core.c 194.3 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/highmem.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
37
#include <linux/capability.h>
L
Linus Torvalds 已提交
38 39
#include <linux/completion.h>
#include <linux/kernel_stat.h>
40
#include <linux/debug_locks.h>
41
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
57
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
58
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/unistd.h>
J
Jens Axboe 已提交
66
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
67
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
68
#include <linux/tick.h>
P
Peter Zijlstra 已提交
69 70
#include <linux/debugfs.h>
#include <linux/ctype.h>
71
#include <linux/ftrace.h>
72
#include <linux/slab.h>
73
#include <linux/init_task.h>
A
Al Viro 已提交
74
#include <linux/binfmts.h>
75
#include <linux/context_tracking.h>
76
#include <linux/compiler.h>
L
Linus Torvalds 已提交
77

78
#include <asm/switch_to.h>
79
#include <asm/tlb.h>
80
#include <asm/irq_regs.h>
81
#include <asm/mutex.h>
G
Glauber Costa 已提交
82 83 84
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
85

86
#include "sched.h"
87
#include "../workqueue_internal.h"
88
#include "../smpboot.h"
89

90
#define CREATE_TRACE_POINTS
91
#include <trace/events/sched.h>
92

93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
#ifdef smp_mb__before_atomic
void __smp_mb__before_atomic(void)
{
	smp_mb__before_atomic();
}
EXPORT_SYMBOL(__smp_mb__before_atomic);
#endif

#ifdef smp_mb__after_atomic
void __smp_mb__after_atomic(void)
{
	smp_mb__after_atomic();
}
EXPORT_SYMBOL(__smp_mb__after_atomic);
#endif

109
void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
110
{
111 112
	unsigned long delta;
	ktime_t soft, hard, now;
113

114 115 116 117 118 119
	for (;;) {
		if (hrtimer_active(period_timer))
			break;

		now = hrtimer_cb_get_time(period_timer);
		hrtimer_forward(period_timer, now, period);
120

121 122 123 124 125 126 127 128
		soft = hrtimer_get_softexpires(period_timer);
		hard = hrtimer_get_expires(period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(period_timer, soft, delta,
					 HRTIMER_MODE_ABS_PINNED, 0);
	}
}

129 130
DEFINE_MUTEX(sched_domains_mutex);
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
131

132
static void update_rq_clock_task(struct rq *rq, s64 delta);
133

134
void update_rq_clock(struct rq *rq)
135
{
136
	s64 delta;
137

138
	if (rq->skip_clock_update > 0)
139
		return;
140

141
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
142 143
	if (delta < 0)
		return;
144 145
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
146 147
}

I
Ingo Molnar 已提交
148 149 150
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
151 152 153 154

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
155
const_debug unsigned int sysctl_sched_features =
156
#include "features.h"
P
Peter Zijlstra 已提交
157 158 159 160 161 162 163 164
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

165
static const char * const sched_feat_names[] = {
166
#include "features.h"
P
Peter Zijlstra 已提交
167 168 169 170
};

#undef SCHED_FEAT

L
Li Zefan 已提交
171
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
172 173 174
{
	int i;

175
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
L
Li Zefan 已提交
176 177 178
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
179
	}
L
Li Zefan 已提交
180
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
181

L
Li Zefan 已提交
182
	return 0;
P
Peter Zijlstra 已提交
183 184
}

185 186
#ifdef HAVE_JUMP_LABEL

187 188
#define jump_label_key__true  STATIC_KEY_INIT_TRUE
#define jump_label_key__false STATIC_KEY_INIT_FALSE
189 190 191 192

#define SCHED_FEAT(name, enabled)	\
	jump_label_key__##enabled ,

193
struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
194 195 196 197 198 199 200
#include "features.h"
};

#undef SCHED_FEAT

static void sched_feat_disable(int i)
{
201 202
	if (static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_dec(&sched_feat_keys[i]);
203 204 205 206
}

static void sched_feat_enable(int i)
{
207 208
	if (!static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_inc(&sched_feat_keys[i]);
209 210 211 212 213 214
}
#else
static void sched_feat_disable(int i) { };
static void sched_feat_enable(int i) { };
#endif /* HAVE_JUMP_LABEL */

215
static int sched_feat_set(char *cmp)
P
Peter Zijlstra 已提交
216 217
{
	int i;
218
	int neg = 0;
P
Peter Zijlstra 已提交
219

H
Hillf Danton 已提交
220
	if (strncmp(cmp, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
221 222 223 224
		neg = 1;
		cmp += 3;
	}

225
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
226
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
227
			if (neg) {
P
Peter Zijlstra 已提交
228
				sysctl_sched_features &= ~(1UL << i);
229 230
				sched_feat_disable(i);
			} else {
P
Peter Zijlstra 已提交
231
				sysctl_sched_features |= (1UL << i);
232 233
				sched_feat_enable(i);
			}
P
Peter Zijlstra 已提交
234 235 236 237
			break;
		}
	}

238 239 240 241 242 243 244 245 246 247
	return i;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp;
	int i;
248
	struct inode *inode;
249 250 251 252 253 254 255 256 257 258

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
	cmp = strstrip(buf);

259 260 261
	/* Ensure the static_key remains in a consistent state */
	inode = file_inode(filp);
	mutex_lock(&inode->i_mutex);
262
	i = sched_feat_set(cmp);
263
	mutex_unlock(&inode->i_mutex);
264
	if (i == __SCHED_FEAT_NR)
P
Peter Zijlstra 已提交
265 266
		return -EINVAL;

267
	*ppos += cnt;
P
Peter Zijlstra 已提交
268 269 270 271

	return cnt;
}

L
Li Zefan 已提交
272 273 274 275 276
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

277
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
278 279 280 281 282
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
283 284 285 286 287 288 289 290 291 292
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);
293
#endif /* CONFIG_SCHED_DEBUG */
I
Ingo Molnar 已提交
294

295 296 297 298 299 300
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

301 302 303 304 305 306 307 308
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
309
/*
P
Peter Zijlstra 已提交
310
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
311 312
 * default: 1s
 */
P
Peter Zijlstra 已提交
313
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
314

315
__read_mostly int scheduler_running;
316

P
Peter Zijlstra 已提交
317 318 319 320 321
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
322

323
/*
324
 * __task_rq_lock - lock the rq @p resides on.
325
 */
326
static inline struct rq *__task_rq_lock(struct task_struct *p)
327 328
	__acquires(rq->lock)
{
329 330
	struct rq *rq;

331 332
	lockdep_assert_held(&p->pi_lock);

333
	for (;;) {
334
		rq = task_rq(p);
335
		raw_spin_lock(&rq->lock);
336
		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
337
			return rq;
338
		raw_spin_unlock(&rq->lock);
339 340 341

		while (unlikely(task_on_rq_migrating(p)))
			cpu_relax();
342 343 344
	}
}

L
Linus Torvalds 已提交
345
/*
346
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
L
Linus Torvalds 已提交
347
 */
348
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
349
	__acquires(p->pi_lock)
L
Linus Torvalds 已提交
350 351
	__acquires(rq->lock)
{
352
	struct rq *rq;
L
Linus Torvalds 已提交
353

354
	for (;;) {
355
		raw_spin_lock_irqsave(&p->pi_lock, *flags);
356
		rq = task_rq(p);
357
		raw_spin_lock(&rq->lock);
358
		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
359
			return rq;
360 361
		raw_spin_unlock(&rq->lock);
		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
362 363 364

		while (unlikely(task_on_rq_migrating(p)))
			cpu_relax();
L
Linus Torvalds 已提交
365 366 367
	}
}

A
Alexey Dobriyan 已提交
368
static void __task_rq_unlock(struct rq *rq)
369 370
	__releases(rq->lock)
{
371
	raw_spin_unlock(&rq->lock);
372 373
}

374 375
static inline void
task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
376
	__releases(rq->lock)
377
	__releases(p->pi_lock)
L
Linus Torvalds 已提交
378
{
379 380
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
381 382 383
}

/*
384
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
385
 */
A
Alexey Dobriyan 已提交
386
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
387 388
	__acquires(rq->lock)
{
389
	struct rq *rq;
L
Linus Torvalds 已提交
390 391 392

	local_irq_disable();
	rq = this_rq();
393
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
394 395 396 397

	return rq;
}

P
Peter Zijlstra 已提交
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

419
	raw_spin_lock(&rq->lock);
420
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
421
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
422
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
423 424 425 426

	return HRTIMER_NORESTART;
}

427
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
428 429 430 431 432 433 434 435 436

static int __hrtick_restart(struct rq *rq)
{
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = hrtimer_get_softexpires(timer);

	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
}

437 438 439 440
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
441
{
442
	struct rq *rq = arg;
443

444
	raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
445
	__hrtick_restart(rq);
446
	rq->hrtick_csd_pending = 0;
447
	raw_spin_unlock(&rq->lock);
448 449
}

450 451 452 453 454
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
455
void hrtick_start(struct rq *rq, u64 delay)
456
{
457
	struct hrtimer *timer = &rq->hrtick_timer;
458 459 460 461 462 463 464 465 466
	ktime_t time;
	s64 delta;

	/*
	 * Don't schedule slices shorter than 10000ns, that just
	 * doesn't make sense and can cause timer DoS.
	 */
	delta = max_t(s64, delay, 10000LL);
	time = ktime_add_ns(timer->base->get_time(), delta);
467

468
	hrtimer_set_expires(timer, time);
469 470

	if (rq == this_rq()) {
P
Peter Zijlstra 已提交
471
		__hrtick_restart(rq);
472
	} else if (!rq->hrtick_csd_pending) {
473
		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
474 475
		rq->hrtick_csd_pending = 1;
	}
476 477 478 479 480 481 482 483 484 485 486 487 488 489
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
490
		hrtick_clear(cpu_rq(cpu));
491 492 493 494 495 496
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

497
static __init void init_hrtick(void)
498 499 500
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
501 502 503 504 505 506
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
507
void hrtick_start(struct rq *rq, u64 delay)
508
{
509
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
510
			HRTIMER_MODE_REL_PINNED, 0);
511
}
512

A
Andrew Morton 已提交
513
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
514 515
{
}
516
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
517

518
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
519
{
520 521
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
522

523 524 525 526
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
527

528 529
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
530
}
A
Andrew Morton 已提交
531
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
532 533 534 535 536 537 538 539
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

540 541 542
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
543
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
544

545 546 547 548 549 550 551 552 553 554 555 556 557 558
/*
 * cmpxchg based fetch_or, macro so it works for different integer types
 */
#define fetch_or(ptr, val)						\
({	typeof(*(ptr)) __old, __val = *(ptr);				\
 	for (;;) {							\
 		__old = cmpxchg((ptr), __val, __val | (val));		\
 		if (__old == __val)					\
 			break;						\
 		__val = __old;						\
 	}								\
 	__old;								\
})

559
#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
560 561 562 563 564 565 566 567 568 569
/*
 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
 * this avoids any races wrt polling state changes and thereby avoids
 * spurious IPIs.
 */
static bool set_nr_and_not_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
}
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594

/*
 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
 *
 * If this returns true, then the idle task promises to call
 * sched_ttwu_pending() and reschedule soon.
 */
static bool set_nr_if_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
	typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);

	for (;;) {
		if (!(val & _TIF_POLLING_NRFLAG))
			return false;
		if (val & _TIF_NEED_RESCHED)
			return true;
		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
		if (old == val)
			break;
		val = old;
	}
	return true;
}

595 596 597 598 599 600
#else
static bool set_nr_and_not_polling(struct task_struct *p)
{
	set_tsk_need_resched(p);
	return true;
}
601 602 603 604 605 606 607

#ifdef CONFIG_SMP
static bool set_nr_if_polling(struct task_struct *p)
{
	return false;
}
#endif
608 609
#endif

I
Ingo Molnar 已提交
610
/*
611
 * resched_curr - mark rq's current task 'to be rescheduled now'.
I
Ingo Molnar 已提交
612 613 614 615 616
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
617
void resched_curr(struct rq *rq)
I
Ingo Molnar 已提交
618
{
619
	struct task_struct *curr = rq->curr;
I
Ingo Molnar 已提交
620 621
	int cpu;

622
	lockdep_assert_held(&rq->lock);
I
Ingo Molnar 已提交
623

624
	if (test_tsk_need_resched(curr))
I
Ingo Molnar 已提交
625 626
		return;

627
	cpu = cpu_of(rq);
628

629
	if (cpu == smp_processor_id()) {
630
		set_tsk_need_resched(curr);
631
		set_preempt_need_resched();
I
Ingo Molnar 已提交
632
		return;
633
	}
I
Ingo Molnar 已提交
634

635
	if (set_nr_and_not_polling(curr))
I
Ingo Molnar 已提交
636
		smp_send_reschedule(cpu);
637 638
	else
		trace_sched_wake_idle_without_ipi(cpu);
I
Ingo Molnar 已提交
639 640
}

641
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
642 643 644 645
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

646
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
647
		return;
648
	resched_curr(rq);
649
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
650
}
651

652
#ifdef CONFIG_SMP
653
#ifdef CONFIG_NO_HZ_COMMON
654 655 656 657 658 659 660 661
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
662
int get_nohz_timer_target(int pinned)
663 664 665 666 667
{
	int cpu = smp_processor_id();
	int i;
	struct sched_domain *sd;

668 669 670
	if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
		return cpu;

671
	rcu_read_lock();
672
	for_each_domain(cpu, sd) {
673 674 675 676 677 678
		for_each_cpu(i, sched_domain_span(sd)) {
			if (!idle_cpu(i)) {
				cpu = i;
				goto unlock;
			}
		}
679
	}
680 681
unlock:
	rcu_read_unlock();
682 683
	return cpu;
}
684 685 686 687 688 689 690 691 692 693
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
694
static void wake_up_idle_cpu(int cpu)
695 696 697 698 699 700
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

701
	if (set_nr_and_not_polling(rq->idle))
702
		smp_send_reschedule(cpu);
703 704
	else
		trace_sched_wake_idle_without_ipi(cpu);
705 706
}

707
static bool wake_up_full_nohz_cpu(int cpu)
708
{
709 710 711 712 713 714
	/*
	 * We just need the target to call irq_exit() and re-evaluate
	 * the next tick. The nohz full kick at least implies that.
	 * If needed we can still optimize that later with an
	 * empty IRQ.
	 */
715
	if (tick_nohz_full_cpu(cpu)) {
716 717
		if (cpu != smp_processor_id() ||
		    tick_nohz_tick_stopped())
718
			tick_nohz_full_kick_cpu(cpu);
719 720 721 722 723 724 725 726
		return true;
	}

	return false;
}

void wake_up_nohz_cpu(int cpu)
{
727
	if (!wake_up_full_nohz_cpu(cpu))
728 729 730
		wake_up_idle_cpu(cpu);
}

731
static inline bool got_nohz_idle_kick(void)
732
{
733
	int cpu = smp_processor_id();
734 735 736 737 738 739 740 741 742 743 744 745 746

	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
		return false;

	if (idle_cpu(cpu) && !need_resched())
		return true;

	/*
	 * We can't run Idle Load Balance on this CPU for this time so we
	 * cancel it and clear NOHZ_BALANCE_KICK
	 */
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
	return false;
747 748
}

749
#else /* CONFIG_NO_HZ_COMMON */
750

751
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
752
{
753
	return false;
P
Peter Zijlstra 已提交
754 755
}

756
#endif /* CONFIG_NO_HZ_COMMON */
757

758 759 760
#ifdef CONFIG_NO_HZ_FULL
bool sched_can_stop_tick(void)
{
761 762 763 764 765
	/*
	 * More than one running task need preemption.
	 * nr_running update is assumed to be visible
	 * after IPI is sent from wakers.
	 */
766 767
	if (this_rq()->nr_running > 1)
		return false;
768

769
	return true;
770 771
}
#endif /* CONFIG_NO_HZ_FULL */
772

773
void sched_avg_update(struct rq *rq)
774
{
775 776
	s64 period = sched_avg_period();

777
	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
778 779 780 781 782 783
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
784 785 786
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
787 788
}

789
#endif /* CONFIG_SMP */
790

791 792
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
793
/*
794 795 796 797
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
798
 */
799
int walk_tg_tree_from(struct task_group *from,
800
			     tg_visitor down, tg_visitor up, void *data)
801 802
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
803
	int ret;
804

805 806
	parent = from;

807
down:
P
Peter Zijlstra 已提交
808 809
	ret = (*down)(parent, data);
	if (ret)
810
		goto out;
811 812 813 814 815 816 817
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
818
	ret = (*up)(parent, data);
819 820
	if (ret || parent == from)
		goto out;
821 822 823 824 825

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
826
out:
P
Peter Zijlstra 已提交
827
	return ret;
828 829
}

830
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
831
{
832
	return 0;
P
Peter Zijlstra 已提交
833
}
834 835
#endif

836 837
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
838 839 840
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
841 842 843 844
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
845
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
846
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
847 848
		return;
	}
849

850
	load->weight = scale_load(prio_to_weight[prio]);
N
Nikhil Rao 已提交
851
	load->inv_weight = prio_to_wmult[prio];
852 853
}

854
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
855
{
856
	update_rq_clock(rq);
857
	sched_info_queued(rq, p);
858
	p->sched_class->enqueue_task(rq, p, flags);
859 860
}

861
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
862
{
863
	update_rq_clock(rq);
864
	sched_info_dequeued(rq, p);
865
	p->sched_class->dequeue_task(rq, p, flags);
866 867
}

868
void activate_task(struct rq *rq, struct task_struct *p, int flags)
869 870 871 872
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

873
	enqueue_task(rq, p, flags);
874 875
}

876
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
877 878 879 880
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

881
	dequeue_task(rq, p, flags);
882 883
}

884
static void update_rq_clock_task(struct rq *rq, s64 delta)
885
{
886 887 888 889 890 891 892 893
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
894
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
916 917
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
918
	if (static_key_false((&paravirt_steal_rq_enabled))) {
919 920 921 922 923 924 925 926 927 928 929
		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		rq->prev_steal_time_rq += steal;
		delta -= steal;
	}
#endif

930 931
	rq->clock_task += delta;

932
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
933
	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
934 935
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
936 937
}

938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

968
/*
I
Ingo Molnar 已提交
969
 * __normal_prio - return the priority that is based on the static prio
970 971 972
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
973
	return p->static_prio;
974 975
}

976 977 978 979 980 981 982
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
983
static inline int normal_prio(struct task_struct *p)
984 985 986
{
	int prio;

987 988 989
	if (task_has_dl_policy(p))
		prio = MAX_DL_PRIO-1;
	else if (task_has_rt_policy(p))
990 991 992 993 994 995 996 997 998 999 1000 1001 1002
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1003
static int effective_prio(struct task_struct *p)
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1016 1017 1018
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
1019 1020
 *
 * Return: 1 if the task is currently executing. 0 otherwise.
L
Linus Torvalds 已提交
1021
 */
1022
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1023 1024 1025 1026
{
	return cpu_curr(task_cpu(p)) == p;
}

1027 1028
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
1029
				       int oldprio)
1030 1031 1032
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
1033 1034
			prev_class->switched_from(rq, p);
		p->sched_class->switched_to(rq, p);
1035
	} else if (oldprio != p->prio || dl_task(p))
P
Peter Zijlstra 已提交
1036
		p->sched_class->prio_changed(rq, p, oldprio);
1037 1038
}

1039
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
1050
				resched_curr(rq);
1051 1052 1053 1054 1055 1056 1057 1058 1059
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
1060
	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1061 1062 1063
		rq->skip_clock_update = 1;
}

L
Linus Torvalds 已提交
1064
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1065
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1066
{
1067 1068 1069 1070 1071
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
1072
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1073
			!(task_preempt_count(p) & PREEMPT_ACTIVE));
1074 1075

#ifdef CONFIG_LOCKDEP
1076 1077 1078 1079 1080
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
P
Peter Zijlstra 已提交
1081
	 * see task_group().
1082 1083 1084 1085
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
1086 1087 1088
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
1089 1090
#endif

1091
	trace_sched_migrate_task(p, new_cpu);
1092

1093
	if (task_cpu(p) != new_cpu) {
1094 1095
		if (p->sched_class->migrate_task_rq)
			p->sched_class->migrate_task_rq(p, new_cpu);
1096
		p->se.nr_migrations++;
1097
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1098
	}
I
Ingo Molnar 已提交
1099 1100

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1101 1102
}

1103 1104
static void __migrate_swap_task(struct task_struct *p, int cpu)
{
1105
	if (task_on_rq_queued(p)) {
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
		struct rq *src_rq, *dst_rq;

		src_rq = task_rq(p);
		dst_rq = cpu_rq(cpu);

		deactivate_task(src_rq, p, 0);
		set_task_cpu(p, cpu);
		activate_task(dst_rq, p, 0);
		check_preempt_curr(dst_rq, p, 0);
	} else {
		/*
		 * Task isn't running anymore; make it appear like we migrated
		 * it before it went to sleep. This means on wakeup we make the
		 * previous cpu our targer instead of where it really is.
		 */
		p->wake_cpu = cpu;
	}
}

struct migration_swap_arg {
	struct task_struct *src_task, *dst_task;
	int src_cpu, dst_cpu;
};

static int migrate_swap_stop(void *data)
{
	struct migration_swap_arg *arg = data;
	struct rq *src_rq, *dst_rq;
	int ret = -EAGAIN;

	src_rq = cpu_rq(arg->src_cpu);
	dst_rq = cpu_rq(arg->dst_cpu);

1139 1140
	double_raw_lock(&arg->src_task->pi_lock,
			&arg->dst_task->pi_lock);
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
	double_rq_lock(src_rq, dst_rq);
	if (task_cpu(arg->dst_task) != arg->dst_cpu)
		goto unlock;

	if (task_cpu(arg->src_task) != arg->src_cpu)
		goto unlock;

	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
		goto unlock;

	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
		goto unlock;

	__migrate_swap_task(arg->src_task, arg->dst_cpu);
	__migrate_swap_task(arg->dst_task, arg->src_cpu);

	ret = 0;

unlock:
	double_rq_unlock(src_rq, dst_rq);
1161 1162
	raw_spin_unlock(&arg->dst_task->pi_lock);
	raw_spin_unlock(&arg->src_task->pi_lock);
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184

	return ret;
}

/*
 * Cross migrate two tasks
 */
int migrate_swap(struct task_struct *cur, struct task_struct *p)
{
	struct migration_swap_arg arg;
	int ret = -EINVAL;

	arg = (struct migration_swap_arg){
		.src_task = cur,
		.src_cpu = task_cpu(cur),
		.dst_task = p,
		.dst_cpu = task_cpu(p),
	};

	if (arg.src_cpu == arg.dst_cpu)
		goto out;

1185 1186 1187 1188
	/*
	 * These three tests are all lockless; this is OK since all of them
	 * will be re-checked with proper locks held further down the line.
	 */
1189 1190 1191 1192 1193 1194 1195 1196 1197
	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
		goto out;

	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
		goto out;

	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
		goto out;

1198
	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1199 1200 1201 1202 1203 1204
	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);

out:
	return ret;
}

1205
struct migration_arg {
1206
	struct task_struct *task;
L
Linus Torvalds 已提交
1207
	int dest_cpu;
1208
};
L
Linus Torvalds 已提交
1209

1210 1211
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
1212 1213 1214
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1215 1216 1217 1218 1219 1220 1221
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1222 1223 1224 1225 1226 1227
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1228
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1229 1230
{
	unsigned long flags;
1231
	int running, queued;
R
Roland McGrath 已提交
1232
	unsigned long ncsw;
1233
	struct rq *rq;
L
Linus Torvalds 已提交
1234

1235 1236 1237 1238 1239 1240 1241 1242
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1243

1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1255 1256 1257
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1258
			cpu_relax();
R
Roland McGrath 已提交
1259
		}
1260

1261 1262 1263 1264 1265 1266
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1267
		trace_sched_wait_task(p);
1268
		running = task_running(rq, p);
1269
		queued = task_on_rq_queued(p);
R
Roland McGrath 已提交
1270
		ncsw = 0;
1271
		if (!match_state || p->state == match_state)
1272
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1273
		task_rq_unlock(rq, p, &flags);
1274

R
Roland McGrath 已提交
1275 1276 1277 1278 1279 1280
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1291

1292 1293 1294 1295 1296
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1297
		 * So if it was still runnable (but just not actively
1298 1299 1300
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
1301
		if (unlikely(queued)) {
1302 1303 1304 1305
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1306 1307
			continue;
		}
1308

1309 1310 1311 1312 1313 1314 1315
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1316 1317

	return ncsw;
L
Linus Torvalds 已提交
1318 1319 1320 1321 1322 1323 1324 1325 1326
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1327
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1328 1329 1330 1331 1332
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1333
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1334 1335 1336 1337 1338 1339 1340 1341 1342
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1343
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
1344
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1345

1346
#ifdef CONFIG_SMP
1347
/*
1348
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1349
 */
1350 1351
static int select_fallback_rq(int cpu, struct task_struct *p)
{
1352 1353
	int nid = cpu_to_node(cpu);
	const struct cpumask *nodemask = NULL;
1354 1355
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1356

1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
	/*
	 * If the node that the cpu is on has been offlined, cpu_to_node()
	 * will return -1. There is no cpu on the node, and we should
	 * select the cpu on the other node.
	 */
	if (nid != -1) {
		nodemask = cpumask_of_node(nid);

		/* Look for allowed, online CPU in same node. */
		for_each_cpu(dest_cpu, nodemask) {
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
				return dest_cpu;
		}
1374
	}
1375

1376 1377
	for (;;) {
		/* Any allowed, online CPU? */
1378
		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1379 1380 1381 1382 1383 1384
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			goto out;
		}
1385

1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
		switch (state) {
		case cpuset:
			/* No more Mr. Nice Guy. */
			cpuset_cpus_allowed_fallback(p);
			state = possible;
			break;

		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
1412
			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1413 1414
					task_pid_nr(p), p->comm, cpu);
		}
1415 1416 1417 1418 1419
	}

	return dest_cpu;
}

1420
/*
1421
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1422
 */
1423
static inline
1424
int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1425
{
1426
	cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1438
	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
P
Peter Zijlstra 已提交
1439
		     !cpu_online(cpu)))
1440
		cpu = select_fallback_rq(task_cpu(p), p);
1441 1442

	return cpu;
1443
}
1444 1445 1446 1447 1448 1449

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1450 1451
#endif

P
Peter Zijlstra 已提交
1452
static void
1453
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1454
{
P
Peter Zijlstra 已提交
1455
#ifdef CONFIG_SCHEDSTATS
1456 1457
	struct rq *rq = this_rq();

P
Peter Zijlstra 已提交
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
#ifdef CONFIG_SMP
	int this_cpu = smp_processor_id();

	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	} else {
		struct sched_domain *sd;

		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1468
		rcu_read_lock();
P
Peter Zijlstra 已提交
1469 1470 1471 1472 1473 1474
		for_each_domain(this_cpu, sd) {
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
1475
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1476
	}
1477 1478 1479 1480

	if (wake_flags & WF_MIGRATED)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);

P
Peter Zijlstra 已提交
1481 1482 1483
#endif /* CONFIG_SMP */

	schedstat_inc(rq, ttwu_count);
T
Tejun Heo 已提交
1484
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1485 1486

	if (wake_flags & WF_SYNC)
T
Tejun Heo 已提交
1487
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1488 1489 1490 1491 1492 1493

#endif /* CONFIG_SCHEDSTATS */
}

static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
{
T
Tejun Heo 已提交
1494
	activate_task(rq, p, en_flags);
1495
	p->on_rq = TASK_ON_RQ_QUEUED;
1496 1497 1498 1499

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1500 1501
}

1502 1503 1504
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1505
static void
1506
ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
T
Tejun Heo 已提交
1507 1508
{
	check_preempt_curr(rq, p, wake_flags);
1509
	trace_sched_wakeup(p, true);
T
Tejun Heo 已提交
1510 1511 1512 1513 1514 1515

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);

1516
	if (rq->idle_stamp) {
1517
		u64 delta = rq_clock(rq) - rq->idle_stamp;
1518
		u64 max = 2*rq->max_idle_balance_cost;
T
Tejun Heo 已提交
1519

1520 1521 1522
		update_avg(&rq->avg_idle, delta);

		if (rq->avg_idle > max)
T
Tejun Heo 已提交
1523
			rq->avg_idle = max;
1524

T
Tejun Heo 已提交
1525 1526 1527 1528 1529
		rq->idle_stamp = 0;
	}
#endif
}

1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
static void
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
{
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
#endif

	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
	ttwu_do_wakeup(rq, p, wake_flags);
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
1554
	if (task_on_rq_queued(p)) {
1555 1556
		/* check_preempt_curr() may use rq clock */
		update_rq_clock(rq);
1557 1558 1559 1560 1561 1562 1563 1564
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;
}

1565
#ifdef CONFIG_SMP
1566
void sched_ttwu_pending(void)
1567 1568
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1569 1570
	struct llist_node *llist = llist_del_all(&rq->wake_list);
	struct task_struct *p;
1571
	unsigned long flags;
1572

1573 1574 1575 1576
	if (!llist)
		return;

	raw_spin_lock_irqsave(&rq->lock, flags);
1577

P
Peter Zijlstra 已提交
1578 1579 1580
	while (llist) {
		p = llist_entry(llist, struct task_struct, wake_entry);
		llist = llist_next(llist);
1581 1582 1583
		ttwu_do_activate(rq, p, 0);
	}

1584
	raw_spin_unlock_irqrestore(&rq->lock, flags);
1585 1586 1587 1588
}

void scheduler_ipi(void)
{
1589 1590 1591 1592 1593
	/*
	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
	 * TIF_NEED_RESCHED remotely (for the first time) will also send
	 * this IPI.
	 */
1594
	preempt_fold_need_resched();
1595

1596
	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
P
Peter Zijlstra 已提交
1613
	sched_ttwu_pending();
1614 1615 1616 1617

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1618
	if (unlikely(got_nohz_idle_kick())) {
1619
		this_rq()->idle_balance = 1;
1620
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1621
	}
1622
	irq_exit();
1623 1624 1625 1626
}

static void ttwu_queue_remote(struct task_struct *p, int cpu)
{
1627 1628 1629 1630 1631 1632 1633 1634
	struct rq *rq = cpu_rq(cpu);

	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
		if (!set_nr_if_polling(rq->idle))
			smp_send_reschedule(cpu);
		else
			trace_sched_wake_idle_without_ipi(cpu);
	}
1635
}
1636

1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
void wake_up_if_idle(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!is_idle_task(rq->curr))
		return;

	if (set_nr_if_polling(rq->idle)) {
		trace_sched_wake_idle_without_ipi(cpu);
	} else {
		raw_spin_lock_irqsave(&rq->lock, flags);
		if (is_idle_task(rq->curr))
			smp_send_reschedule(cpu);
		/* Else cpu is not in idle, do nothing here */
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}
}

1656
bool cpus_share_cache(int this_cpu, int that_cpu)
1657 1658 1659
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1660
#endif /* CONFIG_SMP */
1661

1662 1663 1664 1665
static void ttwu_queue(struct task_struct *p, int cpu)
{
	struct rq *rq = cpu_rq(cpu);

1666
#if defined(CONFIG_SMP)
1667
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1668
		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1669 1670 1671 1672 1673
		ttwu_queue_remote(p, cpu);
		return;
	}
#endif

1674 1675 1676
	raw_spin_lock(&rq->lock);
	ttwu_do_activate(rq, p, 0);
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
1677 1678 1679
}

/**
L
Linus Torvalds 已提交
1680
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1681
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1682
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1683
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1684 1685 1686 1687 1688 1689 1690
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
1691
 * Return: %true if @p was woken up, %false if it was already running.
T
Tejun Heo 已提交
1692
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
1693
 */
1694 1695
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1696 1697
{
	unsigned long flags;
1698
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1699

1700 1701 1702 1703 1704 1705 1706
	/*
	 * If we are going to wake up a thread waiting for CONDITION we
	 * need to ensure that CONDITION=1 done by the caller can not be
	 * reordered with p->state check below. This pairs with mb() in
	 * set_current_state() the waiting thread does.
	 */
	smp_mb__before_spinlock();
1707
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
1708
	if (!(p->state & state))
L
Linus Torvalds 已提交
1709 1710
		goto out;

1711
	success = 1; /* we're going to change ->state */
L
Linus Torvalds 已提交
1712 1713
	cpu = task_cpu(p);

1714
	if (p->on_rq && ttwu_remote(p, wake_flags))
1715
		goto stat;
L
Linus Torvalds 已提交
1716 1717

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1718
	/*
1719 1720
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
P
Peter Zijlstra 已提交
1721
	 */
1722
	while (p->on_cpu)
1723
		cpu_relax();
1724
	/*
1725
	 * Pairs with the smp_wmb() in finish_lock_switch().
1726
	 */
1727
	smp_rmb();
L
Linus Torvalds 已提交
1728

1729
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
1730
	p->state = TASK_WAKING;
1731

1732
	if (p->sched_class->task_waking)
1733
		p->sched_class->task_waking(p);
1734

1735
	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1736 1737
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
1738
		set_task_cpu(p, cpu);
1739
	}
L
Linus Torvalds 已提交
1740 1741
#endif /* CONFIG_SMP */

1742 1743
	ttwu_queue(p, cpu);
stat:
1744
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
1745
out:
1746
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
1747 1748 1749 1750

	return success;
}

T
Tejun Heo 已提交
1751 1752 1753 1754
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
1755
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
1756
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1757
 * the current task.
T
Tejun Heo 已提交
1758 1759 1760 1761 1762
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

1763 1764 1765 1766
	if (WARN_ON_ONCE(rq != this_rq()) ||
	    WARN_ON_ONCE(p == current))
		return;

T
Tejun Heo 已提交
1767 1768
	lockdep_assert_held(&rq->lock);

1769 1770 1771 1772 1773 1774
	if (!raw_spin_trylock(&p->pi_lock)) {
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
	}

T
Tejun Heo 已提交
1775
	if (!(p->state & TASK_NORMAL))
1776
		goto out;
T
Tejun Heo 已提交
1777

1778
	if (!task_on_rq_queued(p))
P
Peter Zijlstra 已提交
1779 1780
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

1781
	ttwu_do_wakeup(rq, p, 0);
1782
	ttwu_stat(p, smp_processor_id(), 0);
1783 1784
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
1785 1786
}

1787 1788 1789 1790 1791
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
1792 1793 1794
 * processes.
 *
 * Return: 1 if the process was woken up, 0 if it was already running.
1795 1796 1797 1798
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
1799
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1800
{
1801 1802
	WARN_ON(task_is_stopped_or_traced(p));
	return try_to_wake_up(p, TASK_NORMAL, 0);
L
Linus Torvalds 已提交
1803 1804 1805
}
EXPORT_SYMBOL(wake_up_process);

1806
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1807 1808 1809 1810
{
	return try_to_wake_up(p, state, 0);
}

1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
/*
 * This function clears the sched_dl_entity static params.
 */
void __dl_clear_params(struct task_struct *p)
{
	struct sched_dl_entity *dl_se = &p->dl;

	dl_se->dl_runtime = 0;
	dl_se->dl_deadline = 0;
	dl_se->dl_period = 0;
	dl_se->flags = 0;
	dl_se->dl_bw = 0;
}

L
Linus Torvalds 已提交
1825 1826 1827
/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1828 1829 1830
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
1831
static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
1832
{
P
Peter Zijlstra 已提交
1833 1834 1835
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
1836 1837
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1838
	p->se.prev_sum_exec_runtime	= 0;
1839
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
1840
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
1841
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
1842 1843

#ifdef CONFIG_SCHEDSTATS
1844
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
1845
#endif
N
Nick Piggin 已提交
1846

1847 1848
	RB_CLEAR_NODE(&p->dl.rb_node);
	hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1849
	__dl_clear_params(p);
1850

P
Peter Zijlstra 已提交
1851
	INIT_LIST_HEAD(&p->rt.run_list);
N
Nick Piggin 已提交
1852

1853 1854 1855
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
1856 1857 1858

#ifdef CONFIG_NUMA_BALANCING
	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1859
		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1860 1861 1862
		p->mm->numa_scan_seq = 0;
	}

1863 1864 1865 1866 1867
	if (clone_flags & CLONE_VM)
		p->numa_preferred_nid = current->numa_preferred_nid;
	else
		p->numa_preferred_nid = -1;

1868 1869
	p->node_stamp = 0ULL;
	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1870
	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1871
	p->numa_work.next = &p->numa_work;
1872 1873
	p->numa_faults_memory = NULL;
	p->numa_faults_buffer_memory = NULL;
1874 1875
	p->last_task_numa_placement = 0;
	p->last_sum_exec_runtime = 0;
1876 1877 1878

	INIT_LIST_HEAD(&p->numa_entry);
	p->numa_group = NULL;
1879
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
1880 1881
}

1882
#ifdef CONFIG_NUMA_BALANCING
1883
#ifdef CONFIG_SCHED_DEBUG
1884 1885 1886 1887 1888 1889 1890
void set_numabalancing_state(bool enabled)
{
	if (enabled)
		sched_feat_set("NUMA");
	else
		sched_feat_set("NO_NUMA");
}
1891 1892 1893 1894 1895 1896
#else
__read_mostly bool numabalancing_enabled;

void set_numabalancing_state(bool enabled)
{
	numabalancing_enabled = enabled;
I
Ingo Molnar 已提交
1897
}
1898
#endif /* CONFIG_SCHED_DEBUG */
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921

#ifdef CONFIG_PROC_SYSCTL
int sysctl_numa_balancing(struct ctl_table *table, int write,
			 void __user *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table t;
	int err;
	int state = numabalancing_enabled;

	if (write && !capable(CAP_SYS_ADMIN))
		return -EPERM;

	t = *table;
	t.data = &state;
	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
	if (err < 0)
		return err;
	if (write)
		set_numabalancing_state(state);
	return err;
}
#endif
#endif
I
Ingo Molnar 已提交
1922 1923 1924 1925

/*
 * fork()/clone()-time setup:
 */
1926
int sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
1927
{
1928
	unsigned long flags;
I
Ingo Molnar 已提交
1929 1930
	int cpu = get_cpu();

1931
	__sched_fork(clone_flags, p);
1932
	/*
1933
	 * We mark the process as running here. This guarantees that
1934 1935 1936
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
1937
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1938

1939 1940 1941 1942 1943
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

1944 1945 1946 1947
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
1948
		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1949
			p->policy = SCHED_NORMAL;
1950
			p->static_prio = NICE_TO_PRIO(0);
1951 1952 1953 1954 1955 1956
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
1957

1958 1959 1960 1961 1962 1963
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
1964

1965 1966 1967 1968 1969 1970
	if (dl_prio(p->prio)) {
		put_cpu();
		return -EAGAIN;
	} else if (rt_prio(p->prio)) {
		p->sched_class = &rt_sched_class;
	} else {
H
Hiroshi Shimamoto 已提交
1971
		p->sched_class = &fair_sched_class;
1972
	}
1973

P
Peter Zijlstra 已提交
1974 1975 1976
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

1977 1978 1979 1980 1981 1982 1983
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
1984
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1985
	set_task_cpu(p, cpu);
1986
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1987

1988
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1989
	if (likely(sched_info_on()))
1990
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1991
#endif
P
Peter Zijlstra 已提交
1992 1993
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
1994
#endif
1995
	init_task_preempt_count(p);
1996
#ifdef CONFIG_SMP
1997
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1998
	RB_CLEAR_NODE(&p->pushable_dl_tasks);
1999
#endif
2000

N
Nick Piggin 已提交
2001
	put_cpu();
2002
	return 0;
L
Linus Torvalds 已提交
2003 2004
}

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 20;

	/*
	 * Doing this here saves a lot of checks in all
	 * the calling paths, and returning zero seems
	 * safe for them anyway.
	 */
	if (period == 0)
		return 0;

	return div64_u64(runtime << 20, period);
}

#ifdef CONFIG_SMP
inline struct dl_bw *dl_bw_of(int i)
{
2024 2025
	rcu_lockdep_assert(rcu_read_lock_sched_held(),
			   "sched RCU must be held");
2026 2027 2028
	return &cpu_rq(i)->rd->dl_bw;
}

2029
static inline int dl_bw_cpus(int i)
2030
{
2031 2032 2033
	struct root_domain *rd = cpu_rq(i)->rd;
	int cpus = 0;

2034 2035
	rcu_lockdep_assert(rcu_read_lock_sched_held(),
			   "sched RCU must be held");
2036 2037 2038 2039
	for_each_cpu_and(i, rd->span, cpu_active_mask)
		cpus++;

	return cpus;
2040 2041 2042 2043 2044 2045 2046
}
#else
inline struct dl_bw *dl_bw_of(int i)
{
	return &cpu_rq(i)->dl.dl_bw;
}

2047
static inline int dl_bw_cpus(int i)
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
{
	return 1;
}
#endif

static inline
void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
{
	dl_b->total_bw -= tsk_bw;
}

static inline
void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
{
	dl_b->total_bw += tsk_bw;
}

static inline
bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
{
	return dl_b->bw != -1 &&
	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
}

/*
 * We must be sure that accepting a new task (or allowing changing the
 * parameters of an existing one) is consistent with the bandwidth
 * constraints. If yes, this function also accordingly updates the currently
 * allocated bandwidth to reflect the new situation.
 *
 * This function is called while holding p's rq->lock.
 */
static int dl_overflow(struct task_struct *p, int policy,
		       const struct sched_attr *attr)
{

	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2085
	u64 period = attr->sched_period ?: attr->sched_deadline;
2086 2087
	u64 runtime = attr->sched_runtime;
	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2088
	int cpus, err = -1;
2089 2090 2091 2092 2093 2094 2095 2096 2097 2098

	if (new_bw == p->dl.dl_bw)
		return 0;

	/*
	 * Either if a task, enters, leave, or stays -deadline but changes
	 * its parameters, we may need to update accordingly the total
	 * allocated bandwidth of the container.
	 */
	raw_spin_lock(&dl_b->lock);
2099
	cpus = dl_bw_cpus(task_cpu(p));
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
	if (dl_policy(policy) && !task_has_dl_policy(p) &&
	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
		__dl_add(dl_b, new_bw);
		err = 0;
	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
		__dl_clear(dl_b, p->dl.dl_bw);
		__dl_add(dl_b, new_bw);
		err = 0;
	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
		__dl_clear(dl_b, p->dl.dl_bw);
		err = 0;
	}
	raw_spin_unlock(&dl_b->lock);

	return err;
}

extern void init_dl_bw(struct dl_bw *dl_b);

L
Linus Torvalds 已提交
2120 2121 2122 2123 2124 2125 2126
/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2127
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
2128 2129
{
	unsigned long flags;
I
Ingo Molnar 已提交
2130
	struct rq *rq;
2131

2132
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2133 2134 2135 2136 2137 2138
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 */
2139
	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2140 2141
#endif

2142 2143
	/* Initialize new task's runnable average */
	init_task_runnable_average(p);
2144
	rq = __task_rq_lock(p);
P
Peter Zijlstra 已提交
2145
	activate_task(rq, p, 0);
2146
	p->on_rq = TASK_ON_RQ_QUEUED;
2147
	trace_sched_wakeup_new(p, true);
P
Peter Zijlstra 已提交
2148
	check_preempt_curr(rq, p, WF_FORK);
2149
#ifdef CONFIG_SMP
2150 2151
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2152
#endif
2153
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
2154 2155
}

2156 2157 2158
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2159
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2160
 * @notifier: notifier struct to register
2161 2162 2163 2164 2165 2166 2167 2168 2169
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2170
 * @notifier: notifier struct to unregister
2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;

2184
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2185 2186 2187 2188 2189 2190 2191 2192 2193
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;

2194
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2195 2196 2197
		notifier->ops->sched_out(notifier, next);
}

2198
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2210
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2211

2212 2213 2214
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2215
 * @prev: the current task that is being switched out
2216 2217 2218 2219 2220 2221 2222 2223 2224
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2225 2226 2227
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2228
{
2229
	trace_sched_switch(prev, next);
2230
	sched_info_switch(rq, prev, next);
2231
	perf_event_task_sched_out(prev, next);
2232
	fire_sched_out_preempt_notifiers(prev, next);
2233 2234 2235 2236
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2237 2238
/**
 * finish_task_switch - clean up after a task-switch
2239
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2240 2241
 * @prev: the thread we just switched away from.
 *
2242 2243 2244 2245
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2246 2247
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2248
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2249 2250 2251
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2252
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2253 2254 2255
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2256
	long prev_state;
L
Linus Torvalds 已提交
2257 2258 2259 2260 2261

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2262
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2263 2264
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2265
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2266 2267 2268 2269 2270
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2271
	prev_state = prev->state;
2272
	vtime_task_switch(prev);
2273
	finish_arch_switch(prev);
2274
	perf_event_task_sched_in(prev, current);
2275
	finish_lock_switch(rq, prev);
2276
	finish_arch_post_lock_switch();
S
Steven Rostedt 已提交
2277

2278
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2279 2280
	if (mm)
		mmdrop(mm);
2281
	if (unlikely(prev_state == TASK_DEAD)) {
2282 2283 2284
		if (prev->sched_class->task_dead)
			prev->sched_class->task_dead(prev);

2285 2286 2287
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2288
		 */
2289
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2290
		put_task_struct(prev);
2291
	}
2292 2293

	tick_nohz_task_switch(current);
L
Linus Torvalds 已提交
2294 2295
}

2296 2297 2298 2299 2300 2301 2302 2303
#ifdef CONFIG_SMP

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

2304
		raw_spin_lock_irqsave(&rq->lock, flags);
2305 2306
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
2307
		raw_spin_unlock_irqrestore(&rq->lock, flags);
2308 2309 2310 2311 2312 2313

		rq->post_schedule = 0;
	}
}

#else
2314

2315 2316
static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
2317 2318
}

2319 2320
#endif

L
Linus Torvalds 已提交
2321 2322 2323 2324
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2325
asmlinkage __visible void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2326 2327
	__releases(rq->lock)
{
2328 2329
	struct rq *rq = this_rq();

2330
	finish_task_switch(rq, prev);
2331

2332 2333 2334 2335 2336
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2337

L
Linus Torvalds 已提交
2338
	if (current->set_child_tid)
2339
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2340 2341 2342 2343 2344 2345
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2346
static inline void
2347
context_switch(struct rq *rq, struct task_struct *prev,
2348
	       struct task_struct *next)
L
Linus Torvalds 已提交
2349
{
I
Ingo Molnar 已提交
2350
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2351

2352
	prepare_task_switch(rq, prev, next);
2353

I
Ingo Molnar 已提交
2354 2355
	mm = next->mm;
	oldmm = prev->active_mm;
2356 2357 2358 2359 2360
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2361
	arch_start_context_switch(prev);
2362

2363
	if (!mm) {
L
Linus Torvalds 已提交
2364 2365 2366 2367 2368 2369
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2370
	if (!prev->mm) {
L
Linus Torvalds 已提交
2371 2372 2373
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2374 2375 2376 2377 2378 2379
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
2380
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
2381

2382
	context_tracking_task_switch(prev, next);
L
Linus Torvalds 已提交
2383 2384 2385
	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2386 2387 2388 2389 2390 2391 2392
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2393 2394 2395
}

/*
2396
 * nr_running and nr_context_switches:
L
Linus Torvalds 已提交
2397 2398
 *
 * externally visible scheduler statistics: current number of runnable
2399
 * threads, total number of context switches performed since bootup.
L
Linus Torvalds 已提交
2400 2401 2402 2403 2404 2405 2406 2407 2408
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2409
}
L
Linus Torvalds 已提交
2410 2411

unsigned long long nr_context_switches(void)
2412
{
2413 2414
	int i;
	unsigned long long sum = 0;
2415

2416
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2417
		sum += cpu_rq(i)->nr_switches;
2418

L
Linus Torvalds 已提交
2419 2420
	return sum;
}
2421

L
Linus Torvalds 已提交
2422 2423 2424
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2425

2426
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2427
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2428

L
Linus Torvalds 已提交
2429 2430
	return sum;
}
2431

2432
unsigned long nr_iowait_cpu(int cpu)
2433
{
2434
	struct rq *this = cpu_rq(cpu);
2435 2436
	return atomic_read(&this->nr_iowait);
}
2437

2438 2439 2440 2441 2442 2443 2444
void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
{
	struct rq *this = this_rq();
	*nr_waiters = atomic_read(&this->nr_iowait);
	*load = this->cpu_load[0];
}

I
Ingo Molnar 已提交
2445
#ifdef CONFIG_SMP
2446

2447
/*
P
Peter Zijlstra 已提交
2448 2449
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2450
 */
P
Peter Zijlstra 已提交
2451
void sched_exec(void)
2452
{
P
Peter Zijlstra 已提交
2453
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2454
	unsigned long flags;
2455
	int dest_cpu;
2456

2457
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2458
	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2459 2460
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2461

2462
	if (likely(cpu_active(dest_cpu))) {
2463
		struct migration_arg arg = { p, dest_cpu };
2464

2465 2466
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2467 2468
		return;
	}
2469
unlock:
2470
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2471
}
I
Ingo Molnar 已提交
2472

L
Linus Torvalds 已提交
2473 2474 2475
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2476
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
2477 2478

EXPORT_PER_CPU_SYMBOL(kstat);
2479
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
2480 2481

/*
2482
 * Return any ns on the sched_clock that have not yet been accounted in
2483
 * @p in case that task is currently running.
2484 2485
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
2486
 */
2487 2488 2489 2490
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

2491 2492 2493 2494 2495
	/*
	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
	 * project cycles that may never be accounted to this
	 * thread, breaking clock_gettime().
	 */
2496
	if (task_current(rq, p) && task_on_rq_queued(p)) {
2497
		update_rq_clock(rq);
2498
		ns = rq_clock_task(rq) - p->se.exec_start;
2499 2500 2501 2502 2503 2504 2505
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

2506
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
2507 2508
{
	unsigned long flags;
2509
	struct rq *rq;
2510
	u64 ns = 0;
2511

2512
	rq = task_rq_lock(p, &flags);
2513
	ns = do_task_delta_exec(p, rq);
2514
	task_rq_unlock(rq, p, &flags);
2515

2516 2517
	return ns;
}
2518

2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

2530 2531 2532 2533 2534 2535 2536 2537 2538
#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
	/*
	 * 64-bit doesn't need locks to atomically read a 64bit value.
	 * So we have a optimization chance when the task's delta_exec is 0.
	 * Reading ->on_cpu is racy, but this is ok.
	 *
	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
	 * If we race with it entering cpu, unaccounted time is 0. This is
	 * indistinguishable from the read occurring a few cycles earlier.
2539 2540
	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
	 * been accounted, so we're correct here as well.
2541
	 */
2542
	if (!p->on_cpu || !task_on_rq_queued(p))
2543 2544 2545
		return p->se.sum_exec_runtime;
#endif

2546 2547
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2548
	task_rq_unlock(rq, p, &flags);
2549 2550 2551

	return ns;
}
2552

2553 2554 2555 2556 2557 2558 2559 2560
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2561
	struct task_struct *curr = rq->curr;
2562 2563

	sched_clock_tick();
I
Ingo Molnar 已提交
2564

2565
	raw_spin_lock(&rq->lock);
2566
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
2567
	curr->sched_class->task_tick(rq, curr, 0);
2568
	update_cpu_load_active(rq);
2569
	raw_spin_unlock(&rq->lock);
2570

2571
	perf_event_task_tick();
2572

2573
#ifdef CONFIG_SMP
2574
	rq->idle_balance = idle_cpu(cpu);
2575
	trigger_load_balance(rq);
2576
#endif
2577
	rq_last_tick_reset(rq);
L
Linus Torvalds 已提交
2578 2579
}

2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590
#ifdef CONFIG_NO_HZ_FULL
/**
 * scheduler_tick_max_deferment
 *
 * Keep at least one tick per second when a single
 * active task is running because the scheduler doesn't
 * yet completely support full dynticks environment.
 *
 * This makes sure that uptime, CFS vruntime, load
 * balancing, etc... continue to move forward, even
 * with a very low granularity.
2591 2592
 *
 * Return: Maximum deferment in nanoseconds.
2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603
 */
u64 scheduler_tick_max_deferment(void)
{
	struct rq *rq = this_rq();
	unsigned long next, now = ACCESS_ONCE(jiffies);

	next = rq->last_sched_tick + HZ;

	if (time_before_eq(next, now))
		return 0;

2604
	return jiffies_to_nsecs(next - now);
L
Linus Torvalds 已提交
2605
}
2606
#endif
L
Linus Torvalds 已提交
2607

2608
notrace unsigned long get_parent_ip(unsigned long addr)
2609 2610 2611 2612 2613 2614 2615 2616
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
2617

2618 2619 2620
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

2621
void preempt_count_add(int val)
L
Linus Torvalds 已提交
2622
{
2623
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2624 2625 2626
	/*
	 * Underflow?
	 */
2627 2628
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
2629
#endif
2630
	__preempt_count_add(val);
2631
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2632 2633 2634
	/*
	 * Spinlock count overflowing soon?
	 */
2635 2636
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
2637
#endif
2638 2639 2640 2641 2642 2643 2644
	if (preempt_count() == val) {
		unsigned long ip = get_parent_ip(CALLER_ADDR1);
#ifdef CONFIG_DEBUG_PREEMPT
		current->preempt_disable_ip = ip;
#endif
		trace_preempt_off(CALLER_ADDR0, ip);
	}
L
Linus Torvalds 已提交
2645
}
2646
EXPORT_SYMBOL(preempt_count_add);
2647
NOKPROBE_SYMBOL(preempt_count_add);
L
Linus Torvalds 已提交
2648

2649
void preempt_count_sub(int val)
L
Linus Torvalds 已提交
2650
{
2651
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2652 2653 2654
	/*
	 * Underflow?
	 */
2655
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2656
		return;
L
Linus Torvalds 已提交
2657 2658 2659
	/*
	 * Is the spinlock portion underflowing?
	 */
2660 2661 2662
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
2663
#endif
2664

2665 2666
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2667
	__preempt_count_sub(val);
L
Linus Torvalds 已提交
2668
}
2669
EXPORT_SYMBOL(preempt_count_sub);
2670
NOKPROBE_SYMBOL(preempt_count_sub);
L
Linus Torvalds 已提交
2671 2672 2673 2674

#endif

/*
I
Ingo Molnar 已提交
2675
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
2676
 */
I
Ingo Molnar 已提交
2677
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
2678
{
2679 2680 2681
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
2682 2683
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
2684

I
Ingo Molnar 已提交
2685
	debug_show_held_locks(prev);
2686
	print_modules();
I
Ingo Molnar 已提交
2687 2688
	if (irqs_disabled())
		print_irqtrace_events(prev);
2689 2690 2691 2692 2693 2694 2695
#ifdef CONFIG_DEBUG_PREEMPT
	if (in_atomic_preempt_off()) {
		pr_err("Preemption disabled at:");
		print_ip_sym(current->preempt_disable_ip);
		pr_cont("\n");
	}
#endif
2696
	dump_stack();
2697
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
I
Ingo Molnar 已提交
2698
}
L
Linus Torvalds 已提交
2699

I
Ingo Molnar 已提交
2700 2701 2702 2703 2704
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
2705 2706 2707
#ifdef CONFIG_SCHED_STACK_END_CHECK
	BUG_ON(unlikely(task_stack_end_corrupted(prev)));
#endif
L
Linus Torvalds 已提交
2708
	/*
I
Ingo Molnar 已提交
2709
	 * Test if we are atomic. Since do_exit() needs to call into
2710 2711
	 * schedule() atomically, we ignore that path. Otherwise whine
	 * if we are scheduling when we should not.
L
Linus Torvalds 已提交
2712
	 */
2713
	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
I
Ingo Molnar 已提交
2714
		__schedule_bug(prev);
2715
	rcu_sleep_check();
I
Ingo Molnar 已提交
2716

L
Linus Torvalds 已提交
2717 2718
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

2719
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
2720 2721 2722 2723 2724 2725
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
2726
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
2727
{
2728
	const struct sched_class *class = &fair_sched_class;
I
Ingo Molnar 已提交
2729
	struct task_struct *p;
L
Linus Torvalds 已提交
2730 2731

	/*
I
Ingo Molnar 已提交
2732 2733
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
2734
	 */
2735
	if (likely(prev->sched_class == class &&
2736
		   rq->nr_running == rq->cfs.h_nr_running)) {
2737
		p = fair_sched_class.pick_next_task(rq, prev);
2738 2739 2740 2741 2742 2743 2744 2745
		if (unlikely(p == RETRY_TASK))
			goto again;

		/* assumes fair_sched_class->next == idle_sched_class */
		if (unlikely(!p))
			p = idle_sched_class.pick_next_task(rq, prev);

		return p;
L
Linus Torvalds 已提交
2746 2747
	}

2748
again:
2749
	for_each_class(class) {
2750
		p = class->pick_next_task(rq, prev);
2751 2752 2753
		if (p) {
			if (unlikely(p == RETRY_TASK))
				goto again;
I
Ingo Molnar 已提交
2754
			return p;
2755
		}
I
Ingo Molnar 已提交
2756
	}
2757 2758

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
2759
}
L
Linus Torvalds 已提交
2760

I
Ingo Molnar 已提交
2761
/*
2762
 * __schedule() is the main scheduler function.
2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
 *
 * The main means of driving the scheduler and thus entering this function are:
 *
 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 *      paths. For example, see arch/x86/entry_64.S.
 *
 *      To drive preemption between tasks, the scheduler sets the flag in timer
 *      interrupt handler scheduler_tick().
 *
 *   3. Wakeups don't really cause entry into schedule(). They add a
 *      task to the run-queue and that's it.
 *
 *      Now, if the new task added to the run-queue preempts the current
 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 *      called on the nearest possible occasion:
 *
 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
 *
 *         - in syscall or exception context, at the next outmost
 *           preempt_enable(). (this might be as soon as the wake_up()'s
 *           spin_unlock()!)
 *
 *         - in IRQ context, return from interrupt-handler to
 *           preemptible context
 *
 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
 *         then at the next:
 *
 *          - cond_resched() call
 *          - explicit schedule() call
 *          - return from syscall or exception to user-space
 *          - return from interrupt-handler to user-space
I
Ingo Molnar 已提交
2797
 */
2798
static void __sched __schedule(void)
I
Ingo Molnar 已提交
2799 2800
{
	struct task_struct *prev, *next;
2801
	unsigned long *switch_count;
I
Ingo Molnar 已提交
2802
	struct rq *rq;
2803
	int cpu;
I
Ingo Molnar 已提交
2804

2805 2806
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
2807 2808
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
2809
	rcu_note_context_switch(cpu);
I
Ingo Molnar 已提交
2810 2811 2812
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
2813

2814
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
2815
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
2816

2817 2818 2819 2820 2821 2822
	/*
	 * Make sure that signal_pending_state()->signal_pending() below
	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
	 * done by the caller to avoid the race with signal_wake_up().
	 */
	smp_mb__before_spinlock();
2823
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
2824

2825
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
2826
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
2827
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
2828
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
2829
		} else {
2830 2831 2832
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

T
Tejun Heo 已提交
2833
			/*
2834 2835 2836
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
2837 2838 2839 2840 2841 2842 2843 2844 2845
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
		}
I
Ingo Molnar 已提交
2846
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
2847 2848
	}

2849
	if (task_on_rq_queued(prev) || rq->skip_clock_update < 0)
2850 2851 2852
		update_rq_clock(rq);

	next = pick_next_task(rq, prev);
2853
	clear_tsk_need_resched(prev);
2854
	clear_preempt_need_resched();
2855
	rq->skip_clock_update = 0;
L
Linus Torvalds 已提交
2856 2857 2858 2859 2860 2861

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
2862
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
2863
		/*
2864 2865 2866 2867
		 * The context switch have flipped the stack from under us
		 * and restored the local variables which were saved when
		 * this task called schedule() in the past. prev == current
		 * is still correct, but it can be moved to another cpu/rq.
P
Peter Zijlstra 已提交
2868 2869 2870
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
2871
	} else
2872
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
2873

2874
	post_schedule(rq);
L
Linus Torvalds 已提交
2875

2876
	sched_preempt_enable_no_resched();
2877
	if (need_resched())
L
Linus Torvalds 已提交
2878 2879
		goto need_resched;
}
2880

2881 2882
static inline void sched_submit_work(struct task_struct *tsk)
{
2883
	if (!tsk->state || tsk_is_pi_blocked(tsk))
2884 2885 2886 2887 2888 2889 2890 2891 2892
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

2893
asmlinkage __visible void __sched schedule(void)
2894
{
2895 2896 2897
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
2898 2899
	__schedule();
}
L
Linus Torvalds 已提交
2900 2901
EXPORT_SYMBOL(schedule);

2902
#ifdef CONFIG_CONTEXT_TRACKING
2903
asmlinkage __visible void __sched schedule_user(void)
2904 2905 2906 2907 2908 2909 2910
{
	/*
	 * If we come here after a random call to set_need_resched(),
	 * or we have been woken up remotely but the IPI has not yet arrived,
	 * we haven't yet exited the RCU idle mode. Do it here manually until
	 * we find a better solution.
	 */
2911
	user_exit();
2912
	schedule();
2913
	user_enter();
2914 2915 2916
}
#endif

2917 2918 2919 2920 2921 2922 2923
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
2924
	sched_preempt_enable_no_resched();
2925 2926 2927 2928
	schedule();
	preempt_disable();
}

L
Linus Torvalds 已提交
2929 2930
#ifdef CONFIG_PREEMPT
/*
2931
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
2932
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
2933 2934
 * occur there and call schedule directly.
 */
2935
asmlinkage __visible void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
2936 2937 2938
{
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
2939
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
2940
	 */
2941
	if (likely(!preemptible()))
L
Linus Torvalds 已提交
2942 2943
		return;

2944
	do {
2945
		__preempt_count_add(PREEMPT_ACTIVE);
2946
		__schedule();
2947
		__preempt_count_sub(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
2948

2949 2950 2951 2952 2953
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
2954
	} while (need_resched());
L
Linus Torvalds 已提交
2955
}
2956
NOKPROBE_SYMBOL(preempt_schedule);
L
Linus Torvalds 已提交
2957
EXPORT_SYMBOL(preempt_schedule);
2958
#endif /* CONFIG_PREEMPT */
L
Linus Torvalds 已提交
2959 2960

/*
2961
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
2962 2963 2964 2965
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
2966
asmlinkage __visible void __sched preempt_schedule_irq(void)
L
Linus Torvalds 已提交
2967
{
2968
	enum ctx_state prev_state;
2969

2970
	/* Catch callers which need to be fixed */
2971
	BUG_ON(preempt_count() || !irqs_disabled());
L
Linus Torvalds 已提交
2972

2973 2974
	prev_state = exception_enter();

2975
	do {
2976
		__preempt_count_add(PREEMPT_ACTIVE);
2977
		local_irq_enable();
2978
		__schedule();
2979
		local_irq_disable();
2980
		__preempt_count_sub(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
2981

2982 2983 2984 2985 2986
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
2987
	} while (need_resched());
2988 2989

	exception_exit(prev_state);
L
Linus Torvalds 已提交
2990 2991
}

P
Peter Zijlstra 已提交
2992
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
2993
			  void *key)
L
Linus Torvalds 已提交
2994
{
P
Peter Zijlstra 已提交
2995
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
2996 2997 2998
}
EXPORT_SYMBOL(default_wake_function);

2999 3000 3001 3002 3003 3004 3005 3006 3007 3008
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
3009 3010
 * Used by the rt_mutex code to implement priority inheritance
 * logic. Call site only calls if the priority of the task changed.
3011
 */
3012
void rt_mutex_setprio(struct task_struct *p, int prio)
3013
{
3014
	int oldprio, queued, running, enqueue_flag = 0;
3015
	struct rq *rq;
3016
	const struct sched_class *prev_class;
3017

3018
	BUG_ON(prio > MAX_PRIO);
3019

3020
	rq = __task_rq_lock(p);
3021

3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

3040
	trace_sched_pi_setprio(p, prio);
3041
	oldprio = p->prio;
3042
	prev_class = p->sched_class;
3043
	queued = task_on_rq_queued(p);
3044
	running = task_current(rq, p);
3045
	if (queued)
3046
		dequeue_task(rq, p, 0);
3047
	if (running)
3048
		put_prev_task(rq, p);
I
Ingo Molnar 已提交
3049

3050 3051 3052 3053 3054 3055 3056 3057 3058 3059
	/*
	 * Boosting condition are:
	 * 1. -rt task is running and holds mutex A
	 *      --> -dl task blocks on mutex A
	 *
	 * 2. -dl task is running and holds mutex A
	 *      --> -dl task blocks on mutex A and could preempt the
	 *          running task
	 */
	if (dl_prio(prio)) {
3060 3061 3062
		struct task_struct *pi_task = rt_mutex_get_top_task(p);
		if (!dl_prio(p->normal_prio) ||
		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3063 3064 3065 3066 3067
			p->dl.dl_boosted = 1;
			p->dl.dl_throttled = 0;
			enqueue_flag = ENQUEUE_REPLENISH;
		} else
			p->dl.dl_boosted = 0;
3068
		p->sched_class = &dl_sched_class;
3069 3070 3071 3072 3073
	} else if (rt_prio(prio)) {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
		if (oldprio < prio)
			enqueue_flag = ENQUEUE_HEAD;
I
Ingo Molnar 已提交
3074
		p->sched_class = &rt_sched_class;
3075 3076 3077
	} else {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
I
Ingo Molnar 已提交
3078
		p->sched_class = &fair_sched_class;
3079
	}
I
Ingo Molnar 已提交
3080

3081 3082
	p->prio = prio;

3083 3084
	if (running)
		p->sched_class->set_curr_task(rq);
3085
	if (queued)
3086
		enqueue_task(rq, p, enqueue_flag);
3087

P
Peter Zijlstra 已提交
3088
	check_class_changed(rq, p, prev_class, oldprio);
3089
out_unlock:
3090
	__task_rq_unlock(rq);
3091 3092
}
#endif
3093

3094
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3095
{
3096
	int old_prio, delta, queued;
L
Linus Torvalds 已提交
3097
	unsigned long flags;
3098
	struct rq *rq;
L
Linus Torvalds 已提交
3099

3100
	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
L
Linus Torvalds 已提交
3101 3102 3103 3104 3105 3106 3107 3108 3109 3110
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
3111
	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
L
Linus Torvalds 已提交
3112
	 */
3113
	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3114 3115 3116
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
3117 3118
	queued = task_on_rq_queued(p);
	if (queued)
3119
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
3120 3121

	p->static_prio = NICE_TO_PRIO(nice);
3122
	set_load_weight(p);
3123 3124 3125
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3126

3127
	if (queued) {
3128
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
3129
		/*
3130 3131
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3132
		 */
3133
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3134
			resched_curr(rq);
L
Linus Torvalds 已提交
3135 3136
	}
out_unlock:
3137
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3138 3139 3140
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3141 3142 3143 3144 3145
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3146
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3147
{
3148
	/* convert nice value [19,-20] to rlimit style value [1,40] */
3149
	int nice_rlim = nice_to_rlimit(nice);
3150

3151
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3152 3153 3154
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3155 3156 3157 3158 3159 3160 3161 3162 3163
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3164
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3165
{
3166
	long nice, retval;
L
Linus Torvalds 已提交
3167 3168 3169 3170 3171 3172

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
3173
	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3174
	nice = task_nice(current) + increment;
L
Linus Torvalds 已提交
3175

3176
	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
M
Matt Mackall 已提交
3177 3178 3179
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
3194
 * Return: The priority value as seen by users in /proc.
L
Linus Torvalds 已提交
3195 3196 3197
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3198
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3199 3200 3201 3202 3203 3204 3205
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
3206 3207
 *
 * Return: 1 if the CPU is currently idle. 0 otherwise.
L
Linus Torvalds 已提交
3208 3209 3210
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3225 3226 3227 3228 3229
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
3230 3231
 *
 * Return: The idle task for the cpu @cpu.
L
Linus Torvalds 已提交
3232
 */
3233
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3234 3235 3236 3237 3238 3239 3240
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
3241 3242
 *
 * The task of @pid, if found. %NULL otherwise.
L
Linus Torvalds 已提交
3243
 */
A
Alexey Dobriyan 已提交
3244
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
3245
{
3246
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
3247 3248
}

3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264
/*
 * This function initializes the sched_dl_entity of a newly becoming
 * SCHED_DEADLINE task.
 *
 * Only the static values are considered here, the actual runtime and the
 * absolute deadline will be properly calculated when the task is enqueued
 * for the first time with its new policy.
 */
static void
__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	init_dl_task_timer(dl_se);
	dl_se->dl_runtime = attr->sched_runtime;
	dl_se->dl_deadline = attr->sched_deadline;
3265
	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3266
	dl_se->flags = attr->sched_flags;
3267
	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3268 3269
	dl_se->dl_throttled = 0;
	dl_se->dl_new = 1;
3270
	dl_se->dl_yielded = 0;
3271 3272
}

3273 3274 3275 3276 3277 3278
/*
 * sched_setparam() passes in -1 for its policy, to let the functions
 * it calls know not to change it.
 */
#define SETPARAM_POLICY	-1

3279 3280
static void __setscheduler_params(struct task_struct *p,
		const struct sched_attr *attr)
L
Linus Torvalds 已提交
3281
{
3282 3283
	int policy = attr->sched_policy;

3284
	if (policy == SETPARAM_POLICY)
3285 3286
		policy = p->policy;

L
Linus Torvalds 已提交
3287
	p->policy = policy;
3288

3289 3290
	if (dl_policy(policy))
		__setparam_dl(p, attr);
3291
	else if (fair_policy(policy))
3292 3293
		p->static_prio = NICE_TO_PRIO(attr->sched_nice);

3294 3295 3296 3297 3298 3299
	/*
	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
	 * !rt_policy. Always setting this ensures that things like
	 * getparam()/getattr() don't report silly values for !rt tasks.
	 */
	p->rt_priority = attr->sched_priority;
3300
	p->normal_prio = normal_prio(p);
3301 3302
	set_load_weight(p);
}
3303

3304 3305 3306 3307 3308
/* Actually do priority change: must hold pi & rq lock. */
static void __setscheduler(struct rq *rq, struct task_struct *p,
			   const struct sched_attr *attr)
{
	__setscheduler_params(p, attr);
3309

3310 3311 3312 3313 3314 3315
	/*
	 * If we get here, there was no pi waiters boosting the
	 * task. It is safe to use the normal prio.
	 */
	p->prio = normal_prio(p);

3316 3317 3318
	if (dl_prio(p->prio))
		p->sched_class = &dl_sched_class;
	else if (rt_prio(p->prio))
3319 3320 3321
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
3322
}
3323 3324 3325 3326 3327 3328 3329 3330 3331

static void
__getparam_dl(struct task_struct *p, struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	attr->sched_priority = p->rt_priority;
	attr->sched_runtime = dl_se->dl_runtime;
	attr->sched_deadline = dl_se->dl_deadline;
3332
	attr->sched_period = dl_se->dl_period;
3333 3334 3335 3336 3337 3338
	attr->sched_flags = dl_se->flags;
}

/*
 * This function validates the new parameters of a -deadline task.
 * We ask for the deadline not being zero, and greater or equal
3339
 * than the runtime, as well as the period of being zero or
3340
 * greater than deadline. Furthermore, we have to be sure that
3341 3342 3343 3344
 * user parameters are above the internal resolution of 1us (we
 * check sched_runtime only since it is always the smaller one) and
 * below 2^63 ns (we have to check both sched_deadline and
 * sched_period, as the latter can be zero).
3345 3346 3347 3348
 */
static bool
__checkparam_dl(const struct sched_attr *attr)
{
3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374
	/* deadline != 0 */
	if (attr->sched_deadline == 0)
		return false;

	/*
	 * Since we truncate DL_SCALE bits, make sure we're at least
	 * that big.
	 */
	if (attr->sched_runtime < (1ULL << DL_SCALE))
		return false;

	/*
	 * Since we use the MSB for wrap-around and sign issues, make
	 * sure it's not set (mind that period can be equal to zero).
	 */
	if (attr->sched_deadline & (1ULL << 63) ||
	    attr->sched_period & (1ULL << 63))
		return false;

	/* runtime <= deadline <= period (if period != 0) */
	if ((attr->sched_period != 0 &&
	     attr->sched_period < attr->sched_deadline) ||
	    attr->sched_deadline < attr->sched_runtime)
		return false;

	return true;
3375 3376
}

3377 3378 3379 3380 3381 3382 3383 3384 3385 3386
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
3387 3388
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
3389 3390 3391 3392
	rcu_read_unlock();
	return match;
}

3393 3394 3395
static int __sched_setscheduler(struct task_struct *p,
				const struct sched_attr *attr,
				bool user)
L
Linus Torvalds 已提交
3396
{
3397 3398
	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
		      MAX_RT_PRIO - 1 - attr->sched_priority;
3399
	int retval, oldprio, oldpolicy = -1, queued, running;
3400
	int policy = attr->sched_policy;
L
Linus Torvalds 已提交
3401
	unsigned long flags;
3402
	const struct sched_class *prev_class;
3403
	struct rq *rq;
3404
	int reset_on_fork;
L
Linus Torvalds 已提交
3405

3406 3407
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
3408 3409
recheck:
	/* double check policy once rq lock held */
3410 3411
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
3412
		policy = oldpolicy = p->policy;
3413
	} else {
3414
		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3415

3416 3417
		if (policy != SCHED_DEADLINE &&
				policy != SCHED_FIFO && policy != SCHED_RR &&
3418 3419 3420 3421 3422
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

3423 3424 3425
	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
		return -EINVAL;

L
Linus Torvalds 已提交
3426 3427
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
3428 3429
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
3430
	 */
3431
	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3432
	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
3433
		return -EINVAL;
3434 3435
	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
	    (rt_policy(policy) != (attr->sched_priority != 0)))
L
Linus Torvalds 已提交
3436 3437
		return -EINVAL;

3438 3439 3440
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
3441
	if (user && !capable(CAP_SYS_NICE)) {
3442
		if (fair_policy(policy)) {
3443
			if (attr->sched_nice < task_nice(p) &&
3444
			    !can_nice(p, attr->sched_nice))
3445 3446 3447
				return -EPERM;
		}

3448
		if (rt_policy(policy)) {
3449 3450
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
3451 3452 3453 3454 3455 3456

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
3457 3458
			if (attr->sched_priority > p->rt_priority &&
			    attr->sched_priority > rlim_rtprio)
3459 3460
				return -EPERM;
		}
3461

3462 3463 3464 3465 3466 3467 3468 3469 3470
		 /*
		  * Can't set/change SCHED_DEADLINE policy at all for now
		  * (safest behavior); in the future we would like to allow
		  * unprivileged DL tasks to increase their relative deadline
		  * or reduce their runtime (both ways reducing utilization)
		  */
		if (dl_policy(policy))
			return -EPERM;

I
Ingo Molnar 已提交
3471
		/*
3472 3473
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
3474
		 */
3475
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3476
			if (!can_nice(p, task_nice(p)))
3477 3478
				return -EPERM;
		}
3479

3480
		/* can't change other user's priorities */
3481
		if (!check_same_owner(p))
3482
			return -EPERM;
3483 3484 3485 3486

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
3487
	}
L
Linus Torvalds 已提交
3488

3489
	if (user) {
3490
		retval = security_task_setscheduler(p);
3491 3492 3493 3494
		if (retval)
			return retval;
	}

3495 3496 3497
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
3498
	 *
L
Lucas De Marchi 已提交
3499
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
3500 3501
	 * runqueue lock must be held.
	 */
3502
	rq = task_rq_lock(p, &flags);
3503

3504 3505 3506 3507
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
3508
		task_rq_unlock(rq, p, &flags);
3509 3510 3511
		return -EINVAL;
	}

3512
	/*
3513 3514
	 * If not changing anything there's no need to proceed further,
	 * but store a possible modification of reset_on_fork.
3515
	 */
3516
	if (unlikely(policy == p->policy)) {
3517
		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3518 3519 3520
			goto change;
		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
			goto change;
3521 3522
		if (dl_policy(policy))
			goto change;
3523

3524
		p->sched_reset_on_fork = reset_on_fork;
3525
		task_rq_unlock(rq, p, &flags);
3526 3527
		return 0;
	}
3528
change:
3529

3530
	if (user) {
3531
#ifdef CONFIG_RT_GROUP_SCHED
3532 3533 3534 3535 3536
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3537 3538
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
3539
			task_rq_unlock(rq, p, &flags);
3540 3541 3542
			return -EPERM;
		}
#endif
3543 3544 3545 3546 3547 3548 3549 3550 3551
#ifdef CONFIG_SMP
		if (dl_bandwidth_enabled() && dl_policy(policy)) {
			cpumask_t *span = rq->rd->span;

			/*
			 * Don't allow tasks with an affinity mask smaller than
			 * the entire root_domain to become SCHED_DEADLINE. We
			 * will also fail if there's no bandwidth available.
			 */
3552 3553
			if (!cpumask_subset(span, &p->cpus_allowed) ||
			    rq->rd->dl_bw.bw == 0) {
3554 3555 3556 3557 3558 3559
				task_rq_unlock(rq, p, &flags);
				return -EPERM;
			}
		}
#endif
	}
3560

L
Linus Torvalds 已提交
3561 3562 3563
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
3564
		task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3565 3566
		goto recheck;
	}
3567 3568 3569 3570 3571 3572

	/*
	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
	 * is available.
	 */
3573
	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3574 3575 3576 3577
		task_rq_unlock(rq, p, &flags);
		return -EBUSY;
	}

3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595
	p->sched_reset_on_fork = reset_on_fork;
	oldprio = p->prio;

	/*
	 * Special case for priority boosted tasks.
	 *
	 * If the new priority is lower or equal (user space view)
	 * than the current (boosted) priority, we just store the new
	 * normal parameters and do not touch the scheduler class and
	 * the runqueue. This will be done when the task deboost
	 * itself.
	 */
	if (rt_mutex_check_prio(p, newprio)) {
		__setscheduler_params(p, attr);
		task_rq_unlock(rq, p, &flags);
		return 0;
	}

3596
	queued = task_on_rq_queued(p);
3597
	running = task_current(rq, p);
3598
	if (queued)
3599
		dequeue_task(rq, p, 0);
3600
	if (running)
3601
		put_prev_task(rq, p);
3602

3603
	prev_class = p->sched_class;
3604
	__setscheduler(rq, p, attr);
3605

3606 3607
	if (running)
		p->sched_class->set_curr_task(rq);
3608
	if (queued) {
3609 3610 3611 3612 3613 3614
		/*
		 * We enqueue to tail when the priority of a task is
		 * increased (user space view).
		 */
		enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
	}
3615

P
Peter Zijlstra 已提交
3616
	check_class_changed(rq, p, prev_class, oldprio);
3617
	task_rq_unlock(rq, p, &flags);
3618

3619 3620
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
3621 3622
	return 0;
}
3623

3624 3625 3626 3627 3628 3629 3630 3631 3632
static int _sched_setscheduler(struct task_struct *p, int policy,
			       const struct sched_param *param, bool check)
{
	struct sched_attr attr = {
		.sched_policy   = policy,
		.sched_priority = param->sched_priority,
		.sched_nice	= PRIO_TO_NICE(p->static_prio),
	};

3633 3634
	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
3635 3636 3637 3638 3639 3640 3641
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
		policy &= ~SCHED_RESET_ON_FORK;
		attr.sched_policy = policy;
	}

	return __sched_setscheduler(p, &attr, check);
}
3642 3643 3644 3645 3646 3647
/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
3648 3649
 * Return: 0 on success. An error code otherwise.
 *
3650 3651 3652
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
3653
		       const struct sched_param *param)
3654
{
3655
	return _sched_setscheduler(p, policy, param, true);
3656
}
L
Linus Torvalds 已提交
3657 3658
EXPORT_SYMBOL_GPL(sched_setscheduler);

3659 3660 3661 3662 3663 3664
int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
{
	return __sched_setscheduler(p, attr, true);
}
EXPORT_SYMBOL_GPL(sched_setattr);

3665 3666 3667 3668 3669 3670 3671 3672 3673 3674
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
3675 3676
 *
 * Return: 0 on success. An error code otherwise.
3677 3678
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3679
			       const struct sched_param *param)
3680
{
3681
	return _sched_setscheduler(p, policy, param, false);
3682 3683
}

I
Ingo Molnar 已提交
3684 3685
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
3686 3687 3688
{
	struct sched_param lparam;
	struct task_struct *p;
3689
	int retval;
L
Linus Torvalds 已提交
3690 3691 3692 3693 3694

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
3695 3696 3697

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
3698
	p = find_process_by_pid(pid);
3699 3700 3701
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
3702

L
Linus Torvalds 已提交
3703 3704 3705
	return retval;
}

3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767
/*
 * Mimics kernel/events/core.c perf_copy_attr().
 */
static int sched_copy_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr)
{
	u32 size;
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = SCHED_ATTR_SIZE_VER0;

	if (size < SCHED_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
	 */
	if (size > sizeof(*attr)) {
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;

		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;

		for (; addr < end; addr++) {
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
		size = sizeof(*attr);
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * XXX: do we want to be lenient like existing syscalls; or do we want
	 * to be strict and return an error on out-of-bounds values?
	 */
3768
	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3769

3770
	return 0;
3771 3772 3773

err_size:
	put_user(sizeof(*attr), &uattr->size);
3774
	return -E2BIG;
3775 3776
}

L
Linus Torvalds 已提交
3777 3778 3779 3780 3781
/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
3782 3783
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
3784
 */
3785 3786
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
3787
{
3788 3789 3790 3791
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
3792 3793 3794 3795 3796 3797 3798
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
3799 3800
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
3801
 */
3802
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
3803
{
3804
	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
L
Linus Torvalds 已提交
3805 3806
}

3807 3808 3809
/**
 * sys_sched_setattr - same as above, but with extended sched_attr
 * @pid: the pid in question.
J
Juri Lelli 已提交
3810
 * @uattr: structure containing the extended parameters.
3811
 * @flags: for future extension.
3812
 */
3813 3814
SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
			       unsigned int, flags)
3815 3816 3817 3818 3819
{
	struct sched_attr attr;
	struct task_struct *p;
	int retval;

3820
	if (!uattr || pid < 0 || flags)
3821 3822
		return -EINVAL;

3823 3824 3825
	retval = sched_copy_attr(uattr, &attr);
	if (retval)
		return retval;
3826

3827
	if ((int)attr.sched_policy < 0)
3828
		return -EINVAL;
3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839

	rcu_read_lock();
	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (p != NULL)
		retval = sched_setattr(p, &attr);
	rcu_read_unlock();

	return retval;
}

L
Linus Torvalds 已提交
3840 3841 3842
/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
3843 3844 3845
 *
 * Return: On success, the policy of the thread. Otherwise, a negative error
 * code.
L
Linus Torvalds 已提交
3846
 */
3847
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
3848
{
3849
	struct task_struct *p;
3850
	int retval;
L
Linus Torvalds 已提交
3851 3852

	if (pid < 0)
3853
		return -EINVAL;
L
Linus Torvalds 已提交
3854 3855

	retval = -ESRCH;
3856
	rcu_read_lock();
L
Linus Torvalds 已提交
3857 3858 3859 3860
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
3861 3862
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
3863
	}
3864
	rcu_read_unlock();
L
Linus Torvalds 已提交
3865 3866 3867 3868
	return retval;
}

/**
3869
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
3870 3871
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
3872 3873 3874
 *
 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
 * code.
L
Linus Torvalds 已提交
3875
 */
3876
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
3877
{
3878
	struct sched_param lp = { .sched_priority = 0 };
3879
	struct task_struct *p;
3880
	int retval;
L
Linus Torvalds 已提交
3881 3882

	if (!param || pid < 0)
3883
		return -EINVAL;
L
Linus Torvalds 已提交
3884

3885
	rcu_read_lock();
L
Linus Torvalds 已提交
3886 3887 3888 3889 3890 3891 3892 3893 3894
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

3895 3896
	if (task_has_rt_policy(p))
		lp.sched_priority = p->rt_priority;
3897
	rcu_read_unlock();
L
Linus Torvalds 已提交
3898 3899 3900 3901 3902 3903 3904 3905 3906

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
3907
	rcu_read_unlock();
L
Linus Torvalds 已提交
3908 3909 3910
	return retval;
}

3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933
static int sched_read_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr,
			   unsigned int usize)
{
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, usize))
		return -EFAULT;

	/*
	 * If we're handed a smaller struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. old
	 * user-space does not get uncomplete information.
	 */
	if (usize < sizeof(*attr)) {
		unsigned char *addr;
		unsigned char *end;

		addr = (void *)attr + usize;
		end  = (void *)attr + sizeof(*attr);

		for (; addr < end; addr++) {
			if (*addr)
3934
				return -EFBIG;
3935 3936 3937 3938 3939
		}

		attr->size = usize;
	}

3940
	ret = copy_to_user(uattr, attr, attr->size);
3941 3942 3943
	if (ret)
		return -EFAULT;

3944
	return 0;
3945 3946 3947
}

/**
3948
 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3949
 * @pid: the pid in question.
J
Juri Lelli 已提交
3950
 * @uattr: structure containing the extended parameters.
3951
 * @size: sizeof(attr) for fwd/bwd comp.
3952
 * @flags: for future extension.
3953
 */
3954 3955
SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
		unsigned int, size, unsigned int, flags)
3956 3957 3958 3959 3960 3961 3962 3963
{
	struct sched_attr attr = {
		.size = sizeof(struct sched_attr),
	};
	struct task_struct *p;
	int retval;

	if (!uattr || pid < 0 || size > PAGE_SIZE ||
3964
	    size < SCHED_ATTR_SIZE_VER0 || flags)
3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977
		return -EINVAL;

	rcu_read_lock();
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	attr.sched_policy = p->policy;
3978 3979
	if (p->sched_reset_on_fork)
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3980 3981 3982
	if (task_has_dl_policy(p))
		__getparam_dl(p, &attr);
	else if (task_has_rt_policy(p))
3983 3984
		attr.sched_priority = p->rt_priority;
	else
3985
		attr.sched_nice = task_nice(p);
3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996

	rcu_read_unlock();

	retval = sched_read_attr(uattr, &attr, size);
	return retval;

out_unlock:
	rcu_read_unlock();
	return retval;
}

3997
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
3998
{
3999
	cpumask_var_t cpus_allowed, new_mask;
4000 4001
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4002

4003
	rcu_read_lock();
L
Linus Torvalds 已提交
4004 4005 4006

	p = find_process_by_pid(pid);
	if (!p) {
4007
		rcu_read_unlock();
L
Linus Torvalds 已提交
4008 4009 4010
		return -ESRCH;
	}

4011
	/* Prevent p going away */
L
Linus Torvalds 已提交
4012
	get_task_struct(p);
4013
	rcu_read_unlock();
L
Linus Torvalds 已提交
4014

4015 4016 4017 4018
	if (p->flags & PF_NO_SETAFFINITY) {
		retval = -EINVAL;
		goto out_put_task;
	}
4019 4020 4021 4022 4023 4024 4025 4026
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4027
	retval = -EPERM;
E
Eric W. Biederman 已提交
4028 4029 4030 4031
	if (!check_same_owner(p)) {
		rcu_read_lock();
		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
			rcu_read_unlock();
4032
			goto out_free_new_mask;
E
Eric W. Biederman 已提交
4033 4034 4035
		}
		rcu_read_unlock();
	}
L
Linus Torvalds 已提交
4036

4037
	retval = security_task_setscheduler(p);
4038
	if (retval)
4039
		goto out_free_new_mask;
4040

4041 4042 4043 4044

	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);

4045 4046 4047 4048 4049 4050 4051
	/*
	 * Since bandwidth control happens on root_domain basis,
	 * if admission test is enabled, we only admit -deadline
	 * tasks allowed to run on all the CPUs in the task's
	 * root_domain.
	 */
#ifdef CONFIG_SMP
4052 4053 4054
	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
		rcu_read_lock();
		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4055
			retval = -EBUSY;
4056
			rcu_read_unlock();
4057
			goto out_free_new_mask;
4058
		}
4059
		rcu_read_unlock();
4060 4061
	}
#endif
P
Peter Zijlstra 已提交
4062
again:
4063
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
4064

P
Paul Menage 已提交
4065
	if (!retval) {
4066 4067
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4068 4069 4070 4071 4072
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4073
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4074 4075 4076
			goto again;
		}
	}
4077
out_free_new_mask:
4078 4079 4080 4081
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4082 4083 4084 4085 4086
	put_task_struct(p);
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4087
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4088
{
4089 4090 4091 4092 4093
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4094 4095 4096 4097 4098 4099 4100 4101
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
4102 4103
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4104
 */
4105 4106
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4107
{
4108
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4109 4110
	int retval;

4111 4112
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4113

4114 4115 4116 4117 4118
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4119 4120
}

4121
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4122
{
4123
	struct task_struct *p;
4124
	unsigned long flags;
L
Linus Torvalds 已提交
4125 4126
	int retval;

4127
	rcu_read_lock();
L
Linus Torvalds 已提交
4128 4129 4130 4131 4132 4133

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4134 4135 4136 4137
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4138
	raw_spin_lock_irqsave(&p->pi_lock, flags);
4139
	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4140
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4141 4142

out_unlock:
4143
	rcu_read_unlock();
L
Linus Torvalds 已提交
4144

4145
	return retval;
L
Linus Torvalds 已提交
4146 4147 4148 4149 4150 4151 4152
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4153 4154
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4155
 */
4156 4157
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4158 4159
{
	int ret;
4160
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4161

A
Anton Blanchard 已提交
4162
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4163 4164
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4165 4166
		return -EINVAL;

4167 4168
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4169

4170 4171
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4172
		size_t retlen = min_t(size_t, len, cpumask_size());
4173 4174

		if (copy_to_user(user_mask_ptr, mask, retlen))
4175 4176
			ret = -EFAULT;
		else
4177
			ret = retlen;
4178 4179
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4180

4181
	return ret;
L
Linus Torvalds 已提交
4182 4183 4184 4185 4186
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4187 4188
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
4189 4190
 *
 * Return: 0.
L
Linus Torvalds 已提交
4191
 */
4192
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4193
{
4194
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4195

4196
	schedstat_inc(rq, yld_count);
4197
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4198 4199 4200 4201 4202 4203

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4204
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4205
	do_raw_spin_unlock(&rq->lock);
4206
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
4207 4208 4209 4210 4211 4212

	schedule();

	return 0;
}

A
Andrew Morton 已提交
4213
static void __cond_resched(void)
L
Linus Torvalds 已提交
4214
{
4215
	__preempt_count_add(PREEMPT_ACTIVE);
4216
	__schedule();
4217
	__preempt_count_sub(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4218 4219
}

4220
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4221
{
P
Peter Zijlstra 已提交
4222
	if (should_resched()) {
L
Linus Torvalds 已提交
4223 4224 4225 4226 4227
		__cond_resched();
		return 1;
	}
	return 0;
}
4228
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4229 4230

/*
4231
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4232 4233
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4234
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4235 4236 4237
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4238
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4239
{
P
Peter Zijlstra 已提交
4240
	int resched = should_resched();
J
Jan Kara 已提交
4241 4242
	int ret = 0;

4243 4244
	lockdep_assert_held(lock);

4245
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4246
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4247
		if (resched)
N
Nick Piggin 已提交
4248 4249 4250
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
4251
		ret = 1;
L
Linus Torvalds 已提交
4252 4253
		spin_lock(lock);
	}
J
Jan Kara 已提交
4254
	return ret;
L
Linus Torvalds 已提交
4255
}
4256
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4257

4258
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4259 4260 4261
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
4262
	if (should_resched()) {
4263
		local_bh_enable();
L
Linus Torvalds 已提交
4264 4265 4266 4267 4268 4269
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
4270
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4271 4272 4273 4274

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
 * 	yield();
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
4293 4294 4295 4296 4297 4298 4299 4300
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

4301 4302 4303 4304
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
4305 4306
 * @p: target task
 * @preempt: whether task preemption is allowed or not
4307 4308 4309 4310
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
4311
 * Return:
4312 4313 4314
 *	true (>0) if we indeed boosted the target task.
 *	false (0) if we failed to boost the target.
 *	-ESRCH if there's no task to yield to.
4315
 */
4316
int __sched yield_to(struct task_struct *p, bool preempt)
4317 4318 4319 4320
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
4321
	int yielded = 0;
4322 4323 4324 4325 4326 4327

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
4328 4329 4330 4331 4332 4333 4334 4335 4336
	/*
	 * If we're the only runnable task on the rq and target rq also
	 * has only one task, there's absolutely no point in yielding.
	 */
	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
		yielded = -ESRCH;
		goto out_irq;
	}

4337
	double_rq_lock(rq, p_rq);
4338
	if (task_rq(p) != p_rq) {
4339 4340 4341 4342 4343
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
4344
		goto out_unlock;
4345 4346

	if (curr->sched_class != p->sched_class)
4347
		goto out_unlock;
4348 4349

	if (task_running(p_rq, p) || p->state)
4350
		goto out_unlock;
4351 4352

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4353
	if (yielded) {
4354
		schedstat_inc(rq, yld_count);
4355 4356 4357 4358 4359
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
4360
			resched_curr(p_rq);
4361
	}
4362

4363
out_unlock:
4364
	double_rq_unlock(rq, p_rq);
4365
out_irq:
4366 4367
	local_irq_restore(flags);

4368
	if (yielded > 0)
4369 4370 4371 4372 4373 4374
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
4375
/*
I
Ingo Molnar 已提交
4376
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4377 4378 4379 4380
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
4381
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4382

4383
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4384
	atomic_inc(&rq->nr_iowait);
4385
	blk_flush_plug(current);
4386
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4387
	schedule();
4388
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4389
	atomic_dec(&rq->nr_iowait);
4390
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4391 4392 4393 4394 4395
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4396
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4397 4398
	long ret;

4399
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4400
	atomic_inc(&rq->nr_iowait);
4401
	blk_flush_plug(current);
4402
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4403
	ret = schedule_timeout(timeout);
4404
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4405
	atomic_dec(&rq->nr_iowait);
4406
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4407 4408 4409 4410 4411 4412 4413
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
4414 4415 4416
 * Return: On success, this syscall returns the maximum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
4417
 */
4418
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
4419 4420 4421 4422 4423 4424 4425 4426
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
4427
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
4428
	case SCHED_NORMAL:
4429
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4430
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4431 4432 4433 4434 4435 4436 4437 4438 4439 4440
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
4441 4442 4443
 * Return: On success, this syscall returns the minimum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
4444
 */
4445
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
4446 4447 4448 4449 4450 4451 4452 4453
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
4454
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
4455
	case SCHED_NORMAL:
4456
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4457
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
4470 4471 4472
 *
 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
 * an error code.
L
Linus Torvalds 已提交
4473
 */
4474
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4475
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
4476
{
4477
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4478
	unsigned int time_slice;
4479 4480
	unsigned long flags;
	struct rq *rq;
4481
	int retval;
L
Linus Torvalds 已提交
4482 4483 4484
	struct timespec t;

	if (pid < 0)
4485
		return -EINVAL;
L
Linus Torvalds 已提交
4486 4487

	retval = -ESRCH;
4488
	rcu_read_lock();
L
Linus Torvalds 已提交
4489 4490 4491 4492 4493 4494 4495 4496
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4497
	rq = task_rq_lock(p, &flags);
4498 4499 4500
	time_slice = 0;
	if (p->sched_class->get_rr_interval)
		time_slice = p->sched_class->get_rr_interval(rq, p);
4501
	task_rq_unlock(rq, p, &flags);
D
Dmitry Adamushko 已提交
4502

4503
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
4504
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4505 4506
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4507

L
Linus Torvalds 已提交
4508
out_unlock:
4509
	rcu_read_unlock();
L
Linus Torvalds 已提交
4510 4511 4512
	return retval;
}

4513
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4514

4515
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4516 4517
{
	unsigned long free = 0;
4518
	int ppid;
4519
	unsigned state;
L
Linus Torvalds 已提交
4520 4521

	state = p->state ? __ffs(p->state) + 1 : 0;
4522
	printk(KERN_INFO "%-15.15s %c", p->comm,
4523
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4524
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4525
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4526
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4527
	else
P
Peter Zijlstra 已提交
4528
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4529 4530
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4531
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4532
	else
P
Peter Zijlstra 已提交
4533
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4534 4535
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
4536
	free = stack_not_used(p);
L
Linus Torvalds 已提交
4537
#endif
4538 4539 4540
	rcu_read_lock();
	ppid = task_pid_nr(rcu_dereference(p->real_parent));
	rcu_read_unlock();
P
Peter Zijlstra 已提交
4541
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4542
		task_pid_nr(p), ppid,
4543
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
4544

4545
	print_worker_info(KERN_INFO, p);
4546
	show_stack(p, NULL);
L
Linus Torvalds 已提交
4547 4548
}

I
Ingo Molnar 已提交
4549
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4550
{
4551
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4552

4553
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
4554 4555
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4556
#else
P
Peter Zijlstra 已提交
4557 4558
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4559
#endif
4560
	rcu_read_lock();
4561
	for_each_process_thread(g, p) {
L
Linus Torvalds 已提交
4562 4563
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
4564
		 * console might take a lot of time:
L
Linus Torvalds 已提交
4565 4566
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4567
		if (!state_filter || (p->state & state_filter))
4568
			sched_show_task(p);
4569
	}
L
Linus Torvalds 已提交
4570

4571 4572
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4573 4574 4575
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
4576
	rcu_read_unlock();
I
Ingo Molnar 已提交
4577 4578 4579
	/*
	 * Only show locks if all tasks are dumped:
	 */
4580
	if (!state_filter)
I
Ingo Molnar 已提交
4581
		debug_show_all_locks();
L
Linus Torvalds 已提交
4582 4583
}

4584
void init_idle_bootup_task(struct task_struct *idle)
I
Ingo Molnar 已提交
4585
{
I
Ingo Molnar 已提交
4586
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4587 4588
}

4589 4590 4591 4592 4593 4594 4595 4596
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4597
void init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4598
{
4599
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4600 4601
	unsigned long flags;

4602
	raw_spin_lock_irqsave(&rq->lock, flags);
4603

4604
	__sched_fork(0, idle);
4605
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
4606 4607
	idle->se.exec_start = sched_clock();

4608
	do_set_cpus_allowed(idle, cpumask_of(cpu));
4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
4620
	__set_task_cpu(idle, cpu);
4621
	rcu_read_unlock();
L
Linus Torvalds 已提交
4622 4623

	rq->curr = rq->idle = idle;
4624
	idle->on_rq = TASK_ON_RQ_QUEUED;
P
Peter Zijlstra 已提交
4625 4626
#if defined(CONFIG_SMP)
	idle->on_cpu = 1;
4627
#endif
4628
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
4629 4630

	/* Set the preempt count _outside_ the spinlocks! */
4631
	init_idle_preempt_count(idle, cpu);
4632

I
Ingo Molnar 已提交
4633 4634 4635 4636
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
4637
	ftrace_graph_init_idle_task(idle, cpu);
4638
	vtime_init_idle(idle, cpu);
4639 4640 4641
#if defined(CONFIG_SMP)
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
4642 4643
}

L
Linus Torvalds 已提交
4644
#ifdef CONFIG_SMP
4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671
/*
 * move_queued_task - move a queued task to new rq.
 *
 * Returns (locked) new rq. Old rq's lock is released.
 */
static struct rq *move_queued_task(struct task_struct *p, int new_cpu)
{
	struct rq *rq = task_rq(p);

	lockdep_assert_held(&rq->lock);

	dequeue_task(rq, p, 0);
	p->on_rq = TASK_ON_RQ_MIGRATING;
	set_task_cpu(p, new_cpu);
	raw_spin_unlock(&rq->lock);

	rq = cpu_rq(new_cpu);

	raw_spin_lock(&rq->lock);
	BUG_ON(task_cpu(p) != new_cpu);
	p->on_rq = TASK_ON_RQ_QUEUED;
	enqueue_task(rq, p, 0);
	check_preempt_curr(rq, p, 0);

	return rq;
}

4672 4673 4674 4675
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
	if (p->sched_class && p->sched_class->set_cpus_allowed)
		p->sched_class->set_cpus_allowed(p, new_mask);
4676 4677

	cpumask_copy(&p->cpus_allowed, new_mask);
4678
	p->nr_cpus_allowed = cpumask_weight(new_mask);
4679 4680
}

L
Linus Torvalds 已提交
4681 4682 4683
/*
 * This is how migration works:
 *
4684 4685 4686 4687 4688 4689
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
4690
 *    it and puts it into the right queue.
4691 4692
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
4693 4694 4695 4696 4697 4698 4699 4700
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
4701
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
4702 4703
 * call is not atomic; no spinlocks may be held.
 */
4704
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
4705 4706
{
	unsigned long flags;
4707
	struct rq *rq;
4708
	unsigned int dest_cpu;
4709
	int ret = 0;
L
Linus Torvalds 已提交
4710 4711

	rq = task_rq_lock(p, &flags);
4712

4713 4714 4715
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

4716
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
4717 4718 4719 4720
		ret = -EINVAL;
		goto out;
	}

4721
	do_set_cpus_allowed(p, new_mask);
4722

L
Linus Torvalds 已提交
4723
	/* Can the task run on the task's current CPU? If so, we're done */
4724
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
4725 4726
		goto out;

4727
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4728
	if (task_running(rq, p) || p->state == TASK_WAKING) {
4729
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
4730
		/* Need help from migration thread: drop lock and wait. */
4731
		task_rq_unlock(rq, p, &flags);
4732
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
4733 4734
		tlb_migrate_finish(p->mm);
		return 0;
4735 4736
	} else if (task_on_rq_queued(p))
		rq = move_queued_task(p, dest_cpu);
L
Linus Torvalds 已提交
4737
out:
4738
	task_rq_unlock(rq, p, &flags);
4739

L
Linus Torvalds 已提交
4740 4741
	return ret;
}
4742
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
4743 4744

/*
I
Ingo Molnar 已提交
4745
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
4746 4747 4748 4749 4750 4751
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4752 4753
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4754
 */
4755
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4756
{
4757
	struct rq *rq;
4758
	int ret = 0;
L
Linus Torvalds 已提交
4759

4760
	if (unlikely(!cpu_active(dest_cpu)))
4761
		return ret;
L
Linus Torvalds 已提交
4762

4763
	rq = cpu_rq(src_cpu);
L
Linus Torvalds 已提交
4764

4765
	raw_spin_lock(&p->pi_lock);
4766
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
4767 4768
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
4769
		goto done;
4770

L
Linus Torvalds 已提交
4771
	/* Affinity changed (again). */
4772
	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
L
Linus Torvalds 已提交
4773
		goto fail;
L
Linus Torvalds 已提交
4774

4775 4776 4777 4778
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
4779 4780
	if (task_on_rq_queued(p))
		rq = move_queued_task(p, dest_cpu);
L
Linus Torvalds 已提交
4781
done:
4782
	ret = 1;
L
Linus Torvalds 已提交
4783
fail:
4784
	raw_spin_unlock(&rq->lock);
4785
	raw_spin_unlock(&p->pi_lock);
4786
	return ret;
L
Linus Torvalds 已提交
4787 4788
}

4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803
#ifdef CONFIG_NUMA_BALANCING
/* Migrate current task p to target_cpu */
int migrate_task_to(struct task_struct *p, int target_cpu)
{
	struct migration_arg arg = { p, target_cpu };
	int curr_cpu = task_cpu(p);

	if (curr_cpu == target_cpu)
		return 0;

	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
		return -EINVAL;

	/* TODO: This is not properly updating schedstats */

4804
	trace_sched_move_numa(p, curr_cpu, target_cpu);
4805 4806
	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
}
4807 4808 4809 4810 4811 4812 4813 4814 4815

/*
 * Requeue a task on a given node and accurately track the number of NUMA
 * tasks on the runqueues
 */
void sched_setnuma(struct task_struct *p, int nid)
{
	struct rq *rq;
	unsigned long flags;
4816
	bool queued, running;
4817 4818

	rq = task_rq_lock(p, &flags);
4819
	queued = task_on_rq_queued(p);
4820 4821
	running = task_current(rq, p);

4822
	if (queued)
4823 4824
		dequeue_task(rq, p, 0);
	if (running)
4825
		put_prev_task(rq, p);
4826 4827 4828 4829 4830

	p->numa_preferred_nid = nid;

	if (running)
		p->sched_class->set_curr_task(rq);
4831
	if (queued)
4832 4833 4834
		enqueue_task(rq, p, 0);
	task_rq_unlock(rq, p, &flags);
}
4835 4836
#endif

L
Linus Torvalds 已提交
4837
/*
4838 4839 4840
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
4841
 */
4842
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
4843
{
4844
	struct migration_arg *arg = data;
4845

4846 4847 4848 4849
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
4850
	local_irq_disable();
L
Lai Jiangshan 已提交
4851 4852 4853 4854 4855 4856
	/*
	 * We need to explicitly wake pending tasks before running
	 * __migrate_task() such that we will not miss enforcing cpus_allowed
	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
	 */
	sched_ttwu_pending();
4857
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4858
	local_irq_enable();
L
Linus Torvalds 已提交
4859
	return 0;
4860 4861
}

L
Linus Torvalds 已提交
4862
#ifdef CONFIG_HOTPLUG_CPU
4863

4864
/*
4865 4866
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
4867
 */
4868
void idle_task_exit(void)
L
Linus Torvalds 已提交
4869
{
4870
	struct mm_struct *mm = current->active_mm;
4871

4872
	BUG_ON(cpu_online(smp_processor_id()));
4873

4874
	if (mm != &init_mm) {
4875
		switch_mm(mm, &init_mm, current);
4876 4877
		finish_arch_post_lock_switch();
	}
4878
	mmdrop(mm);
L
Linus Torvalds 已提交
4879 4880 4881
}

/*
4882 4883 4884 4885 4886
 * Since this CPU is going 'away' for a while, fold any nr_active delta
 * we might have. Assumes we're called after migrate_tasks() so that the
 * nr_active count is stable.
 *
 * Also see the comment "Global load-average calculations".
L
Linus Torvalds 已提交
4887
 */
4888
static void calc_load_migrate(struct rq *rq)
L
Linus Torvalds 已提交
4889
{
4890 4891 4892
	long delta = calc_load_fold_active(rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
4893 4894
}

4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910
static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
{
}

static const struct sched_class fake_sched_class = {
	.put_prev_task = put_prev_task_fake,
};

static struct task_struct fake_task = {
	/*
	 * Avoid pull_{rt,dl}_task()
	 */
	.prio = MAX_PRIO + 1,
	.sched_class = &fake_sched_class,
};

4911
/*
4912 4913 4914 4915 4916 4917
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
4918
 */
4919
static void migrate_tasks(unsigned int dead_cpu)
L
Linus Torvalds 已提交
4920
{
4921
	struct rq *rq = cpu_rq(dead_cpu);
4922 4923
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
4924 4925

	/*
4926 4927 4928 4929 4930 4931 4932
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
4933
	 */
4934
	rq->stop = NULL;
4935

4936 4937 4938 4939 4940 4941 4942
	/*
	 * put_prev_task() and pick_next_task() sched
	 * class method both need to have an up-to-date
	 * value of rq->clock[_task]
	 */
	update_rq_clock(rq);

I
Ingo Molnar 已提交
4943
	for ( ; ; ) {
4944 4945 4946 4947 4948
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
4949
			break;
4950

4951
		next = pick_next_task(rq, &fake_task);
4952
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
4953
		next->sched_class->put_prev_task(rq, next);
4954

4955 4956 4957 4958 4959 4960 4961
		/* Find suitable destination for @next, with force if needed. */
		dest_cpu = select_fallback_rq(dead_cpu, next);
		raw_spin_unlock(&rq->lock);

		__migrate_task(next, dead_cpu, dest_cpu);

		raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
4962
	}
4963

4964
	rq->stop = stop;
4965
}
4966

L
Linus Torvalds 已提交
4967 4968
#endif /* CONFIG_HOTPLUG_CPU */

4969 4970 4971
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
4972 4973
	{
		.procname	= "sched_domain",
4974
		.mode		= 0555,
4975
	},
4976
	{}
4977 4978 4979
};

static struct ctl_table sd_ctl_root[] = {
4980 4981
	{
		.procname	= "kernel",
4982
		.mode		= 0555,
4983 4984
		.child		= sd_ctl_dir,
	},
4985
	{}
4986 4987 4988 4989 4990
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
4991
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4992 4993 4994 4995

	return entry;
}

4996 4997
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
4998
	struct ctl_table *entry;
4999

5000 5001 5002
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5003
	 * will always be set. In the lowest directory the names are
5004 5005 5006
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5007 5008
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5009 5010 5011
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5012 5013 5014 5015 5016

	kfree(*tablep);
	*tablep = NULL;
}

5017
static int min_load_idx = 0;
5018
static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5019

5020
static void
5021
set_table_entry(struct ctl_table *entry,
5022
		const char *procname, void *data, int maxlen,
5023 5024
		umode_t mode, proc_handler *proc_handler,
		bool load_idx)
5025 5026 5027 5028 5029 5030
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
5031 5032 5033 5034 5035

	if (load_idx) {
		entry->extra1 = &min_load_idx;
		entry->extra2 = &max_load_idx;
	}
5036 5037 5038 5039 5040
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5041
	struct ctl_table *table = sd_alloc_ctl_entry(14);
5042

5043 5044 5045
	if (table == NULL)
		return NULL;

5046
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5047
		sizeof(long), 0644, proc_doulongvec_minmax, false);
5048
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5049
		sizeof(long), 0644, proc_doulongvec_minmax, false);
5050
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5051
		sizeof(int), 0644, proc_dointvec_minmax, true);
5052
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5053
		sizeof(int), 0644, proc_dointvec_minmax, true);
5054
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5055
		sizeof(int), 0644, proc_dointvec_minmax, true);
5056
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5057
		sizeof(int), 0644, proc_dointvec_minmax, true);
5058
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5059
		sizeof(int), 0644, proc_dointvec_minmax, true);
5060
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5061
		sizeof(int), 0644, proc_dointvec_minmax, false);
5062
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5063
		sizeof(int), 0644, proc_dointvec_minmax, false);
5064
	set_table_entry(&table[9], "cache_nice_tries",
5065
		&sd->cache_nice_tries,
5066
		sizeof(int), 0644, proc_dointvec_minmax, false);
5067
	set_table_entry(&table[10], "flags", &sd->flags,
5068
		sizeof(int), 0644, proc_dointvec_minmax, false);
5069 5070 5071 5072
	set_table_entry(&table[11], "max_newidle_lb_cost",
		&sd->max_newidle_lb_cost,
		sizeof(long), 0644, proc_doulongvec_minmax, false);
	set_table_entry(&table[12], "name", sd->name,
5073
		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5074
	/* &table[13] is terminator */
5075 5076 5077 5078

	return table;
}

5079
static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5080 5081 5082 5083 5084 5085 5086 5087 5088
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5089 5090
	if (table == NULL)
		return NULL;
5091 5092 5093 5094 5095

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5096
		entry->mode = 0555;
5097 5098 5099 5100 5101 5102 5103 5104
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5105
static void register_sched_domain_sysctl(void)
5106
{
5107
	int i, cpu_num = num_possible_cpus();
5108 5109 5110
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5111 5112 5113
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5114 5115 5116
	if (entry == NULL)
		return;

5117
	for_each_possible_cpu(i) {
5118 5119
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5120
		entry->mode = 0555;
5121
		entry->child = sd_alloc_ctl_cpu_table(i);
5122
		entry++;
5123
	}
5124 5125

	WARN_ON(sd_sysctl_header);
5126 5127
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5128

5129
/* may be called multiple times per register */
5130 5131
static void unregister_sched_domain_sysctl(void)
{
5132 5133
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5134
	sd_sysctl_header = NULL;
5135 5136
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5137
}
5138
#else
5139 5140 5141 5142
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5143 5144 5145 5146
{
}
#endif

5147 5148 5149 5150 5151
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5152
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5172
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5173 5174 5175 5176
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5177 5178 5179 5180
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5181
static int
5182
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5183
{
5184
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5185
	unsigned long flags;
5186
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5187

5188
	switch (action & ~CPU_TASKS_FROZEN) {
5189

L
Linus Torvalds 已提交
5190
	case CPU_UP_PREPARE:
5191
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5192
		break;
5193

L
Linus Torvalds 已提交
5194
	case CPU_ONLINE:
5195
		/* Update our root-domain */
5196
		raw_spin_lock_irqsave(&rq->lock, flags);
5197
		if (rq->rd) {
5198
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5199 5200

			set_rq_online(rq);
5201
		}
5202
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5203
		break;
5204

L
Linus Torvalds 已提交
5205
#ifdef CONFIG_HOTPLUG_CPU
5206
	case CPU_DYING:
5207
		sched_ttwu_pending();
G
Gregory Haskins 已提交
5208
		/* Update our root-domain */
5209
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5210
		if (rq->rd) {
5211
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5212
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5213
		}
5214 5215
		migrate_tasks(cpu);
		BUG_ON(rq->nr_running != 1); /* the migration thread */
5216
		raw_spin_unlock_irqrestore(&rq->lock, flags);
5217
		break;
5218

5219
	case CPU_DEAD:
5220
		calc_load_migrate(rq);
G
Gregory Haskins 已提交
5221
		break;
L
Linus Torvalds 已提交
5222 5223
#endif
	}
5224 5225 5226

	update_max_interval();

L
Linus Torvalds 已提交
5227 5228 5229
	return NOTIFY_OK;
}

5230 5231 5232
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5233
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5234
 */
5235
static struct notifier_block migration_notifier = {
L
Linus Torvalds 已提交
5236
	.notifier_call = migration_call,
5237
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
5238 5239
};

5240 5241 5242 5243 5244 5245 5246
static void __cpuinit set_cpu_rq_start_time(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
	rq->age_stamp = sched_clock_cpu(cpu);
}

5247
static int sched_cpu_active(struct notifier_block *nfb,
5248 5249 5250
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
5251 5252 5253
	case CPU_STARTING:
		set_cpu_rq_start_time();
		return NOTIFY_OK;
5254 5255 5256 5257 5258 5259 5260 5261
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

5262
static int sched_cpu_inactive(struct notifier_block *nfb,
5263 5264
					unsigned long action, void *hcpu)
{
5265 5266 5267
	unsigned long flags;
	long cpu = (long)hcpu;

5268 5269
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285
		set_cpu_active(cpu, false);

		/* explicitly allow suspend */
		if (!(action & CPU_TASKS_FROZEN)) {
			struct dl_bw *dl_b = dl_bw_of(cpu);
			bool overflow;
			int cpus;

			raw_spin_lock_irqsave(&dl_b->lock, flags);
			cpus = dl_bw_cpus(cpu);
			overflow = __dl_overflow(dl_b, cpus, 0, 0);
			raw_spin_unlock_irqrestore(&dl_b->lock, flags);

			if (overflow)
				return notifier_from_errno(-EBUSY);
		}
5286 5287
		return NOTIFY_OK;
	}
5288 5289

	return NOTIFY_DONE;
5290 5291
}

5292
static int __init migration_init(void)
L
Linus Torvalds 已提交
5293 5294
{
	void *cpu = (void *)(long)smp_processor_id();
5295
	int err;
5296

5297
	/* Initialize migration for the boot CPU */
5298 5299
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5300 5301
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5302

5303 5304 5305 5306
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

5307
	return 0;
L
Linus Torvalds 已提交
5308
}
5309
early_initcall(migration_init);
L
Linus Torvalds 已提交
5310 5311 5312
#endif

#ifdef CONFIG_SMP
5313

5314 5315
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

5316
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5317

5318
static __read_mostly int sched_debug_enabled;
5319

5320
static int __init sched_debug_setup(char *str)
5321
{
5322
	sched_debug_enabled = 1;
5323 5324 5325

	return 0;
}
5326 5327 5328 5329 5330 5331
early_param("sched_debug", sched_debug_setup);

static inline bool sched_debug(void)
{
	return sched_debug_enabled;
}
5332

5333
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5334
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5335
{
I
Ingo Molnar 已提交
5336
	struct sched_group *group = sd->groups;
5337
	char str[256];
L
Linus Torvalds 已提交
5338

R
Rusty Russell 已提交
5339
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5340
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5341 5342 5343 5344

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5345
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5346
		if (sd->parent)
P
Peter Zijlstra 已提交
5347 5348
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5349
		return -1;
N
Nick Piggin 已提交
5350 5351
	}

P
Peter Zijlstra 已提交
5352
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
5353

5354
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5355 5356
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5357
	}
5358
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5359 5360
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5361
	}
L
Linus Torvalds 已提交
5362

I
Ingo Molnar 已提交
5363
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5364
	do {
I
Ingo Molnar 已提交
5365
		if (!group) {
P
Peter Zijlstra 已提交
5366 5367
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5368 5369 5370
			break;
		}

5371
		/*
5372 5373
		 * Even though we initialize ->capacity to something semi-sane,
		 * we leave capacity_orig unset. This allows us to detect if
5374 5375
		 * domain iteration is still funny without causing /0 traps.
		 */
5376
		if (!group->sgc->capacity_orig) {
P
Peter Zijlstra 已提交
5377
			printk(KERN_CONT "\n");
5378
			printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
I
Ingo Molnar 已提交
5379 5380
			break;
		}
L
Linus Torvalds 已提交
5381

5382
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5383 5384
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
5385 5386
			break;
		}
L
Linus Torvalds 已提交
5387

5388 5389
		if (!(sd->flags & SD_OVERLAP) &&
		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5390 5391
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
5392 5393
			break;
		}
L
Linus Torvalds 已提交
5394

5395
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
5396

R
Rusty Russell 已提交
5397
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5398

P
Peter Zijlstra 已提交
5399
		printk(KERN_CONT " %s", str);
5400
		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5401 5402
			printk(KERN_CONT " (cpu_capacity = %d)",
				group->sgc->capacity);
5403
		}
L
Linus Torvalds 已提交
5404

I
Ingo Molnar 已提交
5405 5406
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
5407
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5408

5409
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
5410
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5411

5412 5413
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
5414 5415
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
5416 5417
	return 0;
}
L
Linus Torvalds 已提交
5418

I
Ingo Molnar 已提交
5419 5420 5421
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5422

5423
	if (!sched_debug_enabled)
5424 5425
		return;

I
Ingo Molnar 已提交
5426 5427 5428 5429
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5430

I
Ingo Molnar 已提交
5431 5432 5433
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
5434
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
I
Ingo Molnar 已提交
5435
			break;
L
Linus Torvalds 已提交
5436 5437
		level++;
		sd = sd->parent;
5438
		if (!sd)
I
Ingo Molnar 已提交
5439 5440
			break;
	}
L
Linus Torvalds 已提交
5441
}
5442
#else /* !CONFIG_SCHED_DEBUG */
5443
# define sched_domain_debug(sd, cpu) do { } while (0)
5444 5445 5446 5447
static inline bool sched_debug(void)
{
	return false;
}
5448
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
5449

5450
static int sd_degenerate(struct sched_domain *sd)
5451
{
5452
	if (cpumask_weight(sched_domain_span(sd)) == 1)
5453 5454 5455 5456 5457 5458
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5459
			 SD_BALANCE_EXEC |
5460
			 SD_SHARE_CPUCAPACITY |
5461 5462
			 SD_SHARE_PKG_RESOURCES |
			 SD_SHARE_POWERDOMAIN)) {
5463 5464 5465 5466 5467
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
5468
	if (sd->flags & (SD_WAKE_AFFINE))
5469 5470 5471 5472 5473
		return 0;

	return 1;
}

5474 5475
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5476 5477 5478 5479 5480 5481
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

5482
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5483 5484 5485 5486 5487 5488 5489
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5490
				SD_BALANCE_EXEC |
5491
				SD_SHARE_CPUCAPACITY |
5492
				SD_SHARE_PKG_RESOURCES |
5493 5494
				SD_PREFER_SIBLING |
				SD_SHARE_POWERDOMAIN);
5495 5496
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
5497 5498 5499 5500 5501 5502 5503
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

5504
static void free_rootdomain(struct rcu_head *rcu)
5505
{
5506
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5507

5508
	cpupri_cleanup(&rd->cpupri);
5509
	cpudl_cleanup(&rd->cpudl);
5510
	free_cpumask_var(rd->dlo_mask);
5511 5512 5513 5514 5515 5516
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
5517 5518
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
5519
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
5520 5521
	unsigned long flags;

5522
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5523 5524

	if (rq->rd) {
I
Ingo Molnar 已提交
5525
		old_rd = rq->rd;
G
Gregory Haskins 已提交
5526

5527
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5528
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5529

5530
		cpumask_clear_cpu(rq->cpu, old_rd->span);
5531

I
Ingo Molnar 已提交
5532
		/*
5533
		 * If we dont want to free the old_rd yet then
I
Ingo Molnar 已提交
5534 5535 5536 5537 5538
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
5539 5540 5541 5542 5543
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

5544
	cpumask_set_cpu(rq->cpu, rd->span);
5545
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5546
		set_rq_online(rq);
G
Gregory Haskins 已提交
5547

5548
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
5549 5550

	if (old_rd)
5551
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
5552 5553
}

5554
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
5555 5556 5557
{
	memset(rd, 0, sizeof(*rd));

5558
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5559
		goto out;
5560
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5561
		goto free_span;
5562
	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5563
		goto free_online;
5564 5565
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
		goto free_dlo_mask;
5566

5567
	init_dl_bw(&rd->dl_bw);
5568 5569
	if (cpudl_init(&rd->cpudl) != 0)
		goto free_dlo_mask;
5570

5571
	if (cpupri_init(&rd->cpupri) != 0)
5572
		goto free_rto_mask;
5573
	return 0;
5574

5575 5576
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
5577 5578
free_dlo_mask:
	free_cpumask_var(rd->dlo_mask);
5579 5580 5581 5582
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
5583
out:
5584
	return -ENOMEM;
G
Gregory Haskins 已提交
5585 5586
}

5587 5588 5589 5590 5591 5592
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
struct root_domain def_root_domain;

G
Gregory Haskins 已提交
5593 5594
static void init_defrootdomain(void)
{
5595
	init_rootdomain(&def_root_domain);
5596

G
Gregory Haskins 已提交
5597 5598 5599
	atomic_set(&def_root_domain.refcount, 1);
}

5600
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
5601 5602 5603 5604 5605 5606 5607
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

5608
	if (init_rootdomain(rd) != 0) {
5609 5610 5611
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
5612 5613 5614 5615

	return rd;
}

5616
static void free_sched_groups(struct sched_group *sg, int free_sgc)
5617 5618 5619 5620 5621 5622 5623 5624 5625 5626
{
	struct sched_group *tmp, *first;

	if (!sg)
		return;

	first = sg;
	do {
		tmp = sg->next;

5627 5628
		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
			kfree(sg->sgc);
5629 5630 5631 5632 5633 5634

		kfree(sg);
		sg = tmp;
	} while (sg != first);
}

5635 5636 5637
static void free_sched_domain(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5638 5639 5640 5641 5642 5643 5644 5645

	/*
	 * If its an overlapping domain it has private groups, iterate and
	 * nuke them all.
	 */
	if (sd->flags & SD_OVERLAP) {
		free_sched_groups(sd->groups, 1);
	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5646
		kfree(sd->groups->sgc);
5647
		kfree(sd->groups);
5648
	}
5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662
	kfree(sd);
}

static void destroy_sched_domain(struct sched_domain *sd, int cpu)
{
	call_rcu(&sd->rcu, free_sched_domain);
}

static void destroy_sched_domains(struct sched_domain *sd, int cpu)
{
	for (; sd; sd = sd->parent)
		destroy_sched_domain(sd, cpu);
}

5663 5664 5665 5666 5667 5668 5669
/*
 * Keep a special pointer to the highest sched_domain that has
 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 * allows us to avoid some pointer chasing select_idle_sibling().
 *
 * Also keep a unique ID per domain (we use the first cpu number in
 * the cpumask of the domain), this allows us to quickly tell if
5670
 * two cpus are in the same cache domain, see cpus_share_cache().
5671 5672
 */
DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5673
DEFINE_PER_CPU(int, sd_llc_size);
5674
DEFINE_PER_CPU(int, sd_llc_id);
5675
DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5676 5677
DEFINE_PER_CPU(struct sched_domain *, sd_busy);
DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5678 5679 5680 5681

static void update_top_cache_domain(int cpu)
{
	struct sched_domain *sd;
5682
	struct sched_domain *busy_sd = NULL;
5683
	int id = cpu;
5684
	int size = 1;
5685 5686

	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5687
	if (sd) {
5688
		id = cpumask_first(sched_domain_span(sd));
5689
		size = cpumask_weight(sched_domain_span(sd));
5690
		busy_sd = sd->parent; /* sd_busy */
5691
	}
5692
	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5693 5694

	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5695
	per_cpu(sd_llc_size, cpu) = size;
5696
	per_cpu(sd_llc_id, cpu) = id;
5697 5698 5699

	sd = lowest_flag_domain(cpu, SD_NUMA);
	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5700 5701 5702

	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5703 5704
}

L
Linus Torvalds 已提交
5705
/*
I
Ingo Molnar 已提交
5706
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
5707 5708
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
5709 5710
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
5711
{
5712
	struct rq *rq = cpu_rq(cpu);
5713 5714 5715
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
5716
	for (tmp = sd; tmp; ) {
5717 5718 5719
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5720

5721
		if (sd_parent_degenerate(tmp, parent)) {
5722
			tmp->parent = parent->parent;
5723 5724
			if (parent->parent)
				parent->parent->child = tmp;
5725 5726 5727 5728 5729 5730 5731
			/*
			 * Transfer SD_PREFER_SIBLING down in case of a
			 * degenerate parent; the spans match for this
			 * so the property transfers.
			 */
			if (parent->flags & SD_PREFER_SIBLING)
				tmp->flags |= SD_PREFER_SIBLING;
5732
			destroy_sched_domain(parent, cpu);
5733 5734
		} else
			tmp = tmp->parent;
5735 5736
	}

5737
	if (sd && sd_degenerate(sd)) {
5738
		tmp = sd;
5739
		sd = sd->parent;
5740
		destroy_sched_domain(tmp, cpu);
5741 5742 5743
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5744

5745
	sched_domain_debug(sd, cpu);
L
Linus Torvalds 已提交
5746

G
Gregory Haskins 已提交
5747
	rq_attach_root(rq, rd);
5748
	tmp = rq->sd;
N
Nick Piggin 已提交
5749
	rcu_assign_pointer(rq->sd, sd);
5750
	destroy_sched_domains(tmp, cpu);
5751 5752

	update_top_cache_domain(cpu);
L
Linus Torvalds 已提交
5753 5754 5755
}

/* cpus with isolated domains */
5756
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
5757 5758 5759 5760

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
5761
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
5762
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
5763 5764 5765
	return 1;
}

I
Ingo Molnar 已提交
5766
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5767

5768
struct s_data {
5769
	struct sched_domain ** __percpu sd;
5770 5771 5772
	struct root_domain	*rd;
};

5773 5774
enum s_alloc {
	sa_rootdomain,
5775
	sa_sd,
5776
	sa_sd_storage,
5777 5778 5779
	sa_none,
};

P
Peter Zijlstra 已提交
5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817
/*
 * Build an iteration mask that can exclude certain CPUs from the upwards
 * domain traversal.
 *
 * Asymmetric node setups can result in situations where the domain tree is of
 * unequal depth, make sure to skip domains that already cover the entire
 * range.
 *
 * In that case build_sched_domains() will have terminated the iteration early
 * and our sibling sd spans will be empty. Domains should always include the
 * cpu they're built on, so check that.
 *
 */
static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
{
	const struct cpumask *span = sched_domain_span(sd);
	struct sd_data *sdd = sd->private;
	struct sched_domain *sibling;
	int i;

	for_each_cpu(i, span) {
		sibling = *per_cpu_ptr(sdd->sd, i);
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
			continue;

		cpumask_set_cpu(i, sched_group_mask(sg));
	}
}

/*
 * Return the canonical balance cpu for this group, this is the first cpu
 * of this group that's also in the iteration mask.
 */
int group_balance_cpu(struct sched_group *sg)
{
	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
}

5818 5819 5820 5821 5822 5823 5824
static int
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered = sched_domains_tmpmask;
	struct sd_data *sdd = sd->private;
5825
	struct sched_domain *sibling;
5826 5827 5828 5829 5830 5831 5832 5833 5834 5835
	int i;

	cpumask_clear(covered);

	for_each_cpu(i, span) {
		struct cpumask *sg_span;

		if (cpumask_test_cpu(i, covered))
			continue;

5836
		sibling = *per_cpu_ptr(sdd->sd, i);
P
Peter Zijlstra 已提交
5837 5838

		/* See the comment near build_group_mask(). */
5839
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
P
Peter Zijlstra 已提交
5840 5841
			continue;

5842
		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5843
				GFP_KERNEL, cpu_to_node(cpu));
5844 5845 5846 5847 5848

		if (!sg)
			goto fail;

		sg_span = sched_group_cpus(sg);
5849 5850 5851
		if (sibling->child)
			cpumask_copy(sg_span, sched_domain_span(sibling->child));
		else
5852 5853 5854 5855
			cpumask_set_cpu(i, sg_span);

		cpumask_or(covered, covered, sg_span);

5856 5857
		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
		if (atomic_inc_return(&sg->sgc->ref) == 1)
P
Peter Zijlstra 已提交
5858 5859
			build_group_mask(sd, sg);

5860
		/*
5861
		 * Initialize sgc->capacity such that even if we mess up the
5862 5863 5864
		 * domains and no possible iteration will get us here, we won't
		 * die on a /0 trap.
		 */
5865
		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
5866
		sg->sgc->capacity_orig = sg->sgc->capacity;
5867

P
Peter Zijlstra 已提交
5868 5869 5870 5871 5872
		/*
		 * Make sure the first group of this domain contains the
		 * canonical balance cpu. Otherwise the sched_domain iteration
		 * breaks. See update_sg_lb_stats().
		 */
P
Peter Zijlstra 已提交
5873
		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
P
Peter Zijlstra 已提交
5874
		    group_balance_cpu(sg) == cpu)
5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893
			groups = sg;

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
		last->next = first;
	}
	sd->groups = groups;

	return 0;

fail:
	free_sched_groups(first, 0);

	return -ENOMEM;
}

5894
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
5895
{
5896 5897
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
5898

5899 5900
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
5901

5902
	if (sg) {
5903
		*sg = *per_cpu_ptr(sdd->sg, cpu);
5904 5905
		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
5906
	}
5907 5908

	return cpu;
5909 5910
}

5911
/*
5912 5913
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
5914
 * and ->cpu_capacity to 0.
5915 5916
 *
 * Assumes the sched_domain tree is fully constructed
5917
 */
5918 5919
static int
build_sched_groups(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5920
{
5921 5922 5923
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
5924
	struct cpumask *covered;
5925
	int i;
5926

5927 5928 5929
	get_group(cpu, sdd, &sd->groups);
	atomic_inc(&sd->groups->ref);

5930
	if (cpu != cpumask_first(span))
5931 5932
		return 0;

5933 5934 5935
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

5936
	cpumask_clear(covered);
5937

5938 5939
	for_each_cpu(i, span) {
		struct sched_group *sg;
5940
		int group, j;
5941

5942 5943
		if (cpumask_test_cpu(i, covered))
			continue;
5944

5945
		group = get_group(i, sdd, &sg);
P
Peter Zijlstra 已提交
5946
		cpumask_setall(sched_group_mask(sg));
5947

5948 5949 5950
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
5951

5952 5953 5954
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
5955

5956 5957 5958 5959 5960 5961 5962
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
5963 5964

	return 0;
5965
}
5966

5967
/*
5968
 * Initialize sched groups cpu_capacity.
5969
 *
5970
 * cpu_capacity indicates the capacity of sched group, which is used while
5971
 * distributing the load between different sched groups in a sched domain.
5972 5973 5974 5975
 * Typically cpu_capacity for all the groups in a sched domain will be same
 * unless there are asymmetries in the topology. If there are asymmetries,
 * group having more cpu_capacity will pickup more load compared to the
 * group having less cpu_capacity.
5976
 */
5977
static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
5978
{
5979
	struct sched_group *sg = sd->groups;
5980

5981
	WARN_ON(!sg);
5982 5983 5984 5985 5986

	do {
		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
		sg = sg->next;
	} while (sg != sd->groups);
5987

P
Peter Zijlstra 已提交
5988
	if (cpu != group_balance_cpu(sg))
5989
		return;
5990

5991 5992
	update_group_capacity(sd, cpu);
	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
5993 5994
}

5995 5996 5997 5998 5999
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

6000
static int default_relax_domain_level = -1;
6001
int sched_domain_level_max;
6002 6003 6004

static int __init setup_relax_domain_level(char *str)
{
6005 6006
	if (kstrtoint(str, 0, &default_relax_domain_level))
		pr_warn("Unable to set relax_domain_level\n");
6007

6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
6026
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6027 6028
	} else {
		/* turn on idle balance on this domain */
6029
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6030 6031 6032
	}
}

6033 6034 6035
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

6036 6037 6038 6039 6040
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
6041 6042
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
6043 6044
	case sa_sd:
		free_percpu(d->sd); /* fall through */
6045
	case sa_sd_storage:
6046
		__sdt_free(cpu_map); /* fall through */
6047 6048 6049 6050
	case sa_none:
		break;
	}
}
6051

6052 6053 6054
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
6055 6056
	memset(d, 0, sizeof(*d));

6057 6058
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
6059 6060 6061
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
6062
	d->rd = alloc_rootdomain();
6063
	if (!d->rd)
6064
		return sa_sd;
6065 6066
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
6067

6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

6080
	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6081
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6082

6083 6084
	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6085 6086
}

6087 6088 6089 6090 6091
#ifdef CONFIG_NUMA
static int sched_domains_numa_levels;
static int *sched_domains_numa_distance;
static struct cpumask ***sched_domains_numa_masks;
static int sched_domains_curr_level;
6092
#endif
6093

6094 6095 6096
/*
 * SD_flags allowed in topology descriptions.
 *
6097
 * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6098 6099
 * SD_SHARE_PKG_RESOURCES - describes shared caches
 * SD_NUMA                - describes NUMA topologies
6100
 * SD_SHARE_POWERDOMAIN   - describes shared power domain
6101 6102 6103 6104 6105
 *
 * Odd one out:
 * SD_ASYM_PACKING        - describes SMT quirks
 */
#define TOPOLOGY_SD_FLAGS		\
6106
	(SD_SHARE_CPUCAPACITY |		\
6107 6108
	 SD_SHARE_PKG_RESOURCES |	\
	 SD_NUMA |			\
6109 6110
	 SD_ASYM_PACKING |		\
	 SD_SHARE_POWERDOMAIN)
6111 6112

static struct sched_domain *
6113
sd_init(struct sched_domain_topology_level *tl, int cpu)
6114 6115
{
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131
	int sd_weight, sd_flags = 0;

#ifdef CONFIG_NUMA
	/*
	 * Ugly hack to pass state to sd_numa_mask()...
	 */
	sched_domains_curr_level = tl->numa_level;
#endif

	sd_weight = cpumask_weight(tl->mask(cpu));

	if (tl->sd_flags)
		sd_flags = (*tl->sd_flags)();
	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
			"wrong sd_flags in topology description\n"))
		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6132 6133 6134 6135 6136

	*sd = (struct sched_domain){
		.min_interval		= sd_weight,
		.max_interval		= 2*sd_weight,
		.busy_factor		= 32,
6137
		.imbalance_pct		= 125,
6138 6139 6140 6141

		.cache_nice_tries	= 0,
		.busy_idx		= 0,
		.idle_idx		= 0,
6142 6143 6144 6145 6146 6147
		.newidle_idx		= 0,
		.wake_idx		= 0,
		.forkexec_idx		= 0,

		.flags			= 1*SD_LOAD_BALANCE
					| 1*SD_BALANCE_NEWIDLE
6148 6149
					| 1*SD_BALANCE_EXEC
					| 1*SD_BALANCE_FORK
6150
					| 0*SD_BALANCE_WAKE
6151
					| 1*SD_WAKE_AFFINE
6152
					| 0*SD_SHARE_CPUCAPACITY
6153
					| 0*SD_SHARE_PKG_RESOURCES
6154
					| 0*SD_SERIALIZE
6155
					| 0*SD_PREFER_SIBLING
6156 6157
					| 0*SD_NUMA
					| sd_flags
6158
					,
6159

6160 6161
		.last_balance		= jiffies,
		.balance_interval	= sd_weight,
6162
		.smt_gain		= 0,
6163 6164
		.max_newidle_lb_cost	= 0,
		.next_decay_max_lb_cost	= jiffies,
6165 6166 6167
#ifdef CONFIG_SCHED_DEBUG
		.name			= tl->name,
#endif
6168 6169 6170
	};

	/*
6171
	 * Convert topological properties into behaviour.
6172
	 */
6173

6174
	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204
		sd->imbalance_pct = 110;
		sd->smt_gain = 1178; /* ~15% */

	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
		sd->imbalance_pct = 117;
		sd->cache_nice_tries = 1;
		sd->busy_idx = 2;

#ifdef CONFIG_NUMA
	} else if (sd->flags & SD_NUMA) {
		sd->cache_nice_tries = 2;
		sd->busy_idx = 3;
		sd->idle_idx = 2;

		sd->flags |= SD_SERIALIZE;
		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
			sd->flags &= ~(SD_BALANCE_EXEC |
				       SD_BALANCE_FORK |
				       SD_WAKE_AFFINE);
		}

#endif
	} else {
		sd->flags |= SD_PREFER_SIBLING;
		sd->cache_nice_tries = 1;
		sd->busy_idx = 2;
		sd->idle_idx = 1;
	}

	sd->private = &tl->data;
6205 6206 6207 6208

	return sd;
}

6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234
/*
 * Topology list, bottom-up.
 */
static struct sched_domain_topology_level default_topology[] = {
#ifdef CONFIG_SCHED_SMT
	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
#endif
#ifdef CONFIG_SCHED_MC
	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
#endif
	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
	{ NULL, },
};

struct sched_domain_topology_level *sched_domain_topology = default_topology;

#define for_each_sd_topology(tl)			\
	for (tl = sched_domain_topology; tl->mask; tl++)

void set_sched_topology(struct sched_domain_topology_level *tl)
{
	sched_domain_topology = tl;
}

#ifdef CONFIG_NUMA

6235 6236 6237 6238 6239
static const struct cpumask *sd_numa_mask(int cpu)
{
	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
}

6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275
static void sched_numa_warn(const char *str)
{
	static int done = false;
	int i,j;

	if (done)
		return;

	done = true;

	printk(KERN_WARNING "ERROR: %s\n\n", str);

	for (i = 0; i < nr_node_ids; i++) {
		printk(KERN_WARNING "  ");
		for (j = 0; j < nr_node_ids; j++)
			printk(KERN_CONT "%02d ", node_distance(i,j));
		printk(KERN_CONT "\n");
	}
	printk(KERN_WARNING "\n");
}

static bool find_numa_distance(int distance)
{
	int i;

	if (distance == node_distance(0, 0))
		return true;

	for (i = 0; i < sched_domains_numa_levels; i++) {
		if (sched_domains_numa_distance[i] == distance)
			return true;
	}

	return false;
}

6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296
static void sched_init_numa(void)
{
	int next_distance, curr_distance = node_distance(0, 0);
	struct sched_domain_topology_level *tl;
	int level = 0;
	int i, j, k;

	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
	if (!sched_domains_numa_distance)
		return;

	/*
	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
	 * unique distances in the node_distance() table.
	 *
	 * Assumes node_distance(0,j) includes all distances in
	 * node_distance(i,j) in order to avoid cubic time.
	 */
	next_distance = curr_distance;
	for (i = 0; i < nr_node_ids; i++) {
		for (j = 0; j < nr_node_ids; j++) {
6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320
			for (k = 0; k < nr_node_ids; k++) {
				int distance = node_distance(i, k);

				if (distance > curr_distance &&
				    (distance < next_distance ||
				     next_distance == curr_distance))
					next_distance = distance;

				/*
				 * While not a strong assumption it would be nice to know
				 * about cases where if node A is connected to B, B is not
				 * equally connected to A.
				 */
				if (sched_debug() && node_distance(k, i) != distance)
					sched_numa_warn("Node-distance not symmetric");

				if (sched_debug() && i && !find_numa_distance(distance))
					sched_numa_warn("Node-0 not representative");
			}
			if (next_distance != curr_distance) {
				sched_domains_numa_distance[level++] = next_distance;
				sched_domains_numa_levels = level;
				curr_distance = next_distance;
			} else break;
6321
		}
6322 6323 6324 6325 6326 6327

		/*
		 * In case of sched_debug() we verify the above assumption.
		 */
		if (!sched_debug())
			break;
6328 6329 6330 6331 6332
	}
	/*
	 * 'level' contains the number of unique distances, excluding the
	 * identity distance node_distance(i,i).
	 *
V
Viresh Kumar 已提交
6333
	 * The sched_domains_numa_distance[] array includes the actual distance
6334 6335 6336
	 * numbers.
	 */

6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347
	/*
	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
	 * the array will contain less then 'level' members. This could be
	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
	 * in other functions.
	 *
	 * We reset it to 'level' at the end of this function.
	 */
	sched_domains_numa_levels = 0;

6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362
	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
	if (!sched_domains_numa_masks)
		return;

	/*
	 * Now for each level, construct a mask per node which contains all
	 * cpus of nodes that are that many hops away from us.
	 */
	for (i = 0; i < level; i++) {
		sched_domains_numa_masks[i] =
			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
		if (!sched_domains_numa_masks[i])
			return;

		for (j = 0; j < nr_node_ids; j++) {
6363
			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6364 6365 6366 6367 6368 6369
			if (!mask)
				return;

			sched_domains_numa_masks[i][j] = mask;

			for (k = 0; k < nr_node_ids; k++) {
6370
				if (node_distance(j, k) > sched_domains_numa_distance[i])
6371 6372 6373 6374 6375 6376 6377
					continue;

				cpumask_or(mask, mask, cpumask_of_node(k));
			}
		}
	}

6378 6379 6380
	/* Compute default topology size */
	for (i = 0; sched_domain_topology[i].mask; i++);

6381
	tl = kzalloc((i + level + 1) *
6382 6383 6384 6385 6386 6387 6388
			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
	if (!tl)
		return;

	/*
	 * Copy the default topology bits..
	 */
6389 6390
	for (i = 0; sched_domain_topology[i].mask; i++)
		tl[i] = sched_domain_topology[i];
6391 6392 6393 6394 6395 6396 6397

	/*
	 * .. and append 'j' levels of NUMA goodness.
	 */
	for (j = 0; j < level; i++, j++) {
		tl[i] = (struct sched_domain_topology_level){
			.mask = sd_numa_mask,
6398
			.sd_flags = cpu_numa_flags,
6399 6400
			.flags = SDTL_OVERLAP,
			.numa_level = j,
6401
			SD_INIT_NAME(NUMA)
6402 6403 6404 6405
		};
	}

	sched_domain_topology = tl;
6406 6407

	sched_domains_numa_levels = level;
6408
}
6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455

static void sched_domains_numa_masks_set(int cpu)
{
	int i, j;
	int node = cpu_to_node(cpu);

	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++) {
			if (node_distance(j, node) <= sched_domains_numa_distance[i])
				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
		}
	}
}

static void sched_domains_numa_masks_clear(int cpu)
{
	int i, j;
	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++)
			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
	}
}

/*
 * Update sched_domains_numa_masks[level][node] array when new cpus
 * are onlined.
 */
static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	int cpu = (long)hcpu;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
		sched_domains_numa_masks_set(cpu);
		break;

	case CPU_DEAD:
		sched_domains_numa_masks_clear(cpu);
		break;

	default:
		return NOTIFY_DONE;
	}

	return NOTIFY_OK;
6456 6457 6458 6459 6460
}
#else
static inline void sched_init_numa(void)
{
}
6461 6462 6463 6464 6465 6466 6467

static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	return 0;
}
6468 6469
#endif /* CONFIG_NUMA */

6470 6471 6472 6473 6474
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

6475
	for_each_sd_topology(tl) {
6476 6477 6478 6479 6480 6481 6482 6483 6484 6485
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

6486 6487
		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
		if (!sdd->sgc)
6488 6489
			return -ENOMEM;

6490 6491 6492
		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_group *sg;
6493
			struct sched_group_capacity *sgc;
6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506

		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

6507 6508
			sg->next = sg;

6509
			*per_cpu_ptr(sdd->sg, j) = sg;
6510

6511
			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6512
					GFP_KERNEL, cpu_to_node(j));
6513
			if (!sgc)
6514 6515
				return -ENOMEM;

6516
			*per_cpu_ptr(sdd->sgc, j) = sgc;
6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

6528
	for_each_sd_topology(tl) {
6529 6530 6531
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542
			struct sched_domain *sd;

			if (sdd->sd) {
				sd = *per_cpu_ptr(sdd->sd, j);
				if (sd && (sd->flags & SD_OVERLAP))
					free_sched_groups(sd->groups, 0);
				kfree(*per_cpu_ptr(sdd->sd, j));
			}

			if (sdd->sg)
				kfree(*per_cpu_ptr(sdd->sg, j));
6543 6544
			if (sdd->sgc)
				kfree(*per_cpu_ptr(sdd->sgc, j));
6545 6546
		}
		free_percpu(sdd->sd);
6547
		sdd->sd = NULL;
6548
		free_percpu(sdd->sg);
6549
		sdd->sg = NULL;
6550 6551
		free_percpu(sdd->sgc);
		sdd->sgc = NULL;
6552 6553 6554
	}
}

6555
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6556 6557
		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
		struct sched_domain *child, int cpu)
6558
{
6559
	struct sched_domain *sd = sd_init(tl, cpu);
6560
	if (!sd)
6561
		return child;
6562 6563

	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6564 6565 6566
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6567
		child->parent = sd;
6568
		sd->child = child;
P
Peter Zijlstra 已提交
6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582

		if (!cpumask_subset(sched_domain_span(child),
				    sched_domain_span(sd))) {
			pr_err("BUG: arch topology borken\n");
#ifdef CONFIG_SCHED_DEBUG
			pr_err("     the %s domain not a subset of the %s domain\n",
					child->name, sd->name);
#endif
			/* Fixup, ensure @sd has at least @child cpus. */
			cpumask_or(sched_domain_span(sd),
				   sched_domain_span(sd),
				   sched_domain_span(child));
		}

6583
	}
6584
	set_domain_attribute(sd, attr);
6585 6586 6587 6588

	return sd;
}

6589 6590 6591 6592
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
6593 6594
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
6595
{
6596
	enum s_alloc alloc_state;
6597
	struct sched_domain *sd;
6598
	struct s_data d;
6599
	int i, ret = -ENOMEM;
6600

6601 6602 6603
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
6604

6605
	/* Set up domains for cpus specified by the cpu_map. */
6606
	for_each_cpu(i, cpu_map) {
6607 6608
		struct sched_domain_topology_level *tl;

6609
		sd = NULL;
6610
		for_each_sd_topology(tl) {
6611
			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6612 6613
			if (tl == sched_domain_topology)
				*per_cpu_ptr(d.sd, i) = sd;
6614 6615
			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
				sd->flags |= SD_OVERLAP;
6616 6617
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
				break;
6618
		}
6619 6620 6621 6622 6623 6624
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6625 6626 6627 6628 6629 6630 6631
			if (sd->flags & SD_OVERLAP) {
				if (build_overlap_sched_groups(sd, i))
					goto error;
			} else {
				if (build_sched_groups(sd, i))
					goto error;
			}
6632
		}
6633
	}
6634

6635
	/* Calculate CPU capacity for physical packages and nodes */
6636 6637 6638
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
6639

6640 6641
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
6642
			init_sched_groups_capacity(i, sd);
6643
		}
6644
	}
6645

L
Linus Torvalds 已提交
6646
	/* Attach the domains */
6647
	rcu_read_lock();
6648
	for_each_cpu(i, cpu_map) {
6649
		sd = *per_cpu_ptr(d.sd, i);
6650
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
6651
	}
6652
	rcu_read_unlock();
6653

6654
	ret = 0;
6655
error:
6656
	__free_domain_allocs(&d, alloc_state, cpu_map);
6657
	return ret;
L
Linus Torvalds 已提交
6658
}
P
Paul Jackson 已提交
6659

6660
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
6661
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
6662 6663
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
6664 6665 6666

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
6667 6668
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
6669
 */
6670
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
6671

6672 6673 6674 6675 6676
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
6677
int __weak arch_update_cpu_topology(void)
6678
{
6679
	return 0;
6680 6681
}

6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

6707
/*
I
Ingo Molnar 已提交
6708
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6709 6710
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6711
 */
6712
static int init_sched_domains(const struct cpumask *cpu_map)
6713
{
6714 6715
	int err;

6716
	arch_update_cpu_topology();
P
Paul Jackson 已提交
6717
	ndoms_cur = 1;
6718
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
6719
	if (!doms_cur)
6720 6721
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6722
	err = build_sched_domains(doms_cur[0], NULL);
6723
	register_sched_domain_sysctl();
6724 6725

	return err;
6726 6727 6728 6729 6730 6731
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6732
static void detach_destroy_domains(const struct cpumask *cpu_map)
6733 6734 6735
{
	int i;

6736
	rcu_read_lock();
6737
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
6738
		cpu_attach_domain(NULL, &def_root_domain, i);
6739
	rcu_read_unlock();
6740 6741
}

6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
6758 6759
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
6760
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
6761 6762 6763
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
6764
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
6765 6766 6767
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
6768 6769 6770
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
6771 6772 6773 6774 6775 6776
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
6777
 *
6778
 * If doms_new == NULL it will be replaced with cpu_online_mask.
6779 6780
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
6781
 *
P
Paul Jackson 已提交
6782 6783
 * Call with hotplug lock held
 */
6784
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6785
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
6786
{
6787
	int i, j, n;
6788
	int new_topology;
P
Paul Jackson 已提交
6789

6790
	mutex_lock(&sched_domains_mutex);
6791

6792 6793 6794
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

6795 6796 6797
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

6798
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
6799 6800 6801

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
6802
		for (j = 0; j < n && !new_topology; j++) {
6803
			if (cpumask_equal(doms_cur[i], doms_new[j])
6804
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
6805 6806 6807
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
6808
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
6809 6810 6811 6812
match1:
		;
	}

6813
	n = ndoms_cur;
6814
	if (doms_new == NULL) {
6815
		n = 0;
6816
		doms_new = &fallback_doms;
6817
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6818
		WARN_ON_ONCE(dattr_new);
6819 6820
	}

P
Paul Jackson 已提交
6821 6822
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
6823
		for (j = 0; j < n && !new_topology; j++) {
6824
			if (cpumask_equal(doms_new[i], doms_cur[j])
6825
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
6826 6827 6828
				goto match2;
		}
		/* no match - add a new doms_new */
6829
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
6830 6831 6832 6833 6834
match2:
		;
	}

	/* Remember the new sched domains */
6835 6836
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
6837
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
6838
	doms_cur = doms_new;
6839
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
6840
	ndoms_cur = ndoms_new;
6841 6842

	register_sched_domain_sysctl();
6843

6844
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
6845 6846
}

6847 6848
static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */

L
Linus Torvalds 已提交
6849
/*
6850 6851 6852
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
6853 6854 6855
 *
 * If we come here as part of a suspend/resume, don't touch cpusets because we
 * want to restore it back to its original state upon resume anyway.
L
Linus Torvalds 已提交
6856
 */
6857 6858
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
6859
{
6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881
	switch (action) {
	case CPU_ONLINE_FROZEN:
	case CPU_DOWN_FAILED_FROZEN:

		/*
		 * num_cpus_frozen tracks how many CPUs are involved in suspend
		 * resume sequence. As long as this is not the last online
		 * operation in the resume sequence, just build a single sched
		 * domain, ignoring cpusets.
		 */
		num_cpus_frozen--;
		if (likely(num_cpus_frozen)) {
			partition_sched_domains(1, NULL, NULL);
			break;
		}

		/*
		 * This is the last CPU online operation. So fall through and
		 * restore the original sched domains by considering the
		 * cpuset configurations.
		 */

6882
	case CPU_ONLINE:
6883
	case CPU_DOWN_FAILED:
6884
		cpuset_update_active_cpus(true);
6885
		break;
6886 6887 6888
	default:
		return NOTIFY_DONE;
	}
6889
	return NOTIFY_OK;
6890
}
6891

6892 6893
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
6894
{
6895
	switch (action) {
6896
	case CPU_DOWN_PREPARE:
6897
		cpuset_update_active_cpus(false);
6898 6899 6900 6901 6902
		break;
	case CPU_DOWN_PREPARE_FROZEN:
		num_cpus_frozen++;
		partition_sched_domains(1, NULL, NULL);
		break;
6903 6904 6905
	default:
		return NOTIFY_DONE;
	}
6906
	return NOTIFY_OK;
6907 6908
}

L
Linus Torvalds 已提交
6909 6910
void __init sched_init_smp(void)
{
6911 6912 6913
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6914
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6915

6916 6917
	sched_init_numa();

6918 6919 6920 6921 6922
	/*
	 * There's no userspace yet to cause hotplug operations; hence all the
	 * cpu masks are stable and all blatant races in the below code cannot
	 * happen.
	 */
6923
	mutex_lock(&sched_domains_mutex);
6924
	init_sched_domains(cpu_active_mask);
6925 6926 6927
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6928
	mutex_unlock(&sched_domains_mutex);
6929

6930
	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6931 6932
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6933

6934
	init_hrtick();
6935 6936

	/* Move init over to a non-isolated CPU */
6937
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6938
		BUG();
I
Ingo Molnar 已提交
6939
	sched_init_granularity();
6940
	free_cpumask_var(non_isolated_cpus);
6941

6942
	init_sched_rt_class();
6943
	init_sched_dl_class();
L
Linus Torvalds 已提交
6944 6945 6946 6947
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6948
	sched_init_granularity();
L
Linus Torvalds 已提交
6949 6950 6951
}
#endif /* CONFIG_SMP */

6952 6953
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
6954 6955 6956 6957 6958 6959 6960
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

6961
#ifdef CONFIG_CGROUP_SCHED
6962 6963 6964 6965
/*
 * Default task group.
 * Every task in system belongs to this group at bootup.
 */
6966
struct task_group root_task_group;
6967
LIST_HEAD(task_groups);
6968
#endif
P
Peter Zijlstra 已提交
6969

6970
DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
P
Peter Zijlstra 已提交
6971

L
Linus Torvalds 已提交
6972 6973
void __init sched_init(void)
{
I
Ingo Molnar 已提交
6974
	int i, j;
6975 6976 6977 6978 6979 6980 6981
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6982
#endif
6983
#ifdef CONFIG_CPUMASK_OFFSTACK
6984
	alloc_size += num_possible_cpus() * cpumask_size();
6985 6986
#endif
	if (alloc_size) {
6987
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6988 6989

#ifdef CONFIG_FAIR_GROUP_SCHED
6990
		root_task_group.se = (struct sched_entity **)ptr;
6991 6992
		ptr += nr_cpu_ids * sizeof(void **);

6993
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6994
		ptr += nr_cpu_ids * sizeof(void **);
6995

6996
#endif /* CONFIG_FAIR_GROUP_SCHED */
6997
#ifdef CONFIG_RT_GROUP_SCHED
6998
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6999 7000
		ptr += nr_cpu_ids * sizeof(void **);

7001
		root_task_group.rt_rq = (struct rt_rq **)ptr;
7002 7003
		ptr += nr_cpu_ids * sizeof(void **);

7004
#endif /* CONFIG_RT_GROUP_SCHED */
7005 7006
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
7007
			per_cpu(load_balance_mask, i) = (void *)ptr;
7008 7009 7010
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
7011
	}
I
Ingo Molnar 已提交
7012

7013 7014 7015
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());
	init_dl_bandwidth(&def_dl_bandwidth,
7016
			global_rt_period(), global_rt_runtime());
7017

G
Gregory Haskins 已提交
7018 7019 7020 7021
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7022
#ifdef CONFIG_RT_GROUP_SCHED
7023
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7024
			global_rt_period(), global_rt_runtime());
7025
#endif /* CONFIG_RT_GROUP_SCHED */
7026

D
Dhaval Giani 已提交
7027
#ifdef CONFIG_CGROUP_SCHED
7028 7029
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
7030
	INIT_LIST_HEAD(&root_task_group.siblings);
7031
	autogroup_init(&init_task);
7032

D
Dhaval Giani 已提交
7033
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
7034

7035
	for_each_possible_cpu(i) {
7036
		struct rq *rq;
L
Linus Torvalds 已提交
7037 7038

		rq = cpu_rq(i);
7039
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
7040
		rq->nr_running = 0;
7041 7042
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
7043
		init_cfs_rq(&rq->cfs);
P
Peter Zijlstra 已提交
7044
		init_rt_rq(&rq->rt, rq);
7045
		init_dl_rq(&rq->dl, rq);
I
Ingo Molnar 已提交
7046
#ifdef CONFIG_FAIR_GROUP_SCHED
7047
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
7048
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
7049
		/*
7050
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
7051 7052 7053 7054
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
7055
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
7056 7057 7058
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
7059
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
7060 7061 7062
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
7063
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
7064
		 *
7065 7066
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
7067
		 */
7068
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7069
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
7070 7071 7072
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7073
#ifdef CONFIG_RT_GROUP_SCHED
7074
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
7075
#endif
L
Linus Torvalds 已提交
7076

I
Ingo Molnar 已提交
7077 7078
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
7079 7080 7081

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
7082
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7083
		rq->sd = NULL;
G
Gregory Haskins 已提交
7084
		rq->rd = NULL;
7085
		rq->cpu_capacity = SCHED_CAPACITY_SCALE;
7086
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
7087
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7088
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7089
		rq->push_cpu = 0;
7090
		rq->cpu = i;
7091
		rq->online = 0;
7092 7093
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
7094
		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7095 7096 7097

		INIT_LIST_HEAD(&rq->cfs_tasks);

7098
		rq_attach_root(rq, &def_root_domain);
7099
#ifdef CONFIG_NO_HZ_COMMON
7100
		rq->nohz_flags = 0;
7101
#endif
7102 7103 7104
#ifdef CONFIG_NO_HZ_FULL
		rq->last_sched_tick = 0;
#endif
L
Linus Torvalds 已提交
7105
#endif
P
Peter Zijlstra 已提交
7106
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7107 7108 7109
		atomic_set(&rq->nr_iowait, 0);
	}

7110
	set_load_weight(&init_task);
7111

7112 7113 7114 7115
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

L
Linus Torvalds 已提交
7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
7129 7130 7131

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
7132 7133 7134 7135
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
7136

7137
#ifdef CONFIG_SMP
7138
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
R
Rusty Russell 已提交
7139 7140 7141
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7142
	idle_thread_set_boot_cpu();
7143
	set_cpu_rq_start_time();
7144 7145
#endif
	init_sched_fair_class();
7146

7147
	scheduler_running = 1;
L
Linus Torvalds 已提交
7148 7149
}

7150
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7151 7152
static inline int preempt_count_equals(int preempt_offset)
{
7153
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7154

A
Arnd Bergmann 已提交
7155
	return (nested == preempt_offset);
7156 7157
}

7158
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7159 7160 7161
{
	static unsigned long prev_jiffy;	/* ratelimiting */

7162
	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7163 7164
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
	     !is_idle_task(current)) ||
7165
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
7166 7167 7168 7169 7170
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
7171 7172 7173 7174 7175 7176 7177
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
7178 7179 7180 7181

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
7182 7183 7184 7185 7186 7187 7188
#ifdef CONFIG_DEBUG_PREEMPT
	if (!preempt_count_equals(preempt_offset)) {
		pr_err("Preemption disabled at:");
		print_ip_sym(current->preempt_disable_ip);
		pr_cont("\n");
	}
#endif
I
Ingo Molnar 已提交
7189
	dump_stack();
L
Linus Torvalds 已提交
7190 7191 7192 7193 7194
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7195 7196
static void normalize_task(struct rq *rq, struct task_struct *p)
{
P
Peter Zijlstra 已提交
7197
	const struct sched_class *prev_class = p->sched_class;
7198 7199 7200
	struct sched_attr attr = {
		.sched_policy = SCHED_NORMAL,
	};
P
Peter Zijlstra 已提交
7201
	int old_prio = p->prio;
7202
	int queued;
7203

7204 7205
	queued = task_on_rq_queued(p);
	if (queued)
7206
		dequeue_task(rq, p, 0);
7207
	__setscheduler(rq, p, &attr);
7208
	if (queued) {
7209
		enqueue_task(rq, p, 0);
7210
		resched_curr(rq);
7211
	}
P
Peter Zijlstra 已提交
7212 7213

	check_class_changed(rq, p, prev_class, old_prio);
7214 7215
}

L
Linus Torvalds 已提交
7216 7217
void normalize_rt_tasks(void)
{
7218
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7219
	unsigned long flags;
7220
	struct rq *rq;
L
Linus Torvalds 已提交
7221

7222
	read_lock(&tasklist_lock);
7223
	for_each_process_thread(g, p) {
7224 7225 7226
		/*
		 * Only normalize user tasks:
		 */
7227
		if (p->flags & PF_KTHREAD)
7228 7229
			continue;

I
Ingo Molnar 已提交
7230 7231
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
7232 7233 7234
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
7235
#endif
I
Ingo Molnar 已提交
7236

7237
		if (!dl_task(p) && !rt_task(p)) {
I
Ingo Molnar 已提交
7238 7239 7240 7241
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
7242
			if (task_nice(p) < 0)
I
Ingo Molnar 已提交
7243
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7244
			continue;
I
Ingo Molnar 已提交
7245
		}
L
Linus Torvalds 已提交
7246

7247
		rq = task_rq_lock(p, &flags);
7248
		normalize_task(rq, p);
7249
		task_rq_unlock(rq, p, &flags);
7250
	}
7251
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
7252 7253 7254
}

#endif /* CONFIG_MAGIC_SYSRQ */
7255

7256
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7257
/*
7258
 * These functions are only useful for the IA64 MCA handling, or kdb.
7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7272 7273
 *
 * Return: The current task for @cpu.
7274
 */
7275
struct task_struct *curr_task(int cpu)
7276 7277 7278 7279
{
	return cpu_curr(cpu);
}

7280 7281 7282
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
7283 7284 7285 7286 7287 7288
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7289 7290
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7291 7292 7293 7294 7295 7296 7297
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7298
void set_curr_task(int cpu, struct task_struct *p)
7299 7300 7301 7302 7303
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7304

D
Dhaval Giani 已提交
7305
#ifdef CONFIG_CGROUP_SCHED
7306 7307 7308
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

7309 7310 7311 7312
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
7313
	autogroup_free(tg);
7314 7315 7316 7317
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
7318
struct task_group *sched_create_group(struct task_group *parent)
7319 7320 7321 7322 7323 7324 7325
{
	struct task_group *tg;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

7326
	if (!alloc_fair_sched_group(tg, parent))
7327 7328
		goto err;

7329
	if (!alloc_rt_sched_group(tg, parent))
7330 7331
		goto err;

7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342
	return tg;

err:
	free_sched_group(tg);
	return ERR_PTR(-ENOMEM);
}

void sched_online_group(struct task_group *tg, struct task_group *parent)
{
	unsigned long flags;

7343
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7344
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
7345 7346 7347 7348 7349

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
7350
	list_add_rcu(&tg->siblings, &parent->children);
7351
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7352 7353
}

7354
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
7355
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7356 7357
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
7358
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
7359 7360
}

7361
/* Destroy runqueue etc associated with a task group */
7362
void sched_destroy_group(struct task_group *tg)
7363 7364 7365 7366 7367 7368
{
	/* wait for possible concurrent references to cfs_rqs complete */
	call_rcu(&tg->rcu, free_sched_group_rcu);
}

void sched_offline_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7369
{
7370
	unsigned long flags;
7371
	int i;
S
Srivatsa Vaddagiri 已提交
7372

7373 7374
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
7375
		unregister_fair_sched_group(tg, i);
7376 7377

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7378
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
7379
	list_del_rcu(&tg->siblings);
7380
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7381 7382
}

7383
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7384 7385 7386
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7387 7388
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7389
{
P
Peter Zijlstra 已提交
7390
	struct task_group *tg;
7391
	int queued, running;
S
Srivatsa Vaddagiri 已提交
7392 7393 7394 7395 7396
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

7397
	running = task_current(rq, tsk);
7398
	queued = task_on_rq_queued(tsk);
S
Srivatsa Vaddagiri 已提交
7399

7400
	if (queued)
S
Srivatsa Vaddagiri 已提交
7401
		dequeue_task(rq, tsk, 0);
7402
	if (unlikely(running))
7403
		put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7404

7405
	tg = container_of(task_css_check(tsk, cpu_cgrp_id,
P
Peter Zijlstra 已提交
7406 7407 7408 7409 7410
				lockdep_is_held(&tsk->sighand->siglock)),
			  struct task_group, css);
	tg = autogroup_task_group(tsk, tg);
	tsk->sched_task_group = tg;

P
Peter Zijlstra 已提交
7411
#ifdef CONFIG_FAIR_GROUP_SCHED
7412
	if (tsk->sched_class->task_move_group)
7413
		tsk->sched_class->task_move_group(tsk, queued);
7414
	else
P
Peter Zijlstra 已提交
7415
#endif
7416
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
7417

7418 7419
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
7420
	if (queued)
7421
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
7422

7423
	task_rq_unlock(rq, tsk, &flags);
S
Srivatsa Vaddagiri 已提交
7424
}
D
Dhaval Giani 已提交
7425
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
7426

7427 7428 7429 7430 7431
#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
P
Peter Zijlstra 已提交
7432

P
Peter Zijlstra 已提交
7433 7434
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
7435
{
P
Peter Zijlstra 已提交
7436
	struct task_struct *g, *p;
7437

7438
	for_each_process_thread(g, p) {
7439
		if (rt_task(p) && task_group(p) == tg)
P
Peter Zijlstra 已提交
7440
			return 1;
7441
	}
7442

P
Peter Zijlstra 已提交
7443 7444
	return 0;
}
7445

P
Peter Zijlstra 已提交
7446 7447 7448 7449 7450
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
7451

7452
static int tg_rt_schedulable(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
7453 7454 7455 7456 7457
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
7458

P
Peter Zijlstra 已提交
7459 7460
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
7461

P
Peter Zijlstra 已提交
7462 7463 7464
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
7465 7466
	}

7467 7468 7469 7470 7471
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
7472

7473 7474 7475
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
7476 7477
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
7478

P
Peter Zijlstra 已提交
7479
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7480

7481 7482 7483 7484 7485
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
7486

7487 7488 7489
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
7490 7491 7492
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7493

P
Peter Zijlstra 已提交
7494 7495 7496 7497
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
7498

P
Peter Zijlstra 已提交
7499
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7500
	}
P
Peter Zijlstra 已提交
7501

P
Peter Zijlstra 已提交
7502 7503 7504 7505
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
7506 7507
}

P
Peter Zijlstra 已提交
7508
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7509
{
7510 7511
	int ret;

P
Peter Zijlstra 已提交
7512 7513 7514 7515 7516 7517
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

7518 7519 7520 7521 7522
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7523 7524
}

7525
static int tg_set_rt_bandwidth(struct task_group *tg,
7526
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
7527
{
P
Peter Zijlstra 已提交
7528
	int i, err = 0;
P
Peter Zijlstra 已提交
7529 7530

	mutex_lock(&rt_constraints_mutex);
7531
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
7532 7533
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
7534
		goto unlock;
P
Peter Zijlstra 已提交
7535

7536
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7537 7538
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
7539 7540 7541 7542

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

7543
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7544
		rt_rq->rt_runtime = rt_runtime;
7545
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7546
	}
7547
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
7548
unlock:
7549
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
7550 7551 7552
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
7553 7554
}

7555
static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7556 7557 7558 7559 7560 7561 7562 7563
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

7564
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7565 7566
}

7567
static long sched_group_rt_runtime(struct task_group *tg)
P
Peter Zijlstra 已提交
7568 7569 7570
{
	u64 rt_runtime_us;

7571
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7572 7573
		return -1;

7574
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7575 7576 7577
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
7578

7579
static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7580 7581 7582 7583 7584 7585
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

7586 7587 7588
	if (rt_period == 0)
		return -EINVAL;

7589
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7590 7591
}

7592
static long sched_group_rt_period(struct task_group *tg)
7593 7594 7595 7596 7597 7598 7599
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}
7600
#endif /* CONFIG_RT_GROUP_SCHED */
7601

7602
#ifdef CONFIG_RT_GROUP_SCHED
7603 7604 7605 7606 7607
static int sched_rt_global_constraints(void)
{
	int ret = 0;

	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
7608
	read_lock(&tasklist_lock);
7609
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
7610
	read_unlock(&tasklist_lock);
7611 7612 7613 7614
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
7615

7616
static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7617 7618 7619 7620 7621 7622 7623 7624
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

7625
#else /* !CONFIG_RT_GROUP_SCHED */
7626 7627
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
7628
	unsigned long flags;
7629
	int i, ret = 0;
7630

7631
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7632 7633 7634
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

7635
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7636
		rt_rq->rt_runtime = global_rt_runtime();
7637
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7638
	}
7639
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7640

7641
	return ret;
7642
}
7643
#endif /* CONFIG_RT_GROUP_SCHED */
7644

7645 7646
static int sched_dl_global_constraints(void)
{
7647 7648
	u64 runtime = global_rt_runtime();
	u64 period = global_rt_period();
7649
	u64 new_bw = to_ratio(period, runtime);
7650
	int cpu, ret = 0;
7651
	unsigned long flags;
7652

7653 7654
	rcu_read_lock();

7655 7656 7657 7658 7659 7660 7661 7662 7663
	/*
	 * Here we want to check the bandwidth not being set to some
	 * value smaller than the currently allocated bandwidth in
	 * any of the root_domains.
	 *
	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
	 * cycling on root_domains... Discussion on different/better
	 * solutions is welcome!
	 */
7664 7665
	for_each_possible_cpu(cpu) {
		struct dl_bw *dl_b = dl_bw_of(cpu);
7666

7667
		raw_spin_lock_irqsave(&dl_b->lock, flags);
7668 7669
		if (new_bw < dl_b->total_bw)
			ret = -EBUSY;
7670
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7671 7672 7673

		if (ret)
			break;
7674 7675
	}

7676 7677
	rcu_read_unlock();

7678
	return ret;
7679 7680
}

7681
static void sched_dl_do_global(void)
7682
{
7683 7684
	u64 new_bw = -1;
	int cpu;
7685
	unsigned long flags;
7686

7687 7688 7689 7690 7691 7692
	def_dl_bandwidth.dl_period = global_rt_period();
	def_dl_bandwidth.dl_runtime = global_rt_runtime();

	if (global_rt_runtime() != RUNTIME_INF)
		new_bw = to_ratio(global_rt_period(), global_rt_runtime());

7693
	rcu_read_lock();
7694 7695 7696 7697 7698 7699
	/*
	 * FIXME: As above...
	 */
	for_each_possible_cpu(cpu) {
		struct dl_bw *dl_b = dl_bw_of(cpu);

7700
		raw_spin_lock_irqsave(&dl_b->lock, flags);
7701
		dl_b->bw = new_bw;
7702
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7703
	}
7704
	rcu_read_unlock();
7705 7706 7707 7708 7709 7710 7711
}

static int sched_rt_global_validate(void)
{
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7712 7713
	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7714 7715 7716 7717 7718 7719 7720 7721 7722
		return -EINVAL;

	return 0;
}

static void sched_rt_do_global(void)
{
	def_rt_bandwidth.rt_runtime = global_rt_runtime();
	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7723 7724
}

7725
int sched_rt_handler(struct ctl_table *table, int write,
7726
		void __user *buffer, size_t *lenp,
7727 7728 7729 7730
		loff_t *ppos)
{
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);
7731
	int ret;
7732 7733 7734 7735 7736

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

7737
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7738 7739

	if (!ret && write) {
7740 7741 7742 7743
		ret = sched_rt_global_validate();
		if (ret)
			goto undo;

7744
		ret = sched_rt_global_constraints();
7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758
		if (ret)
			goto undo;

		ret = sched_dl_global_constraints();
		if (ret)
			goto undo;

		sched_rt_do_global();
		sched_dl_do_global();
	}
	if (0) {
undo:
		sysctl_sched_rt_period = old_period;
		sysctl_sched_rt_runtime = old_runtime;
7759 7760 7761 7762 7763
	}
	mutex_unlock(&mutex);

	return ret;
}
7764

7765
int sched_rr_handler(struct ctl_table *table, int write,
7766 7767 7768 7769 7770 7771 7772 7773
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7774 7775
	/* make sure that internally we keep jiffies */
	/* also, writing zero resets timeslice to default */
7776
	if (!ret && write) {
7777 7778
		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7779 7780 7781 7782 7783
	}
	mutex_unlock(&mutex);
	return ret;
}

7784
#ifdef CONFIG_CGROUP_SCHED
7785

7786
static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7787
{
7788
	return css ? container_of(css, struct task_group, css) : NULL;
7789 7790
}

7791 7792
static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7793
{
7794 7795
	struct task_group *parent = css_tg(parent_css);
	struct task_group *tg;
7796

7797
	if (!parent) {
7798
		/* This is early initialization for the top cgroup */
7799
		return &root_task_group.css;
7800 7801
	}

7802
	tg = sched_create_group(parent);
7803 7804 7805 7806 7807 7808
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

7809
static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7810
{
7811
	struct task_group *tg = css_tg(css);
T
Tejun Heo 已提交
7812
	struct task_group *parent = css_tg(css->parent);
7813

T
Tejun Heo 已提交
7814 7815
	if (parent)
		sched_online_group(tg, parent);
7816 7817 7818
	return 0;
}

7819
static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7820
{
7821
	struct task_group *tg = css_tg(css);
7822 7823 7824 7825

	sched_destroy_group(tg);
}

7826
static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7827
{
7828
	struct task_group *tg = css_tg(css);
7829 7830 7831 7832

	sched_offline_group(tg);
}

7833
static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7834
				 struct cgroup_taskset *tset)
7835
{
7836 7837
	struct task_struct *task;

7838
	cgroup_taskset_for_each(task, tset) {
7839
#ifdef CONFIG_RT_GROUP_SCHED
7840
		if (!sched_rt_can_attach(css_tg(css), task))
7841
			return -EINVAL;
7842
#else
7843 7844 7845
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
7846
#endif
7847
	}
7848 7849
	return 0;
}
7850

7851
static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7852
			      struct cgroup_taskset *tset)
7853
{
7854 7855
	struct task_struct *task;

7856
	cgroup_taskset_for_each(task, tset)
7857
		sched_move_task(task);
7858 7859
}

7860 7861 7862
static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
			    struct cgroup_subsys_state *old_css,
			    struct task_struct *task)
7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	sched_move_task(task);
}

7875
#ifdef CONFIG_FAIR_GROUP_SCHED
7876 7877
static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
				struct cftype *cftype, u64 shareval)
7878
{
7879
	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7880 7881
}

7882 7883
static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
			       struct cftype *cft)
7884
{
7885
	struct task_group *tg = css_tg(css);
7886

7887
	return (u64) scale_load_down(tg->shares);
7888
}
7889 7890

#ifdef CONFIG_CFS_BANDWIDTH
7891 7892
static DEFINE_MUTEX(cfs_constraints_mutex);

7893 7894 7895
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

7896 7897
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

7898 7899
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
7900
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7901
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

7922 7923 7924 7925 7926
	/*
	 * Prevent race between setting of cfs_rq->runtime_enabled and
	 * unthrottle_offline_cfs_rqs().
	 */
	get_online_cpus();
7927 7928 7929 7930 7931
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

7932
	runtime_enabled = quota != RUNTIME_INF;
7933
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7934 7935 7936 7937 7938 7939
	/*
	 * If we need to toggle cfs_bandwidth_used, off->on must occur
	 * before making related changes, and on->off must occur afterwards
	 */
	if (runtime_enabled && !runtime_was_enabled)
		cfs_bandwidth_usage_inc();
7940 7941 7942
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
7943

P
Paul Turner 已提交
7944
	__refill_cfs_bandwidth_runtime(cfs_b);
7945 7946 7947
	/* restart the period timer (if active) to handle new period expiry */
	if (runtime_enabled && cfs_b->timer_active) {
		/* force a reprogram */
7948
		__start_cfs_bandwidth(cfs_b, true);
7949
	}
7950 7951
	raw_spin_unlock_irq(&cfs_b->lock);

7952
	for_each_online_cpu(i) {
7953
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7954
		struct rq *rq = cfs_rq->rq;
7955 7956

		raw_spin_lock_irq(&rq->lock);
7957
		cfs_rq->runtime_enabled = runtime_enabled;
7958
		cfs_rq->runtime_remaining = 0;
7959

7960
		if (cfs_rq->throttled)
7961
			unthrottle_cfs_rq(cfs_rq);
7962 7963
		raw_spin_unlock_irq(&rq->lock);
	}
7964 7965
	if (runtime_was_enabled && !runtime_enabled)
		cfs_bandwidth_usage_dec();
7966 7967
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
7968
	put_online_cpus();
7969

7970
	return ret;
7971 7972 7973 7974 7975 7976
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

7977
	period = ktime_to_ns(tg->cfs_bandwidth.period);
7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

7990
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7991 7992
		return -1;

7993
	quota_us = tg->cfs_bandwidth.quota;
7994 7995 7996 7997 7998 7999 8000 8001 8002 8003
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
8004
	quota = tg->cfs_bandwidth.quota;
8005 8006 8007 8008 8009 8010 8011 8012

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

8013
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8014 8015 8016 8017 8018
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

8019 8020
static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
				  struct cftype *cft)
8021
{
8022
	return tg_get_cfs_quota(css_tg(css));
8023 8024
}

8025 8026
static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
				   struct cftype *cftype, s64 cfs_quota_us)
8027
{
8028
	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8029 8030
}

8031 8032
static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
				   struct cftype *cft)
8033
{
8034
	return tg_get_cfs_period(css_tg(css));
8035 8036
}

8037 8038
static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 cfs_period_us)
8039
{
8040
	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8041 8042
}

8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
8075
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8076 8077 8078 8079 8080
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
8081
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8082 8083

		quota = normalize_cfs_quota(tg, d);
8084
		parent_quota = parent_b->hierarchical_quota;
8085 8086 8087 8088 8089 8090 8091 8092 8093 8094

		/*
		 * ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
8095
	cfs_b->hierarchical_quota = quota;
8096 8097 8098 8099 8100 8101

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
8102
	int ret;
8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

8114 8115 8116 8117 8118
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
8119
}
8120

8121
static int cpu_stats_show(struct seq_file *sf, void *v)
8122
{
8123
	struct task_group *tg = css_tg(seq_css(sf));
8124
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8125

8126 8127 8128
	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8129 8130 8131

	return 0;
}
8132
#endif /* CONFIG_CFS_BANDWIDTH */
8133
#endif /* CONFIG_FAIR_GROUP_SCHED */
8134

8135
#ifdef CONFIG_RT_GROUP_SCHED
8136 8137
static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
				struct cftype *cft, s64 val)
P
Peter Zijlstra 已提交
8138
{
8139
	return sched_group_set_rt_runtime(css_tg(css), val);
P
Peter Zijlstra 已提交
8140 8141
}

8142 8143
static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
P
Peter Zijlstra 已提交
8144
{
8145
	return sched_group_rt_runtime(css_tg(css));
P
Peter Zijlstra 已提交
8146
}
8147

8148 8149
static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 rt_period_us)
8150
{
8151
	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8152 8153
}

8154 8155
static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
				   struct cftype *cft)
8156
{
8157
	return sched_group_rt_period(css_tg(css));
8158
}
8159
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
8160

8161
static struct cftype cpu_files[] = {
8162
#ifdef CONFIG_FAIR_GROUP_SCHED
8163 8164
	{
		.name = "shares",
8165 8166
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8167
	},
8168
#endif
8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
8180 8181
	{
		.name = "stat",
8182
		.seq_show = cpu_stats_show,
8183
	},
8184
#endif
8185
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8186
	{
P
Peter Zijlstra 已提交
8187
		.name = "rt_runtime_us",
8188 8189
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8190
	},
8191 8192
	{
		.name = "rt_period_us",
8193 8194
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8195
	},
8196
#endif
8197
	{ }	/* terminate */
8198 8199
};

8200
struct cgroup_subsys cpu_cgrp_subsys = {
8201 8202
	.css_alloc	= cpu_cgroup_css_alloc,
	.css_free	= cpu_cgroup_css_free,
8203 8204
	.css_online	= cpu_cgroup_css_online,
	.css_offline	= cpu_cgroup_css_offline,
8205 8206
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
8207
	.exit		= cpu_cgroup_exit,
8208
	.legacy_cftypes	= cpu_files,
8209 8210 8211
	.early_init	= 1,
};

8212
#endif	/* CONFIG_CGROUP_SCHED */
8213

8214 8215 8216 8217 8218
void dump_cpu_task(int cpu)
{
	pr_info("Task dump for CPU %d:\n", cpu);
	sched_show_task(cpu_curr(cpu));
}