from)
		goto out;
797 798 799 800 801

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
802
out:
P
Peter Zijlstra 已提交
803
	return ret;
804 805
}

806
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
807
{
808
	return 0;
P
Peter Zijlstra 已提交
809
}
810 811
#endif

812 813
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
814 815 816
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
817 818 819
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
820
	if (idle_policy(p->policy)) {
821
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
822
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
823 824
		return;
	}
825

826 827
	load->weight = scale_load(sched_prio_to_weight[prio]);
	load->inv_weight = sched_prio_to_wmult[prio];
828 829
}

830
static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
831
{
832
	update_rq_clock(rq);
833 834
	if (!(flags & ENQUEUE_RESTORE))
		sched_info_queued(rq, p);
835
	p->sched_class->enqueue_task(rq, p, flags);
836 837
}

838
static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
839
{
840
	update_rq_clock(rq);
841 842
	if (!(flags & DEQUEUE_SAVE))
		sched_info_dequeued(rq, p);
843
	p->sched_class->dequeue_task(rq, p, flags);
844 845
}

846
void activate_task(struct rq *rq, struct task_struct *p, int flags)
847 848 849 850
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

851
	enqueue_task(rq, p, flags);
852 853
}

854
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
855 856 857 858
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

859
	dequeue_task(rq, p, flags);
860 861
}

862
static void update_rq_clock_task(struct rq *rq, s64 delta)
863
{
864 865 866 867 868 869 870 871
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
872
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
894 895
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
896
	if (static_key_false((&paravirt_steal_rq_enabled))) {
897 898 899 900 901 902 903 904 905 906 907
		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		rq->prev_steal_time_rq += steal;
		delta -= steal;
	}
#endif

908 909
	rq->clock_task += delta;

910
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
911
	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
912 913
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
914 915
}

916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

946
/*
I
Ingo Molnar 已提交
947
 * __normal_prio - return the priority that is based on the static prio
948 949 950
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
951
	return p->static_prio;
952 953
}

954 955 956 957 958 959 960
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
961
static inline int normal_prio(struct task_struct *p)
962 963 964
{
	int prio;

965 966 967
	if (task_has_dl_policy(p))
		prio = MAX_DL_PRIO-1;
	else if (task_has_rt_policy(p))
968 969 970 971 972 973 974 975 976 977 978 979 980
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
981
static int effective_prio(struct task_struct *p)
982 983 984 985 986 987 988 989 990 991 992 993
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
994 995 996
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
997 998
 *
 * Return: 1 if the task is currently executing. 0 otherwise.
L
Linus Torvalds 已提交
999
 */
1000
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1001 1002 1003 1004
{
	return cpu_curr(task_cpu(p)) == p;
}

1005
/*
1006 1007 1008 1009 1010
 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
 * use the balance_callback list if you want balancing.
 *
 * this means any call to check_class_changed() must be followed by a call to
 * balance_callback().
1011
 */
1012 1013
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
1014
				       int oldprio)
1015 1016 1017
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
1018
			prev_class->switched_from(rq, p);
1019

P
Peter Zijlstra 已提交
1020
		p->sched_class->switched_to(rq, p);
1021
	} else if (oldprio != p->prio || dl_task(p))
P
Peter Zijlstra 已提交
1022
		p->sched_class->prio_changed(rq, p, oldprio);
1023 1024
}

1025
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
1036
				resched_curr(rq);
1037 1038 1039 1040 1041 1042 1043 1044 1045
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
1046
	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1047
		rq_clock_skip_update(rq, true);
1048 1049
}

L
Linus Torvalds 已提交
1050
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
/*
 * This is how migration works:
 *
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
 */

/*
 * move_queued_task - move a queued task to new rq.
 *
 * Returns (locked) new rq. Old rq's lock is released.
 */
1070
static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
P
Peter Zijlstra 已提交
1071 1072 1073 1074
{
	lockdep_assert_held(&rq->lock);

	p->on_rq = TASK_ON_RQ_MIGRATING;
1075
	dequeue_task(rq, p, 0);
P
Peter Zijlstra 已提交
1076 1077 1078 1079 1080 1081 1082 1083
	set_task_cpu(p, new_cpu);
	raw_spin_unlock(&rq->lock);

	rq = cpu_rq(new_cpu);

	raw_spin_lock(&rq->lock);
	BUG_ON(task_cpu(p) != new_cpu);
	enqueue_task(rq, p, 0);
1084
	p->on_rq = TASK_ON_RQ_QUEUED;
P
Peter Zijlstra 已提交
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
	check_preempt_curr(rq, p, 0);

	return rq;
}

struct migration_arg {
	struct task_struct *task;
	int dest_cpu;
};

/*
 * Move (not current) task off this cpu, onto dest cpu. We're doing
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
 */
1104
static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
P
Peter Zijlstra 已提交
1105 1106
{
	if (unlikely(!cpu_active(dest_cpu)))
1107
		return rq;
P
Peter Zijlstra 已提交
1108 1109 1110

	/* Affinity changed (again). */
	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1111
		return rq;
P
Peter Zijlstra 已提交
1112

1113 1114 1115
	rq = move_queued_task(rq, p, dest_cpu);

	return rq;
P
Peter Zijlstra 已提交
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
}

/*
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
 */
static int migration_cpu_stop(void *data)
{
	struct migration_arg *arg = data;
1126 1127
	struct task_struct *p = arg->task;
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139

	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
	local_irq_disable();
	/*
	 * We need to explicitly wake pending tasks before running
	 * __migrate_task() such that we will not miss enforcing cpus_allowed
	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
	 */
	sched_ttwu_pending();
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152

	raw_spin_lock(&p->pi_lock);
	raw_spin_lock(&rq->lock);
	/*
	 * If task_rq(p) != rq, it cannot be migrated here, because we're
	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
	 * we're holding p->pi_lock.
	 */
	if (task_rq(p) == rq && task_on_rq_queued(p))
		rq = __migrate_task(rq, p, arg->dest_cpu);
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock(&p->pi_lock);

P
Peter Zijlstra 已提交
1153 1154 1155 1156
	local_irq_enable();
	return 0;
}

1157 1158 1159 1160 1161
/*
 * sched_class::set_cpus_allowed must do the below, but is not required to
 * actually call this function.
 */
void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
P
Peter Zijlstra 已提交
1162 1163 1164 1165 1166
{
	cpumask_copy(&p->cpus_allowed, new_mask);
	p->nr_cpus_allowed = cpumask_weight(new_mask);
}

1167 1168
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
1169 1170 1171
	struct rq *rq = task_rq(p);
	bool queued, running;

1172
	lockdep_assert_held(&p->pi_lock);
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182

	queued = task_on_rq_queued(p);
	running = task_current(rq, p);

	if (queued) {
		/*
		 * Because __kthread_bind() calls this on blocked tasks without
		 * holding rq->lock.
		 */
		lockdep_assert_held(&rq->lock);
1183
		dequeue_task(rq, p, DEQUEUE_SAVE);
1184 1185 1186 1187
	}
	if (running)
		put_prev_task(rq, p);

1188
	p->sched_class->set_cpus_allowed(p, new_mask);
1189 1190 1191 1192

	if (running)
		p->sched_class->set_curr_task(rq);
	if (queued)
1193
		enqueue_task(rq, p, ENQUEUE_RESTORE);
1194 1195
}

P
Peter Zijlstra 已提交
1196 1197 1198 1199 1200 1201 1202 1203 1204
/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely. The
 * call is not atomic; no spinlocks may be held.
 */
1205 1206
static int __set_cpus_allowed_ptr(struct task_struct *p,
				  const struct cpumask *new_mask, bool check)
P
Peter Zijlstra 已提交
1207 1208 1209 1210 1211 1212 1213 1214
{
	unsigned long flags;
	struct rq *rq;
	unsigned int dest_cpu;
	int ret = 0;

	rq = task_rq_lock(p, &flags);

1215 1216 1217 1218 1219 1220 1221 1222 1223
	/*
	 * Must re-check here, to close a race against __kthread_bind(),
	 * sched_setaffinity() is not guaranteed to observe the flag.
	 */
	if (check && (p->flags & PF_NO_SETAFFINITY)) {
		ret = -EINVAL;
		goto out;
	}

P
Peter Zijlstra 已提交
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
		ret = -EINVAL;
		goto out;
	}

	do_set_cpus_allowed(p, new_mask);

	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpumask_test_cpu(task_cpu(p), new_mask))
		goto out;

	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
	if (task_running(rq, p) || p->state == TASK_WAKING) {
		struct migration_arg arg = { p, dest_cpu };
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, p, &flags);
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
		tlb_migrate_finish(p->mm);
		return 0;
1246 1247 1248 1249 1250 1251
	} else if (task_on_rq_queued(p)) {
		/*
		 * OK, since we're going to drop the lock immediately
		 * afterwards anyway.
		 */
		lockdep_unpin_lock(&rq->lock);
1252
		rq = move_queued_task(rq, p, dest_cpu);
1253 1254
		lockdep_pin_lock(&rq->lock);
	}
P
Peter Zijlstra 已提交
1255 1256 1257 1258 1259
out:
	task_rq_unlock(rq, p, &flags);

	return ret;
}
1260 1261 1262 1263 1264

int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
{
	return __set_cpus_allowed_ptr(p, new_mask, false);
}
P
Peter Zijlstra 已提交
1265 1266
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);

I
Ingo Molnar 已提交
1267
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1268
{
1269 1270 1271 1272 1273
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
1274
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
O
Oleg Nesterov 已提交
1275
			!p->on_rq);
1276

1277 1278 1279 1280 1281 1282 1283 1284 1285
	/*
	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
	 * time relying on p->on_rq.
	 */
	WARN_ON_ONCE(p->state == TASK_RUNNING &&
		     p->sched_class == &fair_sched_class &&
		     (p->on_rq && !task_on_rq_migrating(p)));

1286
#ifdef CONFIG_LOCKDEP
1287 1288 1289 1290 1291
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
P
Peter Zijlstra 已提交
1292
	 * see task_group().
1293 1294 1295 1296
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
1297 1298 1299
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
1300 1301
#endif

1302
	trace_sched_migrate_task(p, new_cpu);
1303

1304
	if (task_cpu(p) != new_cpu) {
1305
		if (p->sched_class->migrate_task_rq)
1306
			p->sched_class->migrate_task_rq(p);
1307
		p->se.nr_migrations++;
1308
		perf_event_task_migrate(p);
1309
	}
I
Ingo Molnar 已提交
1310 1311

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1312 1313
}

1314 1315
static void __migrate_swap_task(struct task_struct *p, int cpu)
{
1316
	if (task_on_rq_queued(p)) {
1317 1318 1319 1320 1321
		struct rq *src_rq, *dst_rq;

		src_rq = task_rq(p);
		dst_rq = cpu_rq(cpu);

1322
		p->on_rq = TASK_ON_RQ_MIGRATING;
1323 1324 1325
		deactivate_task(src_rq, p, 0);
		set_task_cpu(p, cpu);
		activate_task(dst_rq, p, 0);
1326
		p->on_rq = TASK_ON_RQ_QUEUED;
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
		check_preempt_curr(dst_rq, p, 0);
	} else {
		/*
		 * Task isn't running anymore; make it appear like we migrated
		 * it before it went to sleep. This means on wakeup we make the
		 * previous cpu our targer instead of where it really is.
		 */
		p->wake_cpu = cpu;
	}
}

struct migration_swap_arg {
	struct task_struct *src_task, *dst_task;
	int src_cpu, dst_cpu;
};

static int migrate_swap_stop(void *data)
{
	struct migration_swap_arg *arg = data;
	struct rq *src_rq, *dst_rq;
	int ret = -EAGAIN;

1349 1350 1351
	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
		return -EAGAIN;

1352 1353 1354
	src_rq = cpu_rq(arg->src_cpu);
	dst_rq = cpu_rq(arg->dst_cpu);

1355 1356
	double_raw_lock(&arg->src_task->pi_lock,
			&arg->dst_task->pi_lock);
1357
	double_rq_lock(src_rq, dst_rq);
1358

1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
	if (task_cpu(arg->dst_task) != arg->dst_cpu)
		goto unlock;

	if (task_cpu(arg->src_task) != arg->src_cpu)
		goto unlock;

	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
		goto unlock;

	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
		goto unlock;

	__migrate_swap_task(arg->src_task, arg->dst_cpu);
	__migrate_swap_task(arg->dst_task, arg->src_cpu);

	ret = 0;

unlock:
	double_rq_unlock(src_rq, dst_rq);
1378 1379
	raw_spin_unlock(&arg->dst_task->pi_lock);
	raw_spin_unlock(&arg->src_task->pi_lock);
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401

	return ret;
}

/*
 * Cross migrate two tasks
 */
int migrate_swap(struct task_struct *cur, struct task_struct *p)
{
	struct migration_swap_arg arg;
	int ret = -EINVAL;

	arg = (struct migration_swap_arg){
		.src_task = cur,
		.src_cpu = task_cpu(cur),
		.dst_task = p,
		.dst_cpu = task_cpu(p),
	};

	if (arg.src_cpu == arg.dst_cpu)
		goto out;

1402 1403 1404 1405
	/*
	 * These three tests are all lockless; this is OK since all of them
	 * will be re-checked with proper locks held further down the line.
	 */
1406 1407 1408 1409 1410 1411 1412 1413 1414
	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
		goto out;

	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
		goto out;

	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
		goto out;

1415
	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1416 1417 1418 1419 1420 1421
	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);

out:
	return ret;
}

L
Linus Torvalds 已提交
1422 1423 1424
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1425 1426 1427 1428 1429 1430 1431
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1432 1433 1434 1435 1436 1437
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1438
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1439 1440
{
	unsigned long flags;
1441
	int running, queued;
R
Roland McGrath 已提交
1442
	unsigned long ncsw;
1443
	struct rq *rq;
L
Linus Torvalds 已提交
1444

1445 1446 1447 1448 1449 1450 1451 1452
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1453

1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1465 1466 1467
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1468
			cpu_relax();
R
Roland McGrath 已提交
1469
		}
1470

1471 1472 1473 1474 1475 1476
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1477
		trace_sched_wait_task(p);
1478
		running = task_running(rq, p);
1479
		queued = task_on_rq_queued(p);
R
Roland McGrath 已提交
1480
		ncsw = 0;
1481
		if (!match_state || p->state == match_state)
1482
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1483
		task_rq_unlock(rq, p, &flags);
1484

R
Roland McGrath 已提交
1485 1486 1487 1488 1489 1490
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1501

1502 1503 1504 1505 1506
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1507
		 * So if it was still runnable (but just not actively
1508 1509 1510
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
1511
		if (unlikely(queued)) {
1512 1513 1514 1515
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1516 1517
			continue;
		}
1518

1519 1520 1521 1522 1523 1524 1525
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1526 1527

	return ncsw;
L
Linus Torvalds 已提交
1528 1529 1530 1531 1532 1533 1534 1535 1536
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1537
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1538 1539 1540 1541 1542
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1543
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1544 1545 1546 1547 1548 1549 1550 1551 1552
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1553
EXPORT_SYMBOL_GPL(kick_process);
L
Linus Torvalds 已提交
1554

1555
/*
1556
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1557
 */
1558 1559
static int select_fallback_rq(int cpu, struct task_struct *p)
{
1560 1561
	int nid = cpu_to_node(cpu);
	const struct cpumask *nodemask = NULL;
1562 1563
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1564

1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
	/*
	 * If the node that the cpu is on has been offlined, cpu_to_node()
	 * will return -1. There is no cpu on the node, and we should
	 * select the cpu on the other node.
	 */
	if (nid != -1) {
		nodemask = cpumask_of_node(nid);

		/* Look for allowed, online CPU in same node. */
		for_each_cpu(dest_cpu, nodemask) {
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
				return dest_cpu;
		}
1582
	}
1583

1584 1585
	for (;;) {
		/* Any allowed, online CPU? */
1586
		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1587 1588 1589 1590 1591 1592
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			goto out;
		}
1593

1594
		/* No more Mr. Nice Guy. */
1595 1596
		switch (state) {
		case cpuset:
1597 1598 1599 1600 1601 1602
			if (IS_ENABLED(CONFIG_CPUSETS)) {
				cpuset_cpus_allowed_fallback(p);
				state = possible;
				break;
			}
			/* fall-through */
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
1622
			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1623 1624
					task_pid_nr(p), p->comm, cpu);
		}
1625 1626 1627 1628 1629
	}

	return dest_cpu;
}

1630
/*
1631
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1632
 */
1633
static inline
1634
int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1635
{
1636 1637
	lockdep_assert_held(&p->pi_lock);

1638 1639
	if (p->nr_cpus_allowed > 1)
		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1651
	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
P
Peter Zijlstra 已提交
1652
		     !cpu_online(cpu)))
1653
		cpu = select_fallback_rq(task_cpu(p), p);
1654 1655

	return cpu;
1656
}
1657 1658 1659 1660 1661 1662

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1663 1664 1665 1666 1667 1668 1669 1670 1671

#else

static inline int __set_cpus_allowed_ptr(struct task_struct *p,
					 const struct cpumask *new_mask, bool check)
{
	return set_cpus_allowed_ptr(p, new_mask);
}

P
Peter Zijlstra 已提交
1672
#endif /* CONFIG_SMP */
1673

P
Peter Zijlstra 已提交
1674
static void
1675
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1676
{
P
Peter Zijlstra 已提交
1677
#ifdef CONFIG_SCHEDSTATS
1678 1679
	struct rq *rq = this_rq();

P
Peter Zijlstra 已提交
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
#ifdef CONFIG_SMP
	int this_cpu = smp_processor_id();

	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	} else {
		struct sched_domain *sd;

		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1690
		rcu_read_lock();
P
Peter Zijlstra 已提交
1691 1692 1693 1694 1695 1696
		for_each_domain(this_cpu, sd) {
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
1697
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1698
	}
1699 1700 1701 1702

	if (wake_flags & WF_MIGRATED)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);

P
Peter Zijlstra 已提交
1703 1704 1705
#endif /* CONFIG_SMP */

	schedstat_inc(rq, ttwu_count);
T
Tejun Heo 已提交
1706
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1707 1708

	if (wake_flags & WF_SYNC)
T
Tejun Heo 已提交
1709
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1710 1711 1712 1713

#endif /* CONFIG_SCHEDSTATS */
}

1714
static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
P
Peter Zijlstra 已提交
1715
{
T
Tejun Heo 已提交
1716
	activate_task(rq, p, en_flags);
1717
	p->on_rq = TASK_ON_RQ_QUEUED;
1718 1719 1720 1721

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1722 1723
}

1724 1725 1726
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1727
static void
1728
ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
T
Tejun Heo 已提交
1729 1730 1731
{
	check_preempt_curr(rq, p, wake_flags);
	p->state = TASK_RUNNING;
1732 1733
	trace_sched_wakeup(p);

T
Tejun Heo 已提交
1734
#ifdef CONFIG_SMP
1735 1736
	if (p->sched_class->task_woken) {
		/*
1737 1738
		 * Our task @p is fully woken up and running; so its safe to
		 * drop the rq->lock, hereafter rq is only used for statistics.
1739
		 */
1740
		lockdep_unpin_lock(&rq->lock);
T
Tejun Heo 已提交
1741
		p->sched_class->task_woken(rq, p);
1742
		lockdep_pin_lock(&rq->lock);
1743
	}
T
Tejun Heo 已提交
1744

1745
	if (rq->idle_stamp) {
1746
		u64 delta = rq_clock(rq) - rq->idle_stamp;
1747
		u64 max = 2*rq->max_idle_balance_cost;
T
Tejun Heo 已提交
1748

1749 1750 1751
		update_avg(&rq->avg_idle, delta);

		if (rq->avg_idle > max)
T
Tejun Heo 已提交
1752
			rq->avg_idle = max;
1753

T
Tejun Heo 已提交
1754 1755 1756 1757 1758
		rq->idle_stamp = 0;
	}
#endif
}

1759 1760 1761
static void
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
{
1762 1763
	lockdep_assert_held(&rq->lock);

1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
#endif

	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
	ttwu_do_wakeup(rq, p, wake_flags);
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
1785
	if (task_on_rq_queued(p)) {
1786 1787
		/* check_preempt_curr() may use rq clock */
		update_rq_clock(rq);
1788 1789 1790 1791 1792 1793 1794 1795
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;
}

1796
#ifdef CONFIG_SMP
1797
void sched_ttwu_pending(void)
1798 1799
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1800 1801
	struct llist_node *llist = llist_del_all(&rq->wake_list);
	struct task_struct *p;
1802
	unsigned long flags;
1803

1804 1805 1806 1807
	if (!llist)
		return;

	raw_spin_lock_irqsave(&rq->lock, flags);
1808
	lockdep_pin_lock(&rq->lock);
1809

P
Peter Zijlstra 已提交
1810 1811 1812
	while (llist) {
		p = llist_entry(llist, struct task_struct, wake_entry);
		llist = llist_next(llist);
1813 1814 1815
		ttwu_do_activate(rq, p, 0);
	}

1816
	lockdep_unpin_lock(&rq->lock);
1817
	raw_spin_unlock_irqrestore(&rq->lock, flags);
1818 1819 1820 1821
}

void scheduler_ipi(void)
{
1822 1823 1824 1825 1826
	/*
	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
	 * TIF_NEED_RESCHED remotely (for the first time) will also send
	 * this IPI.
	 */
1827
	preempt_fold_need_resched();
1828

1829
	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
P
Peter Zijlstra 已提交
1846
	sched_ttwu_pending();
1847 1848 1849 1850

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1851
	if (unlikely(got_nohz_idle_kick())) {
1852
		this_rq()->idle_balance = 1;
1853
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1854
	}
1855
	irq_exit();
1856 1857 1858 1859
}

static void ttwu_queue_remote(struct task_struct *p, int cpu)
{
1860 1861 1862 1863 1864 1865 1866 1867
	struct rq *rq = cpu_rq(cpu);

	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
		if (!set_nr_if_polling(rq->idle))
			smp_send_reschedule(cpu);
		else
			trace_sched_wake_idle_without_ipi(cpu);
	}
1868
}
1869

1870 1871 1872 1873 1874
void wake_up_if_idle(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

1875 1876 1877 1878
	rcu_read_lock();

	if (!is_idle_task(rcu_dereference(rq->curr)))
		goto out;
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888

	if (set_nr_if_polling(rq->idle)) {
		trace_sched_wake_idle_without_ipi(cpu);
	} else {
		raw_spin_lock_irqsave(&rq->lock, flags);
		if (is_idle_task(rq->curr))
			smp_send_reschedule(cpu);
		/* Else cpu is not in idle, do nothing here */
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}
1889 1890 1891

out:
	rcu_read_unlock();
1892 1893
}

1894
bool cpus_share_cache(int this_cpu, int that_cpu)
1895 1896 1897
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1898
#endif /* CONFIG_SMP */
1899

1900 1901 1902 1903
static void ttwu_queue(struct task_struct *p, int cpu)
{
	struct rq *rq = cpu_rq(cpu);

1904
#if defined(CONFIG_SMP)
1905
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1906
		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1907 1908 1909 1910 1911
		ttwu_queue_remote(p, cpu);
		return;
	}
#endif

1912
	raw_spin_lock(&rq->lock);
1913
	lockdep_pin_lock(&rq->lock);
1914
	ttwu_do_activate(rq, p, 0);
1915
	lockdep_unpin_lock(&rq->lock);
1916
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
1917 1918
}

1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
/*
 * Notes on Program-Order guarantees on SMP systems.
 *
 *  MIGRATION
 *
 * The basic program-order guarantee on SMP systems is that when a task [t]
 * migrates, all its activity on its old cpu [c0] happens-before any subsequent
 * execution on its new cpu [c1].
 *
 * For migration (of runnable tasks) this is provided by the following means:
 *
 *  A) UNLOCK of the rq(c0)->lock scheduling out task t
 *  B) migration for t is required to synchronize *both* rq(c0)->lock and
 *     rq(c1)->lock (if not at the same time, then in that order).
 *  C) LOCK of the rq(c1)->lock scheduling in task
 *
 * Transitivity guarantees that B happens after A and C after B.
 * Note: we only require RCpc transitivity.
 * Note: the cpu doing B need not be c0 or c1
 *
 * Example:
 *
 *   CPU0            CPU1            CPU2
 *
 *   LOCK rq(0)->lock
 *   sched-out X
 *   sched-in Y
 *   UNLOCK rq(0)->lock
 *
 *                                   LOCK rq(0)->lock // orders against CPU0
 *                                   dequeue X
 *                                   UNLOCK rq(0)->lock
 *
 *                                   LOCK rq(1)->lock
 *                                   enqueue X
 *                                   UNLOCK rq(1)->lock
 *
 *                   LOCK rq(1)->lock // orders against CPU2
 *                   sched-out Z
 *                   sched-in X
 *                   UNLOCK rq(1)->lock
 *
 *
 *  BLOCKING -- aka. SLEEP + WAKEUP
 *
 * For blocking we (obviously) need to provide the same guarantee as for
 * migration. However the means are completely different as there is no lock
 * chain to provide order. Instead we do:
 *
 *   1) smp_store_release(X->on_cpu, 0)
 *   2) smp_cond_acquire(!X->on_cpu)
 *
 * Example:
 *
 *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
 *
 *   LOCK rq(0)->lock LOCK X->pi_lock
 *   dequeue X
 *   sched-out X
 *   smp_store_release(X->on_cpu, 0);
 *
 *                    smp_cond_acquire(!X->on_cpu);
 *                    X->state = WAKING
 *                    set_task_cpu(X,2)
 *
 *                    LOCK rq(2)->lock
 *                    enqueue X
 *                    X->state = RUNNING
 *                    UNLOCK rq(2)->lock
 *
 *                                          LOCK rq(2)->lock // orders against CPU1
 *                                          sched-out Z
 *                                          sched-in X
 *                                          UNLOCK rq(2)->lock
 *
 *                    UNLOCK X->pi_lock
 *   UNLOCK rq(0)->lock
 *
 *
 * However; for wakeups there is a second guarantee we must provide, namely we
 * must observe the state that lead to our wakeup. That is, not only must our
 * task observe its own prior state, it must also observe the stores prior to
 * its wakeup.
 *
 * This means that any means of doing remote wakeups must order the CPU doing
 * the wakeup against the CPU the task is going to end up running on. This,
 * however, is already required for the regular Program-Order guarantee above,
 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_acquire).
 *
 */

T
Tejun Heo 已提交
2010
/**
L
Linus Torvalds 已提交
2011
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
2012
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
2013
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
2014
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
2015 2016 2017 2018 2019 2020 2021
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
2022
 * Return: %true if @p was woken up, %false if it was already running.
T
Tejun Heo 已提交
2023
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
2024
 */
2025 2026
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
2027 2028
{
	unsigned long flags;
2029
	int cpu, success = 0;
P
Peter Zijlstra 已提交
2030

2031 2032 2033 2034 2035 2036 2037
	/*
	 * If we are going to wake up a thread waiting for CONDITION we
	 * need to ensure that CONDITION=1 done by the caller can not be
	 * reordered with p->state check below. This pairs with mb() in
	 * set_current_state() the waiting thread does.
	 */
	smp_mb__before_spinlock();
2038
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
2039
	if (!(p->state & state))
L
Linus Torvalds 已提交
2040 2041
		goto out;

2042 2043
	trace_sched_waking(p);

2044
	success = 1; /* we're going to change ->state */
L
Linus Torvalds 已提交
2045 2046
	cpu = task_cpu(p);

2047 2048
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
2049 2050

#ifdef CONFIG_SMP
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
	/*
	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
	 * possible to, falsely, observe p->on_cpu == 0.
	 *
	 * One must be running (->on_cpu == 1) in order to remove oneself
	 * from the runqueue.
	 *
	 *  [S] ->on_cpu = 1;	[L] ->on_rq
	 *      UNLOCK rq->lock
	 *			RMB
	 *      LOCK   rq->lock
	 *  [S] ->on_rq = 0;    [L] ->on_cpu
	 *
	 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
	 * from the consecutive calls to schedule(); the first switching to our
	 * task, the second putting it to sleep.
	 */
	smp_rmb();

P
Peter Zijlstra 已提交
2070
	/*
2071 2072
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
2073 2074 2075 2076 2077
	 *
	 * Pairs with the smp_store_release() in finish_lock_switch().
	 *
	 * This ensures that tasks getting woken will be fully ordered against
	 * their previous state and preserve Program Order.
2078
	 */
2079
	smp_cond_acquire(!p->on_cpu);
L
Linus Torvalds 已提交
2080

2081
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
2082
	p->state = TASK_WAKING;
2083

2084
	if (p->sched_class->task_waking)
2085
		p->sched_class->task_waking(p);
2086

2087
	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2088 2089
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
2090
		set_task_cpu(p, cpu);
2091
	}
L
Linus Torvalds 已提交
2092 2093
#endif /* CONFIG_SMP */

2094 2095
	ttwu_queue(p, cpu);
stat:
2096
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
2097
out:
2098
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2099 2100 2101 2102

	return success;
}

T
Tejun Heo 已提交
2103 2104 2105 2106
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
2107
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
2108
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2109
 * the current task.
T
Tejun Heo 已提交
2110 2111 2112 2113 2114
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

2115 2116 2117 2118
	if (WARN_ON_ONCE(rq != this_rq()) ||
	    WARN_ON_ONCE(p == current))
		return;

T
Tejun Heo 已提交
2119 2120
	lockdep_assert_held(&rq->lock);

2121
	if (!raw_spin_trylock(&p->pi_lock)) {
2122 2123 2124 2125 2126 2127 2128
		/*
		 * This is OK, because current is on_cpu, which avoids it being
		 * picked for load-balance and preemption/IRQs are still
		 * disabled avoiding further scheduler activity on it and we've
		 * not yet picked a replacement task.
		 */
		lockdep_unpin_lock(&rq->lock);
2129 2130 2131
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
2132
		lockdep_pin_lock(&rq->lock);
2133 2134
	}

T
Tejun Heo 已提交
2135
	if (!(p->state & TASK_NORMAL))
2136
		goto out;
T
Tejun Heo 已提交
2137

2138 2139
	trace_sched_waking(p);

2140
	if (!task_on_rq_queued(p))
P
Peter Zijlstra 已提交
2141 2142
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

2143
	ttwu_do_wakeup(rq, p, 0);
2144
	ttwu_stat(p, smp_processor_id(), 0);
2145 2146
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
2147 2148
}

2149 2150 2151 2152 2153
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
2154 2155 2156
 * processes.
 *
 * Return: 1 if the process was woken up, 0 if it was already running.
2157 2158 2159 2160
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2161
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2162
{
2163
	return try_to_wake_up(p, TASK_NORMAL, 0);
L
Linus Torvalds 已提交
2164 2165 2166
}
EXPORT_SYMBOL(wake_up_process);

2167
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2168 2169 2170 2171
{
	return try_to_wake_up(p, state, 0);
}

2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
/*
 * This function clears the sched_dl_entity static params.
 */
void __dl_clear_params(struct task_struct *p)
{
	struct sched_dl_entity *dl_se = &p->dl;

	dl_se->dl_runtime = 0;
	dl_se->dl_deadline = 0;
	dl_se->dl_period = 0;
	dl_se->flags = 0;
	dl_se->dl_bw = 0;
2184 2185 2186 2187

	dl_se->dl_throttled = 0;
	dl_se->dl_new = 1;
	dl_se->dl_yielded = 0;
2188 2189
}

L
Linus Torvalds 已提交
2190 2191 2192
/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2193 2194 2195
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
2196
static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
2197
{
P
Peter Zijlstra 已提交
2198 2199 2200
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
2201 2202
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2203
	p->se.prev_sum_exec_runtime	= 0;
2204
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
2205
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
2206
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
2207

2208 2209 2210 2211
#ifdef CONFIG_FAIR_GROUP_SCHED
	p->se.cfs_rq			= NULL;
#endif

I
Ingo Molnar 已提交
2212
#ifdef CONFIG_SCHEDSTATS
2213
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
2214
#endif
N
Nick Piggin 已提交
2215

2216
	RB_CLEAR_NODE(&p->dl.rb_node);
2217
	init_dl_task_timer(&p->dl);
2218
	__dl_clear_params(p);
2219

P
Peter Zijlstra 已提交
2220
	INIT_LIST_HEAD(&p->rt.run_list);
N
Nick Piggin 已提交
2221

2222 2223 2224
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
2225 2226 2227

#ifdef CONFIG_NUMA_BALANCING
	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2228
		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2229 2230 2231
		p->mm->numa_scan_seq = 0;
	}

2232 2233 2234 2235 2236
	if (clone_flags & CLONE_VM)
		p->numa_preferred_nid = current->numa_preferred_nid;
	else
		p->numa_preferred_nid = -1;

2237 2238
	p->node_stamp = 0ULL;
	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2239
	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2240
	p->numa_work.next = &p->numa_work;
2241
	p->numa_faults = NULL;
2242 2243
	p->last_task_numa_placement = 0;
	p->last_sum_exec_runtime = 0;
2244 2245

	p->numa_group = NULL;
2246
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
2247 2248
}

2249 2250
DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);

2251
#ifdef CONFIG_NUMA_BALANCING
2252

2253 2254 2255
void set_numabalancing_state(bool enabled)
{
	if (enabled)
2256
		static_branch_enable(&sched_numa_balancing);
2257
	else
2258
		static_branch_disable(&sched_numa_balancing);
2259
}
2260 2261 2262 2263 2264 2265 2266

#ifdef CONFIG_PROC_SYSCTL
int sysctl_numa_balancing(struct ctl_table *table, int write,
			 void __user *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table t;
	int err;
2267
	int state = static_branch_likely(&sched_numa_balancing);
2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282

	if (write && !capable(CAP_SYS_ADMIN))
		return -EPERM;

	t = *table;
	t.data = &state;
	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
	if (err < 0)
		return err;
	if (write)
		set_numabalancing_state(state);
	return err;
}
#endif
#endif
I
Ingo Molnar 已提交
2283 2284 2285 2286

/*
 * fork()/clone()-time setup:
 */
2287
int sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
2288
{
2289
	unsigned long flags;
I
Ingo Molnar 已提交
2290 2291
	int cpu = get_cpu();

2292
	__sched_fork(clone_flags, p);
2293
	/*
2294
	 * We mark the process as running here. This guarantees that
2295 2296 2297
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
2298
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2299

2300 2301 2302 2303 2304
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

2305 2306 2307 2308
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2309
		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2310
			p->policy = SCHED_NORMAL;
2311
			p->static_prio = NICE_TO_PRIO(0);
2312 2313 2314 2315 2316 2317
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
2318

2319 2320 2321 2322 2323 2324
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2325

2326 2327 2328 2329 2330 2331
	if (dl_prio(p->prio)) {
		put_cpu();
		return -EAGAIN;
	} else if (rt_prio(p->prio)) {
		p->sched_class = &rt_sched_class;
	} else {
H
Hiroshi Shimamoto 已提交
2332
		p->sched_class = &fair_sched_class;
2333
	}
2334

P
Peter Zijlstra 已提交
2335 2336 2337
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

2338 2339 2340 2341 2342 2343 2344
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
2345
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2346
	set_task_cpu(p, cpu);
2347
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2348

2349
#ifdef CONFIG_SCHED_INFO
I
Ingo Molnar 已提交
2350
	if (likely(sched_info_on()))
2351
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2352
#endif
P
Peter Zijlstra 已提交
2353 2354
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
2355
#endif
2356
	init_task_preempt_count(p);
2357
#ifdef CONFIG_SMP
2358
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2359
	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2360
#endif
2361

N
Nick Piggin 已提交
2362
	put_cpu();
2363
	return 0;
L
Linus Torvalds 已提交
2364 2365
}

2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 20;

	/*
	 * Doing this here saves a lot of checks in all
	 * the calling paths, and returning zero seems
	 * safe for them anyway.
	 */
	if (period == 0)
		return 0;

	return div64_u64(runtime << 20, period);
}

#ifdef CONFIG_SMP
inline struct dl_bw *dl_bw_of(int i)
{
2385 2386
	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
			 "sched RCU must be held");
2387 2388 2389
	return &cpu_rq(i)->rd->dl_bw;
}

2390
static inline int dl_bw_cpus(int i)
2391
{
2392 2393 2394
	struct root_domain *rd = cpu_rq(i)->rd;
	int cpus = 0;

2395 2396
	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
			 "sched RCU must be held");
2397 2398 2399 2400
	for_each_cpu_and(i, rd->span, cpu_active_mask)
		cpus++;

	return cpus;
2401 2402 2403 2404 2405 2406 2407
}
#else
inline struct dl_bw *dl_bw_of(int i)
{
	return &cpu_rq(i)->dl.dl_bw;
}

2408
static inline int dl_bw_cpus(int i)
2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420
{
	return 1;
}
#endif

/*
 * We must be sure that accepting a new task (or allowing changing the
 * parameters of an existing one) is consistent with the bandwidth
 * constraints. If yes, this function also accordingly updates the currently
 * allocated bandwidth to reflect the new situation.
 *
 * This function is called while holding p's rq->lock.
2421 2422 2423
 *
 * XXX we should delay bw change until the task's 0-lag point, see
 * __setparam_dl().
2424 2425 2426 2427 2428 2429
 */
static int dl_overflow(struct task_struct *p, int policy,
		       const struct sched_attr *attr)
{

	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2430
	u64 period = attr->sched_period ?: attr->sched_deadline;
2431 2432
	u64 runtime = attr->sched_runtime;
	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2433
	int cpus, err = -1;
2434 2435 2436 2437 2438 2439 2440 2441 2442 2443

	if (new_bw == p->dl.dl_bw)
		return 0;

	/*
	 * Either if a task, enters, leave, or stays -deadline but changes
	 * its parameters, we may need to update accordingly the total
	 * allocated bandwidth of the container.
	 */
	raw_spin_lock(&dl_b->lock);
2444
	cpus = dl_bw_cpus(task_cpu(p));
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464
	if (dl_policy(policy) && !task_has_dl_policy(p) &&
	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
		__dl_add(dl_b, new_bw);
		err = 0;
	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
		__dl_clear(dl_b, p->dl.dl_bw);
		__dl_add(dl_b, new_bw);
		err = 0;
	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
		__dl_clear(dl_b, p->dl.dl_bw);
		err = 0;
	}
	raw_spin_unlock(&dl_b->lock);

	return err;
}

extern void init_dl_bw(struct dl_bw *dl_b);

L
Linus Torvalds 已提交
2465 2466 2467 2468 2469 2470 2471
/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2472
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
2473 2474
{
	unsigned long flags;
I
Ingo Molnar 已提交
2475
	struct rq *rq;
2476

2477
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2478 2479
	/* Initialize new task's runnable average */
	init_entity_runnable_average(&p->se);
2480 2481 2482 2483 2484 2485
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 */
2486
	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2487 2488
#endif

2489
	rq = __task_rq_lock(p);
P
Peter Zijlstra 已提交
2490
	activate_task(rq, p, 0);
2491
	p->on_rq = TASK_ON_RQ_QUEUED;
2492
	trace_sched_wakeup_new(p);
P
Peter Zijlstra 已提交
2493
	check_preempt_curr(rq, p, WF_FORK);
2494
#ifdef CONFIG_SMP
2495 2496 2497 2498 2499 2500
	if (p->sched_class->task_woken) {
		/*
		 * Nothing relies on rq->lock after this, so its fine to
		 * drop it.
		 */
		lockdep_unpin_lock(&rq->lock);
2501
		p->sched_class->task_woken(rq, p);
2502 2503
		lockdep_pin_lock(&rq->lock);
	}
2504
#endif
2505
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
2506 2507
}

2508 2509
#ifdef CONFIG_PREEMPT_NOTIFIERS

2510 2511
static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;

2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523
void preempt_notifier_inc(void)
{
	static_key_slow_inc(&preempt_notifier_key);
}
EXPORT_SYMBOL_GPL(preempt_notifier_inc);

void preempt_notifier_dec(void)
{
	static_key_slow_dec(&preempt_notifier_key);
}
EXPORT_SYMBOL_GPL(preempt_notifier_dec);

2524
/**
2525
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2526
 * @notifier: notifier struct to register
2527 2528 2529
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
2530 2531 2532
	if (!static_key_false(&preempt_notifier_key))
		WARN(1, "registering preempt_notifier while notifiers disabled\n");

2533 2534 2535 2536 2537 2538
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2539
 * @notifier: notifier struct to unregister
2540
 *
2541
 * This is *not* safe to call from within a preemption notifier.
2542 2543 2544 2545 2546 2547 2548
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

2549
static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2550 2551 2552
{
	struct preempt_notifier *notifier;

2553
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2554 2555 2556
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

2557 2558 2559 2560 2561 2562
static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	if (static_key_false(&preempt_notifier_key))
		__fire_sched_in_preempt_notifiers(curr);
}

2563
static void
2564 2565
__fire_sched_out_preempt_notifiers(struct task_struct *curr,
				   struct task_struct *next)
2566 2567 2568
{
	struct preempt_notifier *notifier;

2569
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2570 2571 2572
		notifier->ops->sched_out(notifier, next);
}

2573 2574 2575 2576 2577 2578 2579 2580
static __always_inline void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	if (static_key_false(&preempt_notifier_key))
		__fire_sched_out_preempt_notifiers(curr, next);
}

2581
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2582

2583
static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2584 2585 2586
{
}

2587
static inline void
2588 2589 2590 2591 2592
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2593
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2594

2595 2596 2597
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2598
 * @prev: the current task that is being switched out
2599 2600 2601 2602 2603 2604 2605 2606 2607
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2608 2609 2610
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2611
{
2612
	sched_info_switch(rq, prev, next);
2613
	perf_event_task_sched_out(prev, next);
2614
	fire_sched_out_preempt_notifiers(prev, next);
2615 2616 2617 2618
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2619 2620 2621 2622
/**
 * finish_task_switch - clean up after a task-switch
 * @prev: the thread we just switched away from.
 *
2623 2624 2625 2626
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2627 2628
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2629
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2630 2631
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
2632 2633 2634 2635 2636
 *
 * The context switch have flipped the stack from under us and restored the
 * local variables which were saved when this task called schedule() in the
 * past. prev == current is still correct but we need to recalculate this_rq
 * because prev may have moved to another CPU.
L
Linus Torvalds 已提交
2637
 */
2638
static struct rq *finish_task_switch(struct task_struct *prev)
L
Linus Torvalds 已提交
2639 2640
	__releases(rq->lock)
{
2641
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
2642
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2643
	long prev_state;
L
Linus Torvalds 已提交
2644

2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
	/*
	 * The previous task will have left us with a preempt_count of 2
	 * because it left us after:
	 *
	 *	schedule()
	 *	  preempt_disable();			// 1
	 *	  __schedule()
	 *	    raw_spin_lock_irq(&rq->lock)	// 2
	 *
	 * Also, see FORK_PREEMPT_COUNT.
	 */
2656 2657 2658 2659
	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
		      "corrupted preempt_count: %s/%d/0x%x\n",
		      current->comm, current->pid, preempt_count()))
		preempt_count_set(FORK_PREEMPT_COUNT);
2660

L
Linus Torvalds 已提交
2661 2662 2663 2664
	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2665
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2666 2667
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2668 2669 2670 2671 2672
	 *
	 * We must observe prev->state before clearing prev->on_cpu (in
	 * finish_lock_switch), otherwise a concurrent wakeup can get prev
	 * running on another CPU and we could rave with its RUNNING -> DEAD
	 * transition, resulting in a double drop.
L
Linus Torvalds 已提交
2673
	 */
O
Oleg Nesterov 已提交
2674
	prev_state = prev->state;
2675
	vtime_task_switch(prev);
2676
	perf_event_task_sched_in(prev, current);
2677
	finish_lock_switch(rq, prev);
2678
	finish_arch_post_lock_switch();
S
Steven Rostedt 已提交
2679

2680
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2681 2682
	if (mm)
		mmdrop(mm);
2683
	if (unlikely(prev_state == TASK_DEAD)) {
2684 2685 2686
		if (prev->sched_class->task_dead)
			prev->sched_class->task_dead(prev);

2687 2688 2689
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2690
		 */
2691
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2692
		put_task_struct(prev);
2693
	}
2694

2695
	tick_nohz_task_switch();
2696
	return rq;
L
Linus Torvalds 已提交
2697 2698
}

2699 2700 2701
#ifdef CONFIG_SMP

/* rq->lock is NOT held, but preemption is disabled */
2702
static void __balance_callback(struct rq *rq)
2703
{
2704 2705 2706
	struct callback_head *head, *next;
	void (*func)(struct rq *rq);
	unsigned long flags;
2707

2708 2709 2710 2711 2712 2713 2714 2715
	raw_spin_lock_irqsave(&rq->lock, flags);
	head = rq->balance_callback;
	rq->balance_callback = NULL;
	while (head) {
		func = (void (*)(struct rq *))head->func;
		next = head->next;
		head->next = NULL;
		head = next;
2716

2717
		func(rq);
2718
	}
2719 2720 2721 2722 2723 2724 2725
	raw_spin_unlock_irqrestore(&rq->lock, flags);
}

static inline void balance_callback(struct rq *rq)
{
	if (unlikely(rq->balance_callback))
		__balance_callback(rq);
2726 2727 2728
}

#else
2729

2730
static inline void balance_callback(struct rq *rq)
2731
{
L
Linus Torvalds 已提交
2732 2733
}

2734 2735
#endif

L
Linus Torvalds 已提交
2736 2737 2738 2739
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2740
asmlinkage __visible void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2741 2742
	__releases(rq->lock)
{
2743
	struct rq *rq;
2744

2745 2746 2747 2748 2749 2750 2751 2752 2753
	/*
	 * New tasks start with FORK_PREEMPT_COUNT, see there and
	 * finish_task_switch() for details.
	 *
	 * finish_task_switch() will drop rq->lock() and lower preempt_count
	 * and the preempt_enable() will end up enabling preemption (on
	 * PREEMPT_COUNT kernels).
	 */

2754
	rq = finish_task_switch(prev);
2755
	balance_callback(rq);
2756
	preempt_enable();
2757

L
Linus Torvalds 已提交
2758
	if (current->set_child_tid)
2759
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2760 2761 2762
}

/*
2763
 * context_switch - switch to the new MM and the new thread's register state.
L
Linus Torvalds 已提交
2764
 */
2765
static inline struct rq *
2766
context_switch(struct rq *rq, struct task_struct *prev,
2767
	       struct task_struct *next)
L
Linus Torvalds 已提交
2768
{
I
Ingo Molnar 已提交
2769
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2770

2771
	prepare_task_switch(rq, prev, next);
2772

I
Ingo Molnar 已提交
2773 2774
	mm = next->mm;
	oldmm = prev->active_mm;
2775 2776 2777 2778 2779
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2780
	arch_start_context_switch(prev);
2781

2782
	if (!mm) {
L
Linus Torvalds 已提交
2783 2784 2785 2786 2787 2788
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2789
	if (!prev->mm) {
L
Linus Torvalds 已提交
2790 2791 2792
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2793 2794 2795 2796 2797 2798
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
2799
	lockdep_unpin_lock(&rq->lock);
2800
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
2801 2802 2803

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);
I
Ingo Molnar 已提交
2804
	barrier();
2805 2806

	return finish_task_switch(prev);
L
Linus Torvalds 已提交
2807 2808 2809
}

/*
2810
 * nr_running and nr_context_switches:
L
Linus Torvalds 已提交
2811 2812
 *
 * externally visible scheduler statistics: current number of runnable
2813
 * threads, total number of context switches performed since bootup.
L
Linus Torvalds 已提交
2814 2815 2816 2817 2818 2819 2820 2821 2822
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2823
}
L
Linus Torvalds 已提交
2824

2825 2826
/*
 * Check if only the current task is running on the cpu.
2827 2828 2829 2830 2831 2832 2833 2834 2835 2836
 *
 * Caution: this function does not check that the caller has disabled
 * preemption, thus the result might have a time-of-check-to-time-of-use
 * race.  The caller is responsible to use it correctly, for example:
 *
 * - from a non-preemptable section (of course)
 *
 * - from a thread that is bound to a single CPU
 *
 * - in a loop with very short iterations (e.g. a polling loop)
2837 2838 2839
 */
bool single_task_running(void)
{
2840
	return raw_rq()->nr_running == 1;
2841 2842 2843
}
EXPORT_SYMBOL(single_task_running);

L
Linus Torvalds 已提交
2844
unsigned long long nr_context_switches(void)
2845
{
2846 2847
	int i;
	unsigned long long sum = 0;
2848

2849
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2850
		sum += cpu_rq(i)->nr_switches;
2851

L
Linus Torvalds 已提交
2852 2853
	return sum;
}
2854

L
Linus Torvalds 已提交
2855 2856 2857
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2858

2859
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2860
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2861

L
Linus Torvalds 已提交
2862 2863
	return sum;
}
2864

2865
unsigned long nr_iowait_cpu(int cpu)
2866
{
2867
	struct rq *this = cpu_rq(cpu);
2868 2869
	return atomic_read(&this->nr_iowait);
}
2870

2871 2872
void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
{
2873 2874 2875
	struct rq *rq = this_rq();
	*nr_waiters = atomic_read(&rq->nr_iowait);
	*load = rq->load.weight;
2876 2877
}

I
Ingo Molnar 已提交
2878
#ifdef CONFIG_SMP
2879

2880
/*
P
Peter Zijlstra 已提交
2881 2882
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2883
 */
P
Peter Zijlstra 已提交
2884
void sched_exec(void)
2885
{
P
Peter Zijlstra 已提交
2886
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2887
	unsigned long flags;
2888
	int dest_cpu;
2889

2890
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2891
	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2892 2893
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2894

2895
	if (likely(cpu_active(dest_cpu))) {
2896
		struct migration_arg arg = { p, dest_cpu };
2897

2898 2899
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2900 2901
		return;
	}
2902
unlock:
2903
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2904
}
I
Ingo Molnar 已提交
2905

L
Linus Torvalds 已提交
2906 2907 2908
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2909
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
2910 2911

EXPORT_PER_CPU_SYMBOL(kstat);
2912
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
2913

2914 2915 2916 2917 2918 2919 2920 2921 2922
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
2923
	u64 ns;
2924

2925 2926 2927 2928 2929 2930 2931 2932 2933
#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
	/*
	 * 64-bit doesn't need locks to atomically read a 64bit value.
	 * So we have a optimization chance when the task's delta_exec is 0.
	 * Reading ->on_cpu is racy, but this is ok.
	 *
	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
	 * If we race with it entering cpu, unaccounted time is 0. This is
	 * indistinguishable from the read occurring a few cycles earlier.
2934 2935
	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
	 * been accounted, so we're correct here as well.
2936
	 */
2937
	if (!p->on_cpu || !task_on_rq_queued(p))
2938 2939 2940
		return p->se.sum_exec_runtime;
#endif

2941
	rq = task_rq_lock(p, &flags);
2942 2943 2944 2945 2946 2947 2948 2949 2950 2951
	/*
	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
	 * project cycles that may never be accounted to this
	 * thread, breaking clock_gettime().
	 */
	if (task_current(rq, p) && task_on_rq_queued(p)) {
		update_rq_clock(rq);
		p->sched_class->update_curr(rq);
	}
	ns = p->se.sum_exec_runtime;
2952
	task_rq_unlock(rq, p, &flags);
2953 2954 2955

	return ns;
}
2956

2957 2958 2959 2960 2961 2962 2963 2964
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2965
	struct task_struct *curr = rq->curr;
2966 2967

	sched_clock_tick();
I
Ingo Molnar 已提交
2968

2969
	raw_spin_lock(&rq->lock);
2970
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
2971
	curr->sched_class->task_tick(rq, curr, 0);
2972
	update_cpu_load_active(rq);
2973
	calc_global_load_tick(rq);
2974
	raw_spin_unlock(&rq->lock);
2975

2976
	perf_event_task_tick();
2977

2978
#ifdef CONFIG_SMP
2979
	rq->idle_balance = idle_cpu(cpu);
2980
	trigger_load_balance(rq);
2981
#endif
2982
	rq_last_tick_reset(rq);
L
Linus Torvalds 已提交
2983 2984
}

2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995
#ifdef CONFIG_NO_HZ_FULL
/**
 * scheduler_tick_max_deferment
 *
 * Keep at least one tick per second when a single
 * active task is running because the scheduler doesn't
 * yet completely support full dynticks environment.
 *
 * This makes sure that uptime, CFS vruntime, load
 * balancing, etc... continue to move forward, even
 * with a very low granularity.
2996 2997
 *
 * Return: Maximum deferment in nanoseconds.
2998 2999 3000 3001
 */
u64 scheduler_tick_max_deferment(void)
{
	struct rq *rq = this_rq();
3002
	unsigned long next, now = READ_ONCE(jiffies);
3003 3004 3005 3006 3007 3008

	next = rq->last_sched_tick + HZ;

	if (time_before_eq(next, now))
		return 0;

3009
	return jiffies_to_nsecs(next - now);
L
Linus Torvalds 已提交
3010
}
3011
#endif
L
Linus Torvalds 已提交
3012

3013
notrace unsigned long get_parent_ip(unsigned long addr)
3014 3015 3016 3017 3018 3019 3020 3021
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
3022

3023 3024 3025
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

3026
void preempt_count_add(int val)
L
Linus Torvalds 已提交
3027
{
3028
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3029 3030 3031
	/*
	 * Underflow?
	 */
3032 3033
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
3034
#endif
3035
	__preempt_count_add(val);
3036
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3037 3038 3039
	/*
	 * Spinlock count overflowing soon?
	 */
3040 3041
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
3042
#endif
3043 3044 3045 3046 3047 3048 3049
	if (preempt_count() == val) {
		unsigned long ip = get_parent_ip(CALLER_ADDR1);
#ifdef CONFIG_DEBUG_PREEMPT
		current->preempt_disable_ip = ip;
#endif
		trace_preempt_off(CALLER_ADDR0, ip);
	}
L
Linus Torvalds 已提交
3050
}
3051
EXPORT_SYMBOL(preempt_count_add);
3052
NOKPROBE_SYMBOL(preempt_count_add);
L
Linus Torvalds 已提交
3053

3054
void preempt_count_sub(int val)
L
Linus Torvalds 已提交
3055
{
3056
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3057 3058 3059
	/*
	 * Underflow?
	 */
3060
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3061
		return;
L
Linus Torvalds 已提交
3062 3063 3064
	/*
	 * Is the spinlock portion underflowing?
	 */
3065 3066 3067
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
3068
#endif
3069

3070 3071
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3072
	__preempt_count_sub(val);
L
Linus Torvalds 已提交
3073
}
3074
EXPORT_SYMBOL(preempt_count_sub);
3075
NOKPROBE_SYMBOL(preempt_count_sub);
L
Linus Torvalds 已提交
3076 3077 3078 3079

#endif

/*
I
Ingo Molnar 已提交
3080
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3081
 */
I
Ingo Molnar 已提交
3082
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3083
{
3084 3085 3086
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
3087 3088
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
3089

I
Ingo Molnar 已提交
3090
	debug_show_held_locks(prev);
3091
	print_modules();
I
Ingo Molnar 已提交
3092 3093
	if (irqs_disabled())
		print_irqtrace_events(prev);
3094 3095 3096 3097 3098 3099 3100
#ifdef CONFIG_DEBUG_PREEMPT
	if (in_atomic_preempt_off()) {
		pr_err("Preemption disabled at:");
		print_ip_sym(current->preempt_disable_ip);
		pr_cont("\n");
	}
#endif
3101
	dump_stack();
3102
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
I
Ingo Molnar 已提交
3103
}
L
Linus Torvalds 已提交
3104

I
Ingo Molnar 已提交
3105 3106 3107 3108 3109
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
3110
#ifdef CONFIG_SCHED_STACK_END_CHECK
3111
	BUG_ON(task_stack_end_corrupted(prev));
3112
#endif
3113

3114
	if (unlikely(in_atomic_preempt_off())) {
I
Ingo Molnar 已提交
3115
		__schedule_bug(prev);
3116 3117
		preempt_count_set(PREEMPT_DISABLED);
	}
3118
	rcu_sleep_check();
I
Ingo Molnar 已提交
3119

L
Linus Torvalds 已提交
3120 3121
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3122
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3123 3124 3125 3126 3127 3128
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3129
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
3130
{
3131
	const struct sched_class *class = &fair_sched_class;
I
Ingo Molnar 已提交
3132
	struct task_struct *p;
L
Linus Torvalds 已提交
3133 3134

	/*
I
Ingo Molnar 已提交
3135 3136
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3137
	 */
3138
	if (likely(prev->sched_class == class &&
3139
		   rq->nr_running == rq->cfs.h_nr_running)) {
3140
		p = fair_sched_class.pick_next_task(rq, prev);
3141 3142 3143 3144 3145 3146 3147 3148
		if (unlikely(p == RETRY_TASK))
			goto again;

		/* assumes fair_sched_class->next == idle_sched_class */
		if (unlikely(!p))
			p = idle_sched_class.pick_next_task(rq, prev);

		return p;
L
Linus Torvalds 已提交
3149 3150
	}

3151
again:
3152
	for_each_class(class) {
3153
		p = class->pick_next_task(rq, prev);
3154 3155 3156
		if (p) {
			if (unlikely(p == RETRY_TASK))
				goto again;
I
Ingo Molnar 已提交
3157
			return p;
3158
		}
I
Ingo Molnar 已提交
3159
	}
3160 3161

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
3162
}
L
Linus Torvalds 已提交
3163

I
Ingo Molnar 已提交
3164
/*
3165
 * __schedule() is the main scheduler function.
3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
 *
 * The main means of driving the scheduler and thus entering this function are:
 *
 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 *      paths. For example, see arch/x86/entry_64.S.
 *
 *      To drive preemption between tasks, the scheduler sets the flag in timer
 *      interrupt handler scheduler_tick().
 *
 *   3. Wakeups don't really cause entry into schedule(). They add a
 *      task to the run-queue and that's it.
 *
 *      Now, if the new task added to the run-queue preempts the current
 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 *      called on the nearest possible occasion:
 *
 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
 *
 *         - in syscall or exception context, at the next outmost
 *           preempt_enable(). (this might be as soon as the wake_up()'s
 *           spin_unlock()!)
 *
 *         - in IRQ context, return from interrupt-handler to
 *           preemptible context
 *
 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
 *         then at the next:
 *
 *          - cond_resched() call
 *          - explicit schedule() call
 *          - return from syscall or exception to user-space
 *          - return from interrupt-handler to user-space
3200
 *
3201
 * WARNING: must be called with preemption disabled!
I
Ingo Molnar 已提交
3202
 */
3203
static void __sched notrace __schedule(bool preempt)
I
Ingo Molnar 已提交
3204 3205
{
	struct task_struct *prev, *next;
3206
	unsigned long *switch_count;
I
Ingo Molnar 已提交
3207
	struct rq *rq;
3208
	int cpu;
I
Ingo Molnar 已提交
3209 3210 3211 3212 3213

	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	prev = rq->curr;

3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224
	/*
	 * do_exit() calls schedule() with preemption disabled as an exception;
	 * however we must fix that up, otherwise the next task will see an
	 * inconsistent (higher) preempt count.
	 *
	 * It also avoids the below schedule_debug() test from complaining
	 * about this.
	 */
	if (unlikely(prev->state == TASK_DEAD))
		preempt_enable_no_resched_notrace();

I
Ingo Molnar 已提交
3225
	schedule_debug(prev);
L
Linus Torvalds 已提交
3226

3227
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
3228
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
3229

3230 3231 3232
	local_irq_disable();
	rcu_note_context_switch();

3233 3234 3235 3236 3237 3238
	/*
	 * Make sure that signal_pending_state()->signal_pending() below
	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
	 * done by the caller to avoid the race with signal_wake_up().
	 */
	smp_mb__before_spinlock();
3239
	raw_spin_lock(&rq->lock);
3240
	lockdep_pin_lock(&rq->lock);
L
Linus Torvalds 已提交
3241

3242 3243
	rq->clock_skip_update <<= 1; /* promote REQ to ACT */

3244
	switch_count = &prev->nivcsw;
3245
	if (!preempt && prev->state) {
T
Tejun Heo 已提交
3246
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
3247
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
3248
		} else {
3249 3250 3251
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

T
Tejun Heo 已提交
3252
			/*
3253 3254 3255
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
3256 3257 3258 3259 3260 3261 3262 3263 3264
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
		}
I
Ingo Molnar 已提交
3265
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3266 3267
	}

3268
	if (task_on_rq_queued(prev))
3269 3270 3271
		update_rq_clock(rq);

	next = pick_next_task(rq, prev);
3272
	clear_tsk_need_resched(prev);
3273
	clear_preempt_need_resched();
3274
	rq->clock_skip_update = 0;
L
Linus Torvalds 已提交
3275 3276 3277 3278 3279 3280

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

3281
		trace_sched_switch(preempt, prev, next);
3282 3283
		rq = context_switch(rq, prev, next); /* unlocks the rq */
		cpu = cpu_of(rq);
3284 3285
	} else {
		lockdep_unpin_lock(&rq->lock);
3286
		raw_spin_unlock_irq(&rq->lock);
3287
	}
L
Linus Torvalds 已提交
3288

3289
	balance_callback(rq);
L
Linus Torvalds 已提交
3290
}
3291

3292 3293
static inline void sched_submit_work(struct task_struct *tsk)
{
3294
	if (!tsk->state || tsk_is_pi_blocked(tsk))
3295 3296 3297 3298 3299 3300 3301 3302 3303
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

3304
asmlinkage __visible void __sched schedule(void)
3305
{
3306 3307 3308
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
3309
	do {
3310
		preempt_disable();
3311
		__schedule(false);
3312
		sched_preempt_enable_no_resched();
3313
	} while (need_resched());
3314
}
L
Linus Torvalds 已提交
3315 3316
EXPORT_SYMBOL(schedule);

3317
#ifdef CONFIG_CONTEXT_TRACKING
3318
asmlinkage __visible void __sched schedule_user(void)
3319 3320 3321 3322 3323 3324
{
	/*
	 * If we come here after a random call to set_need_resched(),
	 * or we have been woken up remotely but the IPI has not yet arrived,
	 * we haven't yet exited the RCU idle mode. Do it here manually until
	 * we find a better solution.
3325 3326
	 *
	 * NB: There are buggy callers of this function.  Ideally we
3327
	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3328
	 * too frequently to make sense yet.
3329
	 */
3330
	enum ctx_state prev_state = exception_enter();
3331
	schedule();
3332
	exception_exit(prev_state);
3333 3334 3335
}
#endif

3336 3337 3338 3339 3340 3341 3342
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
3343
	sched_preempt_enable_no_resched();
3344 3345 3346 3347
	schedule();
	preempt_disable();
}

3348
static void __sched notrace preempt_schedule_common(void)
3349 3350
{
	do {
3351
		preempt_disable_notrace();
3352
		__schedule(true);
3353
		preempt_enable_no_resched_notrace();
3354 3355 3356 3357 3358 3359 3360 3361

		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
	} while (need_resched());
}

L
Linus Torvalds 已提交
3362 3363
#ifdef CONFIG_PREEMPT
/*
3364
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3365
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3366 3367
 * occur there and call schedule directly.
 */
3368
asmlinkage __visible void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
3369 3370 3371
{
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3372
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3373
	 */
3374
	if (likely(!preemptible()))
L
Linus Torvalds 已提交
3375 3376
		return;

3377
	preempt_schedule_common();
L
Linus Torvalds 已提交
3378
}
3379
NOKPROBE_SYMBOL(preempt_schedule);
L
Linus Torvalds 已提交
3380
EXPORT_SYMBOL(preempt_schedule);
3381 3382

/**
3383
 * preempt_schedule_notrace - preempt_schedule called by tracing
3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395
 *
 * The tracing infrastructure uses preempt_enable_notrace to prevent
 * recursion and tracing preempt enabling caused by the tracing
 * infrastructure itself. But as tracing can happen in areas coming
 * from userspace or just about to enter userspace, a preempt enable
 * can occur before user_exit() is called. This will cause the scheduler
 * to be called when the system is still in usermode.
 *
 * To prevent this, the preempt_enable_notrace will use this function
 * instead of preempt_schedule() to exit user context if needed before
 * calling the scheduler.
 */
3396
asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3397 3398 3399 3400 3401 3402 3403
{
	enum ctx_state prev_ctx;

	if (likely(!preemptible()))
		return;

	do {
3404
		preempt_disable_notrace();
3405 3406 3407 3408 3409 3410
		/*
		 * Needs preempt disabled in case user_exit() is traced
		 * and the tracer calls preempt_enable_notrace() causing
		 * an infinite recursion.
		 */
		prev_ctx = exception_enter();
3411
		__schedule(true);
3412 3413
		exception_exit(prev_ctx);

3414
		preempt_enable_no_resched_notrace();
3415 3416
	} while (need_resched());
}
3417
EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3418

3419
#endif /* CONFIG_PREEMPT */
L
Linus Torvalds 已提交
3420 3421

/*
3422
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3423 3424 3425 3426
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
3427
asmlinkage __visible void __sched preempt_schedule_irq(void)
L
Linus Torvalds 已提交
3428
{
3429
	enum ctx_state prev_state;
3430

3431
	/* Catch callers which need to be fixed */
3432
	BUG_ON(preempt_count() || !irqs_disabled());
L
Linus Torvalds 已提交
3433

3434 3435
	prev_state = exception_enter();

3436
	do {
3437
		preempt_disable();
3438
		local_irq_enable();
3439
		__schedule(true);
3440
		local_irq_disable();
3441
		sched_preempt_enable_no_resched();
3442
	} while (need_resched());
3443 3444

	exception_exit(prev_state);
L
Linus Torvalds 已提交
3445 3446
}

P
Peter Zijlstra 已提交
3447
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3448
			  void *key)
L
Linus Torvalds 已提交
3449
{
P
Peter Zijlstra 已提交
3450
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3451 3452 3453
}
EXPORT_SYMBOL(default_wake_function);

3454 3455 3456 3457 3458 3459 3460 3461 3462 3463
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
3464 3465
 * Used by the rt_mutex code to implement priority inheritance
 * logic. Call site only calls if the priority of the task changed.
3466
 */
3467
void rt_mutex_setprio(struct task_struct *p, int prio)
3468
{
3469
	int oldprio, queued, running, enqueue_flag = ENQUEUE_RESTORE;
3470
	struct rq *rq;
3471
	const struct sched_class *prev_class;
3472

3473
	BUG_ON(prio > MAX_PRIO);
3474

3475
	rq = __task_rq_lock(p);
3476

3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

3495
	trace_sched_pi_setprio(p, prio);
3496
	oldprio = p->prio;
3497
	prev_class = p->sched_class;
3498
	queued = task_on_rq_queued(p);
3499
	running = task_current(rq, p);
3500
	if (queued)
3501
		dequeue_task(rq, p, DEQUEUE_SAVE);
3502
	if (running)
3503
		put_prev_task(rq, p);
I
Ingo Molnar 已提交
3504

3505 3506 3507 3508 3509 3510 3511 3512 3513 3514
	/*
	 * Boosting condition are:
	 * 1. -rt task is running and holds mutex A
	 *      --> -dl task blocks on mutex A
	 *
	 * 2. -dl task is running and holds mutex A
	 *      --> -dl task blocks on mutex A and could preempt the
	 *          running task
	 */
	if (dl_prio(prio)) {
3515 3516 3517
		struct task_struct *pi_task = rt_mutex_get_top_task(p);
		if (!dl_prio(p->normal_prio) ||
		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3518
			p->dl.dl_boosted = 1;
3519
			enqueue_flag |= ENQUEUE_REPLENISH;
3520 3521
		} else
			p->dl.dl_boosted = 0;
3522
		p->sched_class = &dl_sched_class;
3523 3524 3525 3526
	} else if (rt_prio(prio)) {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
		if (oldprio < prio)
3527
			enqueue_flag |= ENQUEUE_HEAD;
I
Ingo Molnar 已提交
3528
		p->sched_class = &rt_sched_class;
3529 3530 3531
	} else {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
3532 3533
		if (rt_prio(oldprio))
			p->rt.timeout = 0;
I
Ingo Molnar 已提交
3534
		p->sched_class = &fair_sched_class;
3535
	}
I
Ingo Molnar 已提交
3536

3537 3538
	p->prio = prio;

3539 3540
	if (running)
		p->sched_class->set_curr_task(rq);
3541
	if (queued)
3542
		enqueue_task(rq, p, enqueue_flag);
3543

P
Peter Zijlstra 已提交
3544
	check_class_changed(rq, p, prev_class, oldprio);
3545
out_unlock:
3546
	preempt_disable(); /* avoid rq from going away on us */
3547
	__task_rq_unlock(rq);
3548 3549 3550

	balance_callback(rq);
	preempt_enable();
3551 3552
}
#endif
3553

3554
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3555
{
3556
	int old_prio, delta, queued;
L
Linus Torvalds 已提交
3557
	unsigned long flags;
3558
	struct rq *rq;
L
Linus Torvalds 已提交
3559

3560
	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
L
Linus Torvalds 已提交
3561 3562 3563 3564 3565 3566 3567 3568 3569 3570
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
3571
	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
L
Linus Torvalds 已提交
3572
	 */
3573
	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3574 3575 3576
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
3577 3578
	queued = task_on_rq_queued(p);
	if (queued)
3579
		dequeue_task(rq, p, DEQUEUE_SAVE);
L
Linus Torvalds 已提交
3580 3581

	p->static_prio = NICE_TO_PRIO(nice);
3582
	set_load_weight(p);
3583 3584 3585
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3586

3587
	if (queued) {
3588
		enqueue_task(rq, p, ENQUEUE_RESTORE);
L
Linus Torvalds 已提交
3589
		/*
3590 3591
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3592
		 */
3593
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3594
			resched_curr(rq);
L
Linus Torvalds 已提交
3595 3596
	}
out_unlock:
3597
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3598 3599 3600
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3601 3602 3603 3604 3605
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3606
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3607
{
3608
	/* convert nice value [19,-20] to rlimit style value [1,40] */
3609
	int nice_rlim = nice_to_rlimit(nice);
3610

3611
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3612 3613 3614
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3615 3616 3617 3618 3619 3620 3621 3622 3623
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3624
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3625
{
3626
	long nice, retval;
L
Linus Torvalds 已提交
3627 3628 3629 3630 3631 3632

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
3633
	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3634
	nice = task_nice(current) + increment;
L
Linus Torvalds 已提交
3635

3636
	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
M
Matt Mackall 已提交
3637 3638 3639
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
3654
 * Return: The priority value as seen by users in /proc.
L
Linus Torvalds 已提交
3655 3656 3657
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3658
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3659 3660 3661 3662 3663 3664 3665
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
3666 3667
 *
 * Return: 1 if the CPU is currently idle. 0 otherwise.
L
Linus Torvalds 已提交
3668 3669 3670
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3685 3686 3687 3688 3689
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
3690 3691
 *
 * Return: The idle task for the cpu @cpu.
L
Linus Torvalds 已提交
3692
 */
3693
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3694 3695 3696 3697 3698 3699 3700
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
3701 3702
 *
 * The task of @pid, if found. %NULL otherwise.
L
Linus Torvalds 已提交
3703
 */
A
Alexey Dobriyan 已提交
3704
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
3705
{
3706
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
3707 3708
}

3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723
/*
 * This function initializes the sched_dl_entity of a newly becoming
 * SCHED_DEADLINE task.
 *
 * Only the static values are considered here, the actual runtime and the
 * absolute deadline will be properly calculated when the task is enqueued
 * for the first time with its new policy.
 */
static void
__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	dl_se->dl_runtime = attr->sched_runtime;
	dl_se->dl_deadline = attr->sched_deadline;
3724
	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3725
	dl_se->flags = attr->sched_flags;
3726
	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746

	/*
	 * Changing the parameters of a task is 'tricky' and we're not doing
	 * the correct thing -- also see task_dead_dl() and switched_from_dl().
	 *
	 * What we SHOULD do is delay the bandwidth release until the 0-lag
	 * point. This would include retaining the task_struct until that time
	 * and change dl_overflow() to not immediately decrement the current
	 * amount.
	 *
	 * Instead we retain the current runtime/deadline and let the new
	 * parameters take effect after the current reservation period lapses.
	 * This is safe (albeit pessimistic) because the 0-lag point is always
	 * before the current scheduling deadline.
	 *
	 * We can still have temporary overloads because we do not delay the
	 * change in bandwidth until that time; so admission control is
	 * not on the safe side. It does however guarantee tasks will never
	 * consume more than promised.
	 */
3747 3748
}

3749 3750 3751 3752 3753 3754
/*
 * sched_setparam() passes in -1 for its policy, to let the functions
 * it calls know not to change it.
 */
#define SETPARAM_POLICY	-1

3755 3756
static void __setscheduler_params(struct task_struct *p,
		const struct sched_attr *attr)
L
Linus Torvalds 已提交
3757
{
3758 3759
	int policy = attr->sched_policy;

3760
	if (policy == SETPARAM_POLICY)
3761 3762
		policy = p->policy;

L
Linus Torvalds 已提交
3763
	p->policy = policy;
3764

3765 3766
	if (dl_policy(policy))
		__setparam_dl(p, attr);
3767
	else if (fair_policy(policy))
3768 3769
		p->static_prio = NICE_TO_PRIO(attr->sched_nice);

3770 3771 3772 3773 3774 3775
	/*
	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
	 * !rt_policy. Always setting this ensures that things like
	 * getparam()/getattr() don't report silly values for !rt tasks.
	 */
	p->rt_priority = attr->sched_priority;
3776
	p->normal_prio = normal_prio(p);
3777 3778
	set_load_weight(p);
}
3779

3780 3781
/* Actually do priority change: must hold pi & rq lock. */
static void __setscheduler(struct rq *rq, struct task_struct *p,
3782
			   const struct sched_attr *attr, bool keep_boost)
3783 3784
{
	__setscheduler_params(p, attr);
3785

3786
	/*
3787 3788
	 * Keep a potential priority boosting if called from
	 * sched_setscheduler().
3789
	 */
3790 3791 3792 3793
	if (keep_boost)
		p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
	else
		p->prio = normal_prio(p);
3794

3795 3796 3797
	if (dl_prio(p->prio))
		p->sched_class = &dl_sched_class;
	else if (rt_prio(p->prio))
3798 3799 3800
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
3801
}
3802 3803 3804 3805 3806 3807 3808 3809 3810

static void
__getparam_dl(struct task_struct *p, struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	attr->sched_priority = p->rt_priority;
	attr->sched_runtime = dl_se->dl_runtime;
	attr->sched_deadline = dl_se->dl_deadline;
3811
	attr->sched_period = dl_se->dl_period;
3812 3813 3814 3815 3816 3817
	attr->sched_flags = dl_se->flags;
}

/*
 * This function validates the new parameters of a -deadline task.
 * We ask for the deadline not being zero, and greater or equal
3818
 * than the runtime, as well as the period of being zero or
3819
 * greater than deadline. Furthermore, we have to be sure that
3820 3821 3822 3823
 * user parameters are above the internal resolution of 1us (we
 * check sched_runtime only since it is always the smaller one) and
 * below 2^63 ns (we have to check both sched_deadline and
 * sched_period, as the latter can be zero).
3824 3825 3826 3827
 */
static bool
__checkparam_dl(const struct sched_attr *attr)
{
3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853
	/* deadline != 0 */
	if (attr->sched_deadline == 0)
		return false;

	/*
	 * Since we truncate DL_SCALE bits, make sure we're at least
	 * that big.
	 */
	if (attr->sched_runtime < (1ULL << DL_SCALE))
		return false;

	/*
	 * Since we use the MSB for wrap-around and sign issues, make
	 * sure it's not set (mind that period can be equal to zero).
	 */
	if (attr->sched_deadline & (1ULL << 63) ||
	    attr->sched_period & (1ULL << 63))
		return false;

	/* runtime <= deadline <= period (if period != 0) */
	if ((attr->sched_period != 0 &&
	     attr->sched_period < attr->sched_deadline) ||
	    attr->sched_deadline < attr->sched_runtime)
		return false;

	return true;
3854 3855
}

3856 3857 3858 3859 3860 3861 3862 3863 3864 3865
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
3866 3867
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
3868 3869 3870 3871
	rcu_read_unlock();
	return match;
}

3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885
static bool dl_param_changed(struct task_struct *p,
		const struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	if (dl_se->dl_runtime != attr->sched_runtime ||
		dl_se->dl_deadline != attr->sched_deadline ||
		dl_se->dl_period != attr->sched_period ||
		dl_se->flags != attr->sched_flags)
		return true;

	return false;
}

3886 3887
static int __sched_setscheduler(struct task_struct *p,
				const struct sched_attr *attr,
3888
				bool user, bool pi)
L
Linus Torvalds 已提交
3889
{
3890 3891
	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
		      MAX_RT_PRIO - 1 - attr->sched_priority;
3892
	int retval, oldprio, oldpolicy = -1, queued, running;
3893
	int new_effective_prio, policy = attr->sched_policy;
L
Linus Torvalds 已提交
3894
	unsigned long flags;
3895
	const struct sched_class *prev_class;
3896
	struct rq *rq;
3897
	int reset_on_fork;
L
Linus Torvalds 已提交
3898

3899 3900
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
3901 3902
recheck:
	/* double check policy once rq lock held */
3903 3904
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
3905
		policy = oldpolicy = p->policy;
3906
	} else {
3907
		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3908

3909
		if (!valid_policy(policy))
3910 3911 3912
			return -EINVAL;
	}

3913 3914 3915
	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
		return -EINVAL;

L
Linus Torvalds 已提交
3916 3917
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
3918 3919
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
3920
	 */
3921
	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3922
	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
3923
		return -EINVAL;
3924 3925
	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
	    (rt_policy(policy) != (attr->sched_priority != 0)))
L
Linus Torvalds 已提交
3926 3927
		return -EINVAL;

3928 3929 3930
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
3931
	if (user && !capable(CAP_SYS_NICE)) {
3932
		if (fair_policy(policy)) {
3933
			if (attr->sched_nice < task_nice(p) &&
3934
			    !can_nice(p, attr->sched_nice))
3935 3936 3937
				return -EPERM;
		}

3938
		if (rt_policy(policy)) {
3939 3940
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
3941 3942 3943 3944 3945 3946

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
3947 3948
			if (attr->sched_priority > p->rt_priority &&
			    attr->sched_priority > rlim_rtprio)
3949 3950
				return -EPERM;
		}
3951

3952 3953 3954 3955 3956 3957 3958 3959 3960
		 /*
		  * Can't set/change SCHED_DEADLINE policy at all for now
		  * (safest behavior); in the future we would like to allow
		  * unprivileged DL tasks to increase their relative deadline
		  * or reduce their runtime (both ways reducing utilization)
		  */
		if (dl_policy(policy))
			return -EPERM;

I
Ingo Molnar 已提交
3961
		/*
3962 3963
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
3964
		 */
3965
		if (idle_policy(p->policy) && !idle_policy(policy)) {
3966
			if (!can_nice(p, task_nice(p)))
3967 3968
				return -EPERM;
		}
3969

3970
		/* can't change other user's priorities */
3971
		if (!check_same_owner(p))
3972
			return -EPERM;
3973 3974 3975 3976

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
3977
	}
L
Linus Torvalds 已提交
3978

3979
	if (user) {
3980
		retval = security_task_setscheduler(p);
3981 3982 3983 3984
		if (retval)
			return retval;
	}

3985 3986 3987
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
3988
	 *
L
Lucas De Marchi 已提交
3989
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
3990 3991
	 * runqueue lock must be held.
	 */
3992
	rq = task_rq_lock(p, &flags);
3993

3994 3995 3996 3997
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
3998
		task_rq_unlock(rq, p, &flags);
3999 4000 4001
		return -EINVAL;
	}

4002
	/*
4003 4004
	 * If not changing anything there's no need to proceed further,
	 * but store a possible modification of reset_on_fork.
4005
	 */
4006
	if (unlikely(policy == p->policy)) {
4007
		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4008 4009 4010
			goto change;
		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
			goto change;
4011
		if (dl_policy(policy) && dl_param_changed(p, attr))
4012
			goto change;
4013

4014
		p->sched_reset_on_fork = reset_on_fork;
4015
		task_rq_unlock(rq, p, &flags);
4016 4017
		return 0;
	}
4018
change:
4019

4020
	if (user) {
4021
#ifdef CONFIG_RT_GROUP_SCHED
4022 4023 4024 4025 4026
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4027 4028
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
4029
			task_rq_unlock(rq, p, &flags);
4030 4031 4032
			return -EPERM;
		}
#endif
4033 4034 4035 4036 4037 4038 4039 4040 4041
#ifdef CONFIG_SMP
		if (dl_bandwidth_enabled() && dl_policy(policy)) {
			cpumask_t *span = rq->rd->span;

			/*
			 * Don't allow tasks with an affinity mask smaller than
			 * the entire root_domain to become SCHED_DEADLINE. We
			 * will also fail if there's no bandwidth available.
			 */
4042 4043
			if (!cpumask_subset(span, &p->cpus_allowed) ||
			    rq->rd->dl_bw.bw == 0) {
4044 4045 4046 4047 4048 4049
				task_rq_unlock(rq, p, &flags);
				return -EPERM;
			}
		}
#endif
	}
4050

L
Linus Torvalds 已提交
4051 4052 4053
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4054
		task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
4055 4056
		goto recheck;
	}
4057 4058 4059 4060 4061 4062

	/*
	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
	 * is available.
	 */
4063
	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
4064 4065 4066 4067
		task_rq_unlock(rq, p, &flags);
		return -EBUSY;
	}

4068 4069 4070
	p->sched_reset_on_fork = reset_on_fork;
	oldprio = p->prio;

4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084
	if (pi) {
		/*
		 * Take priority boosted tasks into account. If the new
		 * effective priority is unchanged, we just store the new
		 * normal parameters and do not touch the scheduler class and
		 * the runqueue. This will be done when the task deboost
		 * itself.
		 */
		new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
		if (new_effective_prio == oldprio) {
			__setscheduler_params(p, attr);
			task_rq_unlock(rq, p, &flags);
			return 0;
		}
4085 4086
	}

4087
	queued = task_on_rq_queued(p);
4088
	running = task_current(rq, p);
4089
	if (queued)
4090
		dequeue_task(rq, p, DEQUEUE_SAVE);
4091
	if (running)
4092
		put_prev_task(rq, p);
4093

4094
	prev_class = p->sched_class;
4095
	__setscheduler(rq, p, attr, pi);
4096

4097 4098
	if (running)
		p->sched_class->set_curr_task(rq);
4099
	if (queued) {
4100
		int enqueue_flags = ENQUEUE_RESTORE;
4101 4102 4103 4104
		/*
		 * We enqueue to tail when the priority of a task is
		 * increased (user space view).
		 */
4105 4106 4107 4108
		if (oldprio <= p->prio)
			enqueue_flags |= ENQUEUE_HEAD;

		enqueue_task(rq, p, enqueue_flags);
4109
	}
4110

P
Peter Zijlstra 已提交
4111
	check_class_changed(rq, p, prev_class, oldprio);
4112
	preempt_disable(); /* avoid rq from going away on us */
4113
	task_rq_unlock(rq, p, &flags);
4114

4115 4116
	if (pi)
		rt_mutex_adjust_pi(p);
4117

4118 4119 4120 4121 4122
	/*
	 * Run balance callbacks after we've adjusted the PI chain.
	 */
	balance_callback(rq);
	preempt_enable();
4123

L
Linus Torvalds 已提交
4124 4125
	return 0;
}
4126

4127 4128 4129 4130 4131 4132 4133 4134 4135
static int _sched_setscheduler(struct task_struct *p, int policy,
			       const struct sched_param *param, bool check)
{
	struct sched_attr attr = {
		.sched_policy   = policy,
		.sched_priority = param->sched_priority,
		.sched_nice	= PRIO_TO_NICE(p->static_prio),
	};

4136 4137
	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4138 4139 4140 4141 4142
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
		policy &= ~SCHED_RESET_ON_FORK;
		attr.sched_policy = policy;
	}

4143
	return __sched_setscheduler(p, &attr, check, true);
4144
}
4145 4146 4147 4148 4149 4150
/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
4151 4152
 * Return: 0 on success. An error code otherwise.
 *
4153 4154 4155
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
4156
		       const struct sched_param *param)
4157
{
4158
	return _sched_setscheduler(p, policy, param, true);
4159
}
L
Linus Torvalds 已提交
4160 4161
EXPORT_SYMBOL_GPL(sched_setscheduler);

4162 4163
int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
{
4164
	return __sched_setscheduler(p, attr, true, true);
4165 4166 4167
}
EXPORT_SYMBOL_GPL(sched_setattr);

4168 4169 4170 4171 4172 4173 4174 4175 4176 4177
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
4178 4179
 *
 * Return: 0 on success. An error code otherwise.
4180 4181
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4182
			       const struct sched_param *param)
4183
{
4184
	return _sched_setscheduler(p, policy, param, false);
4185
}
4186
EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4187

I
Ingo Molnar 已提交
4188 4189
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4190 4191 4192
{
	struct sched_param lparam;
	struct task_struct *p;
4193
	int retval;
L
Linus Torvalds 已提交
4194 4195 4196 4197 4198

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4199 4200 4201

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4202
	p = find_process_by_pid(pid);
4203 4204 4205
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4206

L
Linus Torvalds 已提交
4207 4208 4209
	return retval;
}

4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271
/*
 * Mimics kernel/events/core.c perf_copy_attr().
 */
static int sched_copy_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr)
{
	u32 size;
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = SCHED_ATTR_SIZE_VER0;

	if (size < SCHED_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
	 */
	if (size > sizeof(*attr)) {
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;

		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;

		for (; addr < end; addr++) {
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
		size = sizeof(*attr);
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * XXX: do we want to be lenient like existing syscalls; or do we want
	 * to be strict and return an error on out-of-bounds values?
	 */
4272
	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4273

4274
	return 0;
4275 4276 4277

err_size:
	put_user(sizeof(*attr), &uattr->size);
4278
	return -E2BIG;
4279 4280
}

L
Linus Torvalds 已提交
4281 4282 4283 4284 4285
/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4286 4287
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4288
 */
4289 4290
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
4291
{
4292 4293 4294 4295
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4296 4297 4298 4299 4300 4301 4302
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
4303 4304
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4305
 */
4306
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4307
{
4308
	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
L
Linus Torvalds 已提交
4309 4310
}

4311 4312 4313
/**
 * sys_sched_setattr - same as above, but with extended sched_attr
 * @pid: the pid in question.
J
Juri Lelli 已提交
4314
 * @uattr: structure containing the extended parameters.
4315
 * @flags: for future extension.
4316
 */
4317 4318
SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
			       unsigned int, flags)
4319 4320 4321 4322 4323
{
	struct sched_attr attr;
	struct task_struct *p;
	int retval;

4324
	if (!uattr || pid < 0 || flags)
4325 4326
		return -EINVAL;

4327 4328 4329
	retval = sched_copy_attr(uattr, &attr);
	if (retval)
		return retval;
4330

4331
	if ((int)attr.sched_policy < 0)
4332
		return -EINVAL;
4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343

	rcu_read_lock();
	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (p != NULL)
		retval = sched_setattr(p, &attr);
	rcu_read_unlock();

	return retval;
}

L
Linus Torvalds 已提交
4344 4345 4346
/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
4347 4348 4349
 *
 * Return: On success, the policy of the thread. Otherwise, a negative error
 * code.
L
Linus Torvalds 已提交
4350
 */
4351
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4352
{
4353
	struct task_struct *p;
4354
	int retval;
L
Linus Torvalds 已提交
4355 4356

	if (pid < 0)
4357
		return -EINVAL;
L
Linus Torvalds 已提交
4358 4359

	retval = -ESRCH;
4360
	rcu_read_lock();
L
Linus Torvalds 已提交
4361 4362 4363 4364
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4365 4366
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4367
	}
4368
	rcu_read_unlock();
L
Linus Torvalds 已提交
4369 4370 4371 4372
	return retval;
}

/**
4373
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4374 4375
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
4376 4377 4378
 *
 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
 * code.
L
Linus Torvalds 已提交
4379
 */
4380
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4381
{
4382
	struct sched_param lp = { .sched_priority = 0 };
4383
	struct task_struct *p;
4384
	int retval;
L
Linus Torvalds 已提交
4385 4386

	if (!param || pid < 0)
4387
		return -EINVAL;
L
Linus Torvalds 已提交
4388

4389
	rcu_read_lock();
L
Linus Torvalds 已提交
4390 4391 4392 4393 4394 4395 4396 4397 4398
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4399 4400
	if (task_has_rt_policy(p))
		lp.sched_priority = p->rt_priority;
4401
	rcu_read_unlock();
L
Linus Torvalds 已提交
4402 4403 4404 4405 4406 4407 4408 4409 4410

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4411
	rcu_read_unlock();
L
Linus Torvalds 已提交
4412 4413 4414
	return retval;
}

4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437
static int sched_read_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr,
			   unsigned int usize)
{
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, usize))
		return -EFAULT;

	/*
	 * If we're handed a smaller struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. old
	 * user-space does not get uncomplete information.
	 */
	if (usize < sizeof(*attr)) {
		unsigned char *addr;
		unsigned char *end;

		addr = (void *)attr + usize;
		end  = (void *)attr + sizeof(*attr);

		for (; addr < end; addr++) {
			if (*addr)
4438
				return -EFBIG;
4439 4440 4441 4442 4443
		}

		attr->size = usize;
	}

4444
	ret = copy_to_user(uattr, attr, attr->size);
4445 4446 4447
	if (ret)
		return -EFAULT;

4448
	return 0;
4449 4450 4451
}

/**
4452
 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4453
 * @pid: the pid in question.
J
Juri Lelli 已提交
4454
 * @uattr: structure containing the extended parameters.
4455
 * @size: sizeof(attr) for fwd/bwd comp.
4456
 * @flags: for future extension.
4457
 */
4458 4459
SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
		unsigned int, size, unsigned int, flags)
4460 4461 4462 4463 4464 4465 4466 4467
{
	struct sched_attr attr = {
		.size = sizeof(struct sched_attr),
	};
	struct task_struct *p;
	int retval;

	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4468
	    size < SCHED_ATTR_SIZE_VER0 || flags)
4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481
		return -EINVAL;

	rcu_read_lock();
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	attr.sched_policy = p->policy;
4482 4483
	if (p->sched_reset_on_fork)
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4484 4485 4486
	if (task_has_dl_policy(p))
		__getparam_dl(p, &attr);
	else if (task_has_rt_policy(p))
4487 4488
		attr.sched_priority = p->rt_priority;
	else
4489
		attr.sched_nice = task_nice(p);
4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500

	rcu_read_unlock();

	retval = sched_read_attr(uattr, &attr, size);
	return retval;

out_unlock:
	rcu_read_unlock();
	return retval;
}

4501
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4502
{
4503
	cpumask_var_t cpus_allowed, new_mask;
4504 4505
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4506

4507
	rcu_read_lock();
L
Linus Torvalds 已提交
4508 4509 4510

	p = find_process_by_pid(pid);
	if (!p) {
4511
		rcu_read_unlock();
L
Linus Torvalds 已提交
4512 4513 4514
		return -ESRCH;
	}

4515
	/* Prevent p going away */
L
Linus Torvalds 已提交
4516
	get_task_struct(p);
4517
	rcu_read_unlock();
L
Linus Torvalds 已提交
4518

4519 4520 4521 4522
	if (p->flags & PF_NO_SETAFFINITY) {
		retval = -EINVAL;
		goto out_put_task;
	}
4523 4524 4525 4526 4527 4528 4529 4530
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4531
	retval = -EPERM;
E
Eric W. Biederman 已提交
4532 4533 4534 4535
	if (!check_same_owner(p)) {
		rcu_read_lock();
		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
			rcu_read_unlock();
4536
			goto out_free_new_mask;
E
Eric W. Biederman 已提交
4537 4538 4539
		}
		rcu_read_unlock();
	}
L
Linus Torvalds 已提交
4540

4541
	retval = security_task_setscheduler(p);
4542
	if (retval)
4543
		goto out_free_new_mask;
4544

4545 4546 4547 4548

	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);

4549 4550 4551 4552 4553 4554 4555
	/*
	 * Since bandwidth control happens on root_domain basis,
	 * if admission test is enabled, we only admit -deadline
	 * tasks allowed to run on all the CPUs in the task's
	 * root_domain.
	 */
#ifdef CONFIG_SMP
4556 4557 4558
	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
		rcu_read_lock();
		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4559
			retval = -EBUSY;
4560
			rcu_read_unlock();
4561
			goto out_free_new_mask;
4562
		}
4563
		rcu_read_unlock();
4564 4565
	}
#endif
P
Peter Zijlstra 已提交
4566
again:
4567
	retval = __set_cpus_allowed_ptr(p, new_mask, true);
L
Linus Torvalds 已提交
4568

P
Paul Menage 已提交
4569
	if (!retval) {
4570 4571
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4572 4573 4574 4575 4576
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4577
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4578 4579 4580
			goto again;
		}
	}
4581
out_free_new_mask:
4582 4583 4584 4585
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4586 4587 4588 4589 4590
	put_task_struct(p);
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4591
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4592
{
4593 4594 4595 4596 4597
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4598 4599 4600 4601 4602 4603 4604 4605
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
4606 4607
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4608
 */
4609 4610
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4611
{
4612
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4613 4614
	int retval;

4615 4616
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4617

4618 4619 4620 4621 4622
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4623 4624
}

4625
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4626
{
4627
	struct task_struct *p;
4628
	unsigned long flags;
L
Linus Torvalds 已提交
4629 4630
	int retval;

4631
	rcu_read_lock();
L
Linus Torvalds 已提交
4632 4633 4634 4635 4636 4637

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4638 4639 4640 4641
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4642
	raw_spin_lock_irqsave(&p->pi_lock, flags);
4643
	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4644
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4645 4646

out_unlock:
4647
	rcu_read_unlock();
L
Linus Torvalds 已提交
4648

4649
	return retval;
L
Linus Torvalds 已提交
4650 4651 4652 4653 4654 4655 4656
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4657 4658
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4659
 */
4660 4661
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4662 4663
{
	int ret;
4664
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4665

A
Anton Blanchard 已提交
4666
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4667 4668
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4669 4670
		return -EINVAL;

4671 4672
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4673

4674 4675
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4676
		size_t retlen = min_t(size_t, len, cpumask_size());
4677 4678

		if (copy_to_user(user_mask_ptr, mask, retlen))
4679 4680
			ret = -EFAULT;
		else
4681
			ret = retlen;
4682 4683
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4684

4685
	return ret;
L
Linus Torvalds 已提交
4686 4687 4688 4689 4690
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4691 4692
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
4693 4694
 *
 * Return: 0.
L
Linus Torvalds 已提交
4695
 */
4696
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4697
{
4698
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4699

4700
	schedstat_inc(rq, yld_count);
4701
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4702 4703 4704 4705 4706 4707

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4708
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4709
	do_raw_spin_unlock(&rq->lock);
4710
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
4711 4712 4713 4714 4715 4716

	schedule();

	return 0;
}

4717
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4718
{
4719
	if (should_resched(0)) {
4720
		preempt_schedule_common();
L
Linus Torvalds 已提交
4721 4722 4723 4724
		return 1;
	}
	return 0;
}
4725
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4726 4727

/*
4728
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4729 4730
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4731
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4732 4733 4734
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4735
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4736
{
4737
	int resched = should_resched(PREEMPT_LOCK_OFFSET);
J
Jan Kara 已提交
4738 4739
	int ret = 0;

4740 4741
	lockdep_assert_held(lock);

4742
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4743
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4744
		if (resched)
4745
			preempt_schedule_common();
N
Nick Piggin 已提交
4746 4747
		else
			cpu_relax();
J
Jan Kara 已提交
4748
		ret = 1;
L
Linus Torvalds 已提交
4749 4750
		spin_lock(lock);
	}
J
Jan Kara 已提交
4751
	return ret;
L
Linus Torvalds 已提交
4752
}
4753
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4754

4755
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4756 4757 4758
{
	BUG_ON(!in_softirq());

4759
	if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4760
		local_bh_enable();
4761
		preempt_schedule_common();
L
Linus Torvalds 已提交
4762 4763 4764 4765 4766
		local_bh_disable();
		return 1;
	}
	return 0;
}
4767
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4768 4769 4770 4771

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
 * 	yield();
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
4790 4791 4792 4793 4794 4795 4796 4797
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

4798 4799 4800 4801
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
4802 4803
 * @p: target task
 * @preempt: whether task preemption is allowed or not
4804 4805 4806 4807
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
4808
 * Return:
4809 4810 4811
 *	true (>0) if we indeed boosted the target task.
 *	false (0) if we failed to boost the target.
 *	-ESRCH if there's no task to yield to.
4812
 */
4813
int __sched yield_to(struct task_struct *p, bool preempt)
4814 4815 4816 4817
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
4818
	int yielded = 0;
4819 4820 4821 4822 4823 4824

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
4825 4826 4827 4828 4829 4830 4831 4832 4833
	/*
	 * If we're the only runnable task on the rq and target rq also
	 * has only one task, there's absolutely no point in yielding.
	 */
	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
		yielded = -ESRCH;
		goto out_irq;
	}

4834
	double_rq_lock(rq, p_rq);
4835
	if (task_rq(p) != p_rq) {
4836 4837 4838 4839 4840
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
4841
		goto out_unlock;
4842 4843

	if (curr->sched_class != p->sched_class)
4844
		goto out_unlock;
4845 4846

	if (task_running(p_rq, p) || p->state)
4847
		goto out_unlock;
4848 4849

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4850
	if (yielded) {
4851
		schedstat_inc(rq, yld_count);
4852 4853 4854 4855 4856
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
4857
			resched_curr(p_rq);
4858
	}
4859

4860
out_unlock:
4861
	double_rq_unlock(rq, p_rq);
4862
out_irq:
4863 4864
	local_irq_restore(flags);

4865
	if (yielded > 0)
4866 4867 4868 4869 4870 4871
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
4872
/*
I
Ingo Molnar 已提交
4873
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4874 4875 4876 4877
 * that process accounting knows that this is a task in IO wait state.
 */
long __sched io_schedule_timeout(long timeout)
{
4878 4879
	int old_iowait = current->in_iowait;
	struct rq *rq;
L
Linus Torvalds 已提交
4880 4881
	long ret;

4882
	current->in_iowait = 1;
4883
	blk_schedule_flush_plug(current);
4884

4885
	delayacct_blkio_start();
4886
	rq = raw_rq();
L
Linus Torvalds 已提交
4887 4888
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
4889
	current->in_iowait = old_iowait;
L
Linus Torvalds 已提交
4890
	atomic_dec(&rq->nr_iowait);
4891
	delayacct_blkio_end();
4892

L
Linus Torvalds 已提交
4893 4894
	return ret;
}
4895
EXPORT_SYMBOL(io_schedule_timeout);
L
Linus Torvalds 已提交
4896 4897 4898 4899 4900

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
4901 4902 4903
 * Return: On success, this syscall returns the maximum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
4904
 */
4905
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
4906 4907 4908 4909 4910 4911 4912 4913
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
4914
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
4915
	case SCHED_NORMAL:
4916
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4917
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4918 4919 4920 4921 4922 4923 4924 4925 4926 4927
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
4928 4929 4930
 * Return: On success, this syscall returns the minimum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
4931
 */
4932
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
4933 4934 4935 4936 4937 4938 4939 4940
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
4941
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
4942
	case SCHED_NORMAL:
4943
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4944
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
4957 4958 4959
 *
 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
 * an error code.
L
Linus Torvalds 已提交
4960
 */
4961
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4962
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
4963
{
4964
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4965
	unsigned int time_slice;
4966 4967
	unsigned long flags;
	struct rq *rq;
4968
	int retval;
L
Linus Torvalds 已提交
4969 4970 4971
	struct timespec t;

	if (pid < 0)
4972
		return -EINVAL;
L
Linus Torvalds 已提交
4973 4974

	retval = -ESRCH;
4975
	rcu_read_lock();
L
Linus Torvalds 已提交
4976 4977 4978 4979 4980 4981 4982 4983
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4984
	rq = task_rq_lock(p, &flags);
4985 4986 4987
	time_slice = 0;
	if (p->sched_class->get_rr_interval)
		time_slice = p->sched_class->get_rr_interval(rq, p);
4988
	task_rq_unlock(rq, p, &flags);
D
Dmitry Adamushko 已提交
4989

4990
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
4991
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4992 4993
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4994

L
Linus Torvalds 已提交
4995
out_unlock:
4996
	rcu_read_unlock();
L
Linus Torvalds 已提交
4997 4998 4999
	return retval;
}

5000
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5001

5002
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5003 5004
{
	unsigned long free = 0;
5005
	int ppid;
5006
	unsigned long state = p->state;
L
Linus Torvalds 已提交
5007

5008 5009
	if (state)
		state = __ffs(state) + 1;
5010
	printk(KERN_INFO "%-15.15s %c", p->comm,
5011
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5012
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5013
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5014
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5015
	else
P
Peter Zijlstra 已提交
5016
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5017 5018
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5019
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5020
	else
P
Peter Zijlstra 已提交
5021
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5022 5023
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
5024
	free = stack_not_used(p);
L
Linus Torvalds 已提交
5025
#endif
5026
	ppid = 0;
5027
	rcu_read_lock();
5028 5029
	if (pid_alive(p))
		ppid = task_pid_nr(rcu_dereference(p->real_parent));
5030
	rcu_read_unlock();
P
Peter Zijlstra 已提交
5031
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5032
		task_pid_nr(p), ppid,
5033
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
5034

5035
	print_worker_info(KERN_INFO, p);
5036
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5037 5038
}

I
Ingo Molnar 已提交
5039
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5040
{
5041
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5042

5043
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
5044 5045
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5046
#else
P
Peter Zijlstra 已提交
5047 5048
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5049
#endif
5050
	rcu_read_lock();
5051
	for_each_process_thread(g, p) {
L
Linus Torvalds 已提交
5052 5053
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
5054
		 * console might take a lot of time:
L
Linus Torvalds 已提交
5055 5056
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5057
		if (!state_filter || (p->state & state_filter))
5058
			sched_show_task(p);
5059
	}
L
Linus Torvalds 已提交
5060

5061 5062
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5063 5064 5065
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
5066
	rcu_read_unlock();
I
Ingo Molnar 已提交
5067 5068 5069
	/*
	 * Only show locks if all tasks are dumped:
	 */
5070
	if (!state_filter)
I
Ingo Molnar 已提交
5071
		debug_show_all_locks();
L
Linus Torvalds 已提交
5072 5073
}

5074
void init_idle_bootup_task(struct task_struct *idle)
I
Ingo Molnar 已提交
5075
{
I
Ingo Molnar 已提交
5076
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5077 5078
}

5079 5080 5081 5082 5083 5084 5085 5086
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5087
void init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5088
{
5089
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5090 5091
	unsigned long flags;

5092 5093
	raw_spin_lock_irqsave(&idle->pi_lock, flags);
	raw_spin_lock(&rq->lock);
5094

5095
	__sched_fork(0, idle);
5096
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
5097 5098
	idle->se.exec_start = sched_clock();

5099 5100 5101 5102 5103 5104 5105 5106 5107
#ifdef CONFIG_SMP
	/*
	 * Its possible that init_idle() gets called multiple times on a task,
	 * in that case do_set_cpus_allowed() will not do the right thing.
	 *
	 * And since this is boot we can forgo the serialization.
	 */
	set_cpus_allowed_common(idle, cpumask_of(cpu));
#endif
5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
5119
	__set_task_cpu(idle, cpu);
5120
	rcu_read_unlock();
L
Linus Torvalds 已提交
5121 5122

	rq->curr = rq->idle = idle;
5123
	idle->on_rq = TASK_ON_RQ_QUEUED;
5124
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
5125
	idle->on_cpu = 1;
5126
#endif
5127 5128
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
L
Linus Torvalds 已提交
5129 5130

	/* Set the preempt count _outside_ the spinlocks! */
5131
	init_idle_preempt_count(idle, cpu);
5132

I
Ingo Molnar 已提交
5133 5134 5135 5136
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
5137
	ftrace_graph_init_idle_task(idle, cpu);
5138
	vtime_init_idle(idle, cpu);
5139
#ifdef CONFIG_SMP
5140 5141
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
5142 5143
}

5144 5145 5146 5147 5148 5149 5150
int cpuset_cpumask_can_shrink(const struct cpumask *cur,
			      const struct cpumask *trial)
{
	int ret = 1, trial_cpus;
	struct dl_bw *cur_dl_b;
	unsigned long flags;

5151 5152 5153
	if (!cpumask_weight(cur))
		return ret;

5154
	rcu_read_lock_sched();
5155 5156 5157 5158 5159 5160 5161 5162
	cur_dl_b = dl_bw_of(cpumask_any(cur));
	trial_cpus = cpumask_weight(trial);

	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
	if (cur_dl_b->bw != -1 &&
	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
		ret = 0;
	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5163
	rcu_read_unlock_sched();
5164 5165 5166 5167

	return ret;
}

5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191
int task_can_attach(struct task_struct *p,
		    const struct cpumask *cs_cpus_allowed)
{
	int ret = 0;

	/*
	 * Kthreads which disallow setaffinity shouldn't be moved
	 * to a new cpuset; we don't want to change their cpu
	 * affinity and isolating such threads by their set of
	 * allowed nodes is unnecessary.  Thus, cpusets are not
	 * applicable for such threads.  This prevents checking for
	 * success of set_cpus_allowed_ptr() on all attached tasks
	 * before cpus_allowed may be changed.
	 */
	if (p->flags & PF_NO_SETAFFINITY) {
		ret = -EINVAL;
		goto out;
	}

#ifdef CONFIG_SMP
	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
					      cs_cpus_allowed)) {
		unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
							cs_cpus_allowed);
5192
		struct dl_bw *dl_b;
5193 5194 5195 5196
		bool overflow;
		int cpus;
		unsigned long flags;

5197 5198
		rcu_read_lock_sched();
		dl_b = dl_bw_of(dest_cpu);
5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213
		raw_spin_lock_irqsave(&dl_b->lock, flags);
		cpus = dl_bw_cpus(dest_cpu);
		overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
		if (overflow)
			ret = -EBUSY;
		else {
			/*
			 * We reserve space for this task in the destination
			 * root_domain, as we can't fail after this point.
			 * We will free resources in the source root_domain
			 * later on (see set_cpus_allowed_dl()).
			 */
			__dl_add(dl_b, p->dl.dl_bw);
		}
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5214
		rcu_read_unlock_sched();
5215 5216 5217 5218 5219 5220 5221

	}
#endif
out:
	return ret;
}

L
Linus Torvalds 已提交
5222 5223
#ifdef CONFIG_SMP

5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238
#ifdef CONFIG_NUMA_BALANCING
/* Migrate current task p to target_cpu */
int migrate_task_to(struct task_struct *p, int target_cpu)
{
	struct migration_arg arg = { p, target_cpu };
	int curr_cpu = task_cpu(p);

	if (curr_cpu == target_cpu)
		return 0;

	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
		return -EINVAL;

	/* TODO: This is not properly updating schedstats */

5239
	trace_sched_move_numa(p, curr_cpu, target_cpu);
5240 5241
	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
}
5242 5243 5244 5245 5246 5247 5248 5249 5250

/*
 * Requeue a task on a given node and accurately track the number of NUMA
 * tasks on the runqueues
 */
void sched_setnuma(struct task_struct *p, int nid)
{
	struct rq *rq;
	unsigned long flags;
5251
	bool queued, running;
5252 5253

	rq = task_rq_lock(p, &flags);
5254
	queued = task_on_rq_queued(p);
5255 5256
	running = task_current(rq, p);

5257
	if (queued)
5258
		dequeue_task(rq, p, DEQUEUE_SAVE);
5259
	if (running)
5260
		put_prev_task(rq, p);
5261 5262 5263 5264 5265

	p->numa_preferred_nid = nid;

	if (running)
		p->sched_class->set_curr_task(rq);
5266
	if (queued)
5267
		enqueue_task(rq, p, ENQUEUE_RESTORE);
5268 5269
	task_rq_unlock(rq, p, &flags);
}
P
Peter Zijlstra 已提交
5270
#endif /* CONFIG_NUMA_BALANCING */
5271

L
Linus Torvalds 已提交
5272
#ifdef CONFIG_HOTPLUG_CPU
5273
/*
5274 5275
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
5276
 */
5277
void idle_task_exit(void)
L
Linus Torvalds 已提交
5278
{
5279
	struct mm_struct *mm = current->active_mm;
5280

5281
	BUG_ON(cpu_online(smp_processor_id()));
5282

5283
	if (mm != &init_mm) {
5284
		switch_mm(mm, &init_mm, current);
5285 5286
		finish_arch_post_lock_switch();
	}
5287
	mmdrop(mm);
L
Linus Torvalds 已提交
5288 5289 5290
}

/*
5291 5292 5293 5294 5295
 * Since this CPU is going 'away' for a while, fold any nr_active delta
 * we might have. Assumes we're called after migrate_tasks() so that the
 * nr_active count is stable.
 *
 * Also see the comment "Global load-average calculations".
L
Linus Torvalds 已提交
5296
 */
5297
static void calc_load_migrate(struct rq *rq)
L
Linus Torvalds 已提交
5298
{
5299 5300 5301
	long delta = calc_load_fold_active(rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
5302 5303
}

5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319
static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
{
}

static const struct sched_class fake_sched_class = {
	.put_prev_task = put_prev_task_fake,
};

static struct task_struct fake_task = {
	/*
	 * Avoid pull_{rt,dl}_task()
	 */
	.prio = MAX_PRIO + 1,
	.sched_class = &fake_sched_class,
};

5320
/*
5321 5322 5323 5324 5325 5326
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
5327
 */
5328
static void migrate_tasks(struct rq *dead_rq)
L
Linus Torvalds 已提交
5329
{
5330
	struct rq *rq = dead_rq;
5331 5332
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
5333 5334

	/*
5335 5336 5337 5338 5339 5340 5341
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
5342
	 */
5343
	rq->stop = NULL;
5344

5345 5346 5347 5348 5349 5350 5351
	/*
	 * put_prev_task() and pick_next_task() sched
	 * class method both need to have an up-to-date
	 * value of rq->clock[_task]
	 */
	update_rq_clock(rq);

5352
	for (;;) {
5353 5354 5355 5356 5357
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
5358
			break;
5359

5360
		/*
W
Wanpeng Li 已提交
5361
		 * pick_next_task assumes pinned rq->lock.
5362 5363
		 */
		lockdep_pin_lock(&rq->lock);
5364
		next = pick_next_task(rq, &fake_task);
5365
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
5366
		next->sched_class->put_prev_task(rq, next);
5367

W
Wanpeng Li 已提交
5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391
		/*
		 * Rules for changing task_struct::cpus_allowed are holding
		 * both pi_lock and rq->lock, such that holding either
		 * stabilizes the mask.
		 *
		 * Drop rq->lock is not quite as disastrous as it usually is
		 * because !cpu_active at this point, which means load-balance
		 * will not interfere. Also, stop-machine.
		 */
		lockdep_unpin_lock(&rq->lock);
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&next->pi_lock);
		raw_spin_lock(&rq->lock);

		/*
		 * Since we're inside stop-machine, _nothing_ should have
		 * changed the task, WARN if weird stuff happened, because in
		 * that case the above rq->lock drop is a fail too.
		 */
		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
			raw_spin_unlock(&next->pi_lock);
			continue;
		}

5392
		/* Find suitable destination for @next, with force if needed. */
5393
		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5394

5395 5396 5397 5398 5399 5400
		rq = __migrate_task(rq, next, dest_cpu);
		if (rq != dead_rq) {
			raw_spin_unlock(&rq->lock);
			rq = dead_rq;
			raw_spin_lock(&rq->lock);
		}
W
Wanpeng Li 已提交
5401
		raw_spin_unlock(&next->pi_lock);
L
Linus Torvalds 已提交
5402
	}
5403

5404
	rq->stop = stop;
5405
}
L
Linus Torvalds 已提交
5406 5407
#endif /* CONFIG_HOTPLUG_CPU */

5408 5409 5410
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5411 5412
	{
		.procname	= "sched_domain",
5413
		.mode		= 0555,
5414
	},
5415
	{}
5416 5417 5418
};

static struct ctl_table sd_ctl_root[] = {
5419 5420
	{
		.procname	= "kernel",
5421
		.mode		= 0555,
5422 5423
		.child		= sd_ctl_dir,
	},
5424
	{}
5425 5426 5427 5428 5429
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5430
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5431 5432 5433 5434

	return entry;
}

5435 5436
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5437
	struct ctl_table *entry;
5438

5439 5440 5441
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5442
	 * will always be set. In the lowest directory the names are
5443 5444 5445
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5446 5447
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5448 5449 5450
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5451 5452 5453 5454 5455

	kfree(*tablep);
	*tablep = NULL;
}

5456
static int min_load_idx = 0;
5457
static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5458

5459
static void
5460
set_table_entry(struct ctl_table *entry,
5461
		const char *procname, void *data, int maxlen,
5462 5463
		umode_t mode, proc_handler *proc_handler,
		bool load_idx)
5464 5465 5466 5467 5468 5469
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
5470 5471 5472 5473 5474

	if (load_idx) {
		entry->extra1 = &min_load_idx;
		entry->extra2 = &max_load_idx;
	}
5475 5476 5477 5478 5479
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5480
	struct ctl_table *table = sd_alloc_ctl_entry(14);
5481

5482 5483 5484
	if (table == NULL)
		return NULL;

5485
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5486
		sizeof(long), 0644, proc_doulongvec_minmax, false);
5487
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5488
		sizeof(long), 0644, proc_doulongvec_minmax, false);
5489
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5490
		sizeof(int), 0644, proc_dointvec_minmax, true);
5491
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5492
		sizeof(int), 0644, proc_dointvec_minmax, true);
5493
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5494
		sizeof(int), 0644, proc_dointvec_minmax, true);
5495
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5496
		sizeof(int), 0644, proc_dointvec_minmax, true);
5497
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5498
		sizeof(int), 0644, proc_dointvec_minmax, true);
5499
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5500
		sizeof(int), 0644, proc_dointvec_minmax, false);
5501
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5502
		sizeof(int), 0644, proc_dointvec_minmax, false);
5503
	set_table_entry(&table[9], "cache_nice_tries",
5504
		&sd->cache_nice_tries,
5505
		sizeof(int), 0644, proc_dointvec_minmax, false);
5506
	set_table_entry(&table[10], "flags", &sd->flags,
5507
		sizeof(int), 0644, proc_dointvec_minmax, false);
5508 5509 5510 5511
	set_table_entry(&table[11], "max_newidle_lb_cost",
		&sd->max_newidle_lb_cost,
		sizeof(long), 0644, proc_doulongvec_minmax, false);
	set_table_entry(&table[12], "name", sd->name,
5512
		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5513
	/* &table[13] is terminator */
5514 5515 5516 5517

	return table;
}

5518
static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5519 5520 5521 5522 5523 5524 5525 5526 5527
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5528 5529
	if (table == NULL)
		return NULL;
5530 5531 5532 5533 5534

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5535
		entry->mode = 0555;
5536 5537 5538 5539 5540 5541 5542 5543
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5544
static void register_sched_domain_sysctl(void)
5545
{
5546
	int i, cpu_num = num_possible_cpus();
5547 5548 5549
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5550 5551 5552
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5553 5554 5555
	if (entry == NULL)
		return;

5556
	for_each_possible_cpu(i) {
5557 5558
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5559
		entry->mode = 0555;
5560
		entry->child = sd_alloc_ctl_cpu_table(i);
5561
		entry++;
5562
	}
5563 5564

	WARN_ON(sd_sysctl_header);
5565 5566
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5567

5568
/* may be called multiple times per register */
5569 5570
static void unregister_sched_domain_sysctl(void)
{
5571
	unregister_sysctl_table(sd_sysctl_header);
5572
	sd_sysctl_header = NULL;
5573 5574
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5575
}
5576
#else
5577 5578 5579 5580
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5581 5582
{
}
P
Peter Zijlstra 已提交
5583
#endif /* CONFIG_SCHED_DEBUG && CONFIG_SYSCTL */
5584

5585 5586 5587 5588 5589
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5590
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5610
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5611 5612 5613 5614
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5615 5616 5617 5618
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5619
static int
5620
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5621
{
5622
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5623
	unsigned long flags;
5624
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5625

5626
	switch (action & ~CPU_TASKS_FROZEN) {
5627

L
Linus Torvalds 已提交
5628
	case CPU_UP_PREPARE:
5629
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5630
		break;
5631

L
Linus Torvalds 已提交
5632
	case CPU_ONLINE:
5633
		/* Update our root-domain */
5634
		raw_spin_lock_irqsave(&rq->lock, flags);
5635
		if (rq->rd) {
5636
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5637 5638

			set_rq_online(rq);
5639
		}
5640
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5641
		break;
5642

L
Linus Torvalds 已提交
5643
#ifdef CONFIG_HOTPLUG_CPU
5644
	case CPU_DYING:
5645
		sched_ttwu_pending();
G
Gregory Haskins 已提交
5646
		/* Update our root-domain */
5647
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5648
		if (rq->rd) {
5649
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5650
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5651
		}
5652
		migrate_tasks(rq);
5653
		BUG_ON(rq->nr_running != 1); /* the migration thread */
5654
		raw_spin_unlock_irqrestore(&rq->lock, flags);
5655
		break;
5656

5657
	case CPU_DEAD:
5658
		calc_load_migrate(rq);
G
Gregory Haskins 已提交
5659
		break;
L
Linus Torvalds 已提交
5660 5661
#endif
	}
5662 5663 5664

	update_max_interval();

L
Linus Torvalds 已提交
5665 5666 5667
	return NOTIFY_OK;
}

5668 5669 5670
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5671
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5672
 */
5673
static struct notifier_block migration_notifier = {
L
Linus Torvalds 已提交
5674
	.notifier_call = migration_call,
5675
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
5676 5677
};

5678
static void set_cpu_rq_start_time(void)
5679 5680 5681 5682 5683 5684
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
	rq->age_stamp = sched_clock_cpu(cpu);
}

5685
static int sched_cpu_active(struct notifier_block *nfb,
5686 5687
				      unsigned long action, void *hcpu)
{
P
Peter Zijlstra 已提交
5688 5689
	int cpu = (long)hcpu;

5690
	switch (action & ~CPU_TASKS_FROZEN) {
5691 5692 5693
	case CPU_STARTING:
		set_cpu_rq_start_time();
		return NOTIFY_OK;
P
Peter Zijlstra 已提交
5694

5695 5696 5697 5698 5699 5700
	case CPU_ONLINE:
		/*
		 * At this point a starting CPU has marked itself as online via
		 * set_cpu_online(). But it might not yet have marked itself
		 * as active, which is essential from here on.
		 */
P
Peter Zijlstra 已提交
5701 5702 5703 5704
		set_cpu_active(cpu, true);
		stop_machine_unpark(cpu);
		return NOTIFY_OK;

5705
	case CPU_DOWN_FAILED:
P
Peter Zijlstra 已提交
5706
		set_cpu_active(cpu, true);
5707
		return NOTIFY_OK;
P
Peter Zijlstra 已提交
5708

5709 5710 5711 5712 5713
	default:
		return NOTIFY_DONE;
	}
}

5714
static int sched_cpu_inactive(struct notifier_block *nfb,
5715 5716 5717 5718
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
5719
		set_cpu_active((long)hcpu, false);
5720
		return NOTIFY_OK;
5721 5722
	default:
		return NOTIFY_DONE;
5723 5724 5725
	}
}

5726
static int __init migration_init(void)
L
Linus Torvalds 已提交
5727 5728
{
	void *cpu = (void *)(long)smp_processor_id();
5729
	int err;
5730

5731
	/* Initialize migration for the boot CPU */
5732 5733
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5734 5735
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5736

5737 5738 5739 5740
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

5741
	return 0;
L
Linus Torvalds 已提交
5742
}
5743
early_initcall(migration_init);
5744

5745 5746
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

5747
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5748

5749
static __read_mostly int sched_debug_enabled;
5750

5751
static int __init sched_debug_setup(char *str)
5752
{
5753
	sched_debug_enabled = 1;
5754 5755 5756

	return 0;
}
5757 5758 5759 5760 5761 5762
early_param("sched_debug", sched_debug_setup);

static inline bool sched_debug(void)
{
	return sched_debug_enabled;
}
5763

5764
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5765
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5766
{
I
Ingo Molnar 已提交
5767
	struct sched_group *group = sd->groups;
L
Linus Torvalds 已提交
5768

5769
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5770 5771 5772 5773

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5774
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5775
		if (sd->parent)
P
Peter Zijlstra 已提交
5776 5777
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5778
		return -1;
N
Nick Piggin 已提交
5779 5780
	}

5781 5782
	printk(KERN_CONT "span %*pbl level %s\n",
	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
I
Ingo Molnar 已提交
5783

5784
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5785 5786
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5787
	}
5788
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5789 5790
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5791
	}
L
Linus Torvalds 已提交
5792

I
Ingo Molnar 已提交
5793
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5794
	do {
I
Ingo Molnar 已提交
5795
		if (!group) {
P
Peter Zijlstra 已提交
5796 5797
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5798 5799 5800
			break;
		}

5801
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5802 5803
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
5804 5805
			break;
		}
L
Linus Torvalds 已提交
5806

5807 5808
		if (!(sd->flags & SD_OVERLAP) &&
		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5809 5810
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
5811 5812
			break;
		}
L
Linus Torvalds 已提交
5813

5814
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
5815

5816 5817
		printk(KERN_CONT " %*pbl",
		       cpumask_pr_args(sched_group_cpus(group)));
5818
		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5819 5820
			printk(KERN_CONT " (cpu_capacity = %d)",
				group->sgc->capacity);
5821
		}
L
Linus Torvalds 已提交
5822

I
Ingo Molnar 已提交
5823 5824
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
5825
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5826

5827
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
5828
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5829

5830 5831
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
5832 5833
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
5834 5835
	return 0;
}
L
Linus Torvalds 已提交
5836

I
Ingo Molnar 已提交
5837 5838 5839
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5840

5841
	if (!sched_debug_enabled)
5842 5843
		return;

I
Ingo Molnar 已提交
5844 5845 5846 5847
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5848

I
Ingo Molnar 已提交
5849 5850 5851
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
5852
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
I
Ingo Molnar 已提交
5853
			break;
L
Linus Torvalds 已提交
5854 5855
		level++;
		sd = sd->parent;
5856
		if (!sd)
I
Ingo Molnar 已提交
5857 5858
			break;
	}
L
Linus Torvalds 已提交
5859
}
5860
#else /* !CONFIG_SCHED_DEBUG */
5861
# define sched_domain_debug(sd, cpu) do { } while (0)
5862 5863 5864 5865
static inline bool sched_debug(void)
{
	return false;
}
5866
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
5867

5868
static int sd_degenerate(struct sched_domain *sd)
5869
{
5870
	if (cpumask_weight(sched_domain_span(sd)) == 1)
5871 5872 5873 5874 5875 5876
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5877
			 SD_BALANCE_EXEC |
5878
			 SD_SHARE_CPUCAPACITY |
5879 5880
			 SD_SHARE_PKG_RESOURCES |
			 SD_SHARE_POWERDOMAIN)) {
5881 5882 5883 5884 5885
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
5886
	if (sd->flags & (SD_WAKE_AFFINE))
5887 5888 5889 5890 5891
		return 0;

	return 1;
}

5892 5893
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5894 5895 5896 5897 5898 5899
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

5900
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5901 5902 5903 5904 5905 5906 5907
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5908
				SD_BALANCE_EXEC |
5909
				SD_SHARE_CPUCAPACITY |
5910
				SD_SHARE_PKG_RESOURCES |
5911 5912
				SD_PREFER_SIBLING |
				SD_SHARE_POWERDOMAIN);
5913 5914
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
5915 5916 5917 5918 5919 5920 5921
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

5922
static void free_rootdomain(struct rcu_head *rcu)
5923
{
5924
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5925

5926
	cpupri_cleanup(&rd->cpupri);
5927
	cpudl_cleanup(&rd->cpudl);
5928
	free_cpumask_var(rd->dlo_mask);
5929 5930 5931 5932 5933 5934
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
5935 5936
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
5937
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
5938 5939
	unsigned long flags;

5940
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5941 5942

	if (rq->rd) {
I
Ingo Molnar 已提交
5943
		old_rd = rq->rd;
G
Gregory Haskins 已提交
5944

5945
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5946
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5947

5948
		cpumask_clear_cpu(rq->cpu, old_rd->span);
5949

I
Ingo Molnar 已提交
5950
		/*
5951
		 * If we dont want to free the old_rd yet then
I
Ingo Molnar 已提交
5952 5953 5954 5955 5956
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
5957 5958 5959 5960 5961
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

5962
	cpumask_set_cpu(rq->cpu, rd->span);
5963
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5964
		set_rq_online(rq);
G
Gregory Haskins 已提交
5965

5966
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
5967 5968

	if (old_rd)
5969
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
5970 5971
}

5972
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
5973 5974 5975
{
	memset(rd, 0, sizeof(*rd));

5976
	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
5977
		goto out;
5978
	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
5979
		goto free_span;
5980
	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5981
		goto free_online;
5982
	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5983
		goto free_dlo_mask;
5984

5985
	init_dl_bw(&rd->dl_bw);
5986 5987
	if (cpudl_init(&rd->cpudl) != 0)
		goto free_dlo_mask;
5988

5989
	if (cpupri_init(&rd->cpupri) != 0)
5990
		goto free_rto_mask;
5991
	return 0;
5992

5993 5994
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
5995 5996
free_dlo_mask:
	free_cpumask_var(rd->dlo_mask);
5997 5998 5999 6000
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
6001
out:
6002
	return -ENOMEM;
G
Gregory Haskins 已提交
6003 6004
}

6005 6006 6007 6008 6009 6010
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
struct root_domain def_root_domain;

G
Gregory Haskins 已提交
6011 6012
static void init_defrootdomain(void)
{
6013
	init_rootdomain(&def_root_domain);
6014

G
Gregory Haskins 已提交
6015 6016 6017
	atomic_set(&def_root_domain.refcount, 1);
}

6018
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6019 6020 6021 6022 6023 6024 6025
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6026
	if (init_rootdomain(rd) != 0) {
6027 6028 6029
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
6030 6031 6032 6033

	return rd;
}

6034
static void free_sched_groups(struct sched_group *sg, int free_sgc)
6035 6036 6037 6038 6039 6040 6041 6042 6043 6044
{
	struct sched_group *tmp, *first;

	if (!sg)
		return;

	first = sg;
	do {
		tmp = sg->next;

6045 6046
		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
			kfree(sg->sgc);
6047 6048 6049 6050 6051 6052

		kfree(sg);
		sg = tmp;
	} while (sg != first);
}

6053 6054 6055
static void free_sched_domain(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
6056 6057 6058 6059 6060 6061 6062 6063

	/*
	 * If its an overlapping domain it has private groups, iterate and
	 * nuke them all.
	 */
	if (sd->flags & SD_OVERLAP) {
		free_sched_groups(sd->groups, 1);
	} else if (atomic_dec_and_test(&sd->groups->ref)) {
6064
		kfree(sd->groups->sgc);
6065
		kfree(sd->groups);
6066
	}
6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080
	kfree(sd);
}

static void destroy_sched_domain(struct sched_domain *sd, int cpu)
{
	call_rcu(&sd->rcu, free_sched_domain);
}

static void destroy_sched_domains(struct sched_domain *sd, int cpu)
{
	for (; sd; sd = sd->parent)
		destroy_sched_domain(sd, cpu);
}

6081 6082 6083 6084 6085 6086 6087
/*
 * Keep a special pointer to the highest sched_domain that has
 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 * allows us to avoid some pointer chasing select_idle_sibling().
 *
 * Also keep a unique ID per domain (we use the first cpu number in
 * the cpumask of the domain), this allows us to quickly tell if
6088
 * two cpus are in the same cache domain, see cpus_share_cache().
6089 6090
 */
DEFINE_PER_CPU(struct sched_domain *, sd_llc);
6091
DEFINE_PER_CPU(int, sd_llc_size);
6092
DEFINE_PER_CPU(int, sd_llc_id);
6093
DEFINE_PER_CPU(struct sched_domain *, sd_numa);
6094 6095
DEFINE_PER_CPU(struct sched_domain *, sd_busy);
DEFINE_PER_CPU(struct sched_domain *, sd_asym);
6096 6097 6098 6099

static void update_top_cache_domain(int cpu)
{
	struct sched_domain *sd;
6100
	struct sched_domain *busy_sd = NULL;
6101
	int id = cpu;
6102
	int size = 1;
6103 6104

	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
6105
	if (sd) {
6106
		id = cpumask_first(sched_domain_span(sd));
6107
		size = cpumask_weight(sched_domain_span(sd));
6108
		busy_sd = sd->parent; /* sd_busy */
6109
	}
6110
	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
6111 6112

	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
6113
	per_cpu(sd_llc_size, cpu) = size;
6114
	per_cpu(sd_llc_id, cpu) = id;
6115 6116 6117

	sd = lowest_flag_domain(cpu, SD_NUMA);
	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
6118 6119 6120

	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
6121 6122
}

L
Linus Torvalds 已提交
6123
/*
I
Ingo Molnar 已提交
6124
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6125 6126
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6127 6128
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6129
{
6130
	struct rq *rq = cpu_rq(cpu);
6131 6132 6133
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
6134
	for (tmp = sd; tmp; ) {
6135 6136 6137
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6138

6139
		if (sd_parent_degenerate(tmp, parent)) {
6140
			tmp->parent = parent->parent;
6141 6142
			if (parent->parent)
				parent->parent->child = tmp;
6143 6144 6145 6146 6147 6148 6149
			/*
			 * Transfer SD_PREFER_SIBLING down in case of a
			 * degenerate parent; the spans match for this
			 * so the property transfers.
			 */
			if (parent->flags & SD_PREFER_SIBLING)
				tmp->flags |= SD_PREFER_SIBLING;
6150
			destroy_sched_domain(parent, cpu);
6151 6152
		} else
			tmp = tmp->parent;
6153 6154
	}

6155
	if (sd && sd_degenerate(sd)) {
6156
		tmp = sd;
6157
		sd = sd->parent;
6158
		destroy_sched_domain(tmp, cpu);
6159 6160 6161
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6162

6163
	sched_domain_debug(sd, cpu);
L
Linus Torvalds 已提交
6164

G
Gregory Haskins 已提交
6165
	rq_attach_root(rq, rd);
6166
	tmp = rq->sd;
N
Nick Piggin 已提交
6167
	rcu_assign_pointer(rq->sd, sd);
6168
	destroy_sched_domains(tmp, cpu);
6169 6170

	update_top_cache_domain(cpu);
L
Linus Torvalds 已提交
6171 6172 6173 6174 6175
}

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
6176
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
6177
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
6178 6179 6180
	return 1;
}

I
Ingo Molnar 已提交
6181
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6182

6183
struct s_data {
6184
	struct sched_domain ** __percpu sd;
6185 6186 6187
	struct root_domain	*rd;
};

6188 6189
enum s_alloc {
	sa_rootdomain,
6190
	sa_sd,
6191
	sa_sd_storage,
6192 6193 6194
	sa_none,
};

P
Peter Zijlstra 已提交
6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232
/*
 * Build an iteration mask that can exclude certain CPUs from the upwards
 * domain traversal.
 *
 * Asymmetric node setups can result in situations where the domain tree is of
 * unequal depth, make sure to skip domains that already cover the entire
 * range.
 *
 * In that case build_sched_domains() will have terminated the iteration early
 * and our sibling sd spans will be empty. Domains should always include the
 * cpu they're built on, so check that.
 *
 */
static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
{
	const struct cpumask *span = sched_domain_span(sd);
	struct sd_data *sdd = sd->private;
	struct sched_domain *sibling;
	int i;

	for_each_cpu(i, span) {
		sibling = *per_cpu_ptr(sdd->sd, i);
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
			continue;

		cpumask_set_cpu(i, sched_group_mask(sg));
	}
}

/*
 * Return the canonical balance cpu for this group, this is the first cpu
 * of this group that's also in the iteration mask.
 */
int group_balance_cpu(struct sched_group *sg)
{
	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
}

6233 6234 6235 6236 6237 6238 6239
static int
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered = sched_domains_tmpmask;
	struct sd_data *sdd = sd->private;
6240
	struct sched_domain *sibling;
6241 6242 6243 6244 6245 6246 6247 6248 6249 6250
	int i;

	cpumask_clear(covered);

	for_each_cpu(i, span) {
		struct cpumask *sg_span;

		if (cpumask_test_cpu(i, covered))
			continue;

6251
		sibling = *per_cpu_ptr(sdd->sd, i);
P
Peter Zijlstra 已提交
6252 6253

		/* See the comment near build_group_mask(). */
6254
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
P
Peter Zijlstra 已提交
6255 6256
			continue;

6257
		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6258
				GFP_KERNEL, cpu_to_node(cpu));
6259 6260 6261 6262 6263

		if (!sg)
			goto fail;

		sg_span = sched_group_cpus(sg);
6264 6265 6266
		if (sibling->child)
			cpumask_copy(sg_span, sched_domain_span(sibling->child));
		else
6267 6268 6269 6270
			cpumask_set_cpu(i, sg_span);

		cpumask_or(covered, covered, sg_span);

6271 6272
		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
		if (atomic_inc_return(&sg->sgc->ref) == 1)
P
Peter Zijlstra 已提交
6273 6274
			build_group_mask(sd, sg);

6275
		/*
6276
		 * Initialize sgc->capacity such that even if we mess up the
6277 6278 6279
		 * domains and no possible iteration will get us here, we won't
		 * die on a /0 trap.
		 */
6280
		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6281

P
Peter Zijlstra 已提交
6282 6283 6284 6285 6286
		/*
		 * Make sure the first group of this domain contains the
		 * canonical balance cpu. Otherwise the sched_domain iteration
		 * breaks. See update_sg_lb_stats().
		 */
P
Peter Zijlstra 已提交
6287
		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
P
Peter Zijlstra 已提交
6288
		    group_balance_cpu(sg) == cpu)
6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307
			groups = sg;

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
		last->next = first;
	}
	sd->groups = groups;

	return 0;

fail:
	free_sched_groups(first, 0);

	return -ENOMEM;
}

6308
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
6309
{
6310 6311
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
6312

6313 6314
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
6315

6316
	if (sg) {
6317
		*sg = *per_cpu_ptr(sdd->sg, cpu);
6318 6319
		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6320
	}
6321 6322

	return cpu;
6323 6324
}

6325
/*
6326 6327
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
6328
 * and ->cpu_capacity to 0.
6329 6330
 *
 * Assumes the sched_domain tree is fully constructed
6331
 */
6332 6333
static int
build_sched_groups(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
6334
{
6335 6336 6337
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
6338
	struct cpumask *covered;
6339
	int i;
6340

6341 6342 6343
	get_group(cpu, sdd, &sd->groups);
	atomic_inc(&sd->groups->ref);

6344
	if (cpu != cpumask_first(span))
6345 6346
		return 0;

6347 6348 6349
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

6350
	cpumask_clear(covered);
6351

6352 6353
	for_each_cpu(i, span) {
		struct sched_group *sg;
6354
		int group, j;
6355

6356 6357
		if (cpumask_test_cpu(i, covered))
			continue;
6358

6359
		group = get_group(i, sdd, &sg);
P
Peter Zijlstra 已提交
6360
		cpumask_setall(sched_group_mask(sg));
6361

6362 6363 6364
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
6365

6366 6367 6368
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
6369

6370 6371 6372 6373 6374 6375 6376
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
6377 6378

	return 0;
6379
}
6380

6381
/*
6382
 * Initialize sched groups cpu_capacity.
6383
 *
6384
 * cpu_capacity indicates the capacity of sched group, which is used while
6385
 * distributing the load between different sched groups in a sched domain.
6386 6387 6388 6389
 * Typically cpu_capacity for all the groups in a sched domain will be same
 * unless there are asymmetries in the topology. If there are asymmetries,
 * group having more cpu_capacity will pickup more load compared to the
 * group having less cpu_capacity.
6390
 */
6391
static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6392
{
6393
	struct sched_group *sg = sd->groups;
6394

6395
	WARN_ON(!sg);
6396 6397 6398 6399 6400

	do {
		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
		sg = sg->next;
	} while (sg != sd->groups);
6401

P
Peter Zijlstra 已提交
6402
	if (cpu != group_balance_cpu(sg))
6403
		return;
6404

6405 6406
	update_group_capacity(sd, cpu);
	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6407 6408
}

6409 6410 6411 6412 6413
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

6414
static int default_relax_domain_level = -1;
6415
int sched_domain_level_max;
6416 6417 6418

static int __init setup_relax_domain_level(char *str)
{
6419 6420
	if (kstrtoint(str, 0, &default_relax_domain_level))
		pr_warn("Unable to set relax_domain_level\n");
6421

6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
6440
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6441 6442
	} else {
		/* turn on idle balance on this domain */
6443
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6444 6445 6446
	}
}

6447 6448 6449
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

6450 6451 6452 6453 6454
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
6455 6456
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
6457 6458
	case sa_sd:
		free_percpu(d->sd); /* fall through */
6459
	case sa_sd_storage:
6460
		__sdt_free(cpu_map); /* fall through */
6461 6462 6463 6464
	case sa_none:
		break;
	}
}
6465

6466 6467 6468
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
6469 6470
	memset(d, 0, sizeof(*d));

6471 6472
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
6473 6474 6475
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
6476
	d->rd = alloc_rootdomain();
6477
	if (!d->rd)
6478
		return sa_sd;
6479 6480
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
6481

6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

6494
	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6495
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6496

6497 6498
	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6499 6500
}

6501 6502
#ifdef CONFIG_NUMA
static int sched_domains_numa_levels;
6503
enum numa_topology_type sched_numa_topology_type;
6504
static int *sched_domains_numa_distance;
6505
int sched_max_numa_distance;
6506 6507
static struct cpumask ***sched_domains_numa_masks;
static int sched_domains_curr_level;
6508
#endif
6509

6510 6511 6512
/*
 * SD_flags allowed in topology descriptions.
 *
6513
 * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6514 6515
 * SD_SHARE_PKG_RESOURCES - describes shared caches
 * SD_NUMA                - describes NUMA topologies
6516
 * SD_SHARE_POWERDOMAIN   - describes shared power domain
6517 6518 6519 6520 6521
 *
 * Odd one out:
 * SD_ASYM_PACKING        - describes SMT quirks
 */
#define TOPOLOGY_SD_FLAGS		\
6522
	(SD_SHARE_CPUCAPACITY |		\
6523 6524
	 SD_SHARE_PKG_RESOURCES |	\
	 SD_NUMA |			\
6525 6526
	 SD_ASYM_PACKING |		\
	 SD_SHARE_POWERDOMAIN)
6527 6528

static struct sched_domain *
6529
sd_init(struct sched_domain_topology_level *tl, int cpu)
6530 6531
{
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547
	int sd_weight, sd_flags = 0;

#ifdef CONFIG_NUMA
	/*
	 * Ugly hack to pass state to sd_numa_mask()...
	 */
	sched_domains_curr_level = tl->numa_level;
#endif

	sd_weight = cpumask_weight(tl->mask(cpu));

	if (tl->sd_flags)
		sd_flags = (*tl->sd_flags)();
	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
			"wrong sd_flags in topology description\n"))
		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6548 6549 6550 6551 6552

	*sd = (struct sched_domain){
		.min_interval		= sd_weight,
		.max_interval		= 2*sd_weight,
		.busy_factor		= 32,
6553
		.imbalance_pct		= 125,
6554 6555 6556 6557

		.cache_nice_tries	= 0,
		.busy_idx		= 0,
		.idle_idx		= 0,
6558 6559 6560 6561 6562 6563
		.newidle_idx		= 0,
		.wake_idx		= 0,
		.forkexec_idx		= 0,

		.flags			= 1*SD_LOAD_BALANCE
					| 1*SD_BALANCE_NEWIDLE
6564 6565
					| 1*SD_BALANCE_EXEC
					| 1*SD_BALANCE_FORK
6566
					| 0*SD_BALANCE_WAKE
6567
					| 1*SD_WAKE_AFFINE
6568
					| 0*SD_SHARE_CPUCAPACITY
6569
					| 0*SD_SHARE_PKG_RESOURCES
6570
					| 0*SD_SERIALIZE
6571
					| 0*SD_PREFER_SIBLING
6572 6573
					| 0*SD_NUMA
					| sd_flags
6574
					,
6575

6576 6577
		.last_balance		= jiffies,
		.balance_interval	= sd_weight,
6578
		.smt_gain		= 0,
6579 6580
		.max_newidle_lb_cost	= 0,
		.next_decay_max_lb_cost	= jiffies,
6581 6582 6583
#ifdef CONFIG_SCHED_DEBUG
		.name			= tl->name,
#endif
6584 6585 6586
	};

	/*
6587
	 * Convert topological properties into behaviour.
6588
	 */
6589

6590
	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6591
		sd->flags |= SD_PREFER_SIBLING;
6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621
		sd->imbalance_pct = 110;
		sd->smt_gain = 1178; /* ~15% */

	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
		sd->imbalance_pct = 117;
		sd->cache_nice_tries = 1;
		sd->busy_idx = 2;

#ifdef CONFIG_NUMA
	} else if (sd->flags & SD_NUMA) {
		sd->cache_nice_tries = 2;
		sd->busy_idx = 3;
		sd->idle_idx = 2;

		sd->flags |= SD_SERIALIZE;
		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
			sd->flags &= ~(SD_BALANCE_EXEC |
				       SD_BALANCE_FORK |
				       SD_WAKE_AFFINE);
		}

#endif
	} else {
		sd->flags |= SD_PREFER_SIBLING;
		sd->cache_nice_tries = 1;
		sd->busy_idx = 2;
		sd->idle_idx = 1;
	}

	sd->private = &tl->data;
6622 6623 6624 6625

	return sd;
}

6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639
/*
 * Topology list, bottom-up.
 */
static struct sched_domain_topology_level default_topology[] = {
#ifdef CONFIG_SCHED_SMT
	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
#endif
#ifdef CONFIG_SCHED_MC
	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
#endif
	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
	{ NULL, },
};

6640 6641
static struct sched_domain_topology_level *sched_domain_topology =
	default_topology;
6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652

#define for_each_sd_topology(tl)			\
	for (tl = sched_domain_topology; tl->mask; tl++)

void set_sched_topology(struct sched_domain_topology_level *tl)
{
	sched_domain_topology = tl;
}

#ifdef CONFIG_NUMA

6653 6654 6655 6656 6657
static const struct cpumask *sd_numa_mask(int cpu)
{
	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
}

6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678
static void sched_numa_warn(const char *str)
{
	static int done = false;
	int i,j;

	if (done)
		return;

	done = true;

	printk(KERN_WARNING "ERROR: %s\n\n", str);

	for (i = 0; i < nr_node_ids; i++) {
		printk(KERN_WARNING "  ");
		for (j = 0; j < nr_node_ids; j++)
			printk(KERN_CONT "%02d ", node_distance(i,j));
		printk(KERN_CONT "\n");
	}
	printk(KERN_WARNING "\n");
}

6679
bool find_numa_distance(int distance)
6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693
{
	int i;

	if (distance == node_distance(0, 0))
		return true;

	for (i = 0; i < sched_domains_numa_levels; i++) {
		if (sched_domains_numa_distance[i] == distance)
			return true;
	}

	return false;
}

6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718
/*
 * A system can have three types of NUMA topology:
 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
 *
 * The difference between a glueless mesh topology and a backplane
 * topology lies in whether communication between not directly
 * connected nodes goes through intermediary nodes (where programs
 * could run), or through backplane controllers. This affects
 * placement of programs.
 *
 * The type of topology can be discerned with the following tests:
 * - If the maximum distance between any nodes is 1 hop, the system
 *   is directly connected.
 * - If for two nodes A and B, located N > 1 hops away from each other,
 *   there is an intermediary node C, which is < N hops away from both
 *   nodes A and B, the system is a glueless mesh.
 */
static void init_numa_topology_type(void)
{
	int a, b, c, n;

	n = sched_max_numa_distance;

6719
	if (sched_domains_numa_levels <= 1) {
6720
		sched_numa_topology_type = NUMA_DIRECT;
6721 6722
		return;
	}
6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745

	for_each_online_node(a) {
		for_each_online_node(b) {
			/* Find two nodes furthest removed from each other. */
			if (node_distance(a, b) < n)
				continue;

			/* Is there an intermediary node between a and b? */
			for_each_online_node(c) {
				if (node_distance(a, c) < n &&
				    node_distance(b, c) < n) {
					sched_numa_topology_type =
							NUMA_GLUELESS_MESH;
					return;
				}
			}

			sched_numa_topology_type = NUMA_BACKPLANE;
			return;
		}
	}
}

6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766
static void sched_init_numa(void)
{
	int next_distance, curr_distance = node_distance(0, 0);
	struct sched_domain_topology_level *tl;
	int level = 0;
	int i, j, k;

	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
	if (!sched_domains_numa_distance)
		return;

	/*
	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
	 * unique distances in the node_distance() table.
	 *
	 * Assumes node_distance(0,j) includes all distances in
	 * node_distance(i,j) in order to avoid cubic time.
	 */
	next_distance = curr_distance;
	for (i = 0; i < nr_node_ids; i++) {
		for (j = 0; j < nr_node_ids; j++) {
6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790
			for (k = 0; k < nr_node_ids; k++) {
				int distance = node_distance(i, k);

				if (distance > curr_distance &&
				    (distance < next_distance ||
				     next_distance == curr_distance))
					next_distance = distance;

				/*
				 * While not a strong assumption it would be nice to know
				 * about cases where if node A is connected to B, B is not
				 * equally connected to A.
				 */
				if (sched_debug() && node_distance(k, i) != distance)
					sched_numa_warn("Node-distance not symmetric");

				if (sched_debug() && i && !find_numa_distance(distance))
					sched_numa_warn("Node-0 not representative");
			}
			if (next_distance != curr_distance) {
				sched_domains_numa_distance[level++] = next_distance;
				sched_domains_numa_levels = level;
				curr_distance = next_distance;
			} else break;
6791
		}
6792 6793 6794 6795 6796 6797

		/*
		 * In case of sched_debug() we verify the above assumption.
		 */
		if (!sched_debug())
			break;
6798
	}
6799 6800 6801 6802

	if (!level)
		return;

6803 6804 6805 6806
	/*
	 * 'level' contains the number of unique distances, excluding the
	 * identity distance node_distance(i,i).
	 *
V
Viresh Kumar 已提交
6807
	 * The sched_domains_numa_distance[] array includes the actual distance
6808 6809 6810
	 * numbers.
	 */

6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821
	/*
	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
	 * the array will contain less then 'level' members. This could be
	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
	 * in other functions.
	 *
	 * We reset it to 'level' at the end of this function.
	 */
	sched_domains_numa_levels = 0;

6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836
	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
	if (!sched_domains_numa_masks)
		return;

	/*
	 * Now for each level, construct a mask per node which contains all
	 * cpus of nodes that are that many hops away from us.
	 */
	for (i = 0; i < level; i++) {
		sched_domains_numa_masks[i] =
			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
		if (!sched_domains_numa_masks[i])
			return;

		for (j = 0; j < nr_node_ids; j++) {
6837
			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6838 6839 6840 6841 6842
			if (!mask)
				return;

			sched_domains_numa_masks[i][j] = mask;

6843
			for_each_node(k) {
6844
				if (node_distance(j, k) > sched_domains_numa_distance[i])
6845 6846 6847 6848 6849 6850 6851
					continue;

				cpumask_or(mask, mask, cpumask_of_node(k));
			}
		}
	}

6852 6853 6854
	/* Compute default topology size */
	for (i = 0; sched_domain_topology[i].mask; i++);

6855
	tl = kzalloc((i + level + 1) *
6856 6857 6858 6859 6860 6861 6862
			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
	if (!tl)
		return;

	/*
	 * Copy the default topology bits..
	 */
6863 6864
	for (i = 0; sched_domain_topology[i].mask; i++)
		tl[i] = sched_domain_topology[i];
6865 6866 6867 6868 6869 6870 6871

	/*
	 * .. and append 'j' levels of NUMA goodness.
	 */
	for (j = 0; j < level; i++, j++) {
		tl[i] = (struct sched_domain_topology_level){
			.mask = sd_numa_mask,
6872
			.sd_flags = cpu_numa_flags,
6873 6874
			.flags = SDTL_OVERLAP,
			.numa_level = j,
6875
			SD_INIT_NAME(NUMA)
6876 6877 6878 6879
		};
	}

	sched_domain_topology = tl;
6880 6881

	sched_domains_numa_levels = level;
6882
	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6883 6884

	init_numa_topology_type();
6885
}
6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932

static void sched_domains_numa_masks_set(int cpu)
{
	int i, j;
	int node = cpu_to_node(cpu);

	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++) {
			if (node_distance(j, node) <= sched_domains_numa_distance[i])
				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
		}
	}
}

static void sched_domains_numa_masks_clear(int cpu)
{
	int i, j;
	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++)
			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
	}
}

/*
 * Update sched_domains_numa_masks[level][node] array when new cpus
 * are onlined.
 */
static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	int cpu = (long)hcpu;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
		sched_domains_numa_masks_set(cpu);
		break;

	case CPU_DEAD:
		sched_domains_numa_masks_clear(cpu);
		break;

	default:
		return NOTIFY_DONE;
	}

	return NOTIFY_OK;
6933 6934 6935 6936 6937
}
#else
static inline void sched_init_numa(void)
{
}
6938 6939 6940 6941 6942 6943 6944

static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	return 0;
}
6945 6946
#endif /* CONFIG_NUMA */

6947 6948 6949 6950 6951
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

6952
	for_each_sd_topology(tl) {
6953 6954 6955 6956 6957 6958 6959 6960 6961 6962
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

6963 6964
		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
		if (!sdd->sgc)
6965 6966
			return -ENOMEM;

6967 6968 6969
		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_group *sg;
6970
			struct sched_group_capacity *sgc;
6971

P
Peter Zijlstra 已提交
6972
			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

6984 6985
			sg->next = sg;

6986
			*per_cpu_ptr(sdd->sg, j) = sg;
6987

6988
			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6989
					GFP_KERNEL, cpu_to_node(j));
6990
			if (!sgc)
6991 6992
				return -ENOMEM;

6993
			*per_cpu_ptr(sdd->sgc, j) = sgc;
6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

7005
	for_each_sd_topology(tl) {
7006 7007 7008
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019
			struct sched_domain *sd;

			if (sdd->sd) {
				sd = *per_cpu_ptr(sdd->sd, j);
				if (sd && (sd->flags & SD_OVERLAP))
					free_sched_groups(sd->groups, 0);
				kfree(*per_cpu_ptr(sdd->sd, j));
			}

			if (sdd->sg)
				kfree(*per_cpu_ptr(sdd->sg, j));
7020 7021
			if (sdd->sgc)
				kfree(*per_cpu_ptr(sdd->sgc, j));
7022 7023
		}
		free_percpu(sdd->sd);
7024
		sdd->sd = NULL;
7025
		free_percpu(sdd->sg);
7026
		sdd->sg = NULL;
7027 7028
		free_percpu(sdd->sgc);
		sdd->sgc = NULL;
7029 7030 7031
	}
}

7032
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
7033 7034
		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
		struct sched_domain *child, int cpu)
7035
{
7036
	struct sched_domain *sd = sd_init(tl, cpu);
7037
	if (!sd)
7038
		return child;
7039 7040

	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
7041 7042 7043
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
7044
		child->parent = sd;
7045
		sd->child = child;
P
Peter Zijlstra 已提交
7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059

		if (!cpumask_subset(sched_domain_span(child),
				    sched_domain_span(sd))) {
			pr_err("BUG: arch topology borken\n");
#ifdef CONFIG_SCHED_DEBUG
			pr_err("     the %s domain not a subset of the %s domain\n",
					child->name, sd->name);
#endif
			/* Fixup, ensure @sd has at least @child cpus. */
			cpumask_or(sched_domain_span(sd),
				   sched_domain_span(sd),
				   sched_domain_span(child));
		}

7060
	}
7061
	set_domain_attribute(sd, attr);
7062 7063 7064 7065

	return sd;
}

7066 7067 7068 7069
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
7070 7071
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
7072
{
7073
	enum s_alloc alloc_state;
7074
	struct sched_domain *sd;
7075
	struct s_data d;
7076
	int i, ret = -ENOMEM;
7077

7078 7079 7080
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
7081

7082
	/* Set up domains for cpus specified by the cpu_map. */
7083
	for_each_cpu(i, cpu_map) {
7084 7085
		struct sched_domain_topology_level *tl;

7086
		sd = NULL;
7087
		for_each_sd_topology(tl) {
7088
			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
7089 7090
			if (tl == sched_domain_topology)
				*per_cpu_ptr(d.sd, i) = sd;
7091 7092
			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
				sd->flags |= SD_OVERLAP;
7093 7094
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
				break;
7095
		}
7096 7097 7098 7099 7100 7101
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
7102 7103 7104 7105 7106 7107 7108
			if (sd->flags & SD_OVERLAP) {
				if (build_overlap_sched_groups(sd, i))
					goto error;
			} else {
				if (build_sched_groups(sd, i))
					goto error;
			}
7109
		}
7110
	}
7111

7112
	/* Calculate CPU capacity for physical packages and nodes */
7113 7114 7115
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
7116

7117 7118
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
7119
			init_sched_groups_capacity(i, sd);
7120
		}
7121
	}
7122

L
Linus Torvalds 已提交
7123
	/* Attach the domains */
7124
	rcu_read_lock();
7125
	for_each_cpu(i, cpu_map) {
7126
		sd = *per_cpu_ptr(d.sd, i);
7127
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
7128
	}
7129
	rcu_read_unlock();
7130

7131
	ret = 0;
7132
error:
7133
	__free_domain_allocs(&d, alloc_state, cpu_map);
7134
	return ret;
L
Linus Torvalds 已提交
7135
}
P
Paul Jackson 已提交
7136

7137
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
7138
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7139 7140
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7141 7142 7143

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
7144 7145
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
7146
 */
7147
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
7148

7149 7150 7151 7152 7153
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
7154
int __weak arch_update_cpu_topology(void)
7155
{
7156
	return 0;
7157 7158
}

7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

7184
/*
I
Ingo Molnar 已提交
7185
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7186 7187
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7188
 */
7189
static int init_sched_domains(const struct cpumask *cpu_map)
7190
{
7191 7192
	int err;

7193
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7194
	ndoms_cur = 1;
7195
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
7196
	if (!doms_cur)
7197 7198
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7199
	err = build_sched_domains(doms_cur[0], NULL);
7200
	register_sched_domain_sysctl();
7201 7202

	return err;
7203 7204 7205 7206 7207 7208
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7209
static void detach_destroy_domains(const struct cpumask *cpu_map)
7210 7211 7212
{
	int i;

7213
	rcu_read_lock();
7214
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
7215
		cpu_attach_domain(NULL, &def_root_domain, i);
7216
	rcu_read_unlock();
7217 7218
}

7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7235 7236
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7237
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7238 7239 7240
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
7241
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7242 7243 7244
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7245 7246 7247
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
7248 7249 7250 7251 7252 7253
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
7254
 *
7255
 * If doms_new == NULL it will be replaced with cpu_online_mask.
7256 7257
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
7258
 *
P
Paul Jackson 已提交
7259 7260
 * Call with hotplug lock held
 */
7261
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7262
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7263
{
7264
	int i, j, n;
7265
	int new_topology;
P
Paul Jackson 已提交
7266

7267
	mutex_lock(&sched_domains_mutex);
7268

7269 7270 7271
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7272 7273 7274
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

7275
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
7276 7277 7278

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
7279
		for (j = 0; j < n && !new_topology; j++) {
7280
			if (cpumask_equal(doms_cur[i], doms_new[j])
7281
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7282 7283 7284
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
7285
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
7286 7287 7288 7289
match1:
		;
	}

7290
	n = ndoms_cur;
7291
	if (doms_new == NULL) {
7292
		n = 0;
7293
		doms_new = &fallback_doms;
7294
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7295
		WARN_ON_ONCE(dattr_new);
7296 7297
	}

P
Paul Jackson 已提交
7298 7299
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
7300
		for (j = 0; j < n && !new_topology; j++) {
7301
			if (cpumask_equal(doms_new[i], doms_cur[j])
7302
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7303 7304 7305
				goto match2;
		}
		/* no match - add a new doms_new */
7306
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7307 7308 7309 7310 7311
match2:
		;
	}

	/* Remember the new sched domains */
7312 7313
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
7314
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7315
	doms_cur = doms_new;
7316
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7317
	ndoms_cur = ndoms_new;
7318 7319

	register_sched_domain_sysctl();
7320

7321
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7322 7323
}

7324 7325
static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */

L
Linus Torvalds 已提交
7326
/*
7327 7328 7329
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
7330 7331 7332
 *
 * If we come here as part of a suspend/resume, don't touch cpusets because we
 * want to restore it back to its original state upon resume anyway.
L
Linus Torvalds 已提交
7333
 */
7334 7335
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
7336
{
7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358
	switch (action) {
	case CPU_ONLINE_FROZEN:
	case CPU_DOWN_FAILED_FROZEN:

		/*
		 * num_cpus_frozen tracks how many CPUs are involved in suspend
		 * resume sequence. As long as this is not the last online
		 * operation in the resume sequence, just build a single sched
		 * domain, ignoring cpusets.
		 */
		num_cpus_frozen--;
		if (likely(num_cpus_frozen)) {
			partition_sched_domains(1, NULL, NULL);
			break;
		}

		/*
		 * This is the last CPU online operation. So fall through and
		 * restore the original sched domains by considering the
		 * cpuset configurations.
		 */

7359
	case CPU_ONLINE:
7360
		cpuset_update_active_cpus(true);
7361
		break;
7362 7363 7364
	default:
		return NOTIFY_DONE;
	}
7365
	return NOTIFY_OK;
7366
}
7367

7368 7369
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
7370
{
7371 7372 7373
	unsigned long flags;
	long cpu = (long)hcpu;
	struct dl_bw *dl_b;
7374 7375
	bool overflow;
	int cpus;
7376

7377
	switch (action) {
7378
	case CPU_DOWN_PREPARE:
7379 7380
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);
7381

7382 7383 7384 7385
		raw_spin_lock_irqsave(&dl_b->lock, flags);
		cpus = dl_bw_cpus(cpu);
		overflow = __dl_overflow(dl_b, cpus, 0, 0);
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7386

7387
		rcu_read_unlock_sched();
7388

7389 7390
		if (overflow)
			return notifier_from_errno(-EBUSY);
7391
		cpuset_update_active_cpus(false);
7392 7393 7394 7395 7396
		break;
	case CPU_DOWN_PREPARE_FROZEN:
		num_cpus_frozen++;
		partition_sched_domains(1, NULL, NULL);
		break;
7397 7398 7399
	default:
		return NOTIFY_DONE;
	}
7400
	return NOTIFY_OK;
7401 7402
}

L
Linus Torvalds 已提交
7403 7404
void __init sched_init_smp(void)
{
7405 7406 7407
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7408
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7409

7410 7411
	sched_init_numa();

7412 7413 7414 7415 7416
	/*
	 * There's no userspace yet to cause hotplug operations; hence all the
	 * cpu masks are stable and all blatant races in the below code cannot
	 * happen.
	 */
7417
	mutex_lock(&sched_domains_mutex);
7418
	init_sched_domains(cpu_active_mask);
7419 7420 7421
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7422
	mutex_unlock(&sched_domains_mutex);
7423

7424
	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7425 7426
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7427

7428
	init_hrtick();
7429 7430

	/* Move init over to a non-isolated CPU */
7431
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7432
		BUG();
I
Ingo Molnar 已提交
7433
	sched_init_granularity();
7434
	free_cpumask_var(non_isolated_cpus);
7435

7436
	init_sched_rt_class();
7437
	init_sched_dl_class();
L
Linus Torvalds 已提交
7438 7439 7440 7441
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7442
	sched_init_granularity();
L
Linus Torvalds 已提交
7443 7444 7445 7446 7447 7448 7449 7450 7451 7452
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

7453
#ifdef CONFIG_CGROUP_SCHED
7454 7455 7456 7457
/*
 * Default task group.
 * Every task in system belongs to this group at bootup.
 */
7458
struct task_group root_task_group;
7459
LIST_HEAD(task_groups);
7460 7461 7462

/* Cacheline aligned slab cache for task_group */
static struct kmem_cache *task_group_cache __read_mostly;
7463
#endif
P
Peter Zijlstra 已提交
7464

7465
DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
P
Peter Zijlstra 已提交
7466

L
Linus Torvalds 已提交
7467 7468
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7469
	int i, j;
7470 7471 7472 7473 7474 7475 7476 7477 7478
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
	if (alloc_size) {
7479
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7480 7481

#ifdef CONFIG_FAIR_GROUP_SCHED
7482
		root_task_group.se = (struct sched_entity **)ptr;
7483 7484
		ptr += nr_cpu_ids * sizeof(void **);

7485
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7486
		ptr += nr_cpu_ids * sizeof(void **);
7487

7488
#endif /* CONFIG_FAIR_GROUP_SCHED */
7489
#ifdef CONFIG_RT_GROUP_SCHED
7490
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7491 7492
		ptr += nr_cpu_ids * sizeof(void **);

7493
		root_task_group.rt_rq = (struct rt_rq **)ptr;
7494 7495
		ptr += nr_cpu_ids * sizeof(void **);

7496
#endif /* CONFIG_RT_GROUP_SCHED */
7497
	}
7498
#ifdef CONFIG_CPUMASK_OFFSTACK
7499 7500 7501
	for_each_possible_cpu(i) {
		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7502
	}
7503
#endif /* CONFIG_CPUMASK_OFFSTACK */
I
Ingo Molnar 已提交
7504

7505 7506 7507
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());
	init_dl_bandwidth(&def_dl_bandwidth,
7508
			global_rt_period(), global_rt_runtime());
7509

G
Gregory Haskins 已提交
7510 7511 7512 7513
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7514
#ifdef CONFIG_RT_GROUP_SCHED
7515
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7516
			global_rt_period(), global_rt_runtime());
7517
#endif /* CONFIG_RT_GROUP_SCHED */
7518

D
Dhaval Giani 已提交
7519
#ifdef CONFIG_CGROUP_SCHED
7520 7521
	task_group_cache = KMEM_CACHE(task_group, 0);

7522 7523
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
7524
	INIT_LIST_HEAD(&root_task_group.siblings);
7525
	autogroup_init(&init_task);
D
Dhaval Giani 已提交
7526
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
7527

7528
	for_each_possible_cpu(i) {
7529
		struct rq *rq;
L
Linus Torvalds 已提交
7530 7531

		rq = cpu_rq(i);
7532
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
7533
		rq->nr_running = 0;
7534 7535
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
7536
		init_cfs_rq(&rq->cfs);
7537 7538
		init_rt_rq(&rq->rt);
		init_dl_rq(&rq->dl);
I
Ingo Molnar 已提交
7539
#ifdef CONFIG_FAIR_GROUP_SCHED
7540
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
7541
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
7542
		/*
7543
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
7544 7545 7546 7547
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
7548
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
7549 7550 7551
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
7552
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
7553 7554 7555
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
7556
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
7557
		 *
7558 7559
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
7560
		 */
7561
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7562
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
7563 7564 7565
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7566
#ifdef CONFIG_RT_GROUP_SCHED
7567
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
7568
#endif
L
Linus Torvalds 已提交
7569

I
Ingo Molnar 已提交
7570 7571
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
7572 7573 7574

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
7575
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7576
		rq->sd = NULL;
G
Gregory Haskins 已提交
7577
		rq->rd = NULL;
7578
		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7579
		rq->balance_callback = NULL;
L
Linus Torvalds 已提交
7580
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7581
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7582
		rq->push_cpu = 0;
7583
		rq->cpu = i;
7584
		rq->online = 0;
7585 7586
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
7587
		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7588 7589 7590

		INIT_LIST_HEAD(&rq->cfs_tasks);

7591
		rq_attach_root(rq, &def_root_domain);
7592
#ifdef CONFIG_NO_HZ_COMMON
7593
		rq->nohz_flags = 0;
7594
#endif
7595 7596 7597
#ifdef CONFIG_NO_HZ_FULL
		rq->last_sched_tick = 0;
#endif
L
Linus Torvalds 已提交
7598
#endif
P
Peter Zijlstra 已提交
7599
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7600 7601 7602
		atomic_set(&rq->nr_iowait, 0);
	}

7603
	set_load_weight(&init_task);
7604

7605 7606 7607 7608
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

L
Linus Torvalds 已提交
7609 7610 7611 7612 7613 7614
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

7615 7616 7617 7618 7619
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;

L
Linus Torvalds 已提交
7620 7621 7622 7623 7624 7625 7626
	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
7627 7628 7629

	calc_load_update = jiffies + LOAD_FREQ;

7630
#ifdef CONFIG_SMP
7631
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
R
Rusty Russell 已提交
7632 7633 7634
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7635
	idle_thread_set_boot_cpu();
7636
	set_cpu_rq_start_time();
7637 7638
#endif
	init_sched_fair_class();
7639

7640
	scheduler_running = 1;
L
Linus Torvalds 已提交
7641 7642
}

7643
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7644 7645
static inline int preempt_count_equals(int preempt_offset)
{
7646
	int nested = preempt_count() + rcu_preempt_depth();
7647

A
Arnd Bergmann 已提交
7648
	return (nested == preempt_offset);
7649 7650
}

7651
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7652
{
P
Peter Zijlstra 已提交
7653 7654 7655 7656 7657
	/*
	 * Blocking primitives will set (and therefore destroy) current->state,
	 * since we will exit with TASK_RUNNING make sure we enter with it,
	 * otherwise we will destroy state.
	 */
7658
	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
P
Peter Zijlstra 已提交
7659 7660 7661 7662
			"do not call blocking ops when !TASK_RUNNING; "
			"state=%lx set at [<%p>] %pS\n",
			current->state,
			(void *)current->task_state_change,
7663
			(void *)current->task_state_change);
P
Peter Zijlstra 已提交
7664

7665 7666 7667 7668 7669
	___might_sleep(file, line, preempt_offset);
}
EXPORT_SYMBOL(__might_sleep);

void ___might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7670 7671 7672
{
	static unsigned long prev_jiffy;	/* ratelimiting */

7673
	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7674 7675
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
	     !is_idle_task(current)) ||
7676
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
7677 7678 7679 7680 7681
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
7682 7683 7684 7685 7686 7687 7688
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
7689

7690 7691 7692
	if (task_stack_end_corrupted(current))
		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");

I
Ingo Molnar 已提交
7693 7694 7695
	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
7696 7697 7698 7699 7700 7701 7702
#ifdef CONFIG_DEBUG_PREEMPT
	if (!preempt_count_equals(preempt_offset)) {
		pr_err("Preemption disabled at:");
		print_ip_sym(current->preempt_disable_ip);
		pr_cont("\n");
	}
#endif
I
Ingo Molnar 已提交
7703
	dump_stack();
L
Linus Torvalds 已提交
7704
}
7705
EXPORT_SYMBOL(___might_sleep);
L
Linus Torvalds 已提交
7706 7707 7708
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7709
void normalize_rt_tasks(void)
7710
{
7711
	struct task_struct *g, *p;
7712 7713 7714
	struct sched_attr attr = {
		.sched_policy = SCHED_NORMAL,
	};
L
Linus Torvalds 已提交
7715

7716
	read_lock(&tasklist_lock);
7717
	for_each_process_thread(g, p) {
7718 7719 7720
		/*
		 * Only normalize user tasks:
		 */
7721
		if (p->flags & PF_KTHREAD)
7722 7723
			continue;

I
Ingo Molnar 已提交
7724 7725
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
7726 7727 7728
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
7729
#endif
I
Ingo Molnar 已提交
7730

7731
		if (!dl_task(p) && !rt_task(p)) {
I
Ingo Molnar 已提交
7732 7733 7734 7735
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
7736
			if (task_nice(p) < 0)
I
Ingo Molnar 已提交
7737
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7738
			continue;
I
Ingo Molnar 已提交
7739
		}
L
Linus Torvalds 已提交
7740

7741
		__sched_setscheduler(p, &attr, false, false);
7742
	}
7743
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
7744 7745 7746
}

#endif /* CONFIG_MAGIC_SYSRQ */
7747

7748
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7749
/*
7750
 * These functions are only useful for the IA64 MCA handling, or kdb.
7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7764 7765
 *
 * Return: The current task for @cpu.
7766
 */
7767
struct task_struct *curr_task(int cpu)
7768 7769 7770 7771
{
	return cpu_curr(cpu);
}

7772 7773 7774
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
7775 7776 7777 7778 7779 7780
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7781 7782
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7783 7784 7785 7786 7787 7788 7789
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7790
void set_curr_task(int cpu, struct task_struct *p)
7791 7792 7793 7794 7795
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7796

D
Dhaval Giani 已提交
7797
#ifdef CONFIG_CGROUP_SCHED
7798 7799 7800
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

7801 7802 7803 7804
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
7805
	autogroup_free(tg);
7806
	kmem_cache_free(task_group_cache, tg);
7807 7808 7809
}

/* allocate runqueue etc for a new task group */
7810
struct task_group *sched_create_group(struct task_group *parent)
7811 7812 7813
{
	struct task_group *tg;

7814
	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7815 7816 7817
	if (!tg)
		return ERR_PTR(-ENOMEM);

7818
	if (!alloc_fair_sched_group(tg, parent))
7819 7820
		goto err;

7821
	if (!alloc_rt_sched_group(tg, parent))
7822 7823
		goto err;

7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834
	return tg;

err:
	free_sched_group(tg);
	return ERR_PTR(-ENOMEM);
}

void sched_online_group(struct task_group *tg, struct task_group *parent)
{
	unsigned long flags;

7835
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7836
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
7837 7838 7839 7840 7841

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
7842
	list_add_rcu(&tg->siblings, &parent->children);
7843
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7844 7845
}

7846
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
7847
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7848 7849
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
7850
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
7851 7852
}

7853
/* Destroy runqueue etc associated with a task group */
7854
void sched_destroy_group(struct task_group *tg)
7855 7856 7857 7858 7859 7860
{
	/* wait for possible concurrent references to cfs_rqs complete */
	call_rcu(&tg->rcu, free_sched_group_rcu);
}

void sched_offline_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7861
{
7862
	unsigned long flags;
7863
	int i;
S
Srivatsa Vaddagiri 已提交
7864

7865 7866
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
7867
		unregister_fair_sched_group(tg, i);
7868 7869

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7870
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
7871
	list_del_rcu(&tg->siblings);
7872
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7873 7874
}

7875
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7876 7877 7878
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7879 7880
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7881
{
P
Peter Zijlstra 已提交
7882
	struct task_group *tg;
7883
	int queued, running;
S
Srivatsa Vaddagiri 已提交
7884 7885 7886 7887 7888
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

7889
	running = task_current(rq, tsk);
7890
	queued = task_on_rq_queued(tsk);
S
Srivatsa Vaddagiri 已提交
7891

7892
	if (queued)
7893
		dequeue_task(rq, tsk, DEQUEUE_SAVE);
7894
	if (unlikely(running))
7895
		put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7896

7897 7898 7899 7900 7901 7902
	/*
	 * All callers are synchronized by task_rq_lock(); we do not use RCU
	 * which is pointless here. Thus, we pass "true" to task_css_check()
	 * to prevent lockdep warnings.
	 */
	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
P
Peter Zijlstra 已提交
7903 7904 7905 7906
			  struct task_group, css);
	tg = autogroup_task_group(tsk, tg);
	tsk->sched_task_group = tg;

P
Peter Zijlstra 已提交
7907
#ifdef CONFIG_FAIR_GROUP_SCHED
7908
	if (tsk->sched_class->task_move_group)
7909
		tsk->sched_class->task_move_group(tsk);
7910
	else
P
Peter Zijlstra 已提交
7911
#endif
7912
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
7913

7914 7915
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
7916
	if (queued)
7917
		enqueue_task(rq, tsk, ENQUEUE_RESTORE);
S
Srivatsa Vaddagiri 已提交
7918

7919
	task_rq_unlock(rq, tsk, &flags);
S
Srivatsa Vaddagiri 已提交
7920
}
D
Dhaval Giani 已提交
7921
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
7922

7923 7924 7925 7926 7927
#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
P
Peter Zijlstra 已提交
7928

P
Peter Zijlstra 已提交
7929 7930
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
7931
{
P
Peter Zijlstra 已提交
7932
	struct task_struct *g, *p;
7933

7934 7935 7936 7937 7938 7939
	/*
	 * Autogroups do not have RT tasks; see autogroup_create().
	 */
	if (task_group_is_autogroup(tg))
		return 0;

7940
	for_each_process_thread(g, p) {
7941
		if (rt_task(p) && task_group(p) == tg)
P
Peter Zijlstra 已提交
7942
			return 1;
7943
	}
7944

P
Peter Zijlstra 已提交
7945 7946
	return 0;
}
7947

P
Peter Zijlstra 已提交
7948 7949 7950 7951 7952
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
7953

7954
static int tg_rt_schedulable(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
7955 7956 7957 7958 7959
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
7960

P
Peter Zijlstra 已提交
7961 7962
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
7963

P
Peter Zijlstra 已提交
7964 7965 7966
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
7967 7968
	}

7969 7970 7971 7972 7973
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
7974

7975 7976 7977
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
7978 7979
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
7980

P
Peter Zijlstra 已提交
7981
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7982

7983 7984 7985 7986 7987
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
7988

7989 7990 7991
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
7992 7993 7994
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7995

P
Peter Zijlstra 已提交
7996 7997 7998 7999
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
8000

P
Peter Zijlstra 已提交
8001
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8002
	}
P
Peter Zijlstra 已提交
8003

P
Peter Zijlstra 已提交
8004 8005 8006 8007
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
8008 8009
}

P
Peter Zijlstra 已提交
8010
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8011
{
8012 8013
	int ret;

P
Peter Zijlstra 已提交
8014 8015 8016 8017 8018 8019
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

8020 8021 8022 8023 8024
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
8025 8026
}

8027
static int tg_set_rt_bandwidth(struct task_group *tg,
8028
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8029
{
P
Peter Zijlstra 已提交
8030
	int i, err = 0;
P
Peter Zijlstra 已提交
8031

8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042
	/*
	 * Disallowing the root group RT runtime is BAD, it would disallow the
	 * kernel creating (and or operating) RT threads.
	 */
	if (tg == &root_task_group && rt_runtime == 0)
		return -EINVAL;

	/* No period doesn't make any sense. */
	if (rt_period == 0)
		return -EINVAL;

P
Peter Zijlstra 已提交
8043
	mutex_lock(&rt_constraints_mutex);
8044
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8045 8046
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
8047
		goto unlock;
P
Peter Zijlstra 已提交
8048

8049
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8050 8051
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8052 8053 8054 8055

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

8056
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8057
		rt_rq->rt_runtime = rt_runtime;
8058
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8059
	}
8060
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8061
unlock:
8062
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8063 8064 8065
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8066 8067
}

8068
static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8069 8070 8071 8072 8073 8074 8075 8076
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

8077
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8078 8079
}

8080
static long sched_group_rt_runtime(struct task_group *tg)
P
Peter Zijlstra 已提交
8081 8082 8083
{
	u64 rt_runtime_us;

8084
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8085 8086
		return -1;

8087
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8088 8089 8090
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8091

8092
static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
8093 8094 8095
{
	u64 rt_runtime, rt_period;

8096
	rt_period = rt_period_us * NSEC_PER_USEC;
8097 8098
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8099
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8100 8101
}

8102
static long sched_group_rt_period(struct task_group *tg)
8103 8104 8105 8106 8107 8108 8109
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}
8110
#endif /* CONFIG_RT_GROUP_SCHED */
8111

8112
#ifdef CONFIG_RT_GROUP_SCHED
8113 8114 8115 8116 8117
static int sched_rt_global_constraints(void)
{
	int ret = 0;

	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
8118
	read_lock(&tasklist_lock);
8119
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
8120
	read_unlock(&tasklist_lock);
8121 8122 8123 8124
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
8125

8126
static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8127 8128 8129 8130 8131 8132 8133 8134
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

8135
#else /* !CONFIG_RT_GROUP_SCHED */
8136 8137
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
8138
	unsigned long flags;
8139
	int i, ret = 0;
8140

8141
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8142 8143 8144
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

8145
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8146
		rt_rq->rt_runtime = global_rt_runtime();
8147
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8148
	}
8149
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8150

8151
	return ret;
8152
}
8153
#endif /* CONFIG_RT_GROUP_SCHED */
8154

8155
static int sched_dl_global_validate(void)
8156
{
8157 8158
	u64 runtime = global_rt_runtime();
	u64 period = global_rt_period();
8159
	u64 new_bw = to_ratio(period, runtime);
8160
	struct dl_bw *dl_b;
8161
	int cpu, ret = 0;
8162
	unsigned long flags;
8163 8164 8165 8166 8167 8168 8169 8170 8171 8172

	/*
	 * Here we want to check the bandwidth not being set to some
	 * value smaller than the currently allocated bandwidth in
	 * any of the root_domains.
	 *
	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
	 * cycling on root_domains... Discussion on different/better
	 * solutions is welcome!
	 */
8173
	for_each_possible_cpu(cpu) {
8174 8175
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);
8176

8177
		raw_spin_lock_irqsave(&dl_b->lock, flags);
8178 8179
		if (new_bw < dl_b->total_bw)
			ret = -EBUSY;
8180
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8181

8182 8183
		rcu_read_unlock_sched();

8184 8185
		if (ret)
			break;
8186 8187
	}

8188
	return ret;
8189 8190
}

8191
static void sched_dl_do_global(void)
8192
{
8193
	u64 new_bw = -1;
8194
	struct dl_bw *dl_b;
8195
	int cpu;
8196
	unsigned long flags;
8197

8198 8199 8200 8201 8202 8203 8204 8205 8206 8207
	def_dl_bandwidth.dl_period = global_rt_period();
	def_dl_bandwidth.dl_runtime = global_rt_runtime();

	if (global_rt_runtime() != RUNTIME_INF)
		new_bw = to_ratio(global_rt_period(), global_rt_runtime());

	/*
	 * FIXME: As above...
	 */
	for_each_possible_cpu(cpu) {
8208 8209
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);
8210

8211
		raw_spin_lock_irqsave(&dl_b->lock, flags);
8212
		dl_b->bw = new_bw;
8213
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8214 8215

		rcu_read_unlock_sched();
8216
	}
8217 8218 8219 8220 8221 8222 8223
}

static int sched_rt_global_validate(void)
{
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8224 8225
	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
8226 8227 8228 8229 8230 8231 8232 8233 8234
		return -EINVAL;

	return 0;
}

static void sched_rt_do_global(void)
{
	def_rt_bandwidth.rt_runtime = global_rt_runtime();
	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
8235 8236
}

8237
int sched_rt_handler(struct ctl_table *table, int write,
8238
		void __user *buffer, size_t *lenp,
8239 8240 8241 8242
		loff_t *ppos)
{
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);
8243
	int ret;
8244 8245 8246 8247 8248

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

8249
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8250 8251

	if (!ret && write) {
8252 8253 8254 8255
		ret = sched_rt_global_validate();
		if (ret)
			goto undo;

8256
		ret = sched_dl_global_validate();
8257 8258 8259
		if (ret)
			goto undo;

8260
		ret = sched_rt_global_constraints();
8261 8262 8263 8264 8265 8266 8267 8268 8269 8270
		if (ret)
			goto undo;

		sched_rt_do_global();
		sched_dl_do_global();
	}
	if (0) {
undo:
		sysctl_sched_rt_period = old_period;
		sysctl_sched_rt_runtime = old_runtime;
8271 8272 8273 8274 8275
	}
	mutex_unlock(&mutex);

	return ret;
}
8276

8277
int sched_rr_handler(struct ctl_table *table, int write,
8278 8279 8280 8281 8282 8283 8284 8285
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8286 8287
	/* make sure that internally we keep jiffies */
	/* also, writing zero resets timeslice to default */
8288
	if (!ret && write) {
8289 8290
		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8291 8292 8293 8294 8295
	}
	mutex_unlock(&mutex);
	return ret;
}

8296
#ifdef CONFIG_CGROUP_SCHED
8297

8298
static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8299
{
8300
	return css ? container_of(css, struct task_group, css) : NULL;
8301 8302
}

8303 8304
static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8305
{
8306 8307
	struct task_group *parent = css_tg(parent_css);
	struct task_group *tg;
8308

8309
	if (!parent) {
8310
		/* This is early initialization for the top cgroup */
8311
		return &root_task_group.css;
8312 8313
	}

8314
	tg = sched_create_group(parent);
8315 8316 8317 8318 8319 8320
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

8321
static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
8322
{
8323
	struct task_group *tg = css_tg(css);
T
Tejun Heo 已提交
8324
	struct task_group *parent = css_tg(css->parent);
8325

T
Tejun Heo 已提交
8326 8327
	if (parent)
		sched_online_group(tg, parent);
8328 8329 8330
	return 0;
}

8331
static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8332
{
8333
	struct task_group *tg = css_tg(css);
8334 8335 8336 8337

	sched_destroy_group(tg);
}

8338
static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
8339
{
8340
	struct task_group *tg = css_tg(css);
8341 8342 8343 8344

	sched_offline_group(tg);
}

8345
static void cpu_cgroup_fork(struct task_struct *task)
8346 8347 8348 8349
{
	sched_move_task(task);
}

8350
static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8351
{
8352
	struct task_struct *task;
8353
	struct cgroup_subsys_state *css;
8354

8355
	cgroup_taskset_for_each(task, css, tset) {
8356
#ifdef CONFIG_RT_GROUP_SCHED
8357
		if (!sched_rt_can_attach(css_tg(css), task))
8358
			return -EINVAL;
8359
#else
8360 8361 8362
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
8363
#endif
8364
	}
8365 8366
	return 0;
}
8367

8368
static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8369
{
8370
	struct task_struct *task;
8371
	struct cgroup_subsys_state *css;
8372

8373
	cgroup_taskset_for_each(task, css, tset)
8374
		sched_move_task(task);
8375 8376
}

8377
#ifdef CONFIG_FAIR_GROUP_SCHED
8378 8379
static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
				struct cftype *cftype, u64 shareval)
8380
{
8381
	return sched_group_set_shares(css_tg(css), scale_load(shareval));
8382 8383
}

8384 8385
static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
			       struct cftype *cft)
8386
{
8387
	struct task_group *tg = css_tg(css);
8388

8389
	return (u64) scale_load_down(tg->shares);
8390
}
8391 8392

#ifdef CONFIG_CFS_BANDWIDTH
8393 8394
static DEFINE_MUTEX(cfs_constraints_mutex);

8395 8396 8397
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

8398 8399
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

8400 8401
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
8402
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8403
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

8424 8425 8426 8427 8428
	/*
	 * Prevent race between setting of cfs_rq->runtime_enabled and
	 * unthrottle_offline_cfs_rqs().
	 */
	get_online_cpus();
8429 8430 8431 8432 8433
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

8434
	runtime_enabled = quota != RUNTIME_INF;
8435
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8436 8437 8438 8439 8440 8441
	/*
	 * If we need to toggle cfs_bandwidth_used, off->on must occur
	 * before making related changes, and on->off must occur afterwards
	 */
	if (runtime_enabled && !runtime_was_enabled)
		cfs_bandwidth_usage_inc();
8442 8443 8444
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
8445

P
Paul Turner 已提交
8446
	__refill_cfs_bandwidth_runtime(cfs_b);
8447
	/* restart the period timer (if active) to handle new period expiry */
P
Peter Zijlstra 已提交
8448 8449
	if (runtime_enabled)
		start_cfs_bandwidth(cfs_b);
8450 8451
	raw_spin_unlock_irq(&cfs_b->lock);

8452
	for_each_online_cpu(i) {
8453
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8454
		struct rq *rq = cfs_rq->rq;
8455 8456

		raw_spin_lock_irq(&rq->lock);
8457
		cfs_rq->runtime_enabled = runtime_enabled;
8458
		cfs_rq->runtime_remaining = 0;
8459

8460
		if (cfs_rq->throttled)
8461
			unthrottle_cfs_rq(cfs_rq);
8462 8463
		raw_spin_unlock_irq(&rq->lock);
	}
8464 8465
	if (runtime_was_enabled && !runtime_enabled)
		cfs_bandwidth_usage_dec();
8466 8467
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
8468
	put_online_cpus();
8469

8470
	return ret;
8471 8472 8473 8474 8475 8476
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

8477
	period = ktime_to_ns(tg->cfs_bandwidth.period);
8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

8490
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8491 8492
		return -1;

8493
	quota_us = tg->cfs_bandwidth.quota;
8494 8495 8496 8497 8498 8499 8500 8501 8502 8503
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
8504
	quota = tg->cfs_bandwidth.quota;
8505 8506 8507 8508 8509 8510 8511 8512

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

8513
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8514 8515 8516 8517 8518
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

8519 8520
static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
				  struct cftype *cft)
8521
{
8522
	return tg_get_cfs_quota(css_tg(css));
8523 8524
}

8525 8526
static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
				   struct cftype *cftype, s64 cfs_quota_us)
8527
{
8528
	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8529 8530
}

8531 8532
static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
				   struct cftype *cft)
8533
{
8534
	return tg_get_cfs_period(css_tg(css));
8535 8536
}

8537 8538
static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 cfs_period_us)
8539
{
8540
	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8541 8542
}

8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
8575
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8576 8577 8578 8579 8580
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
8581
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8582 8583

		quota = normalize_cfs_quota(tg, d);
8584
		parent_quota = parent_b->hierarchical_quota;
8585 8586 8587 8588 8589 8590 8591 8592 8593 8594

		/*
		 * ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
8595
	cfs_b->hierarchical_quota = quota;
8596 8597 8598 8599 8600 8601

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
8602
	int ret;
8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

8614 8615 8616 8617 8618
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
8619
}
8620

8621
static int cpu_stats_show(struct seq_file *sf, void *v)
8622
{
8623
	struct task_group *tg = css_tg(seq_css(sf));
8624
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8625

8626 8627 8628
	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8629 8630 8631

	return 0;
}
8632
#endif /* CONFIG_CFS_BANDWIDTH */
8633
#endif /* CONFIG_FAIR_GROUP_SCHED */
8634

8635
#ifdef CONFIG_RT_GROUP_SCHED
8636 8637
static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
				struct cftype *cft, s64 val)
P
Peter Zijlstra 已提交
8638
{
8639
	return sched_group_set_rt_runtime(css_tg(css), val);
P
Peter Zijlstra 已提交
8640 8641
}

8642 8643
static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
P
Peter Zijlstra 已提交
8644
{
8645
	return sched_group_rt_runtime(css_tg(css));
P
Peter Zijlstra 已提交
8646
}
8647

8648 8649
static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 rt_period_us)
8650
{
8651
	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8652 8653
}

8654 8655
static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
				   struct cftype *cft)
8656
{
8657
	return sched_group_rt_period(css_tg(css));
8658
}
8659
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
8660

8661
static struct cftype cpu_files[] = {
8662
#ifdef CONFIG_FAIR_GROUP_SCHED
8663 8664
	{
		.name = "shares",
8665 8666
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8667
	},
8668
#endif
8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
8680 8681
	{
		.name = "stat",
8682
		.seq_show = cpu_stats_show,
8683
	},
8684
#endif
8685
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8686
	{
P
Peter Zijlstra 已提交
8687
		.name = "rt_runtime_us",
8688 8689
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8690
	},
8691 8692
	{
		.name = "rt_period_us",
8693 8694
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8695
	},
8696
#endif
8697
	{ }	/* terminate */
8698 8699
};

8700
struct cgroup_subsys cpu_cgrp_subsys = {
8701 8702
	.css_alloc	= cpu_cgroup_css_alloc,
	.css_free	= cpu_cgroup_css_free,
8703 8704
	.css_online	= cpu_cgroup_css_online,
	.css_offline	= cpu_cgroup_css_offline,
8705
	.fork		= cpu_cgroup_fork,
8706 8707
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
8708
	.legacy_cftypes	= cpu_files,
8709 8710 8711
	.early_init	= 1,
};

8712
#endif	/* CONFIG_CGROUP_SCHED */
8713

8714 8715 8716 8717 8718
void dump_cpu_task(int cpu)
{
	pr_info("Task dump for CPU %d:\n", cpu);
	sched_show_task(cpu_curr(cpu));
}
8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
 */
const int sched_prio_to_weight[40] = {
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
};

/*
 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
const u32 sched_prio_to_wmult[40] = {
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
};