core.c 206.8 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/highmem.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
37
#include <linux/capability.h>
L
Linus Torvalds 已提交
38 39
#include <linux/completion.h>
#include <linux/kernel_stat.h>
40
#include <linux/debug_locks.h>
41
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
57
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
58
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/unistd.h>
J
Jens Axboe 已提交
66
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
67
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
68
#include <linux/tick.h>
P
Peter Zijlstra 已提交
69 70
#include <linux/debugfs.h>
#include <linux/ctype.h>
71
#include <linux/ftrace.h>
72
#include <linux/slab.h>
73
#include <linux/init_task.h>
A
Al Viro 已提交
74
#include <linux/binfmts.h>
75
#include <linux/context_tracking.h>
76
#include <linux/compiler.h>
L
Linus Torvalds 已提交
77

78
#include <asm/switch_to.h>
79
#include <asm/tlb.h>
80
#include <asm/irq_regs.h>
81
#include <asm/mutex.h>
G
Glauber Costa 已提交
82 83 84
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
85

86
#include "sched.h"
87
#include "../workqueue_internal.h"
88
#include "../smpboot.h"
89

90
#define CREATE_TRACE_POINTS
91
#include <trace/events/sched.h>
92

93 94
DEFINE_MUTEX(sched_domains_mutex);
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
95

96
static void update_rq_clock_task(struct rq *rq, s64 delta);
97

98
void update_rq_clock(struct rq *rq)
99
{
100
	s64 delta;
101

102 103 104
	lockdep_assert_held(&rq->lock);

	if (rq->clock_skip_update & RQCF_ACT_SKIP)
105
		return;
106

107
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
108 109
	if (delta < 0)
		return;
110 111
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
112 113
}

I
Ingo Molnar 已提交
114 115 116
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
117 118 119 120

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
121
const_debug unsigned int sysctl_sched_features =
122
#include "features.h"
P
Peter Zijlstra 已提交
123 124 125 126 127 128 129 130
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

131
static const char * const sched_feat_names[] = {
132
#include "features.h"
P
Peter Zijlstra 已提交
133 134 135 136
};

#undef SCHED_FEAT

L
Li Zefan 已提交
137
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
138 139 140
{
	int i;

141
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
L
Li Zefan 已提交
142 143 144
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
145
	}
L
Li Zefan 已提交
146
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
147

L
Li Zefan 已提交
148
	return 0;
P
Peter Zijlstra 已提交
149 150
}

151 152
#ifdef HAVE_JUMP_LABEL

153 154
#define jump_label_key__true  STATIC_KEY_INIT_TRUE
#define jump_label_key__false STATIC_KEY_INIT_FALSE
155 156 157 158

#define SCHED_FEAT(name, enabled)	\
	jump_label_key__##enabled ,

159
struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
160 161 162 163 164 165 166
#include "features.h"
};

#undef SCHED_FEAT

static void sched_feat_disable(int i)
{
167
	static_key_disable(&sched_feat_keys[i]);
168 169 170 171
}

static void sched_feat_enable(int i)
{
172
	static_key_enable(&sched_feat_keys[i]);
173 174 175 176 177 178
}
#else
static void sched_feat_disable(int i) { };
static void sched_feat_enable(int i) { };
#endif /* HAVE_JUMP_LABEL */

179
static int sched_feat_set(char *cmp)
P
Peter Zijlstra 已提交
180 181
{
	int i;
182
	int neg = 0;
P
Peter Zijlstra 已提交
183

H
Hillf Danton 已提交
184
	if (strncmp(cmp, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
185 186 187 188
		neg = 1;
		cmp += 3;
	}

189
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
190
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
191
			if (neg) {
P
Peter Zijlstra 已提交
192
				sysctl_sched_features &= ~(1UL << i);
193 194
				sched_feat_disable(i);
			} else {
P
Peter Zijlstra 已提交
195
				sysctl_sched_features |= (1UL << i);
196 197
				sched_feat_enable(i);
			}
P
Peter Zijlstra 已提交
198 199 200 201
			break;
		}
	}

202 203 204 205 206 207 208 209 210 211
	return i;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp;
	int i;
212
	struct inode *inode;
213 214 215 216 217 218 219 220 221 222

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
	cmp = strstrip(buf);

223 224 225
	/* Ensure the static_key remains in a consistent state */
	inode = file_inode(filp);
	mutex_lock(&inode->i_mutex);
226
	i = sched_feat_set(cmp);
227
	mutex_unlock(&inode->i_mutex);
228
	if (i == __SCHED_FEAT_NR)
P
Peter Zijlstra 已提交
229 230
		return -EINVAL;

231
	*ppos += cnt;
P
Peter Zijlstra 已提交
232 233 234 235

	return cnt;
}

L
Li Zefan 已提交
236 237 238 239 240
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

241
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
242 243 244 245 246
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
247 248 249 250 251 252 253 254 255 256
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);
257
#endif /* CONFIG_SCHED_DEBUG */
I
Ingo Molnar 已提交
258

259 260 261 262 263 264
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

265 266 267 268 269 270 271 272
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
273
/*
P
Peter Zijlstra 已提交
274
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
275 276
 * default: 1s
 */
P
Peter Zijlstra 已提交
277
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
278

279
__read_mostly int scheduler_running;
280

P
Peter Zijlstra 已提交
281 282 283 284 285
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
286

287 288 289
/* cpus with isolated domains */
cpumask_var_t cpu_isolated_map;

L
Linus Torvalds 已提交
290
/*
291
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
292
 */
A
Alexey Dobriyan 已提交
293
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
294 295
	__acquires(rq->lock)
{
296
	struct rq *rq;
L
Linus Torvalds 已提交
297 298 299

	local_irq_disable();
	rq = this_rq();
300
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
301 302 303 304

	return rq;
}

P
Peter Zijlstra 已提交
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

326
	raw_spin_lock(&rq->lock);
327
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
328
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
329
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
330 331 332 333

	return HRTIMER_NORESTART;
}

334
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
335

336
static void __hrtick_restart(struct rq *rq)
P
Peter Zijlstra 已提交
337 338 339
{
	struct hrtimer *timer = &rq->hrtick_timer;

340
	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
P
Peter Zijlstra 已提交
341 342
}

343 344 345 346
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
347
{
348
	struct rq *rq = arg;
349

350
	raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
351
	__hrtick_restart(rq);
352
	rq->hrtick_csd_pending = 0;
353
	raw_spin_unlock(&rq->lock);
354 355
}

356 357 358 359 360
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
361
void hrtick_start(struct rq *rq, u64 delay)
362
{
363
	struct hrtimer *timer = &rq->hrtick_timer;
364 365 366 367 368 369 370 371 372
	ktime_t time;
	s64 delta;

	/*
	 * Don't schedule slices shorter than 10000ns, that just
	 * doesn't make sense and can cause timer DoS.
	 */
	delta = max_t(s64, delay, 10000LL);
	time = ktime_add_ns(timer->base->get_time(), delta);
373

374
	hrtimer_set_expires(timer, time);
375 376

	if (rq == this_rq()) {
P
Peter Zijlstra 已提交
377
		__hrtick_restart(rq);
378
	} else if (!rq->hrtick_csd_pending) {
379
		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
380 381
		rq->hrtick_csd_pending = 1;
	}
382 383 384 385 386 387 388 389 390 391 392 393 394 395
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
396
		hrtick_clear(cpu_rq(cpu));
397 398 399 400 401 402
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

403
static __init void init_hrtick(void)
404 405 406
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
407 408 409 410 411 412
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
413
void hrtick_start(struct rq *rq, u64 delay)
414
{
W
Wanpeng Li 已提交
415 416 417 418 419
	/*
	 * Don't schedule slices shorter than 10000ns, that just
	 * doesn't make sense. Rely on vruntime for fairness.
	 */
	delay = max_t(u64, delay, 10000LL);
420 421
	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
		      HRTIMER_MODE_REL_PINNED);
422
}
423

A
Andrew Morton 已提交
424
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
425 426
{
}
427
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
428

429
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
430
{
431 432
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
433

434 435 436 437
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
438

439 440
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
441
}
A
Andrew Morton 已提交
442
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
443 444 445 446 447 448 449 450
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

451 452 453
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
454
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
455

456 457 458 459 460 461 462 463 464 465 466 467 468 469
/*
 * cmpxchg based fetch_or, macro so it works for different integer types
 */
#define fetch_or(ptr, val)						\
({	typeof(*(ptr)) __old, __val = *(ptr);				\
 	for (;;) {							\
 		__old = cmpxchg((ptr), __val, __val | (val));		\
 		if (__old == __val)					\
 			break;						\
 		__val = __old;						\
 	}								\
 	__old;								\
})

470
#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
471 472 473 474 475 476 477 478 479 480
/*
 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
 * this avoids any races wrt polling state changes and thereby avoids
 * spurious IPIs.
 */
static bool set_nr_and_not_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
}
481 482 483 484 485 486 487 488 489 490

/*
 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
 *
 * If this returns true, then the idle task promises to call
 * sched_ttwu_pending() and reschedule soon.
 */
static bool set_nr_if_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
491
	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
492 493 494 495 496 497 498 499 500 501 502 503 504 505

	for (;;) {
		if (!(val & _TIF_POLLING_NRFLAG))
			return false;
		if (val & _TIF_NEED_RESCHED)
			return true;
		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
		if (old == val)
			break;
		val = old;
	}
	return true;
}

506 507 508 509 510 511
#else
static bool set_nr_and_not_polling(struct task_struct *p)
{
	set_tsk_need_resched(p);
	return true;
}
512 513 514 515 516 517 518

#ifdef CONFIG_SMP
static bool set_nr_if_polling(struct task_struct *p)
{
	return false;
}
#endif
519 520
#endif

521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
void wake_q_add(struct wake_q_head *head, struct task_struct *task)
{
	struct wake_q_node *node = &task->wake_q;

	/*
	 * Atomically grab the task, if ->wake_q is !nil already it means
	 * its already queued (either by us or someone else) and will get the
	 * wakeup due to that.
	 *
	 * This cmpxchg() implies a full barrier, which pairs with the write
	 * barrier implied by the wakeup in wake_up_list().
	 */
	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
		return;

	get_task_struct(task);

	/*
	 * The head is context local, there can be no concurrency.
	 */
	*head->lastp = node;
	head->lastp = &node->next;
}

void wake_up_q(struct wake_q_head *head)
{
	struct wake_q_node *node = head->first;

	while (node != WAKE_Q_TAIL) {
		struct task_struct *task;

		task = container_of(node, struct task_struct, wake_q);
		BUG_ON(!task);
		/* task can safely be re-inserted now */
		node = node->next;
		task->wake_q.next = NULL;

		/*
		 * wake_up_process() implies a wmb() to pair with the queueing
		 * in wake_q_add() so as not to miss wakeups.
		 */
		wake_up_process(task);
		put_task_struct(task);
	}
}

I
Ingo Molnar 已提交
567
/*
568
 * resched_curr - mark rq's current task 'to be rescheduled now'.
I
Ingo Molnar 已提交
569 570 571 572 573
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
574
void resched_curr(struct rq *rq)
I
Ingo Molnar 已提交
575
{
576
	struct task_struct *curr = rq->curr;
I
Ingo Molnar 已提交
577 578
	int cpu;

579
	lockdep_assert_held(&rq->lock);
I
Ingo Molnar 已提交
580

581
	if (test_tsk_need_resched(curr))
I
Ingo Molnar 已提交
582 583
		return;

584
	cpu = cpu_of(rq);
585

586
	if (cpu == smp_processor_id()) {
587
		set_tsk_need_resched(curr);
588
		set_preempt_need_resched();
I
Ingo Molnar 已提交
589
		return;
590
	}
I
Ingo Molnar 已提交
591

592
	if (set_nr_and_not_polling(curr))
I
Ingo Molnar 已提交
593
		smp_send_reschedule(cpu);
594 595
	else
		trace_sched_wake_idle_without_ipi(cpu);
I
Ingo Molnar 已提交
596 597
}

598
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
599 600 601 602
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

603
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
604
		return;
605
	resched_curr(rq);
606
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
607
}
608

609
#ifdef CONFIG_SMP
610
#ifdef CONFIG_NO_HZ_COMMON
611 612 613 614 615 616 617 618
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
619
int get_nohz_timer_target(void)
620
{
621
	int i, cpu = smp_processor_id();
622 623
	struct sched_domain *sd;

624
	if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
625 626
		return cpu;

627
	rcu_read_lock();
628
	for_each_domain(cpu, sd) {
629
		for_each_cpu(i, sched_domain_span(sd)) {
630
			if (!idle_cpu(i) && is_housekeeping_cpu(cpu)) {
631 632 633 634
				cpu = i;
				goto unlock;
			}
		}
635
	}
636 637 638

	if (!is_housekeeping_cpu(cpu))
		cpu = housekeeping_any_cpu();
639 640
unlock:
	rcu_read_unlock();
641 642
	return cpu;
}
643 644 645 646 647 648 649 650 651 652
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
653
static void wake_up_idle_cpu(int cpu)
654 655 656 657 658 659
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

660
	if (set_nr_and_not_polling(rq->idle))
661
		smp_send_reschedule(cpu);
662 663
	else
		trace_sched_wake_idle_without_ipi(cpu);
664 665
}

666
static bool wake_up_full_nohz_cpu(int cpu)
667
{
668 669 670 671 672 673
	/*
	 * We just need the target to call irq_exit() and re-evaluate
	 * the next tick. The nohz full kick at least implies that.
	 * If needed we can still optimize that later with an
	 * empty IRQ.
	 */
674
	if (tick_nohz_full_cpu(cpu)) {
675 676
		if (cpu != smp_processor_id() ||
		    tick_nohz_tick_stopped())
677
			tick_nohz_full_kick_cpu(cpu);
678 679 680 681 682 683 684 685
		return true;
	}

	return false;
}

void wake_up_nohz_cpu(int cpu)
{
686
	if (!wake_up_full_nohz_cpu(cpu))
687 688 689
		wake_up_idle_cpu(cpu);
}

690
static inline bool got_nohz_idle_kick(void)
691
{
692
	int cpu = smp_processor_id();
693 694 695 696 697 698 699 700 701 702 703 704 705

	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
		return false;

	if (idle_cpu(cpu) && !need_resched())
		return true;

	/*
	 * We can't run Idle Load Balance on this CPU for this time so we
	 * cancel it and clear NOHZ_BALANCE_KICK
	 */
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
	return false;
706 707
}

708
#else /* CONFIG_NO_HZ_COMMON */
709

710
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
711
{
712
	return false;
P
Peter Zijlstra 已提交
713 714
}

715
#endif /* CONFIG_NO_HZ_COMMON */
716

717 718 719
#ifdef CONFIG_NO_HZ_FULL
bool sched_can_stop_tick(void)
{
720 721 722 723 724 725 726 727 728 729 730 731 732 733
	/*
	 * FIFO realtime policy runs the highest priority task. Other runnable
	 * tasks are of a lower priority. The scheduler tick does nothing.
	 */
	if (current->policy == SCHED_FIFO)
		return true;

	/*
	 * Round-robin realtime tasks time slice with other tasks at the same
	 * realtime priority. Is this task the only one at this priority?
	 */
	if (current->policy == SCHED_RR) {
		struct sched_rt_entity *rt_se = &current->rt;

734
		return list_is_singular(&rt_se->run_list);
735 736
	}

737 738 739 740 741
	/*
	 * More than one running task need preemption.
	 * nr_running update is assumed to be visible
	 * after IPI is sent from wakers.
	 */
742 743
	if (this_rq()->nr_running > 1)
		return false;
744

745
	return true;
746 747
}
#endif /* CONFIG_NO_HZ_FULL */
748

749
void sched_avg_update(struct rq *rq)
750
{
751 752
	s64 period = sched_avg_period();

753
	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
754 755 756 757 758 759
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
760 761 762
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
763 764
}

765
#endif /* CONFIG_SMP */
766

767 768
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
769
/*
770 771 772 773
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
774
 */
775
int walk_tg_tree_from(struct task_group *from,
776
			     tg_visitor down, tg_visitor up, void *data)
777 778
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
779
	int ret;
780

781 782
	parent = from;

783
down:
P
Peter Zijlstra 已提交
784 785
	ret = (*down)(parent, data);
	if (ret)
786
		goto out;
787 788 789 790 791 792 793
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
794
	ret = (*up)(parent, data);
795 796
	if (ret || parent == from)
		goto out;
797 798 799 800 801

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
802
out:
P
Peter Zijlstra 已提交
803
	return ret;
804 805
}

806
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
807
{
808
	return 0;
P
Peter Zijlstra 已提交
809
}
810 811
#endif

812 813
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
814 815 816
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
817 818 819
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
820
	if (idle_policy(p->policy)) {
821
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
822
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
823 824
		return;
	}
825

826
	load->weight = scale_load(prio_to_weight[prio]);
N
Nikhil Rao 已提交
827
	load->inv_weight = prio_to_wmult[prio];
828 829
}

830
static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
831
{
832
	update_rq_clock(rq);
833 834
	if (!(flags & ENQUEUE_RESTORE))
		sched_info_queued(rq, p);
835
	p->sched_class->enqueue_task(rq, p, flags);
836 837
}

838
static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
839
{
840
	update_rq_clock(rq);
841 842
	if (!(flags & DEQUEUE_SAVE))
		sched_info_dequeued(rq, p);
843
	p->sched_class->dequeue_task(rq, p, flags);
844 845
}

846
void activate_task(struct rq *rq, struct task_struct *p, int flags)
847 848 849 850
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

851
	enqueue_task(rq, p, flags);
852 853
}

854
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
855 856 857 858
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

859
	dequeue_task(rq, p, flags);
860 861
}

862
static void update_rq_clock_task(struct rq *rq, s64 delta)
863
{
864 865 866 867 868 869 870 871
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
872
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
894 895
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
896
	if (static_key_false((&paravirt_steal_rq_enabled))) {
897 898 899 900 901 902 903 904 905 906 907
		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		rq->prev_steal_time_rq += steal;
		delta -= steal;
	}
#endif

908 909
	rq->clock_task += delta;

910
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
911
	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
912 913
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
914 915
}

916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

946
/*
I
Ingo Molnar 已提交
947
 * __normal_prio - return the priority that is based on the static prio
948 949 950
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
951
	return p->static_prio;
952 953
}

954 955 956 957 958 959 960
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
961
static inline int normal_prio(struct task_struct *p)
962 963 964
{
	int prio;

965 966 967
	if (task_has_dl_policy(p))
		prio = MAX_DL_PRIO-1;
	else if (task_has_rt_policy(p))
968 969 970 971 972 973 974 975 976 977 978 979 980
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
981
static int effective_prio(struct task_struct *p)
982 983 984 985 986 987 988 989 990 991 992 993
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
994 995 996
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
997 998
 *
 * Return: 1 if the task is currently executing. 0 otherwise.
L
Linus Torvalds 已提交
999
 */
1000
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1001 1002 1003 1004
{
	return cpu_curr(task_cpu(p)) == p;
}

1005
/*
1006 1007 1008 1009 1010
 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
 * use the balance_callback list if you want balancing.
 *
 * this means any call to check_class_changed() must be followed by a call to
 * balance_callback().
1011
 */
1012 1013
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
1014
				       int oldprio)
1015 1016 1017
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
1018
			prev_class->switched_from(rq, p);
1019

P
Peter Zijlstra 已提交
1020
		p->sched_class->switched_to(rq, p);
1021
	} else if (oldprio != p->prio || dl_task(p))
P
Peter Zijlstra 已提交
1022
		p->sched_class->prio_changed(rq, p, oldprio);
1023 1024
}

1025
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
1036
				resched_curr(rq);
1037 1038 1039 1040 1041 1042 1043 1044 1045
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
1046
	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1047
		rq_clock_skip_update(rq, true);
1048 1049
}

L
Linus Torvalds 已提交
1050
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
/*
 * This is how migration works:
 *
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
 */

/*
 * move_queued_task - move a queued task to new rq.
 *
 * Returns (locked) new rq. Old rq's lock is released.
 */
1070
static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
P
Peter Zijlstra 已提交
1071 1072 1073 1074
{
	lockdep_assert_held(&rq->lock);

	p->on_rq = TASK_ON_RQ_MIGRATING;
1075
	dequeue_task(rq, p, 0);
P
Peter Zijlstra 已提交
1076 1077 1078 1079 1080 1081 1082 1083
	set_task_cpu(p, new_cpu);
	raw_spin_unlock(&rq->lock);

	rq = cpu_rq(new_cpu);

	raw_spin_lock(&rq->lock);
	BUG_ON(task_cpu(p) != new_cpu);
	enqueue_task(rq, p, 0);
1084
	p->on_rq = TASK_ON_RQ_QUEUED;
P
Peter Zijlstra 已提交
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
	check_preempt_curr(rq, p, 0);

	return rq;
}

struct migration_arg {
	struct task_struct *task;
	int dest_cpu;
};

/*
 * Move (not current) task off this cpu, onto dest cpu. We're doing
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
 */
1104
static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
P
Peter Zijlstra 已提交
1105 1106
{
	if (unlikely(!cpu_active(dest_cpu)))
1107
		return rq;
P
Peter Zijlstra 已提交
1108 1109 1110

	/* Affinity changed (again). */
	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1111
		return rq;
P
Peter Zijlstra 已提交
1112

1113 1114 1115
	rq = move_queued_task(rq, p, dest_cpu);

	return rq;
P
Peter Zijlstra 已提交
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
}

/*
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
 */
static int migration_cpu_stop(void *data)
{
	struct migration_arg *arg = data;
1126 1127
	struct task_struct *p = arg->task;
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139

	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
	local_irq_disable();
	/*
	 * We need to explicitly wake pending tasks before running
	 * __migrate_task() such that we will not miss enforcing cpus_allowed
	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
	 */
	sched_ttwu_pending();
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152

	raw_spin_lock(&p->pi_lock);
	raw_spin_lock(&rq->lock);
	/*
	 * If task_rq(p) != rq, it cannot be migrated here, because we're
	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
	 * we're holding p->pi_lock.
	 */
	if (task_rq(p) == rq && task_on_rq_queued(p))
		rq = __migrate_task(rq, p, arg->dest_cpu);
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock(&p->pi_lock);

P
Peter Zijlstra 已提交
1153 1154 1155 1156
	local_irq_enable();
	return 0;
}

1157 1158 1159 1160 1161
/*
 * sched_class::set_cpus_allowed must do the below, but is not required to
 * actually call this function.
 */
void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
P
Peter Zijlstra 已提交
1162 1163 1164 1165 1166
{
	cpumask_copy(&p->cpus_allowed, new_mask);
	p->nr_cpus_allowed = cpumask_weight(new_mask);
}

1167 1168
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
1169 1170 1171
	struct rq *rq = task_rq(p);
	bool queued, running;

1172
	lockdep_assert_held(&p->pi_lock);
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182

	queued = task_on_rq_queued(p);
	running = task_current(rq, p);

	if (queued) {
		/*
		 * Because __kthread_bind() calls this on blocked tasks without
		 * holding rq->lock.
		 */
		lockdep_assert_held(&rq->lock);
1183
		dequeue_task(rq, p, DEQUEUE_SAVE);
1184 1185 1186 1187
	}
	if (running)
		put_prev_task(rq, p);

1188
	p->sched_class->set_cpus_allowed(p, new_mask);
1189 1190 1191 1192

	if (running)
		p->sched_class->set_curr_task(rq);
	if (queued)
1193
		enqueue_task(rq, p, ENQUEUE_RESTORE);
1194 1195
}

P
Peter Zijlstra 已提交
1196 1197 1198 1199 1200 1201 1202 1203 1204
/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely. The
 * call is not atomic; no spinlocks may be held.
 */
1205 1206
static int __set_cpus_allowed_ptr(struct task_struct *p,
				  const struct cpumask *new_mask, bool check)
P
Peter Zijlstra 已提交
1207 1208 1209 1210 1211 1212 1213 1214
{
	unsigned long flags;
	struct rq *rq;
	unsigned int dest_cpu;
	int ret = 0;

	rq = task_rq_lock(p, &flags);

1215 1216 1217 1218 1219 1220 1221 1222 1223
	/*
	 * Must re-check here, to close a race against __kthread_bind(),
	 * sched_setaffinity() is not guaranteed to observe the flag.
	 */
	if (check && (p->flags & PF_NO_SETAFFINITY)) {
		ret = -EINVAL;
		goto out;
	}

P
Peter Zijlstra 已提交
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
		ret = -EINVAL;
		goto out;
	}

	do_set_cpus_allowed(p, new_mask);

	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpumask_test_cpu(task_cpu(p), new_mask))
		goto out;

	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
	if (task_running(rq, p) || p->state == TASK_WAKING) {
		struct migration_arg arg = { p, dest_cpu };
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, p, &flags);
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
		tlb_migrate_finish(p->mm);
		return 0;
1246 1247 1248 1249 1250 1251
	} else if (task_on_rq_queued(p)) {
		/*
		 * OK, since we're going to drop the lock immediately
		 * afterwards anyway.
		 */
		lockdep_unpin_lock(&rq->lock);
1252
		rq = move_queued_task(rq, p, dest_cpu);
1253 1254
		lockdep_pin_lock(&rq->lock);
	}
P
Peter Zijlstra 已提交
1255 1256 1257 1258 1259
out:
	task_rq_unlock(rq, p, &flags);

	return ret;
}
1260 1261 1262 1263 1264

int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
{
	return __set_cpus_allowed_ptr(p, new_mask, false);
}
P
Peter Zijlstra 已提交
1265 1266
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);

I
Ingo Molnar 已提交
1267
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1268
{
1269 1270 1271 1272 1273
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
1274
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
O
Oleg Nesterov 已提交
1275
			!p->on_rq);
1276

1277 1278 1279 1280 1281 1282 1283 1284 1285
	/*
	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
	 * time relying on p->on_rq.
	 */
	WARN_ON_ONCE(p->state == TASK_RUNNING &&
		     p->sched_class == &fair_sched_class &&
		     (p->on_rq && !task_on_rq_migrating(p)));

1286
#ifdef CONFIG_LOCKDEP
1287 1288 1289 1290 1291
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
P
Peter Zijlstra 已提交
1292
	 * see task_group().
1293 1294 1295 1296
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
1297 1298 1299
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
1300 1301
#endif

1302
	trace_sched_migrate_task(p, new_cpu);
1303

1304
	if (task_cpu(p) != new_cpu) {
1305
		if (p->sched_class->migrate_task_rq)
1306
			p->sched_class->migrate_task_rq(p);
1307
		p->se.nr_migrations++;
1308
		perf_event_task_migrate(p);
1309
	}
I
Ingo Molnar 已提交
1310 1311

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1312 1313
}

1314 1315
static void __migrate_swap_task(struct task_struct *p, int cpu)
{
1316
	if (task_on_rq_queued(p)) {
1317 1318 1319 1320 1321
		struct rq *src_rq, *dst_rq;

		src_rq = task_rq(p);
		dst_rq = cpu_rq(cpu);

1322
		p->on_rq = TASK_ON_RQ_MIGRATING;
1323 1324 1325
		deactivate_task(src_rq, p, 0);
		set_task_cpu(p, cpu);
		activate_task(dst_rq, p, 0);
1326
		p->on_rq = TASK_ON_RQ_QUEUED;
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
		check_preempt_curr(dst_rq, p, 0);
	} else {
		/*
		 * Task isn't running anymore; make it appear like we migrated
		 * it before it went to sleep. This means on wakeup we make the
		 * previous cpu our targer instead of where it really is.
		 */
		p->wake_cpu = cpu;
	}
}

struct migration_swap_arg {
	struct task_struct *src_task, *dst_task;
	int src_cpu, dst_cpu;
};

static int migrate_swap_stop(void *data)
{
	struct migration_swap_arg *arg = data;
	struct rq *src_rq, *dst_rq;
	int ret = -EAGAIN;

1349 1350 1351
	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
		return -EAGAIN;

1352 1353 1354
	src_rq = cpu_rq(arg->src_cpu);
	dst_rq = cpu_rq(arg->dst_cpu);

1355 1356
	double_raw_lock(&arg->src_task->pi_lock,
			&arg->dst_task->pi_lock);
1357
	double_rq_lock(src_rq, dst_rq);
1358

1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
	if (task_cpu(arg->dst_task) != arg->dst_cpu)
		goto unlock;

	if (task_cpu(arg->src_task) != arg->src_cpu)
		goto unlock;

	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
		goto unlock;

	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
		goto unlock;

	__migrate_swap_task(arg->src_task, arg->dst_cpu);
	__migrate_swap_task(arg->dst_task, arg->src_cpu);

	ret = 0;

unlock:
	double_rq_unlock(src_rq, dst_rq);
1378 1379
	raw_spin_unlock(&arg->dst_task->pi_lock);
	raw_spin_unlock(&arg->src_task->pi_lock);
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401

	return ret;
}

/*
 * Cross migrate two tasks
 */
int migrate_swap(struct task_struct *cur, struct task_struct *p)
{
	struct migration_swap_arg arg;
	int ret = -EINVAL;

	arg = (struct migration_swap_arg){
		.src_task = cur,
		.src_cpu = task_cpu(cur),
		.dst_task = p,
		.dst_cpu = task_cpu(p),
	};

	if (arg.src_cpu == arg.dst_cpu)
		goto out;

1402 1403 1404 1405
	/*
	 * These three tests are all lockless; this is OK since all of them
	 * will be re-checked with proper locks held further down the line.
	 */
1406 1407 1408 1409 1410 1411 1412 1413 1414
	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
		goto out;

	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
		goto out;

	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
		goto out;

1415
	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1416 1417 1418 1419 1420 1421
	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);

out:
	return ret;
}

L
Linus Torvalds 已提交
1422 1423 1424
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1425 1426 1427 1428 1429 1430 1431
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1432 1433 1434 1435 1436 1437
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1438
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1439 1440
{
	unsigned long flags;
1441
	int running, queued;
R
Roland McGrath 已提交
1442
	unsigned long ncsw;
1443
	struct rq *rq;
L
Linus Torvalds 已提交
1444

1445 1446 1447 1448 1449 1450 1451 1452
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1453

1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1465 1466 1467
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1468
			cpu_relax();
R
Roland McGrath 已提交
1469
		}
1470

1471 1472 1473 1474 1475 1476
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1477
		trace_sched_wait_task(p);
1478
		running = task_running(rq, p);
1479
		queued = task_on_rq_queued(p);
R
Roland McGrath 已提交
1480
		ncsw = 0;
1481
		if (!match_state || p->state == match_state)
1482
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1483
		task_rq_unlock(rq, p, &flags);
1484

R
Roland McGrath 已提交
1485 1486 1487 1488 1489 1490
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1501

1502 1503 1504 1505 1506
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1507
		 * So if it was still runnable (but just not actively
1508 1509 1510
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
1511
		if (unlikely(queued)) {
1512 1513 1514 1515
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1516 1517
			continue;
		}
1518

1519 1520 1521 1522 1523 1524 1525
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1526 1527

	return ncsw;
L
Linus Torvalds 已提交
1528 1529 1530 1531 1532 1533 1534 1535 1536
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1537
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1538 1539 1540 1541 1542
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1543
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1544 1545 1546 1547 1548 1549 1550 1551 1552
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1553
EXPORT_SYMBOL_GPL(kick_process);
L
Linus Torvalds 已提交
1554

1555
/*
1556
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1557
 */
1558 1559
static int select_fallback_rq(int cpu, struct task_struct *p)
{
1560 1561
	int nid = cpu_to_node(cpu);
	const struct cpumask *nodemask = NULL;
1562 1563
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1564

1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
	/*
	 * If the node that the cpu is on has been offlined, cpu_to_node()
	 * will return -1. There is no cpu on the node, and we should
	 * select the cpu on the other node.
	 */
	if (nid != -1) {
		nodemask = cpumask_of_node(nid);

		/* Look for allowed, online CPU in same node. */
		for_each_cpu(dest_cpu, nodemask) {
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
				return dest_cpu;
		}
1582
	}
1583

1584 1585
	for (;;) {
		/* Any allowed, online CPU? */
1586
		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1587 1588 1589 1590 1591 1592
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			goto out;
		}
1593

1594
		/* No more Mr. Nice Guy. */
1595 1596
		switch (state) {
		case cpuset:
1597 1598 1599 1600 1601 1602
			if (IS_ENABLED(CONFIG_CPUSETS)) {
				cpuset_cpus_allowed_fallback(p);
				state = possible;
				break;
			}
			/* fall-through */
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
1622
			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1623 1624
					task_pid_nr(p), p->comm, cpu);
		}
1625 1626 1627 1628 1629
	}

	return dest_cpu;
}

1630
/*
1631
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1632
 */
1633
static inline
1634
int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1635
{
1636 1637
	lockdep_assert_held(&p->pi_lock);

1638 1639
	if (p->nr_cpus_allowed > 1)
		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1651
	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
P
Peter Zijlstra 已提交
1652
		     !cpu_online(cpu)))
1653
		cpu = select_fallback_rq(task_cpu(p), p);
1654 1655

	return cpu;
1656
}
1657 1658 1659 1660 1661 1662

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1663 1664 1665 1666 1667 1668 1669 1670 1671

#else

static inline int __set_cpus_allowed_ptr(struct task_struct *p,
					 const struct cpumask *new_mask, bool check)
{
	return set_cpus_allowed_ptr(p, new_mask);
}

P
Peter Zijlstra 已提交
1672
#endif /* CONFIG_SMP */
1673

P
Peter Zijlstra 已提交
1674
static void
1675
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1676
{
P
Peter Zijlstra 已提交
1677
#ifdef CONFIG_SCHEDSTATS
1678 1679
	struct rq *rq = this_rq();

P
Peter Zijlstra 已提交
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
#ifdef CONFIG_SMP
	int this_cpu = smp_processor_id();

	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	} else {
		struct sched_domain *sd;

		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1690
		rcu_read_lock();
P
Peter Zijlstra 已提交
1691 1692 1693 1694 1695 1696
		for_each_domain(this_cpu, sd) {
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
1697
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1698
	}
1699 1700 1701 1702

	if (wake_flags & WF_MIGRATED)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);

P
Peter Zijlstra 已提交
1703 1704 1705
#endif /* CONFIG_SMP */

	schedstat_inc(rq, ttwu_count);
T
Tejun Heo 已提交
1706
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1707 1708

	if (wake_flags & WF_SYNC)
T
Tejun Heo 已提交
1709
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1710 1711 1712 1713

#endif /* CONFIG_SCHEDSTATS */
}

1714
static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
P
Peter Zijlstra 已提交
1715
{
T
Tejun Heo 已提交
1716
	activate_task(rq, p, en_flags);
1717
	p->on_rq = TASK_ON_RQ_QUEUED;
1718 1719 1720 1721

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1722 1723
}

1724 1725 1726
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1727
static void
1728
ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
T
Tejun Heo 已提交
1729 1730 1731
{
	check_preempt_curr(rq, p, wake_flags);
	p->state = TASK_RUNNING;
1732 1733
	trace_sched_wakeup(p);

T
Tejun Heo 已提交
1734
#ifdef CONFIG_SMP
1735 1736
	if (p->sched_class->task_woken) {
		/*
1737 1738
		 * Our task @p is fully woken up and running; so its safe to
		 * drop the rq->lock, hereafter rq is only used for statistics.
1739
		 */
1740
		lockdep_unpin_lock(&rq->lock);
T
Tejun Heo 已提交
1741
		p->sched_class->task_woken(rq, p);
1742
		lockdep_pin_lock(&rq->lock);
1743
	}
T
Tejun Heo 已提交
1744

1745
	if (rq->idle_stamp) {
1746
		u64 delta = rq_clock(rq) - rq->idle_stamp;
1747
		u64 max = 2*rq->max_idle_balance_cost;
T
Tejun Heo 已提交
1748

1749 1750 1751
		update_avg(&rq->avg_idle, delta);

		if (rq->avg_idle > max)
T
Tejun Heo 已提交
1752
			rq->avg_idle = max;
1753

T
Tejun Heo 已提交
1754 1755 1756 1757 1758
		rq->idle_stamp = 0;
	}
#endif
}

1759 1760 1761
static void
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
{
1762 1763
	lockdep_assert_held(&rq->lock);

1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
#endif

	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
	ttwu_do_wakeup(rq, p, wake_flags);
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
1785
	if (task_on_rq_queued(p)) {
1786 1787
		/* check_preempt_curr() may use rq clock */
		update_rq_clock(rq);
1788 1789 1790 1791 1792 1793 1794 1795
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;
}

1796
#ifdef CONFIG_SMP
1797
void sched_ttwu_pending(void)
1798 1799
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1800 1801
	struct llist_node *llist = llist_del_all(&rq->wake_list);
	struct task_struct *p;
1802
	unsigned long flags;
1803

1804 1805 1806 1807
	if (!llist)
		return;

	raw_spin_lock_irqsave(&rq->lock, flags);
1808
	lockdep_pin_lock(&rq->lock);
1809

P
Peter Zijlstra 已提交
1810 1811 1812
	while (llist) {
		p = llist_entry(llist, struct task_struct, wake_entry);
		llist = llist_next(llist);
1813 1814 1815
		ttwu_do_activate(rq, p, 0);
	}

1816
	lockdep_unpin_lock(&rq->lock);
1817
	raw_spin_unlock_irqrestore(&rq->lock, flags);
1818 1819 1820 1821
}

void scheduler_ipi(void)
{
1822 1823 1824 1825 1826
	/*
	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
	 * TIF_NEED_RESCHED remotely (for the first time) will also send
	 * this IPI.
	 */
1827
	preempt_fold_need_resched();
1828

1829
	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
P
Peter Zijlstra 已提交
1846
	sched_ttwu_pending();
1847 1848 1849 1850

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1851
	if (unlikely(got_nohz_idle_kick())) {
1852
		this_rq()->idle_balance = 1;
1853
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1854
	}
1855
	irq_exit();
1856 1857 1858 1859
}

static void ttwu_queue_remote(struct task_struct *p, int cpu)
{
1860 1861 1862 1863 1864 1865 1866 1867
	struct rq *rq = cpu_rq(cpu);

	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
		if (!set_nr_if_polling(rq->idle))
			smp_send_reschedule(cpu);
		else
			trace_sched_wake_idle_without_ipi(cpu);
	}
1868
}
1869

1870 1871 1872 1873 1874
void wake_up_if_idle(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

1875 1876 1877 1878
	rcu_read_lock();

	if (!is_idle_task(rcu_dereference(rq->curr)))
		goto out;
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888

	if (set_nr_if_polling(rq->idle)) {
		trace_sched_wake_idle_without_ipi(cpu);
	} else {
		raw_spin_lock_irqsave(&rq->lock, flags);
		if (is_idle_task(rq->curr))
			smp_send_reschedule(cpu);
		/* Else cpu is not in idle, do nothing here */
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}
1889 1890 1891

out:
	rcu_read_unlock();
1892 1893
}

1894
bool cpus_share_cache(int this_cpu, int that_cpu)
1895 1896 1897
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1898
#endif /* CONFIG_SMP */
1899

1900 1901 1902 1903
static void ttwu_queue(struct task_struct *p, int cpu)
{
	struct rq *rq = cpu_rq(cpu);

1904
#if defined(CONFIG_SMP)
1905
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1906
		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1907 1908 1909 1910 1911
		ttwu_queue_remote(p, cpu);
		return;
	}
#endif

1912
	raw_spin_lock(&rq->lock);
1913
	lockdep_pin_lock(&rq->lock);
1914
	ttwu_do_activate(rq, p, 0);
1915
	lockdep_unpin_lock(&rq->lock);
1916
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
1917 1918 1919
}

/**
L
Linus Torvalds 已提交
1920
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1921
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1922
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1923
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1924 1925 1926 1927 1928 1929 1930
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
1931
 * Return: %true if @p was woken up, %false if it was already running.
T
Tejun Heo 已提交
1932
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
1933
 */
1934 1935
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1936 1937
{
	unsigned long flags;
1938
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1939

1940 1941 1942 1943 1944 1945 1946
	/*
	 * If we are going to wake up a thread waiting for CONDITION we
	 * need to ensure that CONDITION=1 done by the caller can not be
	 * reordered with p->state check below. This pairs with mb() in
	 * set_current_state() the waiting thread does.
	 */
	smp_mb__before_spinlock();
1947
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
1948
	if (!(p->state & state))
L
Linus Torvalds 已提交
1949 1950
		goto out;

1951 1952
	trace_sched_waking(p);

1953
	success = 1; /* we're going to change ->state */
L
Linus Torvalds 已提交
1954 1955
	cpu = task_cpu(p);

1956 1957
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
1958 1959

#ifdef CONFIG_SMP
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
	/*
	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
	 * possible to, falsely, observe p->on_cpu == 0.
	 *
	 * One must be running (->on_cpu == 1) in order to remove oneself
	 * from the runqueue.
	 *
	 *  [S] ->on_cpu = 1;	[L] ->on_rq
	 *      UNLOCK rq->lock
	 *			RMB
	 *      LOCK   rq->lock
	 *  [S] ->on_rq = 0;    [L] ->on_cpu
	 *
	 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
	 * from the consecutive calls to schedule(); the first switching to our
	 * task, the second putting it to sleep.
	 */
	smp_rmb();

P
Peter Zijlstra 已提交
1979
	/*
1980 1981
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
P
Peter Zijlstra 已提交
1982
	 */
1983
	while (p->on_cpu)
1984
		cpu_relax();
1985
	/*
1986 1987 1988 1989 1990 1991 1992
	 * Combined with the control dependency above, we have an effective
	 * smp_load_acquire() without the need for full barriers.
	 *
	 * Pairs with the smp_store_release() in finish_lock_switch().
	 *
	 * This ensures that tasks getting woken will be fully ordered against
	 * their previous state and preserve Program Order.
1993
	 */
1994
	smp_rmb();
L
Linus Torvalds 已提交
1995

1996
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
1997
	p->state = TASK_WAKING;
1998

1999
	if (p->sched_class->task_waking)
2000
		p->sched_class->task_waking(p);
2001

2002
	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2003 2004
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
2005
		set_task_cpu(p, cpu);
2006
	}
L
Linus Torvalds 已提交
2007 2008
#endif /* CONFIG_SMP */

2009 2010
	ttwu_queue(p, cpu);
stat:
2011
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
2012
out:
2013
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2014 2015 2016 2017

	return success;
}

T
Tejun Heo 已提交
2018 2019 2020 2021
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
2022
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
2023
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2024
 * the current task.
T
Tejun Heo 已提交
2025 2026 2027 2028 2029
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

2030 2031 2032 2033
	if (WARN_ON_ONCE(rq != this_rq()) ||
	    WARN_ON_ONCE(p == current))
		return;

T
Tejun Heo 已提交
2034 2035
	lockdep_assert_held(&rq->lock);

2036
	if (!raw_spin_trylock(&p->pi_lock)) {
2037 2038 2039 2040 2041 2042 2043
		/*
		 * This is OK, because current is on_cpu, which avoids it being
		 * picked for load-balance and preemption/IRQs are still
		 * disabled avoiding further scheduler activity on it and we've
		 * not yet picked a replacement task.
		 */
		lockdep_unpin_lock(&rq->lock);
2044 2045 2046
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
2047
		lockdep_pin_lock(&rq->lock);
2048 2049
	}

T
Tejun Heo 已提交
2050
	if (!(p->state & TASK_NORMAL))
2051
		goto out;
T
Tejun Heo 已提交
2052

2053 2054
	trace_sched_waking(p);

2055
	if (!task_on_rq_queued(p))
P
Peter Zijlstra 已提交
2056 2057
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

2058
	ttwu_do_wakeup(rq, p, 0);
2059
	ttwu_stat(p, smp_processor_id(), 0);
2060 2061
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
2062 2063
}

2064 2065 2066 2067 2068
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
2069 2070 2071
 * processes.
 *
 * Return: 1 if the process was woken up, 0 if it was already running.
2072 2073 2074 2075
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2076
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2077
{
2078
	return try_to_wake_up(p, TASK_NORMAL, 0);
L
Linus Torvalds 已提交
2079 2080 2081
}
EXPORT_SYMBOL(wake_up_process);

2082
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2083 2084 2085 2086
{
	return try_to_wake_up(p, state, 0);
}

2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
/*
 * This function clears the sched_dl_entity static params.
 */
void __dl_clear_params(struct task_struct *p)
{
	struct sched_dl_entity *dl_se = &p->dl;

	dl_se->dl_runtime = 0;
	dl_se->dl_deadline = 0;
	dl_se->dl_period = 0;
	dl_se->flags = 0;
	dl_se->dl_bw = 0;
2099 2100 2101 2102

	dl_se->dl_throttled = 0;
	dl_se->dl_new = 1;
	dl_se->dl_yielded = 0;
2103 2104
}

L
Linus Torvalds 已提交
2105 2106 2107
/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2108 2109 2110
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
2111
static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
2112
{
P
Peter Zijlstra 已提交
2113 2114 2115
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
2116 2117
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2118
	p->se.prev_sum_exec_runtime	= 0;
2119
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
2120
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
2121
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
2122 2123

#ifdef CONFIG_SCHEDSTATS
2124
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
2125
#endif
N
Nick Piggin 已提交
2126

2127
	RB_CLEAR_NODE(&p->dl.rb_node);
2128
	init_dl_task_timer(&p->dl);
2129
	__dl_clear_params(p);
2130

P
Peter Zijlstra 已提交
2131
	INIT_LIST_HEAD(&p->rt.run_list);
N
Nick Piggin 已提交
2132

2133 2134 2135
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
2136 2137 2138

#ifdef CONFIG_NUMA_BALANCING
	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2139
		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2140 2141 2142
		p->mm->numa_scan_seq = 0;
	}

2143 2144 2145 2146 2147
	if (clone_flags & CLONE_VM)
		p->numa_preferred_nid = current->numa_preferred_nid;
	else
		p->numa_preferred_nid = -1;

2148 2149
	p->node_stamp = 0ULL;
	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2150
	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2151
	p->numa_work.next = &p->numa_work;
2152
	p->numa_faults = NULL;
2153 2154
	p->last_task_numa_placement = 0;
	p->last_sum_exec_runtime = 0;
2155 2156

	p->numa_group = NULL;
2157
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
2158 2159
}

2160 2161
DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);

2162
#ifdef CONFIG_NUMA_BALANCING
2163

2164 2165 2166
void set_numabalancing_state(bool enabled)
{
	if (enabled)
2167
		static_branch_enable(&sched_numa_balancing);
2168
	else
2169
		static_branch_disable(&sched_numa_balancing);
2170
}
2171 2172 2173 2174 2175 2176 2177

#ifdef CONFIG_PROC_SYSCTL
int sysctl_numa_balancing(struct ctl_table *table, int write,
			 void __user *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table t;
	int err;
2178
	int state = static_branch_likely(&sched_numa_balancing);
2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193

	if (write && !capable(CAP_SYS_ADMIN))
		return -EPERM;

	t = *table;
	t.data = &state;
	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
	if (err < 0)
		return err;
	if (write)
		set_numabalancing_state(state);
	return err;
}
#endif
#endif
I
Ingo Molnar 已提交
2194 2195 2196 2197

/*
 * fork()/clone()-time setup:
 */
2198
int sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
2199
{
2200
	unsigned long flags;
I
Ingo Molnar 已提交
2201 2202
	int cpu = get_cpu();

2203
	__sched_fork(clone_flags, p);
2204
	/*
2205
	 * We mark the process as running here. This guarantees that
2206 2207 2208
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
2209
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2210

2211 2212 2213 2214 2215
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

2216 2217 2218 2219
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2220
		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2221
			p->policy = SCHED_NORMAL;
2222
			p->static_prio = NICE_TO_PRIO(0);
2223 2224 2225 2226 2227 2228
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
2229

2230 2231 2232 2233 2234 2235
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2236

2237 2238 2239 2240 2241 2242
	if (dl_prio(p->prio)) {
		put_cpu();
		return -EAGAIN;
	} else if (rt_prio(p->prio)) {
		p->sched_class = &rt_sched_class;
	} else {
H
Hiroshi Shimamoto 已提交
2243
		p->sched_class = &fair_sched_class;
2244
	}
2245

P
Peter Zijlstra 已提交
2246 2247 2248
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

2249 2250 2251 2252 2253 2254 2255
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
2256
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2257
	set_task_cpu(p, cpu);
2258
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2259

2260
#ifdef CONFIG_SCHED_INFO
I
Ingo Molnar 已提交
2261
	if (likely(sched_info_on()))
2262
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2263
#endif
P
Peter Zijlstra 已提交
2264 2265
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
2266
#endif
2267
	init_task_preempt_count(p);
2268
#ifdef CONFIG_SMP
2269
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2270
	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2271
#endif
2272

N
Nick Piggin 已提交
2273
	put_cpu();
2274
	return 0;
L
Linus Torvalds 已提交
2275 2276
}

2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295
unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 20;

	/*
	 * Doing this here saves a lot of checks in all
	 * the calling paths, and returning zero seems
	 * safe for them anyway.
	 */
	if (period == 0)
		return 0;

	return div64_u64(runtime << 20, period);
}

#ifdef CONFIG_SMP
inline struct dl_bw *dl_bw_of(int i)
{
2296 2297
	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
			 "sched RCU must be held");
2298 2299 2300
	return &cpu_rq(i)->rd->dl_bw;
}

2301
static inline int dl_bw_cpus(int i)
2302
{
2303 2304 2305
	struct root_domain *rd = cpu_rq(i)->rd;
	int cpus = 0;

2306 2307
	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
			 "sched RCU must be held");
2308 2309 2310 2311
	for_each_cpu_and(i, rd->span, cpu_active_mask)
		cpus++;

	return cpus;
2312 2313 2314 2315 2316 2317 2318
}
#else
inline struct dl_bw *dl_bw_of(int i)
{
	return &cpu_rq(i)->dl.dl_bw;
}

2319
static inline int dl_bw_cpus(int i)
2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
{
	return 1;
}
#endif

/*
 * We must be sure that accepting a new task (or allowing changing the
 * parameters of an existing one) is consistent with the bandwidth
 * constraints. If yes, this function also accordingly updates the currently
 * allocated bandwidth to reflect the new situation.
 *
 * This function is called while holding p's rq->lock.
2332 2333 2334
 *
 * XXX we should delay bw change until the task's 0-lag point, see
 * __setparam_dl().
2335 2336 2337 2338 2339 2340
 */
static int dl_overflow(struct task_struct *p, int policy,
		       const struct sched_attr *attr)
{

	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2341
	u64 period = attr->sched_period ?: attr->sched_deadline;
2342 2343
	u64 runtime = attr->sched_runtime;
	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2344
	int cpus, err = -1;
2345 2346 2347 2348 2349 2350 2351 2352 2353 2354

	if (new_bw == p->dl.dl_bw)
		return 0;

	/*
	 * Either if a task, enters, leave, or stays -deadline but changes
	 * its parameters, we may need to update accordingly the total
	 * allocated bandwidth of the container.
	 */
	raw_spin_lock(&dl_b->lock);
2355
	cpus = dl_bw_cpus(task_cpu(p));
2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375
	if (dl_policy(policy) && !task_has_dl_policy(p) &&
	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
		__dl_add(dl_b, new_bw);
		err = 0;
	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
		__dl_clear(dl_b, p->dl.dl_bw);
		__dl_add(dl_b, new_bw);
		err = 0;
	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
		__dl_clear(dl_b, p->dl.dl_bw);
		err = 0;
	}
	raw_spin_unlock(&dl_b->lock);

	return err;
}

extern void init_dl_bw(struct dl_bw *dl_b);

L
Linus Torvalds 已提交
2376 2377 2378 2379 2380 2381 2382
/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2383
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
2384 2385
{
	unsigned long flags;
I
Ingo Molnar 已提交
2386
	struct rq *rq;
2387

2388
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2389 2390
	/* Initialize new task's runnable average */
	init_entity_runnable_average(&p->se);
2391 2392 2393 2394 2395 2396
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 */
2397
	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2398 2399
#endif

2400
	rq = __task_rq_lock(p);
P
Peter Zijlstra 已提交
2401
	activate_task(rq, p, 0);
2402
	p->on_rq = TASK_ON_RQ_QUEUED;
2403
	trace_sched_wakeup_new(p);
P
Peter Zijlstra 已提交
2404
	check_preempt_curr(rq, p, WF_FORK);
2405
#ifdef CONFIG_SMP
2406 2407 2408 2409 2410 2411
	if (p->sched_class->task_woken) {
		/*
		 * Nothing relies on rq->lock after this, so its fine to
		 * drop it.
		 */
		lockdep_unpin_lock(&rq->lock);
2412
		p->sched_class->task_woken(rq, p);
2413 2414
		lockdep_pin_lock(&rq->lock);
	}
2415
#endif
2416
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
2417 2418
}

2419 2420
#ifdef CONFIG_PREEMPT_NOTIFIERS

2421 2422
static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;

2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434
void preempt_notifier_inc(void)
{
	static_key_slow_inc(&preempt_notifier_key);
}
EXPORT_SYMBOL_GPL(preempt_notifier_inc);

void preempt_notifier_dec(void)
{
	static_key_slow_dec(&preempt_notifier_key);
}
EXPORT_SYMBOL_GPL(preempt_notifier_dec);

2435
/**
2436
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2437
 * @notifier: notifier struct to register
2438 2439 2440
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
2441 2442 2443
	if (!static_key_false(&preempt_notifier_key))
		WARN(1, "registering preempt_notifier while notifiers disabled\n");

2444 2445 2446 2447 2448 2449
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2450
 * @notifier: notifier struct to unregister
2451
 *
2452
 * This is *not* safe to call from within a preemption notifier.
2453 2454 2455 2456 2457 2458 2459
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

2460
static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2461 2462 2463
{
	struct preempt_notifier *notifier;

2464
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2465 2466 2467
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

2468 2469 2470 2471 2472 2473
static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	if (static_key_false(&preempt_notifier_key))
		__fire_sched_in_preempt_notifiers(curr);
}

2474
static void
2475 2476
__fire_sched_out_preempt_notifiers(struct task_struct *curr,
				   struct task_struct *next)
2477 2478 2479
{
	struct preempt_notifier *notifier;

2480
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2481 2482 2483
		notifier->ops->sched_out(notifier, next);
}

2484 2485 2486 2487 2488 2489 2490 2491
static __always_inline void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	if (static_key_false(&preempt_notifier_key))
		__fire_sched_out_preempt_notifiers(curr, next);
}

2492
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2493

2494
static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2495 2496 2497
{
}

2498
static inline void
2499 2500 2501 2502 2503
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2504
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2505

2506 2507 2508
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2509
 * @prev: the current task that is being switched out
2510 2511 2512 2513 2514 2515 2516 2517 2518
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2519 2520 2521
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2522
{
2523
	sched_info_switch(rq, prev, next);
2524
	perf_event_task_sched_out(prev, next);
2525
	fire_sched_out_preempt_notifiers(prev, next);
2526 2527 2528 2529
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2530 2531 2532 2533
/**
 * finish_task_switch - clean up after a task-switch
 * @prev: the thread we just switched away from.
 *
2534 2535 2536 2537
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2538 2539
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2540
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2541 2542
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
2543 2544 2545 2546 2547
 *
 * The context switch have flipped the stack from under us and restored the
 * local variables which were saved when this task called schedule() in the
 * past. prev == current is still correct but we need to recalculate this_rq
 * because prev may have moved to another CPU.
L
Linus Torvalds 已提交
2548
 */
2549
static struct rq *finish_task_switch(struct task_struct *prev)
L
Linus Torvalds 已提交
2550 2551
	__releases(rq->lock)
{
2552
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
2553
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2554
	long prev_state;
L
Linus Torvalds 已提交
2555

2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566
	/*
	 * The previous task will have left us with a preempt_count of 2
	 * because it left us after:
	 *
	 *	schedule()
	 *	  preempt_disable();			// 1
	 *	  __schedule()
	 *	    raw_spin_lock_irq(&rq->lock)	// 2
	 *
	 * Also, see FORK_PREEMPT_COUNT.
	 */
2567 2568 2569 2570
	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
		      "corrupted preempt_count: %s/%d/0x%x\n",
		      current->comm, current->pid, preempt_count()))
		preempt_count_set(FORK_PREEMPT_COUNT);
2571

L
Linus Torvalds 已提交
2572 2573 2574 2575
	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2576
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2577 2578
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2579 2580 2581 2582 2583
	 *
	 * We must observe prev->state before clearing prev->on_cpu (in
	 * finish_lock_switch), otherwise a concurrent wakeup can get prev
	 * running on another CPU and we could rave with its RUNNING -> DEAD
	 * transition, resulting in a double drop.
L
Linus Torvalds 已提交
2584
	 */
O
Oleg Nesterov 已提交
2585
	prev_state = prev->state;
2586
	vtime_task_switch(prev);
2587
	perf_event_task_sched_in(prev, current);
2588
	finish_lock_switch(rq, prev);
2589
	finish_arch_post_lock_switch();
S
Steven Rostedt 已提交
2590

2591
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2592 2593
	if (mm)
		mmdrop(mm);
2594
	if (unlikely(prev_state == TASK_DEAD)) {
2595 2596 2597
		if (prev->sched_class->task_dead)
			prev->sched_class->task_dead(prev);

2598 2599 2600
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2601
		 */
2602
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2603
		put_task_struct(prev);
2604
	}
2605

2606
	tick_nohz_task_switch();
2607
	return rq;
L
Linus Torvalds 已提交
2608 2609
}

2610 2611 2612
#ifdef CONFIG_SMP

/* rq->lock is NOT held, but preemption is disabled */
2613
static void __balance_callback(struct rq *rq)
2614
{
2615 2616 2617
	struct callback_head *head, *next;
	void (*func)(struct rq *rq);
	unsigned long flags;
2618

2619 2620 2621 2622 2623 2624 2625 2626
	raw_spin_lock_irqsave(&rq->lock, flags);
	head = rq->balance_callback;
	rq->balance_callback = NULL;
	while (head) {
		func = (void (*)(struct rq *))head->func;
		next = head->next;
		head->next = NULL;
		head = next;
2627

2628
		func(rq);
2629
	}
2630 2631 2632 2633 2634 2635 2636
	raw_spin_unlock_irqrestore(&rq->lock, flags);
}

static inline void balance_callback(struct rq *rq)
{
	if (unlikely(rq->balance_callback))
		__balance_callback(rq);
2637 2638 2639
}

#else
2640

2641
static inline void balance_callback(struct rq *rq)
2642
{
L
Linus Torvalds 已提交
2643 2644
}

2645 2646
#endif

L
Linus Torvalds 已提交
2647 2648 2649 2650
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2651
asmlinkage __visible void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2652 2653
	__releases(rq->lock)
{
2654
	struct rq *rq;
2655

2656 2657 2658 2659 2660 2661 2662 2663 2664
	/*
	 * New tasks start with FORK_PREEMPT_COUNT, see there and
	 * finish_task_switch() for details.
	 *
	 * finish_task_switch() will drop rq->lock() and lower preempt_count
	 * and the preempt_enable() will end up enabling preemption (on
	 * PREEMPT_COUNT kernels).
	 */

2665
	rq = finish_task_switch(prev);
2666
	balance_callback(rq);
2667
	preempt_enable();
2668

L
Linus Torvalds 已提交
2669
	if (current->set_child_tid)
2670
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2671 2672 2673
}

/*
2674
 * context_switch - switch to the new MM and the new thread's register state.
L
Linus Torvalds 已提交
2675
 */
2676
static inline struct rq *
2677
context_switch(struct rq *rq, struct task_struct *prev,
2678
	       struct task_struct *next)
L
Linus Torvalds 已提交
2679
{
I
Ingo Molnar 已提交
2680
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2681

2682
	prepare_task_switch(rq, prev, next);
2683

I
Ingo Molnar 已提交
2684 2685
	mm = next->mm;
	oldmm = prev->active_mm;
2686 2687 2688 2689 2690
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2691
	arch_start_context_switch(prev);
2692

2693
	if (!mm) {
L
Linus Torvalds 已提交
2694 2695 2696 2697 2698 2699
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2700
	if (!prev->mm) {
L
Linus Torvalds 已提交
2701 2702 2703
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2704 2705 2706 2707 2708 2709
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
2710
	lockdep_unpin_lock(&rq->lock);
2711
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
2712 2713 2714

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);
I
Ingo Molnar 已提交
2715
	barrier();
2716 2717

	return finish_task_switch(prev);
L
Linus Torvalds 已提交
2718 2719 2720
}

/*
2721
 * nr_running and nr_context_switches:
L
Linus Torvalds 已提交
2722 2723
 *
 * externally visible scheduler statistics: current number of runnable
2724
 * threads, total number of context switches performed since bootup.
L
Linus Torvalds 已提交
2725 2726 2727 2728 2729 2730 2731 2732 2733
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2734
}
L
Linus Torvalds 已提交
2735

2736 2737
/*
 * Check if only the current task is running on the cpu.
2738 2739 2740 2741 2742 2743 2744 2745 2746 2747
 *
 * Caution: this function does not check that the caller has disabled
 * preemption, thus the result might have a time-of-check-to-time-of-use
 * race.  The caller is responsible to use it correctly, for example:
 *
 * - from a non-preemptable section (of course)
 *
 * - from a thread that is bound to a single CPU
 *
 * - in a loop with very short iterations (e.g. a polling loop)
2748 2749 2750
 */
bool single_task_running(void)
{
2751
	return raw_rq()->nr_running == 1;
2752 2753 2754
}
EXPORT_SYMBOL(single_task_running);

L
Linus Torvalds 已提交
2755
unsigned long long nr_context_switches(void)
2756
{
2757 2758
	int i;
	unsigned long long sum = 0;
2759

2760
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2761
		sum += cpu_rq(i)->nr_switches;
2762

L
Linus Torvalds 已提交
2763 2764
	return sum;
}
2765

L
Linus Torvalds 已提交
2766 2767 2768
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2769

2770
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2771
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2772

L
Linus Torvalds 已提交
2773 2774
	return sum;
}
2775

2776
unsigned long nr_iowait_cpu(int cpu)
2777
{
2778
	struct rq *this = cpu_rq(cpu);
2779 2780
	return atomic_read(&this->nr_iowait);
}
2781

2782 2783
void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
{
2784 2785 2786
	struct rq *rq = this_rq();
	*nr_waiters = atomic_read(&rq->nr_iowait);
	*load = rq->load.weight;
2787 2788
}

I
Ingo Molnar 已提交
2789
#ifdef CONFIG_SMP
2790

2791
/*
P
Peter Zijlstra 已提交
2792 2793
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2794
 */
P
Peter Zijlstra 已提交
2795
void sched_exec(void)
2796
{
P
Peter Zijlstra 已提交
2797
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2798
	unsigned long flags;
2799
	int dest_cpu;
2800

2801
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2802
	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2803 2804
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2805

2806
	if (likely(cpu_active(dest_cpu))) {
2807
		struct migration_arg arg = { p, dest_cpu };
2808

2809 2810
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2811 2812
		return;
	}
2813
unlock:
2814
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2815
}
I
Ingo Molnar 已提交
2816

L
Linus Torvalds 已提交
2817 2818 2819
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2820
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
2821 2822

EXPORT_PER_CPU_SYMBOL(kstat);
2823
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
2824

2825 2826 2827 2828 2829 2830 2831 2832 2833
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
2834
	u64 ns;
2835

2836 2837 2838 2839 2840 2841 2842 2843 2844
#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
	/*
	 * 64-bit doesn't need locks to atomically read a 64bit value.
	 * So we have a optimization chance when the task's delta_exec is 0.
	 * Reading ->on_cpu is racy, but this is ok.
	 *
	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
	 * If we race with it entering cpu, unaccounted time is 0. This is
	 * indistinguishable from the read occurring a few cycles earlier.
2845 2846
	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
	 * been accounted, so we're correct here as well.
2847
	 */
2848
	if (!p->on_cpu || !task_on_rq_queued(p))
2849 2850 2851
		return p->se.sum_exec_runtime;
#endif

2852
	rq = task_rq_lock(p, &flags);
2853 2854 2855 2856 2857 2858 2859 2860 2861 2862
	/*
	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
	 * project cycles that may never be accounted to this
	 * thread, breaking clock_gettime().
	 */
	if (task_current(rq, p) && task_on_rq_queued(p)) {
		update_rq_clock(rq);
		p->sched_class->update_curr(rq);
	}
	ns = p->se.sum_exec_runtime;
2863
	task_rq_unlock(rq, p, &flags);
2864 2865 2866

	return ns;
}
2867

2868 2869 2870 2871 2872 2873 2874 2875
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2876
	struct task_struct *curr = rq->curr;
2877 2878

	sched_clock_tick();
I
Ingo Molnar 已提交
2879

2880
	raw_spin_lock(&rq->lock);
2881
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
2882
	curr->sched_class->task_tick(rq, curr, 0);
2883
	update_cpu_load_active(rq);
2884
	calc_global_load_tick(rq);
2885
	raw_spin_unlock(&rq->lock);
2886

2887
	perf_event_task_tick();
2888

2889
#ifdef CONFIG_SMP
2890
	rq->idle_balance = idle_cpu(cpu);
2891
	trigger_load_balance(rq);
2892
#endif
2893
	rq_last_tick_reset(rq);
L
Linus Torvalds 已提交
2894 2895
}

2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906
#ifdef CONFIG_NO_HZ_FULL
/**
 * scheduler_tick_max_deferment
 *
 * Keep at least one tick per second when a single
 * active task is running because the scheduler doesn't
 * yet completely support full dynticks environment.
 *
 * This makes sure that uptime, CFS vruntime, load
 * balancing, etc... continue to move forward, even
 * with a very low granularity.
2907 2908
 *
 * Return: Maximum deferment in nanoseconds.
2909 2910 2911 2912
 */
u64 scheduler_tick_max_deferment(void)
{
	struct rq *rq = this_rq();
2913
	unsigned long next, now = READ_ONCE(jiffies);
2914 2915 2916 2917 2918 2919

	next = rq->last_sched_tick + HZ;

	if (time_before_eq(next, now))
		return 0;

2920
	return jiffies_to_nsecs(next - now);
L
Linus Torvalds 已提交
2921
}
2922
#endif
L
Linus Torvalds 已提交
2923

2924
notrace unsigned long get_parent_ip(unsigned long addr)
2925 2926 2927 2928 2929 2930 2931 2932
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
2933

2934 2935 2936
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

2937
void preempt_count_add(int val)
L
Linus Torvalds 已提交
2938
{
2939
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2940 2941 2942
	/*
	 * Underflow?
	 */
2943 2944
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
2945
#endif
2946
	__preempt_count_add(val);
2947
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2948 2949 2950
	/*
	 * Spinlock count overflowing soon?
	 */
2951 2952
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
2953
#endif
2954 2955 2956 2957 2958 2959 2960
	if (preempt_count() == val) {
		unsigned long ip = get_parent_ip(CALLER_ADDR1);
#ifdef CONFIG_DEBUG_PREEMPT
		current->preempt_disable_ip = ip;
#endif
		trace_preempt_off(CALLER_ADDR0, ip);
	}
L
Linus Torvalds 已提交
2961
}
2962
EXPORT_SYMBOL(preempt_count_add);
2963
NOKPROBE_SYMBOL(preempt_count_add);
L
Linus Torvalds 已提交
2964

2965
void preempt_count_sub(int val)
L
Linus Torvalds 已提交
2966
{
2967
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2968 2969 2970
	/*
	 * Underflow?
	 */
2971
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2972
		return;
L
Linus Torvalds 已提交
2973 2974 2975
	/*
	 * Is the spinlock portion underflowing?
	 */
2976 2977 2978
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
2979
#endif
2980

2981 2982
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2983
	__preempt_count_sub(val);
L
Linus Torvalds 已提交
2984
}
2985
EXPORT_SYMBOL(preempt_count_sub);
2986
NOKPROBE_SYMBOL(preempt_count_sub);
L
Linus Torvalds 已提交
2987 2988 2989 2990

#endif

/*
I
Ingo Molnar 已提交
2991
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
2992
 */
I
Ingo Molnar 已提交
2993
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
2994
{
2995 2996 2997
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
2998 2999
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
3000

I
Ingo Molnar 已提交
3001
	debug_show_held_locks(prev);
3002
	print_modules();
I
Ingo Molnar 已提交
3003 3004
	if (irqs_disabled())
		print_irqtrace_events(prev);
3005 3006 3007 3008 3009 3010 3011
#ifdef CONFIG_DEBUG_PREEMPT
	if (in_atomic_preempt_off()) {
		pr_err("Preemption disabled at:");
		print_ip_sym(current->preempt_disable_ip);
		pr_cont("\n");
	}
#endif
3012
	dump_stack();
3013
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
I
Ingo Molnar 已提交
3014
}
L
Linus Torvalds 已提交
3015

I
Ingo Molnar 已提交
3016 3017 3018 3019 3020
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
3021
#ifdef CONFIG_SCHED_STACK_END_CHECK
3022
	BUG_ON(task_stack_end_corrupted(prev));
3023
#endif
3024

3025
	if (unlikely(in_atomic_preempt_off())) {
I
Ingo Molnar 已提交
3026
		__schedule_bug(prev);
3027 3028
		preempt_count_set(PREEMPT_DISABLED);
	}
3029
	rcu_sleep_check();
I
Ingo Molnar 已提交
3030

L
Linus Torvalds 已提交
3031 3032
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3033
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3034 3035 3036 3037 3038 3039
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3040
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
3041
{
3042
	const struct sched_class *class = &fair_sched_class;
I
Ingo Molnar 已提交
3043
	struct task_struct *p;
L
Linus Torvalds 已提交
3044 3045

	/*
I
Ingo Molnar 已提交
3046 3047
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3048
	 */
3049
	if (likely(prev->sched_class == class &&
3050
		   rq->nr_running == rq->cfs.h_nr_running)) {
3051
		p = fair_sched_class.pick_next_task(rq, prev);
3052 3053 3054 3055 3056 3057 3058 3059
		if (unlikely(p == RETRY_TASK))
			goto again;

		/* assumes fair_sched_class->next == idle_sched_class */
		if (unlikely(!p))
			p = idle_sched_class.pick_next_task(rq, prev);

		return p;
L
Linus Torvalds 已提交
3060 3061
	}

3062
again:
3063
	for_each_class(class) {
3064
		p = class->pick_next_task(rq, prev);
3065 3066 3067
		if (p) {
			if (unlikely(p == RETRY_TASK))
				goto again;
I
Ingo Molnar 已提交
3068
			return p;
3069
		}
I
Ingo Molnar 已提交
3070
	}
3071 3072

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
3073
}
L
Linus Torvalds 已提交
3074

I
Ingo Molnar 已提交
3075
/*
3076
 * __schedule() is the main scheduler function.
3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110
 *
 * The main means of driving the scheduler and thus entering this function are:
 *
 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 *      paths. For example, see arch/x86/entry_64.S.
 *
 *      To drive preemption between tasks, the scheduler sets the flag in timer
 *      interrupt handler scheduler_tick().
 *
 *   3. Wakeups don't really cause entry into schedule(). They add a
 *      task to the run-queue and that's it.
 *
 *      Now, if the new task added to the run-queue preempts the current
 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 *      called on the nearest possible occasion:
 *
 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
 *
 *         - in syscall or exception context, at the next outmost
 *           preempt_enable(). (this might be as soon as the wake_up()'s
 *           spin_unlock()!)
 *
 *         - in IRQ context, return from interrupt-handler to
 *           preemptible context
 *
 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
 *         then at the next:
 *
 *          - cond_resched() call
 *          - explicit schedule() call
 *          - return from syscall or exception to user-space
 *          - return from interrupt-handler to user-space
3111
 *
3112
 * WARNING: must be called with preemption disabled!
I
Ingo Molnar 已提交
3113
 */
3114
static void __sched notrace __schedule(bool preempt)
I
Ingo Molnar 已提交
3115 3116
{
	struct task_struct *prev, *next;
3117
	unsigned long *switch_count;
I
Ingo Molnar 已提交
3118
	struct rq *rq;
3119
	int cpu;
I
Ingo Molnar 已提交
3120 3121 3122

	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
3123
	rcu_note_context_switch();
I
Ingo Molnar 已提交
3124 3125
	prev = rq->curr;

3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136
	/*
	 * do_exit() calls schedule() with preemption disabled as an exception;
	 * however we must fix that up, otherwise the next task will see an
	 * inconsistent (higher) preempt count.
	 *
	 * It also avoids the below schedule_debug() test from complaining
	 * about this.
	 */
	if (unlikely(prev->state == TASK_DEAD))
		preempt_enable_no_resched_notrace();

I
Ingo Molnar 已提交
3137
	schedule_debug(prev);
L
Linus Torvalds 已提交
3138

3139
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
3140
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
3141

3142 3143 3144 3145 3146 3147
	/*
	 * Make sure that signal_pending_state()->signal_pending() below
	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
	 * done by the caller to avoid the race with signal_wake_up().
	 */
	smp_mb__before_spinlock();
3148
	raw_spin_lock_irq(&rq->lock);
3149
	lockdep_pin_lock(&rq->lock);
L
Linus Torvalds 已提交
3150

3151 3152
	rq->clock_skip_update <<= 1; /* promote REQ to ACT */

3153
	switch_count = &prev->nivcsw;
3154
	if (!preempt && prev->state) {
T
Tejun Heo 已提交
3155
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
3156
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
3157
		} else {
3158 3159 3160
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

T
Tejun Heo 已提交
3161
			/*
3162 3163 3164
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
3165 3166 3167 3168 3169 3170 3171 3172 3173
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
		}
I
Ingo Molnar 已提交
3174
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3175 3176
	}

3177
	if (task_on_rq_queued(prev))
3178 3179 3180
		update_rq_clock(rq);

	next = pick_next_task(rq, prev);
3181
	clear_tsk_need_resched(prev);
3182
	clear_preempt_need_resched();
3183
	rq->clock_skip_update = 0;
L
Linus Torvalds 已提交
3184 3185 3186 3187 3188 3189

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

3190
		trace_sched_switch(preempt, prev, next);
3191 3192
		rq = context_switch(rq, prev, next); /* unlocks the rq */
		cpu = cpu_of(rq);
3193 3194
	} else {
		lockdep_unpin_lock(&rq->lock);
3195
		raw_spin_unlock_irq(&rq->lock);
3196
	}
L
Linus Torvalds 已提交
3197

3198
	balance_callback(rq);
L
Linus Torvalds 已提交
3199
}
3200

3201 3202
static inline void sched_submit_work(struct task_struct *tsk)
{
3203
	if (!tsk->state || tsk_is_pi_blocked(tsk))
3204 3205 3206 3207 3208 3209 3210 3211 3212
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

3213
asmlinkage __visible void __sched schedule(void)
3214
{
3215 3216 3217
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
3218
	do {
3219
		preempt_disable();
3220
		__schedule(false);
3221
		sched_preempt_enable_no_resched();
3222
	} while (need_resched());
3223
}
L
Linus Torvalds 已提交
3224 3225
EXPORT_SYMBOL(schedule);

3226
#ifdef CONFIG_CONTEXT_TRACKING
3227
asmlinkage __visible void __sched schedule_user(void)
3228 3229 3230 3231 3232 3233
{
	/*
	 * If we come here after a random call to set_need_resched(),
	 * or we have been woken up remotely but the IPI has not yet arrived,
	 * we haven't yet exited the RCU idle mode. Do it here manually until
	 * we find a better solution.
3234 3235
	 *
	 * NB: There are buggy callers of this function.  Ideally we
3236
	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3237
	 * too frequently to make sense yet.
3238
	 */
3239
	enum ctx_state prev_state = exception_enter();
3240
	schedule();
3241
	exception_exit(prev_state);
3242 3243 3244
}
#endif

3245 3246 3247 3248 3249 3250 3251
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
3252
	sched_preempt_enable_no_resched();
3253 3254 3255 3256
	schedule();
	preempt_disable();
}

3257
static void __sched notrace preempt_schedule_common(void)
3258 3259
{
	do {
3260
		preempt_disable_notrace();
3261
		__schedule(true);
3262
		preempt_enable_no_resched_notrace();
3263 3264 3265 3266 3267 3268 3269 3270

		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
	} while (need_resched());
}

L
Linus Torvalds 已提交
3271 3272
#ifdef CONFIG_PREEMPT
/*
3273
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3274
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3275 3276
 * occur there and call schedule directly.
 */
3277
asmlinkage __visible void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
3278 3279 3280
{
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3281
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3282
	 */
3283
	if (likely(!preemptible()))
L
Linus Torvalds 已提交
3284 3285
		return;

3286
	preempt_schedule_common();
L
Linus Torvalds 已提交
3287
}
3288
NOKPROBE_SYMBOL(preempt_schedule);
L
Linus Torvalds 已提交
3289
EXPORT_SYMBOL(preempt_schedule);
3290 3291

/**
3292
 * preempt_schedule_notrace - preempt_schedule called by tracing
3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304
 *
 * The tracing infrastructure uses preempt_enable_notrace to prevent
 * recursion and tracing preempt enabling caused by the tracing
 * infrastructure itself. But as tracing can happen in areas coming
 * from userspace or just about to enter userspace, a preempt enable
 * can occur before user_exit() is called. This will cause the scheduler
 * to be called when the system is still in usermode.
 *
 * To prevent this, the preempt_enable_notrace will use this function
 * instead of preempt_schedule() to exit user context if needed before
 * calling the scheduler.
 */
3305
asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3306 3307 3308 3309 3310 3311 3312
{
	enum ctx_state prev_ctx;

	if (likely(!preemptible()))
		return;

	do {
3313
		preempt_disable_notrace();
3314 3315 3316 3317 3318 3319
		/*
		 * Needs preempt disabled in case user_exit() is traced
		 * and the tracer calls preempt_enable_notrace() causing
		 * an infinite recursion.
		 */
		prev_ctx = exception_enter();
3320
		__schedule(true);
3321 3322
		exception_exit(prev_ctx);

3323
		preempt_enable_no_resched_notrace();
3324 3325
	} while (need_resched());
}
3326
EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3327

3328
#endif /* CONFIG_PREEMPT */
L
Linus Torvalds 已提交
3329 3330

/*
3331
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3332 3333 3334 3335
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
3336
asmlinkage __visible void __sched preempt_schedule_irq(void)
L
Linus Torvalds 已提交
3337
{
3338
	enum ctx_state prev_state;
3339

3340
	/* Catch callers which need to be fixed */
3341
	BUG_ON(preempt_count() || !irqs_disabled());
L
Linus Torvalds 已提交
3342

3343 3344
	prev_state = exception_enter();

3345
	do {
3346
		preempt_disable();
3347
		local_irq_enable();
3348
		__schedule(true);
3349
		local_irq_disable();
3350
		sched_preempt_enable_no_resched();
3351
	} while (need_resched());
3352 3353

	exception_exit(prev_state);
L
Linus Torvalds 已提交
3354 3355
}

P
Peter Zijlstra 已提交
3356
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3357
			  void *key)
L
Linus Torvalds 已提交
3358
{
P
Peter Zijlstra 已提交
3359
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3360 3361 3362
}
EXPORT_SYMBOL(default_wake_function);

3363 3364 3365 3366 3367 3368 3369 3370 3371 3372
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
3373 3374
 * Used by the rt_mutex code to implement priority inheritance
 * logic. Call site only calls if the priority of the task changed.
3375
 */
3376
void rt_mutex_setprio(struct task_struct *p, int prio)
3377
{
3378
	int oldprio, queued, running, enqueue_flag = ENQUEUE_RESTORE;
3379
	struct rq *rq;
3380
	const struct sched_class *prev_class;
3381

3382
	BUG_ON(prio > MAX_PRIO);
3383

3384
	rq = __task_rq_lock(p);
3385

3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

3404
	trace_sched_pi_setprio(p, prio);
3405
	oldprio = p->prio;
3406
	prev_class = p->sched_class;
3407
	queued = task_on_rq_queued(p);
3408
	running = task_current(rq, p);
3409
	if (queued)
3410
		dequeue_task(rq, p, DEQUEUE_SAVE);
3411
	if (running)
3412
		put_prev_task(rq, p);
I
Ingo Molnar 已提交
3413

3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
	/*
	 * Boosting condition are:
	 * 1. -rt task is running and holds mutex A
	 *      --> -dl task blocks on mutex A
	 *
	 * 2. -dl task is running and holds mutex A
	 *      --> -dl task blocks on mutex A and could preempt the
	 *          running task
	 */
	if (dl_prio(prio)) {
3424 3425 3426
		struct task_struct *pi_task = rt_mutex_get_top_task(p);
		if (!dl_prio(p->normal_prio) ||
		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3427
			p->dl.dl_boosted = 1;
3428
			enqueue_flag |= ENQUEUE_REPLENISH;
3429 3430
		} else
			p->dl.dl_boosted = 0;
3431
		p->sched_class = &dl_sched_class;
3432 3433 3434 3435
	} else if (rt_prio(prio)) {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
		if (oldprio < prio)
3436
			enqueue_flag |= ENQUEUE_HEAD;
I
Ingo Molnar 已提交
3437
		p->sched_class = &rt_sched_class;
3438 3439 3440
	} else {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
3441 3442
		if (rt_prio(oldprio))
			p->rt.timeout = 0;
I
Ingo Molnar 已提交
3443
		p->sched_class = &fair_sched_class;
3444
	}
I
Ingo Molnar 已提交
3445

3446 3447
	p->prio = prio;

3448 3449
	if (running)
		p->sched_class->set_curr_task(rq);
3450
	if (queued)
3451
		enqueue_task(rq, p, enqueue_flag);
3452

P
Peter Zijlstra 已提交
3453
	check_class_changed(rq, p, prev_class, oldprio);
3454
out_unlock:
3455
	preempt_disable(); /* avoid rq from going away on us */
3456
	__task_rq_unlock(rq);
3457 3458 3459

	balance_callback(rq);
	preempt_enable();
3460 3461
}
#endif
3462

3463
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3464
{
3465
	int old_prio, delta, queued;
L
Linus Torvalds 已提交
3466
	unsigned long flags;
3467
	struct rq *rq;
L
Linus Torvalds 已提交
3468

3469
	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
L
Linus Torvalds 已提交
3470 3471 3472 3473 3474 3475 3476 3477 3478 3479
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
3480
	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
L
Linus Torvalds 已提交
3481
	 */
3482
	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3483 3484 3485
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
3486 3487
	queued = task_on_rq_queued(p);
	if (queued)
3488
		dequeue_task(rq, p, DEQUEUE_SAVE);
L
Linus Torvalds 已提交
3489 3490

	p->static_prio = NICE_TO_PRIO(nice);
3491
	set_load_weight(p);
3492 3493 3494
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3495

3496
	if (queued) {
3497
		enqueue_task(rq, p, ENQUEUE_RESTORE);
L
Linus Torvalds 已提交
3498
		/*
3499 3500
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3501
		 */
3502
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3503
			resched_curr(rq);
L
Linus Torvalds 已提交
3504 3505
	}
out_unlock:
3506
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3507 3508 3509
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3510 3511 3512 3513 3514
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3515
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3516
{
3517
	/* convert nice value [19,-20] to rlimit style value [1,40] */
3518
	int nice_rlim = nice_to_rlimit(nice);
3519

3520
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3521 3522 3523
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3524 3525 3526 3527 3528 3529 3530 3531 3532
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3533
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3534
{
3535
	long nice, retval;
L
Linus Torvalds 已提交
3536 3537 3538 3539 3540 3541

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
3542
	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3543
	nice = task_nice(current) + increment;
L
Linus Torvalds 已提交
3544

3545
	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
M
Matt Mackall 已提交
3546 3547 3548
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
3563
 * Return: The priority value as seen by users in /proc.
L
Linus Torvalds 已提交
3564 3565 3566
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3567
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3568 3569 3570 3571 3572 3573 3574
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
3575 3576
 *
 * Return: 1 if the CPU is currently idle. 0 otherwise.
L
Linus Torvalds 已提交
3577 3578 3579
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3594 3595 3596 3597 3598
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
3599 3600
 *
 * Return: The idle task for the cpu @cpu.
L
Linus Torvalds 已提交
3601
 */
3602
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3603 3604 3605 3606 3607 3608 3609
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
3610 3611
 *
 * The task of @pid, if found. %NULL otherwise.
L
Linus Torvalds 已提交
3612
 */
A
Alexey Dobriyan 已提交
3613
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
3614
{
3615
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
3616 3617
}

3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632
/*
 * This function initializes the sched_dl_entity of a newly becoming
 * SCHED_DEADLINE task.
 *
 * Only the static values are considered here, the actual runtime and the
 * absolute deadline will be properly calculated when the task is enqueued
 * for the first time with its new policy.
 */
static void
__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	dl_se->dl_runtime = attr->sched_runtime;
	dl_se->dl_deadline = attr->sched_deadline;
3633
	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3634
	dl_se->flags = attr->sched_flags;
3635
	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655

	/*
	 * Changing the parameters of a task is 'tricky' and we're not doing
	 * the correct thing -- also see task_dead_dl() and switched_from_dl().
	 *
	 * What we SHOULD do is delay the bandwidth release until the 0-lag
	 * point. This would include retaining the task_struct until that time
	 * and change dl_overflow() to not immediately decrement the current
	 * amount.
	 *
	 * Instead we retain the current runtime/deadline and let the new
	 * parameters take effect after the current reservation period lapses.
	 * This is safe (albeit pessimistic) because the 0-lag point is always
	 * before the current scheduling deadline.
	 *
	 * We can still have temporary overloads because we do not delay the
	 * change in bandwidth until that time; so admission control is
	 * not on the safe side. It does however guarantee tasks will never
	 * consume more than promised.
	 */
3656 3657
}

3658 3659 3660 3661 3662 3663
/*
 * sched_setparam() passes in -1 for its policy, to let the functions
 * it calls know not to change it.
 */
#define SETPARAM_POLICY	-1

3664 3665
static void __setscheduler_params(struct task_struct *p,
		const struct sched_attr *attr)
L
Linus Torvalds 已提交
3666
{
3667 3668
	int policy = attr->sched_policy;

3669
	if (policy == SETPARAM_POLICY)
3670 3671
		policy = p->policy;

L
Linus Torvalds 已提交
3672
	p->policy = policy;
3673

3674 3675
	if (dl_policy(policy))
		__setparam_dl(p, attr);
3676
	else if (fair_policy(policy))
3677 3678
		p->static_prio = NICE_TO_PRIO(attr->sched_nice);

3679 3680 3681 3682 3683 3684
	/*
	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
	 * !rt_policy. Always setting this ensures that things like
	 * getparam()/getattr() don't report silly values for !rt tasks.
	 */
	p->rt_priority = attr->sched_priority;
3685
	p->normal_prio = normal_prio(p);
3686 3687
	set_load_weight(p);
}
3688

3689 3690
/* Actually do priority change: must hold pi & rq lock. */
static void __setscheduler(struct rq *rq, struct task_struct *p,
3691
			   const struct sched_attr *attr, bool keep_boost)
3692 3693
{
	__setscheduler_params(p, attr);
3694

3695
	/*
3696 3697
	 * Keep a potential priority boosting if called from
	 * sched_setscheduler().
3698
	 */
3699 3700 3701 3702
	if (keep_boost)
		p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
	else
		p->prio = normal_prio(p);
3703

3704 3705 3706
	if (dl_prio(p->prio))
		p->sched_class = &dl_sched_class;
	else if (rt_prio(p->prio))
3707 3708 3709
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
3710
}
3711 3712 3713 3714 3715 3716 3717 3718 3719

static void
__getparam_dl(struct task_struct *p, struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	attr->sched_priority = p->rt_priority;
	attr->sched_runtime = dl_se->dl_runtime;
	attr->sched_deadline = dl_se->dl_deadline;
3720
	attr->sched_period = dl_se->dl_period;
3721 3722 3723 3724 3725 3726
	attr->sched_flags = dl_se->flags;
}

/*
 * This function validates the new parameters of a -deadline task.
 * We ask for the deadline not being zero, and greater or equal
3727
 * than the runtime, as well as the period of being zero or
3728
 * greater than deadline. Furthermore, we have to be sure that
3729 3730 3731 3732
 * user parameters are above the internal resolution of 1us (we
 * check sched_runtime only since it is always the smaller one) and
 * below 2^63 ns (we have to check both sched_deadline and
 * sched_period, as the latter can be zero).
3733 3734 3735 3736
 */
static bool
__checkparam_dl(const struct sched_attr *attr)
{
3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762
	/* deadline != 0 */
	if (attr->sched_deadline == 0)
		return false;

	/*
	 * Since we truncate DL_SCALE bits, make sure we're at least
	 * that big.
	 */
	if (attr->sched_runtime < (1ULL << DL_SCALE))
		return false;

	/*
	 * Since we use the MSB for wrap-around and sign issues, make
	 * sure it's not set (mind that period can be equal to zero).
	 */
	if (attr->sched_deadline & (1ULL << 63) ||
	    attr->sched_period & (1ULL << 63))
		return false;

	/* runtime <= deadline <= period (if period != 0) */
	if ((attr->sched_period != 0 &&
	     attr->sched_period < attr->sched_deadline) ||
	    attr->sched_deadline < attr->sched_runtime)
		return false;

	return true;
3763 3764
}

3765 3766 3767 3768 3769 3770 3771 3772 3773 3774
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
3775 3776
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
3777 3778 3779 3780
	rcu_read_unlock();
	return match;
}

3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794
static bool dl_param_changed(struct task_struct *p,
		const struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	if (dl_se->dl_runtime != attr->sched_runtime ||
		dl_se->dl_deadline != attr->sched_deadline ||
		dl_se->dl_period != attr->sched_period ||
		dl_se->flags != attr->sched_flags)
		return true;

	return false;
}

3795 3796
static int __sched_setscheduler(struct task_struct *p,
				const struct sched_attr *attr,
3797
				bool user, bool pi)
L
Linus Torvalds 已提交
3798
{
3799 3800
	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
		      MAX_RT_PRIO - 1 - attr->sched_priority;
3801
	int retval, oldprio, oldpolicy = -1, queued, running;
3802
	int new_effective_prio, policy = attr->sched_policy;
L
Linus Torvalds 已提交
3803
	unsigned long flags;
3804
	const struct sched_class *prev_class;
3805
	struct rq *rq;
3806
	int reset_on_fork;
L
Linus Torvalds 已提交
3807

3808 3809
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
3810 3811
recheck:
	/* double check policy once rq lock held */
3812 3813
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
3814
		policy = oldpolicy = p->policy;
3815
	} else {
3816
		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3817

3818
		if (!valid_policy(policy))
3819 3820 3821
			return -EINVAL;
	}

3822 3823 3824
	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
		return -EINVAL;

L
Linus Torvalds 已提交
3825 3826
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
3827 3828
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
3829
	 */
3830
	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3831
	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
3832
		return -EINVAL;
3833 3834
	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
	    (rt_policy(policy) != (attr->sched_priority != 0)))
L
Linus Torvalds 已提交
3835 3836
		return -EINVAL;

3837 3838 3839
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
3840
	if (user && !capable(CAP_SYS_NICE)) {
3841
		if (fair_policy(policy)) {
3842
			if (attr->sched_nice < task_nice(p) &&
3843
			    !can_nice(p, attr->sched_nice))
3844 3845 3846
				return -EPERM;
		}

3847
		if (rt_policy(policy)) {
3848 3849
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
3850 3851 3852 3853 3854 3855

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
3856 3857
			if (attr->sched_priority > p->rt_priority &&
			    attr->sched_priority > rlim_rtprio)
3858 3859
				return -EPERM;
		}
3860

3861 3862 3863 3864 3865 3866 3867 3868 3869
		 /*
		  * Can't set/change SCHED_DEADLINE policy at all for now
		  * (safest behavior); in the future we would like to allow
		  * unprivileged DL tasks to increase their relative deadline
		  * or reduce their runtime (both ways reducing utilization)
		  */
		if (dl_policy(policy))
			return -EPERM;

I
Ingo Molnar 已提交
3870
		/*
3871 3872
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
3873
		 */
3874
		if (idle_policy(p->policy) && !idle_policy(policy)) {
3875
			if (!can_nice(p, task_nice(p)))
3876 3877
				return -EPERM;
		}
3878

3879
		/* can't change other user's priorities */
3880
		if (!check_same_owner(p))
3881
			return -EPERM;
3882 3883 3884 3885

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
3886
	}
L
Linus Torvalds 已提交
3887

3888
	if (user) {
3889
		retval = security_task_setscheduler(p);
3890 3891 3892 3893
		if (retval)
			return retval;
	}

3894 3895 3896
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
3897
	 *
L
Lucas De Marchi 已提交
3898
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
3899 3900
	 * runqueue lock must be held.
	 */
3901
	rq = task_rq_lock(p, &flags);
3902

3903 3904 3905 3906
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
3907
		task_rq_unlock(rq, p, &flags);
3908 3909 3910
		return -EINVAL;
	}

3911
	/*
3912 3913
	 * If not changing anything there's no need to proceed further,
	 * but store a possible modification of reset_on_fork.
3914
	 */
3915
	if (unlikely(policy == p->policy)) {
3916
		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3917 3918 3919
			goto change;
		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
			goto change;
3920
		if (dl_policy(policy) && dl_param_changed(p, attr))
3921
			goto change;
3922

3923
		p->sched_reset_on_fork = reset_on_fork;
3924
		task_rq_unlock(rq, p, &flags);
3925 3926
		return 0;
	}
3927
change:
3928

3929
	if (user) {
3930
#ifdef CONFIG_RT_GROUP_SCHED
3931 3932 3933 3934 3935
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3936 3937
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
3938
			task_rq_unlock(rq, p, &flags);
3939 3940 3941
			return -EPERM;
		}
#endif
3942 3943 3944 3945 3946 3947 3948 3949 3950
#ifdef CONFIG_SMP
		if (dl_bandwidth_enabled() && dl_policy(policy)) {
			cpumask_t *span = rq->rd->span;

			/*
			 * Don't allow tasks with an affinity mask smaller than
			 * the entire root_domain to become SCHED_DEADLINE. We
			 * will also fail if there's no bandwidth available.
			 */
3951 3952
			if (!cpumask_subset(span, &p->cpus_allowed) ||
			    rq->rd->dl_bw.bw == 0) {
3953 3954 3955 3956 3957 3958
				task_rq_unlock(rq, p, &flags);
				return -EPERM;
			}
		}
#endif
	}
3959

L
Linus Torvalds 已提交
3960 3961 3962
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
3963
		task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3964 3965
		goto recheck;
	}
3966 3967 3968 3969 3970 3971

	/*
	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
	 * is available.
	 */
3972
	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3973 3974 3975 3976
		task_rq_unlock(rq, p, &flags);
		return -EBUSY;
	}

3977 3978 3979
	p->sched_reset_on_fork = reset_on_fork;
	oldprio = p->prio;

3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993
	if (pi) {
		/*
		 * Take priority boosted tasks into account. If the new
		 * effective priority is unchanged, we just store the new
		 * normal parameters and do not touch the scheduler class and
		 * the runqueue. This will be done when the task deboost
		 * itself.
		 */
		new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
		if (new_effective_prio == oldprio) {
			__setscheduler_params(p, attr);
			task_rq_unlock(rq, p, &flags);
			return 0;
		}
3994 3995
	}

3996
	queued = task_on_rq_queued(p);
3997
	running = task_current(rq, p);
3998
	if (queued)
3999
		dequeue_task(rq, p, DEQUEUE_SAVE);
4000
	if (running)
4001
		put_prev_task(rq, p);
4002

4003
	prev_class = p->sched_class;
4004
	__setscheduler(rq, p, attr, pi);
4005

4006 4007
	if (running)
		p->sched_class->set_curr_task(rq);
4008
	if (queued) {
4009
		int enqueue_flags = ENQUEUE_RESTORE;
4010 4011 4012 4013
		/*
		 * We enqueue to tail when the priority of a task is
		 * increased (user space view).
		 */
4014 4015 4016 4017
		if (oldprio <= p->prio)
			enqueue_flags |= ENQUEUE_HEAD;

		enqueue_task(rq, p, enqueue_flags);
4018
	}
4019

P
Peter Zijlstra 已提交
4020
	check_class_changed(rq, p, prev_class, oldprio);
4021
	preempt_disable(); /* avoid rq from going away on us */
4022
	task_rq_unlock(rq, p, &flags);
4023

4024 4025
	if (pi)
		rt_mutex_adjust_pi(p);
4026

4027 4028 4029 4030 4031
	/*
	 * Run balance callbacks after we've adjusted the PI chain.
	 */
	balance_callback(rq);
	preempt_enable();
4032

L
Linus Torvalds 已提交
4033 4034
	return 0;
}
4035

4036 4037 4038 4039 4040 4041 4042 4043 4044
static int _sched_setscheduler(struct task_struct *p, int policy,
			       const struct sched_param *param, bool check)
{
	struct sched_attr attr = {
		.sched_policy   = policy,
		.sched_priority = param->sched_priority,
		.sched_nice	= PRIO_TO_NICE(p->static_prio),
	};

4045 4046
	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4047 4048 4049 4050 4051
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
		policy &= ~SCHED_RESET_ON_FORK;
		attr.sched_policy = policy;
	}

4052
	return __sched_setscheduler(p, &attr, check, true);
4053
}
4054 4055 4056 4057 4058 4059
/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
4060 4061
 * Return: 0 on success. An error code otherwise.
 *
4062 4063 4064
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
4065
		       const struct sched_param *param)
4066
{
4067
	return _sched_setscheduler(p, policy, param, true);
4068
}
L
Linus Torvalds 已提交
4069 4070
EXPORT_SYMBOL_GPL(sched_setscheduler);

4071 4072
int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
{
4073
	return __sched_setscheduler(p, attr, true, true);
4074 4075 4076
}
EXPORT_SYMBOL_GPL(sched_setattr);

4077 4078 4079 4080 4081 4082 4083 4084 4085 4086
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
4087 4088
 *
 * Return: 0 on success. An error code otherwise.
4089 4090
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4091
			       const struct sched_param *param)
4092
{
4093
	return _sched_setscheduler(p, policy, param, false);
4094
}
4095
EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4096

I
Ingo Molnar 已提交
4097 4098
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4099 4100 4101
{
	struct sched_param lparam;
	struct task_struct *p;
4102
	int retval;
L
Linus Torvalds 已提交
4103 4104 4105 4106 4107

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4108 4109 4110

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4111
	p = find_process_by_pid(pid);
4112 4113 4114
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4115

L
Linus Torvalds 已提交
4116 4117 4118
	return retval;
}

4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180
/*
 * Mimics kernel/events/core.c perf_copy_attr().
 */
static int sched_copy_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr)
{
	u32 size;
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = SCHED_ATTR_SIZE_VER0;

	if (size < SCHED_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
	 */
	if (size > sizeof(*attr)) {
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;

		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;

		for (; addr < end; addr++) {
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
		size = sizeof(*attr);
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * XXX: do we want to be lenient like existing syscalls; or do we want
	 * to be strict and return an error on out-of-bounds values?
	 */
4181
	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4182

4183
	return 0;
4184 4185 4186

err_size:
	put_user(sizeof(*attr), &uattr->size);
4187
	return -E2BIG;
4188 4189
}

L
Linus Torvalds 已提交
4190 4191 4192 4193 4194
/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4195 4196
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4197
 */
4198 4199
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
4200
{
4201 4202 4203 4204
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4205 4206 4207 4208 4209 4210 4211
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
4212 4213
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4214
 */
4215
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4216
{
4217
	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
L
Linus Torvalds 已提交
4218 4219
}

4220 4221 4222
/**
 * sys_sched_setattr - same as above, but with extended sched_attr
 * @pid: the pid in question.
J
Juri Lelli 已提交
4223
 * @uattr: structure containing the extended parameters.
4224
 * @flags: for future extension.
4225
 */
4226 4227
SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
			       unsigned int, flags)
4228 4229 4230 4231 4232
{
	struct sched_attr attr;
	struct task_struct *p;
	int retval;

4233
	if (!uattr || pid < 0 || flags)
4234 4235
		return -EINVAL;

4236 4237 4238
	retval = sched_copy_attr(uattr, &attr);
	if (retval)
		return retval;
4239

4240
	if ((int)attr.sched_policy < 0)
4241
		return -EINVAL;
4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252

	rcu_read_lock();
	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (p != NULL)
		retval = sched_setattr(p, &attr);
	rcu_read_unlock();

	return retval;
}

L
Linus Torvalds 已提交
4253 4254 4255
/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
4256 4257 4258
 *
 * Return: On success, the policy of the thread. Otherwise, a negative error
 * code.
L
Linus Torvalds 已提交
4259
 */
4260
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4261
{
4262
	struct task_struct *p;
4263
	int retval;
L
Linus Torvalds 已提交
4264 4265

	if (pid < 0)
4266
		return -EINVAL;
L
Linus Torvalds 已提交
4267 4268

	retval = -ESRCH;
4269
	rcu_read_lock();
L
Linus Torvalds 已提交
4270 4271 4272 4273
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4274 4275
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4276
	}
4277
	rcu_read_unlock();
L
Linus Torvalds 已提交
4278 4279 4280 4281
	return retval;
}

/**
4282
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4283 4284
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
4285 4286 4287
 *
 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
 * code.
L
Linus Torvalds 已提交
4288
 */
4289
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4290
{
4291
	struct sched_param lp = { .sched_priority = 0 };
4292
	struct task_struct *p;
4293
	int retval;
L
Linus Torvalds 已提交
4294 4295

	if (!param || pid < 0)
4296
		return -EINVAL;
L
Linus Torvalds 已提交
4297

4298
	rcu_read_lock();
L
Linus Torvalds 已提交
4299 4300 4301 4302 4303 4304 4305 4306 4307
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4308 4309
	if (task_has_rt_policy(p))
		lp.sched_priority = p->rt_priority;
4310
	rcu_read_unlock();
L
Linus Torvalds 已提交
4311 4312 4313 4314 4315 4316 4317 4318 4319

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4320
	rcu_read_unlock();
L
Linus Torvalds 已提交
4321 4322 4323
	return retval;
}

4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346
static int sched_read_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr,
			   unsigned int usize)
{
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, usize))
		return -EFAULT;

	/*
	 * If we're handed a smaller struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. old
	 * user-space does not get uncomplete information.
	 */
	if (usize < sizeof(*attr)) {
		unsigned char *addr;
		unsigned char *end;

		addr = (void *)attr + usize;
		end  = (void *)attr + sizeof(*attr);

		for (; addr < end; addr++) {
			if (*addr)
4347
				return -EFBIG;
4348 4349 4350 4351 4352
		}

		attr->size = usize;
	}

4353
	ret = copy_to_user(uattr, attr, attr->size);
4354 4355 4356
	if (ret)
		return -EFAULT;

4357
	return 0;
4358 4359 4360
}

/**
4361
 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4362
 * @pid: the pid in question.
J
Juri Lelli 已提交
4363
 * @uattr: structure containing the extended parameters.
4364
 * @size: sizeof(attr) for fwd/bwd comp.
4365
 * @flags: for future extension.
4366
 */
4367 4368
SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
		unsigned int, size, unsigned int, flags)
4369 4370 4371 4372 4373 4374 4375 4376
{
	struct sched_attr attr = {
		.size = sizeof(struct sched_attr),
	};
	struct task_struct *p;
	int retval;

	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4377
	    size < SCHED_ATTR_SIZE_VER0 || flags)
4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390
		return -EINVAL;

	rcu_read_lock();
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	attr.sched_policy = p->policy;
4391 4392
	if (p->sched_reset_on_fork)
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4393 4394 4395
	if (task_has_dl_policy(p))
		__getparam_dl(p, &attr);
	else if (task_has_rt_policy(p))
4396 4397
		attr.sched_priority = p->rt_priority;
	else
4398
		attr.sched_nice = task_nice(p);
4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409

	rcu_read_unlock();

	retval = sched_read_attr(uattr, &attr, size);
	return retval;

out_unlock:
	rcu_read_unlock();
	return retval;
}

4410
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4411
{
4412
	cpumask_var_t cpus_allowed, new_mask;
4413 4414
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4415

4416
	rcu_read_lock();
L
Linus Torvalds 已提交
4417 4418 4419

	p = find_process_by_pid(pid);
	if (!p) {
4420
		rcu_read_unlock();
L
Linus Torvalds 已提交
4421 4422 4423
		return -ESRCH;
	}

4424
	/* Prevent p going away */
L
Linus Torvalds 已提交
4425
	get_task_struct(p);
4426
	rcu_read_unlock();
L
Linus Torvalds 已提交
4427

4428 4429 4430 4431
	if (p->flags & PF_NO_SETAFFINITY) {
		retval = -EINVAL;
		goto out_put_task;
	}
4432 4433 4434 4435 4436 4437 4438 4439
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4440
	retval = -EPERM;
E
Eric W. Biederman 已提交
4441 4442 4443 4444
	if (!check_same_owner(p)) {
		rcu_read_lock();
		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
			rcu_read_unlock();
4445
			goto out_free_new_mask;
E
Eric W. Biederman 已提交
4446 4447 4448
		}
		rcu_read_unlock();
	}
L
Linus Torvalds 已提交
4449

4450
	retval = security_task_setscheduler(p);
4451
	if (retval)
4452
		goto out_free_new_mask;
4453

4454 4455 4456 4457

	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);

4458 4459 4460 4461 4462 4463 4464
	/*
	 * Since bandwidth control happens on root_domain basis,
	 * if admission test is enabled, we only admit -deadline
	 * tasks allowed to run on all the CPUs in the task's
	 * root_domain.
	 */
#ifdef CONFIG_SMP
4465 4466 4467
	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
		rcu_read_lock();
		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4468
			retval = -EBUSY;
4469
			rcu_read_unlock();
4470
			goto out_free_new_mask;
4471
		}
4472
		rcu_read_unlock();
4473 4474
	}
#endif
P
Peter Zijlstra 已提交
4475
again:
4476
	retval = __set_cpus_allowed_ptr(p, new_mask, true);
L
Linus Torvalds 已提交
4477

P
Paul Menage 已提交
4478
	if (!retval) {
4479 4480
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4481 4482 4483 4484 4485
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4486
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4487 4488 4489
			goto again;
		}
	}
4490
out_free_new_mask:
4491 4492 4493 4494
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4495 4496 4497 4498 4499
	put_task_struct(p);
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4500
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4501
{
4502 4503 4504 4505 4506
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4507 4508 4509 4510 4511 4512 4513 4514
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
4515 4516
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4517
 */
4518 4519
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4520
{
4521
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4522 4523
	int retval;

4524 4525
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4526

4527 4528 4529 4530 4531
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4532 4533
}

4534
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4535
{
4536
	struct task_struct *p;
4537
	unsigned long flags;
L
Linus Torvalds 已提交
4538 4539
	int retval;

4540
	rcu_read_lock();
L
Linus Torvalds 已提交
4541 4542 4543 4544 4545 4546

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4547 4548 4549 4550
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4551
	raw_spin_lock_irqsave(&p->pi_lock, flags);
4552
	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4553
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4554 4555

out_unlock:
4556
	rcu_read_unlock();
L
Linus Torvalds 已提交
4557

4558
	return retval;
L
Linus Torvalds 已提交
4559 4560 4561 4562 4563 4564 4565
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4566 4567
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4568
 */
4569 4570
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4571 4572
{
	int ret;
4573
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4574

A
Anton Blanchard 已提交
4575
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4576 4577
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4578 4579
		return -EINVAL;

4580 4581
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4582

4583 4584
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4585
		size_t retlen = min_t(size_t, len, cpumask_size());
4586 4587

		if (copy_to_user(user_mask_ptr, mask, retlen))
4588 4589
			ret = -EFAULT;
		else
4590
			ret = retlen;
4591 4592
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4593

4594
	return ret;
L
Linus Torvalds 已提交
4595 4596 4597 4598 4599
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4600 4601
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
4602 4603
 *
 * Return: 0.
L
Linus Torvalds 已提交
4604
 */
4605
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4606
{
4607
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4608

4609
	schedstat_inc(rq, yld_count);
4610
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4611 4612 4613 4614 4615 4616

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4617
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4618
	do_raw_spin_unlock(&rq->lock);
4619
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
4620 4621 4622 4623 4624 4625

	schedule();

	return 0;
}

4626
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4627
{
4628
	if (should_resched(0)) {
4629
		preempt_schedule_common();
L
Linus Torvalds 已提交
4630 4631 4632 4633
		return 1;
	}
	return 0;
}
4634
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4635 4636

/*
4637
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4638 4639
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4640
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4641 4642 4643
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4644
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4645
{
4646
	int resched = should_resched(PREEMPT_LOCK_OFFSET);
J
Jan Kara 已提交
4647 4648
	int ret = 0;

4649 4650
	lockdep_assert_held(lock);

4651
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4652
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4653
		if (resched)
4654
			preempt_schedule_common();
N
Nick Piggin 已提交
4655 4656
		else
			cpu_relax();
J
Jan Kara 已提交
4657
		ret = 1;
L
Linus Torvalds 已提交
4658 4659
		spin_lock(lock);
	}
J
Jan Kara 已提交
4660
	return ret;
L
Linus Torvalds 已提交
4661
}
4662
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4663

4664
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4665 4666 4667
{
	BUG_ON(!in_softirq());

4668
	if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4669
		local_bh_enable();
4670
		preempt_schedule_common();
L
Linus Torvalds 已提交
4671 4672 4673 4674 4675
		local_bh_disable();
		return 1;
	}
	return 0;
}
4676
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4677 4678 4679 4680

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
 * 	yield();
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
4699 4700 4701 4702 4703 4704 4705 4706
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

4707 4708 4709 4710
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
4711 4712
 * @p: target task
 * @preempt: whether task preemption is allowed or not
4713 4714 4715 4716
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
4717
 * Return:
4718 4719 4720
 *	true (>0) if we indeed boosted the target task.
 *	false (0) if we failed to boost the target.
 *	-ESRCH if there's no task to yield to.
4721
 */
4722
int __sched yield_to(struct task_struct *p, bool preempt)
4723 4724 4725 4726
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
4727
	int yielded = 0;
4728 4729 4730 4731 4732 4733

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
4734 4735 4736 4737 4738 4739 4740 4741 4742
	/*
	 * If we're the only runnable task on the rq and target rq also
	 * has only one task, there's absolutely no point in yielding.
	 */
	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
		yielded = -ESRCH;
		goto out_irq;
	}

4743
	double_rq_lock(rq, p_rq);
4744
	if (task_rq(p) != p_rq) {
4745 4746 4747 4748 4749
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
4750
		goto out_unlock;
4751 4752

	if (curr->sched_class != p->sched_class)
4753
		goto out_unlock;
4754 4755

	if (task_running(p_rq, p) || p->state)
4756
		goto out_unlock;
4757 4758

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4759
	if (yielded) {
4760
		schedstat_inc(rq, yld_count);
4761 4762 4763 4764 4765
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
4766
			resched_curr(p_rq);
4767
	}
4768

4769
out_unlock:
4770
	double_rq_unlock(rq, p_rq);
4771
out_irq:
4772 4773
	local_irq_restore(flags);

4774
	if (yielded > 0)
4775 4776 4777 4778 4779 4780
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
4781
/*
I
Ingo Molnar 已提交
4782
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4783 4784 4785 4786
 * that process accounting knows that this is a task in IO wait state.
 */
long __sched io_schedule_timeout(long timeout)
{
4787 4788
	int old_iowait = current->in_iowait;
	struct rq *rq;
L
Linus Torvalds 已提交
4789 4790
	long ret;

4791
	current->in_iowait = 1;
4792
	blk_schedule_flush_plug(current);
4793

4794
	delayacct_blkio_start();
4795
	rq = raw_rq();
L
Linus Torvalds 已提交
4796 4797
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
4798
	current->in_iowait = old_iowait;
L
Linus Torvalds 已提交
4799
	atomic_dec(&rq->nr_iowait);
4800
	delayacct_blkio_end();
4801

L
Linus Torvalds 已提交
4802 4803
	return ret;
}
4804
EXPORT_SYMBOL(io_schedule_timeout);
L
Linus Torvalds 已提交
4805 4806 4807 4808 4809

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
4810 4811 4812
 * Return: On success, this syscall returns the maximum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
4813
 */
4814
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
4815 4816 4817 4818 4819 4820 4821 4822
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
4823
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
4824
	case SCHED_NORMAL:
4825
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4826
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4827 4828 4829 4830 4831 4832 4833 4834 4835 4836
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
4837 4838 4839
 * Return: On success, this syscall returns the minimum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
4840
 */
4841
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
4842 4843 4844 4845 4846 4847 4848 4849
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
4850
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
4851
	case SCHED_NORMAL:
4852
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4853
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
4866 4867 4868
 *
 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
 * an error code.
L
Linus Torvalds 已提交
4869
 */
4870
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4871
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
4872
{
4873
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4874
	unsigned int time_slice;
4875 4876
	unsigned long flags;
	struct rq *rq;
4877
	int retval;
L
Linus Torvalds 已提交
4878 4879 4880
	struct timespec t;

	if (pid < 0)
4881
		return -EINVAL;
L
Linus Torvalds 已提交
4882 4883

	retval = -ESRCH;
4884
	rcu_read_lock();
L
Linus Torvalds 已提交
4885 4886 4887 4888 4889 4890 4891 4892
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4893
	rq = task_rq_lock(p, &flags);
4894 4895 4896
	time_slice = 0;
	if (p->sched_class->get_rr_interval)
		time_slice = p->sched_class->get_rr_interval(rq, p);
4897
	task_rq_unlock(rq, p, &flags);
D
Dmitry Adamushko 已提交
4898

4899
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
4900
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4901 4902
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4903

L
Linus Torvalds 已提交
4904
out_unlock:
4905
	rcu_read_unlock();
L
Linus Torvalds 已提交
4906 4907 4908
	return retval;
}

4909
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4910

4911
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4912 4913
{
	unsigned long free = 0;
4914
	int ppid;
4915
	unsigned long state = p->state;
L
Linus Torvalds 已提交
4916

4917 4918
	if (state)
		state = __ffs(state) + 1;
4919
	printk(KERN_INFO "%-15.15s %c", p->comm,
4920
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4921
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4922
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4923
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4924
	else
P
Peter Zijlstra 已提交
4925
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4926 4927
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4928
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4929
	else
P
Peter Zijlstra 已提交
4930
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4931 4932
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
4933
	free = stack_not_used(p);
L
Linus Torvalds 已提交
4934
#endif
4935
	ppid = 0;
4936
	rcu_read_lock();
4937 4938
	if (pid_alive(p))
		ppid = task_pid_nr(rcu_dereference(p->real_parent));
4939
	rcu_read_unlock();
P
Peter Zijlstra 已提交
4940
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4941
		task_pid_nr(p), ppid,
4942
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
4943

4944
	print_worker_info(KERN_INFO, p);
4945
	show_stack(p, NULL);
L
Linus Torvalds 已提交
4946 4947
}

I
Ingo Molnar 已提交
4948
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4949
{
4950
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4951

4952
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
4953 4954
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4955
#else
P
Peter Zijlstra 已提交
4956 4957
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4958
#endif
4959
	rcu_read_lock();
4960
	for_each_process_thread(g, p) {
L
Linus Torvalds 已提交
4961 4962
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
4963
		 * console might take a lot of time:
L
Linus Torvalds 已提交
4964 4965
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4966
		if (!state_filter || (p->state & state_filter))
4967
			sched_show_task(p);
4968
	}
L
Linus Torvalds 已提交
4969

4970 4971
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4972 4973 4974
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
4975
	rcu_read_unlock();
I
Ingo Molnar 已提交
4976 4977 4978
	/*
	 * Only show locks if all tasks are dumped:
	 */
4979
	if (!state_filter)
I
Ingo Molnar 已提交
4980
		debug_show_all_locks();
L
Linus Torvalds 已提交
4981 4982
}

4983
void init_idle_bootup_task(struct task_struct *idle)
I
Ingo Molnar 已提交
4984
{
I
Ingo Molnar 已提交
4985
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4986 4987
}

4988 4989 4990 4991 4992 4993 4994 4995
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4996
void init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4997
{
4998
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4999 5000
	unsigned long flags;

5001 5002
	raw_spin_lock_irqsave(&idle->pi_lock, flags);
	raw_spin_lock(&rq->lock);
5003

5004
	__sched_fork(0, idle);
5005
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
5006 5007
	idle->se.exec_start = sched_clock();

5008 5009 5010 5011 5012 5013 5014 5015 5016
#ifdef CONFIG_SMP
	/*
	 * Its possible that init_idle() gets called multiple times on a task,
	 * in that case do_set_cpus_allowed() will not do the right thing.
	 *
	 * And since this is boot we can forgo the serialization.
	 */
	set_cpus_allowed_common(idle, cpumask_of(cpu));
#endif
5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
5028
	__set_task_cpu(idle, cpu);
5029
	rcu_read_unlock();
L
Linus Torvalds 已提交
5030 5031

	rq->curr = rq->idle = idle;
5032
	idle->on_rq = TASK_ON_RQ_QUEUED;
5033
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
5034
	idle->on_cpu = 1;
5035
#endif
5036 5037
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
L
Linus Torvalds 已提交
5038 5039

	/* Set the preempt count _outside_ the spinlocks! */
5040
	init_idle_preempt_count(idle, cpu);
5041

I
Ingo Molnar 已提交
5042 5043 5044 5045
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
5046
	ftrace_graph_init_idle_task(idle, cpu);
5047
	vtime_init_idle(idle, cpu);
5048
#ifdef CONFIG_SMP
5049 5050
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
5051 5052
}

5053 5054 5055 5056 5057 5058 5059
int cpuset_cpumask_can_shrink(const struct cpumask *cur,
			      const struct cpumask *trial)
{
	int ret = 1, trial_cpus;
	struct dl_bw *cur_dl_b;
	unsigned long flags;

5060 5061 5062
	if (!cpumask_weight(cur))
		return ret;

5063
	rcu_read_lock_sched();
5064 5065 5066 5067 5068 5069 5070 5071
	cur_dl_b = dl_bw_of(cpumask_any(cur));
	trial_cpus = cpumask_weight(trial);

	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
	if (cur_dl_b->bw != -1 &&
	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
		ret = 0;
	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5072
	rcu_read_unlock_sched();
5073 5074 5075 5076

	return ret;
}

5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100
int task_can_attach(struct task_struct *p,
		    const struct cpumask *cs_cpus_allowed)
{
	int ret = 0;

	/*
	 * Kthreads which disallow setaffinity shouldn't be moved
	 * to a new cpuset; we don't want to change their cpu
	 * affinity and isolating such threads by their set of
	 * allowed nodes is unnecessary.  Thus, cpusets are not
	 * applicable for such threads.  This prevents checking for
	 * success of set_cpus_allowed_ptr() on all attached tasks
	 * before cpus_allowed may be changed.
	 */
	if (p->flags & PF_NO_SETAFFINITY) {
		ret = -EINVAL;
		goto out;
	}

#ifdef CONFIG_SMP
	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
					      cs_cpus_allowed)) {
		unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
							cs_cpus_allowed);
5101
		struct dl_bw *dl_b;
5102 5103 5104 5105
		bool overflow;
		int cpus;
		unsigned long flags;

5106 5107
		rcu_read_lock_sched();
		dl_b = dl_bw_of(dest_cpu);
5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122
		raw_spin_lock_irqsave(&dl_b->lock, flags);
		cpus = dl_bw_cpus(dest_cpu);
		overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
		if (overflow)
			ret = -EBUSY;
		else {
			/*
			 * We reserve space for this task in the destination
			 * root_domain, as we can't fail after this point.
			 * We will free resources in the source root_domain
			 * later on (see set_cpus_allowed_dl()).
			 */
			__dl_add(dl_b, p->dl.dl_bw);
		}
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5123
		rcu_read_unlock_sched();
5124 5125 5126 5127 5128 5129 5130

	}
#endif
out:
	return ret;
}

L
Linus Torvalds 已提交
5131 5132
#ifdef CONFIG_SMP

5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147
#ifdef CONFIG_NUMA_BALANCING
/* Migrate current task p to target_cpu */
int migrate_task_to(struct task_struct *p, int target_cpu)
{
	struct migration_arg arg = { p, target_cpu };
	int curr_cpu = task_cpu(p);

	if (curr_cpu == target_cpu)
		return 0;

	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
		return -EINVAL;

	/* TODO: This is not properly updating schedstats */

5148
	trace_sched_move_numa(p, curr_cpu, target_cpu);
5149 5150
	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
}
5151 5152 5153 5154 5155 5156 5157 5158 5159

/*
 * Requeue a task on a given node and accurately track the number of NUMA
 * tasks on the runqueues
 */
void sched_setnuma(struct task_struct *p, int nid)
{
	struct rq *rq;
	unsigned long flags;
5160
	bool queued, running;
5161 5162

	rq = task_rq_lock(p, &flags);
5163
	queued = task_on_rq_queued(p);
5164 5165
	running = task_current(rq, p);

5166
	if (queued)
5167
		dequeue_task(rq, p, DEQUEUE_SAVE);
5168
	if (running)
5169
		put_prev_task(rq, p);
5170 5171 5172 5173 5174

	p->numa_preferred_nid = nid;

	if (running)
		p->sched_class->set_curr_task(rq);
5175
	if (queued)
5176
		enqueue_task(rq, p, ENQUEUE_RESTORE);
5177 5178
	task_rq_unlock(rq, p, &flags);
}
P
Peter Zijlstra 已提交
5179
#endif /* CONFIG_NUMA_BALANCING */
5180

L
Linus Torvalds 已提交
5181
#ifdef CONFIG_HOTPLUG_CPU
5182
/*
5183 5184
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
5185
 */
5186
void idle_task_exit(void)
L
Linus Torvalds 已提交
5187
{
5188
	struct mm_struct *mm = current->active_mm;
5189

5190
	BUG_ON(cpu_online(smp_processor_id()));
5191

5192
	if (mm != &init_mm) {
5193
		switch_mm(mm, &init_mm, current);
5194 5195
		finish_arch_post_lock_switch();
	}
5196
	mmdrop(mm);
L
Linus Torvalds 已提交
5197 5198 5199
}

/*
5200 5201 5202 5203 5204
 * Since this CPU is going 'away' for a while, fold any nr_active delta
 * we might have. Assumes we're called after migrate_tasks() so that the
 * nr_active count is stable.
 *
 * Also see the comment "Global load-average calculations".
L
Linus Torvalds 已提交
5205
 */
5206
static void calc_load_migrate(struct rq *rq)
L
Linus Torvalds 已提交
5207
{
5208 5209 5210
	long delta = calc_load_fold_active(rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
5211 5212
}

5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228
static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
{
}

static const struct sched_class fake_sched_class = {
	.put_prev_task = put_prev_task_fake,
};

static struct task_struct fake_task = {
	/*
	 * Avoid pull_{rt,dl}_task()
	 */
	.prio = MAX_PRIO + 1,
	.sched_class = &fake_sched_class,
};

5229
/*
5230 5231 5232 5233 5234 5235
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
5236
 */
5237
static void migrate_tasks(struct rq *dead_rq)
L
Linus Torvalds 已提交
5238
{
5239
	struct rq *rq = dead_rq;
5240 5241
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
5242 5243

	/*
5244 5245 5246 5247 5248 5249 5250
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
5251
	 */
5252
	rq->stop = NULL;
5253

5254 5255 5256 5257 5258 5259 5260
	/*
	 * put_prev_task() and pick_next_task() sched
	 * class method both need to have an up-to-date
	 * value of rq->clock[_task]
	 */
	update_rq_clock(rq);

5261
	for (;;) {
5262 5263 5264 5265 5266
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
5267
			break;
5268

5269
		/*
W
Wanpeng Li 已提交
5270
		 * pick_next_task assumes pinned rq->lock.
5271 5272
		 */
		lockdep_pin_lock(&rq->lock);
5273
		next = pick_next_task(rq, &fake_task);
5274
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
5275
		next->sched_class->put_prev_task(rq, next);
5276

W
Wanpeng Li 已提交
5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300
		/*
		 * Rules for changing task_struct::cpus_allowed are holding
		 * both pi_lock and rq->lock, such that holding either
		 * stabilizes the mask.
		 *
		 * Drop rq->lock is not quite as disastrous as it usually is
		 * because !cpu_active at this point, which means load-balance
		 * will not interfere. Also, stop-machine.
		 */
		lockdep_unpin_lock(&rq->lock);
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&next->pi_lock);
		raw_spin_lock(&rq->lock);

		/*
		 * Since we're inside stop-machine, _nothing_ should have
		 * changed the task, WARN if weird stuff happened, because in
		 * that case the above rq->lock drop is a fail too.
		 */
		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
			raw_spin_unlock(&next->pi_lock);
			continue;
		}

5301
		/* Find suitable destination for @next, with force if needed. */
5302
		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5303

5304 5305 5306 5307 5308 5309
		rq = __migrate_task(rq, next, dest_cpu);
		if (rq != dead_rq) {
			raw_spin_unlock(&rq->lock);
			rq = dead_rq;
			raw_spin_lock(&rq->lock);
		}
W
Wanpeng Li 已提交
5310
		raw_spin_unlock(&next->pi_lock);
L
Linus Torvalds 已提交
5311
	}
5312

5313
	rq->stop = stop;
5314
}
L
Linus Torvalds 已提交
5315 5316
#endif /* CONFIG_HOTPLUG_CPU */

5317 5318 5319
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5320 5321
	{
		.procname	= "sched_domain",
5322
		.mode		= 0555,
5323
	},
5324
	{}
5325 5326 5327
};

static struct ctl_table sd_ctl_root[] = {
5328 5329
	{
		.procname	= "kernel",
5330
		.mode		= 0555,
5331 5332
		.child		= sd_ctl_dir,
	},
5333
	{}
5334 5335 5336 5337 5338
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5339
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5340 5341 5342 5343

	return entry;
}

5344 5345
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5346
	struct ctl_table *entry;
5347

5348 5349 5350
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5351
	 * will always be set. In the lowest directory the names are
5352 5353 5354
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5355 5356
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5357 5358 5359
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5360 5361 5362 5363 5364

	kfree(*tablep);
	*tablep = NULL;
}

5365
static int min_load_idx = 0;
5366
static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5367

5368
static void
5369
set_table_entry(struct ctl_table *entry,
5370
		const char *procname, void *data, int maxlen,
5371 5372
		umode_t mode, proc_handler *proc_handler,
		bool load_idx)
5373 5374 5375 5376 5377 5378
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
5379 5380 5381 5382 5383

	if (load_idx) {
		entry->extra1 = &min_load_idx;
		entry->extra2 = &max_load_idx;
	}
5384 5385 5386 5387 5388
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5389
	struct ctl_table *table = sd_alloc_ctl_entry(14);
5390

5391 5392 5393
	if (table == NULL)
		return NULL;

5394
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5395
		sizeof(long), 0644, proc_doulongvec_minmax, false);
5396
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5397
		sizeof(long), 0644, proc_doulongvec_minmax, false);
5398
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5399
		sizeof(int), 0644, proc_dointvec_minmax, true);
5400
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5401
		sizeof(int), 0644, proc_dointvec_minmax, true);
5402
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5403
		sizeof(int), 0644, proc_dointvec_minmax, true);
5404
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5405
		sizeof(int), 0644, proc_dointvec_minmax, true);
5406
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5407
		sizeof(int), 0644, proc_dointvec_minmax, true);
5408
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5409
		sizeof(int), 0644, proc_dointvec_minmax, false);
5410
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5411
		sizeof(int), 0644, proc_dointvec_minmax, false);
5412
	set_table_entry(&table[9], "cache_nice_tries",
5413
		&sd->cache_nice_tries,
5414
		sizeof(int), 0644, proc_dointvec_minmax, false);
5415
	set_table_entry(&table[10], "flags", &sd->flags,
5416
		sizeof(int), 0644, proc_dointvec_minmax, false);
5417 5418 5419 5420
	set_table_entry(&table[11], "max_newidle_lb_cost",
		&sd->max_newidle_lb_cost,
		sizeof(long), 0644, proc_doulongvec_minmax, false);
	set_table_entry(&table[12], "name", sd->name,
5421
		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5422
	/* &table[13] is terminator */
5423 5424 5425 5426

	return table;
}

5427
static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5428 5429 5430 5431 5432 5433 5434 5435 5436
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5437 5438
	if (table == NULL)
		return NULL;
5439 5440 5441 5442 5443

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5444
		entry->mode = 0555;
5445 5446 5447 5448 5449 5450 5451 5452
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5453
static void register_sched_domain_sysctl(void)
5454
{
5455
	int i, cpu_num = num_possible_cpus();
5456 5457 5458
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5459 5460 5461
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5462 5463 5464
	if (entry == NULL)
		return;

5465
	for_each_possible_cpu(i) {
5466 5467
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5468
		entry->mode = 0555;
5469
		entry->child = sd_alloc_ctl_cpu_table(i);
5470
		entry++;
5471
	}
5472 5473

	WARN_ON(sd_sysctl_header);
5474 5475
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5476

5477
/* may be called multiple times per register */
5478 5479
static void unregister_sched_domain_sysctl(void)
{
5480
	unregister_sysctl_table(sd_sysctl_header);
5481
	sd_sysctl_header = NULL;
5482 5483
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5484
}
5485
#else
5486 5487 5488 5489
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5490 5491
{
}
P
Peter Zijlstra 已提交
5492
#endif /* CONFIG_SCHED_DEBUG && CONFIG_SYSCTL */
5493

5494 5495 5496 5497 5498
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5499
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5519
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5520 5521 5522 5523
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5524 5525 5526 5527
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5528
static int
5529
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5530
{
5531
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5532
	unsigned long flags;
5533
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5534

5535
	switch (action & ~CPU_TASKS_FROZEN) {
5536

L
Linus Torvalds 已提交
5537
	case CPU_UP_PREPARE:
5538
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5539
		break;
5540

L
Linus Torvalds 已提交
5541
	case CPU_ONLINE:
5542
		/* Update our root-domain */
5543
		raw_spin_lock_irqsave(&rq->lock, flags);
5544
		if (rq->rd) {
5545
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5546 5547

			set_rq_online(rq);
5548
		}
5549
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5550
		break;
5551

L
Linus Torvalds 已提交
5552
#ifdef CONFIG_HOTPLUG_CPU
5553
	case CPU_DYING:
5554
		sched_ttwu_pending();
G
Gregory Haskins 已提交
5555
		/* Update our root-domain */
5556
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5557
		if (rq->rd) {
5558
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5559
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5560
		}
5561
		migrate_tasks(rq);
5562
		BUG_ON(rq->nr_running != 1); /* the migration thread */
5563
		raw_spin_unlock_irqrestore(&rq->lock, flags);
5564
		break;
5565

5566
	case CPU_DEAD:
5567
		calc_load_migrate(rq);
G
Gregory Haskins 已提交
5568
		break;
L
Linus Torvalds 已提交
5569 5570
#endif
	}
5571 5572 5573

	update_max_interval();

L
Linus Torvalds 已提交
5574 5575 5576
	return NOTIFY_OK;
}

5577 5578 5579
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5580
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5581
 */
5582
static struct notifier_block migration_notifier = {
L
Linus Torvalds 已提交
5583
	.notifier_call = migration_call,
5584
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
5585 5586
};

5587
static void set_cpu_rq_start_time(void)
5588 5589 5590 5591 5592 5593
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
	rq->age_stamp = sched_clock_cpu(cpu);
}

5594
static int sched_cpu_active(struct notifier_block *nfb,
5595 5596
				      unsigned long action, void *hcpu)
{
P
Peter Zijlstra 已提交
5597 5598
	int cpu = (long)hcpu;

5599
	switch (action & ~CPU_TASKS_FROZEN) {
5600 5601 5602
	case CPU_STARTING:
		set_cpu_rq_start_time();
		return NOTIFY_OK;
P
Peter Zijlstra 已提交
5603

5604 5605 5606 5607 5608 5609
	case CPU_ONLINE:
		/*
		 * At this point a starting CPU has marked itself as online via
		 * set_cpu_online(). But it might not yet have marked itself
		 * as active, which is essential from here on.
		 */
P
Peter Zijlstra 已提交
5610 5611 5612 5613
		set_cpu_active(cpu, true);
		stop_machine_unpark(cpu);
		return NOTIFY_OK;

5614
	case CPU_DOWN_FAILED:
P
Peter Zijlstra 已提交
5615
		set_cpu_active(cpu, true);
5616
		return NOTIFY_OK;
P
Peter Zijlstra 已提交
5617

5618 5619 5620 5621 5622
	default:
		return NOTIFY_DONE;
	}
}

5623
static int sched_cpu_inactive(struct notifier_block *nfb,
5624 5625 5626 5627
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
5628
		set_cpu_active((long)hcpu, false);
5629
		return NOTIFY_OK;
5630 5631
	default:
		return NOTIFY_DONE;
5632 5633 5634
	}
}

5635
static int __init migration_init(void)
L
Linus Torvalds 已提交
5636 5637
{
	void *cpu = (void *)(long)smp_processor_id();
5638
	int err;
5639

5640
	/* Initialize migration for the boot CPU */
5641 5642
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5643 5644
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5645

5646 5647 5648 5649
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

5650
	return 0;
L
Linus Torvalds 已提交
5651
}
5652
early_initcall(migration_init);
5653

5654 5655
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

5656
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5657

5658
static __read_mostly int sched_debug_enabled;
5659

5660
static int __init sched_debug_setup(char *str)
5661
{
5662
	sched_debug_enabled = 1;
5663 5664 5665

	return 0;
}
5666 5667 5668 5669 5670 5671
early_param("sched_debug", sched_debug_setup);

static inline bool sched_debug(void)
{
	return sched_debug_enabled;
}
5672

5673
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5674
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5675
{
I
Ingo Molnar 已提交
5676
	struct sched_group *group = sd->groups;
L
Linus Torvalds 已提交
5677

5678
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5679 5680 5681 5682

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5683
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5684
		if (sd->parent)
P
Peter Zijlstra 已提交
5685 5686
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5687
		return -1;
N
Nick Piggin 已提交
5688 5689
	}

5690 5691
	printk(KERN_CONT "span %*pbl level %s\n",
	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
I
Ingo Molnar 已提交
5692

5693
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5694 5695
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5696
	}
5697
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5698 5699
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5700
	}
L
Linus Torvalds 已提交
5701

I
Ingo Molnar 已提交
5702
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5703
	do {
I
Ingo Molnar 已提交
5704
		if (!group) {
P
Peter Zijlstra 已提交
5705 5706
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5707 5708 5709
			break;
		}

5710
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5711 5712
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
5713 5714
			break;
		}
L
Linus Torvalds 已提交
5715

5716 5717
		if (!(sd->flags & SD_OVERLAP) &&
		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5718 5719
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
5720 5721
			break;
		}
L
Linus Torvalds 已提交
5722

5723
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
5724

5725 5726
		printk(KERN_CONT " %*pbl",
		       cpumask_pr_args(sched_group_cpus(group)));
5727
		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5728 5729
			printk(KERN_CONT " (cpu_capacity = %d)",
				group->sgc->capacity);
5730
		}
L
Linus Torvalds 已提交
5731

I
Ingo Molnar 已提交
5732 5733
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
5734
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5735

5736
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
5737
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5738

5739 5740
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
5741 5742
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
5743 5744
	return 0;
}
L
Linus Torvalds 已提交
5745

I
Ingo Molnar 已提交
5746 5747 5748
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5749

5750
	if (!sched_debug_enabled)
5751 5752
		return;

I
Ingo Molnar 已提交
5753 5754 5755 5756
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5757

I
Ingo Molnar 已提交
5758 5759 5760
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
5761
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
I
Ingo Molnar 已提交
5762
			break;
L
Linus Torvalds 已提交
5763 5764
		level++;
		sd = sd->parent;
5765
		if (!sd)
I
Ingo Molnar 已提交
5766 5767
			break;
	}
L
Linus Torvalds 已提交
5768
}
5769
#else /* !CONFIG_SCHED_DEBUG */
5770
# define sched_domain_debug(sd, cpu) do { } while (0)
5771 5772 5773 5774
static inline bool sched_debug(void)
{
	return false;
}
5775
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
5776

5777
static int sd_degenerate(struct sched_domain *sd)
5778
{
5779
	if (cpumask_weight(sched_domain_span(sd)) == 1)
5780 5781 5782 5783 5784 5785
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5786
			 SD_BALANCE_EXEC |
5787
			 SD_SHARE_CPUCAPACITY |
5788 5789
			 SD_SHARE_PKG_RESOURCES |
			 SD_SHARE_POWERDOMAIN)) {
5790 5791 5792 5793 5794
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
5795
	if (sd->flags & (SD_WAKE_AFFINE))
5796 5797 5798 5799 5800
		return 0;

	return 1;
}

5801 5802
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5803 5804 5805 5806 5807 5808
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

5809
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5810 5811 5812 5813 5814 5815 5816
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5817
				SD_BALANCE_EXEC |
5818
				SD_SHARE_CPUCAPACITY |
5819
				SD_SHARE_PKG_RESOURCES |
5820 5821
				SD_PREFER_SIBLING |
				SD_SHARE_POWERDOMAIN);
5822 5823
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
5824 5825 5826 5827 5828 5829 5830
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

5831
static void free_rootdomain(struct rcu_head *rcu)
5832
{
5833
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5834

5835
	cpupri_cleanup(&rd->cpupri);
5836
	cpudl_cleanup(&rd->cpudl);
5837
	free_cpumask_var(rd->dlo_mask);
5838 5839 5840 5841 5842 5843
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
5844 5845
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
5846
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
5847 5848
	unsigned long flags;

5849
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5850 5851

	if (rq->rd) {
I
Ingo Molnar 已提交
5852
		old_rd = rq->rd;
G
Gregory Haskins 已提交
5853

5854
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5855
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5856

5857
		cpumask_clear_cpu(rq->cpu, old_rd->span);
5858

I
Ingo Molnar 已提交
5859
		/*
5860
		 * If we dont want to free the old_rd yet then
I
Ingo Molnar 已提交
5861 5862 5863 5864 5865
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
5866 5867 5868 5869 5870
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

5871
	cpumask_set_cpu(rq->cpu, rd->span);
5872
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5873
		set_rq_online(rq);
G
Gregory Haskins 已提交
5874

5875
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
5876 5877

	if (old_rd)
5878
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
5879 5880
}

5881
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
5882 5883 5884
{
	memset(rd, 0, sizeof(*rd));

5885
	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
5886
		goto out;
5887
	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
5888
		goto free_span;
5889
	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5890
		goto free_online;
5891
	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5892
		goto free_dlo_mask;
5893

5894
	init_dl_bw(&rd->dl_bw);
5895 5896
	if (cpudl_init(&rd->cpudl) != 0)
		goto free_dlo_mask;
5897

5898
	if (cpupri_init(&rd->cpupri) != 0)
5899
		goto free_rto_mask;
5900
	return 0;
5901

5902 5903
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
5904 5905
free_dlo_mask:
	free_cpumask_var(rd->dlo_mask);
5906 5907 5908 5909
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
5910
out:
5911
	return -ENOMEM;
G
Gregory Haskins 已提交
5912 5913
}

5914 5915 5916 5917 5918 5919
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
struct root_domain def_root_domain;

G
Gregory Haskins 已提交
5920 5921
static void init_defrootdomain(void)
{
5922
	init_rootdomain(&def_root_domain);
5923

G
Gregory Haskins 已提交
5924 5925 5926
	atomic_set(&def_root_domain.refcount, 1);
}

5927
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
5928 5929 5930 5931 5932 5933 5934
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

5935
	if (init_rootdomain(rd) != 0) {
5936 5937 5938
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
5939 5940 5941 5942

	return rd;
}

5943
static void free_sched_groups(struct sched_group *sg, int free_sgc)
5944 5945 5946 5947 5948 5949 5950 5951 5952 5953
{
	struct sched_group *tmp, *first;

	if (!sg)
		return;

	first = sg;
	do {
		tmp = sg->next;

5954 5955
		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
			kfree(sg->sgc);
5956 5957 5958 5959 5960 5961

		kfree(sg);
		sg = tmp;
	} while (sg != first);
}

5962 5963 5964
static void free_sched_domain(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5965 5966 5967 5968 5969 5970 5971 5972

	/*
	 * If its an overlapping domain it has private groups, iterate and
	 * nuke them all.
	 */
	if (sd->flags & SD_OVERLAP) {
		free_sched_groups(sd->groups, 1);
	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5973
		kfree(sd->groups->sgc);
5974
		kfree(sd->groups);
5975
	}
5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989
	kfree(sd);
}

static void destroy_sched_domain(struct sched_domain *sd, int cpu)
{
	call_rcu(&sd->rcu, free_sched_domain);
}

static void destroy_sched_domains(struct sched_domain *sd, int cpu)
{
	for (; sd; sd = sd->parent)
		destroy_sched_domain(sd, cpu);
}

5990 5991 5992 5993 5994 5995 5996
/*
 * Keep a special pointer to the highest sched_domain that has
 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 * allows us to avoid some pointer chasing select_idle_sibling().
 *
 * Also keep a unique ID per domain (we use the first cpu number in
 * the cpumask of the domain), this allows us to quickly tell if
5997
 * two cpus are in the same cache domain, see cpus_share_cache().
5998 5999
 */
DEFINE_PER_CPU(struct sched_domain *, sd_llc);
6000
DEFINE_PER_CPU(int, sd_llc_size);
6001
DEFINE_PER_CPU(int, sd_llc_id);
6002
DEFINE_PER_CPU(struct sched_domain *, sd_numa);
6003 6004
DEFINE_PER_CPU(struct sched_domain *, sd_busy);
DEFINE_PER_CPU(struct sched_domain *, sd_asym);
6005 6006 6007 6008

static void update_top_cache_domain(int cpu)
{
	struct sched_domain *sd;
6009
	struct sched_domain *busy_sd = NULL;
6010
	int id = cpu;
6011
	int size = 1;
6012 6013

	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
6014
	if (sd) {
6015
		id = cpumask_first(sched_domain_span(sd));
6016
		size = cpumask_weight(sched_domain_span(sd));
6017
		busy_sd = sd->parent; /* sd_busy */
6018
	}
6019
	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
6020 6021

	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
6022
	per_cpu(sd_llc_size, cpu) = size;
6023
	per_cpu(sd_llc_id, cpu) = id;
6024 6025 6026

	sd = lowest_flag_domain(cpu, SD_NUMA);
	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
6027 6028 6029

	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
6030 6031
}

L
Linus Torvalds 已提交
6032
/*
I
Ingo Molnar 已提交
6033
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6034 6035
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6036 6037
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6038
{
6039
	struct rq *rq = cpu_rq(cpu);
6040 6041 6042
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
6043
	for (tmp = sd; tmp; ) {
6044 6045 6046
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6047

6048
		if (sd_parent_degenerate(tmp, parent)) {
6049
			tmp->parent = parent->parent;
6050 6051
			if (parent->parent)
				parent->parent->child = tmp;
6052 6053 6054 6055 6056 6057 6058
			/*
			 * Transfer SD_PREFER_SIBLING down in case of a
			 * degenerate parent; the spans match for this
			 * so the property transfers.
			 */
			if (parent->flags & SD_PREFER_SIBLING)
				tmp->flags |= SD_PREFER_SIBLING;
6059
			destroy_sched_domain(parent, cpu);
6060 6061
		} else
			tmp = tmp->parent;
6062 6063
	}

6064
	if (sd && sd_degenerate(sd)) {
6065
		tmp = sd;
6066
		sd = sd->parent;
6067
		destroy_sched_domain(tmp, cpu);
6068 6069 6070
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6071

6072
	sched_domain_debug(sd, cpu);
L
Linus Torvalds 已提交
6073

G
Gregory Haskins 已提交
6074
	rq_attach_root(rq, rd);
6075
	tmp = rq->sd;
N
Nick Piggin 已提交
6076
	rcu_assign_pointer(rq->sd, sd);
6077
	destroy_sched_domains(tmp, cpu);
6078 6079

	update_top_cache_domain(cpu);
L
Linus Torvalds 已提交
6080 6081 6082 6083 6084
}

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
6085
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
6086
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
6087 6088 6089
	return 1;
}

I
Ingo Molnar 已提交
6090
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6091

6092
struct s_data {
6093
	struct sched_domain ** __percpu sd;
6094 6095 6096
	struct root_domain	*rd;
};

6097 6098
enum s_alloc {
	sa_rootdomain,
6099
	sa_sd,
6100
	sa_sd_storage,
6101 6102 6103
	sa_none,
};

P
Peter Zijlstra 已提交
6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141
/*
 * Build an iteration mask that can exclude certain CPUs from the upwards
 * domain traversal.
 *
 * Asymmetric node setups can result in situations where the domain tree is of
 * unequal depth, make sure to skip domains that already cover the entire
 * range.
 *
 * In that case build_sched_domains() will have terminated the iteration early
 * and our sibling sd spans will be empty. Domains should always include the
 * cpu they're built on, so check that.
 *
 */
static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
{
	const struct cpumask *span = sched_domain_span(sd);
	struct sd_data *sdd = sd->private;
	struct sched_domain *sibling;
	int i;

	for_each_cpu(i, span) {
		sibling = *per_cpu_ptr(sdd->sd, i);
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
			continue;

		cpumask_set_cpu(i, sched_group_mask(sg));
	}
}

/*
 * Return the canonical balance cpu for this group, this is the first cpu
 * of this group that's also in the iteration mask.
 */
int group_balance_cpu(struct sched_group *sg)
{
	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
}

6142 6143 6144 6145 6146 6147 6148
static int
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered = sched_domains_tmpmask;
	struct sd_data *sdd = sd->private;
6149
	struct sched_domain *sibling;
6150 6151 6152 6153 6154 6155 6156 6157 6158 6159
	int i;

	cpumask_clear(covered);

	for_each_cpu(i, span) {
		struct cpumask *sg_span;

		if (cpumask_test_cpu(i, covered))
			continue;

6160
		sibling = *per_cpu_ptr(sdd->sd, i);
P
Peter Zijlstra 已提交
6161 6162

		/* See the comment near build_group_mask(). */
6163
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
P
Peter Zijlstra 已提交
6164 6165
			continue;

6166
		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6167
				GFP_KERNEL, cpu_to_node(cpu));
6168 6169 6170 6171 6172

		if (!sg)
			goto fail;

		sg_span = sched_group_cpus(sg);
6173 6174 6175
		if (sibling->child)
			cpumask_copy(sg_span, sched_domain_span(sibling->child));
		else
6176 6177 6178 6179
			cpumask_set_cpu(i, sg_span);

		cpumask_or(covered, covered, sg_span);

6180 6181
		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
		if (atomic_inc_return(&sg->sgc->ref) == 1)
P
Peter Zijlstra 已提交
6182 6183
			build_group_mask(sd, sg);

6184
		/*
6185
		 * Initialize sgc->capacity such that even if we mess up the
6186 6187 6188
		 * domains and no possible iteration will get us here, we won't
		 * die on a /0 trap.
		 */
6189
		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6190

P
Peter Zijlstra 已提交
6191 6192 6193 6194 6195
		/*
		 * Make sure the first group of this domain contains the
		 * canonical balance cpu. Otherwise the sched_domain iteration
		 * breaks. See update_sg_lb_stats().
		 */
P
Peter Zijlstra 已提交
6196
		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
P
Peter Zijlstra 已提交
6197
		    group_balance_cpu(sg) == cpu)
6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216
			groups = sg;

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
		last->next = first;
	}
	sd->groups = groups;

	return 0;

fail:
	free_sched_groups(first, 0);

	return -ENOMEM;
}

6217
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
6218
{
6219 6220
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
6221

6222 6223
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
6224

6225
	if (sg) {
6226
		*sg = *per_cpu_ptr(sdd->sg, cpu);
6227 6228
		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6229
	}
6230 6231

	return cpu;
6232 6233
}

6234
/*
6235 6236
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
6237
 * and ->cpu_capacity to 0.
6238 6239
 *
 * Assumes the sched_domain tree is fully constructed
6240
 */
6241 6242
static int
build_sched_groups(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
6243
{
6244 6245 6246
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
6247
	struct cpumask *covered;
6248
	int i;
6249

6250 6251 6252
	get_group(cpu, sdd, &sd->groups);
	atomic_inc(&sd->groups->ref);

6253
	if (cpu != cpumask_first(span))
6254 6255
		return 0;

6256 6257 6258
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

6259
	cpumask_clear(covered);
6260

6261 6262
	for_each_cpu(i, span) {
		struct sched_group *sg;
6263
		int group, j;
6264

6265 6266
		if (cpumask_test_cpu(i, covered))
			continue;
6267

6268
		group = get_group(i, sdd, &sg);
P
Peter Zijlstra 已提交
6269
		cpumask_setall(sched_group_mask(sg));
6270

6271 6272 6273
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
6274

6275 6276 6277
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
6278

6279 6280 6281 6282 6283 6284 6285
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
6286 6287

	return 0;
6288
}
6289

6290
/*
6291
 * Initialize sched groups cpu_capacity.
6292
 *
6293
 * cpu_capacity indicates the capacity of sched group, which is used while
6294
 * distributing the load between different sched groups in a sched domain.
6295 6296 6297 6298
 * Typically cpu_capacity for all the groups in a sched domain will be same
 * unless there are asymmetries in the topology. If there are asymmetries,
 * group having more cpu_capacity will pickup more load compared to the
 * group having less cpu_capacity.
6299
 */
6300
static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6301
{
6302
	struct sched_group *sg = sd->groups;
6303

6304
	WARN_ON(!sg);
6305 6306 6307 6308 6309

	do {
		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
		sg = sg->next;
	} while (sg != sd->groups);
6310

P
Peter Zijlstra 已提交
6311
	if (cpu != group_balance_cpu(sg))
6312
		return;
6313

6314 6315
	update_group_capacity(sd, cpu);
	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6316 6317
}

6318 6319 6320 6321 6322
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

6323
static int default_relax_domain_level = -1;
6324
int sched_domain_level_max;
6325 6326 6327

static int __init setup_relax_domain_level(char *str)
{
6328 6329
	if (kstrtoint(str, 0, &default_relax_domain_level))
		pr_warn("Unable to set relax_domain_level\n");
6330

6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
6349
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6350 6351
	} else {
		/* turn on idle balance on this domain */
6352
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6353 6354 6355
	}
}

6356 6357 6358
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

6359 6360 6361 6362 6363
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
6364 6365
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
6366 6367
	case sa_sd:
		free_percpu(d->sd); /* fall through */
6368
	case sa_sd_storage:
6369
		__sdt_free(cpu_map); /* fall through */
6370 6371 6372 6373
	case sa_none:
		break;
	}
}
6374

6375 6376 6377
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
6378 6379
	memset(d, 0, sizeof(*d));

6380 6381
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
6382 6383 6384
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
6385
	d->rd = alloc_rootdomain();
6386
	if (!d->rd)
6387
		return sa_sd;
6388 6389
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
6390

6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

6403
	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6404
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6405

6406 6407
	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6408 6409
}

6410 6411
#ifdef CONFIG_NUMA
static int sched_domains_numa_levels;
6412
enum numa_topology_type sched_numa_topology_type;
6413
static int *sched_domains_numa_distance;
6414
int sched_max_numa_distance;
6415 6416
static struct cpumask ***sched_domains_numa_masks;
static int sched_domains_curr_level;
6417
#endif
6418

6419 6420 6421
/*
 * SD_flags allowed in topology descriptions.
 *
6422
 * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6423 6424
 * SD_SHARE_PKG_RESOURCES - describes shared caches
 * SD_NUMA                - describes NUMA topologies
6425
 * SD_SHARE_POWERDOMAIN   - describes shared power domain
6426 6427 6428 6429 6430
 *
 * Odd one out:
 * SD_ASYM_PACKING        - describes SMT quirks
 */
#define TOPOLOGY_SD_FLAGS		\
6431
	(SD_SHARE_CPUCAPACITY |		\
6432 6433
	 SD_SHARE_PKG_RESOURCES |	\
	 SD_NUMA |			\
6434 6435
	 SD_ASYM_PACKING |		\
	 SD_SHARE_POWERDOMAIN)
6436 6437

static struct sched_domain *
6438
sd_init(struct sched_domain_topology_level *tl, int cpu)
6439 6440
{
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456
	int sd_weight, sd_flags = 0;

#ifdef CONFIG_NUMA
	/*
	 * Ugly hack to pass state to sd_numa_mask()...
	 */
	sched_domains_curr_level = tl->numa_level;
#endif

	sd_weight = cpumask_weight(tl->mask(cpu));

	if (tl->sd_flags)
		sd_flags = (*tl->sd_flags)();
	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
			"wrong sd_flags in topology description\n"))
		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6457 6458 6459 6460 6461

	*sd = (struct sched_domain){
		.min_interval		= sd_weight,
		.max_interval		= 2*sd_weight,
		.busy_factor		= 32,
6462
		.imbalance_pct		= 125,
6463 6464 6465 6466

		.cache_nice_tries	= 0,
		.busy_idx		= 0,
		.idle_idx		= 0,
6467 6468 6469 6470 6471 6472
		.newidle_idx		= 0,
		.wake_idx		= 0,
		.forkexec_idx		= 0,

		.flags			= 1*SD_LOAD_BALANCE
					| 1*SD_BALANCE_NEWIDLE
6473 6474
					| 1*SD_BALANCE_EXEC
					| 1*SD_BALANCE_FORK
6475
					| 0*SD_BALANCE_WAKE
6476
					| 1*SD_WAKE_AFFINE
6477
					| 0*SD_SHARE_CPUCAPACITY
6478
					| 0*SD_SHARE_PKG_RESOURCES
6479
					| 0*SD_SERIALIZE
6480
					| 0*SD_PREFER_SIBLING
6481 6482
					| 0*SD_NUMA
					| sd_flags
6483
					,
6484

6485 6486
		.last_balance		= jiffies,
		.balance_interval	= sd_weight,
6487
		.smt_gain		= 0,
6488 6489
		.max_newidle_lb_cost	= 0,
		.next_decay_max_lb_cost	= jiffies,
6490 6491 6492
#ifdef CONFIG_SCHED_DEBUG
		.name			= tl->name,
#endif
6493 6494 6495
	};

	/*
6496
	 * Convert topological properties into behaviour.
6497
	 */
6498

6499
	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6500
		sd->flags |= SD_PREFER_SIBLING;
6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530
		sd->imbalance_pct = 110;
		sd->smt_gain = 1178; /* ~15% */

	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
		sd->imbalance_pct = 117;
		sd->cache_nice_tries = 1;
		sd->busy_idx = 2;

#ifdef CONFIG_NUMA
	} else if (sd->flags & SD_NUMA) {
		sd->cache_nice_tries = 2;
		sd->busy_idx = 3;
		sd->idle_idx = 2;

		sd->flags |= SD_SERIALIZE;
		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
			sd->flags &= ~(SD_BALANCE_EXEC |
				       SD_BALANCE_FORK |
				       SD_WAKE_AFFINE);
		}

#endif
	} else {
		sd->flags |= SD_PREFER_SIBLING;
		sd->cache_nice_tries = 1;
		sd->busy_idx = 2;
		sd->idle_idx = 1;
	}

	sd->private = &tl->data;
6531 6532 6533 6534

	return sd;
}

6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548
/*
 * Topology list, bottom-up.
 */
static struct sched_domain_topology_level default_topology[] = {
#ifdef CONFIG_SCHED_SMT
	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
#endif
#ifdef CONFIG_SCHED_MC
	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
#endif
	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
	{ NULL, },
};

6549 6550
static struct sched_domain_topology_level *sched_domain_topology =
	default_topology;
6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561

#define for_each_sd_topology(tl)			\
	for (tl = sched_domain_topology; tl->mask; tl++)

void set_sched_topology(struct sched_domain_topology_level *tl)
{
	sched_domain_topology = tl;
}

#ifdef CONFIG_NUMA

6562 6563 6564 6565 6566
static const struct cpumask *sd_numa_mask(int cpu)
{
	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
}

6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587
static void sched_numa_warn(const char *str)
{
	static int done = false;
	int i,j;

	if (done)
		return;

	done = true;

	printk(KERN_WARNING "ERROR: %s\n\n", str);

	for (i = 0; i < nr_node_ids; i++) {
		printk(KERN_WARNING "  ");
		for (j = 0; j < nr_node_ids; j++)
			printk(KERN_CONT "%02d ", node_distance(i,j));
		printk(KERN_CONT "\n");
	}
	printk(KERN_WARNING "\n");
}

6588
bool find_numa_distance(int distance)
6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602
{
	int i;

	if (distance == node_distance(0, 0))
		return true;

	for (i = 0; i < sched_domains_numa_levels; i++) {
		if (sched_domains_numa_distance[i] == distance)
			return true;
	}

	return false;
}

6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627
/*
 * A system can have three types of NUMA topology:
 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
 *
 * The difference between a glueless mesh topology and a backplane
 * topology lies in whether communication between not directly
 * connected nodes goes through intermediary nodes (where programs
 * could run), or through backplane controllers. This affects
 * placement of programs.
 *
 * The type of topology can be discerned with the following tests:
 * - If the maximum distance between any nodes is 1 hop, the system
 *   is directly connected.
 * - If for two nodes A and B, located N > 1 hops away from each other,
 *   there is an intermediary node C, which is < N hops away from both
 *   nodes A and B, the system is a glueless mesh.
 */
static void init_numa_topology_type(void)
{
	int a, b, c, n;

	n = sched_max_numa_distance;

6628
	if (sched_domains_numa_levels <= 1) {
6629
		sched_numa_topology_type = NUMA_DIRECT;
6630 6631
		return;
	}
6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654

	for_each_online_node(a) {
		for_each_online_node(b) {
			/* Find two nodes furthest removed from each other. */
			if (node_distance(a, b) < n)
				continue;

			/* Is there an intermediary node between a and b? */
			for_each_online_node(c) {
				if (node_distance(a, c) < n &&
				    node_distance(b, c) < n) {
					sched_numa_topology_type =
							NUMA_GLUELESS_MESH;
					return;
				}
			}

			sched_numa_topology_type = NUMA_BACKPLANE;
			return;
		}
	}
}

6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675
static void sched_init_numa(void)
{
	int next_distance, curr_distance = node_distance(0, 0);
	struct sched_domain_topology_level *tl;
	int level = 0;
	int i, j, k;

	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
	if (!sched_domains_numa_distance)
		return;

	/*
	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
	 * unique distances in the node_distance() table.
	 *
	 * Assumes node_distance(0,j) includes all distances in
	 * node_distance(i,j) in order to avoid cubic time.
	 */
	next_distance = curr_distance;
	for (i = 0; i < nr_node_ids; i++) {
		for (j = 0; j < nr_node_ids; j++) {
6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699
			for (k = 0; k < nr_node_ids; k++) {
				int distance = node_distance(i, k);

				if (distance > curr_distance &&
				    (distance < next_distance ||
				     next_distance == curr_distance))
					next_distance = distance;

				/*
				 * While not a strong assumption it would be nice to know
				 * about cases where if node A is connected to B, B is not
				 * equally connected to A.
				 */
				if (sched_debug() && node_distance(k, i) != distance)
					sched_numa_warn("Node-distance not symmetric");

				if (sched_debug() && i && !find_numa_distance(distance))
					sched_numa_warn("Node-0 not representative");
			}
			if (next_distance != curr_distance) {
				sched_domains_numa_distance[level++] = next_distance;
				sched_domains_numa_levels = level;
				curr_distance = next_distance;
			} else break;
6700
		}
6701 6702 6703 6704 6705 6706

		/*
		 * In case of sched_debug() we verify the above assumption.
		 */
		if (!sched_debug())
			break;
6707
	}
6708 6709 6710 6711

	if (!level)
		return;

6712 6713 6714 6715
	/*
	 * 'level' contains the number of unique distances, excluding the
	 * identity distance node_distance(i,i).
	 *
V
Viresh Kumar 已提交
6716
	 * The sched_domains_numa_distance[] array includes the actual distance
6717 6718 6719
	 * numbers.
	 */

6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730
	/*
	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
	 * the array will contain less then 'level' members. This could be
	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
	 * in other functions.
	 *
	 * We reset it to 'level' at the end of this function.
	 */
	sched_domains_numa_levels = 0;

6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745
	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
	if (!sched_domains_numa_masks)
		return;

	/*
	 * Now for each level, construct a mask per node which contains all
	 * cpus of nodes that are that many hops away from us.
	 */
	for (i = 0; i < level; i++) {
		sched_domains_numa_masks[i] =
			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
		if (!sched_domains_numa_masks[i])
			return;

		for (j = 0; j < nr_node_ids; j++) {
6746
			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6747 6748 6749 6750 6751 6752
			if (!mask)
				return;

			sched_domains_numa_masks[i][j] = mask;

			for (k = 0; k < nr_node_ids; k++) {
6753
				if (node_distance(j, k) > sched_domains_numa_distance[i])
6754 6755 6756 6757 6758 6759 6760
					continue;

				cpumask_or(mask, mask, cpumask_of_node(k));
			}
		}
	}

6761 6762 6763
	/* Compute default topology size */
	for (i = 0; sched_domain_topology[i].mask; i++);

6764
	tl = kzalloc((i + level + 1) *
6765 6766 6767 6768 6769 6770 6771
			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
	if (!tl)
		return;

	/*
	 * Copy the default topology bits..
	 */
6772 6773
	for (i = 0; sched_domain_topology[i].mask; i++)
		tl[i] = sched_domain_topology[i];
6774 6775 6776 6777 6778 6779 6780

	/*
	 * .. and append 'j' levels of NUMA goodness.
	 */
	for (j = 0; j < level; i++, j++) {
		tl[i] = (struct sched_domain_topology_level){
			.mask = sd_numa_mask,
6781
			.sd_flags = cpu_numa_flags,
6782 6783
			.flags = SDTL_OVERLAP,
			.numa_level = j,
6784
			SD_INIT_NAME(NUMA)
6785 6786 6787 6788
		};
	}

	sched_domain_topology = tl;
6789 6790

	sched_domains_numa_levels = level;
6791
	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6792 6793

	init_numa_topology_type();
6794
}
6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841

static void sched_domains_numa_masks_set(int cpu)
{
	int i, j;
	int node = cpu_to_node(cpu);

	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++) {
			if (node_distance(j, node) <= sched_domains_numa_distance[i])
				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
		}
	}
}

static void sched_domains_numa_masks_clear(int cpu)
{
	int i, j;
	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++)
			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
	}
}

/*
 * Update sched_domains_numa_masks[level][node] array when new cpus
 * are onlined.
 */
static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	int cpu = (long)hcpu;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
		sched_domains_numa_masks_set(cpu);
		break;

	case CPU_DEAD:
		sched_domains_numa_masks_clear(cpu);
		break;

	default:
		return NOTIFY_DONE;
	}

	return NOTIFY_OK;
6842 6843 6844 6845 6846
}
#else
static inline void sched_init_numa(void)
{
}
6847 6848 6849 6850 6851 6852 6853

static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	return 0;
}
6854 6855
#endif /* CONFIG_NUMA */

6856 6857 6858 6859 6860
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

6861
	for_each_sd_topology(tl) {
6862 6863 6864 6865 6866 6867 6868 6869 6870 6871
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

6872 6873
		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
		if (!sdd->sgc)
6874 6875
			return -ENOMEM;

6876 6877 6878
		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_group *sg;
6879
			struct sched_group_capacity *sgc;
6880

P
Peter Zijlstra 已提交
6881
			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

6893 6894
			sg->next = sg;

6895
			*per_cpu_ptr(sdd->sg, j) = sg;
6896

6897
			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6898
					GFP_KERNEL, cpu_to_node(j));
6899
			if (!sgc)
6900 6901
				return -ENOMEM;

6902
			*per_cpu_ptr(sdd->sgc, j) = sgc;
6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

6914
	for_each_sd_topology(tl) {
6915 6916 6917
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928
			struct sched_domain *sd;

			if (sdd->sd) {
				sd = *per_cpu_ptr(sdd->sd, j);
				if (sd && (sd->flags & SD_OVERLAP))
					free_sched_groups(sd->groups, 0);
				kfree(*per_cpu_ptr(sdd->sd, j));
			}

			if (sdd->sg)
				kfree(*per_cpu_ptr(sdd->sg, j));
6929 6930
			if (sdd->sgc)
				kfree(*per_cpu_ptr(sdd->sgc, j));
6931 6932
		}
		free_percpu(sdd->sd);
6933
		sdd->sd = NULL;
6934
		free_percpu(sdd->sg);
6935
		sdd->sg = NULL;
6936 6937
		free_percpu(sdd->sgc);
		sdd->sgc = NULL;
6938 6939 6940
	}
}

6941
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6942 6943
		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
		struct sched_domain *child, int cpu)
6944
{
6945
	struct sched_domain *sd = sd_init(tl, cpu);
6946
	if (!sd)
6947
		return child;
6948 6949

	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6950 6951 6952
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6953
		child->parent = sd;
6954
		sd->child = child;
P
Peter Zijlstra 已提交
6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968

		if (!cpumask_subset(sched_domain_span(child),
				    sched_domain_span(sd))) {
			pr_err("BUG: arch topology borken\n");
#ifdef CONFIG_SCHED_DEBUG
			pr_err("     the %s domain not a subset of the %s domain\n",
					child->name, sd->name);
#endif
			/* Fixup, ensure @sd has at least @child cpus. */
			cpumask_or(sched_domain_span(sd),
				   sched_domain_span(sd),
				   sched_domain_span(child));
		}

6969
	}
6970
	set_domain_attribute(sd, attr);
6971 6972 6973 6974

	return sd;
}

6975 6976 6977 6978
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
6979 6980
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
6981
{
6982
	enum s_alloc alloc_state;
6983
	struct sched_domain *sd;
6984
	struct s_data d;
6985
	int i, ret = -ENOMEM;
6986

6987 6988 6989
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
6990

6991
	/* Set up domains for cpus specified by the cpu_map. */
6992
	for_each_cpu(i, cpu_map) {
6993 6994
		struct sched_domain_topology_level *tl;

6995
		sd = NULL;
6996
		for_each_sd_topology(tl) {
6997
			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6998 6999
			if (tl == sched_domain_topology)
				*per_cpu_ptr(d.sd, i) = sd;
7000 7001
			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
				sd->flags |= SD_OVERLAP;
7002 7003
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
				break;
7004
		}
7005 7006 7007 7008 7009 7010
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
7011 7012 7013 7014 7015 7016 7017
			if (sd->flags & SD_OVERLAP) {
				if (build_overlap_sched_groups(sd, i))
					goto error;
			} else {
				if (build_sched_groups(sd, i))
					goto error;
			}
7018
		}
7019
	}
7020

7021
	/* Calculate CPU capacity for physical packages and nodes */
7022 7023 7024
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
7025

7026 7027
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
7028
			init_sched_groups_capacity(i, sd);
7029
		}
7030
	}
7031

L
Linus Torvalds 已提交
7032
	/* Attach the domains */
7033
	rcu_read_lock();
7034
	for_each_cpu(i, cpu_map) {
7035
		sd = *per_cpu_ptr(d.sd, i);
7036
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
7037
	}
7038
	rcu_read_unlock();
7039

7040
	ret = 0;
7041
error:
7042
	__free_domain_allocs(&d, alloc_state, cpu_map);
7043
	return ret;
L
Linus Torvalds 已提交
7044
}
P
Paul Jackson 已提交
7045

7046
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
7047
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7048 7049
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7050 7051 7052

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
7053 7054
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
7055
 */
7056
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
7057

7058 7059 7060 7061 7062
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
7063
int __weak arch_update_cpu_topology(void)
7064
{
7065
	return 0;
7066 7067
}

7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

7093
/*
I
Ingo Molnar 已提交
7094
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7095 7096
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7097
 */
7098
static int init_sched_domains(const struct cpumask *cpu_map)
7099
{
7100 7101
	int err;

7102
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7103
	ndoms_cur = 1;
7104
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
7105
	if (!doms_cur)
7106 7107
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7108
	err = build_sched_domains(doms_cur[0], NULL);
7109
	register_sched_domain_sysctl();
7110 7111

	return err;
7112 7113 7114 7115 7116 7117
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7118
static void detach_destroy_domains(const struct cpumask *cpu_map)
7119 7120 7121
{
	int i;

7122
	rcu_read_lock();
7123
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
7124
		cpu_attach_domain(NULL, &def_root_domain, i);
7125
	rcu_read_unlock();
7126 7127
}

7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7144 7145
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7146
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7147 7148 7149
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
7150
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7151 7152 7153
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7154 7155 7156
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
7157 7158 7159 7160 7161 7162
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
7163
 *
7164
 * If doms_new == NULL it will be replaced with cpu_online_mask.
7165 7166
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
7167
 *
P
Paul Jackson 已提交
7168 7169
 * Call with hotplug lock held
 */
7170
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7171
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7172
{
7173
	int i, j, n;
7174
	int new_topology;
P
Paul Jackson 已提交
7175

7176
	mutex_lock(&sched_domains_mutex);
7177

7178 7179 7180
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7181 7182 7183
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

7184
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
7185 7186 7187

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
7188
		for (j = 0; j < n && !new_topology; j++) {
7189
			if (cpumask_equal(doms_cur[i], doms_new[j])
7190
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7191 7192 7193
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
7194
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
7195 7196 7197 7198
match1:
		;
	}

7199
	n = ndoms_cur;
7200
	if (doms_new == NULL) {
7201
		n = 0;
7202
		doms_new = &fallback_doms;
7203
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7204
		WARN_ON_ONCE(dattr_new);
7205 7206
	}

P
Paul Jackson 已提交
7207 7208
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
7209
		for (j = 0; j < n && !new_topology; j++) {
7210
			if (cpumask_equal(doms_new[i], doms_cur[j])
7211
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7212 7213 7214
				goto match2;
		}
		/* no match - add a new doms_new */
7215
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7216 7217 7218 7219 7220
match2:
		;
	}

	/* Remember the new sched domains */
7221 7222
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
7223
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7224
	doms_cur = doms_new;
7225
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7226
	ndoms_cur = ndoms_new;
7227 7228

	register_sched_domain_sysctl();
7229

7230
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7231 7232
}

7233 7234
static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */

L
Linus Torvalds 已提交
7235
/*
7236 7237 7238
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
7239 7240 7241
 *
 * If we come here as part of a suspend/resume, don't touch cpusets because we
 * want to restore it back to its original state upon resume anyway.
L
Linus Torvalds 已提交
7242
 */
7243 7244
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
7245
{
7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267
	switch (action) {
	case CPU_ONLINE_FROZEN:
	case CPU_DOWN_FAILED_FROZEN:

		/*
		 * num_cpus_frozen tracks how many CPUs are involved in suspend
		 * resume sequence. As long as this is not the last online
		 * operation in the resume sequence, just build a single sched
		 * domain, ignoring cpusets.
		 */
		num_cpus_frozen--;
		if (likely(num_cpus_frozen)) {
			partition_sched_domains(1, NULL, NULL);
			break;
		}

		/*
		 * This is the last CPU online operation. So fall through and
		 * restore the original sched domains by considering the
		 * cpuset configurations.
		 */

7268
	case CPU_ONLINE:
7269
		cpuset_update_active_cpus(true);
7270
		break;
7271 7272 7273
	default:
		return NOTIFY_DONE;
	}
7274
	return NOTIFY_OK;
7275
}
7276

7277 7278
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
7279
{
7280 7281 7282
	unsigned long flags;
	long cpu = (long)hcpu;
	struct dl_bw *dl_b;
7283 7284
	bool overflow;
	int cpus;
7285

7286
	switch (action) {
7287
	case CPU_DOWN_PREPARE:
7288 7289
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);
7290

7291 7292 7293 7294
		raw_spin_lock_irqsave(&dl_b->lock, flags);
		cpus = dl_bw_cpus(cpu);
		overflow = __dl_overflow(dl_b, cpus, 0, 0);
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7295

7296
		rcu_read_unlock_sched();
7297

7298 7299
		if (overflow)
			return notifier_from_errno(-EBUSY);
7300
		cpuset_update_active_cpus(false);
7301 7302 7303 7304 7305
		break;
	case CPU_DOWN_PREPARE_FROZEN:
		num_cpus_frozen++;
		partition_sched_domains(1, NULL, NULL);
		break;
7306 7307 7308
	default:
		return NOTIFY_DONE;
	}
7309
	return NOTIFY_OK;
7310 7311
}

L
Linus Torvalds 已提交
7312 7313
void __init sched_init_smp(void)
{
7314 7315 7316
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7317
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7318

7319 7320
	sched_init_numa();

7321 7322 7323 7324 7325
	/*
	 * There's no userspace yet to cause hotplug operations; hence all the
	 * cpu masks are stable and all blatant races in the below code cannot
	 * happen.
	 */
7326
	mutex_lock(&sched_domains_mutex);
7327
	init_sched_domains(cpu_active_mask);
7328 7329 7330
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7331
	mutex_unlock(&sched_domains_mutex);
7332

7333
	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7334 7335
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7336

7337
	init_hrtick();
7338 7339

	/* Move init over to a non-isolated CPU */
7340
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7341
		BUG();
I
Ingo Molnar 已提交
7342
	sched_init_granularity();
7343
	free_cpumask_var(non_isolated_cpus);
7344

7345
	init_sched_rt_class();
7346
	init_sched_dl_class();
L
Linus Torvalds 已提交
7347 7348 7349 7350
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7351
	sched_init_granularity();
L
Linus Torvalds 已提交
7352 7353 7354 7355 7356 7357 7358 7359 7360 7361
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

7362
#ifdef CONFIG_CGROUP_SCHED
7363 7364 7365 7366
/*
 * Default task group.
 * Every task in system belongs to this group at bootup.
 */
7367
struct task_group root_task_group;
7368
LIST_HEAD(task_groups);
7369
#endif
P
Peter Zijlstra 已提交
7370

7371
DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
P
Peter Zijlstra 已提交
7372

L
Linus Torvalds 已提交
7373 7374
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7375
	int i, j;
7376 7377 7378 7379 7380 7381 7382 7383 7384
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
	if (alloc_size) {
7385
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7386 7387

#ifdef CONFIG_FAIR_GROUP_SCHED
7388
		root_task_group.se = (struct sched_entity **)ptr;
7389 7390
		ptr += nr_cpu_ids * sizeof(void **);

7391
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7392
		ptr += nr_cpu_ids * sizeof(void **);
7393

7394
#endif /* CONFIG_FAIR_GROUP_SCHED */
7395
#ifdef CONFIG_RT_GROUP_SCHED
7396
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7397 7398
		ptr += nr_cpu_ids * sizeof(void **);

7399
		root_task_group.rt_rq = (struct rt_rq **)ptr;
7400 7401
		ptr += nr_cpu_ids * sizeof(void **);

7402
#endif /* CONFIG_RT_GROUP_SCHED */
7403
	}
7404
#ifdef CONFIG_CPUMASK_OFFSTACK
7405 7406 7407
	for_each_possible_cpu(i) {
		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7408
	}
7409
#endif /* CONFIG_CPUMASK_OFFSTACK */
I
Ingo Molnar 已提交
7410

7411 7412 7413
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());
	init_dl_bandwidth(&def_dl_bandwidth,
7414
			global_rt_period(), global_rt_runtime());
7415

G
Gregory Haskins 已提交
7416 7417 7418 7419
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7420
#ifdef CONFIG_RT_GROUP_SCHED
7421
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7422
			global_rt_period(), global_rt_runtime());
7423
#endif /* CONFIG_RT_GROUP_SCHED */
7424

D
Dhaval Giani 已提交
7425
#ifdef CONFIG_CGROUP_SCHED
7426 7427
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
7428
	INIT_LIST_HEAD(&root_task_group.siblings);
7429
	autogroup_init(&init_task);
7430

D
Dhaval Giani 已提交
7431
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
7432

7433
	for_each_possible_cpu(i) {
7434
		struct rq *rq;
L
Linus Torvalds 已提交
7435 7436

		rq = cpu_rq(i);
7437
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
7438
		rq->nr_running = 0;
7439 7440
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
7441
		init_cfs_rq(&rq->cfs);
7442 7443
		init_rt_rq(&rq->rt);
		init_dl_rq(&rq->dl);
I
Ingo Molnar 已提交
7444
#ifdef CONFIG_FAIR_GROUP_SCHED
7445
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
7446
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
7447
		/*
7448
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
7449 7450 7451 7452
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
7453
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
7454 7455 7456
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
7457
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
7458 7459 7460
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
7461
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
7462
		 *
7463 7464
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
7465
		 */
7466
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7467
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
7468 7469 7470
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7471
#ifdef CONFIG_RT_GROUP_SCHED
7472
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
7473
#endif
L
Linus Torvalds 已提交
7474

I
Ingo Molnar 已提交
7475 7476
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
7477 7478 7479

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
7480
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7481
		rq->sd = NULL;
G
Gregory Haskins 已提交
7482
		rq->rd = NULL;
7483
		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7484
		rq->balance_callback = NULL;
L
Linus Torvalds 已提交
7485
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7486
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7487
		rq->push_cpu = 0;
7488
		rq->cpu = i;
7489
		rq->online = 0;
7490 7491
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
7492
		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7493 7494 7495

		INIT_LIST_HEAD(&rq->cfs_tasks);

7496
		rq_attach_root(rq, &def_root_domain);
7497
#ifdef CONFIG_NO_HZ_COMMON
7498
		rq->nohz_flags = 0;
7499
#endif
7500 7501 7502
#ifdef CONFIG_NO_HZ_FULL
		rq->last_sched_tick = 0;
#endif
L
Linus Torvalds 已提交
7503
#endif
P
Peter Zijlstra 已提交
7504
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7505 7506 7507
		atomic_set(&rq->nr_iowait, 0);
	}

7508
	set_load_weight(&init_task);
7509

7510 7511 7512 7513
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

L
Linus Torvalds 已提交
7514 7515 7516 7517 7518 7519
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

7520 7521 7522 7523 7524
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;

L
Linus Torvalds 已提交
7525 7526 7527 7528 7529 7530 7531
	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
7532 7533 7534

	calc_load_update = jiffies + LOAD_FREQ;

7535
#ifdef CONFIG_SMP
7536
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
R
Rusty Russell 已提交
7537 7538 7539
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7540
	idle_thread_set_boot_cpu();
7541
	set_cpu_rq_start_time();
7542 7543
#endif
	init_sched_fair_class();
7544

7545
	scheduler_running = 1;
L
Linus Torvalds 已提交
7546 7547
}

7548
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7549 7550
static inline int preempt_count_equals(int preempt_offset)
{
7551
	int nested = preempt_count() + rcu_preempt_depth();
7552

A
Arnd Bergmann 已提交
7553
	return (nested == preempt_offset);
7554 7555
}

7556
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7557
{
P
Peter Zijlstra 已提交
7558 7559 7560 7561 7562
	/*
	 * Blocking primitives will set (and therefore destroy) current->state,
	 * since we will exit with TASK_RUNNING make sure we enter with it,
	 * otherwise we will destroy state.
	 */
7563
	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
P
Peter Zijlstra 已提交
7564 7565 7566 7567
			"do not call blocking ops when !TASK_RUNNING; "
			"state=%lx set at [<%p>] %pS\n",
			current->state,
			(void *)current->task_state_change,
7568
			(void *)current->task_state_change);
P
Peter Zijlstra 已提交
7569

7570 7571 7572 7573 7574
	___might_sleep(file, line, preempt_offset);
}
EXPORT_SYMBOL(__might_sleep);

void ___might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7575 7576 7577
{
	static unsigned long prev_jiffy;	/* ratelimiting */

7578
	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7579 7580
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
	     !is_idle_task(current)) ||
7581
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
7582 7583 7584 7585 7586
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
7587 7588 7589 7590 7591 7592 7593
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
7594

7595 7596 7597
	if (task_stack_end_corrupted(current))
		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");

I
Ingo Molnar 已提交
7598 7599 7600
	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
7601 7602 7603 7604 7605 7606 7607
#ifdef CONFIG_DEBUG_PREEMPT
	if (!preempt_count_equals(preempt_offset)) {
		pr_err("Preemption disabled at:");
		print_ip_sym(current->preempt_disable_ip);
		pr_cont("\n");
	}
#endif
I
Ingo Molnar 已提交
7608
	dump_stack();
L
Linus Torvalds 已提交
7609
}
7610
EXPORT_SYMBOL(___might_sleep);
L
Linus Torvalds 已提交
7611 7612 7613
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7614
void normalize_rt_tasks(void)
7615
{
7616
	struct task_struct *g, *p;
7617 7618 7619
	struct sched_attr attr = {
		.sched_policy = SCHED_NORMAL,
	};
L
Linus Torvalds 已提交
7620

7621
	read_lock(&tasklist_lock);
7622
	for_each_process_thread(g, p) {
7623 7624 7625
		/*
		 * Only normalize user tasks:
		 */
7626
		if (p->flags & PF_KTHREAD)
7627 7628
			continue;

I
Ingo Molnar 已提交
7629 7630
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
7631 7632 7633
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
7634
#endif
I
Ingo Molnar 已提交
7635

7636
		if (!dl_task(p) && !rt_task(p)) {
I
Ingo Molnar 已提交
7637 7638 7639 7640
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
7641
			if (task_nice(p) < 0)
I
Ingo Molnar 已提交
7642
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7643
			continue;
I
Ingo Molnar 已提交
7644
		}
L
Linus Torvalds 已提交
7645

7646
		__sched_setscheduler(p, &attr, false, false);
7647
	}
7648
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
7649 7650 7651
}

#endif /* CONFIG_MAGIC_SYSRQ */
7652

7653
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7654
/*
7655
 * These functions are only useful for the IA64 MCA handling, or kdb.
7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7669 7670
 *
 * Return: The current task for @cpu.
7671
 */
7672
struct task_struct *curr_task(int cpu)
7673 7674 7675 7676
{
	return cpu_curr(cpu);
}

7677 7678 7679
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
7680 7681 7682 7683 7684 7685
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7686 7687
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7688 7689 7690 7691 7692 7693 7694
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7695
void set_curr_task(int cpu, struct task_struct *p)
7696 7697 7698 7699 7700
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7701

D
Dhaval Giani 已提交
7702
#ifdef CONFIG_CGROUP_SCHED
7703 7704 7705
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

7706 7707 7708 7709
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
7710
	autogroup_free(tg);
7711 7712 7713 7714
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
7715
struct task_group *sched_create_group(struct task_group *parent)
7716 7717 7718 7719 7720 7721 7722
{
	struct task_group *tg;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

7723
	if (!alloc_fair_sched_group(tg, parent))
7724 7725
		goto err;

7726
	if (!alloc_rt_sched_group(tg, parent))
7727 7728
		goto err;

7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739
	return tg;

err:
	free_sched_group(tg);
	return ERR_PTR(-ENOMEM);
}

void sched_online_group(struct task_group *tg, struct task_group *parent)
{
	unsigned long flags;

7740
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7741
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
7742 7743 7744 7745 7746

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
7747
	list_add_rcu(&tg->siblings, &parent->children);
7748
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7749 7750
}

7751
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
7752
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7753 7754
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
7755
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
7756 7757
}

7758
/* Destroy runqueue etc associated with a task group */
7759
void sched_destroy_group(struct task_group *tg)
7760 7761 7762 7763 7764 7765
{
	/* wait for possible concurrent references to cfs_rqs complete */
	call_rcu(&tg->rcu, free_sched_group_rcu);
}

void sched_offline_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7766
{
7767
	unsigned long flags;
7768
	int i;
S
Srivatsa Vaddagiri 已提交
7769

7770 7771
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
7772
		unregister_fair_sched_group(tg, i);
7773 7774

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7775
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
7776
	list_del_rcu(&tg->siblings);
7777
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7778 7779
}

7780
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7781 7782 7783
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7784 7785
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7786
{
P
Peter Zijlstra 已提交
7787
	struct task_group *tg;
7788
	int queued, running;
S
Srivatsa Vaddagiri 已提交
7789 7790 7791 7792 7793
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

7794
	running = task_current(rq, tsk);
7795
	queued = task_on_rq_queued(tsk);
S
Srivatsa Vaddagiri 已提交
7796

7797
	if (queued)
7798
		dequeue_task(rq, tsk, DEQUEUE_SAVE);
7799
	if (unlikely(running))
7800
		put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7801

7802 7803 7804 7805 7806 7807
	/*
	 * All callers are synchronized by task_rq_lock(); we do not use RCU
	 * which is pointless here. Thus, we pass "true" to task_css_check()
	 * to prevent lockdep warnings.
	 */
	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
P
Peter Zijlstra 已提交
7808 7809 7810 7811
			  struct task_group, css);
	tg = autogroup_task_group(tsk, tg);
	tsk->sched_task_group = tg;

P
Peter Zijlstra 已提交
7812
#ifdef CONFIG_FAIR_GROUP_SCHED
7813
	if (tsk->sched_class->task_move_group)
7814
		tsk->sched_class->task_move_group(tsk);
7815
	else
P
Peter Zijlstra 已提交
7816
#endif
7817
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
7818

7819 7820
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
7821
	if (queued)
7822
		enqueue_task(rq, tsk, ENQUEUE_RESTORE);
S
Srivatsa Vaddagiri 已提交
7823

7824
	task_rq_unlock(rq, tsk, &flags);
S
Srivatsa Vaddagiri 已提交
7825
}
D
Dhaval Giani 已提交
7826
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
7827

7828 7829 7830 7831 7832
#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
P
Peter Zijlstra 已提交
7833

P
Peter Zijlstra 已提交
7834 7835
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
7836
{
P
Peter Zijlstra 已提交
7837
	struct task_struct *g, *p;
7838

7839 7840 7841 7842 7843 7844
	/*
	 * Autogroups do not have RT tasks; see autogroup_create().
	 */
	if (task_group_is_autogroup(tg))
		return 0;

7845
	for_each_process_thread(g, p) {
7846
		if (rt_task(p) && task_group(p) == tg)
P
Peter Zijlstra 已提交
7847
			return 1;
7848
	}
7849

P
Peter Zijlstra 已提交
7850 7851
	return 0;
}
7852

P
Peter Zijlstra 已提交
7853 7854 7855 7856 7857
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
7858

7859
static int tg_rt_schedulable(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
7860 7861 7862 7863 7864
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
7865

P
Peter Zijlstra 已提交
7866 7867
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
7868

P
Peter Zijlstra 已提交
7869 7870 7871
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
7872 7873
	}

7874 7875 7876 7877 7878
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
7879

7880 7881 7882
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
7883 7884
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
7885

P
Peter Zijlstra 已提交
7886
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7887

7888 7889 7890 7891 7892
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
7893

7894 7895 7896
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
7897 7898 7899
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7900

P
Peter Zijlstra 已提交
7901 7902 7903 7904
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
7905

P
Peter Zijlstra 已提交
7906
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7907
	}
P
Peter Zijlstra 已提交
7908

P
Peter Zijlstra 已提交
7909 7910 7911 7912
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
7913 7914
}

P
Peter Zijlstra 已提交
7915
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7916
{
7917 7918
	int ret;

P
Peter Zijlstra 已提交
7919 7920 7921 7922 7923 7924
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

7925 7926 7927 7928 7929
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7930 7931
}

7932
static int tg_set_rt_bandwidth(struct task_group *tg,
7933
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
7934
{
P
Peter Zijlstra 已提交
7935
	int i, err = 0;
P
Peter Zijlstra 已提交
7936

7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947
	/*
	 * Disallowing the root group RT runtime is BAD, it would disallow the
	 * kernel creating (and or operating) RT threads.
	 */
	if (tg == &root_task_group && rt_runtime == 0)
		return -EINVAL;

	/* No period doesn't make any sense. */
	if (rt_period == 0)
		return -EINVAL;

P
Peter Zijlstra 已提交
7948
	mutex_lock(&rt_constraints_mutex);
7949
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
7950 7951
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
7952
		goto unlock;
P
Peter Zijlstra 已提交
7953

7954
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7955 7956
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
7957 7958 7959 7960

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

7961
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7962
		rt_rq->rt_runtime = rt_runtime;
7963
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7964
	}
7965
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
7966
unlock:
7967
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
7968 7969 7970
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
7971 7972
}

7973
static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7974 7975 7976 7977 7978 7979 7980 7981
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

7982
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7983 7984
}

7985
static long sched_group_rt_runtime(struct task_group *tg)
P
Peter Zijlstra 已提交
7986 7987 7988
{
	u64 rt_runtime_us;

7989
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7990 7991
		return -1;

7992
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7993 7994 7995
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
7996

7997
static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
7998 7999 8000
{
	u64 rt_runtime, rt_period;

8001
	rt_period = rt_period_us * NSEC_PER_USEC;
8002 8003
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8004
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8005 8006
}

8007
static long sched_group_rt_period(struct task_group *tg)
8008 8009 8010 8011 8012 8013 8014
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}
8015
#endif /* CONFIG_RT_GROUP_SCHED */
8016

8017
#ifdef CONFIG_RT_GROUP_SCHED
8018 8019 8020 8021 8022
static int sched_rt_global_constraints(void)
{
	int ret = 0;

	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
8023
	read_lock(&tasklist_lock);
8024
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
8025
	read_unlock(&tasklist_lock);
8026 8027 8028 8029
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
8030

8031
static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8032 8033 8034 8035 8036 8037 8038 8039
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

8040
#else /* !CONFIG_RT_GROUP_SCHED */
8041 8042
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
8043
	unsigned long flags;
8044
	int i, ret = 0;
8045

8046
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8047 8048 8049
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

8050
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8051
		rt_rq->rt_runtime = global_rt_runtime();
8052
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8053
	}
8054
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8055

8056
	return ret;
8057
}
8058
#endif /* CONFIG_RT_GROUP_SCHED */
8059

8060
static int sched_dl_global_validate(void)
8061
{
8062 8063
	u64 runtime = global_rt_runtime();
	u64 period = global_rt_period();
8064
	u64 new_bw = to_ratio(period, runtime);
8065
	struct dl_bw *dl_b;
8066
	int cpu, ret = 0;
8067
	unsigned long flags;
8068 8069 8070 8071 8072 8073 8074 8075 8076 8077

	/*
	 * Here we want to check the bandwidth not being set to some
	 * value smaller than the currently allocated bandwidth in
	 * any of the root_domains.
	 *
	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
	 * cycling on root_domains... Discussion on different/better
	 * solutions is welcome!
	 */
8078
	for_each_possible_cpu(cpu) {
8079 8080
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);
8081

8082
		raw_spin_lock_irqsave(&dl_b->lock, flags);
8083 8084
		if (new_bw < dl_b->total_bw)
			ret = -EBUSY;
8085
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8086

8087 8088
		rcu_read_unlock_sched();

8089 8090
		if (ret)
			break;
8091 8092
	}

8093
	return ret;
8094 8095
}

8096
static void sched_dl_do_global(void)
8097
{
8098
	u64 new_bw = -1;
8099
	struct dl_bw *dl_b;
8100
	int cpu;
8101
	unsigned long flags;
8102

8103 8104 8105 8106 8107 8108 8109 8110 8111 8112
	def_dl_bandwidth.dl_period = global_rt_period();
	def_dl_bandwidth.dl_runtime = global_rt_runtime();

	if (global_rt_runtime() != RUNTIME_INF)
		new_bw = to_ratio(global_rt_period(), global_rt_runtime());

	/*
	 * FIXME: As above...
	 */
	for_each_possible_cpu(cpu) {
8113 8114
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);
8115

8116
		raw_spin_lock_irqsave(&dl_b->lock, flags);
8117
		dl_b->bw = new_bw;
8118
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8119 8120

		rcu_read_unlock_sched();
8121
	}
8122 8123 8124 8125 8126 8127 8128
}

static int sched_rt_global_validate(void)
{
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8129 8130
	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
8131 8132 8133 8134 8135 8136 8137 8138 8139
		return -EINVAL;

	return 0;
}

static void sched_rt_do_global(void)
{
	def_rt_bandwidth.rt_runtime = global_rt_runtime();
	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
8140 8141
}

8142
int sched_rt_handler(struct ctl_table *table, int write,
8143
		void __user *buffer, size_t *lenp,
8144 8145 8146 8147
		loff_t *ppos)
{
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);
8148
	int ret;
8149 8150 8151 8152 8153

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

8154
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8155 8156

	if (!ret && write) {
8157 8158 8159 8160
		ret = sched_rt_global_validate();
		if (ret)
			goto undo;

8161
		ret = sched_dl_global_validate();
8162 8163 8164
		if (ret)
			goto undo;

8165
		ret = sched_rt_global_constraints();
8166 8167 8168 8169 8170 8171 8172 8173 8174 8175
		if (ret)
			goto undo;

		sched_rt_do_global();
		sched_dl_do_global();
	}
	if (0) {
undo:
		sysctl_sched_rt_period = old_period;
		sysctl_sched_rt_runtime = old_runtime;
8176 8177 8178 8179 8180
	}
	mutex_unlock(&mutex);

	return ret;
}
8181

8182
int sched_rr_handler(struct ctl_table *table, int write,
8183 8184 8185 8186 8187 8188 8189 8190
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8191 8192
	/* make sure that internally we keep jiffies */
	/* also, writing zero resets timeslice to default */
8193
	if (!ret && write) {
8194 8195
		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8196 8197 8198 8199 8200
	}
	mutex_unlock(&mutex);
	return ret;
}

8201
#ifdef CONFIG_CGROUP_SCHED
8202

8203
static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8204
{
8205
	return css ? container_of(css, struct task_group, css) : NULL;
8206 8207
}

8208 8209
static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8210
{
8211 8212
	struct task_group *parent = css_tg(parent_css);
	struct task_group *tg;
8213

8214
	if (!parent) {
8215
		/* This is early initialization for the top cgroup */
8216
		return &root_task_group.css;
8217 8218
	}

8219
	tg = sched_create_group(parent);
8220 8221 8222 8223 8224 8225
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

8226
static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
8227
{
8228
	struct task_group *tg = css_tg(css);
T
Tejun Heo 已提交
8229
	struct task_group *parent = css_tg(css->parent);
8230

T
Tejun Heo 已提交
8231 8232
	if (parent)
		sched_online_group(tg, parent);
8233 8234 8235
	return 0;
}

8236
static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8237
{
8238
	struct task_group *tg = css_tg(css);
8239 8240 8241 8242

	sched_destroy_group(tg);
}

8243
static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
8244
{
8245
	struct task_group *tg = css_tg(css);
8246 8247 8248 8249

	sched_offline_group(tg);
}

8250
static void cpu_cgroup_fork(struct task_struct *task, void *private)
8251 8252 8253 8254
{
	sched_move_task(task);
}

8255
static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
8256
				 struct cgroup_taskset *tset)
8257
{
8258 8259
	struct task_struct *task;

8260
	cgroup_taskset_for_each(task, tset) {
8261
#ifdef CONFIG_RT_GROUP_SCHED
8262
		if (!sched_rt_can_attach(css_tg(css), task))
8263
			return -EINVAL;
8264
#else
8265 8266 8267
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
8268
#endif
8269
	}
8270 8271
	return 0;
}
8272

8273
static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
8274
			      struct cgroup_taskset *tset)
8275
{
8276 8277
	struct task_struct *task;

8278
	cgroup_taskset_for_each(task, tset)
8279
		sched_move_task(task);
8280 8281
}

8282
#ifdef CONFIG_FAIR_GROUP_SCHED
8283 8284
static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
				struct cftype *cftype, u64 shareval)
8285
{
8286
	return sched_group_set_shares(css_tg(css), scale_load(shareval));
8287 8288
}

8289 8290
static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
			       struct cftype *cft)
8291
{
8292
	struct task_group *tg = css_tg(css);
8293

8294
	return (u64) scale_load_down(tg->shares);
8295
}
8296 8297

#ifdef CONFIG_CFS_BANDWIDTH
8298 8299
static DEFINE_MUTEX(cfs_constraints_mutex);

8300 8301 8302
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

8303 8304
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

8305 8306
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
8307
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8308
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

8329 8330 8331 8332 8333
	/*
	 * Prevent race between setting of cfs_rq->runtime_enabled and
	 * unthrottle_offline_cfs_rqs().
	 */
	get_online_cpus();
8334 8335 8336 8337 8338
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

8339
	runtime_enabled = quota != RUNTIME_INF;
8340
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8341 8342 8343 8344 8345 8346
	/*
	 * If we need to toggle cfs_bandwidth_used, off->on must occur
	 * before making related changes, and on->off must occur afterwards
	 */
	if (runtime_enabled && !runtime_was_enabled)
		cfs_bandwidth_usage_inc();
8347 8348 8349
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
8350

P
Paul Turner 已提交
8351
	__refill_cfs_bandwidth_runtime(cfs_b);
8352
	/* restart the period timer (if active) to handle new period expiry */
P
Peter Zijlstra 已提交
8353 8354
	if (runtime_enabled)
		start_cfs_bandwidth(cfs_b);
8355 8356
	raw_spin_unlock_irq(&cfs_b->lock);

8357
	for_each_online_cpu(i) {
8358
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8359
		struct rq *rq = cfs_rq->rq;
8360 8361

		raw_spin_lock_irq(&rq->lock);
8362
		cfs_rq->runtime_enabled = runtime_enabled;
8363
		cfs_rq->runtime_remaining = 0;
8364

8365
		if (cfs_rq->throttled)
8366
			unthrottle_cfs_rq(cfs_rq);
8367 8368
		raw_spin_unlock_irq(&rq->lock);
	}
8369 8370
	if (runtime_was_enabled && !runtime_enabled)
		cfs_bandwidth_usage_dec();
8371 8372
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
8373
	put_online_cpus();
8374

8375
	return ret;
8376 8377 8378 8379 8380 8381
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

8382
	period = ktime_to_ns(tg->cfs_bandwidth.period);
8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

8395
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8396 8397
		return -1;

8398
	quota_us = tg->cfs_bandwidth.quota;
8399 8400 8401 8402 8403 8404 8405 8406 8407 8408
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
8409
	quota = tg->cfs_bandwidth.quota;
8410 8411 8412 8413 8414 8415 8416 8417

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

8418
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8419 8420 8421 8422 8423
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

8424 8425
static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
				  struct cftype *cft)
8426
{
8427
	return tg_get_cfs_quota(css_tg(css));
8428 8429
}

8430 8431
static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
				   struct cftype *cftype, s64 cfs_quota_us)
8432
{
8433
	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8434 8435
}

8436 8437
static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
				   struct cftype *cft)
8438
{
8439
	return tg_get_cfs_period(css_tg(css));
8440 8441
}

8442 8443
static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 cfs_period_us)
8444
{
8445
	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8446 8447
}

8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
8480
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8481 8482 8483 8484 8485
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
8486
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8487 8488

		quota = normalize_cfs_quota(tg, d);
8489
		parent_quota = parent_b->hierarchical_quota;
8490 8491 8492 8493 8494 8495 8496 8497 8498 8499

		/*
		 * ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
8500
	cfs_b->hierarchical_quota = quota;
8501 8502 8503 8504 8505 8506

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
8507
	int ret;
8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

8519 8520 8521 8522 8523
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
8524
}
8525

8526
static int cpu_stats_show(struct seq_file *sf, void *v)
8527
{
8528
	struct task_group *tg = css_tg(seq_css(sf));
8529
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8530

8531 8532 8533
	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8534 8535 8536

	return 0;
}
8537
#endif /* CONFIG_CFS_BANDWIDTH */
8538
#endif /* CONFIG_FAIR_GROUP_SCHED */
8539

8540
#ifdef CONFIG_RT_GROUP_SCHED
8541 8542
static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
				struct cftype *cft, s64 val)
P
Peter Zijlstra 已提交
8543
{
8544
	return sched_group_set_rt_runtime(css_tg(css), val);
P
Peter Zijlstra 已提交
8545 8546
}

8547 8548
static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
P
Peter Zijlstra 已提交
8549
{
8550
	return sched_group_rt_runtime(css_tg(css));
P
Peter Zijlstra 已提交
8551
}
8552

8553 8554
static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 rt_period_us)
8555
{
8556
	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8557 8558
}

8559 8560
static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
				   struct cftype *cft)
8561
{
8562
	return sched_group_rt_period(css_tg(css));
8563
}
8564
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
8565

8566
static struct cftype cpu_files[] = {
8567
#ifdef CONFIG_FAIR_GROUP_SCHED
8568 8569
	{
		.name = "shares",
8570 8571
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8572
	},
8573
#endif
8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
8585 8586
	{
		.name = "stat",
8587
		.seq_show = cpu_stats_show,
8588
	},
8589
#endif
8590
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8591
	{
P
Peter Zijlstra 已提交
8592
		.name = "rt_runtime_us",
8593 8594
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8595
	},
8596 8597
	{
		.name = "rt_period_us",
8598 8599
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8600
	},
8601
#endif
8602
	{ }	/* terminate */
8603 8604
};

8605
struct cgroup_subsys cpu_cgrp_subsys = {
8606 8607
	.css_alloc	= cpu_cgroup_css_alloc,
	.css_free	= cpu_cgroup_css_free,
8608 8609
	.css_online	= cpu_cgroup_css_online,
	.css_offline	= cpu_cgroup_css_offline,
8610
	.fork		= cpu_cgroup_fork,
8611 8612
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
8613
	.legacy_cftypes	= cpu_files,
8614 8615 8616
	.early_init	= 1,
};

8617
#endif	/* CONFIG_CGROUP_SCHED */
8618

8619 8620 8621 8622 8623
void dump_cpu_task(int cpu)
{
	pr_info("Task dump for CPU %d:\n", cpu);
	sched_show_task(cpu_curr(cpu));
}