core.c 180.1 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/highmem.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
37
#include <linux/capability.h>
L
Linus Torvalds 已提交
38 39
#include <linux/completion.h>
#include <linux/kernel_stat.h>
40
#include <linux/debug_locks.h>
41
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
57
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
58
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/unistd.h>
J
Jens Axboe 已提交
66
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
67
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
68
#include <linux/tick.h>
P
Peter Zijlstra 已提交
69 70
#include <linux/debugfs.h>
#include <linux/ctype.h>
71
#include <linux/ftrace.h>
72
#include <linux/slab.h>
73
#include <linux/init_task.h>
A
Al Viro 已提交
74
#include <linux/binfmts.h>
75
#include <linux/context_tracking.h>
L
Linus Torvalds 已提交
76

77
#include <asm/switch_to.h>
78
#include <asm/tlb.h>
79
#include <asm/irq_regs.h>
80
#include <asm/mutex.h>
G
Glauber Costa 已提交
81 82 83
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
84

85
#include "sched.h"
86
#include "../workqueue_internal.h"
87
#include "../smpboot.h"
88

89
#define CREATE_TRACE_POINTS
90
#include <trace/events/sched.h>
91

92
void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93
{
94 95
	unsigned long delta;
	ktime_t soft, hard, now;
96

97 98 99 100 101 102
	for (;;) {
		if (hrtimer_active(period_timer))
			break;

		now = hrtimer_cb_get_time(period_timer);
		hrtimer_forward(period_timer, now, period);
103

104 105 106 107 108 109 110 111
		soft = hrtimer_get_softexpires(period_timer);
		hard = hrtimer_get_expires(period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(period_timer, soft, delta,
					 HRTIMER_MODE_ABS_PINNED, 0);
	}
}

112 113
DEFINE_MUTEX(sched_domains_mutex);
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114

115
static void update_rq_clock_task(struct rq *rq, s64 delta);
116

117
void update_rq_clock(struct rq *rq)
118
{
119
	s64 delta;
120

121
	if (rq->skip_clock_update > 0)
122
		return;
123

124 125 126
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
127 128
}

I
Ingo Molnar 已提交
129 130 131
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
132 133 134 135

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
136
const_debug unsigned int sysctl_sched_features =
137
#include "features.h"
P
Peter Zijlstra 已提交
138 139 140 141 142 143 144 145
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

146
static const char * const sched_feat_names[] = {
147
#include "features.h"
P
Peter Zijlstra 已提交
148 149 150 151
};

#undef SCHED_FEAT

L
Li Zefan 已提交
152
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
153 154 155
{
	int i;

156
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
L
Li Zefan 已提交
157 158 159
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
160
	}
L
Li Zefan 已提交
161
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
162

L
Li Zefan 已提交
163
	return 0;
P
Peter Zijlstra 已提交
164 165
}

166 167
#ifdef HAVE_JUMP_LABEL

168 169
#define jump_label_key__true  STATIC_KEY_INIT_TRUE
#define jump_label_key__false STATIC_KEY_INIT_FALSE
170 171 172 173

#define SCHED_FEAT(name, enabled)	\
	jump_label_key__##enabled ,

174
struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175 176 177 178 179 180 181
#include "features.h"
};

#undef SCHED_FEAT

static void sched_feat_disable(int i)
{
182 183
	if (static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_dec(&sched_feat_keys[i]);
184 185 186 187
}

static void sched_feat_enable(int i)
{
188 189
	if (!static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_inc(&sched_feat_keys[i]);
190 191 192 193 194 195
}
#else
static void sched_feat_disable(int i) { };
static void sched_feat_enable(int i) { };
#endif /* HAVE_JUMP_LABEL */

196
static int sched_feat_set(char *cmp)
P
Peter Zijlstra 已提交
197 198
{
	int i;
199
	int neg = 0;
P
Peter Zijlstra 已提交
200

H
Hillf Danton 已提交
201
	if (strncmp(cmp, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
202 203 204 205
		neg = 1;
		cmp += 3;
	}

206
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
207
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
208
			if (neg) {
P
Peter Zijlstra 已提交
209
				sysctl_sched_features &= ~(1UL << i);
210 211
				sched_feat_disable(i);
			} else {
P
Peter Zijlstra 已提交
212
				sysctl_sched_features |= (1UL << i);
213 214
				sched_feat_enable(i);
			}
P
Peter Zijlstra 已提交
215 216 217 218
			break;
		}
	}

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
	return i;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
	cmp = strstrip(buf);

	i = sched_feat_set(cmp);
240
	if (i == __SCHED_FEAT_NR)
P
Peter Zijlstra 已提交
241 242
		return -EINVAL;

243
	*ppos += cnt;
P
Peter Zijlstra 已提交
244 245 246 247

	return cnt;
}

L
Li Zefan 已提交
248 249 250 251 252
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

253
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
254 255 256 257 258
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
259 260 261 262 263 264 265 266 267 268
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);
269
#endif /* CONFIG_SCHED_DEBUG */
I
Ingo Molnar 已提交
270

271 272 273 274 275 276
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

277 278 279 280 281 282 283 284
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
285
/*
P
Peter Zijlstra 已提交
286
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
287 288
 * default: 1s
 */
P
Peter Zijlstra 已提交
289
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
290

291
__read_mostly int scheduler_running;
292

P
Peter Zijlstra 已提交
293 294 295 296 297
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
298 299


L
Linus Torvalds 已提交
300

301
/*
302
 * __task_rq_lock - lock the rq @p resides on.
303
 */
304
static inline struct rq *__task_rq_lock(struct task_struct *p)
305 306
	__acquires(rq->lock)
{
307 308
	struct rq *rq;

309 310
	lockdep_assert_held(&p->pi_lock);

311
	for (;;) {
312
		rq = task_rq(p);
313
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
314
		if (likely(rq == task_rq(p)))
315
			return rq;
316
		raw_spin_unlock(&rq->lock);
317 318 319
	}
}

L
Linus Torvalds 已提交
320
/*
321
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
L
Linus Torvalds 已提交
322
 */
323
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
324
	__acquires(p->pi_lock)
L
Linus Torvalds 已提交
325 326
	__acquires(rq->lock)
{
327
	struct rq *rq;
L
Linus Torvalds 已提交
328

329
	for (;;) {
330
		raw_spin_lock_irqsave(&p->pi_lock, *flags);
331
		rq = task_rq(p);
332
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
333
		if (likely(rq == task_rq(p)))
334
			return rq;
335 336
		raw_spin_unlock(&rq->lock);
		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
337 338 339
	}
}

A
Alexey Dobriyan 已提交
340
static void __task_rq_unlock(struct rq *rq)
341 342
	__releases(rq->lock)
{
343
	raw_spin_unlock(&rq->lock);
344 345
}

346 347
static inline void
task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
348
	__releases(rq->lock)
349
	__releases(p->pi_lock)
L
Linus Torvalds 已提交
350
{
351 352
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
353 354 355
}

/*
356
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
357
 */
A
Alexey Dobriyan 已提交
358
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
359 360
	__acquires(rq->lock)
{
361
	struct rq *rq;
L
Linus Torvalds 已提交
362 363 364

	local_irq_disable();
	rq = this_rq();
365
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
366 367 368 369

	return rq;
}

P
Peter Zijlstra 已提交
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

391
	raw_spin_lock(&rq->lock);
392
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
393
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
394
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
395 396 397 398

	return HRTIMER_NORESTART;
}

399
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
400 401 402 403 404 405 406 407 408

static int __hrtick_restart(struct rq *rq)
{
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = hrtimer_get_softexpires(timer);

	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
}

409 410 411 412
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
413
{
414
	struct rq *rq = arg;
415

416
	raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
417
	__hrtick_restart(rq);
418
	rq->hrtick_csd_pending = 0;
419
	raw_spin_unlock(&rq->lock);
420 421
}

422 423 424 425 426
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
427
void hrtick_start(struct rq *rq, u64 delay)
428
{
429 430
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
431

432
	hrtimer_set_expires(timer, time);
433 434

	if (rq == this_rq()) {
P
Peter Zijlstra 已提交
435
		__hrtick_restart(rq);
436
	} else if (!rq->hrtick_csd_pending) {
437
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
438 439
		rq->hrtick_csd_pending = 1;
	}
440 441 442 443 444 445 446 447 448 449 450 451 452 453
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
454
		hrtick_clear(cpu_rq(cpu));
455 456 457 458 459 460
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

461
static __init void init_hrtick(void)
462 463 464
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
465 466 467 468 469 470
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
471
void hrtick_start(struct rq *rq, u64 delay)
472
{
473
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
474
			HRTIMER_MODE_REL_PINNED, 0);
475
}
476

A
Andrew Morton 已提交
477
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
478 479
{
}
480
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
481

482
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
483
{
484 485
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
486

487 488 489 490
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
491

492 493
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
494
}
A
Andrew Morton 已提交
495
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
496 497 498 499 500 501 502 503
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

504 505 506
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
507
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
508

I
Ingo Molnar 已提交
509 510 511 512 513 514 515
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
516
void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
517 518 519
{
	int cpu;

520
	lockdep_assert_held(&task_rq(p)->lock);
I
Ingo Molnar 已提交
521

522
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
523 524
		return;

525
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
526 527

	cpu = task_cpu(p);
528 529
	if (cpu == smp_processor_id()) {
		set_preempt_need_resched();
I
Ingo Molnar 已提交
530
		return;
531
	}
I
Ingo Molnar 已提交
532 533 534 535 536 537 538

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

539
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
540 541 542 543
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

544
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
545 546
		return;
	resched_task(cpu_curr(cpu));
547
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
548
}
549

550
#ifdef CONFIG_SMP
551
#ifdef CONFIG_NO_HZ_COMMON
552 553 554 555 556 557 558 559 560 561 562 563 564 565
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
int get_nohz_timer_target(void)
{
	int cpu = smp_processor_id();
	int i;
	struct sched_domain *sd;

566
	rcu_read_lock();
567
	for_each_domain(cpu, sd) {
568 569 570 571 572 573
		for_each_cpu(i, sched_domain_span(sd)) {
			if (!idle_cpu(i)) {
				cpu = i;
				goto unlock;
			}
		}
574
	}
575 576
unlock:
	rcu_read_unlock();
577 578
	return cpu;
}
579 580 581 582 583 584 585 586 587 588
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
589
static void wake_up_idle_cpu(int cpu)
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;
605 606

	/*
607 608 609
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
610
	 */
611
	set_tsk_need_resched(rq->idle);
612

613 614 615 616
	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
617 618
}

619
static bool wake_up_full_nohz_cpu(int cpu)
620
{
621
	if (tick_nohz_full_cpu(cpu)) {
622 623 624 625 626 627 628 629 630 631 632
		if (cpu != smp_processor_id() ||
		    tick_nohz_tick_stopped())
			smp_send_reschedule(cpu);
		return true;
	}

	return false;
}

void wake_up_nohz_cpu(int cpu)
{
633
	if (!wake_up_full_nohz_cpu(cpu))
634 635 636
		wake_up_idle_cpu(cpu);
}

637
static inline bool got_nohz_idle_kick(void)
638
{
639
	int cpu = smp_processor_id();
640 641 642 643 644 645 646 647 648 649 650 651 652

	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
		return false;

	if (idle_cpu(cpu) && !need_resched())
		return true;

	/*
	 * We can't run Idle Load Balance on this CPU for this time so we
	 * cancel it and clear NOHZ_BALANCE_KICK
	 */
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
	return false;
653 654
}

655
#else /* CONFIG_NO_HZ_COMMON */
656

657
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
658
{
659
	return false;
P
Peter Zijlstra 已提交
660 661
}

662
#endif /* CONFIG_NO_HZ_COMMON */
663

664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
#ifdef CONFIG_NO_HZ_FULL
bool sched_can_stop_tick(void)
{
       struct rq *rq;

       rq = this_rq();

       /* Make sure rq->nr_running update is visible after the IPI */
       smp_rmb();

       /* More than one running task need preemption */
       if (rq->nr_running > 1)
               return false;

       return true;
}
#endif /* CONFIG_NO_HZ_FULL */
681

682
void sched_avg_update(struct rq *rq)
683
{
684 685
	s64 period = sched_avg_period();

686
	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
687 688 689 690 691 692
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
693 694 695
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
696 697
}

698
#endif /* CONFIG_SMP */
699

700 701
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
702
/*
703 704 705 706
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
707
 */
708
int walk_tg_tree_from(struct task_group *from,
709
			     tg_visitor down, tg_visitor up, void *data)
710 711
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
712
	int ret;
713

714 715
	parent = from;

716
down:
P
Peter Zijlstra 已提交
717 718
	ret = (*down)(parent, data);
	if (ret)
719
		goto out;
720 721 722 723 724 725 726
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
727
	ret = (*up)(parent, data);
728 729
	if (ret || parent == from)
		goto out;
730 731 732 733 734

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
735
out:
P
Peter Zijlstra 已提交
736
	return ret;
737 738
}

739
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
740
{
741
	return 0;
P
Peter Zijlstra 已提交
742
}
743 744
#endif

745 746
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
747 748 749
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
750 751 752 753
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
754
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
755
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
756 757
		return;
	}
758

759
	load->weight = scale_load(prio_to_weight[prio]);
N
Nikhil Rao 已提交
760
	load->inv_weight = prio_to_wmult[prio];
761 762
}

763
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
764
{
765
	update_rq_clock(rq);
766
	sched_info_queued(rq, p);
767
	p->sched_class->enqueue_task(rq, p, flags);
768 769
}

770
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
771
{
772
	update_rq_clock(rq);
773
	sched_info_dequeued(rq, p);
774
	p->sched_class->dequeue_task(rq, p, flags);
775 776
}

777
void activate_task(struct rq *rq, struct task_struct *p, int flags)
778 779 780 781
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

782
	enqueue_task(rq, p, flags);
783 784
}

785
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
786 787 788 789
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

790
	dequeue_task(rq, p, flags);
791 792
}

793
static void update_rq_clock_task(struct rq *rq, s64 delta)
794
{
795 796 797 798 799 800 801 802
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
803
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
825 826
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
827
	if (static_key_false((&paravirt_steal_rq_enabled))) {
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
		u64 st;

		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		st = steal_ticks(steal);
		steal = st * TICK_NSEC;

		rq->prev_steal_time_rq += steal;

		delta -= steal;
	}
#endif

845 846
	rq->clock_task += delta;

847 848 849 850
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
851 852
}

853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

883
/*
I
Ingo Molnar 已提交
884
 * __normal_prio - return the priority that is based on the static prio
885 886 887
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
888
	return p->static_prio;
889 890
}

891 892 893 894 895 896 897
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
898
static inline int normal_prio(struct task_struct *p)
899 900 901
{
	int prio;

902
	if (task_has_rt_policy(p))
903 904 905 906 907 908 909 910 911 912 913 914 915
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
916
static int effective_prio(struct task_struct *p)
917 918 919 920 921 922 923 924 925 926 927 928
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
929 930 931
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
932 933
 *
 * Return: 1 if the task is currently executing. 0 otherwise.
L
Linus Torvalds 已提交
934
 */
935
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
936 937 938 939
{
	return cpu_curr(task_cpu(p)) == p;
}

940 941
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
942
				       int oldprio)
943 944 945
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
946 947 948 949
			prev_class->switched_from(rq, p);
		p->sched_class->switched_to(rq, p);
	} else if (oldprio != p->prio)
		p->sched_class->prio_changed(rq, p, oldprio);
950 951
}

952
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
				resched_task(rq->curr);
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
P
Peter Zijlstra 已提交
973
	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
974 975 976
		rq->skip_clock_update = 1;
}

L
Linus Torvalds 已提交
977
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
978
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
979
{
980 981 982 983 984
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
985
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
986
			!(task_preempt_count(p) & PREEMPT_ACTIVE));
987 988

#ifdef CONFIG_LOCKDEP
989 990 991 992 993
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
P
Peter Zijlstra 已提交
994
	 * see task_group().
995 996 997 998
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
999 1000 1001
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
1002 1003
#endif

1004
	trace_sched_migrate_task(p, new_cpu);
1005

1006
	if (task_cpu(p) != new_cpu) {
1007 1008
		if (p->sched_class->migrate_task_rq)
			p->sched_class->migrate_task_rq(p, new_cpu);
1009
		p->se.nr_migrations++;
1010
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1011
	}
I
Ingo Molnar 已提交
1012 1013

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1014 1015
}

1016
struct migration_arg {
1017
	struct task_struct *task;
L
Linus Torvalds 已提交
1018
	int dest_cpu;
1019
};
L
Linus Torvalds 已提交
1020

1021 1022
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
1023 1024 1025
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1026 1027 1028 1029 1030 1031 1032
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1033 1034 1035 1036 1037 1038
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1039
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1040 1041
{
	unsigned long flags;
I
Ingo Molnar 已提交
1042
	int running, on_rq;
R
Roland McGrath 已提交
1043
	unsigned long ncsw;
1044
	struct rq *rq;
L
Linus Torvalds 已提交
1045

1046 1047 1048 1049 1050 1051 1052 1053
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1054

1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1066 1067 1068
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1069
			cpu_relax();
R
Roland McGrath 已提交
1070
		}
1071

1072 1073 1074 1075 1076 1077
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1078
		trace_sched_wait_task(p);
1079
		running = task_running(rq, p);
P
Peter Zijlstra 已提交
1080
		on_rq = p->on_rq;
R
Roland McGrath 已提交
1081
		ncsw = 0;
1082
		if (!match_state || p->state == match_state)
1083
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1084
		task_rq_unlock(rq, p, &flags);
1085

R
Roland McGrath 已提交
1086 1087 1088 1089 1090 1091
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1102

1103 1104 1105 1106 1107
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1108
		 * So if it was still runnable (but just not actively
1109 1110 1111 1112
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
1113 1114 1115 1116
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1117 1118
			continue;
		}
1119

1120 1121 1122 1123 1124 1125 1126
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1127 1128

	return ncsw;
L
Linus Torvalds 已提交
1129 1130 1131 1132 1133 1134 1135 1136 1137
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1138
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1139 1140 1141 1142 1143
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1144
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1145 1146 1147 1148 1149 1150 1151 1152 1153
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1154
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
1155
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1156

1157
#ifdef CONFIG_SMP
1158
/*
1159
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1160
 */
1161 1162
static int select_fallback_rq(int cpu, struct task_struct *p)
{
1163 1164
	int nid = cpu_to_node(cpu);
	const struct cpumask *nodemask = NULL;
1165 1166
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1167

1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
	/*
	 * If the node that the cpu is on has been offlined, cpu_to_node()
	 * will return -1. There is no cpu on the node, and we should
	 * select the cpu on the other node.
	 */
	if (nid != -1) {
		nodemask = cpumask_of_node(nid);

		/* Look for allowed, online CPU in same node. */
		for_each_cpu(dest_cpu, nodemask) {
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
				return dest_cpu;
		}
1185
	}
1186

1187 1188
	for (;;) {
		/* Any allowed, online CPU? */
1189
		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1190 1191 1192 1193 1194 1195
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			goto out;
		}
1196

1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
		switch (state) {
		case cpuset:
			/* No more Mr. Nice Guy. */
			cpuset_cpus_allowed_fallback(p);
			state = possible;
			break;

		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk_sched("process %d (%s) no longer affine to cpu%d\n",
					task_pid_nr(p), p->comm, cpu);
		}
1226 1227 1228 1229 1230
	}

	return dest_cpu;
}

1231
/*
1232
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1233
 */
1234
static inline
1235
int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1236
{
1237
	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1249
	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
P
Peter Zijlstra 已提交
1250
		     !cpu_online(cpu)))
1251
		cpu = select_fallback_rq(task_cpu(p), p);
1252 1253

	return cpu;
1254
}
1255 1256 1257 1258 1259 1260

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1261 1262
#endif

P
Peter Zijlstra 已提交
1263
static void
1264
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1265
{
P
Peter Zijlstra 已提交
1266
#ifdef CONFIG_SCHEDSTATS
1267 1268
	struct rq *rq = this_rq();

P
Peter Zijlstra 已提交
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
#ifdef CONFIG_SMP
	int this_cpu = smp_processor_id();

	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	} else {
		struct sched_domain *sd;

		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1279
		rcu_read_lock();
P
Peter Zijlstra 已提交
1280 1281 1282 1283 1284 1285
		for_each_domain(this_cpu, sd) {
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
1286
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1287
	}
1288 1289 1290 1291

	if (wake_flags & WF_MIGRATED)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);

P
Peter Zijlstra 已提交
1292 1293 1294
#endif /* CONFIG_SMP */

	schedstat_inc(rq, ttwu_count);
T
Tejun Heo 已提交
1295
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1296 1297

	if (wake_flags & WF_SYNC)
T
Tejun Heo 已提交
1298
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1299 1300 1301 1302 1303 1304

#endif /* CONFIG_SCHEDSTATS */
}

static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
{
T
Tejun Heo 已提交
1305
	activate_task(rq, p, en_flags);
P
Peter Zijlstra 已提交
1306
	p->on_rq = 1;
1307 1308 1309 1310

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1311 1312
}

1313 1314 1315
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1316
static void
1317
ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
T
Tejun Heo 已提交
1318 1319
{
	check_preempt_curr(rq, p, wake_flags);
1320
	trace_sched_wakeup(p, true);
T
Tejun Heo 已提交
1321 1322 1323 1324 1325 1326

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);

1327
	if (rq->idle_stamp) {
1328
		u64 delta = rq_clock(rq) - rq->idle_stamp;
1329
		u64 max = 2*rq->max_idle_balance_cost;
T
Tejun Heo 已提交
1330

1331 1332 1333
		update_avg(&rq->avg_idle, delta);

		if (rq->avg_idle > max)
T
Tejun Heo 已提交
1334
			rq->avg_idle = max;
1335

T
Tejun Heo 已提交
1336 1337 1338 1339 1340
		rq->idle_stamp = 0;
	}
#endif
}

1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
static void
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
{
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
#endif

	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
	ttwu_do_wakeup(rq, p, wake_flags);
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
	if (p->on_rq) {
1366 1367
		/* check_preempt_curr() may use rq clock */
		update_rq_clock(rq);
1368 1369 1370 1371 1372 1373 1374 1375
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;
}

1376
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1377
static void sched_ttwu_pending(void)
1378 1379
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1380 1381
	struct llist_node *llist = llist_del_all(&rq->wake_list);
	struct task_struct *p;
1382 1383 1384

	raw_spin_lock(&rq->lock);

P
Peter Zijlstra 已提交
1385 1386 1387
	while (llist) {
		p = llist_entry(llist, struct task_struct, wake_entry);
		llist = llist_next(llist);
1388 1389 1390 1391 1392 1393 1394 1395
		ttwu_do_activate(rq, p, 0);
	}

	raw_spin_unlock(&rq->lock);
}

void scheduler_ipi(void)
{
1396 1397 1398 1399 1400 1401 1402 1403
	/*
	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
	 * TIF_NEED_RESCHED remotely (for the first time) will also send
	 * this IPI.
	 */
	if (tif_need_resched())
		set_preempt_need_resched();

1404 1405 1406
	if (llist_empty(&this_rq()->wake_list)
			&& !tick_nohz_full_cpu(smp_processor_id())
			&& !got_nohz_idle_kick())
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
1423
	tick_nohz_full_check();
P
Peter Zijlstra 已提交
1424
	sched_ttwu_pending();
1425 1426 1427 1428

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1429
	if (unlikely(got_nohz_idle_kick())) {
1430
		this_rq()->idle_balance = 1;
1431
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1432
	}
1433
	irq_exit();
1434 1435 1436 1437
}

static void ttwu_queue_remote(struct task_struct *p, int cpu)
{
P
Peter Zijlstra 已提交
1438
	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1439 1440
		smp_send_reschedule(cpu);
}
1441

1442
bool cpus_share_cache(int this_cpu, int that_cpu)
1443 1444 1445
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1446
#endif /* CONFIG_SMP */
1447

1448 1449 1450 1451
static void ttwu_queue(struct task_struct *p, int cpu)
{
	struct rq *rq = cpu_rq(cpu);

1452
#if defined(CONFIG_SMP)
1453
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1454
		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1455 1456 1457 1458 1459
		ttwu_queue_remote(p, cpu);
		return;
	}
#endif

1460 1461 1462
	raw_spin_lock(&rq->lock);
	ttwu_do_activate(rq, p, 0);
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
1463 1464 1465
}

/**
L
Linus Torvalds 已提交
1466
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1467
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1468
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1469
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1470 1471 1472 1473 1474 1475 1476
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
1477
 * Return: %true if @p was woken up, %false if it was already running.
T
Tejun Heo 已提交
1478
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
1479
 */
1480 1481
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1482 1483
{
	unsigned long flags;
1484
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1485

1486 1487 1488 1489 1490 1491 1492
	/*
	 * If we are going to wake up a thread waiting for CONDITION we
	 * need to ensure that CONDITION=1 done by the caller can not be
	 * reordered with p->state check below. This pairs with mb() in
	 * set_current_state() the waiting thread does.
	 */
	smp_mb__before_spinlock();
1493
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
1494
	if (!(p->state & state))
L
Linus Torvalds 已提交
1495 1496
		goto out;

1497
	success = 1; /* we're going to change ->state */
L
Linus Torvalds 已提交
1498 1499
	cpu = task_cpu(p);

1500 1501
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
1502 1503

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1504
	/*
1505 1506
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
P
Peter Zijlstra 已提交
1507
	 */
1508
	while (p->on_cpu)
1509
		cpu_relax();
1510
	/*
1511
	 * Pairs with the smp_wmb() in finish_lock_switch().
1512
	 */
1513
	smp_rmb();
L
Linus Torvalds 已提交
1514

1515
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
1516
	p->state = TASK_WAKING;
1517

1518
	if (p->sched_class->task_waking)
1519
		p->sched_class->task_waking(p);
1520

1521
	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1522 1523
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
1524
		set_task_cpu(p, cpu);
1525
	}
L
Linus Torvalds 已提交
1526 1527
#endif /* CONFIG_SMP */

1528 1529
	ttwu_queue(p, cpu);
stat:
1530
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
1531
out:
1532
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
1533 1534 1535 1536

	return success;
}

T
Tejun Heo 已提交
1537 1538 1539 1540
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
1541
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
1542
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1543
 * the current task.
T
Tejun Heo 已提交
1544 1545 1546 1547 1548
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

1549 1550 1551 1552
	if (WARN_ON_ONCE(rq != this_rq()) ||
	    WARN_ON_ONCE(p == current))
		return;

T
Tejun Heo 已提交
1553 1554
	lockdep_assert_held(&rq->lock);

1555 1556 1557 1558 1559 1560
	if (!raw_spin_trylock(&p->pi_lock)) {
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
	}

T
Tejun Heo 已提交
1561
	if (!(p->state & TASK_NORMAL))
1562
		goto out;
T
Tejun Heo 已提交
1563

P
Peter Zijlstra 已提交
1564
	if (!p->on_rq)
P
Peter Zijlstra 已提交
1565 1566
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

1567
	ttwu_do_wakeup(rq, p, 0);
1568
	ttwu_stat(p, smp_processor_id(), 0);
1569 1570
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
1571 1572
}

1573 1574 1575 1576 1577
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
1578 1579 1580
 * processes.
 *
 * Return: 1 if the process was woken up, 0 if it was already running.
1581 1582 1583 1584
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
1585
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1586
{
1587 1588
	WARN_ON(task_is_stopped_or_traced(p));
	return try_to_wake_up(p, TASK_NORMAL, 0);
L
Linus Torvalds 已提交
1589 1590 1591
}
EXPORT_SYMBOL(wake_up_process);

1592
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1593 1594 1595 1596 1597 1598 1599
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1600 1601 1602 1603 1604
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
P
Peter Zijlstra 已提交
1605 1606 1607
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
1608 1609
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1610
	p->se.prev_sum_exec_runtime	= 0;
1611
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
1612
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
1613
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
1614 1615

#ifdef CONFIG_SCHEDSTATS
1616
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
1617
#endif
N
Nick Piggin 已提交
1618

P
Peter Zijlstra 已提交
1619
	INIT_LIST_HEAD(&p->rt.run_list);
N
Nick Piggin 已提交
1620

1621 1622 1623
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
1624 1625 1626 1627

#ifdef CONFIG_NUMA_BALANCING
	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
		p->mm->numa_next_scan = jiffies;
1628
		p->mm->numa_next_reset = jiffies;
1629 1630 1631 1632 1633 1634
		p->mm->numa_scan_seq = 0;
	}

	p->node_stamp = 0ULL;
	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
	p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
1635
	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1636 1637
	p->numa_work.next = &p->numa_work;
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
1638 1639
}

1640
#ifdef CONFIG_NUMA_BALANCING
1641
#ifdef CONFIG_SCHED_DEBUG
1642 1643 1644 1645 1646 1647 1648
void set_numabalancing_state(bool enabled)
{
	if (enabled)
		sched_feat_set("NUMA");
	else
		sched_feat_set("NO_NUMA");
}
1649 1650 1651 1652 1653 1654
#else
__read_mostly bool numabalancing_enabled;

void set_numabalancing_state(bool enabled)
{
	numabalancing_enabled = enabled;
I
Ingo Molnar 已提交
1655
}
1656
#endif /* CONFIG_SCHED_DEBUG */
1657
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
1658 1659 1660 1661

/*
 * fork()/clone()-time setup:
 */
1662
void sched_fork(struct task_struct *p)
I
Ingo Molnar 已提交
1663
{
1664
	unsigned long flags;
I
Ingo Molnar 已提交
1665 1666 1667
	int cpu = get_cpu();

	__sched_fork(p);
1668
	/*
1669
	 * We mark the process as running here. This guarantees that
1670 1671 1672
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
1673
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1674

1675 1676 1677 1678 1679
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

1680 1681 1682 1683
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
1684
		if (task_has_rt_policy(p)) {
1685
			p->policy = SCHED_NORMAL;
1686
			p->static_prio = NICE_TO_PRIO(0);
1687 1688 1689 1690 1691 1692
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
1693

1694 1695 1696 1697 1698 1699
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
1700

H
Hiroshi Shimamoto 已提交
1701 1702
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
1703

P
Peter Zijlstra 已提交
1704 1705 1706
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

1707 1708 1709 1710 1711 1712 1713
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
1714
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1715
	set_task_cpu(p, cpu);
1716
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1717

1718
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1719
	if (likely(sched_info_on()))
1720
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1721
#endif
P
Peter Zijlstra 已提交
1722 1723
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
1724
#endif
1725
#ifdef CONFIG_PREEMPT_COUNT
1726
	init_task_preempt_count(p);
L
Linus Torvalds 已提交
1727
#endif
1728
#ifdef CONFIG_SMP
1729
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1730
#endif
1731

N
Nick Piggin 已提交
1732
	put_cpu();
L
Linus Torvalds 已提交
1733 1734 1735 1736 1737 1738 1739 1740 1741
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1742
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
1743 1744
{
	unsigned long flags;
I
Ingo Molnar 已提交
1745
	struct rq *rq;
1746

1747
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1748 1749 1750 1751 1752 1753
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 */
1754
	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1755 1756
#endif

1757 1758
	/* Initialize new task's runnable average */
	init_task_runnable_average(p);
1759
	rq = __task_rq_lock(p);
P
Peter Zijlstra 已提交
1760
	activate_task(rq, p, 0);
P
Peter Zijlstra 已提交
1761
	p->on_rq = 1;
1762
	trace_sched_wakeup_new(p, true);
P
Peter Zijlstra 已提交
1763
	check_preempt_curr(rq, p, WF_FORK);
1764
#ifdef CONFIG_SMP
1765 1766
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
1767
#endif
1768
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
1769 1770
}

1771 1772 1773
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
1774
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
1775
 * @notifier: notifier struct to register
1776 1777 1778 1779 1780 1781 1782 1783 1784
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1785
 * @notifier: notifier struct to unregister
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;

1799
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1800 1801 1802 1803 1804 1805 1806 1807 1808
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;

1809
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1810 1811 1812
		notifier->ops->sched_out(notifier, next);
}

1813
#else /* !CONFIG_PREEMPT_NOTIFIERS */
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

1825
#endif /* CONFIG_PREEMPT_NOTIFIERS */
1826

1827 1828 1829
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1830
 * @prev: the current task that is being switched out
1831 1832 1833 1834 1835 1836 1837 1838 1839
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1840 1841 1842
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1843
{
1844
	trace_sched_switch(prev, next);
1845
	sched_info_switch(rq, prev, next);
1846
	perf_event_task_sched_out(prev, next);
1847
	fire_sched_out_preempt_notifiers(prev, next);
1848 1849 1850 1851
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1852 1853
/**
 * finish_task_switch - clean up after a task-switch
1854
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1855 1856
 * @prev: the thread we just switched away from.
 *
1857 1858 1859 1860
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1861 1862
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
1863
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
1864 1865 1866
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
1867
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1868 1869 1870
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1871
	long prev_state;
L
Linus Torvalds 已提交
1872 1873 1874 1875 1876

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1877
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1878 1879
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1880
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1881 1882 1883 1884 1885
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1886
	prev_state = prev->state;
1887
	vtime_task_switch(prev);
1888
	finish_arch_switch(prev);
1889
	perf_event_task_sched_in(prev, current);
1890
	finish_lock_switch(rq, prev);
1891
	finish_arch_post_lock_switch();
S
Steven Rostedt 已提交
1892

1893
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1894 1895
	if (mm)
		mmdrop(mm);
1896
	if (unlikely(prev_state == TASK_DEAD)) {
1897 1898 1899
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1900
		 */
1901
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1902
		put_task_struct(prev);
1903
	}
1904 1905

	tick_nohz_task_switch(current);
L
Linus Torvalds 已提交
1906 1907
}

1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

1923
		raw_spin_lock_irqsave(&rq->lock, flags);
1924 1925
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
1926
		raw_spin_unlock_irqrestore(&rq->lock, flags);
1927 1928 1929 1930 1931 1932

		rq->post_schedule = 0;
	}
}

#else
1933

1934 1935 1936 1937 1938 1939
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
1940 1941
}

1942 1943
#endif

L
Linus Torvalds 已提交
1944 1945 1946 1947
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1948
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1949 1950
	__releases(rq->lock)
{
1951 1952
	struct rq *rq = this_rq();

1953
	finish_task_switch(rq, prev);
1954

1955 1956 1957 1958 1959
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
1960

1961 1962 1963 1964
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1965
	if (current->set_child_tid)
1966
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
1967 1968 1969 1970 1971 1972
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
1973
static inline void
1974
context_switch(struct rq *rq, struct task_struct *prev,
1975
	       struct task_struct *next)
L
Linus Torvalds 已提交
1976
{
I
Ingo Molnar 已提交
1977
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
1978

1979
	prepare_task_switch(rq, prev, next);
1980

I
Ingo Molnar 已提交
1981 1982
	mm = next->mm;
	oldmm = prev->active_mm;
1983 1984 1985 1986 1987
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
1988
	arch_start_context_switch(prev);
1989

1990
	if (!mm) {
L
Linus Torvalds 已提交
1991 1992 1993 1994 1995 1996
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

1997
	if (!prev->mm) {
L
Linus Torvalds 已提交
1998 1999 2000
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2001 2002 2003 2004 2005 2006 2007
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2008
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2009
#endif
L
Linus Torvalds 已提交
2010

2011
	context_tracking_task_switch(prev, next);
L
Linus Torvalds 已提交
2012 2013 2014
	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2015 2016 2017 2018 2019 2020 2021
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2022 2023 2024
}

/*
2025
 * nr_running and nr_context_switches:
L
Linus Torvalds 已提交
2026 2027
 *
 * externally visible scheduler statistics: current number of runnable
2028
 * threads, total number of context switches performed since bootup.
L
Linus Torvalds 已提交
2029 2030 2031 2032 2033 2034 2035 2036 2037
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2038
}
L
Linus Torvalds 已提交
2039 2040

unsigned long long nr_context_switches(void)
2041
{
2042 2043
	int i;
	unsigned long long sum = 0;
2044

2045
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2046
		sum += cpu_rq(i)->nr_switches;
2047

L
Linus Torvalds 已提交
2048 2049
	return sum;
}
2050

L
Linus Torvalds 已提交
2051 2052 2053
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2054

2055
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2056
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2057

L
Linus Torvalds 已提交
2058 2059
	return sum;
}
2060

2061
unsigned long nr_iowait_cpu(int cpu)
2062
{
2063
	struct rq *this = cpu_rq(cpu);
2064 2065
	return atomic_read(&this->nr_iowait);
}
2066

I
Ingo Molnar 已提交
2067
#ifdef CONFIG_SMP
2068

2069
/*
P
Peter Zijlstra 已提交
2070 2071
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2072
 */
P
Peter Zijlstra 已提交
2073
void sched_exec(void)
2074
{
P
Peter Zijlstra 已提交
2075
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2076
	unsigned long flags;
2077
	int dest_cpu;
2078

2079
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2080
	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2081 2082
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2083

2084
	if (likely(cpu_active(dest_cpu))) {
2085
		struct migration_arg arg = { p, dest_cpu };
2086

2087 2088
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2089 2090
		return;
	}
2091
unlock:
2092
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2093
}
I
Ingo Molnar 已提交
2094

L
Linus Torvalds 已提交
2095 2096 2097
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2098
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
2099 2100

EXPORT_PER_CPU_SYMBOL(kstat);
2101
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
2102 2103

/*
2104
 * Return any ns on the sched_clock that have not yet been accounted in
2105
 * @p in case that task is currently running.
2106 2107
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
2108
 */
2109 2110 2111 2112 2113 2114
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
2115
		ns = rq_clock_task(rq) - p->se.exec_start;
2116 2117 2118 2119 2120 2121 2122
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

2123
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
2124 2125
{
	unsigned long flags;
2126
	struct rq *rq;
2127
	u64 ns = 0;
2128

2129
	rq = task_rq_lock(p, &flags);
2130
	ns = do_task_delta_exec(p, rq);
2131
	task_rq_unlock(rq, p, &flags);
2132

2133 2134
	return ns;
}
2135

2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2149
	task_rq_unlock(rq, p, &flags);
2150 2151 2152

	return ns;
}
2153

2154 2155 2156 2157 2158 2159 2160 2161
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2162
	struct task_struct *curr = rq->curr;
2163 2164

	sched_clock_tick();
I
Ingo Molnar 已提交
2165

2166
	raw_spin_lock(&rq->lock);
2167
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
2168
	curr->sched_class->task_tick(rq, curr, 0);
2169
	update_cpu_load_active(rq);
2170
	raw_spin_unlock(&rq->lock);
2171

2172
	perf_event_task_tick();
2173

2174
#ifdef CONFIG_SMP
2175
	rq->idle_balance = idle_cpu(cpu);
I
Ingo Molnar 已提交
2176
	trigger_load_balance(rq, cpu);
2177
#endif
2178
	rq_last_tick_reset(rq);
L
Linus Torvalds 已提交
2179 2180
}

2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
#ifdef CONFIG_NO_HZ_FULL
/**
 * scheduler_tick_max_deferment
 *
 * Keep at least one tick per second when a single
 * active task is running because the scheduler doesn't
 * yet completely support full dynticks environment.
 *
 * This makes sure that uptime, CFS vruntime, load
 * balancing, etc... continue to move forward, even
 * with a very low granularity.
2192 2193
 *
 * Return: Maximum deferment in nanoseconds.
2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205
 */
u64 scheduler_tick_max_deferment(void)
{
	struct rq *rq = this_rq();
	unsigned long next, now = ACCESS_ONCE(jiffies);

	next = rq->last_sched_tick + HZ;

	if (time_before_eq(next, now))
		return 0;

	return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
L
Linus Torvalds 已提交
2206
}
2207
#endif
L
Linus Torvalds 已提交
2208

2209
notrace unsigned long get_parent_ip(unsigned long addr)
2210 2211 2212 2213 2214 2215 2216 2217
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
2218

2219 2220 2221
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

2222
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
2223
{
2224
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2225 2226 2227
	/*
	 * Underflow?
	 */
2228 2229
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
2230
#endif
2231
	add_preempt_count_notrace(val);
2232
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2233 2234 2235
	/*
	 * Spinlock count overflowing soon?
	 */
2236 2237
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
2238 2239 2240
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
2241 2242 2243
}
EXPORT_SYMBOL(add_preempt_count);

2244
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
2245
{
2246
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2247 2248 2249
	/*
	 * Underflow?
	 */
2250
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2251
		return;
L
Linus Torvalds 已提交
2252 2253 2254
	/*
	 * Is the spinlock portion underflowing?
	 */
2255 2256 2257
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
2258
#endif
2259

2260 2261
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2262
	sub_preempt_count_notrace(val);
L
Linus Torvalds 已提交
2263 2264 2265 2266 2267 2268
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
2269
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
2270
 */
I
Ingo Molnar 已提交
2271
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
2272
{
2273 2274 2275
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
2276 2277
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
2278

I
Ingo Molnar 已提交
2279
	debug_show_held_locks(prev);
2280
	print_modules();
I
Ingo Molnar 已提交
2281 2282
	if (irqs_disabled())
		print_irqtrace_events(prev);
2283
	dump_stack();
2284
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
I
Ingo Molnar 已提交
2285
}
L
Linus Torvalds 已提交
2286

I
Ingo Molnar 已提交
2287 2288 2289 2290 2291
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
2292
	/*
I
Ingo Molnar 已提交
2293
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
2294 2295 2296
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
2297
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
2298
		__schedule_bug(prev);
2299
	rcu_sleep_check();
I
Ingo Molnar 已提交
2300

L
Linus Torvalds 已提交
2301 2302
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

2303
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
2304 2305
}

P
Peter Zijlstra 已提交
2306
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
2307
{
2308
	if (prev->on_rq || rq->skip_clock_update < 0)
2309
		update_rq_clock(rq);
P
Peter Zijlstra 已提交
2310
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
2311 2312
}

I
Ingo Molnar 已提交
2313 2314 2315 2316
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
2317
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
2318
{
2319
	const struct sched_class *class;
I
Ingo Molnar 已提交
2320
	struct task_struct *p;
L
Linus Torvalds 已提交
2321 2322

	/*
I
Ingo Molnar 已提交
2323 2324
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
2325
	 */
2326
	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2327
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
2328 2329
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
2330 2331
	}

2332
	for_each_class(class) {
2333
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
2334 2335 2336
		if (p)
			return p;
	}
2337 2338

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
2339
}
L
Linus Torvalds 已提交
2340

I
Ingo Molnar 已提交
2341
/*
2342
 * __schedule() is the main scheduler function.
2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
 *
 * The main means of driving the scheduler and thus entering this function are:
 *
 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 *      paths. For example, see arch/x86/entry_64.S.
 *
 *      To drive preemption between tasks, the scheduler sets the flag in timer
 *      interrupt handler scheduler_tick().
 *
 *   3. Wakeups don't really cause entry into schedule(). They add a
 *      task to the run-queue and that's it.
 *
 *      Now, if the new task added to the run-queue preempts the current
 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 *      called on the nearest possible occasion:
 *
 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
 *
 *         - in syscall or exception context, at the next outmost
 *           preempt_enable(). (this might be as soon as the wake_up()'s
 *           spin_unlock()!)
 *
 *         - in IRQ context, return from interrupt-handler to
 *           preemptible context
 *
 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
 *         then at the next:
 *
 *          - cond_resched() call
 *          - explicit schedule() call
 *          - return from syscall or exception to user-space
 *          - return from interrupt-handler to user-space
I
Ingo Molnar 已提交
2377
 */
2378
static void __sched __schedule(void)
I
Ingo Molnar 已提交
2379 2380
{
	struct task_struct *prev, *next;
2381
	unsigned long *switch_count;
I
Ingo Molnar 已提交
2382
	struct rq *rq;
2383
	int cpu;
I
Ingo Molnar 已提交
2384

2385 2386
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
2387 2388
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
2389
	rcu_note_context_switch(cpu);
I
Ingo Molnar 已提交
2390 2391 2392
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
2393

2394
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
2395
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
2396

2397 2398 2399 2400 2401 2402
	/*
	 * Make sure that signal_pending_state()->signal_pending() below
	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
	 * done by the caller to avoid the race with signal_wake_up().
	 */
	smp_mb__before_spinlock();
2403
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
2404

2405
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
2406
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
2407
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
2408
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
2409
		} else {
2410 2411 2412
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

T
Tejun Heo 已提交
2413
			/*
2414 2415 2416
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
2417 2418 2419 2420 2421 2422 2423 2424 2425
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
		}
I
Ingo Molnar 已提交
2426
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
2427 2428
	}

2429
	pre_schedule(rq, prev);
2430

I
Ingo Molnar 已提交
2431
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
2432 2433
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
2434
	put_prev_task(rq, prev);
2435
	next = pick_next_task(rq);
2436
	clear_tsk_need_resched(prev);
2437
	clear_preempt_need_resched();
2438
	rq->skip_clock_update = 0;
L
Linus Torvalds 已提交
2439 2440 2441 2442 2443 2444

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
2445
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
2446
		/*
2447 2448 2449 2450
		 * The context switch have flipped the stack from under us
		 * and restored the local variables which were saved when
		 * this task called schedule() in the past. prev == current
		 * is still correct, but it can be moved to another cpu/rq.
P
Peter Zijlstra 已提交
2451 2452 2453
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
2454
	} else
2455
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
2456

2457
	post_schedule(rq);
L
Linus Torvalds 已提交
2458

2459
	sched_preempt_enable_no_resched();
2460
	if (need_resched())
L
Linus Torvalds 已提交
2461 2462
		goto need_resched;
}
2463

2464 2465
static inline void sched_submit_work(struct task_struct *tsk)
{
2466
	if (!tsk->state || tsk_is_pi_blocked(tsk))
2467 2468 2469 2470 2471 2472 2473 2474 2475
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

S
Simon Kirby 已提交
2476
asmlinkage void __sched schedule(void)
2477
{
2478 2479 2480
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
2481 2482
	__schedule();
}
L
Linus Torvalds 已提交
2483 2484
EXPORT_SYMBOL(schedule);

2485
#ifdef CONFIG_CONTEXT_TRACKING
2486 2487 2488 2489 2490 2491 2492 2493
asmlinkage void __sched schedule_user(void)
{
	/*
	 * If we come here after a random call to set_need_resched(),
	 * or we have been woken up remotely but the IPI has not yet arrived,
	 * we haven't yet exited the RCU idle mode. Do it here manually until
	 * we find a better solution.
	 */
2494
	user_exit();
2495
	schedule();
2496
	user_enter();
2497 2498 2499
}
#endif

2500 2501 2502 2503 2504 2505 2506
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
2507
	sched_preempt_enable_no_resched();
2508 2509 2510 2511
	schedule();
	preempt_disable();
}

L
Linus Torvalds 已提交
2512 2513
#ifdef CONFIG_PREEMPT
/*
2514
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
2515
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
2516 2517
 * occur there and call schedule directly.
 */
2518
asmlinkage void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
2519 2520 2521
{
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
2522
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
2523
	 */
2524
	if (likely(!preemptible()))
L
Linus Torvalds 已提交
2525 2526
		return;

2527
	do {
2528
		add_preempt_count_notrace(PREEMPT_ACTIVE);
2529
		__schedule();
2530
		sub_preempt_count_notrace(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
2531

2532 2533 2534 2535 2536
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
2537
	} while (need_resched());
L
Linus Torvalds 已提交
2538 2539 2540 2541
}
EXPORT_SYMBOL(preempt_schedule);

/*
2542
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
2543 2544 2545 2546 2547 2548
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
2549
	enum ctx_state prev_state;
2550

2551
	/* Catch callers which need to be fixed */
2552
	BUG_ON(preempt_count() || !irqs_disabled());
L
Linus Torvalds 已提交
2553

2554 2555
	prev_state = exception_enter();

2556 2557 2558
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
2559
		__schedule();
2560 2561
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
2562

2563 2564 2565 2566 2567
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
2568
	} while (need_resched());
2569 2570

	exception_exit(prev_state);
L
Linus Torvalds 已提交
2571 2572 2573 2574
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
2575
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
2576
			  void *key)
L
Linus Torvalds 已提交
2577
{
P
Peter Zijlstra 已提交
2578
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
2579 2580 2581 2582
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
2583 2584
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
2585 2586 2587
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
2588
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
2589 2590
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
2591
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
2592
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
2593
{
2594
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
2595

2596
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
2597 2598
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
2599
		if (curr->func(curr, mode, wake_flags, key) &&
2600
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
2601 2602 2603 2604 2605 2606 2607 2608 2609
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
2610
 * @key: is directly passed to the wakeup function
2611 2612 2613
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
2614
 */
2615
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
2616
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
2629
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
L
Linus Torvalds 已提交
2630
{
2631
	__wake_up_common(q, mode, nr, 0, NULL);
L
Linus Torvalds 已提交
2632
}
2633
EXPORT_SYMBOL_GPL(__wake_up_locked);
L
Linus Torvalds 已提交
2634

2635 2636 2637 2638
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}
2639
EXPORT_SYMBOL_GPL(__wake_up_locked_key);
2640

L
Linus Torvalds 已提交
2641
/**
2642
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
2643 2644 2645
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
2646
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
2647 2648 2649 2650 2651 2652 2653
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
2654 2655 2656
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
2657
 */
2658 2659
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
2660 2661
{
	unsigned long flags;
P
Peter Zijlstra 已提交
2662
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
2663 2664 2665 2666

	if (unlikely(!q))
		return;

2667
	if (unlikely(nr_exclusive != 1))
P
Peter Zijlstra 已提交
2668
		wake_flags = 0;
L
Linus Torvalds 已提交
2669 2670

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
2671
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
2672 2673
	spin_unlock_irqrestore(&q->lock, flags);
}
2674 2675 2676 2677 2678 2679 2680 2681 2682
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
2683 2684
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

2685 2686 2687 2688 2689 2690 2691 2692
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
2693 2694 2695
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
2696
 */
2697
void complete(struct completion *x)
L
Linus Torvalds 已提交
2698 2699 2700 2701 2702
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
2703
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
2704 2705 2706 2707
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

2708 2709 2710 2711 2712
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
2713 2714 2715
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
2716
 */
2717
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
2718 2719 2720 2721 2722
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
2723
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
2724 2725 2726 2727
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

2728
static inline long __sched
2729 2730
do_wait_for_common(struct completion *x,
		   long (*action)(long), long timeout, int state)
L
Linus Torvalds 已提交
2731 2732 2733 2734
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

C
Changli Gao 已提交
2735
		__add_wait_queue_tail_exclusive(&x->wait, &wait);
L
Linus Torvalds 已提交
2736
		do {
2737
			if (signal_pending_state(state, current)) {
2738 2739
				timeout = -ERESTARTSYS;
				break;
2740 2741
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
2742
			spin_unlock_irq(&x->wait.lock);
2743
			timeout = action(timeout);
L
Linus Torvalds 已提交
2744
			spin_lock_irq(&x->wait.lock);
2745
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
2746
		__remove_wait_queue(&x->wait, &wait);
2747 2748
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
2749 2750
	}
	x->done--;
2751
	return timeout ?: 1;
L
Linus Torvalds 已提交
2752 2753
}

2754 2755 2756
static inline long __sched
__wait_for_common(struct completion *x,
		  long (*action)(long), long timeout, int state)
L
Linus Torvalds 已提交
2757 2758 2759 2760
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
2761
	timeout = do_wait_for_common(x, action, timeout, state);
L
Linus Torvalds 已提交
2762
	spin_unlock_irq(&x->wait.lock);
2763 2764
	return timeout;
}
L
Linus Torvalds 已提交
2765

2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
{
	return __wait_for_common(x, schedule_timeout, timeout, state);
}

static long __sched
wait_for_common_io(struct completion *x, long timeout, int state)
{
	return __wait_for_common(x, io_schedule_timeout, timeout, state);
}

2778 2779 2780 2781 2782 2783 2784 2785 2786 2787
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
2788
void __sched wait_for_completion(struct completion *x)
2789 2790
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
2791
}
2792
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
2793

2794 2795 2796 2797 2798 2799 2800 2801
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
2802
 *
2803 2804
 * Return: 0 if timed out, and positive (at least 1, or number of jiffies left
 * till timeout) if completed.
2805
 */
2806
unsigned long __sched
2807
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
2808
{
2809
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
2810
}
2811
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
2812

2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835
/**
 * wait_for_completion_io: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout. The caller is accounted as waiting
 * for IO.
 */
void __sched wait_for_completion_io(struct completion *x)
{
	wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
}
EXPORT_SYMBOL(wait_for_completion_io);

/**
 * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible. The caller is accounted as waiting for IO.
 *
2836 2837
 * Return: 0 if timed out, and positive (at least 1, or number of jiffies left
 * till timeout) if completed.
2838 2839 2840 2841 2842 2843 2844 2845
 */
unsigned long __sched
wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
{
	return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
}
EXPORT_SYMBOL(wait_for_completion_io_timeout);

2846 2847 2848 2849 2850 2851
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
2852
 *
2853
 * Return: -ERESTARTSYS if interrupted, 0 if completed.
2854
 */
2855
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
2856
{
2857 2858 2859 2860
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
2861
}
2862
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
2863

2864 2865 2866 2867 2868 2869 2870
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
2871
 *
2872 2873
 * Return: -ERESTARTSYS if interrupted, 0 if timed out, positive (at least 1,
 * or number of jiffies left till timeout) if completed.
2874
 */
2875
long __sched
2876 2877
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
2878
{
2879
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
2880
}
2881
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
2882

2883 2884 2885 2886 2887 2888
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
2889
 *
2890
 * Return: -ERESTARTSYS if interrupted, 0 if completed.
2891
 */
M
Matthew Wilcox 已提交
2892 2893 2894 2895 2896 2897 2898 2899 2900
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

2901 2902 2903 2904 2905 2906 2907 2908
/**
 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be
 * signaled or for a specified timeout to expire. It can be
 * interrupted by a kill signal. The timeout is in jiffies.
2909
 *
2910 2911
 * Return: -ERESTARTSYS if interrupted, 0 if timed out, positive (at least 1,
 * or number of jiffies left till timeout) if completed.
2912
 */
2913
long __sched
2914 2915 2916 2917 2918 2919 2920
wait_for_completion_killable_timeout(struct completion *x,
				     unsigned long timeout)
{
	return wait_for_common(x, timeout, TASK_KILLABLE);
}
EXPORT_SYMBOL(wait_for_completion_killable_timeout);

2921 2922 2923 2924
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
2925
 *	Return: 0 if a decrement cannot be done without blocking
2926 2927 2928 2929 2930 2931 2932 2933 2934
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
2935
	unsigned long flags;
2936 2937
	int ret = 1;

2938
	spin_lock_irqsave(&x->wait.lock, flags);
2939 2940 2941 2942
	if (!x->done)
		ret = 0;
	else
		x->done--;
2943
	spin_unlock_irqrestore(&x->wait.lock, flags);
2944 2945 2946 2947 2948 2949 2950 2951
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
2952
 *	Return: 0 if there are waiters (wait_for_completion() in progress)
2953 2954 2955 2956 2957
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
2958
	unsigned long flags;
2959 2960
	int ret = 1;

2961
	spin_lock_irqsave(&x->wait.lock, flags);
2962 2963
	if (!x->done)
		ret = 0;
2964
	spin_unlock_irqrestore(&x->wait.lock, flags);
2965 2966 2967 2968
	return ret;
}
EXPORT_SYMBOL(completion_done);

2969 2970
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
2971
{
I
Ingo Molnar 已提交
2972 2973 2974 2975
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
2976

2977
	__set_current_state(state);
L
Linus Torvalds 已提交
2978

2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
2993 2994 2995
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
2996
long __sched
I
Ingo Molnar 已提交
2997
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
2998
{
2999
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3000 3001 3002
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
3003
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3004
{
3005
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3006 3007 3008
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
3009
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3010
{
3011
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3012 3013 3014
}
EXPORT_SYMBOL(sleep_on_timeout);

3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
3027
void rt_mutex_setprio(struct task_struct *p, int prio)
3028
{
3029
	int oldprio, on_rq, running;
3030
	struct rq *rq;
3031
	const struct sched_class *prev_class;
3032 3033 3034

	BUG_ON(prio < 0 || prio > MAX_PRIO);

3035
	rq = __task_rq_lock(p);
3036

3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

3055
	trace_sched_pi_setprio(p, prio);
3056
	oldprio = p->prio;
3057
	prev_class = p->sched_class;
P
Peter Zijlstra 已提交
3058
	on_rq = p->on_rq;
3059
	running = task_current(rq, p);
3060
	if (on_rq)
3061
		dequeue_task(rq, p, 0);
3062 3063
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
3064 3065 3066 3067 3068 3069

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

3070 3071
	p->prio = prio;

3072 3073
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
3074
	if (on_rq)
3075
		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3076

P
Peter Zijlstra 已提交
3077
	check_class_changed(rq, p, prev_class, oldprio);
3078
out_unlock:
3079
	__task_rq_unlock(rq);
3080 3081
}
#endif
3082
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3083
{
I
Ingo Molnar 已提交
3084
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
3085
	unsigned long flags;
3086
	struct rq *rq;
L
Linus Torvalds 已提交
3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
3099
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
3100
	 */
3101
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3102 3103 3104
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
P
Peter Zijlstra 已提交
3105
	on_rq = p->on_rq;
3106
	if (on_rq)
3107
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
3108 3109

	p->static_prio = NICE_TO_PRIO(nice);
3110
	set_load_weight(p);
3111 3112 3113
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3114

I
Ingo Molnar 已提交
3115
	if (on_rq) {
3116
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
3117
		/*
3118 3119
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3120
		 */
3121
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
3122 3123 3124
			resched_task(rq->curr);
	}
out_unlock:
3125
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3126 3127 3128
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3129 3130 3131 3132 3133
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3134
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3135
{
3136 3137
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
3138

3139
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3140 3141 3142
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3143 3144 3145 3146 3147 3148 3149 3150 3151
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3152
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3153
{
3154
	long nice, retval;
L
Linus Torvalds 已提交
3155 3156 3157 3158 3159 3160

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
3161 3162
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
3163 3164 3165
	if (increment > 40)
		increment = 40;

3166
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
3167 3168 3169 3170 3171
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
3172 3173 3174
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
3189
 * Return: The priority value as seen by users in /proc.
L
Linus Torvalds 已提交
3190 3191 3192
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3193
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3194 3195 3196 3197 3198 3199 3200
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
3201 3202
 *
 * Return: The nice value [ -20 ... 0 ... 19 ].
L
Linus Torvalds 已提交
3203
 */
3204
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
3205 3206 3207
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
3208
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
3209 3210 3211 3212

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
3213 3214
 *
 * Return: 1 if the CPU is currently idle. 0 otherwise.
L
Linus Torvalds 已提交
3215 3216 3217
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3232 3233 3234 3235 3236
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
3237 3238
 *
 * Return: The idle task for the cpu @cpu.
L
Linus Torvalds 已提交
3239
 */
3240
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3241 3242 3243 3244 3245 3246 3247
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
3248 3249
 *
 * The task of @pid, if found. %NULL otherwise.
L
Linus Torvalds 已提交
3250
 */
A
Alexey Dobriyan 已提交
3251
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
3252
{
3253
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
3254 3255 3256
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
3257 3258
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
3259 3260 3261
{
	p->policy = policy;
	p->rt_priority = prio;
3262 3263 3264
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
3265 3266 3267 3268
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
3269
	set_load_weight(p);
L
Linus Torvalds 已提交
3270 3271
}

3272 3273 3274 3275 3276 3277 3278 3279 3280 3281
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
3282 3283
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
3284 3285 3286 3287
	rcu_read_unlock();
	return match;
}

3288
static int __sched_setscheduler(struct task_struct *p, int policy,
3289
				const struct sched_param *param, bool user)
L
Linus Torvalds 已提交
3290
{
3291
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
3292
	unsigned long flags;
3293
	const struct sched_class *prev_class;
3294
	struct rq *rq;
3295
	int reset_on_fork;
L
Linus Torvalds 已提交
3296

3297 3298
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
3299 3300
recheck:
	/* double check policy once rq lock held */
3301 3302
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
3303
		policy = oldpolicy = p->policy;
3304 3305 3306 3307 3308 3309 3310 3311 3312 3313
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
3314 3315
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
3316 3317
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
3318 3319
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
3320
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3321
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
3322
		return -EINVAL;
3323
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
3324 3325
		return -EINVAL;

3326 3327 3328
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
3329
	if (user && !capable(CAP_SYS_NICE)) {
3330
		if (rt_policy(policy)) {
3331 3332
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
3333 3334 3335 3336 3337 3338 3339 3340 3341 3342

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
3343

I
Ingo Molnar 已提交
3344
		/*
3345 3346
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
3347
		 */
3348 3349 3350 3351
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
			if (!can_nice(p, TASK_NICE(p)))
				return -EPERM;
		}
3352

3353
		/* can't change other user's priorities */
3354
		if (!check_same_owner(p))
3355
			return -EPERM;
3356 3357 3358 3359

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
3360
	}
L
Linus Torvalds 已提交
3361

3362
	if (user) {
3363
		retval = security_task_setscheduler(p);
3364 3365 3366 3367
		if (retval)
			return retval;
	}

3368 3369 3370
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
3371
	 *
L
Lucas De Marchi 已提交
3372
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
3373 3374
	 * runqueue lock must be held.
	 */
3375
	rq = task_rq_lock(p, &flags);
3376

3377 3378 3379 3380
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
3381
		task_rq_unlock(rq, p, &flags);
3382 3383 3384
		return -EINVAL;
	}

3385 3386 3387 3388 3389
	/*
	 * If not changing anything there's no need to proceed further:
	 */
	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
			param->sched_priority == p->rt_priority))) {
3390
		task_rq_unlock(rq, p, &flags);
3391 3392 3393
		return 0;
	}

3394 3395 3396 3397 3398 3399 3400
#ifdef CONFIG_RT_GROUP_SCHED
	if (user) {
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3401 3402
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
3403
			task_rq_unlock(rq, p, &flags);
3404 3405 3406 3407 3408
			return -EPERM;
		}
	}
#endif

L
Linus Torvalds 已提交
3409 3410 3411
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
3412
		task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3413 3414
		goto recheck;
	}
P
Peter Zijlstra 已提交
3415
	on_rq = p->on_rq;
3416
	running = task_current(rq, p);
3417
	if (on_rq)
3418
		dequeue_task(rq, p, 0);
3419 3420
	if (running)
		p->sched_class->put_prev_task(rq, p);
3421

3422 3423
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
3424
	oldprio = p->prio;
3425
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
3426
	__setscheduler(rq, p, policy, param->sched_priority);
3427

3428 3429
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
3430
	if (on_rq)
3431
		enqueue_task(rq, p, 0);
3432

P
Peter Zijlstra 已提交
3433
	check_class_changed(rq, p, prev_class, oldprio);
3434
	task_rq_unlock(rq, p, &flags);
3435

3436 3437
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
3438 3439
	return 0;
}
3440 3441 3442 3443 3444 3445 3446

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
3447 3448
 * Return: 0 on success. An error code otherwise.
 *
3449 3450 3451
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
3452
		       const struct sched_param *param)
3453 3454 3455
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
3456 3457
EXPORT_SYMBOL_GPL(sched_setscheduler);

3458 3459 3460 3461 3462 3463 3464 3465 3466 3467
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
3468 3469
 *
 * Return: 0 on success. An error code otherwise.
3470 3471
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3472
			       const struct sched_param *param)
3473 3474 3475 3476
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
3477 3478
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
3479 3480 3481
{
	struct sched_param lparam;
	struct task_struct *p;
3482
	int retval;
L
Linus Torvalds 已提交
3483 3484 3485 3486 3487

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
3488 3489 3490

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
3491
	p = find_process_by_pid(pid);
3492 3493 3494
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
3495

L
Linus Torvalds 已提交
3496 3497 3498 3499 3500 3501 3502 3503
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
3504 3505
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
3506
 */
3507 3508
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
3509
{
3510 3511 3512 3513
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
3514 3515 3516 3517 3518 3519 3520
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
3521 3522
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
3523
 */
3524
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
3525 3526 3527 3528 3529 3530 3531
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
3532 3533 3534
 *
 * Return: On success, the policy of the thread. Otherwise, a negative error
 * code.
L
Linus Torvalds 已提交
3535
 */
3536
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
3537
{
3538
	struct task_struct *p;
3539
	int retval;
L
Linus Torvalds 已提交
3540 3541

	if (pid < 0)
3542
		return -EINVAL;
L
Linus Torvalds 已提交
3543 3544

	retval = -ESRCH;
3545
	rcu_read_lock();
L
Linus Torvalds 已提交
3546 3547 3548 3549
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
3550 3551
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
3552
	}
3553
	rcu_read_unlock();
L
Linus Torvalds 已提交
3554 3555 3556 3557
	return retval;
}

/**
3558
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
3559 3560
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
3561 3562 3563
 *
 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
 * code.
L
Linus Torvalds 已提交
3564
 */
3565
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
3566 3567
{
	struct sched_param lp;
3568
	struct task_struct *p;
3569
	int retval;
L
Linus Torvalds 已提交
3570 3571

	if (!param || pid < 0)
3572
		return -EINVAL;
L
Linus Torvalds 已提交
3573

3574
	rcu_read_lock();
L
Linus Torvalds 已提交
3575 3576 3577 3578 3579 3580 3581 3582 3583 3584
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
3585
	rcu_read_unlock();
L
Linus Torvalds 已提交
3586 3587 3588 3589 3590 3591 3592 3593 3594

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
3595
	rcu_read_unlock();
L
Linus Torvalds 已提交
3596 3597 3598
	return retval;
}

3599
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
3600
{
3601
	cpumask_var_t cpus_allowed, new_mask;
3602 3603
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
3604

3605
	get_online_cpus();
3606
	rcu_read_lock();
L
Linus Torvalds 已提交
3607 3608 3609

	p = find_process_by_pid(pid);
	if (!p) {
3610
		rcu_read_unlock();
3611
		put_online_cpus();
L
Linus Torvalds 已提交
3612 3613 3614
		return -ESRCH;
	}

3615
	/* Prevent p going away */
L
Linus Torvalds 已提交
3616
	get_task_struct(p);
3617
	rcu_read_unlock();
L
Linus Torvalds 已提交
3618

3619 3620 3621 3622
	if (p->flags & PF_NO_SETAFFINITY) {
		retval = -EINVAL;
		goto out_put_task;
	}
3623 3624 3625 3626 3627 3628 3629 3630
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
3631
	retval = -EPERM;
E
Eric W. Biederman 已提交
3632 3633 3634 3635 3636 3637 3638 3639
	if (!check_same_owner(p)) {
		rcu_read_lock();
		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
			rcu_read_unlock();
			goto out_unlock;
		}
		rcu_read_unlock();
	}
L
Linus Torvalds 已提交
3640

3641
	retval = security_task_setscheduler(p);
3642 3643 3644
	if (retval)
		goto out_unlock;

3645 3646
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Peter Zijlstra 已提交
3647
again:
3648
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
3649

P
Paul Menage 已提交
3650
	if (!retval) {
3651 3652
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
3653 3654 3655 3656 3657
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
3658
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
3659 3660 3661
			goto again;
		}
	}
L
Linus Torvalds 已提交
3662
out_unlock:
3663 3664 3665 3666
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
3667
	put_task_struct(p);
3668
	put_online_cpus();
L
Linus Torvalds 已提交
3669 3670 3671 3672
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3673
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
3674
{
3675 3676 3677 3678 3679
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
3680 3681 3682 3683 3684 3685 3686 3687
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
3688 3689
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
3690
 */
3691 3692
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
3693
{
3694
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
3695 3696
	int retval;

3697 3698
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
3699

3700 3701 3702 3703 3704
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
3705 3706
}

3707
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
3708
{
3709
	struct task_struct *p;
3710
	unsigned long flags;
L
Linus Torvalds 已提交
3711 3712
	int retval;

3713
	get_online_cpus();
3714
	rcu_read_lock();
L
Linus Torvalds 已提交
3715 3716 3717 3718 3719 3720

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

3721 3722 3723 3724
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

3725
	raw_spin_lock_irqsave(&p->pi_lock, flags);
3726
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
3727
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
3728 3729

out_unlock:
3730
	rcu_read_unlock();
3731
	put_online_cpus();
L
Linus Torvalds 已提交
3732

3733
	return retval;
L
Linus Torvalds 已提交
3734 3735 3736 3737 3738 3739 3740
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3741 3742
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
3743
 */
3744 3745
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
3746 3747
{
	int ret;
3748
	cpumask_var_t mask;
L
Linus Torvalds 已提交
3749

A
Anton Blanchard 已提交
3750
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
3751 3752
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
3753 3754
		return -EINVAL;

3755 3756
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
3757

3758 3759
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
3760
		size_t retlen = min_t(size_t, len, cpumask_size());
3761 3762

		if (copy_to_user(user_mask_ptr, mask, retlen))
3763 3764
			ret = -EFAULT;
		else
3765
			ret = retlen;
3766 3767
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
3768

3769
	return ret;
L
Linus Torvalds 已提交
3770 3771 3772 3773 3774
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
3775 3776
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
3777 3778
 *
 * Return: 0.
L
Linus Torvalds 已提交
3779
 */
3780
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
3781
{
3782
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
3783

3784
	schedstat_inc(rq, yld_count);
3785
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
3786 3787 3788 3789 3790 3791

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
3792
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3793
	do_raw_spin_unlock(&rq->lock);
3794
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
3795 3796 3797 3798 3799 3800

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
3801 3802 3803 3804 3805
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
3806
static void __cond_resched(void)
L
Linus Torvalds 已提交
3807
{
3808
	add_preempt_count(PREEMPT_ACTIVE);
3809
	__schedule();
3810
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3811 3812
}

3813
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
3814
{
P
Peter Zijlstra 已提交
3815
	if (should_resched()) {
L
Linus Torvalds 已提交
3816 3817 3818 3819 3820
		__cond_resched();
		return 1;
	}
	return 0;
}
3821
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
3822 3823

/*
3824
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
3825 3826
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
3827
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
3828 3829 3830
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
3831
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
3832
{
P
Peter Zijlstra 已提交
3833
	int resched = should_resched();
J
Jan Kara 已提交
3834 3835
	int ret = 0;

3836 3837
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
3838
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
3839
		spin_unlock(lock);
P
Peter Zijlstra 已提交
3840
		if (resched)
N
Nick Piggin 已提交
3841 3842 3843
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
3844
		ret = 1;
L
Linus Torvalds 已提交
3845 3846
		spin_lock(lock);
	}
J
Jan Kara 已提交
3847
	return ret;
L
Linus Torvalds 已提交
3848
}
3849
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
3850

3851
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
3852 3853 3854
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
3855
	if (should_resched()) {
3856
		local_bh_enable();
L
Linus Torvalds 已提交
3857 3858 3859 3860 3861 3862
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
3863
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
3864 3865 3866 3867

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
 * 	yield();
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
3886 3887 3888 3889 3890 3891 3892 3893
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

3894 3895 3896 3897
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
3898 3899
 * @p: target task
 * @preempt: whether task preemption is allowed or not
3900 3901 3902 3903
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
3904
 * Return:
3905 3906 3907
 *	true (>0) if we indeed boosted the target task.
 *	false (0) if we failed to boost the target.
 *	-ESRCH if there's no task to yield to.
3908 3909 3910 3911 3912 3913
 */
bool __sched yield_to(struct task_struct *p, bool preempt)
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
3914
	int yielded = 0;
3915 3916 3917 3918 3919 3920

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
3921 3922 3923 3924 3925 3926 3927 3928 3929
	/*
	 * If we're the only runnable task on the rq and target rq also
	 * has only one task, there's absolutely no point in yielding.
	 */
	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
		yielded = -ESRCH;
		goto out_irq;
	}

3930 3931 3932 3933 3934 3935 3936
	double_rq_lock(rq, p_rq);
	while (task_rq(p) != p_rq) {
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
3937
		goto out_unlock;
3938 3939

	if (curr->sched_class != p->sched_class)
3940
		goto out_unlock;
3941 3942

	if (task_running(p_rq, p) || p->state)
3943
		goto out_unlock;
3944 3945

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
3946
	if (yielded) {
3947
		schedstat_inc(rq, yld_count);
3948 3949 3950 3951 3952 3953 3954
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
			resched_task(p_rq->curr);
	}
3955

3956
out_unlock:
3957
	double_rq_unlock(rq, p_rq);
3958
out_irq:
3959 3960
	local_irq_restore(flags);

3961
	if (yielded > 0)
3962 3963 3964 3965 3966 3967
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
3968
/*
I
Ingo Molnar 已提交
3969
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
3970 3971 3972 3973
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
3974
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
3975

3976
	delayacct_blkio_start();
L
Linus Torvalds 已提交
3977
	atomic_inc(&rq->nr_iowait);
3978
	blk_flush_plug(current);
3979
	current->in_iowait = 1;
L
Linus Torvalds 已提交
3980
	schedule();
3981
	current->in_iowait = 0;
L
Linus Torvalds 已提交
3982
	atomic_dec(&rq->nr_iowait);
3983
	delayacct_blkio_end();
L
Linus Torvalds 已提交
3984 3985 3986 3987 3988
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
3989
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
3990 3991
	long ret;

3992
	delayacct_blkio_start();
L
Linus Torvalds 已提交
3993
	atomic_inc(&rq->nr_iowait);
3994
	blk_flush_plug(current);
3995
	current->in_iowait = 1;
L
Linus Torvalds 已提交
3996
	ret = schedule_timeout(timeout);
3997
	current->in_iowait = 0;
L
Linus Torvalds 已提交
3998
	atomic_dec(&rq->nr_iowait);
3999
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4000 4001 4002 4003 4004 4005 4006
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
4007 4008 4009
 * Return: On success, this syscall returns the maximum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
4010
 */
4011
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
4012 4013 4014 4015 4016 4017 4018 4019 4020
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4021
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4022
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4023 4024 4025 4026 4027 4028 4029 4030 4031 4032
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
4033 4034 4035
 * Return: On success, this syscall returns the minimum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
4036
 */
4037
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
4038 4039 4040 4041 4042 4043 4044 4045 4046
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4047
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4048
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
4061 4062 4063
 *
 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
 * an error code.
L
Linus Torvalds 已提交
4064
 */
4065
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4066
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
4067
{
4068
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4069
	unsigned int time_slice;
4070 4071
	unsigned long flags;
	struct rq *rq;
4072
	int retval;
L
Linus Torvalds 已提交
4073 4074 4075
	struct timespec t;

	if (pid < 0)
4076
		return -EINVAL;
L
Linus Torvalds 已提交
4077 4078

	retval = -ESRCH;
4079
	rcu_read_lock();
L
Linus Torvalds 已提交
4080 4081 4082 4083 4084 4085 4086 4087
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4088 4089
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
4090
	task_rq_unlock(rq, p, &flags);
D
Dmitry Adamushko 已提交
4091

4092
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
4093
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4094 4095
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4096

L
Linus Torvalds 已提交
4097
out_unlock:
4098
	rcu_read_unlock();
L
Linus Torvalds 已提交
4099 4100 4101
	return retval;
}

4102
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4103

4104
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4105 4106
{
	unsigned long free = 0;
4107
	int ppid;
4108
	unsigned state;
L
Linus Torvalds 已提交
4109 4110

	state = p->state ? __ffs(p->state) + 1 : 0;
4111
	printk(KERN_INFO "%-15.15s %c", p->comm,
4112
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4113
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4114
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4115
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4116
	else
P
Peter Zijlstra 已提交
4117
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4118 4119
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4120
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4121
	else
P
Peter Zijlstra 已提交
4122
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4123 4124
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
4125
	free = stack_not_used(p);
L
Linus Torvalds 已提交
4126
#endif
4127 4128 4129
	rcu_read_lock();
	ppid = task_pid_nr(rcu_dereference(p->real_parent));
	rcu_read_unlock();
P
Peter Zijlstra 已提交
4130
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4131
		task_pid_nr(p), ppid,
4132
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
4133

4134
	print_worker_info(KERN_INFO, p);
4135
	show_stack(p, NULL);
L
Linus Torvalds 已提交
4136 4137
}

I
Ingo Molnar 已提交
4138
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4139
{
4140
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4141

4142
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
4143 4144
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4145
#else
P
Peter Zijlstra 已提交
4146 4147
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4148
#endif
4149
	rcu_read_lock();
L
Linus Torvalds 已提交
4150 4151 4152
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
4153
		 * console might take a lot of time:
L
Linus Torvalds 已提交
4154 4155
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4156
		if (!state_filter || (p->state & state_filter))
4157
			sched_show_task(p);
L
Linus Torvalds 已提交
4158 4159
	} while_each_thread(g, p);

4160 4161
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4162 4163 4164
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
4165
	rcu_read_unlock();
I
Ingo Molnar 已提交
4166 4167 4168
	/*
	 * Only show locks if all tasks are dumped:
	 */
4169
	if (!state_filter)
I
Ingo Molnar 已提交
4170
		debug_show_all_locks();
L
Linus Torvalds 已提交
4171 4172
}

4173
void init_idle_bootup_task(struct task_struct *idle)
I
Ingo Molnar 已提交
4174
{
I
Ingo Molnar 已提交
4175
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4176 4177
}

4178 4179 4180 4181 4182 4183 4184 4185
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4186
void init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4187
{
4188
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4189 4190
	unsigned long flags;

4191
	raw_spin_lock_irqsave(&rq->lock, flags);
4192

I
Ingo Molnar 已提交
4193
	__sched_fork(idle);
4194
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
4195 4196
	idle->se.exec_start = sched_clock();

4197
	do_set_cpus_allowed(idle, cpumask_of(cpu));
4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
4209
	__set_task_cpu(idle, cpu);
4210
	rcu_read_unlock();
L
Linus Torvalds 已提交
4211 4212

	rq->curr = rq->idle = idle;
P
Peter Zijlstra 已提交
4213 4214
#if defined(CONFIG_SMP)
	idle->on_cpu = 1;
4215
#endif
4216
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
4217 4218

	/* Set the preempt count _outside_ the spinlocks! */
4219
	init_idle_preempt_count(idle, cpu);
4220

I
Ingo Molnar 已提交
4221 4222 4223 4224
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
4225
	ftrace_graph_init_idle_task(idle, cpu);
4226
	vtime_init_idle(idle, cpu);
4227 4228 4229
#if defined(CONFIG_SMP)
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
4230 4231
}

L
Linus Torvalds 已提交
4232
#ifdef CONFIG_SMP
4233 4234 4235 4236
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
	if (p->sched_class && p->sched_class->set_cpus_allowed)
		p->sched_class->set_cpus_allowed(p, new_mask);
4237 4238

	cpumask_copy(&p->cpus_allowed, new_mask);
4239
	p->nr_cpus_allowed = cpumask_weight(new_mask);
4240 4241
}

L
Linus Torvalds 已提交
4242 4243 4244
/*
 * This is how migration works:
 *
4245 4246 4247 4248 4249 4250
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
4251
 *    it and puts it into the right queue.
4252 4253
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
4254 4255 4256 4257 4258 4259 4260 4261
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
4262
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
4263 4264
 * call is not atomic; no spinlocks may be held.
 */
4265
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
4266 4267
{
	unsigned long flags;
4268
	struct rq *rq;
4269
	unsigned int dest_cpu;
4270
	int ret = 0;
L
Linus Torvalds 已提交
4271 4272

	rq = task_rq_lock(p, &flags);
4273

4274 4275 4276
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

4277
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
4278 4279 4280 4281
		ret = -EINVAL;
		goto out;
	}

4282
	do_set_cpus_allowed(p, new_mask);
4283

L
Linus Torvalds 已提交
4284
	/* Can the task run on the task's current CPU? If so, we're done */
4285
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
4286 4287
		goto out;

4288
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4289
	if (p->on_rq) {
4290
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
4291
		/* Need help from migration thread: drop lock and wait. */
4292
		task_rq_unlock(rq, p, &flags);
4293
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
4294 4295 4296 4297
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
4298
	task_rq_unlock(rq, p, &flags);
4299

L
Linus Torvalds 已提交
4300 4301
	return ret;
}
4302
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
4303 4304

/*
I
Ingo Molnar 已提交
4305
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
4306 4307 4308 4309 4310 4311
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4312 4313
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4314
 */
4315
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4316
{
4317
	struct rq *rq_dest, *rq_src;
4318
	int ret = 0;
L
Linus Torvalds 已提交
4319

4320
	if (unlikely(!cpu_active(dest_cpu)))
4321
		return ret;
L
Linus Torvalds 已提交
4322 4323 4324 4325

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

4326
	raw_spin_lock(&p->pi_lock);
L
Linus Torvalds 已提交
4327 4328 4329
	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
4330
		goto done;
L
Linus Torvalds 已提交
4331
	/* Affinity changed (again). */
4332
	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
L
Linus Torvalds 已提交
4333
		goto fail;
L
Linus Torvalds 已提交
4334

4335 4336 4337 4338
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
P
Peter Zijlstra 已提交
4339
	if (p->on_rq) {
4340
		dequeue_task(rq_src, p, 0);
4341
		set_task_cpu(p, dest_cpu);
4342
		enqueue_task(rq_dest, p, 0);
4343
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
4344
	}
L
Linus Torvalds 已提交
4345
done:
4346
	ret = 1;
L
Linus Torvalds 已提交
4347
fail:
L
Linus Torvalds 已提交
4348
	double_rq_unlock(rq_src, rq_dest);
4349
	raw_spin_unlock(&p->pi_lock);
4350
	return ret;
L
Linus Torvalds 已提交
4351 4352 4353
}

/*
4354 4355 4356
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
4357
 */
4358
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
4359
{
4360
	struct migration_arg *arg = data;
4361

4362 4363 4364 4365
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
4366
	local_irq_disable();
4367
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4368
	local_irq_enable();
L
Linus Torvalds 已提交
4369
	return 0;
4370 4371
}

L
Linus Torvalds 已提交
4372
#ifdef CONFIG_HOTPLUG_CPU
4373

4374
/*
4375 4376
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
4377
 */
4378
void idle_task_exit(void)
L
Linus Torvalds 已提交
4379
{
4380
	struct mm_struct *mm = current->active_mm;
4381

4382
	BUG_ON(cpu_online(smp_processor_id()));
4383

4384 4385 4386
	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
L
Linus Torvalds 已提交
4387 4388 4389
}

/*
4390 4391 4392 4393 4394
 * Since this CPU is going 'away' for a while, fold any nr_active delta
 * we might have. Assumes we're called after migrate_tasks() so that the
 * nr_active count is stable.
 *
 * Also see the comment "Global load-average calculations".
L
Linus Torvalds 已提交
4395
 */
4396
static void calc_load_migrate(struct rq *rq)
L
Linus Torvalds 已提交
4397
{
4398 4399 4400
	long delta = calc_load_fold_active(rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
4401 4402
}

4403
/*
4404 4405 4406 4407 4408 4409
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
4410
 */
4411
static void migrate_tasks(unsigned int dead_cpu)
L
Linus Torvalds 已提交
4412
{
4413
	struct rq *rq = cpu_rq(dead_cpu);
4414 4415
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
4416 4417

	/*
4418 4419 4420 4421 4422 4423 4424
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
4425
	 */
4426
	rq->stop = NULL;
4427

4428 4429 4430 4431 4432 4433 4434
	/*
	 * put_prev_task() and pick_next_task() sched
	 * class method both need to have an up-to-date
	 * value of rq->clock[_task]
	 */
	update_rq_clock(rq);

I
Ingo Molnar 已提交
4435
	for ( ; ; ) {
4436 4437 4438 4439 4440
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
4441
			break;
4442

4443
		next = pick_next_task(rq);
4444
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
4445
		next->sched_class->put_prev_task(rq, next);
4446

4447 4448 4449 4450 4451 4452 4453
		/* Find suitable destination for @next, with force if needed. */
		dest_cpu = select_fallback_rq(dead_cpu, next);
		raw_spin_unlock(&rq->lock);

		__migrate_task(next, dead_cpu, dest_cpu);

		raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
4454
	}
4455

4456
	rq->stop = stop;
4457
}
4458

L
Linus Torvalds 已提交
4459 4460
#endif /* CONFIG_HOTPLUG_CPU */

4461 4462 4463
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
4464 4465
	{
		.procname	= "sched_domain",
4466
		.mode		= 0555,
4467
	},
4468
	{}
4469 4470 4471
};

static struct ctl_table sd_ctl_root[] = {
4472 4473
	{
		.procname	= "kernel",
4474
		.mode		= 0555,
4475 4476
		.child		= sd_ctl_dir,
	},
4477
	{}
4478 4479 4480 4481 4482
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
4483
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4484 4485 4486 4487

	return entry;
}

4488 4489
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
4490
	struct ctl_table *entry;
4491

4492 4493 4494
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
4495
	 * will always be set. In the lowest directory the names are
4496 4497 4498
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
4499 4500
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
4501 4502 4503
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
4504 4505 4506 4507 4508

	kfree(*tablep);
	*tablep = NULL;
}

4509
static int min_load_idx = 0;
4510
static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4511

4512
static void
4513
set_table_entry(struct ctl_table *entry,
4514
		const char *procname, void *data, int maxlen,
4515 4516
		umode_t mode, proc_handler *proc_handler,
		bool load_idx)
4517 4518 4519 4520 4521 4522
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
4523 4524 4525 4526 4527

	if (load_idx) {
		entry->extra1 = &min_load_idx;
		entry->extra2 = &max_load_idx;
	}
4528 4529 4530 4531 4532
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
4533
	struct ctl_table *table = sd_alloc_ctl_entry(13);
4534

4535 4536 4537
	if (table == NULL)
		return NULL;

4538
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4539
		sizeof(long), 0644, proc_doulongvec_minmax, false);
4540
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4541
		sizeof(long), 0644, proc_doulongvec_minmax, false);
4542
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4543
		sizeof(int), 0644, proc_dointvec_minmax, true);
4544
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4545
		sizeof(int), 0644, proc_dointvec_minmax, true);
4546
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4547
		sizeof(int), 0644, proc_dointvec_minmax, true);
4548
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4549
		sizeof(int), 0644, proc_dointvec_minmax, true);
4550
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4551
		sizeof(int), 0644, proc_dointvec_minmax, true);
4552
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4553
		sizeof(int), 0644, proc_dointvec_minmax, false);
4554
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4555
		sizeof(int), 0644, proc_dointvec_minmax, false);
4556
	set_table_entry(&table[9], "cache_nice_tries",
4557
		&sd->cache_nice_tries,
4558
		sizeof(int), 0644, proc_dointvec_minmax, false);
4559
	set_table_entry(&table[10], "flags", &sd->flags,
4560
		sizeof(int), 0644, proc_dointvec_minmax, false);
4561
	set_table_entry(&table[11], "name", sd->name,
4562
		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4563
	/* &table[12] is terminator */
4564 4565 4566 4567

	return table;
}

4568
static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4569 4570 4571 4572 4573 4574 4575 4576 4577
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4578 4579
	if (table == NULL)
		return NULL;
4580 4581 4582 4583 4584

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
4585
		entry->mode = 0555;
4586 4587 4588 4589 4590 4591 4592 4593
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
4594
static void register_sched_domain_sysctl(void)
4595
{
4596
	int i, cpu_num = num_possible_cpus();
4597 4598 4599
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

4600 4601 4602
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

4603 4604 4605
	if (entry == NULL)
		return;

4606
	for_each_possible_cpu(i) {
4607 4608
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
4609
		entry->mode = 0555;
4610
		entry->child = sd_alloc_ctl_cpu_table(i);
4611
		entry++;
4612
	}
4613 4614

	WARN_ON(sd_sysctl_header);
4615 4616
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
4617

4618
/* may be called multiple times per register */
4619 4620
static void unregister_sched_domain_sysctl(void)
{
4621 4622
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
4623
	sd_sysctl_header = NULL;
4624 4625
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
4626
}
4627
#else
4628 4629 4630 4631
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
4632 4633 4634 4635
{
}
#endif

4636 4637 4638 4639 4640
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

4641
		cpumask_set_cpu(rq->cpu, rq->rd->online);
4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

4661
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
4662 4663 4664 4665
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
4666 4667 4668 4669
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
4670
static int
4671
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
4672
{
4673
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
4674
	unsigned long flags;
4675
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4676

4677
	switch (action & ~CPU_TASKS_FROZEN) {
4678

L
Linus Torvalds 已提交
4679
	case CPU_UP_PREPARE:
4680
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
4681
		break;
4682

L
Linus Torvalds 已提交
4683
	case CPU_ONLINE:
4684
		/* Update our root-domain */
4685
		raw_spin_lock_irqsave(&rq->lock, flags);
4686
		if (rq->rd) {
4687
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4688 4689

			set_rq_online(rq);
4690
		}
4691
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
4692
		break;
4693

L
Linus Torvalds 已提交
4694
#ifdef CONFIG_HOTPLUG_CPU
4695
	case CPU_DYING:
4696
		sched_ttwu_pending();
G
Gregory Haskins 已提交
4697
		/* Update our root-domain */
4698
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
4699
		if (rq->rd) {
4700
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4701
			set_rq_offline(rq);
G
Gregory Haskins 已提交
4702
		}
4703 4704
		migrate_tasks(cpu);
		BUG_ON(rq->nr_running != 1); /* the migration thread */
4705
		raw_spin_unlock_irqrestore(&rq->lock, flags);
4706
		break;
4707

4708
	case CPU_DEAD:
4709
		calc_load_migrate(rq);
G
Gregory Haskins 已提交
4710
		break;
L
Linus Torvalds 已提交
4711 4712
#endif
	}
4713 4714 4715

	update_max_interval();

L
Linus Torvalds 已提交
4716 4717 4718
	return NOTIFY_OK;
}

4719 4720 4721
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
4722
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
4723
 */
4724
static struct notifier_block migration_notifier = {
L
Linus Torvalds 已提交
4725
	.notifier_call = migration_call,
4726
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
4727 4728
};

4729
static int sched_cpu_active(struct notifier_block *nfb,
4730 4731 4732
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
4733
	case CPU_STARTING:
4734 4735 4736 4737 4738 4739 4740 4741
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

4742
static int sched_cpu_inactive(struct notifier_block *nfb,
4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		set_cpu_active((long)hcpu, false);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

4754
static int __init migration_init(void)
L
Linus Torvalds 已提交
4755 4756
{
	void *cpu = (void *)(long)smp_processor_id();
4757
	int err;
4758

4759
	/* Initialize migration for the boot CPU */
4760 4761
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
4762 4763
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
4764

4765 4766 4767 4768
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

4769
	return 0;
L
Linus Torvalds 已提交
4770
}
4771
early_initcall(migration_init);
L
Linus Torvalds 已提交
4772 4773 4774
#endif

#ifdef CONFIG_SMP
4775

4776 4777
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

4778
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
4779

4780
static __read_mostly int sched_debug_enabled;
4781

4782
static int __init sched_debug_setup(char *str)
4783
{
4784
	sched_debug_enabled = 1;
4785 4786 4787

	return 0;
}
4788 4789 4790 4791 4792 4793
early_param("sched_debug", sched_debug_setup);

static inline bool sched_debug(void)
{
	return sched_debug_enabled;
}
4794

4795
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
4796
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
4797
{
I
Ingo Molnar 已提交
4798
	struct sched_group *group = sd->groups;
4799
	char str[256];
L
Linus Torvalds 已提交
4800

R
Rusty Russell 已提交
4801
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
4802
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
4803 4804 4805 4806

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
4807
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
4808
		if (sd->parent)
P
Peter Zijlstra 已提交
4809 4810
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
4811
		return -1;
N
Nick Piggin 已提交
4812 4813
	}

P
Peter Zijlstra 已提交
4814
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
4815

4816
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
4817 4818
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
4819
	}
4820
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
4821 4822
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
4823
	}
L
Linus Torvalds 已提交
4824

I
Ingo Molnar 已提交
4825
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
4826
	do {
I
Ingo Molnar 已提交
4827
		if (!group) {
P
Peter Zijlstra 已提交
4828 4829
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
4830 4831 4832
			break;
		}

4833 4834 4835 4836 4837 4838
		/*
		 * Even though we initialize ->power to something semi-sane,
		 * we leave power_orig unset. This allows us to detect if
		 * domain iteration is still funny without causing /0 traps.
		 */
		if (!group->sgp->power_orig) {
P
Peter Zijlstra 已提交
4839 4840 4841
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
4842 4843
			break;
		}
L
Linus Torvalds 已提交
4844

4845
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
4846 4847
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
4848 4849
			break;
		}
L
Linus Torvalds 已提交
4850

4851 4852
		if (!(sd->flags & SD_OVERLAP) &&
		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
4853 4854
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
4855 4856
			break;
		}
L
Linus Torvalds 已提交
4857

4858
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
4859

R
Rusty Russell 已提交
4860
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
4861

P
Peter Zijlstra 已提交
4862
		printk(KERN_CONT " %s", str);
4863
		if (group->sgp->power != SCHED_POWER_SCALE) {
P
Peter Zijlstra 已提交
4864
			printk(KERN_CONT " (cpu_power = %d)",
4865
				group->sgp->power);
4866
		}
L
Linus Torvalds 已提交
4867

I
Ingo Molnar 已提交
4868 4869
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
4870
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
4871

4872
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
4873
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
4874

4875 4876
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
4877 4878
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
4879 4880
	return 0;
}
L
Linus Torvalds 已提交
4881

I
Ingo Molnar 已提交
4882 4883 4884
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
4885

4886
	if (!sched_debug_enabled)
4887 4888
		return;

I
Ingo Molnar 已提交
4889 4890 4891 4892
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
4893

I
Ingo Molnar 已提交
4894 4895 4896
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
4897
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
I
Ingo Molnar 已提交
4898
			break;
L
Linus Torvalds 已提交
4899 4900
		level++;
		sd = sd->parent;
4901
		if (!sd)
I
Ingo Molnar 已提交
4902 4903
			break;
	}
L
Linus Torvalds 已提交
4904
}
4905
#else /* !CONFIG_SCHED_DEBUG */
4906
# define sched_domain_debug(sd, cpu) do { } while (0)
4907 4908 4909 4910
static inline bool sched_debug(void)
{
	return false;
}
4911
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
4912

4913
static int sd_degenerate(struct sched_domain *sd)
4914
{
4915
	if (cpumask_weight(sched_domain_span(sd)) == 1)
4916 4917 4918 4919 4920 4921
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
4922 4923 4924
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
4925 4926 4927 4928 4929
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
4930
	if (sd->flags & (SD_WAKE_AFFINE))
4931 4932 4933 4934 4935
		return 0;

	return 1;
}

4936 4937
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
4938 4939 4940 4941 4942 4943
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

4944
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
4945 4946 4947 4948 4949 4950 4951
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
4952 4953
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
4954 4955
				SD_SHARE_PKG_RESOURCES |
				SD_PREFER_SIBLING);
4956 4957
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
4958 4959 4960 4961 4962 4963 4964
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

4965
static void free_rootdomain(struct rcu_head *rcu)
4966
{
4967
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
4968

4969
	cpupri_cleanup(&rd->cpupri);
4970 4971 4972 4973 4974 4975
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
4976 4977
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
4978
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
4979 4980
	unsigned long flags;

4981
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
4982 4983

	if (rq->rd) {
I
Ingo Molnar 已提交
4984
		old_rd = rq->rd;
G
Gregory Haskins 已提交
4985

4986
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
4987
			set_rq_offline(rq);
G
Gregory Haskins 已提交
4988

4989
		cpumask_clear_cpu(rq->cpu, old_rd->span);
4990

I
Ingo Molnar 已提交
4991 4992 4993 4994 4995 4996 4997
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
4998 4999 5000 5001 5002
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

5003
	cpumask_set_cpu(rq->cpu, rd->span);
5004
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5005
		set_rq_online(rq);
G
Gregory Haskins 已提交
5006

5007
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
5008 5009

	if (old_rd)
5010
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
5011 5012
}

5013
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
5014 5015 5016
{
	memset(rd, 0, sizeof(*rd));

5017
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5018
		goto out;
5019
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5020
		goto free_span;
5021
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5022
		goto free_online;
5023

5024
	if (cpupri_init(&rd->cpupri) != 0)
5025
		goto free_rto_mask;
5026
	return 0;
5027

5028 5029
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
5030 5031 5032 5033
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
5034
out:
5035
	return -ENOMEM;
G
Gregory Haskins 已提交
5036 5037
}

5038 5039 5040 5041 5042 5043
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
struct root_domain def_root_domain;

G
Gregory Haskins 已提交
5044 5045
static void init_defrootdomain(void)
{
5046
	init_rootdomain(&def_root_domain);
5047

G
Gregory Haskins 已提交
5048 5049 5050
	atomic_set(&def_root_domain.refcount, 1);
}

5051
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
5052 5053 5054 5055 5056 5057 5058
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

5059
	if (init_rootdomain(rd) != 0) {
5060 5061 5062
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
5063 5064 5065 5066

	return rd;
}

5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085
static void free_sched_groups(struct sched_group *sg, int free_sgp)
{
	struct sched_group *tmp, *first;

	if (!sg)
		return;

	first = sg;
	do {
		tmp = sg->next;

		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
			kfree(sg->sgp);

		kfree(sg);
		sg = tmp;
	} while (sg != first);
}

5086 5087 5088
static void free_sched_domain(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5089 5090 5091 5092 5093 5094 5095 5096

	/*
	 * If its an overlapping domain it has private groups, iterate and
	 * nuke them all.
	 */
	if (sd->flags & SD_OVERLAP) {
		free_sched_groups(sd->groups, 1);
	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5097
		kfree(sd->groups->sgp);
5098
		kfree(sd->groups);
5099
	}
5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113
	kfree(sd);
}

static void destroy_sched_domain(struct sched_domain *sd, int cpu)
{
	call_rcu(&sd->rcu, free_sched_domain);
}

static void destroy_sched_domains(struct sched_domain *sd, int cpu)
{
	for (; sd; sd = sd->parent)
		destroy_sched_domain(sd, cpu);
}

5114 5115 5116 5117 5118 5119 5120
/*
 * Keep a special pointer to the highest sched_domain that has
 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 * allows us to avoid some pointer chasing select_idle_sibling().
 *
 * Also keep a unique ID per domain (we use the first cpu number in
 * the cpumask of the domain), this allows us to quickly tell if
5121
 * two cpus are in the same cache domain, see cpus_share_cache().
5122 5123
 */
DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5124
DEFINE_PER_CPU(int, sd_llc_size);
5125 5126 5127 5128 5129 5130
DEFINE_PER_CPU(int, sd_llc_id);

static void update_top_cache_domain(int cpu)
{
	struct sched_domain *sd;
	int id = cpu;
5131
	int size = 1;
5132 5133

	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5134
	if (sd) {
5135
		id = cpumask_first(sched_domain_span(sd));
5136 5137
		size = cpumask_weight(sched_domain_span(sd));
	}
5138 5139

	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5140
	per_cpu(sd_llc_size, cpu) = size;
5141 5142 5143
	per_cpu(sd_llc_id, cpu) = id;
}

L
Linus Torvalds 已提交
5144
/*
I
Ingo Molnar 已提交
5145
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
5146 5147
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
5148 5149
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
5150
{
5151
	struct rq *rq = cpu_rq(cpu);
5152 5153 5154
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
5155
	for (tmp = sd; tmp; ) {
5156 5157 5158
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5159

5160
		if (sd_parent_degenerate(tmp, parent)) {
5161
			tmp->parent = parent->parent;
5162 5163
			if (parent->parent)
				parent->parent->child = tmp;
5164 5165 5166 5167 5168 5169 5170
			/*
			 * Transfer SD_PREFER_SIBLING down in case of a
			 * degenerate parent; the spans match for this
			 * so the property transfers.
			 */
			if (parent->flags & SD_PREFER_SIBLING)
				tmp->flags |= SD_PREFER_SIBLING;
5171
			destroy_sched_domain(parent, cpu);
5172 5173
		} else
			tmp = tmp->parent;
5174 5175
	}

5176
	if (sd && sd_degenerate(sd)) {
5177
		tmp = sd;
5178
		sd = sd->parent;
5179
		destroy_sched_domain(tmp, cpu);
5180 5181 5182
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5183

5184
	sched_domain_debug(sd, cpu);
L
Linus Torvalds 已提交
5185

G
Gregory Haskins 已提交
5186
	rq_attach_root(rq, rd);
5187
	tmp = rq->sd;
N
Nick Piggin 已提交
5188
	rcu_assign_pointer(rq->sd, sd);
5189
	destroy_sched_domains(tmp, cpu);
5190 5191

	update_top_cache_domain(cpu);
L
Linus Torvalds 已提交
5192 5193 5194
}

/* cpus with isolated domains */
5195
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
5196 5197 5198 5199

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
5200
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
5201
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
5202 5203 5204
	return 1;
}

I
Ingo Molnar 已提交
5205
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5206

5207 5208 5209 5210 5211
static const struct cpumask *cpu_cpu_mask(int cpu)
{
	return cpumask_of_node(cpu_to_node(cpu));
}

5212 5213 5214
struct sd_data {
	struct sched_domain **__percpu sd;
	struct sched_group **__percpu sg;
5215
	struct sched_group_power **__percpu sgp;
5216 5217
};

5218
struct s_data {
5219
	struct sched_domain ** __percpu sd;
5220 5221 5222
	struct root_domain	*rd;
};

5223 5224
enum s_alloc {
	sa_rootdomain,
5225
	sa_sd,
5226
	sa_sd_storage,
5227 5228 5229
	sa_none,
};

5230 5231 5232
struct sched_domain_topology_level;

typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5233 5234
typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);

5235 5236
#define SDTL_OVERLAP	0x01

5237
struct sched_domain_topology_level {
5238 5239
	sched_domain_init_f init;
	sched_domain_mask_f mask;
5240
	int		    flags;
5241
	int		    numa_level;
5242
	struct sd_data      data;
5243 5244
};

P
Peter Zijlstra 已提交
5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282
/*
 * Build an iteration mask that can exclude certain CPUs from the upwards
 * domain traversal.
 *
 * Asymmetric node setups can result in situations where the domain tree is of
 * unequal depth, make sure to skip domains that already cover the entire
 * range.
 *
 * In that case build_sched_domains() will have terminated the iteration early
 * and our sibling sd spans will be empty. Domains should always include the
 * cpu they're built on, so check that.
 *
 */
static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
{
	const struct cpumask *span = sched_domain_span(sd);
	struct sd_data *sdd = sd->private;
	struct sched_domain *sibling;
	int i;

	for_each_cpu(i, span) {
		sibling = *per_cpu_ptr(sdd->sd, i);
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
			continue;

		cpumask_set_cpu(i, sched_group_mask(sg));
	}
}

/*
 * Return the canonical balance cpu for this group, this is the first cpu
 * of this group that's also in the iteration mask.
 */
int group_balance_cpu(struct sched_group *sg)
{
	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
}

5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300
static int
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered = sched_domains_tmpmask;
	struct sd_data *sdd = sd->private;
	struct sched_domain *child;
	int i;

	cpumask_clear(covered);

	for_each_cpu(i, span) {
		struct cpumask *sg_span;

		if (cpumask_test_cpu(i, covered))
			continue;

P
Peter Zijlstra 已提交
5301 5302 5303 5304 5305 5306
		child = *per_cpu_ptr(sdd->sd, i);

		/* See the comment near build_group_mask(). */
		if (!cpumask_test_cpu(i, sched_domain_span(child)))
			continue;

5307
		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5308
				GFP_KERNEL, cpu_to_node(cpu));
5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321

		if (!sg)
			goto fail;

		sg_span = sched_group_cpus(sg);
		if (child->child) {
			child = child->child;
			cpumask_copy(sg_span, sched_domain_span(child));
		} else
			cpumask_set_cpu(i, sg_span);

		cpumask_or(covered, covered, sg_span);

P
Peter Zijlstra 已提交
5322
		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
P
Peter Zijlstra 已提交
5323 5324 5325
		if (atomic_inc_return(&sg->sgp->ref) == 1)
			build_group_mask(sd, sg);

5326 5327 5328 5329 5330 5331
		/*
		 * Initialize sgp->power such that even if we mess up the
		 * domains and no possible iteration will get us here, we won't
		 * die on a /0 trap.
		 */
		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5332

P
Peter Zijlstra 已提交
5333 5334 5335 5336 5337
		/*
		 * Make sure the first group of this domain contains the
		 * canonical balance cpu. Otherwise the sched_domain iteration
		 * breaks. See update_sg_lb_stats().
		 */
P
Peter Zijlstra 已提交
5338
		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
P
Peter Zijlstra 已提交
5339
		    group_balance_cpu(sg) == cpu)
5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358
			groups = sg;

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
		last->next = first;
	}
	sd->groups = groups;

	return 0;

fail:
	free_sched_groups(first, 0);

	return -ENOMEM;
}

5359
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
5360
{
5361 5362
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
5363

5364 5365
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
5366

5367
	if (sg) {
5368
		*sg = *per_cpu_ptr(sdd->sg, cpu);
5369
		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5370
		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5371
	}
5372 5373

	return cpu;
5374 5375
}

5376
/*
5377 5378 5379
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
5380 5381
 *
 * Assumes the sched_domain tree is fully constructed
5382
 */
5383 5384
static int
build_sched_groups(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5385
{
5386 5387 5388
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
5389
	struct cpumask *covered;
5390
	int i;
5391

5392 5393 5394
	get_group(cpu, sdd, &sd->groups);
	atomic_inc(&sd->groups->ref);

5395
	if (cpu != cpumask_first(span))
5396 5397
		return 0;

5398 5399 5400
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

5401
	cpumask_clear(covered);
5402

5403 5404
	for_each_cpu(i, span) {
		struct sched_group *sg;
5405
		int group, j;
5406

5407 5408
		if (cpumask_test_cpu(i, covered))
			continue;
5409

5410
		group = get_group(i, sdd, &sg);
5411
		cpumask_clear(sched_group_cpus(sg));
5412
		sg->sgp->power = 0;
P
Peter Zijlstra 已提交
5413
		cpumask_setall(sched_group_mask(sg));
5414

5415 5416 5417
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
5418

5419 5420 5421
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
5422

5423 5424 5425 5426 5427 5428 5429
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
5430 5431

	return 0;
5432
}
5433

5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
5446
	struct sched_group *sg = sd->groups;
5447

5448
	WARN_ON(!sg);
5449 5450 5451 5452 5453

	do {
		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
		sg = sg->next;
	} while (sg != sd->groups);
5454

P
Peter Zijlstra 已提交
5455
	if (cpu != group_balance_cpu(sg))
5456
		return;
5457

5458
	update_group_power(sd, cpu);
5459
	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5460 5461
}

5462 5463 5464
int __weak arch_sd_sibling_asym_packing(void)
{
       return 0*SD_ASYM_PACKING;
5465 5466
}

5467 5468 5469 5470 5471
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

5472 5473 5474 5475 5476 5477
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

5478 5479 5480 5481 5482 5483 5484 5485 5486
#define SD_INIT_FUNC(type)						\
static noinline struct sched_domain *					\
sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
{									\
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
	*sd = SD_##type##_INIT;						\
	SD_INIT_NAME(sd, type);						\
	sd->private = &tl->data;					\
	return sd;							\
5487 5488 5489 5490 5491 5492 5493 5494 5495
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif
5496 5497 5498
#ifdef CONFIG_SCHED_BOOK
 SD_INIT_FUNC(BOOK)
#endif
5499

5500
static int default_relax_domain_level = -1;
5501
int sched_domain_level_max;
5502 5503 5504

static int __init setup_relax_domain_level(char *str)
{
5505 5506
	if (kstrtoint(str, 0, &default_relax_domain_level))
		pr_warn("Unable to set relax_domain_level\n");
5507

5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
5526
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5527 5528
	} else {
		/* turn on idle balance on this domain */
5529
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5530 5531 5532
	}
}

5533 5534 5535
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

5536 5537 5538 5539 5540
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
5541 5542
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
5543 5544
	case sa_sd:
		free_percpu(d->sd); /* fall through */
5545
	case sa_sd_storage:
5546
		__sdt_free(cpu_map); /* fall through */
5547 5548 5549 5550
	case sa_none:
		break;
	}
}
5551

5552 5553 5554
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
5555 5556
	memset(d, 0, sizeof(*d));

5557 5558
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
5559 5560 5561
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
5562
	d->rd = alloc_rootdomain();
5563
	if (!d->rd)
5564
		return sa_sd;
5565 5566
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
5567

5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

5580
	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5581
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5582 5583

	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5584
		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
5585 5586
}

5587 5588
#ifdef CONFIG_SCHED_SMT
static const struct cpumask *cpu_smt_mask(int cpu)
5589
{
5590
	return topology_thread_cpumask(cpu);
5591
}
5592
#endif
5593

5594 5595 5596
/*
 * Topology list, bottom-up.
 */
5597
static struct sched_domain_topology_level default_topology[] = {
5598 5599
#ifdef CONFIG_SCHED_SMT
	{ sd_init_SIBLING, cpu_smt_mask, },
5600
#endif
5601
#ifdef CONFIG_SCHED_MC
5602
	{ sd_init_MC, cpu_coregroup_mask, },
5603
#endif
5604 5605 5606 5607
#ifdef CONFIG_SCHED_BOOK
	{ sd_init_BOOK, cpu_book_mask, },
#endif
	{ sd_init_CPU, cpu_cpu_mask, },
5608 5609 5610 5611 5612
	{ NULL, },
};

static struct sched_domain_topology_level *sched_domain_topology = default_topology;

5613 5614 5615
#define for_each_sd_topology(tl)			\
	for (tl = sched_domain_topology; tl->init; tl++)

5616 5617 5618 5619 5620 5621 5622 5623 5624
#ifdef CONFIG_NUMA

static int sched_domains_numa_levels;
static int *sched_domains_numa_distance;
static struct cpumask ***sched_domains_numa_masks;
static int sched_domains_curr_level;

static inline int sd_local_flags(int level)
{
5625
	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642
		return 0;

	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
}

static struct sched_domain *
sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
{
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
	int level = tl->numa_level;
	int sd_weight = cpumask_weight(
			sched_domains_numa_masks[level][cpu_to_node(cpu)]);

	*sd = (struct sched_domain){
		.min_interval		= sd_weight,
		.max_interval		= 2*sd_weight,
		.busy_factor		= 32,
5643
		.imbalance_pct		= 125,
5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681
		.cache_nice_tries	= 2,
		.busy_idx		= 3,
		.idle_idx		= 2,
		.newidle_idx		= 0,
		.wake_idx		= 0,
		.forkexec_idx		= 0,

		.flags			= 1*SD_LOAD_BALANCE
					| 1*SD_BALANCE_NEWIDLE
					| 0*SD_BALANCE_EXEC
					| 0*SD_BALANCE_FORK
					| 0*SD_BALANCE_WAKE
					| 0*SD_WAKE_AFFINE
					| 0*SD_SHARE_CPUPOWER
					| 0*SD_SHARE_PKG_RESOURCES
					| 1*SD_SERIALIZE
					| 0*SD_PREFER_SIBLING
					| sd_local_flags(level)
					,
		.last_balance		= jiffies,
		.balance_interval	= sd_weight,
	};
	SD_INIT_NAME(sd, NUMA);
	sd->private = &tl->data;

	/*
	 * Ugly hack to pass state to sd_numa_mask()...
	 */
	sched_domains_curr_level = tl->numa_level;

	return sd;
}

static const struct cpumask *sd_numa_mask(int cpu)
{
	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
}

5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717
static void sched_numa_warn(const char *str)
{
	static int done = false;
	int i,j;

	if (done)
		return;

	done = true;

	printk(KERN_WARNING "ERROR: %s\n\n", str);

	for (i = 0; i < nr_node_ids; i++) {
		printk(KERN_WARNING "  ");
		for (j = 0; j < nr_node_ids; j++)
			printk(KERN_CONT "%02d ", node_distance(i,j));
		printk(KERN_CONT "\n");
	}
	printk(KERN_WARNING "\n");
}

static bool find_numa_distance(int distance)
{
	int i;

	if (distance == node_distance(0, 0))
		return true;

	for (i = 0; i < sched_domains_numa_levels; i++) {
		if (sched_domains_numa_distance[i] == distance)
			return true;
	}

	return false;
}

5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738
static void sched_init_numa(void)
{
	int next_distance, curr_distance = node_distance(0, 0);
	struct sched_domain_topology_level *tl;
	int level = 0;
	int i, j, k;

	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
	if (!sched_domains_numa_distance)
		return;

	/*
	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
	 * unique distances in the node_distance() table.
	 *
	 * Assumes node_distance(0,j) includes all distances in
	 * node_distance(i,j) in order to avoid cubic time.
	 */
	next_distance = curr_distance;
	for (i = 0; i < nr_node_ids; i++) {
		for (j = 0; j < nr_node_ids; j++) {
5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762
			for (k = 0; k < nr_node_ids; k++) {
				int distance = node_distance(i, k);

				if (distance > curr_distance &&
				    (distance < next_distance ||
				     next_distance == curr_distance))
					next_distance = distance;

				/*
				 * While not a strong assumption it would be nice to know
				 * about cases where if node A is connected to B, B is not
				 * equally connected to A.
				 */
				if (sched_debug() && node_distance(k, i) != distance)
					sched_numa_warn("Node-distance not symmetric");

				if (sched_debug() && i && !find_numa_distance(distance))
					sched_numa_warn("Node-0 not representative");
			}
			if (next_distance != curr_distance) {
				sched_domains_numa_distance[level++] = next_distance;
				sched_domains_numa_levels = level;
				curr_distance = next_distance;
			} else break;
5763
		}
5764 5765 5766 5767 5768 5769

		/*
		 * In case of sched_debug() we verify the above assumption.
		 */
		if (!sched_debug())
			break;
5770 5771 5772 5773 5774
	}
	/*
	 * 'level' contains the number of unique distances, excluding the
	 * identity distance node_distance(i,i).
	 *
V
Viresh Kumar 已提交
5775
	 * The sched_domains_numa_distance[] array includes the actual distance
5776 5777 5778
	 * numbers.
	 */

5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789
	/*
	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
	 * the array will contain less then 'level' members. This could be
	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
	 * in other functions.
	 *
	 * We reset it to 'level' at the end of this function.
	 */
	sched_domains_numa_levels = 0;

5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804
	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
	if (!sched_domains_numa_masks)
		return;

	/*
	 * Now for each level, construct a mask per node which contains all
	 * cpus of nodes that are that many hops away from us.
	 */
	for (i = 0; i < level; i++) {
		sched_domains_numa_masks[i] =
			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
		if (!sched_domains_numa_masks[i])
			return;

		for (j = 0; j < nr_node_ids; j++) {
5805
			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
5806 5807 5808 5809 5810 5811
			if (!mask)
				return;

			sched_domains_numa_masks[i][j] = mask;

			for (k = 0; k < nr_node_ids; k++) {
5812
				if (node_distance(j, k) > sched_domains_numa_distance[i])
5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843
					continue;

				cpumask_or(mask, mask, cpumask_of_node(k));
			}
		}
	}

	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
	if (!tl)
		return;

	/*
	 * Copy the default topology bits..
	 */
	for (i = 0; default_topology[i].init; i++)
		tl[i] = default_topology[i];

	/*
	 * .. and append 'j' levels of NUMA goodness.
	 */
	for (j = 0; j < level; i++, j++) {
		tl[i] = (struct sched_domain_topology_level){
			.init = sd_numa_init,
			.mask = sd_numa_mask,
			.flags = SDTL_OVERLAP,
			.numa_level = j,
		};
	}

	sched_domain_topology = tl;
5844 5845

	sched_domains_numa_levels = level;
5846
}
5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893

static void sched_domains_numa_masks_set(int cpu)
{
	int i, j;
	int node = cpu_to_node(cpu);

	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++) {
			if (node_distance(j, node) <= sched_domains_numa_distance[i])
				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
		}
	}
}

static void sched_domains_numa_masks_clear(int cpu)
{
	int i, j;
	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++)
			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
	}
}

/*
 * Update sched_domains_numa_masks[level][node] array when new cpus
 * are onlined.
 */
static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	int cpu = (long)hcpu;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
		sched_domains_numa_masks_set(cpu);
		break;

	case CPU_DEAD:
		sched_domains_numa_masks_clear(cpu);
		break;

	default:
		return NOTIFY_DONE;
	}

	return NOTIFY_OK;
5894 5895 5896 5897 5898
}
#else
static inline void sched_init_numa(void)
{
}
5899 5900 5901 5902 5903 5904 5905

static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	return 0;
}
5906 5907
#endif /* CONFIG_NUMA */

5908 5909 5910 5911 5912
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

5913
	for_each_sd_topology(tl) {
5914 5915 5916 5917 5918 5919 5920 5921 5922 5923
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

5924 5925 5926 5927
		sdd->sgp = alloc_percpu(struct sched_group_power *);
		if (!sdd->sgp)
			return -ENOMEM;

5928 5929 5930
		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_group *sg;
5931
			struct sched_group_power *sgp;
5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944

		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

5945 5946
			sg->next = sg;

5947
			*per_cpu_ptr(sdd->sg, j) = sg;
5948

P
Peter Zijlstra 已提交
5949
			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
5950 5951 5952 5953 5954
					GFP_KERNEL, cpu_to_node(j));
			if (!sgp)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sgp, j) = sgp;
5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

5966
	for_each_sd_topology(tl) {
5967 5968 5969
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982
			struct sched_domain *sd;

			if (sdd->sd) {
				sd = *per_cpu_ptr(sdd->sd, j);
				if (sd && (sd->flags & SD_OVERLAP))
					free_sched_groups(sd->groups, 0);
				kfree(*per_cpu_ptr(sdd->sd, j));
			}

			if (sdd->sg)
				kfree(*per_cpu_ptr(sdd->sg, j));
			if (sdd->sgp)
				kfree(*per_cpu_ptr(sdd->sgp, j));
5983 5984
		}
		free_percpu(sdd->sd);
5985
		sdd->sd = NULL;
5986
		free_percpu(sdd->sg);
5987
		sdd->sg = NULL;
5988
		free_percpu(sdd->sgp);
5989
		sdd->sgp = NULL;
5990 5991 5992
	}
}

5993
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
5994 5995
		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
		struct sched_domain *child, int cpu)
5996
{
5997
	struct sched_domain *sd = tl->init(tl, cpu);
5998
	if (!sd)
5999
		return child;
6000 6001

	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6002 6003 6004
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6005
		child->parent = sd;
6006
		sd->child = child;
6007
	}
6008
	set_domain_attribute(sd, attr);
6009 6010 6011 6012

	return sd;
}

6013 6014 6015 6016
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
6017 6018
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
6019
{
6020
	enum s_alloc alloc_state;
6021
	struct sched_domain *sd;
6022
	struct s_data d;
6023
	int i, ret = -ENOMEM;
6024

6025 6026 6027
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
6028

6029
	/* Set up domains for cpus specified by the cpu_map. */
6030
	for_each_cpu(i, cpu_map) {
6031 6032
		struct sched_domain_topology_level *tl;

6033
		sd = NULL;
6034
		for_each_sd_topology(tl) {
6035
			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6036 6037
			if (tl == sched_domain_topology)
				*per_cpu_ptr(d.sd, i) = sd;
6038 6039
			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
				sd->flags |= SD_OVERLAP;
6040 6041
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
				break;
6042
		}
6043 6044 6045 6046 6047 6048
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6049 6050 6051 6052 6053 6054 6055
			if (sd->flags & SD_OVERLAP) {
				if (build_overlap_sched_groups(sd, i))
					goto error;
			} else {
				if (build_sched_groups(sd, i))
					goto error;
			}
6056
		}
6057
	}
6058

L
Linus Torvalds 已提交
6059
	/* Calculate CPU power for physical packages and nodes */
6060 6061 6062
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
6063

6064 6065
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
6066
			init_sched_groups_power(i, sd);
6067
		}
6068
	}
6069

L
Linus Torvalds 已提交
6070
	/* Attach the domains */
6071
	rcu_read_lock();
6072
	for_each_cpu(i, cpu_map) {
6073
		sd = *per_cpu_ptr(d.sd, i);
6074
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
6075
	}
6076
	rcu_read_unlock();
6077

6078
	ret = 0;
6079
error:
6080
	__free_domain_allocs(&d, alloc_state, cpu_map);
6081
	return ret;
L
Linus Torvalds 已提交
6082
}
P
Paul Jackson 已提交
6083

6084
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
6085
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
6086 6087
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
6088 6089 6090

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
6091 6092
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
6093
 */
6094
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
6095

6096 6097 6098 6099 6100 6101
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
6102
{
6103
	return 0;
6104 6105
}

6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

6131
/*
I
Ingo Molnar 已提交
6132
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6133 6134
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6135
 */
6136
static int init_sched_domains(const struct cpumask *cpu_map)
6137
{
6138 6139
	int err;

6140
	arch_update_cpu_topology();
P
Paul Jackson 已提交
6141
	ndoms_cur = 1;
6142
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
6143
	if (!doms_cur)
6144 6145
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6146
	err = build_sched_domains(doms_cur[0], NULL);
6147
	register_sched_domain_sysctl();
6148 6149

	return err;
6150 6151 6152 6153 6154 6155
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6156
static void detach_destroy_domains(const struct cpumask *cpu_map)
6157 6158 6159
{
	int i;

6160
	rcu_read_lock();
6161
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
6162
		cpu_attach_domain(NULL, &def_root_domain, i);
6163
	rcu_read_unlock();
6164 6165
}

6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
6182 6183
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
6184
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
6185 6186 6187
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
6188
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
6189 6190 6191
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
6192 6193 6194
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
6195 6196 6197 6198 6199 6200
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
6201
 *
6202
 * If doms_new == NULL it will be replaced with cpu_online_mask.
6203 6204
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
6205
 *
P
Paul Jackson 已提交
6206 6207
 * Call with hotplug lock held
 */
6208
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6209
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
6210
{
6211
	int i, j, n;
6212
	int new_topology;
P
Paul Jackson 已提交
6213

6214
	mutex_lock(&sched_domains_mutex);
6215

6216 6217 6218
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

6219 6220 6221
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

6222
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
6223 6224 6225

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
6226
		for (j = 0; j < n && !new_topology; j++) {
6227
			if (cpumask_equal(doms_cur[i], doms_new[j])
6228
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
6229 6230 6231
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
6232
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
6233 6234 6235 6236
match1:
		;
	}

6237
	n = ndoms_cur;
6238
	if (doms_new == NULL) {
6239
		n = 0;
6240
		doms_new = &fallback_doms;
6241
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6242
		WARN_ON_ONCE(dattr_new);
6243 6244
	}

P
Paul Jackson 已提交
6245 6246
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
6247
		for (j = 0; j < n && !new_topology; j++) {
6248
			if (cpumask_equal(doms_new[i], doms_cur[j])
6249
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
6250 6251 6252
				goto match2;
		}
		/* no match - add a new doms_new */
6253
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
6254 6255 6256 6257 6258
match2:
		;
	}

	/* Remember the new sched domains */
6259 6260
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
6261
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
6262
	doms_cur = doms_new;
6263
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
6264
	ndoms_cur = ndoms_new;
6265 6266

	register_sched_domain_sysctl();
6267

6268
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
6269 6270
}

6271 6272
static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */

L
Linus Torvalds 已提交
6273
/*
6274 6275 6276
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
6277 6278 6279
 *
 * If we come here as part of a suspend/resume, don't touch cpusets because we
 * want to restore it back to its original state upon resume anyway.
L
Linus Torvalds 已提交
6280
 */
6281 6282
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
6283
{
6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305
	switch (action) {
	case CPU_ONLINE_FROZEN:
	case CPU_DOWN_FAILED_FROZEN:

		/*
		 * num_cpus_frozen tracks how many CPUs are involved in suspend
		 * resume sequence. As long as this is not the last online
		 * operation in the resume sequence, just build a single sched
		 * domain, ignoring cpusets.
		 */
		num_cpus_frozen--;
		if (likely(num_cpus_frozen)) {
			partition_sched_domains(1, NULL, NULL);
			break;
		}

		/*
		 * This is the last CPU online operation. So fall through and
		 * restore the original sched domains by considering the
		 * cpuset configurations.
		 */

6306
	case CPU_ONLINE:
6307
	case CPU_DOWN_FAILED:
6308
		cpuset_update_active_cpus(true);
6309
		break;
6310 6311 6312
	default:
		return NOTIFY_DONE;
	}
6313
	return NOTIFY_OK;
6314
}
6315

6316 6317
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
6318
{
6319
	switch (action) {
6320
	case CPU_DOWN_PREPARE:
6321
		cpuset_update_active_cpus(false);
6322 6323 6324 6325 6326
		break;
	case CPU_DOWN_PREPARE_FROZEN:
		num_cpus_frozen++;
		partition_sched_domains(1, NULL, NULL);
		break;
6327 6328 6329
	default:
		return NOTIFY_DONE;
	}
6330
	return NOTIFY_OK;
6331 6332
}

L
Linus Torvalds 已提交
6333 6334
void __init sched_init_smp(void)
{
6335 6336 6337
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6338
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6339

6340 6341
	sched_init_numa();

6342
	get_online_cpus();
6343
	mutex_lock(&sched_domains_mutex);
6344
	init_sched_domains(cpu_active_mask);
6345 6346 6347
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6348
	mutex_unlock(&sched_domains_mutex);
6349
	put_online_cpus();
6350

6351
	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6352 6353
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6354

6355
	init_hrtick();
6356 6357

	/* Move init over to a non-isolated CPU */
6358
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6359
		BUG();
I
Ingo Molnar 已提交
6360
	sched_init_granularity();
6361
	free_cpumask_var(non_isolated_cpus);
6362

6363
	init_sched_rt_class();
L
Linus Torvalds 已提交
6364 6365 6366 6367
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6368
	sched_init_granularity();
L
Linus Torvalds 已提交
6369 6370 6371
}
#endif /* CONFIG_SMP */

6372 6373
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
6374 6375 6376 6377 6378 6379 6380
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

6381
#ifdef CONFIG_CGROUP_SCHED
6382 6383 6384 6385
/*
 * Default task group.
 * Every task in system belongs to this group at bootup.
 */
6386
struct task_group root_task_group;
6387
LIST_HEAD(task_groups);
6388
#endif
P
Peter Zijlstra 已提交
6389

6390
DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
P
Peter Zijlstra 已提交
6391

L
Linus Torvalds 已提交
6392 6393
void __init sched_init(void)
{
I
Ingo Molnar 已提交
6394
	int i, j;
6395 6396 6397 6398 6399 6400 6401
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6402
#endif
6403
#ifdef CONFIG_CPUMASK_OFFSTACK
6404
	alloc_size += num_possible_cpus() * cpumask_size();
6405 6406
#endif
	if (alloc_size) {
6407
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6408 6409

#ifdef CONFIG_FAIR_GROUP_SCHED
6410
		root_task_group.se = (struct sched_entity **)ptr;
6411 6412
		ptr += nr_cpu_ids * sizeof(void **);

6413
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6414
		ptr += nr_cpu_ids * sizeof(void **);
6415

6416
#endif /* CONFIG_FAIR_GROUP_SCHED */
6417
#ifdef CONFIG_RT_GROUP_SCHED
6418
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6419 6420
		ptr += nr_cpu_ids * sizeof(void **);

6421
		root_task_group.rt_rq = (struct rt_rq **)ptr;
6422 6423
		ptr += nr_cpu_ids * sizeof(void **);

6424
#endif /* CONFIG_RT_GROUP_SCHED */
6425 6426
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
6427
			per_cpu(load_balance_mask, i) = (void *)ptr;
6428 6429 6430
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
6431
	}
I
Ingo Molnar 已提交
6432

G
Gregory Haskins 已提交
6433 6434 6435 6436
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

6437 6438 6439 6440
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
6441
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6442
			global_rt_period(), global_rt_runtime());
6443
#endif /* CONFIG_RT_GROUP_SCHED */
6444

D
Dhaval Giani 已提交
6445
#ifdef CONFIG_CGROUP_SCHED
6446 6447
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
6448
	INIT_LIST_HEAD(&root_task_group.siblings);
6449
	autogroup_init(&init_task);
6450

D
Dhaval Giani 已提交
6451
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
6452

6453
	for_each_possible_cpu(i) {
6454
		struct rq *rq;
L
Linus Torvalds 已提交
6455 6456

		rq = cpu_rq(i);
6457
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
6458
		rq->nr_running = 0;
6459 6460
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
6461
		init_cfs_rq(&rq->cfs);
P
Peter Zijlstra 已提交
6462
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
6463
#ifdef CONFIG_FAIR_GROUP_SCHED
6464
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
6465
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
6466
		/*
6467
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
6468 6469 6470 6471
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
6472
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
6473 6474 6475
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
6476
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
6477 6478 6479
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
6480
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
6481
		 *
6482 6483
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
6484
		 */
6485
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6486
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
6487 6488 6489
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6490
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
6491
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6492
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
6493
#endif
L
Linus Torvalds 已提交
6494

I
Ingo Molnar 已提交
6495 6496
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
6497 6498 6499

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
6500
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6501
		rq->sd = NULL;
G
Gregory Haskins 已提交
6502
		rq->rd = NULL;
6503
		rq->cpu_power = SCHED_POWER_SCALE;
6504
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
6505
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6506
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6507
		rq->push_cpu = 0;
6508
		rq->cpu = i;
6509
		rq->online = 0;
6510 6511
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
6512
		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6513 6514 6515

		INIT_LIST_HEAD(&rq->cfs_tasks);

6516
		rq_attach_root(rq, &def_root_domain);
6517
#ifdef CONFIG_NO_HZ_COMMON
6518
		rq->nohz_flags = 0;
6519
#endif
6520 6521 6522
#ifdef CONFIG_NO_HZ_FULL
		rq->last_sched_tick = 0;
#endif
L
Linus Torvalds 已提交
6523
#endif
P
Peter Zijlstra 已提交
6524
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
6525 6526 6527
		atomic_set(&rq->nr_iowait, 0);
	}

6528
	set_load_weight(&init_task);
6529

6530 6531 6532 6533
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

6534
#ifdef CONFIG_RT_MUTEXES
6535
	plist_head_init(&init_task.pi_waiters);
6536 6537
#endif

L
Linus Torvalds 已提交
6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
6551 6552 6553

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
6554 6555 6556 6557
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
6558

6559
#ifdef CONFIG_SMP
6560
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
R
Rusty Russell 已提交
6561 6562 6563
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6564
	idle_thread_set_boot_cpu();
6565 6566
#endif
	init_sched_fair_class();
6567

6568
	scheduler_running = 1;
L
Linus Torvalds 已提交
6569 6570
}

6571
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6572 6573
static inline int preempt_count_equals(int preempt_offset)
{
6574
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6575

A
Arnd Bergmann 已提交
6576
	return (nested == preempt_offset);
6577 6578
}

6579
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
6580 6581 6582
{
	static unsigned long prev_jiffy;	/* ratelimiting */

6583
	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6584 6585
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
6586 6587 6588 6589 6590
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
6591 6592 6593 6594 6595 6596 6597
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
6598 6599 6600 6601 6602

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
6603 6604 6605 6606 6607
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
6608 6609
static void normalize_task(struct rq *rq, struct task_struct *p)
{
P
Peter Zijlstra 已提交
6610 6611
	const struct sched_class *prev_class = p->sched_class;
	int old_prio = p->prio;
6612
	int on_rq;
6613

P
Peter Zijlstra 已提交
6614
	on_rq = p->on_rq;
6615
	if (on_rq)
6616
		dequeue_task(rq, p, 0);
6617 6618
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
6619
		enqueue_task(rq, p, 0);
6620 6621
		resched_task(rq->curr);
	}
P
Peter Zijlstra 已提交
6622 6623

	check_class_changed(rq, p, prev_class, old_prio);
6624 6625
}

L
Linus Torvalds 已提交
6626 6627
void normalize_rt_tasks(void)
{
6628
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6629
	unsigned long flags;
6630
	struct rq *rq;
L
Linus Torvalds 已提交
6631

6632
	read_lock_irqsave(&tasklist_lock, flags);
6633
	do_each_thread(g, p) {
6634 6635 6636 6637 6638 6639
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
6640 6641
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
6642 6643 6644
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
6645
#endif
I
Ingo Molnar 已提交
6646 6647 6648 6649 6650 6651 6652 6653

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
6654
			continue;
I
Ingo Molnar 已提交
6655
		}
L
Linus Torvalds 已提交
6656

6657
		raw_spin_lock(&p->pi_lock);
6658
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
6659

6660
		normalize_task(rq, p);
6661

6662
		__task_rq_unlock(rq);
6663
		raw_spin_unlock(&p->pi_lock);
6664 6665
	} while_each_thread(g, p);

6666
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
6667 6668 6669
}

#endif /* CONFIG_MAGIC_SYSRQ */
6670

6671
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6672
/*
6673
 * These functions are only useful for the IA64 MCA handling, or kdb.
6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6687 6688
 *
 * Return: The current task for @cpu.
6689
 */
6690
struct task_struct *curr_task(int cpu)
6691 6692 6693 6694
{
	return cpu_curr(cpu);
}

6695 6696 6697
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
6698 6699 6700 6701 6702 6703
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
6704 6705
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
6706 6707 6708 6709 6710 6711 6712
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6713
void set_curr_task(int cpu, struct task_struct *p)
6714 6715 6716 6717 6718
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
6719

D
Dhaval Giani 已提交
6720
#ifdef CONFIG_CGROUP_SCHED
6721 6722 6723
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

6724 6725 6726 6727
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
6728
	autogroup_free(tg);
6729 6730 6731 6732
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
6733
struct task_group *sched_create_group(struct task_group *parent)
6734 6735 6736 6737 6738 6739 6740
{
	struct task_group *tg;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

6741
	if (!alloc_fair_sched_group(tg, parent))
6742 6743
		goto err;

6744
	if (!alloc_rt_sched_group(tg, parent))
6745 6746
		goto err;

6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757
	return tg;

err:
	free_sched_group(tg);
	return ERR_PTR(-ENOMEM);
}

void sched_online_group(struct task_group *tg, struct task_group *parent)
{
	unsigned long flags;

6758
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
6759
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
6760 6761 6762 6763 6764

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
6765
	list_add_rcu(&tg->siblings, &parent->children);
6766
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
6767 6768
}

6769
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
6770
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
6771 6772
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
6773
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
6774 6775
}

6776
/* Destroy runqueue etc associated with a task group */
6777
void sched_destroy_group(struct task_group *tg)
6778 6779 6780 6781 6782 6783
{
	/* wait for possible concurrent references to cfs_rqs complete */
	call_rcu(&tg->rcu, free_sched_group_rcu);
}

void sched_offline_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
6784
{
6785
	unsigned long flags;
6786
	int i;
S
Srivatsa Vaddagiri 已提交
6787

6788 6789
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
6790
		unregister_fair_sched_group(tg, i);
6791 6792

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
6793
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
6794
	list_del_rcu(&tg->siblings);
6795
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
6796 6797
}

6798
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
6799 6800 6801
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
6802 6803
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
6804
{
P
Peter Zijlstra 已提交
6805
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
6806 6807 6808 6809 6810 6811
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

6812
	running = task_current(rq, tsk);
P
Peter Zijlstra 已提交
6813
	on_rq = tsk->on_rq;
S
Srivatsa Vaddagiri 已提交
6814

6815
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
6816
		dequeue_task(rq, tsk, 0);
6817 6818
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
6819

6820
	tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
P
Peter Zijlstra 已提交
6821 6822 6823 6824 6825
				lockdep_is_held(&tsk->sighand->siglock)),
			  struct task_group, css);
	tg = autogroup_task_group(tsk, tg);
	tsk->sched_task_group = tg;

P
Peter Zijlstra 已提交
6826
#ifdef CONFIG_FAIR_GROUP_SCHED
6827 6828 6829
	if (tsk->sched_class->task_move_group)
		tsk->sched_class->task_move_group(tsk, on_rq);
	else
P
Peter Zijlstra 已提交
6830
#endif
6831
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
6832

6833 6834 6835
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
6836
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
6837

6838
	task_rq_unlock(rq, tsk, &flags);
S
Srivatsa Vaddagiri 已提交
6839
}
D
Dhaval Giani 已提交
6840
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
6841

6842
#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
P
Peter Zijlstra 已提交
6843 6844 6845
static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
6846
		return 1ULL << 20;
P
Peter Zijlstra 已提交
6847

P
Peter Zijlstra 已提交
6848
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
6849
}
6850 6851 6852 6853 6854 6855 6856
#endif

#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
P
Peter Zijlstra 已提交
6857

P
Peter Zijlstra 已提交
6858 6859
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
6860
{
P
Peter Zijlstra 已提交
6861
	struct task_struct *g, *p;
6862

P
Peter Zijlstra 已提交
6863
	do_each_thread(g, p) {
6864
		if (rt_task(p) && task_rq(p)->rt.tg == tg)
P
Peter Zijlstra 已提交
6865 6866
			return 1;
	} while_each_thread(g, p);
6867

P
Peter Zijlstra 已提交
6868 6869
	return 0;
}
6870

P
Peter Zijlstra 已提交
6871 6872 6873 6874 6875
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
6876

6877
static int tg_rt_schedulable(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
6878 6879 6880 6881 6882
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
6883

P
Peter Zijlstra 已提交
6884 6885
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
6886

P
Peter Zijlstra 已提交
6887 6888 6889
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
6890 6891
	}

6892 6893 6894 6895 6896
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
6897

6898 6899 6900
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
6901 6902
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
6903

P
Peter Zijlstra 已提交
6904
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
6905

6906 6907 6908 6909 6910
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
6911

6912 6913 6914
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
6915 6916 6917
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
6918

P
Peter Zijlstra 已提交
6919 6920 6921 6922
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
6923

P
Peter Zijlstra 已提交
6924
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
6925
	}
P
Peter Zijlstra 已提交
6926

P
Peter Zijlstra 已提交
6927 6928 6929 6930
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
6931 6932
}

P
Peter Zijlstra 已提交
6933
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6934
{
6935 6936
	int ret;

P
Peter Zijlstra 已提交
6937 6938 6939 6940 6941 6942
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

6943 6944 6945 6946 6947
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
6948 6949
}

6950
static int tg_set_rt_bandwidth(struct task_group *tg,
6951
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
6952
{
P
Peter Zijlstra 已提交
6953
	int i, err = 0;
P
Peter Zijlstra 已提交
6954 6955

	mutex_lock(&rt_constraints_mutex);
6956
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
6957 6958
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
6959
		goto unlock;
P
Peter Zijlstra 已提交
6960

6961
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
6962 6963
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
6964 6965 6966 6967

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

6968
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
6969
		rt_rq->rt_runtime = rt_runtime;
6970
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
6971
	}
6972
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
6973
unlock:
6974
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
6975 6976 6977
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
6978 6979
}

6980
static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
6981 6982 6983 6984 6985 6986 6987 6988
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

6989
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
6990 6991
}

6992
static long sched_group_rt_runtime(struct task_group *tg)
P
Peter Zijlstra 已提交
6993 6994 6995
{
	u64 rt_runtime_us;

6996
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
6997 6998
		return -1;

6999
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7000 7001 7002
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
7003

7004
static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7005 7006 7007 7008 7009 7010
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

7011 7012 7013
	if (rt_period == 0)
		return -EINVAL;

7014
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7015 7016
}

7017
static long sched_group_rt_period(struct task_group *tg)
7018 7019 7020 7021 7022 7023 7024 7025 7026 7027
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
7028
	u64 runtime, period;
7029 7030
	int ret = 0;

7031 7032 7033
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7034 7035 7036 7037 7038 7039 7040 7041
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
7042

7043
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
7044
	read_lock(&tasklist_lock);
7045
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
7046
	read_unlock(&tasklist_lock);
7047 7048 7049 7050
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
7051

7052
static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7053 7054 7055 7056 7057 7058 7059 7060
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

7061
#else /* !CONFIG_RT_GROUP_SCHED */
7062 7063
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
7064 7065 7066
	unsigned long flags;
	int i;

7067 7068 7069
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7070 7071 7072 7073 7074 7075 7076
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

7077
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7078 7079 7080
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

7081
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7082
		rt_rq->rt_runtime = global_rt_runtime();
7083
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7084
	}
7085
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7086

7087 7088
	return 0;
}
7089
#endif /* CONFIG_RT_GROUP_SCHED */
7090

7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109
int sched_rr_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
	/* make sure that internally we keep jiffies */
	/* also, writing zero resets timeslice to default */
	if (!ret && write) {
		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
	}
	mutex_unlock(&mutex);
	return ret;
}

7110
int sched_rt_handler(struct ctl_table *table, int write,
7111
		void __user *buffer, size_t *lenp,
7112 7113 7114 7115 7116 7117 7118 7119 7120 7121
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

7122
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
7139

7140
#ifdef CONFIG_CGROUP_SCHED
7141

7142
static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7143
{
7144
	return css ? container_of(css, struct task_group, css) : NULL;
7145 7146
}

7147 7148
static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7149
{
7150 7151
	struct task_group *parent = css_tg(parent_css);
	struct task_group *tg;
7152

7153
	if (!parent) {
7154
		/* This is early initialization for the top cgroup */
7155
		return &root_task_group.css;
7156 7157
	}

7158
	tg = sched_create_group(parent);
7159 7160 7161 7162 7163 7164
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

7165
static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7166
{
7167 7168
	struct task_group *tg = css_tg(css);
	struct task_group *parent = css_tg(css_parent(css));
7169

T
Tejun Heo 已提交
7170 7171
	if (parent)
		sched_online_group(tg, parent);
7172 7173 7174
	return 0;
}

7175
static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7176
{
7177
	struct task_group *tg = css_tg(css);
7178 7179 7180 7181

	sched_destroy_group(tg);
}

7182
static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7183
{
7184
	struct task_group *tg = css_tg(css);
7185 7186 7187 7188

	sched_offline_group(tg);
}

7189
static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7190
				 struct cgroup_taskset *tset)
7191
{
7192 7193
	struct task_struct *task;

7194
	cgroup_taskset_for_each(task, css, tset) {
7195
#ifdef CONFIG_RT_GROUP_SCHED
7196
		if (!sched_rt_can_attach(css_tg(css), task))
7197
			return -EINVAL;
7198
#else
7199 7200 7201
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
7202
#endif
7203
	}
7204 7205
	return 0;
}
7206

7207
static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7208
			      struct cgroup_taskset *tset)
7209
{
7210 7211
	struct task_struct *task;

7212
	cgroup_taskset_for_each(task, css, tset)
7213
		sched_move_task(task);
7214 7215
}

7216 7217 7218
static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
			    struct cgroup_subsys_state *old_css,
			    struct task_struct *task)
7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	sched_move_task(task);
}

7231
#ifdef CONFIG_FAIR_GROUP_SCHED
7232 7233
static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
				struct cftype *cftype, u64 shareval)
7234
{
7235
	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7236 7237
}

7238 7239
static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
			       struct cftype *cft)
7240
{
7241
	struct task_group *tg = css_tg(css);
7242

7243
	return (u64) scale_load_down(tg->shares);
7244
}
7245 7246

#ifdef CONFIG_CFS_BANDWIDTH
7247 7248
static DEFINE_MUTEX(cfs_constraints_mutex);

7249 7250 7251
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

7252 7253
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

7254 7255
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
7256
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7257
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

7278 7279 7280 7281 7282
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

7283
	runtime_enabled = quota != RUNTIME_INF;
7284 7285
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7286 7287 7288
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
7289

P
Paul Turner 已提交
7290
	__refill_cfs_bandwidth_runtime(cfs_b);
7291 7292 7293 7294 7295 7296
	/* restart the period timer (if active) to handle new period expiry */
	if (runtime_enabled && cfs_b->timer_active) {
		/* force a reprogram */
		cfs_b->timer_active = 0;
		__start_cfs_bandwidth(cfs_b);
	}
7297 7298 7299 7300
	raw_spin_unlock_irq(&cfs_b->lock);

	for_each_possible_cpu(i) {
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7301
		struct rq *rq = cfs_rq->rq;
7302 7303

		raw_spin_lock_irq(&rq->lock);
7304
		cfs_rq->runtime_enabled = runtime_enabled;
7305
		cfs_rq->runtime_remaining = 0;
7306

7307
		if (cfs_rq->throttled)
7308
			unthrottle_cfs_rq(cfs_rq);
7309 7310
		raw_spin_unlock_irq(&rq->lock);
	}
7311 7312
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
7313

7314
	return ret;
7315 7316 7317 7318 7319 7320
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

7321
	period = ktime_to_ns(tg->cfs_bandwidth.period);
7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

7334
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7335 7336
		return -1;

7337
	quota_us = tg->cfs_bandwidth.quota;
7338 7339 7340 7341 7342 7343 7344 7345 7346 7347
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
7348
	quota = tg->cfs_bandwidth.quota;
7349 7350 7351 7352 7353 7354 7355 7356

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

7357
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7358 7359 7360 7361 7362
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

7363 7364
static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
				  struct cftype *cft)
7365
{
7366
	return tg_get_cfs_quota(css_tg(css));
7367 7368
}

7369 7370
static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
				   struct cftype *cftype, s64 cfs_quota_us)
7371
{
7372
	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7373 7374
}

7375 7376
static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
				   struct cftype *cft)
7377
{
7378
	return tg_get_cfs_period(css_tg(css));
7379 7380
}

7381 7382
static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 cfs_period_us)
7383
{
7384
	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7385 7386
}

7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
7419
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7420 7421 7422 7423 7424
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
7425
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445

		quota = normalize_cfs_quota(tg, d);
		parent_quota = parent_b->hierarchal_quota;

		/*
		 * ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
	cfs_b->hierarchal_quota = quota;

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
7446
	int ret;
7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

7458 7459 7460 7461 7462
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7463
}
7464

7465
static int cpu_stats_show(struct cgroup_subsys_state *css, struct cftype *cft,
7466 7467
		struct cgroup_map_cb *cb)
{
7468
	struct task_group *tg = css_tg(css);
7469
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7470 7471 7472 7473 7474 7475 7476

	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
	cb->fill(cb, "throttled_time", cfs_b->throttled_time);

	return 0;
}
7477
#endif /* CONFIG_CFS_BANDWIDTH */
7478
#endif /* CONFIG_FAIR_GROUP_SCHED */
7479

7480
#ifdef CONFIG_RT_GROUP_SCHED
7481 7482
static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
				struct cftype *cft, s64 val)
P
Peter Zijlstra 已提交
7483
{
7484
	return sched_group_set_rt_runtime(css_tg(css), val);
P
Peter Zijlstra 已提交
7485 7486
}

7487 7488
static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
P
Peter Zijlstra 已提交
7489
{
7490
	return sched_group_rt_runtime(css_tg(css));
P
Peter Zijlstra 已提交
7491
}
7492

7493 7494
static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 rt_period_us)
7495
{
7496
	return sched_group_set_rt_period(css_tg(css), rt_period_us);
7497 7498
}

7499 7500
static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
				   struct cftype *cft)
7501
{
7502
	return sched_group_rt_period(css_tg(css));
7503
}
7504
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
7505

7506
static struct cftype cpu_files[] = {
7507
#ifdef CONFIG_FAIR_GROUP_SCHED
7508 7509
	{
		.name = "shares",
7510 7511
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
7512
	},
7513
#endif
7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
7525 7526 7527 7528
	{
		.name = "stat",
		.read_map = cpu_stats_show,
	},
7529
#endif
7530
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7531
	{
P
Peter Zijlstra 已提交
7532
		.name = "rt_runtime_us",
7533 7534
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
7535
	},
7536 7537
	{
		.name = "rt_period_us",
7538 7539
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
7540
	},
7541
#endif
7542
	{ }	/* terminate */
7543 7544 7545
};

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
7546
	.name		= "cpu",
7547 7548
	.css_alloc	= cpu_cgroup_css_alloc,
	.css_free	= cpu_cgroup_css_free,
7549 7550
	.css_online	= cpu_cgroup_css_online,
	.css_offline	= cpu_cgroup_css_offline,
7551 7552
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
7553
	.exit		= cpu_cgroup_exit,
I
Ingo Molnar 已提交
7554
	.subsys_id	= cpu_cgroup_subsys_id,
7555
	.base_cftypes	= cpu_files,
7556 7557 7558
	.early_init	= 1,
};

7559
#endif	/* CONFIG_CGROUP_SCHED */
7560

7561 7562 7563 7564 7565
void dump_cpu_task(int cpu)
{
	pr_info("Task dump for CPU %d:\n", cpu);
	sched_show_task(cpu_curr(cpu));
}