core.c 200.6 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/highmem.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
37
#include <linux/capability.h>
L
Linus Torvalds 已提交
38 39
#include <linux/completion.h>
#include <linux/kernel_stat.h>
40
#include <linux/debug_locks.h>
41
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
57
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
58
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/unistd.h>
J
Jens Axboe 已提交
66
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
67
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
68
#include <linux/tick.h>
P
Peter Zijlstra 已提交
69 70
#include <linux/debugfs.h>
#include <linux/ctype.h>
71
#include <linux/ftrace.h>
72
#include <linux/slab.h>
73
#include <linux/init_task.h>
A
Al Viro 已提交
74
#include <linux/binfmts.h>
75
#include <linux/context_tracking.h>
76
#include <linux/compiler.h>
L
Linus Torvalds 已提交
77

78
#include <asm/switch_to.h>
79
#include <asm/tlb.h>
80
#include <asm/irq_regs.h>
81
#include <asm/mutex.h>
G
Glauber Costa 已提交
82 83 84
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
85

86
#include "sched.h"
87
#include "../workqueue_internal.h"
88
#include "../smpboot.h"
89

90
#define CREATE_TRACE_POINTS
91
#include <trace/events/sched.h>
92

93 94
DEFINE_MUTEX(sched_domains_mutex);
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
95

96
static void update_rq_clock_task(struct rq *rq, s64 delta);
97

98
void update_rq_clock(struct rq *rq)
99
{
100
	s64 delta;
101

102 103 104
	lockdep_assert_held(&rq->lock);

	if (rq->clock_skip_update & RQCF_ACT_SKIP)
105
		return;
106

107
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
108 109
	if (delta < 0)
		return;
110 111
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
112 113
}

I
Ingo Molnar 已提交
114 115 116
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
117 118 119 120

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
121
const_debug unsigned int sysctl_sched_features =
122
#include "features.h"
P
Peter Zijlstra 已提交
123 124 125 126 127 128 129 130
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

131
static const char * const sched_feat_names[] = {
132
#include "features.h"
P
Peter Zijlstra 已提交
133 134 135 136
};

#undef SCHED_FEAT

L
Li Zefan 已提交
137
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
138 139 140
{
	int i;

141
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
L
Li Zefan 已提交
142 143 144
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
145
	}
L
Li Zefan 已提交
146
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
147

L
Li Zefan 已提交
148
	return 0;
P
Peter Zijlstra 已提交
149 150
}

151 152
#ifdef HAVE_JUMP_LABEL

153 154
#define jump_label_key__true  STATIC_KEY_INIT_TRUE
#define jump_label_key__false STATIC_KEY_INIT_FALSE
155 156 157 158

#define SCHED_FEAT(name, enabled)	\
	jump_label_key__##enabled ,

159
struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
160 161 162 163 164 165 166
#include "features.h"
};

#undef SCHED_FEAT

static void sched_feat_disable(int i)
{
167 168
	if (static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_dec(&sched_feat_keys[i]);
169 170 171 172
}

static void sched_feat_enable(int i)
{
173 174
	if (!static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_inc(&sched_feat_keys[i]);
175 176 177 178 179 180
}
#else
static void sched_feat_disable(int i) { };
static void sched_feat_enable(int i) { };
#endif /* HAVE_JUMP_LABEL */

181
static int sched_feat_set(char *cmp)
P
Peter Zijlstra 已提交
182 183
{
	int i;
184
	int neg = 0;
P
Peter Zijlstra 已提交
185

H
Hillf Danton 已提交
186
	if (strncmp(cmp, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
187 188 189 190
		neg = 1;
		cmp += 3;
	}

191
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
192
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
193
			if (neg) {
P
Peter Zijlstra 已提交
194
				sysctl_sched_features &= ~(1UL << i);
195 196
				sched_feat_disable(i);
			} else {
P
Peter Zijlstra 已提交
197
				sysctl_sched_features |= (1UL << i);
198 199
				sched_feat_enable(i);
			}
P
Peter Zijlstra 已提交
200 201 202 203
			break;
		}
	}

204 205 206 207 208 209 210 211 212 213
	return i;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp;
	int i;
214
	struct inode *inode;
215 216 217 218 219 220 221 222 223 224

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
	cmp = strstrip(buf);

225 226 227
	/* Ensure the static_key remains in a consistent state */
	inode = file_inode(filp);
	mutex_lock(&inode->i_mutex);
228
	i = sched_feat_set(cmp);
229
	mutex_unlock(&inode->i_mutex);
230
	if (i == __SCHED_FEAT_NR)
P
Peter Zijlstra 已提交
231 232
		return -EINVAL;

233
	*ppos += cnt;
P
Peter Zijlstra 已提交
234 235 236 237

	return cnt;
}

L
Li Zefan 已提交
238 239 240 241 242
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

243
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
244 245 246 247 248
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
249 250 251 252 253 254 255 256 257 258
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);
259
#endif /* CONFIG_SCHED_DEBUG */
I
Ingo Molnar 已提交
260

261 262 263 264 265 266
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

267 268 269 270 271 272 273 274
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
275
/*
P
Peter Zijlstra 已提交
276
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
277 278
 * default: 1s
 */
P
Peter Zijlstra 已提交
279
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
280

281
__read_mostly int scheduler_running;
282

P
Peter Zijlstra 已提交
283 284 285 286 287
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
288

289 290 291
/* cpus with isolated domains */
cpumask_var_t cpu_isolated_map;

L
Linus Torvalds 已提交
292
/*
293
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
294
 */
A
Alexey Dobriyan 已提交
295
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
296 297
	__acquires(rq->lock)
{
298
	struct rq *rq;
L
Linus Torvalds 已提交
299 300 301

	local_irq_disable();
	rq = this_rq();
302
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
303 304 305 306

	return rq;
}

P
Peter Zijlstra 已提交
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

328
	raw_spin_lock(&rq->lock);
329
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
330
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
331
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
332 333 334 335

	return HRTIMER_NORESTART;
}

336
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
337

338
static void __hrtick_restart(struct rq *rq)
P
Peter Zijlstra 已提交
339 340 341
{
	struct hrtimer *timer = &rq->hrtick_timer;

342
	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
P
Peter Zijlstra 已提交
343 344
}

345 346 347 348
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
349
{
350
	struct rq *rq = arg;
351

352
	raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
353
	__hrtick_restart(rq);
354
	rq->hrtick_csd_pending = 0;
355
	raw_spin_unlock(&rq->lock);
356 357
}

358 359 360 361 362
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
363
void hrtick_start(struct rq *rq, u64 delay)
364
{
365
	struct hrtimer *timer = &rq->hrtick_timer;
366 367 368 369 370 371 372 373 374
	ktime_t time;
	s64 delta;

	/*
	 * Don't schedule slices shorter than 10000ns, that just
	 * doesn't make sense and can cause timer DoS.
	 */
	delta = max_t(s64, delay, 10000LL);
	time = ktime_add_ns(timer->base->get_time(), delta);
375

376
	hrtimer_set_expires(timer, time);
377 378

	if (rq == this_rq()) {
P
Peter Zijlstra 已提交
379
		__hrtick_restart(rq);
380
	} else if (!rq->hrtick_csd_pending) {
381
		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
382 383
		rq->hrtick_csd_pending = 1;
	}
384 385 386 387 388 389 390 391 392 393 394 395 396 397
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
398
		hrtick_clear(cpu_rq(cpu));
399 400 401 402 403 404
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

405
static __init void init_hrtick(void)
406 407 408
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
409 410 411 412 413 414
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
415
void hrtick_start(struct rq *rq, u64 delay)
416
{
W
Wanpeng Li 已提交
417 418 419 420 421
	/*
	 * Don't schedule slices shorter than 10000ns, that just
	 * doesn't make sense. Rely on vruntime for fairness.
	 */
	delay = max_t(u64, delay, 10000LL);
422 423
	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
		      HRTIMER_MODE_REL_PINNED);
424
}
425

A
Andrew Morton 已提交
426
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
427 428
{
}
429
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
430

431
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
432
{
433 434
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
435

436 437 438 439
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
440

441 442
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
443
}
A
Andrew Morton 已提交
444
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
445 446 447 448 449 450 451 452
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

453 454 455
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
456
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
457

458 459 460 461 462 463 464 465 466 467 468 469 470 471
/*
 * cmpxchg based fetch_or, macro so it works for different integer types
 */
#define fetch_or(ptr, val)						\
({	typeof(*(ptr)) __old, __val = *(ptr);				\
 	for (;;) {							\
 		__old = cmpxchg((ptr), __val, __val | (val));		\
 		if (__old == __val)					\
 			break;						\
 		__val = __old;						\
 	}								\
 	__old;								\
})

472
#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
473 474 475 476 477 478 479 480 481 482
/*
 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
 * this avoids any races wrt polling state changes and thereby avoids
 * spurious IPIs.
 */
static bool set_nr_and_not_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
}
483 484 485 486 487 488 489 490 491 492

/*
 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
 *
 * If this returns true, then the idle task promises to call
 * sched_ttwu_pending() and reschedule soon.
 */
static bool set_nr_if_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
493
	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
494 495 496 497 498 499 500 501 502 503 504 505 506 507

	for (;;) {
		if (!(val & _TIF_POLLING_NRFLAG))
			return false;
		if (val & _TIF_NEED_RESCHED)
			return true;
		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
		if (old == val)
			break;
		val = old;
	}
	return true;
}

508 509 510 511 512 513
#else
static bool set_nr_and_not_polling(struct task_struct *p)
{
	set_tsk_need_resched(p);
	return true;
}
514 515 516 517 518 519 520

#ifdef CONFIG_SMP
static bool set_nr_if_polling(struct task_struct *p)
{
	return false;
}
#endif
521 522
#endif

523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
void wake_q_add(struct wake_q_head *head, struct task_struct *task)
{
	struct wake_q_node *node = &task->wake_q;

	/*
	 * Atomically grab the task, if ->wake_q is !nil already it means
	 * its already queued (either by us or someone else) and will get the
	 * wakeup due to that.
	 *
	 * This cmpxchg() implies a full barrier, which pairs with the write
	 * barrier implied by the wakeup in wake_up_list().
	 */
	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
		return;

	get_task_struct(task);

	/*
	 * The head is context local, there can be no concurrency.
	 */
	*head->lastp = node;
	head->lastp = &node->next;
}

void wake_up_q(struct wake_q_head *head)
{
	struct wake_q_node *node = head->first;

	while (node != WAKE_Q_TAIL) {
		struct task_struct *task;

		task = container_of(node, struct task_struct, wake_q);
		BUG_ON(!task);
		/* task can safely be re-inserted now */
		node = node->next;
		task->wake_q.next = NULL;

		/*
		 * wake_up_process() implies a wmb() to pair with the queueing
		 * in wake_q_add() so as not to miss wakeups.
		 */
		wake_up_process(task);
		put_task_struct(task);
	}
}

I
Ingo Molnar 已提交
569
/*
570
 * resched_curr - mark rq's current task 'to be rescheduled now'.
I
Ingo Molnar 已提交
571 572 573 574 575
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
576
void resched_curr(struct rq *rq)
I
Ingo Molnar 已提交
577
{
578
	struct task_struct *curr = rq->curr;
I
Ingo Molnar 已提交
579 580
	int cpu;

581
	lockdep_assert_held(&rq->lock);
I
Ingo Molnar 已提交
582

583
	if (test_tsk_need_resched(curr))
I
Ingo Molnar 已提交
584 585
		return;

586
	cpu = cpu_of(rq);
587

588
	if (cpu == smp_processor_id()) {
589
		set_tsk_need_resched(curr);
590
		set_preempt_need_resched();
I
Ingo Molnar 已提交
591
		return;
592
	}
I
Ingo Molnar 已提交
593

594
	if (set_nr_and_not_polling(curr))
I
Ingo Molnar 已提交
595
		smp_send_reschedule(cpu);
596 597
	else
		trace_sched_wake_idle_without_ipi(cpu);
I
Ingo Molnar 已提交
598 599
}

600
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
601 602 603 604
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

605
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
606
		return;
607
	resched_curr(rq);
608
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
609
}
610

611
#ifdef CONFIG_SMP
612
#ifdef CONFIG_NO_HZ_COMMON
613 614 615 616 617 618 619 620
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
621
int get_nohz_timer_target(int pinned)
622 623 624 625 626
{
	int cpu = smp_processor_id();
	int i;
	struct sched_domain *sd;

627 628 629
	if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
		return cpu;

630
	rcu_read_lock();
631
	for_each_domain(cpu, sd) {
632 633 634 635 636 637
		for_each_cpu(i, sched_domain_span(sd)) {
			if (!idle_cpu(i)) {
				cpu = i;
				goto unlock;
			}
		}
638
	}
639 640
unlock:
	rcu_read_unlock();
641 642
	return cpu;
}
643 644 645 646 647 648 649 650 651 652
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
653
static void wake_up_idle_cpu(int cpu)
654 655 656 657 658 659
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

660
	if (set_nr_and_not_polling(rq->idle))
661
		smp_send_reschedule(cpu);
662 663
	else
		trace_sched_wake_idle_without_ipi(cpu);
664 665
}

666
static bool wake_up_full_nohz_cpu(int cpu)
667
{
668 669 670 671 672 673
	/*
	 * We just need the target to call irq_exit() and re-evaluate
	 * the next tick. The nohz full kick at least implies that.
	 * If needed we can still optimize that later with an
	 * empty IRQ.
	 */
674
	if (tick_nohz_full_cpu(cpu)) {
675 676
		if (cpu != smp_processor_id() ||
		    tick_nohz_tick_stopped())
677
			tick_nohz_full_kick_cpu(cpu);
678 679 680 681 682 683 684 685
		return true;
	}

	return false;
}

void wake_up_nohz_cpu(int cpu)
{
686
	if (!wake_up_full_nohz_cpu(cpu))
687 688 689
		wake_up_idle_cpu(cpu);
}

690
static inline bool got_nohz_idle_kick(void)
691
{
692
	int cpu = smp_processor_id();
693 694 695 696 697 698 699 700 701 702 703 704 705

	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
		return false;

	if (idle_cpu(cpu) && !need_resched())
		return true;

	/*
	 * We can't run Idle Load Balance on this CPU for this time so we
	 * cancel it and clear NOHZ_BALANCE_KICK
	 */
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
	return false;
706 707
}

708
#else /* CONFIG_NO_HZ_COMMON */
709

710
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
711
{
712
	return false;
P
Peter Zijlstra 已提交
713 714
}

715
#endif /* CONFIG_NO_HZ_COMMON */
716

717 718 719
#ifdef CONFIG_NO_HZ_FULL
bool sched_can_stop_tick(void)
{
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
	/*
	 * FIFO realtime policy runs the highest priority task. Other runnable
	 * tasks are of a lower priority. The scheduler tick does nothing.
	 */
	if (current->policy == SCHED_FIFO)
		return true;

	/*
	 * Round-robin realtime tasks time slice with other tasks at the same
	 * realtime priority. Is this task the only one at this priority?
	 */
	if (current->policy == SCHED_RR) {
		struct sched_rt_entity *rt_se = &current->rt;

		return rt_se->run_list.prev == rt_se->run_list.next;
	}

737 738 739 740 741
	/*
	 * More than one running task need preemption.
	 * nr_running update is assumed to be visible
	 * after IPI is sent from wakers.
	 */
742 743
	if (this_rq()->nr_running > 1)
		return false;
744

745
	return true;
746 747
}
#endif /* CONFIG_NO_HZ_FULL */
748

749
void sched_avg_update(struct rq *rq)
750
{
751 752
	s64 period = sched_avg_period();

753
	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
754 755 756 757 758 759
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
760 761 762
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
763 764
}

765
#endif /* CONFIG_SMP */
766

767 768
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
769
/*
770 771 772 773
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
774
 */
775
int walk_tg_tree_from(struct task_group *from,
776
			     tg_visitor down, tg_visitor up, void *data)
777 778
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
779
	int ret;
780

781 782
	parent = from;

783
down:
P
Peter Zijlstra 已提交
784 785
	ret = (*down)(parent, data);
	if (ret)
786
		goto out;
787 788 789 790 791 792 793
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
794
	ret = (*up)(parent, data);
795 796
	if (ret || parent == from)
		goto out;
797 798 799 800 801

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
802
out:
P
Peter Zijlstra 已提交
803
	return ret;
804 805
}

806
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
807
{
808
	return 0;
P
Peter Zijlstra 已提交
809
}
810 811
#endif

812 813
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
814 815 816
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
817 818 819 820
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
821
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
822
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
823 824
		return;
	}
825

826
	load->weight = scale_load(prio_to_weight[prio]);
N
Nikhil Rao 已提交
827
	load->inv_weight = prio_to_wmult[prio];
828 829
}

830
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
831
{
832
	update_rq_clock(rq);
833
	sched_info_queued(rq, p);
834
	p->sched_class->enqueue_task(rq, p, flags);
835 836
}

837
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
838
{
839
	update_rq_clock(rq);
840
	sched_info_dequeued(rq, p);
841
	p->sched_class->dequeue_task(rq, p, flags);
842 843
}

844
void activate_task(struct rq *rq, struct task_struct *p, int flags)
845 846 847 848
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

849
	enqueue_task(rq, p, flags);
850 851
}

852
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
853 854 855 856
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

857
	dequeue_task(rq, p, flags);
858 859
}

860
static void update_rq_clock_task(struct rq *rq, s64 delta)
861
{
862 863 864 865 866 867 868 869
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
870
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
892 893
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
894
	if (static_key_false((&paravirt_steal_rq_enabled))) {
895 896 897 898 899 900 901 902 903 904 905
		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		rq->prev_steal_time_rq += steal;
		delta -= steal;
	}
#endif

906 907
	rq->clock_task += delta;

908
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
909
	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
910 911
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
912 913
}

914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

944
/*
I
Ingo Molnar 已提交
945
 * __normal_prio - return the priority that is based on the static prio
946 947 948
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
949
	return p->static_prio;
950 951
}

952 953 954 955 956 957 958
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
959
static inline int normal_prio(struct task_struct *p)
960 961 962
{
	int prio;

963 964 965
	if (task_has_dl_policy(p))
		prio = MAX_DL_PRIO-1;
	else if (task_has_rt_policy(p))
966 967 968 969 970 971 972 973 974 975 976 977 978
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
979
static int effective_prio(struct task_struct *p)
980 981 982 983 984 985 986 987 988 989 990 991
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
992 993 994
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
995 996
 *
 * Return: 1 if the task is currently executing. 0 otherwise.
L
Linus Torvalds 已提交
997
 */
998
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
999 1000 1001 1002
{
	return cpu_curr(task_cpu(p)) == p;
}

1003
/*
1004 1005 1006 1007 1008
 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
 * use the balance_callback list if you want balancing.
 *
 * this means any call to check_class_changed() must be followed by a call to
 * balance_callback().
1009
 */
1010 1011
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
1012
				       int oldprio)
1013 1014 1015
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
1016
			prev_class->switched_from(rq, p);
1017

P
Peter Zijlstra 已提交
1018
		p->sched_class->switched_to(rq, p);
1019
	} else if (oldprio != p->prio || dl_task(p))
P
Peter Zijlstra 已提交
1020
		p->sched_class->prio_changed(rq, p, oldprio);
1021 1022
}

1023
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
1034
				resched_curr(rq);
1035 1036 1037 1038 1039 1040 1041 1042 1043
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
1044
	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1045
		rq_clock_skip_update(rq, true);
1046 1047
}

L
Linus Torvalds 已提交
1048
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
/*
 * This is how migration works:
 *
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
 */

/*
 * move_queued_task - move a queued task to new rq.
 *
 * Returns (locked) new rq. Old rq's lock is released.
 */
static struct rq *move_queued_task(struct task_struct *p, int new_cpu)
{
	struct rq *rq = task_rq(p);

	lockdep_assert_held(&rq->lock);

	dequeue_task(rq, p, 0);
	p->on_rq = TASK_ON_RQ_MIGRATING;
	set_task_cpu(p, new_cpu);
	raw_spin_unlock(&rq->lock);

	rq = cpu_rq(new_cpu);

	raw_spin_lock(&rq->lock);
	BUG_ON(task_cpu(p) != new_cpu);
	p->on_rq = TASK_ON_RQ_QUEUED;
	enqueue_task(rq, p, 0);
	check_preempt_curr(rq, p, 0);

	return rq;
}

struct migration_arg {
	struct task_struct *task;
	int dest_cpu;
};

/*
 * Move (not current) task off this cpu, onto dest cpu. We're doing
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
 *
 * Returns non-zero if task was successfully migrated.
 */
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
{
	struct rq *rq;
	int ret = 0;

	if (unlikely(!cpu_active(dest_cpu)))
		return ret;

	rq = cpu_rq(src_cpu);

	raw_spin_lock(&p->pi_lock);
	raw_spin_lock(&rq->lock);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto done;

	/* Affinity changed (again). */
	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
		goto fail;

	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
	if (task_on_rq_queued(p))
		rq = move_queued_task(p, dest_cpu);
done:
	ret = 1;
fail:
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock(&p->pi_lock);
	return ret;
}

/*
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
 */
static int migration_cpu_stop(void *data)
{
	struct migration_arg *arg = data;

	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
	local_irq_disable();
	/*
	 * We need to explicitly wake pending tasks before running
	 * __migrate_task() such that we will not miss enforcing cpus_allowed
	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
	 */
	sched_ttwu_pending();
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
	local_irq_enable();
	return 0;
}

void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
	if (p->sched_class->set_cpus_allowed)
		p->sched_class->set_cpus_allowed(p, new_mask);

	cpumask_copy(&p->cpus_allowed, new_mask);
	p->nr_cpus_allowed = cpumask_weight(new_mask);
}

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely. The
 * call is not atomic; no spinlocks may be held.
 */
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
{
	unsigned long flags;
	struct rq *rq;
	unsigned int dest_cpu;
	int ret = 0;

	rq = task_rq_lock(p, &flags);

	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
		ret = -EINVAL;
		goto out;
	}

	do_set_cpus_allowed(p, new_mask);

	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpumask_test_cpu(task_cpu(p), new_mask))
		goto out;

	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
	if (task_running(rq, p) || p->state == TASK_WAKING) {
		struct migration_arg arg = { p, dest_cpu };
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, p, &flags);
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
		tlb_migrate_finish(p->mm);
		return 0;
	} else if (task_on_rq_queued(p))
		rq = move_queued_task(p, dest_cpu);
out:
	task_rq_unlock(rq, p, &flags);

	return ret;
}
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);

I
Ingo Molnar 已提交
1223
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1224
{
1225 1226 1227 1228 1229
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
1230
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
O
Oleg Nesterov 已提交
1231
			!p->on_rq);
1232 1233

#ifdef CONFIG_LOCKDEP
1234 1235 1236 1237 1238
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
P
Peter Zijlstra 已提交
1239
	 * see task_group().
1240 1241 1242 1243
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
1244 1245 1246
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
1247 1248
#endif

1249
	trace_sched_migrate_task(p, new_cpu);
1250

1251
	if (task_cpu(p) != new_cpu) {
1252 1253
		if (p->sched_class->migrate_task_rq)
			p->sched_class->migrate_task_rq(p, new_cpu);
1254
		p->se.nr_migrations++;
1255
		perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0);
1256
	}
I
Ingo Molnar 已提交
1257 1258

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1259 1260
}

1261 1262
static void __migrate_swap_task(struct task_struct *p, int cpu)
{
1263
	if (task_on_rq_queued(p)) {
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
		struct rq *src_rq, *dst_rq;

		src_rq = task_rq(p);
		dst_rq = cpu_rq(cpu);

		deactivate_task(src_rq, p, 0);
		set_task_cpu(p, cpu);
		activate_task(dst_rq, p, 0);
		check_preempt_curr(dst_rq, p, 0);
	} else {
		/*
		 * Task isn't running anymore; make it appear like we migrated
		 * it before it went to sleep. This means on wakeup we make the
		 * previous cpu our targer instead of where it really is.
		 */
		p->wake_cpu = cpu;
	}
}

struct migration_swap_arg {
	struct task_struct *src_task, *dst_task;
	int src_cpu, dst_cpu;
};

static int migrate_swap_stop(void *data)
{
	struct migration_swap_arg *arg = data;
	struct rq *src_rq, *dst_rq;
	int ret = -EAGAIN;

	src_rq = cpu_rq(arg->src_cpu);
	dst_rq = cpu_rq(arg->dst_cpu);

1297 1298
	double_raw_lock(&arg->src_task->pi_lock,
			&arg->dst_task->pi_lock);
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
	double_rq_lock(src_rq, dst_rq);
	if (task_cpu(arg->dst_task) != arg->dst_cpu)
		goto unlock;

	if (task_cpu(arg->src_task) != arg->src_cpu)
		goto unlock;

	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
		goto unlock;

	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
		goto unlock;

	__migrate_swap_task(arg->src_task, arg->dst_cpu);
	__migrate_swap_task(arg->dst_task, arg->src_cpu);

	ret = 0;

unlock:
	double_rq_unlock(src_rq, dst_rq);
1319 1320
	raw_spin_unlock(&arg->dst_task->pi_lock);
	raw_spin_unlock(&arg->src_task->pi_lock);
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342

	return ret;
}

/*
 * Cross migrate two tasks
 */
int migrate_swap(struct task_struct *cur, struct task_struct *p)
{
	struct migration_swap_arg arg;
	int ret = -EINVAL;

	arg = (struct migration_swap_arg){
		.src_task = cur,
		.src_cpu = task_cpu(cur),
		.dst_task = p,
		.dst_cpu = task_cpu(p),
	};

	if (arg.src_cpu == arg.dst_cpu)
		goto out;

1343 1344 1345 1346
	/*
	 * These three tests are all lockless; this is OK since all of them
	 * will be re-checked with proper locks held further down the line.
	 */
1347 1348 1349 1350 1351 1352 1353 1354 1355
	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
		goto out;

	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
		goto out;

	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
		goto out;

1356
	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1357 1358 1359 1360 1361 1362
	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);

out:
	return ret;
}

L
Linus Torvalds 已提交
1363 1364 1365
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1366 1367 1368 1369 1370 1371 1372
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1373 1374 1375 1376 1377 1378
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1379
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1380 1381
{
	unsigned long flags;
1382
	int running, queued;
R
Roland McGrath 已提交
1383
	unsigned long ncsw;
1384
	struct rq *rq;
L
Linus Torvalds 已提交
1385

1386 1387 1388 1389 1390 1391 1392 1393
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1394

1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1406 1407 1408
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1409
			cpu_relax();
R
Roland McGrath 已提交
1410
		}
1411

1412 1413 1414 1415 1416 1417
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1418
		trace_sched_wait_task(p);
1419
		running = task_running(rq, p);
1420
		queued = task_on_rq_queued(p);
R
Roland McGrath 已提交
1421
		ncsw = 0;
1422
		if (!match_state || p->state == match_state)
1423
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1424
		task_rq_unlock(rq, p, &flags);
1425

R
Roland McGrath 已提交
1426 1427 1428 1429 1430 1431
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1442

1443 1444 1445 1446 1447
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1448
		 * So if it was still runnable (but just not actively
1449 1450 1451
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
1452
		if (unlikely(queued)) {
1453 1454 1455 1456
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1457 1458
			continue;
		}
1459

1460 1461 1462 1463 1464 1465 1466
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1467 1468

	return ncsw;
L
Linus Torvalds 已提交
1469 1470 1471 1472 1473 1474 1475 1476 1477
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1478
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1479 1480 1481 1482 1483
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1484
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1485 1486 1487 1488 1489 1490 1491 1492 1493
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1494
EXPORT_SYMBOL_GPL(kick_process);
L
Linus Torvalds 已提交
1495

1496
/*
1497
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1498
 */
1499 1500
static int select_fallback_rq(int cpu, struct task_struct *p)
{
1501 1502
	int nid = cpu_to_node(cpu);
	const struct cpumask *nodemask = NULL;
1503 1504
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1505

1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
	/*
	 * If the node that the cpu is on has been offlined, cpu_to_node()
	 * will return -1. There is no cpu on the node, and we should
	 * select the cpu on the other node.
	 */
	if (nid != -1) {
		nodemask = cpumask_of_node(nid);

		/* Look for allowed, online CPU in same node. */
		for_each_cpu(dest_cpu, nodemask) {
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
				return dest_cpu;
		}
1523
	}
1524

1525 1526
	for (;;) {
		/* Any allowed, online CPU? */
1527
		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1528 1529 1530 1531 1532 1533
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			goto out;
		}
1534

1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
		switch (state) {
		case cpuset:
			/* No more Mr. Nice Guy. */
			cpuset_cpus_allowed_fallback(p);
			state = possible;
			break;

		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
1561
			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1562 1563
					task_pid_nr(p), p->comm, cpu);
		}
1564 1565 1566 1567 1568
	}

	return dest_cpu;
}

1569
/*
1570
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1571
 */
1572
static inline
1573
int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1574
{
1575 1576
	if (p->nr_cpus_allowed > 1)
		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1588
	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
P
Peter Zijlstra 已提交
1589
		     !cpu_online(cpu)))
1590
		cpu = select_fallback_rq(task_cpu(p), p);
1591 1592

	return cpu;
1593
}
1594 1595 1596 1597 1598 1599

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
P
Peter Zijlstra 已提交
1600
#endif /* CONFIG_SMP */
1601

P
Peter Zijlstra 已提交
1602
static void
1603
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1604
{
P
Peter Zijlstra 已提交
1605
#ifdef CONFIG_SCHEDSTATS
1606 1607
	struct rq *rq = this_rq();

P
Peter Zijlstra 已提交
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
#ifdef CONFIG_SMP
	int this_cpu = smp_processor_id();

	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	} else {
		struct sched_domain *sd;

		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1618
		rcu_read_lock();
P
Peter Zijlstra 已提交
1619 1620 1621 1622 1623 1624
		for_each_domain(this_cpu, sd) {
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
1625
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1626
	}
1627 1628 1629 1630

	if (wake_flags & WF_MIGRATED)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);

P
Peter Zijlstra 已提交
1631 1632 1633
#endif /* CONFIG_SMP */

	schedstat_inc(rq, ttwu_count);
T
Tejun Heo 已提交
1634
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1635 1636

	if (wake_flags & WF_SYNC)
T
Tejun Heo 已提交
1637
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1638 1639 1640 1641 1642 1643

#endif /* CONFIG_SCHEDSTATS */
}

static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
{
T
Tejun Heo 已提交
1644
	activate_task(rq, p, en_flags);
1645
	p->on_rq = TASK_ON_RQ_QUEUED;
1646 1647 1648 1649

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1650 1651
}

1652 1653 1654
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1655
static void
1656
ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
T
Tejun Heo 已提交
1657 1658
{
	check_preempt_curr(rq, p, wake_flags);
1659
	trace_sched_wakeup(p, true);
T
Tejun Heo 已提交
1660 1661 1662

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
1663 1664 1665 1666
	if (p->sched_class->task_woken) {
		/*
		 * XXX can drop rq->lock; most likely ok.
		 */
T
Tejun Heo 已提交
1667
		p->sched_class->task_woken(rq, p);
1668
	}
T
Tejun Heo 已提交
1669

1670
	if (rq->idle_stamp) {
1671
		u64 delta = rq_clock(rq) - rq->idle_stamp;
1672
		u64 max = 2*rq->max_idle_balance_cost;
T
Tejun Heo 已提交
1673

1674 1675 1676
		update_avg(&rq->avg_idle, delta);

		if (rq->avg_idle > max)
T
Tejun Heo 已提交
1677
			rq->avg_idle = max;
1678

T
Tejun Heo 已提交
1679 1680 1681 1682 1683
		rq->idle_stamp = 0;
	}
#endif
}

1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
static void
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
{
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
#endif

	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
	ttwu_do_wakeup(rq, p, wake_flags);
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
1708
	if (task_on_rq_queued(p)) {
1709 1710
		/* check_preempt_curr() may use rq clock */
		update_rq_clock(rq);
1711 1712 1713 1714 1715 1716 1717 1718
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;
}

1719
#ifdef CONFIG_SMP
1720
void sched_ttwu_pending(void)
1721 1722
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1723 1724
	struct llist_node *llist = llist_del_all(&rq->wake_list);
	struct task_struct *p;
1725
	unsigned long flags;
1726

1727 1728 1729 1730
	if (!llist)
		return;

	raw_spin_lock_irqsave(&rq->lock, flags);
1731

P
Peter Zijlstra 已提交
1732 1733 1734
	while (llist) {
		p = llist_entry(llist, struct task_struct, wake_entry);
		llist = llist_next(llist);
1735 1736 1737
		ttwu_do_activate(rq, p, 0);
	}

1738
	raw_spin_unlock_irqrestore(&rq->lock, flags);
1739 1740 1741 1742
}

void scheduler_ipi(void)
{
1743 1744 1745 1746 1747
	/*
	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
	 * TIF_NEED_RESCHED remotely (for the first time) will also send
	 * this IPI.
	 */
1748
	preempt_fold_need_resched();
1749

1750
	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
P
Peter Zijlstra 已提交
1767
	sched_ttwu_pending();
1768 1769 1770 1771

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1772
	if (unlikely(got_nohz_idle_kick())) {
1773
		this_rq()->idle_balance = 1;
1774
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1775
	}
1776
	irq_exit();
1777 1778 1779 1780
}

static void ttwu_queue_remote(struct task_struct *p, int cpu)
{
1781 1782 1783 1784 1785 1786 1787 1788
	struct rq *rq = cpu_rq(cpu);

	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
		if (!set_nr_if_polling(rq->idle))
			smp_send_reschedule(cpu);
		else
			trace_sched_wake_idle_without_ipi(cpu);
	}
1789
}
1790

1791 1792 1793 1794 1795
void wake_up_if_idle(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

1796 1797 1798 1799
	rcu_read_lock();

	if (!is_idle_task(rcu_dereference(rq->curr)))
		goto out;
1800 1801 1802 1803 1804 1805 1806 1807 1808 1809

	if (set_nr_if_polling(rq->idle)) {
		trace_sched_wake_idle_without_ipi(cpu);
	} else {
		raw_spin_lock_irqsave(&rq->lock, flags);
		if (is_idle_task(rq->curr))
			smp_send_reschedule(cpu);
		/* Else cpu is not in idle, do nothing here */
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}
1810 1811 1812

out:
	rcu_read_unlock();
1813 1814
}

1815
bool cpus_share_cache(int this_cpu, int that_cpu)
1816 1817 1818
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1819
#endif /* CONFIG_SMP */
1820

1821 1822 1823 1824
static void ttwu_queue(struct task_struct *p, int cpu)
{
	struct rq *rq = cpu_rq(cpu);

1825
#if defined(CONFIG_SMP)
1826
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1827
		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1828 1829 1830 1831 1832
		ttwu_queue_remote(p, cpu);
		return;
	}
#endif

1833 1834 1835
	raw_spin_lock(&rq->lock);
	ttwu_do_activate(rq, p, 0);
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
1836 1837 1838
}

/**
L
Linus Torvalds 已提交
1839
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1840
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1841
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1842
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1843 1844 1845 1846 1847 1848 1849
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
1850
 * Return: %true if @p was woken up, %false if it was already running.
T
Tejun Heo 已提交
1851
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
1852
 */
1853 1854
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1855 1856
{
	unsigned long flags;
1857
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1858

1859 1860 1861 1862 1863 1864 1865
	/*
	 * If we are going to wake up a thread waiting for CONDITION we
	 * need to ensure that CONDITION=1 done by the caller can not be
	 * reordered with p->state check below. This pairs with mb() in
	 * set_current_state() the waiting thread does.
	 */
	smp_mb__before_spinlock();
1866
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
1867
	if (!(p->state & state))
L
Linus Torvalds 已提交
1868 1869
		goto out;

1870
	success = 1; /* we're going to change ->state */
L
Linus Torvalds 已提交
1871 1872
	cpu = task_cpu(p);

1873 1874
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
1875 1876

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1877
	/*
1878 1879
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
P
Peter Zijlstra 已提交
1880
	 */
1881
	while (p->on_cpu)
1882
		cpu_relax();
1883
	/*
1884
	 * Pairs with the smp_wmb() in finish_lock_switch().
1885
	 */
1886
	smp_rmb();
L
Linus Torvalds 已提交
1887

1888
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
1889
	p->state = TASK_WAKING;
1890

1891
	if (p->sched_class->task_waking)
1892
		p->sched_class->task_waking(p);
1893

1894
	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1895 1896
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
1897
		set_task_cpu(p, cpu);
1898
	}
L
Linus Torvalds 已提交
1899 1900
#endif /* CONFIG_SMP */

1901 1902
	ttwu_queue(p, cpu);
stat:
1903
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
1904
out:
1905
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
1906 1907 1908 1909

	return success;
}

T
Tejun Heo 已提交
1910 1911 1912 1913
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
1914
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
1915
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1916
 * the current task.
T
Tejun Heo 已提交
1917 1918 1919 1920 1921
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

1922 1923 1924 1925
	if (WARN_ON_ONCE(rq != this_rq()) ||
	    WARN_ON_ONCE(p == current))
		return;

T
Tejun Heo 已提交
1926 1927
	lockdep_assert_held(&rq->lock);

1928 1929 1930 1931 1932 1933
	if (!raw_spin_trylock(&p->pi_lock)) {
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
	}

T
Tejun Heo 已提交
1934
	if (!(p->state & TASK_NORMAL))
1935
		goto out;
T
Tejun Heo 已提交
1936

1937
	if (!task_on_rq_queued(p))
P
Peter Zijlstra 已提交
1938 1939
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

1940
	ttwu_do_wakeup(rq, p, 0);
1941
	ttwu_stat(p, smp_processor_id(), 0);
1942 1943
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
1944 1945
}

1946 1947 1948 1949 1950
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
1951 1952 1953
 * processes.
 *
 * Return: 1 if the process was woken up, 0 if it was already running.
1954 1955 1956 1957
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
1958
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1959
{
1960 1961
	WARN_ON(task_is_stopped_or_traced(p));
	return try_to_wake_up(p, TASK_NORMAL, 0);
L
Linus Torvalds 已提交
1962 1963 1964
}
EXPORT_SYMBOL(wake_up_process);

1965
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1966 1967 1968 1969
{
	return try_to_wake_up(p, state, 0);
}

1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
/*
 * This function clears the sched_dl_entity static params.
 */
void __dl_clear_params(struct task_struct *p)
{
	struct sched_dl_entity *dl_se = &p->dl;

	dl_se->dl_runtime = 0;
	dl_se->dl_deadline = 0;
	dl_se->dl_period = 0;
	dl_se->flags = 0;
	dl_se->dl_bw = 0;
1982 1983 1984 1985

	dl_se->dl_throttled = 0;
	dl_se->dl_new = 1;
	dl_se->dl_yielded = 0;
1986 1987
}

L
Linus Torvalds 已提交
1988 1989 1990
/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1991 1992 1993
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
1994
static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
1995
{
P
Peter Zijlstra 已提交
1996 1997 1998
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
1999 2000
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2001
	p->se.prev_sum_exec_runtime	= 0;
2002
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
2003
	p->se.vruntime			= 0;
2004 2005 2006
#ifdef CONFIG_SMP
	p->se.avg.decay_count		= 0;
#endif
P
Peter Zijlstra 已提交
2007
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
2008 2009

#ifdef CONFIG_SCHEDSTATS
2010
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
2011
#endif
N
Nick Piggin 已提交
2012

2013
	RB_CLEAR_NODE(&p->dl.rb_node);
2014
	init_dl_task_timer(&p->dl);
2015
	__dl_clear_params(p);
2016

P
Peter Zijlstra 已提交
2017
	INIT_LIST_HEAD(&p->rt.run_list);
N
Nick Piggin 已提交
2018

2019 2020 2021
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
2022 2023 2024

#ifdef CONFIG_NUMA_BALANCING
	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2025
		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2026 2027 2028
		p->mm->numa_scan_seq = 0;
	}

2029 2030 2031 2032 2033
	if (clone_flags & CLONE_VM)
		p->numa_preferred_nid = current->numa_preferred_nid;
	else
		p->numa_preferred_nid = -1;

2034 2035
	p->node_stamp = 0ULL;
	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2036
	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2037
	p->numa_work.next = &p->numa_work;
2038
	p->numa_faults = NULL;
2039 2040
	p->last_task_numa_placement = 0;
	p->last_sum_exec_runtime = 0;
2041 2042

	p->numa_group = NULL;
2043
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
2044 2045
}

2046
#ifdef CONFIG_NUMA_BALANCING
2047
#ifdef CONFIG_SCHED_DEBUG
2048 2049 2050 2051 2052 2053 2054
void set_numabalancing_state(bool enabled)
{
	if (enabled)
		sched_feat_set("NUMA");
	else
		sched_feat_set("NO_NUMA");
}
2055 2056 2057 2058 2059 2060
#else
__read_mostly bool numabalancing_enabled;

void set_numabalancing_state(bool enabled)
{
	numabalancing_enabled = enabled;
I
Ingo Molnar 已提交
2061
}
2062
#endif /* CONFIG_SCHED_DEBUG */
2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085

#ifdef CONFIG_PROC_SYSCTL
int sysctl_numa_balancing(struct ctl_table *table, int write,
			 void __user *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table t;
	int err;
	int state = numabalancing_enabled;

	if (write && !capable(CAP_SYS_ADMIN))
		return -EPERM;

	t = *table;
	t.data = &state;
	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
	if (err < 0)
		return err;
	if (write)
		set_numabalancing_state(state);
	return err;
}
#endif
#endif
I
Ingo Molnar 已提交
2086 2087 2088 2089

/*
 * fork()/clone()-time setup:
 */
2090
int sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
2091
{
2092
	unsigned long flags;
I
Ingo Molnar 已提交
2093 2094
	int cpu = get_cpu();

2095
	__sched_fork(clone_flags, p);
2096
	/*
2097
	 * We mark the process as running here. This guarantees that
2098 2099 2100
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
2101
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2102

2103 2104 2105 2106 2107
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

2108 2109 2110 2111
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2112
		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2113
			p->policy = SCHED_NORMAL;
2114
			p->static_prio = NICE_TO_PRIO(0);
2115 2116 2117 2118 2119 2120
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
2121

2122 2123 2124 2125 2126 2127
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2128

2129 2130 2131 2132 2133 2134
	if (dl_prio(p->prio)) {
		put_cpu();
		return -EAGAIN;
	} else if (rt_prio(p->prio)) {
		p->sched_class = &rt_sched_class;
	} else {
H
Hiroshi Shimamoto 已提交
2135
		p->sched_class = &fair_sched_class;
2136
	}
2137

P
Peter Zijlstra 已提交
2138 2139 2140
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

2141 2142 2143 2144 2145 2146 2147
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
2148
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2149
	set_task_cpu(p, cpu);
2150
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2151

2152
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2153
	if (likely(sched_info_on()))
2154
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2155
#endif
P
Peter Zijlstra 已提交
2156 2157
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
2158
#endif
2159
	init_task_preempt_count(p);
2160
#ifdef CONFIG_SMP
2161
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2162
	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2163
#endif
2164

N
Nick Piggin 已提交
2165
	put_cpu();
2166
	return 0;
L
Linus Torvalds 已提交
2167 2168
}

2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 20;

	/*
	 * Doing this here saves a lot of checks in all
	 * the calling paths, and returning zero seems
	 * safe for them anyway.
	 */
	if (period == 0)
		return 0;

	return div64_u64(runtime << 20, period);
}

#ifdef CONFIG_SMP
inline struct dl_bw *dl_bw_of(int i)
{
2188 2189
	rcu_lockdep_assert(rcu_read_lock_sched_held(),
			   "sched RCU must be held");
2190 2191 2192
	return &cpu_rq(i)->rd->dl_bw;
}

2193
static inline int dl_bw_cpus(int i)
2194
{
2195 2196 2197
	struct root_domain *rd = cpu_rq(i)->rd;
	int cpus = 0;

2198 2199
	rcu_lockdep_assert(rcu_read_lock_sched_held(),
			   "sched RCU must be held");
2200 2201 2202 2203
	for_each_cpu_and(i, rd->span, cpu_active_mask)
		cpus++;

	return cpus;
2204 2205 2206 2207 2208 2209 2210
}
#else
inline struct dl_bw *dl_bw_of(int i)
{
	return &cpu_rq(i)->dl.dl_bw;
}

2211
static inline int dl_bw_cpus(int i)
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
{
	return 1;
}
#endif

/*
 * We must be sure that accepting a new task (or allowing changing the
 * parameters of an existing one) is consistent with the bandwidth
 * constraints. If yes, this function also accordingly updates the currently
 * allocated bandwidth to reflect the new situation.
 *
 * This function is called while holding p's rq->lock.
2224 2225 2226
 *
 * XXX we should delay bw change until the task's 0-lag point, see
 * __setparam_dl().
2227 2228 2229 2230 2231 2232
 */
static int dl_overflow(struct task_struct *p, int policy,
		       const struct sched_attr *attr)
{

	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2233
	u64 period = attr->sched_period ?: attr->sched_deadline;
2234 2235
	u64 runtime = attr->sched_runtime;
	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2236
	int cpus, err = -1;
2237 2238 2239 2240 2241 2242 2243 2244 2245 2246

	if (new_bw == p->dl.dl_bw)
		return 0;

	/*
	 * Either if a task, enters, leave, or stays -deadline but changes
	 * its parameters, we may need to update accordingly the total
	 * allocated bandwidth of the container.
	 */
	raw_spin_lock(&dl_b->lock);
2247
	cpus = dl_bw_cpus(task_cpu(p));
2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267
	if (dl_policy(policy) && !task_has_dl_policy(p) &&
	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
		__dl_add(dl_b, new_bw);
		err = 0;
	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
		__dl_clear(dl_b, p->dl.dl_bw);
		__dl_add(dl_b, new_bw);
		err = 0;
	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
		__dl_clear(dl_b, p->dl.dl_bw);
		err = 0;
	}
	raw_spin_unlock(&dl_b->lock);

	return err;
}

extern void init_dl_bw(struct dl_bw *dl_b);

L
Linus Torvalds 已提交
2268 2269 2270 2271 2272 2273 2274
/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2275
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
2276 2277
{
	unsigned long flags;
I
Ingo Molnar 已提交
2278
	struct rq *rq;
2279

2280
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2281 2282 2283 2284 2285 2286
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 */
2287
	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2288 2289
#endif

2290 2291
	/* Initialize new task's runnable average */
	init_task_runnable_average(p);
2292
	rq = __task_rq_lock(p);
P
Peter Zijlstra 已提交
2293
	activate_task(rq, p, 0);
2294
	p->on_rq = TASK_ON_RQ_QUEUED;
2295
	trace_sched_wakeup_new(p, true);
P
Peter Zijlstra 已提交
2296
	check_preempt_curr(rq, p, WF_FORK);
2297
#ifdef CONFIG_SMP
2298 2299
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2300
#endif
2301
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
2302 2303
}

2304 2305 2306
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2307
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2308
 * @notifier: notifier struct to register
2309 2310 2311 2312 2313 2314 2315 2316 2317
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2318
 * @notifier: notifier struct to unregister
2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;

2332
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2333 2334 2335 2336 2337 2338 2339 2340 2341
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;

2342
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2343 2344 2345
		notifier->ops->sched_out(notifier, next);
}

2346
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2358
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2359

2360 2361 2362
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2363
 * @prev: the current task that is being switched out
2364 2365 2366 2367 2368 2369 2370 2371 2372
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2373 2374 2375
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2376
{
2377
	trace_sched_switch(prev, next);
2378
	sched_info_switch(rq, prev, next);
2379
	perf_event_task_sched_out(prev, next);
2380
	fire_sched_out_preempt_notifiers(prev, next);
2381 2382 2383 2384
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2385 2386 2387 2388
/**
 * finish_task_switch - clean up after a task-switch
 * @prev: the thread we just switched away from.
 *
2389 2390 2391 2392
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2393 2394
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2395
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2396 2397
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
2398 2399 2400 2401 2402
 *
 * The context switch have flipped the stack from under us and restored the
 * local variables which were saved when this task called schedule() in the
 * past. prev == current is still correct but we need to recalculate this_rq
 * because prev may have moved to another CPU.
L
Linus Torvalds 已提交
2403
 */
2404
static struct rq *finish_task_switch(struct task_struct *prev)
L
Linus Torvalds 已提交
2405 2406
	__releases(rq->lock)
{
2407
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
2408
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2409
	long prev_state;
L
Linus Torvalds 已提交
2410 2411 2412 2413 2414

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2415
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2416 2417
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2418
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2419 2420 2421 2422 2423
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2424
	prev_state = prev->state;
2425
	vtime_task_switch(prev);
2426
	finish_arch_switch(prev);
2427
	perf_event_task_sched_in(prev, current);
2428
	finish_lock_switch(rq, prev);
2429
	finish_arch_post_lock_switch();
S
Steven Rostedt 已提交
2430

2431
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2432 2433
	if (mm)
		mmdrop(mm);
2434
	if (unlikely(prev_state == TASK_DEAD)) {
2435 2436 2437
		if (prev->sched_class->task_dead)
			prev->sched_class->task_dead(prev);

2438 2439 2440
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2441
		 */
2442
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2443
		put_task_struct(prev);
2444
	}
2445 2446

	tick_nohz_task_switch(current);
2447
	return rq;
L
Linus Torvalds 已提交
2448 2449
}

2450 2451 2452
#ifdef CONFIG_SMP

/* rq->lock is NOT held, but preemption is disabled */
2453
static void __balance_callback(struct rq *rq)
2454
{
2455 2456 2457
	struct callback_head *head, *next;
	void (*func)(struct rq *rq);
	unsigned long flags;
2458

2459 2460 2461 2462 2463 2464 2465 2466
	raw_spin_lock_irqsave(&rq->lock, flags);
	head = rq->balance_callback;
	rq->balance_callback = NULL;
	while (head) {
		func = (void (*)(struct rq *))head->func;
		next = head->next;
		head->next = NULL;
		head = next;
2467

2468
		func(rq);
2469
	}
2470 2471 2472 2473 2474 2475 2476
	raw_spin_unlock_irqrestore(&rq->lock, flags);
}

static inline void balance_callback(struct rq *rq)
{
	if (unlikely(rq->balance_callback))
		__balance_callback(rq);
2477 2478 2479
}

#else
2480

2481
static inline void balance_callback(struct rq *rq)
2482
{
L
Linus Torvalds 已提交
2483 2484
}

2485 2486
#endif

L
Linus Torvalds 已提交
2487 2488 2489 2490
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2491
asmlinkage __visible void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2492 2493
	__releases(rq->lock)
{
2494
	struct rq *rq;
2495

2496 2497
	/* finish_task_switch() drops rq->lock and enables preemtion */
	preempt_disable();
2498
	rq = finish_task_switch(prev);
2499
	balance_callback(rq);
2500
	preempt_enable();
2501

L
Linus Torvalds 已提交
2502
	if (current->set_child_tid)
2503
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2504 2505 2506
}

/*
2507
 * context_switch - switch to the new MM and the new thread's register state.
L
Linus Torvalds 已提交
2508
 */
2509
static inline struct rq *
2510
context_switch(struct rq *rq, struct task_struct *prev,
2511
	       struct task_struct *next)
L
Linus Torvalds 已提交
2512
{
I
Ingo Molnar 已提交
2513
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2514

2515
	prepare_task_switch(rq, prev, next);
2516

I
Ingo Molnar 已提交
2517 2518
	mm = next->mm;
	oldmm = prev->active_mm;
2519 2520 2521 2522 2523
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2524
	arch_start_context_switch(prev);
2525

2526
	if (!mm) {
L
Linus Torvalds 已提交
2527 2528 2529 2530 2531 2532
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2533
	if (!prev->mm) {
L
Linus Torvalds 已提交
2534 2535 2536
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2537 2538 2539 2540 2541 2542
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
2543
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
2544

2545
	context_tracking_task_switch(prev, next);
L
Linus Torvalds 已提交
2546 2547
	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);
I
Ingo Molnar 已提交
2548
	barrier();
2549 2550

	return finish_task_switch(prev);
L
Linus Torvalds 已提交
2551 2552 2553
}

/*
2554
 * nr_running and nr_context_switches:
L
Linus Torvalds 已提交
2555 2556
 *
 * externally visible scheduler statistics: current number of runnable
2557
 * threads, total number of context switches performed since bootup.
L
Linus Torvalds 已提交
2558 2559 2560 2561 2562 2563 2564 2565 2566
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2567
}
L
Linus Torvalds 已提交
2568

2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580
/*
 * Check if only the current task is running on the cpu.
 */
bool single_task_running(void)
{
	if (cpu_rq(smp_processor_id())->nr_running == 1)
		return true;
	else
		return false;
}
EXPORT_SYMBOL(single_task_running);

L
Linus Torvalds 已提交
2581
unsigned long long nr_context_switches(void)
2582
{
2583 2584
	int i;
	unsigned long long sum = 0;
2585

2586
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2587
		sum += cpu_rq(i)->nr_switches;
2588

L
Linus Torvalds 已提交
2589 2590
	return sum;
}
2591

L
Linus Torvalds 已提交
2592 2593 2594
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2595

2596
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2597
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2598

L
Linus Torvalds 已提交
2599 2600
	return sum;
}
2601

2602
unsigned long nr_iowait_cpu(int cpu)
2603
{
2604
	struct rq *this = cpu_rq(cpu);
2605 2606
	return atomic_read(&this->nr_iowait);
}
2607

2608 2609
void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
{
2610 2611 2612
	struct rq *rq = this_rq();
	*nr_waiters = atomic_read(&rq->nr_iowait);
	*load = rq->load.weight;
2613 2614
}

I
Ingo Molnar 已提交
2615
#ifdef CONFIG_SMP
2616

2617
/*
P
Peter Zijlstra 已提交
2618 2619
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2620
 */
P
Peter Zijlstra 已提交
2621
void sched_exec(void)
2622
{
P
Peter Zijlstra 已提交
2623
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2624
	unsigned long flags;
2625
	int dest_cpu;
2626

2627
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2628
	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2629 2630
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2631

2632
	if (likely(cpu_active(dest_cpu))) {
2633
		struct migration_arg arg = { p, dest_cpu };
2634

2635 2636
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2637 2638
		return;
	}
2639
unlock:
2640
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2641
}
I
Ingo Molnar 已提交
2642

L
Linus Torvalds 已提交
2643 2644 2645
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2646
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
2647 2648

EXPORT_PER_CPU_SYMBOL(kstat);
2649
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
2650

2651 2652 2653 2654 2655 2656 2657 2658 2659
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
2660
	u64 ns;
2661

2662 2663 2664 2665 2666 2667 2668 2669 2670
#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
	/*
	 * 64-bit doesn't need locks to atomically read a 64bit value.
	 * So we have a optimization chance when the task's delta_exec is 0.
	 * Reading ->on_cpu is racy, but this is ok.
	 *
	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
	 * If we race with it entering cpu, unaccounted time is 0. This is
	 * indistinguishable from the read occurring a few cycles earlier.
2671 2672
	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
	 * been accounted, so we're correct here as well.
2673
	 */
2674
	if (!p->on_cpu || !task_on_rq_queued(p))
2675 2676 2677
		return p->se.sum_exec_runtime;
#endif

2678
	rq = task_rq_lock(p, &flags);
2679 2680 2681 2682 2683 2684 2685 2686 2687 2688
	/*
	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
	 * project cycles that may never be accounted to this
	 * thread, breaking clock_gettime().
	 */
	if (task_current(rq, p) && task_on_rq_queued(p)) {
		update_rq_clock(rq);
		p->sched_class->update_curr(rq);
	}
	ns = p->se.sum_exec_runtime;
2689
	task_rq_unlock(rq, p, &flags);
2690 2691 2692

	return ns;
}
2693

2694 2695 2696 2697 2698 2699 2700 2701
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2702
	struct task_struct *curr = rq->curr;
2703 2704

	sched_clock_tick();
I
Ingo Molnar 已提交
2705

2706
	raw_spin_lock(&rq->lock);
2707
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
2708
	curr->sched_class->task_tick(rq, curr, 0);
2709
	update_cpu_load_active(rq);
2710
	calc_global_load_tick(rq);
2711
	raw_spin_unlock(&rq->lock);
2712

2713
	perf_event_task_tick();
2714

2715
#ifdef CONFIG_SMP
2716
	rq->idle_balance = idle_cpu(cpu);
2717
	trigger_load_balance(rq);
2718
#endif
2719
	rq_last_tick_reset(rq);
L
Linus Torvalds 已提交
2720 2721
}

2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732
#ifdef CONFIG_NO_HZ_FULL
/**
 * scheduler_tick_max_deferment
 *
 * Keep at least one tick per second when a single
 * active task is running because the scheduler doesn't
 * yet completely support full dynticks environment.
 *
 * This makes sure that uptime, CFS vruntime, load
 * balancing, etc... continue to move forward, even
 * with a very low granularity.
2733 2734
 *
 * Return: Maximum deferment in nanoseconds.
2735 2736 2737 2738
 */
u64 scheduler_tick_max_deferment(void)
{
	struct rq *rq = this_rq();
2739
	unsigned long next, now = READ_ONCE(jiffies);
2740 2741 2742 2743 2744 2745

	next = rq->last_sched_tick + HZ;

	if (time_before_eq(next, now))
		return 0;

2746
	return jiffies_to_nsecs(next - now);
L
Linus Torvalds 已提交
2747
}
2748
#endif
L
Linus Torvalds 已提交
2749

2750
notrace unsigned long get_parent_ip(unsigned long addr)
2751 2752 2753 2754 2755 2756 2757 2758
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
2759

2760 2761 2762
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

2763
void preempt_count_add(int val)
L
Linus Torvalds 已提交
2764
{
2765
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2766 2767 2768
	/*
	 * Underflow?
	 */
2769 2770
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
2771
#endif
2772
	__preempt_count_add(val);
2773
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2774 2775 2776
	/*
	 * Spinlock count overflowing soon?
	 */
2777 2778
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
2779
#endif
2780 2781 2782 2783 2784 2785 2786
	if (preempt_count() == val) {
		unsigned long ip = get_parent_ip(CALLER_ADDR1);
#ifdef CONFIG_DEBUG_PREEMPT
		current->preempt_disable_ip = ip;
#endif
		trace_preempt_off(CALLER_ADDR0, ip);
	}
L
Linus Torvalds 已提交
2787
}
2788
EXPORT_SYMBOL(preempt_count_add);
2789
NOKPROBE_SYMBOL(preempt_count_add);
L
Linus Torvalds 已提交
2790

2791
void preempt_count_sub(int val)
L
Linus Torvalds 已提交
2792
{
2793
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2794 2795 2796
	/*
	 * Underflow?
	 */
2797
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2798
		return;
L
Linus Torvalds 已提交
2799 2800 2801
	/*
	 * Is the spinlock portion underflowing?
	 */
2802 2803 2804
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
2805
#endif
2806

2807 2808
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2809
	__preempt_count_sub(val);
L
Linus Torvalds 已提交
2810
}
2811
EXPORT_SYMBOL(preempt_count_sub);
2812
NOKPROBE_SYMBOL(preempt_count_sub);
L
Linus Torvalds 已提交
2813 2814 2815 2816

#endif

/*
I
Ingo Molnar 已提交
2817
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
2818
 */
I
Ingo Molnar 已提交
2819
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
2820
{
2821 2822 2823
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
2824 2825
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
2826

I
Ingo Molnar 已提交
2827
	debug_show_held_locks(prev);
2828
	print_modules();
I
Ingo Molnar 已提交
2829 2830
	if (irqs_disabled())
		print_irqtrace_events(prev);
2831 2832 2833 2834 2835 2836 2837
#ifdef CONFIG_DEBUG_PREEMPT
	if (in_atomic_preempt_off()) {
		pr_err("Preemption disabled at:");
		print_ip_sym(current->preempt_disable_ip);
		pr_cont("\n");
	}
#endif
2838
	dump_stack();
2839
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
I
Ingo Molnar 已提交
2840
}
L
Linus Torvalds 已提交
2841

I
Ingo Molnar 已提交
2842 2843 2844 2845 2846
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
2847 2848 2849
#ifdef CONFIG_SCHED_STACK_END_CHECK
	BUG_ON(unlikely(task_stack_end_corrupted(prev)));
#endif
L
Linus Torvalds 已提交
2850
	/*
I
Ingo Molnar 已提交
2851
	 * Test if we are atomic. Since do_exit() needs to call into
2852 2853
	 * schedule() atomically, we ignore that path. Otherwise whine
	 * if we are scheduling when we should not.
L
Linus Torvalds 已提交
2854
	 */
2855
	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
I
Ingo Molnar 已提交
2856
		__schedule_bug(prev);
2857
	rcu_sleep_check();
I
Ingo Molnar 已提交
2858

L
Linus Torvalds 已提交
2859 2860
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

2861
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
2862 2863 2864 2865 2866 2867
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
2868
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
2869
{
2870
	const struct sched_class *class = &fair_sched_class;
I
Ingo Molnar 已提交
2871
	struct task_struct *p;
L
Linus Torvalds 已提交
2872 2873

	/*
I
Ingo Molnar 已提交
2874 2875
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
2876
	 */
2877
	if (likely(prev->sched_class == class &&
2878
		   rq->nr_running == rq->cfs.h_nr_running)) {
2879
		p = fair_sched_class.pick_next_task(rq, prev);
2880 2881 2882 2883 2884 2885 2886 2887
		if (unlikely(p == RETRY_TASK))
			goto again;

		/* assumes fair_sched_class->next == idle_sched_class */
		if (unlikely(!p))
			p = idle_sched_class.pick_next_task(rq, prev);

		return p;
L
Linus Torvalds 已提交
2888 2889
	}

2890
again:
2891
	for_each_class(class) {
2892
		p = class->pick_next_task(rq, prev);
2893 2894 2895
		if (p) {
			if (unlikely(p == RETRY_TASK))
				goto again;
I
Ingo Molnar 已提交
2896
			return p;
2897
		}
I
Ingo Molnar 已提交
2898
	}
2899 2900

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
2901
}
L
Linus Torvalds 已提交
2902

I
Ingo Molnar 已提交
2903
/*
2904
 * __schedule() is the main scheduler function.
2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938
 *
 * The main means of driving the scheduler and thus entering this function are:
 *
 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 *      paths. For example, see arch/x86/entry_64.S.
 *
 *      To drive preemption between tasks, the scheduler sets the flag in timer
 *      interrupt handler scheduler_tick().
 *
 *   3. Wakeups don't really cause entry into schedule(). They add a
 *      task to the run-queue and that's it.
 *
 *      Now, if the new task added to the run-queue preempts the current
 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 *      called on the nearest possible occasion:
 *
 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
 *
 *         - in syscall or exception context, at the next outmost
 *           preempt_enable(). (this might be as soon as the wake_up()'s
 *           spin_unlock()!)
 *
 *         - in IRQ context, return from interrupt-handler to
 *           preemptible context
 *
 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
 *         then at the next:
 *
 *          - cond_resched() call
 *          - explicit schedule() call
 *          - return from syscall or exception to user-space
 *          - return from interrupt-handler to user-space
2939
 *
2940
 * WARNING: must be called with preemption disabled!
I
Ingo Molnar 已提交
2941
 */
2942
static void __sched __schedule(void)
I
Ingo Molnar 已提交
2943 2944
{
	struct task_struct *prev, *next;
2945
	unsigned long *switch_count;
I
Ingo Molnar 已提交
2946
	struct rq *rq;
2947
	int cpu;
I
Ingo Molnar 已提交
2948 2949 2950

	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
2951
	rcu_note_context_switch();
I
Ingo Molnar 已提交
2952 2953 2954
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
2955

2956
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
2957
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
2958

2959 2960 2961 2962 2963 2964
	/*
	 * Make sure that signal_pending_state()->signal_pending() below
	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
	 * done by the caller to avoid the race with signal_wake_up().
	 */
	smp_mb__before_spinlock();
2965
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
2966

2967 2968
	rq->clock_skip_update <<= 1; /* promote REQ to ACT */

2969
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
2970
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
2971
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
2972
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
2973
		} else {
2974 2975 2976
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

T
Tejun Heo 已提交
2977
			/*
2978 2979 2980
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
2981 2982 2983 2984 2985 2986 2987 2988 2989
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
		}
I
Ingo Molnar 已提交
2990
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
2991 2992
	}

2993
	if (task_on_rq_queued(prev))
2994 2995 2996
		update_rq_clock(rq);

	next = pick_next_task(rq, prev);
2997
	clear_tsk_need_resched(prev);
2998
	clear_preempt_need_resched();
2999
	rq->clock_skip_update = 0;
L
Linus Torvalds 已提交
3000 3001 3002 3003 3004 3005

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

3006 3007
		rq = context_switch(rq, prev, next); /* unlocks the rq */
		cpu = cpu_of(rq);
L
Linus Torvalds 已提交
3008
	} else
3009
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
3010

3011
	balance_callback(rq);
L
Linus Torvalds 已提交
3012
}
3013

3014 3015
static inline void sched_submit_work(struct task_struct *tsk)
{
3016
	if (!tsk->state || tsk_is_pi_blocked(tsk))
3017 3018 3019 3020 3021 3022 3023 3024 3025
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

3026
asmlinkage __visible void __sched schedule(void)
3027
{
3028 3029 3030
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
3031
	do {
3032
		preempt_disable();
3033
		__schedule();
3034
		sched_preempt_enable_no_resched();
3035
	} while (need_resched());
3036
}
L
Linus Torvalds 已提交
3037 3038
EXPORT_SYMBOL(schedule);

3039
#ifdef CONFIG_CONTEXT_TRACKING
3040
asmlinkage __visible void __sched schedule_user(void)
3041 3042 3043 3044 3045 3046
{
	/*
	 * If we come here after a random call to set_need_resched(),
	 * or we have been woken up remotely but the IPI has not yet arrived,
	 * we haven't yet exited the RCU idle mode. Do it here manually until
	 * we find a better solution.
3047 3048
	 *
	 * NB: There are buggy callers of this function.  Ideally we
3049
	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3050
	 * too frequently to make sense yet.
3051
	 */
3052
	enum ctx_state prev_state = exception_enter();
3053
	schedule();
3054
	exception_exit(prev_state);
3055 3056 3057
}
#endif

3058 3059 3060 3061 3062 3063 3064
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
3065
	sched_preempt_enable_no_resched();
3066 3067 3068 3069
	schedule();
	preempt_disable();
}

3070
static void __sched notrace preempt_schedule_common(void)
3071 3072
{
	do {
3073
		preempt_active_enter();
3074
		__schedule();
3075
		preempt_active_exit();
3076 3077 3078 3079 3080 3081 3082 3083

		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
	} while (need_resched());
}

L
Linus Torvalds 已提交
3084 3085
#ifdef CONFIG_PREEMPT
/*
3086
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3087
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3088 3089
 * occur there and call schedule directly.
 */
3090
asmlinkage __visible void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
3091 3092 3093
{
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3094
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3095
	 */
3096
	if (likely(!preemptible()))
L
Linus Torvalds 已提交
3097 3098
		return;

3099
	preempt_schedule_common();
L
Linus Torvalds 已提交
3100
}
3101
NOKPROBE_SYMBOL(preempt_schedule);
L
Linus Torvalds 已提交
3102
EXPORT_SYMBOL(preempt_schedule);
3103 3104

/**
3105
 * preempt_schedule_notrace - preempt_schedule called by tracing
3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117
 *
 * The tracing infrastructure uses preempt_enable_notrace to prevent
 * recursion and tracing preempt enabling caused by the tracing
 * infrastructure itself. But as tracing can happen in areas coming
 * from userspace or just about to enter userspace, a preempt enable
 * can occur before user_exit() is called. This will cause the scheduler
 * to be called when the system is still in usermode.
 *
 * To prevent this, the preempt_enable_notrace will use this function
 * instead of preempt_schedule() to exit user context if needed before
 * calling the scheduler.
 */
3118
asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3119 3120 3121 3122 3123 3124 3125
{
	enum ctx_state prev_ctx;

	if (likely(!preemptible()))
		return;

	do {
3126 3127 3128 3129 3130 3131 3132
		/*
		 * Use raw __prempt_count() ops that don't call function.
		 * We can't call functions before disabling preemption which
		 * disarm preemption tracing recursions.
		 */
		__preempt_count_add(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
		barrier();
3133 3134 3135 3136 3137 3138 3139 3140 3141
		/*
		 * Needs preempt disabled in case user_exit() is traced
		 * and the tracer calls preempt_enable_notrace() causing
		 * an infinite recursion.
		 */
		prev_ctx = exception_enter();
		__schedule();
		exception_exit(prev_ctx);

3142 3143
		barrier();
		__preempt_count_sub(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
3144 3145
	} while (need_resched());
}
3146
EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3147

3148
#endif /* CONFIG_PREEMPT */
L
Linus Torvalds 已提交
3149 3150

/*
3151
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3152 3153 3154 3155
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
3156
asmlinkage __visible void __sched preempt_schedule_irq(void)
L
Linus Torvalds 已提交
3157
{
3158
	enum ctx_state prev_state;
3159

3160
	/* Catch callers which need to be fixed */
3161
	BUG_ON(preempt_count() || !irqs_disabled());
L
Linus Torvalds 已提交
3162

3163 3164
	prev_state = exception_enter();

3165
	do {
3166
		preempt_active_enter();
3167
		local_irq_enable();
3168
		__schedule();
3169
		local_irq_disable();
3170
		preempt_active_exit();
3171
	} while (need_resched());
3172 3173

	exception_exit(prev_state);
L
Linus Torvalds 已提交
3174 3175
}

P
Peter Zijlstra 已提交
3176
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3177
			  void *key)
L
Linus Torvalds 已提交
3178
{
P
Peter Zijlstra 已提交
3179
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3180 3181 3182
}
EXPORT_SYMBOL(default_wake_function);

3183 3184 3185 3186 3187 3188 3189 3190 3191 3192
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
3193 3194
 * Used by the rt_mutex code to implement priority inheritance
 * logic. Call site only calls if the priority of the task changed.
3195
 */
3196
void rt_mutex_setprio(struct task_struct *p, int prio)
3197
{
3198
	int oldprio, queued, running, enqueue_flag = 0;
3199
	struct rq *rq;
3200
	const struct sched_class *prev_class;
3201

3202
	BUG_ON(prio > MAX_PRIO);
3203

3204
	rq = __task_rq_lock(p);
3205

3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

3224
	trace_sched_pi_setprio(p, prio);
3225
	oldprio = p->prio;
3226
	prev_class = p->sched_class;
3227
	queued = task_on_rq_queued(p);
3228
	running = task_current(rq, p);
3229
	if (queued)
3230
		dequeue_task(rq, p, 0);
3231
	if (running)
3232
		put_prev_task(rq, p);
I
Ingo Molnar 已提交
3233

3234 3235 3236 3237 3238 3239 3240 3241 3242 3243
	/*
	 * Boosting condition are:
	 * 1. -rt task is running and holds mutex A
	 *      --> -dl task blocks on mutex A
	 *
	 * 2. -dl task is running and holds mutex A
	 *      --> -dl task blocks on mutex A and could preempt the
	 *          running task
	 */
	if (dl_prio(prio)) {
3244 3245 3246
		struct task_struct *pi_task = rt_mutex_get_top_task(p);
		if (!dl_prio(p->normal_prio) ||
		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3247 3248 3249 3250 3251
			p->dl.dl_boosted = 1;
			p->dl.dl_throttled = 0;
			enqueue_flag = ENQUEUE_REPLENISH;
		} else
			p->dl.dl_boosted = 0;
3252
		p->sched_class = &dl_sched_class;
3253 3254 3255 3256 3257
	} else if (rt_prio(prio)) {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
		if (oldprio < prio)
			enqueue_flag = ENQUEUE_HEAD;
I
Ingo Molnar 已提交
3258
		p->sched_class = &rt_sched_class;
3259 3260 3261
	} else {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
3262 3263
		if (rt_prio(oldprio))
			p->rt.timeout = 0;
I
Ingo Molnar 已提交
3264
		p->sched_class = &fair_sched_class;
3265
	}
I
Ingo Molnar 已提交
3266

3267 3268
	p->prio = prio;

3269 3270
	if (running)
		p->sched_class->set_curr_task(rq);
3271
	if (queued)
3272
		enqueue_task(rq, p, enqueue_flag);
3273

P
Peter Zijlstra 已提交
3274
	check_class_changed(rq, p, prev_class, oldprio);
3275
out_unlock:
3276
	preempt_disable(); /* avoid rq from going away on us */
3277
	__task_rq_unlock(rq);
3278 3279 3280

	balance_callback(rq);
	preempt_enable();
3281 3282
}
#endif
3283

3284
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3285
{
3286
	int old_prio, delta, queued;
L
Linus Torvalds 已提交
3287
	unsigned long flags;
3288
	struct rq *rq;
L
Linus Torvalds 已提交
3289

3290
	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
L
Linus Torvalds 已提交
3291 3292 3293 3294 3295 3296 3297 3298 3299 3300
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
3301
	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
L
Linus Torvalds 已提交
3302
	 */
3303
	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3304 3305 3306
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
3307 3308
	queued = task_on_rq_queued(p);
	if (queued)
3309
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
3310 3311

	p->static_prio = NICE_TO_PRIO(nice);
3312
	set_load_weight(p);
3313 3314 3315
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3316

3317
	if (queued) {
3318
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
3319
		/*
3320 3321
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3322
		 */
3323
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3324
			resched_curr(rq);
L
Linus Torvalds 已提交
3325 3326
	}
out_unlock:
3327
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3328 3329 3330
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3331 3332 3333 3334 3335
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3336
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3337
{
3338
	/* convert nice value [19,-20] to rlimit style value [1,40] */
3339
	int nice_rlim = nice_to_rlimit(nice);
3340

3341
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3342 3343 3344
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3345 3346 3347 3348 3349 3350 3351 3352 3353
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3354
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3355
{
3356
	long nice, retval;
L
Linus Torvalds 已提交
3357 3358 3359 3360 3361 3362

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
3363
	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3364
	nice = task_nice(current) + increment;
L
Linus Torvalds 已提交
3365

3366
	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
M
Matt Mackall 已提交
3367 3368 3369
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
3384
 * Return: The priority value as seen by users in /proc.
L
Linus Torvalds 已提交
3385 3386 3387
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3388
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3389 3390 3391 3392 3393 3394 3395
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
3396 3397
 *
 * Return: 1 if the CPU is currently idle. 0 otherwise.
L
Linus Torvalds 已提交
3398 3399 3400
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3415 3416 3417 3418 3419
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
3420 3421
 *
 * Return: The idle task for the cpu @cpu.
L
Linus Torvalds 已提交
3422
 */
3423
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3424 3425 3426 3427 3428 3429 3430
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
3431 3432
 *
 * The task of @pid, if found. %NULL otherwise.
L
Linus Torvalds 已提交
3433
 */
A
Alexey Dobriyan 已提交
3434
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
3435
{
3436
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
3437 3438
}

3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453
/*
 * This function initializes the sched_dl_entity of a newly becoming
 * SCHED_DEADLINE task.
 *
 * Only the static values are considered here, the actual runtime and the
 * absolute deadline will be properly calculated when the task is enqueued
 * for the first time with its new policy.
 */
static void
__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	dl_se->dl_runtime = attr->sched_runtime;
	dl_se->dl_deadline = attr->sched_deadline;
3454
	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3455
	dl_se->flags = attr->sched_flags;
3456
	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476

	/*
	 * Changing the parameters of a task is 'tricky' and we're not doing
	 * the correct thing -- also see task_dead_dl() and switched_from_dl().
	 *
	 * What we SHOULD do is delay the bandwidth release until the 0-lag
	 * point. This would include retaining the task_struct until that time
	 * and change dl_overflow() to not immediately decrement the current
	 * amount.
	 *
	 * Instead we retain the current runtime/deadline and let the new
	 * parameters take effect after the current reservation period lapses.
	 * This is safe (albeit pessimistic) because the 0-lag point is always
	 * before the current scheduling deadline.
	 *
	 * We can still have temporary overloads because we do not delay the
	 * change in bandwidth until that time; so admission control is
	 * not on the safe side. It does however guarantee tasks will never
	 * consume more than promised.
	 */
3477 3478
}

3479 3480 3481 3482 3483 3484
/*
 * sched_setparam() passes in -1 for its policy, to let the functions
 * it calls know not to change it.
 */
#define SETPARAM_POLICY	-1

3485 3486
static void __setscheduler_params(struct task_struct *p,
		const struct sched_attr *attr)
L
Linus Torvalds 已提交
3487
{
3488 3489
	int policy = attr->sched_policy;

3490
	if (policy == SETPARAM_POLICY)
3491 3492
		policy = p->policy;

L
Linus Torvalds 已提交
3493
	p->policy = policy;
3494

3495 3496
	if (dl_policy(policy))
		__setparam_dl(p, attr);
3497
	else if (fair_policy(policy))
3498 3499
		p->static_prio = NICE_TO_PRIO(attr->sched_nice);

3500 3501 3502 3503 3504 3505
	/*
	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
	 * !rt_policy. Always setting this ensures that things like
	 * getparam()/getattr() don't report silly values for !rt tasks.
	 */
	p->rt_priority = attr->sched_priority;
3506
	p->normal_prio = normal_prio(p);
3507 3508
	set_load_weight(p);
}
3509

3510 3511
/* Actually do priority change: must hold pi & rq lock. */
static void __setscheduler(struct rq *rq, struct task_struct *p,
3512
			   const struct sched_attr *attr, bool keep_boost)
3513 3514
{
	__setscheduler_params(p, attr);
3515

3516
	/*
3517 3518
	 * Keep a potential priority boosting if called from
	 * sched_setscheduler().
3519
	 */
3520 3521 3522 3523
	if (keep_boost)
		p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
	else
		p->prio = normal_prio(p);
3524

3525 3526 3527
	if (dl_prio(p->prio))
		p->sched_class = &dl_sched_class;
	else if (rt_prio(p->prio))
3528 3529 3530
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
3531
}
3532 3533 3534 3535 3536 3537 3538 3539 3540

static void
__getparam_dl(struct task_struct *p, struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	attr->sched_priority = p->rt_priority;
	attr->sched_runtime = dl_se->dl_runtime;
	attr->sched_deadline = dl_se->dl_deadline;
3541
	attr->sched_period = dl_se->dl_period;
3542 3543 3544 3545 3546 3547
	attr->sched_flags = dl_se->flags;
}

/*
 * This function validates the new parameters of a -deadline task.
 * We ask for the deadline not being zero, and greater or equal
3548
 * than the runtime, as well as the period of being zero or
3549
 * greater than deadline. Furthermore, we have to be sure that
3550 3551 3552 3553
 * user parameters are above the internal resolution of 1us (we
 * check sched_runtime only since it is always the smaller one) and
 * below 2^63 ns (we have to check both sched_deadline and
 * sched_period, as the latter can be zero).
3554 3555 3556 3557
 */
static bool
__checkparam_dl(const struct sched_attr *attr)
{
3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583
	/* deadline != 0 */
	if (attr->sched_deadline == 0)
		return false;

	/*
	 * Since we truncate DL_SCALE bits, make sure we're at least
	 * that big.
	 */
	if (attr->sched_runtime < (1ULL << DL_SCALE))
		return false;

	/*
	 * Since we use the MSB for wrap-around and sign issues, make
	 * sure it's not set (mind that period can be equal to zero).
	 */
	if (attr->sched_deadline & (1ULL << 63) ||
	    attr->sched_period & (1ULL << 63))
		return false;

	/* runtime <= deadline <= period (if period != 0) */
	if ((attr->sched_period != 0 &&
	     attr->sched_period < attr->sched_deadline) ||
	    attr->sched_deadline < attr->sched_runtime)
		return false;

	return true;
3584 3585
}

3586 3587 3588 3589 3590 3591 3592 3593 3594 3595
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
3596 3597
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
3598 3599 3600 3601
	rcu_read_unlock();
	return match;
}

3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
static bool dl_param_changed(struct task_struct *p,
		const struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	if (dl_se->dl_runtime != attr->sched_runtime ||
		dl_se->dl_deadline != attr->sched_deadline ||
		dl_se->dl_period != attr->sched_period ||
		dl_se->flags != attr->sched_flags)
		return true;

	return false;
}

3616 3617
static int __sched_setscheduler(struct task_struct *p,
				const struct sched_attr *attr,
3618
				bool user, bool pi)
L
Linus Torvalds 已提交
3619
{
3620 3621
	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
		      MAX_RT_PRIO - 1 - attr->sched_priority;
3622
	int retval, oldprio, oldpolicy = -1, queued, running;
3623
	int new_effective_prio, policy = attr->sched_policy;
L
Linus Torvalds 已提交
3624
	unsigned long flags;
3625
	const struct sched_class *prev_class;
3626
	struct rq *rq;
3627
	int reset_on_fork;
L
Linus Torvalds 已提交
3628

3629 3630
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
3631 3632
recheck:
	/* double check policy once rq lock held */
3633 3634
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
3635
		policy = oldpolicy = p->policy;
3636
	} else {
3637
		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3638

3639 3640
		if (policy != SCHED_DEADLINE &&
				policy != SCHED_FIFO && policy != SCHED_RR &&
3641 3642 3643 3644 3645
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

3646 3647 3648
	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
		return -EINVAL;

L
Linus Torvalds 已提交
3649 3650
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
3651 3652
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
3653
	 */
3654
	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3655
	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
3656
		return -EINVAL;
3657 3658
	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
	    (rt_policy(policy) != (attr->sched_priority != 0)))
L
Linus Torvalds 已提交
3659 3660
		return -EINVAL;

3661 3662 3663
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
3664
	if (user && !capable(CAP_SYS_NICE)) {
3665
		if (fair_policy(policy)) {
3666
			if (attr->sched_nice < task_nice(p) &&
3667
			    !can_nice(p, attr->sched_nice))
3668 3669 3670
				return -EPERM;
		}

3671
		if (rt_policy(policy)) {
3672 3673
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
3674 3675 3676 3677 3678 3679

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
3680 3681
			if (attr->sched_priority > p->rt_priority &&
			    attr->sched_priority > rlim_rtprio)
3682 3683
				return -EPERM;
		}
3684

3685 3686 3687 3688 3689 3690 3691 3692 3693
		 /*
		  * Can't set/change SCHED_DEADLINE policy at all for now
		  * (safest behavior); in the future we would like to allow
		  * unprivileged DL tasks to increase their relative deadline
		  * or reduce their runtime (both ways reducing utilization)
		  */
		if (dl_policy(policy))
			return -EPERM;

I
Ingo Molnar 已提交
3694
		/*
3695 3696
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
3697
		 */
3698
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3699
			if (!can_nice(p, task_nice(p)))
3700 3701
				return -EPERM;
		}
3702

3703
		/* can't change other user's priorities */
3704
		if (!check_same_owner(p))
3705
			return -EPERM;
3706 3707 3708 3709

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
3710
	}
L
Linus Torvalds 已提交
3711

3712
	if (user) {
3713
		retval = security_task_setscheduler(p);
3714 3715 3716 3717
		if (retval)
			return retval;
	}

3718 3719 3720
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
3721
	 *
L
Lucas De Marchi 已提交
3722
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
3723 3724
	 * runqueue lock must be held.
	 */
3725
	rq = task_rq_lock(p, &flags);
3726

3727 3728 3729 3730
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
3731
		task_rq_unlock(rq, p, &flags);
3732 3733 3734
		return -EINVAL;
	}

3735
	/*
3736 3737
	 * If not changing anything there's no need to proceed further,
	 * but store a possible modification of reset_on_fork.
3738
	 */
3739
	if (unlikely(policy == p->policy)) {
3740
		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3741 3742 3743
			goto change;
		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
			goto change;
3744
		if (dl_policy(policy) && dl_param_changed(p, attr))
3745
			goto change;
3746

3747
		p->sched_reset_on_fork = reset_on_fork;
3748
		task_rq_unlock(rq, p, &flags);
3749 3750
		return 0;
	}
3751
change:
3752

3753
	if (user) {
3754
#ifdef CONFIG_RT_GROUP_SCHED
3755 3756 3757 3758 3759
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3760 3761
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
3762
			task_rq_unlock(rq, p, &flags);
3763 3764 3765
			return -EPERM;
		}
#endif
3766 3767 3768 3769 3770 3771 3772 3773 3774
#ifdef CONFIG_SMP
		if (dl_bandwidth_enabled() && dl_policy(policy)) {
			cpumask_t *span = rq->rd->span;

			/*
			 * Don't allow tasks with an affinity mask smaller than
			 * the entire root_domain to become SCHED_DEADLINE. We
			 * will also fail if there's no bandwidth available.
			 */
3775 3776
			if (!cpumask_subset(span, &p->cpus_allowed) ||
			    rq->rd->dl_bw.bw == 0) {
3777 3778 3779 3780 3781 3782
				task_rq_unlock(rq, p, &flags);
				return -EPERM;
			}
		}
#endif
	}
3783

L
Linus Torvalds 已提交
3784 3785 3786
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
3787
		task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3788 3789
		goto recheck;
	}
3790 3791 3792 3793 3794 3795

	/*
	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
	 * is available.
	 */
3796
	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3797 3798 3799 3800
		task_rq_unlock(rq, p, &flags);
		return -EBUSY;
	}

3801 3802 3803
	p->sched_reset_on_fork = reset_on_fork;
	oldprio = p->prio;

3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817
	if (pi) {
		/*
		 * Take priority boosted tasks into account. If the new
		 * effective priority is unchanged, we just store the new
		 * normal parameters and do not touch the scheduler class and
		 * the runqueue. This will be done when the task deboost
		 * itself.
		 */
		new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
		if (new_effective_prio == oldprio) {
			__setscheduler_params(p, attr);
			task_rq_unlock(rq, p, &flags);
			return 0;
		}
3818 3819
	}

3820
	queued = task_on_rq_queued(p);
3821
	running = task_current(rq, p);
3822
	if (queued)
3823
		dequeue_task(rq, p, 0);
3824
	if (running)
3825
		put_prev_task(rq, p);
3826

3827
	prev_class = p->sched_class;
3828
	__setscheduler(rq, p, attr, pi);
3829

3830 3831
	if (running)
		p->sched_class->set_curr_task(rq);
3832
	if (queued) {
3833 3834 3835 3836 3837 3838
		/*
		 * We enqueue to tail when the priority of a task is
		 * increased (user space view).
		 */
		enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
	}
3839

P
Peter Zijlstra 已提交
3840
	check_class_changed(rq, p, prev_class, oldprio);
3841
	preempt_disable(); /* avoid rq from going away on us */
3842
	task_rq_unlock(rq, p, &flags);
3843

3844 3845
	if (pi)
		rt_mutex_adjust_pi(p);
3846

3847 3848 3849 3850 3851 3852
	/*
	 * Run balance callbacks after we've adjusted the PI chain.
	 */
	balance_callback(rq);
	preempt_enable();

L
Linus Torvalds 已提交
3853 3854
	return 0;
}
3855

3856 3857 3858 3859 3860 3861 3862 3863 3864
static int _sched_setscheduler(struct task_struct *p, int policy,
			       const struct sched_param *param, bool check)
{
	struct sched_attr attr = {
		.sched_policy   = policy,
		.sched_priority = param->sched_priority,
		.sched_nice	= PRIO_TO_NICE(p->static_prio),
	};

3865 3866
	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
3867 3868 3869 3870 3871
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
		policy &= ~SCHED_RESET_ON_FORK;
		attr.sched_policy = policy;
	}

3872
	return __sched_setscheduler(p, &attr, check, true);
3873
}
3874 3875 3876 3877 3878 3879
/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
3880 3881
 * Return: 0 on success. An error code otherwise.
 *
3882 3883 3884
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
3885
		       const struct sched_param *param)
3886
{
3887
	return _sched_setscheduler(p, policy, param, true);
3888
}
L
Linus Torvalds 已提交
3889 3890
EXPORT_SYMBOL_GPL(sched_setscheduler);

3891 3892
int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
{
3893
	return __sched_setscheduler(p, attr, true, true);
3894 3895 3896
}
EXPORT_SYMBOL_GPL(sched_setattr);

3897 3898 3899 3900 3901 3902 3903 3904 3905 3906
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
3907 3908
 *
 * Return: 0 on success. An error code otherwise.
3909 3910
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3911
			       const struct sched_param *param)
3912
{
3913
	return _sched_setscheduler(p, policy, param, false);
3914 3915
}

I
Ingo Molnar 已提交
3916 3917
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
3918 3919 3920
{
	struct sched_param lparam;
	struct task_struct *p;
3921
	int retval;
L
Linus Torvalds 已提交
3922 3923 3924 3925 3926

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
3927 3928 3929

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
3930
	p = find_process_by_pid(pid);
3931 3932 3933
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
3934

L
Linus Torvalds 已提交
3935 3936 3937
	return retval;
}

3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
/*
 * Mimics kernel/events/core.c perf_copy_attr().
 */
static int sched_copy_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr)
{
	u32 size;
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = SCHED_ATTR_SIZE_VER0;

	if (size < SCHED_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
	 */
	if (size > sizeof(*attr)) {
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;

		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;

		for (; addr < end; addr++) {
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
		size = sizeof(*attr);
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * XXX: do we want to be lenient like existing syscalls; or do we want
	 * to be strict and return an error on out-of-bounds values?
	 */
4000
	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4001

4002
	return 0;
4003 4004 4005

err_size:
	put_user(sizeof(*attr), &uattr->size);
4006
	return -E2BIG;
4007 4008
}

L
Linus Torvalds 已提交
4009 4010 4011 4012 4013
/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4014 4015
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4016
 */
4017 4018
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
4019
{
4020 4021 4022 4023
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4024 4025 4026 4027 4028 4029 4030
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
4031 4032
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4033
 */
4034
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4035
{
4036
	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
L
Linus Torvalds 已提交
4037 4038
}

4039 4040 4041
/**
 * sys_sched_setattr - same as above, but with extended sched_attr
 * @pid: the pid in question.
J
Juri Lelli 已提交
4042
 * @uattr: structure containing the extended parameters.
4043
 * @flags: for future extension.
4044
 */
4045 4046
SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
			       unsigned int, flags)
4047 4048 4049 4050 4051
{
	struct sched_attr attr;
	struct task_struct *p;
	int retval;

4052
	if (!uattr || pid < 0 || flags)
4053 4054
		return -EINVAL;

4055 4056 4057
	retval = sched_copy_attr(uattr, &attr);
	if (retval)
		return retval;
4058

4059
	if ((int)attr.sched_policy < 0)
4060
		return -EINVAL;
4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071

	rcu_read_lock();
	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (p != NULL)
		retval = sched_setattr(p, &attr);
	rcu_read_unlock();

	return retval;
}

L
Linus Torvalds 已提交
4072 4073 4074
/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
4075 4076 4077
 *
 * Return: On success, the policy of the thread. Otherwise, a negative error
 * code.
L
Linus Torvalds 已提交
4078
 */
4079
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4080
{
4081
	struct task_struct *p;
4082
	int retval;
L
Linus Torvalds 已提交
4083 4084

	if (pid < 0)
4085
		return -EINVAL;
L
Linus Torvalds 已提交
4086 4087

	retval = -ESRCH;
4088
	rcu_read_lock();
L
Linus Torvalds 已提交
4089 4090 4091 4092
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4093 4094
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4095
	}
4096
	rcu_read_unlock();
L
Linus Torvalds 已提交
4097 4098 4099 4100
	return retval;
}

/**
4101
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4102 4103
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
4104 4105 4106
 *
 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
 * code.
L
Linus Torvalds 已提交
4107
 */
4108
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4109
{
4110
	struct sched_param lp = { .sched_priority = 0 };
4111
	struct task_struct *p;
4112
	int retval;
L
Linus Torvalds 已提交
4113 4114

	if (!param || pid < 0)
4115
		return -EINVAL;
L
Linus Torvalds 已提交
4116

4117
	rcu_read_lock();
L
Linus Torvalds 已提交
4118 4119 4120 4121 4122 4123 4124 4125 4126
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4127 4128
	if (task_has_rt_policy(p))
		lp.sched_priority = p->rt_priority;
4129
	rcu_read_unlock();
L
Linus Torvalds 已提交
4130 4131 4132 4133 4134 4135 4136 4137 4138

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4139
	rcu_read_unlock();
L
Linus Torvalds 已提交
4140 4141 4142
	return retval;
}

4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165
static int sched_read_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr,
			   unsigned int usize)
{
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, usize))
		return -EFAULT;

	/*
	 * If we're handed a smaller struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. old
	 * user-space does not get uncomplete information.
	 */
	if (usize < sizeof(*attr)) {
		unsigned char *addr;
		unsigned char *end;

		addr = (void *)attr + usize;
		end  = (void *)attr + sizeof(*attr);

		for (; addr < end; addr++) {
			if (*addr)
4166
				return -EFBIG;
4167 4168 4169 4170 4171
		}

		attr->size = usize;
	}

4172
	ret = copy_to_user(uattr, attr, attr->size);
4173 4174 4175
	if (ret)
		return -EFAULT;

4176
	return 0;
4177 4178 4179
}

/**
4180
 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4181
 * @pid: the pid in question.
J
Juri Lelli 已提交
4182
 * @uattr: structure containing the extended parameters.
4183
 * @size: sizeof(attr) for fwd/bwd comp.
4184
 * @flags: for future extension.
4185
 */
4186 4187
SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
		unsigned int, size, unsigned int, flags)
4188 4189 4190 4191 4192 4193 4194 4195
{
	struct sched_attr attr = {
		.size = sizeof(struct sched_attr),
	};
	struct task_struct *p;
	int retval;

	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4196
	    size < SCHED_ATTR_SIZE_VER0 || flags)
4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209
		return -EINVAL;

	rcu_read_lock();
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	attr.sched_policy = p->policy;
4210 4211
	if (p->sched_reset_on_fork)
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4212 4213 4214
	if (task_has_dl_policy(p))
		__getparam_dl(p, &attr);
	else if (task_has_rt_policy(p))
4215 4216
		attr.sched_priority = p->rt_priority;
	else
4217
		attr.sched_nice = task_nice(p);
4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228

	rcu_read_unlock();

	retval = sched_read_attr(uattr, &attr, size);
	return retval;

out_unlock:
	rcu_read_unlock();
	return retval;
}

4229
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4230
{
4231
	cpumask_var_t cpus_allowed, new_mask;
4232 4233
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4234

4235
	rcu_read_lock();
L
Linus Torvalds 已提交
4236 4237 4238

	p = find_process_by_pid(pid);
	if (!p) {
4239
		rcu_read_unlock();
L
Linus Torvalds 已提交
4240 4241 4242
		return -ESRCH;
	}

4243
	/* Prevent p going away */
L
Linus Torvalds 已提交
4244
	get_task_struct(p);
4245
	rcu_read_unlock();
L
Linus Torvalds 已提交
4246

4247 4248 4249 4250
	if (p->flags & PF_NO_SETAFFINITY) {
		retval = -EINVAL;
		goto out_put_task;
	}
4251 4252 4253 4254 4255 4256 4257 4258
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4259
	retval = -EPERM;
E
Eric W. Biederman 已提交
4260 4261 4262 4263
	if (!check_same_owner(p)) {
		rcu_read_lock();
		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
			rcu_read_unlock();
4264
			goto out_free_new_mask;
E
Eric W. Biederman 已提交
4265 4266 4267
		}
		rcu_read_unlock();
	}
L
Linus Torvalds 已提交
4268

4269
	retval = security_task_setscheduler(p);
4270
	if (retval)
4271
		goto out_free_new_mask;
4272

4273 4274 4275 4276

	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);

4277 4278 4279 4280 4281 4282 4283
	/*
	 * Since bandwidth control happens on root_domain basis,
	 * if admission test is enabled, we only admit -deadline
	 * tasks allowed to run on all the CPUs in the task's
	 * root_domain.
	 */
#ifdef CONFIG_SMP
4284 4285 4286
	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
		rcu_read_lock();
		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4287
			retval = -EBUSY;
4288
			rcu_read_unlock();
4289
			goto out_free_new_mask;
4290
		}
4291
		rcu_read_unlock();
4292 4293
	}
#endif
P
Peter Zijlstra 已提交
4294
again:
4295
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
4296

P
Paul Menage 已提交
4297
	if (!retval) {
4298 4299
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4300 4301 4302 4303 4304
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4305
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4306 4307 4308
			goto again;
		}
	}
4309
out_free_new_mask:
4310 4311 4312 4313
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4314 4315 4316 4317 4318
	put_task_struct(p);
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4319
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4320
{
4321 4322 4323 4324 4325
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4326 4327 4328 4329 4330 4331 4332 4333
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
4334 4335
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4336
 */
4337 4338
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4339
{
4340
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4341 4342
	int retval;

4343 4344
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4345

4346 4347 4348 4349 4350
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4351 4352
}

4353
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4354
{
4355
	struct task_struct *p;
4356
	unsigned long flags;
L
Linus Torvalds 已提交
4357 4358
	int retval;

4359
	rcu_read_lock();
L
Linus Torvalds 已提交
4360 4361 4362 4363 4364 4365

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4366 4367 4368 4369
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4370
	raw_spin_lock_irqsave(&p->pi_lock, flags);
4371
	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4372
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4373 4374

out_unlock:
4375
	rcu_read_unlock();
L
Linus Torvalds 已提交
4376

4377
	return retval;
L
Linus Torvalds 已提交
4378 4379 4380 4381 4382 4383 4384
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4385 4386
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4387
 */
4388 4389
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4390 4391
{
	int ret;
4392
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4393

A
Anton Blanchard 已提交
4394
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4395 4396
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4397 4398
		return -EINVAL;

4399 4400
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4401

4402 4403
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4404
		size_t retlen = min_t(size_t, len, cpumask_size());
4405 4406

		if (copy_to_user(user_mask_ptr, mask, retlen))
4407 4408
			ret = -EFAULT;
		else
4409
			ret = retlen;
4410 4411
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4412

4413
	return ret;
L
Linus Torvalds 已提交
4414 4415 4416 4417 4418
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4419 4420
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
4421 4422
 *
 * Return: 0.
L
Linus Torvalds 已提交
4423
 */
4424
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4425
{
4426
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4427

4428
	schedstat_inc(rq, yld_count);
4429
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4430 4431 4432 4433 4434 4435

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4436
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4437
	do_raw_spin_unlock(&rq->lock);
4438
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
4439 4440 4441 4442 4443 4444

	schedule();

	return 0;
}

4445
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4446
{
P
Peter Zijlstra 已提交
4447
	if (should_resched()) {
4448
		preempt_schedule_common();
L
Linus Torvalds 已提交
4449 4450 4451 4452
		return 1;
	}
	return 0;
}
4453
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4454 4455

/*
4456
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4457 4458
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4459
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4460 4461 4462
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4463
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4464
{
P
Peter Zijlstra 已提交
4465
	int resched = should_resched();
J
Jan Kara 已提交
4466 4467
	int ret = 0;

4468 4469
	lockdep_assert_held(lock);

4470
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4471
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4472
		if (resched)
4473
			preempt_schedule_common();
N
Nick Piggin 已提交
4474 4475
		else
			cpu_relax();
J
Jan Kara 已提交
4476
		ret = 1;
L
Linus Torvalds 已提交
4477 4478
		spin_lock(lock);
	}
J
Jan Kara 已提交
4479
	return ret;
L
Linus Torvalds 已提交
4480
}
4481
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4482

4483
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4484 4485 4486
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
4487
	if (should_resched()) {
4488
		local_bh_enable();
4489
		preempt_schedule_common();
L
Linus Torvalds 已提交
4490 4491 4492 4493 4494
		local_bh_disable();
		return 1;
	}
	return 0;
}
4495
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4496 4497 4498 4499

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
 * 	yield();
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
4518 4519 4520 4521 4522 4523 4524 4525
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

4526 4527 4528 4529
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
4530 4531
 * @p: target task
 * @preempt: whether task preemption is allowed or not
4532 4533 4534 4535
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
4536
 * Return:
4537 4538 4539
 *	true (>0) if we indeed boosted the target task.
 *	false (0) if we failed to boost the target.
 *	-ESRCH if there's no task to yield to.
4540
 */
4541
int __sched yield_to(struct task_struct *p, bool preempt)
4542 4543 4544 4545
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
4546
	int yielded = 0;
4547 4548 4549 4550 4551 4552

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
4553 4554 4555 4556 4557 4558 4559 4560 4561
	/*
	 * If we're the only runnable task on the rq and target rq also
	 * has only one task, there's absolutely no point in yielding.
	 */
	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
		yielded = -ESRCH;
		goto out_irq;
	}

4562
	double_rq_lock(rq, p_rq);
4563
	if (task_rq(p) != p_rq) {
4564 4565 4566 4567 4568
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
4569
		goto out_unlock;
4570 4571

	if (curr->sched_class != p->sched_class)
4572
		goto out_unlock;
4573 4574

	if (task_running(p_rq, p) || p->state)
4575
		goto out_unlock;
4576 4577

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4578
	if (yielded) {
4579
		schedstat_inc(rq, yld_count);
4580 4581 4582 4583 4584
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
4585
			resched_curr(p_rq);
4586
	}
4587

4588
out_unlock:
4589
	double_rq_unlock(rq, p_rq);
4590
out_irq:
4591 4592
	local_irq_restore(flags);

4593
	if (yielded > 0)
4594 4595 4596 4597 4598 4599
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
4600
/*
I
Ingo Molnar 已提交
4601
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4602 4603 4604 4605
 * that process accounting knows that this is a task in IO wait state.
 */
long __sched io_schedule_timeout(long timeout)
{
4606 4607
	int old_iowait = current->in_iowait;
	struct rq *rq;
L
Linus Torvalds 已提交
4608 4609
	long ret;

4610
	current->in_iowait = 1;
4611
	blk_schedule_flush_plug(current);
4612

4613
	delayacct_blkio_start();
4614
	rq = raw_rq();
L
Linus Torvalds 已提交
4615 4616
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
4617
	current->in_iowait = old_iowait;
L
Linus Torvalds 已提交
4618
	atomic_dec(&rq->nr_iowait);
4619
	delayacct_blkio_end();
4620

L
Linus Torvalds 已提交
4621 4622
	return ret;
}
4623
EXPORT_SYMBOL(io_schedule_timeout);
L
Linus Torvalds 已提交
4624 4625 4626 4627 4628

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
4629 4630 4631
 * Return: On success, this syscall returns the maximum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
4632
 */
4633
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
4634 4635 4636 4637 4638 4639 4640 4641
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
4642
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
4643
	case SCHED_NORMAL:
4644
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4645
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4646 4647 4648 4649 4650 4651 4652 4653 4654 4655
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
4656 4657 4658
 * Return: On success, this syscall returns the minimum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
4659
 */
4660
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
4661 4662 4663 4664 4665 4666 4667 4668
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
4669
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
4670
	case SCHED_NORMAL:
4671
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4672
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
4685 4686 4687
 *
 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
 * an error code.
L
Linus Torvalds 已提交
4688
 */
4689
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4690
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
4691
{
4692
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4693
	unsigned int time_slice;
4694 4695
	unsigned long flags;
	struct rq *rq;
4696
	int retval;
L
Linus Torvalds 已提交
4697 4698 4699
	struct timespec t;

	if (pid < 0)
4700
		return -EINVAL;
L
Linus Torvalds 已提交
4701 4702

	retval = -ESRCH;
4703
	rcu_read_lock();
L
Linus Torvalds 已提交
4704 4705 4706 4707 4708 4709 4710 4711
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4712
	rq = task_rq_lock(p, &flags);
4713 4714 4715
	time_slice = 0;
	if (p->sched_class->get_rr_interval)
		time_slice = p->sched_class->get_rr_interval(rq, p);
4716
	task_rq_unlock(rq, p, &flags);
D
Dmitry Adamushko 已提交
4717

4718
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
4719
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4720 4721
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4722

L
Linus Torvalds 已提交
4723
out_unlock:
4724
	rcu_read_unlock();
L
Linus Torvalds 已提交
4725 4726 4727
	return retval;
}

4728
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4729

4730
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4731 4732
{
	unsigned long free = 0;
4733
	int ppid;
4734
	unsigned long state = p->state;
L
Linus Torvalds 已提交
4735

4736 4737
	if (state)
		state = __ffs(state) + 1;
4738
	printk(KERN_INFO "%-15.15s %c", p->comm,
4739
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4740
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4741
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4742
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4743
	else
P
Peter Zijlstra 已提交
4744
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4745 4746
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4747
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4748
	else
P
Peter Zijlstra 已提交
4749
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4750 4751
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
4752
	free = stack_not_used(p);
L
Linus Torvalds 已提交
4753
#endif
4754
	ppid = 0;
4755
	rcu_read_lock();
4756 4757
	if (pid_alive(p))
		ppid = task_pid_nr(rcu_dereference(p->real_parent));
4758
	rcu_read_unlock();
P
Peter Zijlstra 已提交
4759
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4760
		task_pid_nr(p), ppid,
4761
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
4762

4763
	print_worker_info(KERN_INFO, p);
4764
	show_stack(p, NULL);
L
Linus Torvalds 已提交
4765 4766
}

I
Ingo Molnar 已提交
4767
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4768
{
4769
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4770

4771
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
4772 4773
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4774
#else
P
Peter Zijlstra 已提交
4775 4776
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4777
#endif
4778
	rcu_read_lock();
4779
	for_each_process_thread(g, p) {
L
Linus Torvalds 已提交
4780 4781
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
4782
		 * console might take a lot of time:
L
Linus Torvalds 已提交
4783 4784
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4785
		if (!state_filter || (p->state & state_filter))
4786
			sched_show_task(p);
4787
	}
L
Linus Torvalds 已提交
4788

4789 4790
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4791 4792 4793
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
4794
	rcu_read_unlock();
I
Ingo Molnar 已提交
4795 4796 4797
	/*
	 * Only show locks if all tasks are dumped:
	 */
4798
	if (!state_filter)
I
Ingo Molnar 已提交
4799
		debug_show_all_locks();
L
Linus Torvalds 已提交
4800 4801
}

4802
void init_idle_bootup_task(struct task_struct *idle)
I
Ingo Molnar 已提交
4803
{
I
Ingo Molnar 已提交
4804
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4805 4806
}

4807 4808 4809 4810 4811 4812 4813 4814
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4815
void init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4816
{
4817
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4818 4819
	unsigned long flags;

4820
	raw_spin_lock_irqsave(&rq->lock, flags);
4821

4822
	__sched_fork(0, idle);
4823
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
4824 4825
	idle->se.exec_start = sched_clock();

4826
	do_set_cpus_allowed(idle, cpumask_of(cpu));
4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
4838
	__set_task_cpu(idle, cpu);
4839
	rcu_read_unlock();
L
Linus Torvalds 已提交
4840 4841

	rq->curr = rq->idle = idle;
4842
	idle->on_rq = TASK_ON_RQ_QUEUED;
P
Peter Zijlstra 已提交
4843 4844
#if defined(CONFIG_SMP)
	idle->on_cpu = 1;
4845
#endif
4846
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
4847 4848

	/* Set the preempt count _outside_ the spinlocks! */
4849
	init_idle_preempt_count(idle, cpu);
4850

I
Ingo Molnar 已提交
4851 4852 4853 4854
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
4855
	ftrace_graph_init_idle_task(idle, cpu);
4856
	vtime_init_idle(idle, cpu);
4857 4858 4859
#if defined(CONFIG_SMP)
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
4860 4861
}

4862 4863 4864 4865 4866 4867 4868
int cpuset_cpumask_can_shrink(const struct cpumask *cur,
			      const struct cpumask *trial)
{
	int ret = 1, trial_cpus;
	struct dl_bw *cur_dl_b;
	unsigned long flags;

4869 4870 4871
	if (!cpumask_weight(cur))
		return ret;

4872
	rcu_read_lock_sched();
4873 4874 4875 4876 4877 4878 4879 4880
	cur_dl_b = dl_bw_of(cpumask_any(cur));
	trial_cpus = cpumask_weight(trial);

	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
	if (cur_dl_b->bw != -1 &&
	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
		ret = 0;
	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
4881
	rcu_read_unlock_sched();
4882 4883 4884 4885

	return ret;
}

4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909
int task_can_attach(struct task_struct *p,
		    const struct cpumask *cs_cpus_allowed)
{
	int ret = 0;

	/*
	 * Kthreads which disallow setaffinity shouldn't be moved
	 * to a new cpuset; we don't want to change their cpu
	 * affinity and isolating such threads by their set of
	 * allowed nodes is unnecessary.  Thus, cpusets are not
	 * applicable for such threads.  This prevents checking for
	 * success of set_cpus_allowed_ptr() on all attached tasks
	 * before cpus_allowed may be changed.
	 */
	if (p->flags & PF_NO_SETAFFINITY) {
		ret = -EINVAL;
		goto out;
	}

#ifdef CONFIG_SMP
	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
					      cs_cpus_allowed)) {
		unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
							cs_cpus_allowed);
4910
		struct dl_bw *dl_b;
4911 4912 4913 4914
		bool overflow;
		int cpus;
		unsigned long flags;

4915 4916
		rcu_read_lock_sched();
		dl_b = dl_bw_of(dest_cpu);
4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931
		raw_spin_lock_irqsave(&dl_b->lock, flags);
		cpus = dl_bw_cpus(dest_cpu);
		overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
		if (overflow)
			ret = -EBUSY;
		else {
			/*
			 * We reserve space for this task in the destination
			 * root_domain, as we can't fail after this point.
			 * We will free resources in the source root_domain
			 * later on (see set_cpus_allowed_dl()).
			 */
			__dl_add(dl_b, p->dl.dl_bw);
		}
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
4932
		rcu_read_unlock_sched();
4933 4934 4935 4936 4937 4938 4939

	}
#endif
out:
	return ret;
}

L
Linus Torvalds 已提交
4940 4941
#ifdef CONFIG_SMP

4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956
#ifdef CONFIG_NUMA_BALANCING
/* Migrate current task p to target_cpu */
int migrate_task_to(struct task_struct *p, int target_cpu)
{
	struct migration_arg arg = { p, target_cpu };
	int curr_cpu = task_cpu(p);

	if (curr_cpu == target_cpu)
		return 0;

	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
		return -EINVAL;

	/* TODO: This is not properly updating schedstats */

4957
	trace_sched_move_numa(p, curr_cpu, target_cpu);
4958 4959
	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
}
4960 4961 4962 4963 4964 4965 4966 4967 4968

/*
 * Requeue a task on a given node and accurately track the number of NUMA
 * tasks on the runqueues
 */
void sched_setnuma(struct task_struct *p, int nid)
{
	struct rq *rq;
	unsigned long flags;
4969
	bool queued, running;
4970 4971

	rq = task_rq_lock(p, &flags);
4972
	queued = task_on_rq_queued(p);
4973 4974
	running = task_current(rq, p);

4975
	if (queued)
4976 4977
		dequeue_task(rq, p, 0);
	if (running)
4978
		put_prev_task(rq, p);
4979 4980 4981 4982 4983

	p->numa_preferred_nid = nid;

	if (running)
		p->sched_class->set_curr_task(rq);
4984
	if (queued)
4985 4986 4987
		enqueue_task(rq, p, 0);
	task_rq_unlock(rq, p, &flags);
}
P
Peter Zijlstra 已提交
4988
#endif /* CONFIG_NUMA_BALANCING */
4989

L
Linus Torvalds 已提交
4990
#ifdef CONFIG_HOTPLUG_CPU
4991
/*
4992 4993
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
4994
 */
4995
void idle_task_exit(void)
L
Linus Torvalds 已提交
4996
{
4997
	struct mm_struct *mm = current->active_mm;
4998

4999
	BUG_ON(cpu_online(smp_processor_id()));
5000

5001
	if (mm != &init_mm) {
5002
		switch_mm(mm, &init_mm, current);
5003 5004
		finish_arch_post_lock_switch();
	}
5005
	mmdrop(mm);
L
Linus Torvalds 已提交
5006 5007 5008
}

/*
5009 5010 5011 5012 5013
 * Since this CPU is going 'away' for a while, fold any nr_active delta
 * we might have. Assumes we're called after migrate_tasks() so that the
 * nr_active count is stable.
 *
 * Also see the comment "Global load-average calculations".
L
Linus Torvalds 已提交
5014
 */
5015
static void calc_load_migrate(struct rq *rq)
L
Linus Torvalds 已提交
5016
{
5017 5018 5019
	long delta = calc_load_fold_active(rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
5020 5021
}

5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037
static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
{
}

static const struct sched_class fake_sched_class = {
	.put_prev_task = put_prev_task_fake,
};

static struct task_struct fake_task = {
	/*
	 * Avoid pull_{rt,dl}_task()
	 */
	.prio = MAX_PRIO + 1,
	.sched_class = &fake_sched_class,
};

5038
/*
5039 5040 5041 5042 5043 5044
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
5045
 */
5046
static void migrate_tasks(unsigned int dead_cpu)
L
Linus Torvalds 已提交
5047
{
5048
	struct rq *rq = cpu_rq(dead_cpu);
5049 5050
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
5051 5052

	/*
5053 5054 5055 5056 5057 5058 5059
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
5060
	 */
5061
	rq->stop = NULL;
5062

5063 5064 5065 5066 5067 5068 5069
	/*
	 * put_prev_task() and pick_next_task() sched
	 * class method both need to have an up-to-date
	 * value of rq->clock[_task]
	 */
	update_rq_clock(rq);

I
Ingo Molnar 已提交
5070
	for ( ; ; ) {
5071 5072 5073 5074 5075
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
5076
			break;
5077

5078
		next = pick_next_task(rq, &fake_task);
5079
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
5080
		next->sched_class->put_prev_task(rq, next);
5081

5082 5083 5084 5085 5086 5087 5088
		/* Find suitable destination for @next, with force if needed. */
		dest_cpu = select_fallback_rq(dead_cpu, next);
		raw_spin_unlock(&rq->lock);

		__migrate_task(next, dead_cpu, dest_cpu);

		raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
5089
	}
5090

5091
	rq->stop = stop;
5092
}
L
Linus Torvalds 已提交
5093 5094
#endif /* CONFIG_HOTPLUG_CPU */

5095 5096 5097
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5098 5099
	{
		.procname	= "sched_domain",
5100
		.mode		= 0555,
5101
	},
5102
	{}
5103 5104 5105
};

static struct ctl_table sd_ctl_root[] = {
5106 5107
	{
		.procname	= "kernel",
5108
		.mode		= 0555,
5109 5110
		.child		= sd_ctl_dir,
	},
5111
	{}
5112 5113 5114 5115 5116
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5117
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5118 5119 5120 5121

	return entry;
}

5122 5123
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5124
	struct ctl_table *entry;
5125

5126 5127 5128
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5129
	 * will always be set. In the lowest directory the names are
5130 5131 5132
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5133 5134
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5135 5136 5137
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5138 5139 5140 5141 5142

	kfree(*tablep);
	*tablep = NULL;
}

5143
static int min_load_idx = 0;
5144
static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5145

5146
static void
5147
set_table_entry(struct ctl_table *entry,
5148
		const char *procname, void *data, int maxlen,
5149 5150
		umode_t mode, proc_handler *proc_handler,
		bool load_idx)
5151 5152 5153 5154 5155 5156
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
5157 5158 5159 5160 5161

	if (load_idx) {
		entry->extra1 = &min_load_idx;
		entry->extra2 = &max_load_idx;
	}
5162 5163 5164 5165 5166
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5167
	struct ctl_table *table = sd_alloc_ctl_entry(14);
5168

5169 5170 5171
	if (table == NULL)
		return NULL;

5172
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5173
		sizeof(long), 0644, proc_doulongvec_minmax, false);
5174
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5175
		sizeof(long), 0644, proc_doulongvec_minmax, false);
5176
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5177
		sizeof(int), 0644, proc_dointvec_minmax, true);
5178
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5179
		sizeof(int), 0644, proc_dointvec_minmax, true);
5180
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5181
		sizeof(int), 0644, proc_dointvec_minmax, true);
5182
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5183
		sizeof(int), 0644, proc_dointvec_minmax, true);
5184
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5185
		sizeof(int), 0644, proc_dointvec_minmax, true);
5186
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5187
		sizeof(int), 0644, proc_dointvec_minmax, false);
5188
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5189
		sizeof(int), 0644, proc_dointvec_minmax, false);
5190
	set_table_entry(&table[9], "cache_nice_tries",
5191
		&sd->cache_nice_tries,
5192
		sizeof(int), 0644, proc_dointvec_minmax, false);
5193
	set_table_entry(&table[10], "flags", &sd->flags,
5194
		sizeof(int), 0644, proc_dointvec_minmax, false);
5195 5196 5197 5198
	set_table_entry(&table[11], "max_newidle_lb_cost",
		&sd->max_newidle_lb_cost,
		sizeof(long), 0644, proc_doulongvec_minmax, false);
	set_table_entry(&table[12], "name", sd->name,
5199
		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5200
	/* &table[13] is terminator */
5201 5202 5203 5204

	return table;
}

5205
static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5206 5207 5208 5209 5210 5211 5212 5213 5214
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5215 5216
	if (table == NULL)
		return NULL;
5217 5218 5219 5220 5221

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5222
		entry->mode = 0555;
5223 5224 5225 5226 5227 5228 5229 5230
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5231
static void register_sched_domain_sysctl(void)
5232
{
5233
	int i, cpu_num = num_possible_cpus();
5234 5235 5236
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5237 5238 5239
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5240 5241 5242
	if (entry == NULL)
		return;

5243
	for_each_possible_cpu(i) {
5244 5245
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5246
		entry->mode = 0555;
5247
		entry->child = sd_alloc_ctl_cpu_table(i);
5248
		entry++;
5249
	}
5250 5251

	WARN_ON(sd_sysctl_header);
5252 5253
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5254

5255
/* may be called multiple times per register */
5256 5257
static void unregister_sched_domain_sysctl(void)
{
5258 5259
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5260
	sd_sysctl_header = NULL;
5261 5262
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5263
}
5264
#else
5265 5266 5267 5268
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5269 5270
{
}
P
Peter Zijlstra 已提交
5271
#endif /* CONFIG_SCHED_DEBUG && CONFIG_SYSCTL */
5272

5273 5274 5275 5276 5277
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5278
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5298
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5299 5300 5301 5302
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5303 5304 5305 5306
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5307
static int
5308
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5309
{
5310
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5311
	unsigned long flags;
5312
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5313

5314
	switch (action & ~CPU_TASKS_FROZEN) {
5315

L
Linus Torvalds 已提交
5316
	case CPU_UP_PREPARE:
5317
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5318
		break;
5319

L
Linus Torvalds 已提交
5320
	case CPU_ONLINE:
5321
		/* Update our root-domain */
5322
		raw_spin_lock_irqsave(&rq->lock, flags);
5323
		if (rq->rd) {
5324
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5325 5326

			set_rq_online(rq);
5327
		}
5328
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5329
		break;
5330

L
Linus Torvalds 已提交
5331
#ifdef CONFIG_HOTPLUG_CPU
5332
	case CPU_DYING:
5333
		sched_ttwu_pending();
G
Gregory Haskins 已提交
5334
		/* Update our root-domain */
5335
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5336
		if (rq->rd) {
5337
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5338
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5339
		}
5340 5341
		migrate_tasks(cpu);
		BUG_ON(rq->nr_running != 1); /* the migration thread */
5342
		raw_spin_unlock_irqrestore(&rq->lock, flags);
5343
		break;
5344

5345
	case CPU_DEAD:
5346
		calc_load_migrate(rq);
G
Gregory Haskins 已提交
5347
		break;
L
Linus Torvalds 已提交
5348 5349
#endif
	}
5350 5351 5352

	update_max_interval();

L
Linus Torvalds 已提交
5353 5354 5355
	return NOTIFY_OK;
}

5356 5357 5358
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5359
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5360
 */
5361
static struct notifier_block migration_notifier = {
L
Linus Torvalds 已提交
5362
	.notifier_call = migration_call,
5363
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
5364 5365
};

5366
static void set_cpu_rq_start_time(void)
5367 5368 5369 5370 5371 5372
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
	rq->age_stamp = sched_clock_cpu(cpu);
}

5373
static int sched_cpu_active(struct notifier_block *nfb,
5374 5375 5376
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
5377 5378 5379
	case CPU_STARTING:
		set_cpu_rq_start_time();
		return NOTIFY_OK;
5380 5381 5382 5383 5384 5385 5386 5387
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

5388
static int sched_cpu_inactive(struct notifier_block *nfb,
5389 5390 5391 5392
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
5393
		set_cpu_active((long)hcpu, false);
5394
		return NOTIFY_OK;
5395 5396
	default:
		return NOTIFY_DONE;
5397 5398 5399
	}
}

5400
static int __init migration_init(void)
L
Linus Torvalds 已提交
5401 5402
{
	void *cpu = (void *)(long)smp_processor_id();
5403
	int err;
5404

5405
	/* Initialize migration for the boot CPU */
5406 5407
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5408 5409
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5410

5411 5412 5413 5414
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

5415
	return 0;
L
Linus Torvalds 已提交
5416
}
5417
early_initcall(migration_init);
5418

5419 5420
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

5421
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5422

5423
static __read_mostly int sched_debug_enabled;
5424

5425
static int __init sched_debug_setup(char *str)
5426
{
5427
	sched_debug_enabled = 1;
5428 5429 5430

	return 0;
}
5431 5432 5433 5434 5435 5436
early_param("sched_debug", sched_debug_setup);

static inline bool sched_debug(void)
{
	return sched_debug_enabled;
}
5437

5438
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5439
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5440
{
I
Ingo Molnar 已提交
5441
	struct sched_group *group = sd->groups;
L
Linus Torvalds 已提交
5442

5443
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5444 5445 5446 5447

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5448
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5449
		if (sd->parent)
P
Peter Zijlstra 已提交
5450 5451
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5452
		return -1;
N
Nick Piggin 已提交
5453 5454
	}

5455 5456
	printk(KERN_CONT "span %*pbl level %s\n",
	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
I
Ingo Molnar 已提交
5457

5458
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5459 5460
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5461
	}
5462
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5463 5464
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5465
	}
L
Linus Torvalds 已提交
5466

I
Ingo Molnar 已提交
5467
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5468
	do {
I
Ingo Molnar 已提交
5469
		if (!group) {
P
Peter Zijlstra 已提交
5470 5471
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5472 5473 5474
			break;
		}

5475
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5476 5477
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
5478 5479
			break;
		}
L
Linus Torvalds 已提交
5480

5481 5482
		if (!(sd->flags & SD_OVERLAP) &&
		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5483 5484
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
5485 5486
			break;
		}
L
Linus Torvalds 已提交
5487

5488
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
5489

5490 5491
		printk(KERN_CONT " %*pbl",
		       cpumask_pr_args(sched_group_cpus(group)));
5492
		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5493 5494
			printk(KERN_CONT " (cpu_capacity = %d)",
				group->sgc->capacity);
5495
		}
L
Linus Torvalds 已提交
5496

I
Ingo Molnar 已提交
5497 5498
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
5499
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5500

5501
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
5502
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5503

5504 5505
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
5506 5507
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
5508 5509
	return 0;
}
L
Linus Torvalds 已提交
5510

I
Ingo Molnar 已提交
5511 5512 5513
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5514

5515
	if (!sched_debug_enabled)
5516 5517
		return;

I
Ingo Molnar 已提交
5518 5519 5520 5521
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5522

I
Ingo Molnar 已提交
5523 5524 5525
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
5526
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
I
Ingo Molnar 已提交
5527
			break;
L
Linus Torvalds 已提交
5528 5529
		level++;
		sd = sd->parent;
5530
		if (!sd)
I
Ingo Molnar 已提交
5531 5532
			break;
	}
L
Linus Torvalds 已提交
5533
}
5534
#else /* !CONFIG_SCHED_DEBUG */
5535
# define sched_domain_debug(sd, cpu) do { } while (0)
5536 5537 5538 5539
static inline bool sched_debug(void)
{
	return false;
}
5540
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
5541

5542
static int sd_degenerate(struct sched_domain *sd)
5543
{
5544
	if (cpumask_weight(sched_domain_span(sd)) == 1)
5545 5546 5547 5548 5549 5550
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5551
			 SD_BALANCE_EXEC |
5552
			 SD_SHARE_CPUCAPACITY |
5553 5554
			 SD_SHARE_PKG_RESOURCES |
			 SD_SHARE_POWERDOMAIN)) {
5555 5556 5557 5558 5559
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
5560
	if (sd->flags & (SD_WAKE_AFFINE))
5561 5562 5563 5564 5565
		return 0;

	return 1;
}

5566 5567
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5568 5569 5570 5571 5572 5573
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

5574
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5575 5576 5577 5578 5579 5580 5581
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5582
				SD_BALANCE_EXEC |
5583
				SD_SHARE_CPUCAPACITY |
5584
				SD_SHARE_PKG_RESOURCES |
5585 5586
				SD_PREFER_SIBLING |
				SD_SHARE_POWERDOMAIN);
5587 5588
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
5589 5590 5591 5592 5593 5594 5595
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

5596
static void free_rootdomain(struct rcu_head *rcu)
5597
{
5598
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5599

5600
	cpupri_cleanup(&rd->cpupri);
5601
	cpudl_cleanup(&rd->cpudl);
5602
	free_cpumask_var(rd->dlo_mask);
5603 5604 5605 5606 5607 5608
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
5609 5610
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
5611
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
5612 5613
	unsigned long flags;

5614
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5615 5616

	if (rq->rd) {
I
Ingo Molnar 已提交
5617
		old_rd = rq->rd;
G
Gregory Haskins 已提交
5618

5619
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5620
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5621

5622
		cpumask_clear_cpu(rq->cpu, old_rd->span);
5623

I
Ingo Molnar 已提交
5624
		/*
5625
		 * If we dont want to free the old_rd yet then
I
Ingo Molnar 已提交
5626 5627 5628 5629 5630
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
5631 5632 5633 5634 5635
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

5636
	cpumask_set_cpu(rq->cpu, rd->span);
5637
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5638
		set_rq_online(rq);
G
Gregory Haskins 已提交
5639

5640
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
5641 5642

	if (old_rd)
5643
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
5644 5645
}

5646
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
5647 5648 5649
{
	memset(rd, 0, sizeof(*rd));

5650
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5651
		goto out;
5652
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5653
		goto free_span;
5654
	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5655
		goto free_online;
5656 5657
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
		goto free_dlo_mask;
5658

5659
	init_dl_bw(&rd->dl_bw);
5660 5661
	if (cpudl_init(&rd->cpudl) != 0)
		goto free_dlo_mask;
5662

5663
	if (cpupri_init(&rd->cpupri) != 0)
5664
		goto free_rto_mask;
5665
	return 0;
5666

5667 5668
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
5669 5670
free_dlo_mask:
	free_cpumask_var(rd->dlo_mask);
5671 5672 5673 5674
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
5675
out:
5676
	return -ENOMEM;
G
Gregory Haskins 已提交
5677 5678
}

5679 5680 5681 5682 5683 5684
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
struct root_domain def_root_domain;

G
Gregory Haskins 已提交
5685 5686
static void init_defrootdomain(void)
{
5687
	init_rootdomain(&def_root_domain);
5688

G
Gregory Haskins 已提交
5689 5690 5691
	atomic_set(&def_root_domain.refcount, 1);
}

5692
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
5693 5694 5695 5696 5697 5698 5699
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

5700
	if (init_rootdomain(rd) != 0) {
5701 5702 5703
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
5704 5705 5706 5707

	return rd;
}

5708
static void free_sched_groups(struct sched_group *sg, int free_sgc)
5709 5710 5711 5712 5713 5714 5715 5716 5717 5718
{
	struct sched_group *tmp, *first;

	if (!sg)
		return;

	first = sg;
	do {
		tmp = sg->next;

5719 5720
		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
			kfree(sg->sgc);
5721 5722 5723 5724 5725 5726

		kfree(sg);
		sg = tmp;
	} while (sg != first);
}

5727 5728 5729
static void free_sched_domain(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5730 5731 5732 5733 5734 5735 5736 5737

	/*
	 * If its an overlapping domain it has private groups, iterate and
	 * nuke them all.
	 */
	if (sd->flags & SD_OVERLAP) {
		free_sched_groups(sd->groups, 1);
	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5738
		kfree(sd->groups->sgc);
5739
		kfree(sd->groups);
5740
	}
5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754
	kfree(sd);
}

static void destroy_sched_domain(struct sched_domain *sd, int cpu)
{
	call_rcu(&sd->rcu, free_sched_domain);
}

static void destroy_sched_domains(struct sched_domain *sd, int cpu)
{
	for (; sd; sd = sd->parent)
		destroy_sched_domain(sd, cpu);
}

5755 5756 5757 5758 5759 5760 5761
/*
 * Keep a special pointer to the highest sched_domain that has
 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 * allows us to avoid some pointer chasing select_idle_sibling().
 *
 * Also keep a unique ID per domain (we use the first cpu number in
 * the cpumask of the domain), this allows us to quickly tell if
5762
 * two cpus are in the same cache domain, see cpus_share_cache().
5763 5764
 */
DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5765
DEFINE_PER_CPU(int, sd_llc_size);
5766
DEFINE_PER_CPU(int, sd_llc_id);
5767
DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5768 5769
DEFINE_PER_CPU(struct sched_domain *, sd_busy);
DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5770 5771 5772 5773

static void update_top_cache_domain(int cpu)
{
	struct sched_domain *sd;
5774
	struct sched_domain *busy_sd = NULL;
5775
	int id = cpu;
5776
	int size = 1;
5777 5778

	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5779
	if (sd) {
5780
		id = cpumask_first(sched_domain_span(sd));
5781
		size = cpumask_weight(sched_domain_span(sd));
5782
		busy_sd = sd->parent; /* sd_busy */
5783
	}
5784
	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5785 5786

	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5787
	per_cpu(sd_llc_size, cpu) = size;
5788
	per_cpu(sd_llc_id, cpu) = id;
5789 5790 5791

	sd = lowest_flag_domain(cpu, SD_NUMA);
	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5792 5793 5794

	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5795 5796
}

L
Linus Torvalds 已提交
5797
/*
I
Ingo Molnar 已提交
5798
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
5799 5800
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
5801 5802
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
5803
{
5804
	struct rq *rq = cpu_rq(cpu);
5805 5806 5807
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
5808
	for (tmp = sd; tmp; ) {
5809 5810 5811
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5812

5813
		if (sd_parent_degenerate(tmp, parent)) {
5814
			tmp->parent = parent->parent;
5815 5816
			if (parent->parent)
				parent->parent->child = tmp;
5817 5818 5819 5820 5821 5822 5823
			/*
			 * Transfer SD_PREFER_SIBLING down in case of a
			 * degenerate parent; the spans match for this
			 * so the property transfers.
			 */
			if (parent->flags & SD_PREFER_SIBLING)
				tmp->flags |= SD_PREFER_SIBLING;
5824
			destroy_sched_domain(parent, cpu);
5825 5826
		} else
			tmp = tmp->parent;
5827 5828
	}

5829
	if (sd && sd_degenerate(sd)) {
5830
		tmp = sd;
5831
		sd = sd->parent;
5832
		destroy_sched_domain(tmp, cpu);
5833 5834 5835
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5836

5837
	sched_domain_debug(sd, cpu);
L
Linus Torvalds 已提交
5838

G
Gregory Haskins 已提交
5839
	rq_attach_root(rq, rd);
5840
	tmp = rq->sd;
N
Nick Piggin 已提交
5841
	rcu_assign_pointer(rq->sd, sd);
5842
	destroy_sched_domains(tmp, cpu);
5843 5844

	update_top_cache_domain(cpu);
L
Linus Torvalds 已提交
5845 5846 5847 5848 5849
}

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
5850
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
5851
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
5852 5853 5854
	return 1;
}

I
Ingo Molnar 已提交
5855
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5856

5857
struct s_data {
5858
	struct sched_domain ** __percpu sd;
5859 5860 5861
	struct root_domain	*rd;
};

5862 5863
enum s_alloc {
	sa_rootdomain,
5864
	sa_sd,
5865
	sa_sd_storage,
5866 5867 5868
	sa_none,
};

P
Peter Zijlstra 已提交
5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906
/*
 * Build an iteration mask that can exclude certain CPUs from the upwards
 * domain traversal.
 *
 * Asymmetric node setups can result in situations where the domain tree is of
 * unequal depth, make sure to skip domains that already cover the entire
 * range.
 *
 * In that case build_sched_domains() will have terminated the iteration early
 * and our sibling sd spans will be empty. Domains should always include the
 * cpu they're built on, so check that.
 *
 */
static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
{
	const struct cpumask *span = sched_domain_span(sd);
	struct sd_data *sdd = sd->private;
	struct sched_domain *sibling;
	int i;

	for_each_cpu(i, span) {
		sibling = *per_cpu_ptr(sdd->sd, i);
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
			continue;

		cpumask_set_cpu(i, sched_group_mask(sg));
	}
}

/*
 * Return the canonical balance cpu for this group, this is the first cpu
 * of this group that's also in the iteration mask.
 */
int group_balance_cpu(struct sched_group *sg)
{
	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
}

5907 5908 5909 5910 5911 5912 5913
static int
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered = sched_domains_tmpmask;
	struct sd_data *sdd = sd->private;
5914
	struct sched_domain *sibling;
5915 5916 5917 5918 5919 5920 5921 5922 5923 5924
	int i;

	cpumask_clear(covered);

	for_each_cpu(i, span) {
		struct cpumask *sg_span;

		if (cpumask_test_cpu(i, covered))
			continue;

5925
		sibling = *per_cpu_ptr(sdd->sd, i);
P
Peter Zijlstra 已提交
5926 5927

		/* See the comment near build_group_mask(). */
5928
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
P
Peter Zijlstra 已提交
5929 5930
			continue;

5931
		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5932
				GFP_KERNEL, cpu_to_node(cpu));
5933 5934 5935 5936 5937

		if (!sg)
			goto fail;

		sg_span = sched_group_cpus(sg);
5938 5939 5940
		if (sibling->child)
			cpumask_copy(sg_span, sched_domain_span(sibling->child));
		else
5941 5942 5943 5944
			cpumask_set_cpu(i, sg_span);

		cpumask_or(covered, covered, sg_span);

5945 5946
		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
		if (atomic_inc_return(&sg->sgc->ref) == 1)
P
Peter Zijlstra 已提交
5947 5948
			build_group_mask(sd, sg);

5949
		/*
5950
		 * Initialize sgc->capacity such that even if we mess up the
5951 5952 5953
		 * domains and no possible iteration will get us here, we won't
		 * die on a /0 trap.
		 */
5954
		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
5955

P
Peter Zijlstra 已提交
5956 5957 5958 5959 5960
		/*
		 * Make sure the first group of this domain contains the
		 * canonical balance cpu. Otherwise the sched_domain iteration
		 * breaks. See update_sg_lb_stats().
		 */
P
Peter Zijlstra 已提交
5961
		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
P
Peter Zijlstra 已提交
5962
		    group_balance_cpu(sg) == cpu)
5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981
			groups = sg;

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
		last->next = first;
	}
	sd->groups = groups;

	return 0;

fail:
	free_sched_groups(first, 0);

	return -ENOMEM;
}

5982
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
5983
{
5984 5985
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
5986

5987 5988
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
5989

5990
	if (sg) {
5991
		*sg = *per_cpu_ptr(sdd->sg, cpu);
5992 5993
		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
5994
	}
5995 5996

	return cpu;
5997 5998
}

5999
/*
6000 6001
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
6002
 * and ->cpu_capacity to 0.
6003 6004
 *
 * Assumes the sched_domain tree is fully constructed
6005
 */
6006 6007
static int
build_sched_groups(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
6008
{
6009 6010 6011
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
6012
	struct cpumask *covered;
6013
	int i;
6014

6015 6016 6017
	get_group(cpu, sdd, &sd->groups);
	atomic_inc(&sd->groups->ref);

6018
	if (cpu != cpumask_first(span))
6019 6020
		return 0;

6021 6022 6023
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

6024
	cpumask_clear(covered);
6025

6026 6027
	for_each_cpu(i, span) {
		struct sched_group *sg;
6028
		int group, j;
6029

6030 6031
		if (cpumask_test_cpu(i, covered))
			continue;
6032

6033
		group = get_group(i, sdd, &sg);
P
Peter Zijlstra 已提交
6034
		cpumask_setall(sched_group_mask(sg));
6035

6036 6037 6038
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
6039

6040 6041 6042
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
6043

6044 6045 6046 6047 6048 6049 6050
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
6051 6052

	return 0;
6053
}
6054

6055
/*
6056
 * Initialize sched groups cpu_capacity.
6057
 *
6058
 * cpu_capacity indicates the capacity of sched group, which is used while
6059
 * distributing the load between different sched groups in a sched domain.
6060 6061 6062 6063
 * Typically cpu_capacity for all the groups in a sched domain will be same
 * unless there are asymmetries in the topology. If there are asymmetries,
 * group having more cpu_capacity will pickup more load compared to the
 * group having less cpu_capacity.
6064
 */
6065
static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6066
{
6067
	struct sched_group *sg = sd->groups;
6068

6069
	WARN_ON(!sg);
6070 6071 6072 6073 6074

	do {
		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
		sg = sg->next;
	} while (sg != sd->groups);
6075

P
Peter Zijlstra 已提交
6076
	if (cpu != group_balance_cpu(sg))
6077
		return;
6078

6079 6080
	update_group_capacity(sd, cpu);
	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6081 6082
}

6083 6084 6085 6086 6087
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

6088
static int default_relax_domain_level = -1;
6089
int sched_domain_level_max;
6090 6091 6092

static int __init setup_relax_domain_level(char *str)
{
6093 6094
	if (kstrtoint(str, 0, &default_relax_domain_level))
		pr_warn("Unable to set relax_domain_level\n");
6095

6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
6114
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6115 6116
	} else {
		/* turn on idle balance on this domain */
6117
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6118 6119 6120
	}
}

6121 6122 6123
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

6124 6125 6126 6127 6128
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
6129 6130
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
6131 6132
	case sa_sd:
		free_percpu(d->sd); /* fall through */
6133
	case sa_sd_storage:
6134
		__sdt_free(cpu_map); /* fall through */
6135 6136 6137 6138
	case sa_none:
		break;
	}
}
6139

6140 6141 6142
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
6143 6144
	memset(d, 0, sizeof(*d));

6145 6146
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
6147 6148 6149
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
6150
	d->rd = alloc_rootdomain();
6151
	if (!d->rd)
6152
		return sa_sd;
6153 6154
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
6155

6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

6168
	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6169
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6170

6171 6172
	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6173 6174
}

6175 6176
#ifdef CONFIG_NUMA
static int sched_domains_numa_levels;
6177
enum numa_topology_type sched_numa_topology_type;
6178
static int *sched_domains_numa_distance;
6179
int sched_max_numa_distance;
6180 6181
static struct cpumask ***sched_domains_numa_masks;
static int sched_domains_curr_level;
6182
#endif
6183

6184 6185 6186
/*
 * SD_flags allowed in topology descriptions.
 *
6187
 * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6188 6189
 * SD_SHARE_PKG_RESOURCES - describes shared caches
 * SD_NUMA                - describes NUMA topologies
6190
 * SD_SHARE_POWERDOMAIN   - describes shared power domain
6191 6192 6193 6194 6195
 *
 * Odd one out:
 * SD_ASYM_PACKING        - describes SMT quirks
 */
#define TOPOLOGY_SD_FLAGS		\
6196
	(SD_SHARE_CPUCAPACITY |		\
6197 6198
	 SD_SHARE_PKG_RESOURCES |	\
	 SD_NUMA |			\
6199 6200
	 SD_ASYM_PACKING |		\
	 SD_SHARE_POWERDOMAIN)
6201 6202

static struct sched_domain *
6203
sd_init(struct sched_domain_topology_level *tl, int cpu)
6204 6205
{
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221
	int sd_weight, sd_flags = 0;

#ifdef CONFIG_NUMA
	/*
	 * Ugly hack to pass state to sd_numa_mask()...
	 */
	sched_domains_curr_level = tl->numa_level;
#endif

	sd_weight = cpumask_weight(tl->mask(cpu));

	if (tl->sd_flags)
		sd_flags = (*tl->sd_flags)();
	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
			"wrong sd_flags in topology description\n"))
		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6222 6223 6224 6225 6226

	*sd = (struct sched_domain){
		.min_interval		= sd_weight,
		.max_interval		= 2*sd_weight,
		.busy_factor		= 32,
6227
		.imbalance_pct		= 125,
6228 6229 6230 6231

		.cache_nice_tries	= 0,
		.busy_idx		= 0,
		.idle_idx		= 0,
6232 6233 6234 6235 6236 6237
		.newidle_idx		= 0,
		.wake_idx		= 0,
		.forkexec_idx		= 0,

		.flags			= 1*SD_LOAD_BALANCE
					| 1*SD_BALANCE_NEWIDLE
6238 6239
					| 1*SD_BALANCE_EXEC
					| 1*SD_BALANCE_FORK
6240
					| 0*SD_BALANCE_WAKE
6241
					| 1*SD_WAKE_AFFINE
6242
					| 0*SD_SHARE_CPUCAPACITY
6243
					| 0*SD_SHARE_PKG_RESOURCES
6244
					| 0*SD_SERIALIZE
6245
					| 0*SD_PREFER_SIBLING
6246 6247
					| 0*SD_NUMA
					| sd_flags
6248
					,
6249

6250 6251
		.last_balance		= jiffies,
		.balance_interval	= sd_weight,
6252
		.smt_gain		= 0,
6253 6254
		.max_newidle_lb_cost	= 0,
		.next_decay_max_lb_cost	= jiffies,
6255 6256 6257
#ifdef CONFIG_SCHED_DEBUG
		.name			= tl->name,
#endif
6258 6259 6260
	};

	/*
6261
	 * Convert topological properties into behaviour.
6262
	 */
6263

6264
	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6265
		sd->flags |= SD_PREFER_SIBLING;
6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295
		sd->imbalance_pct = 110;
		sd->smt_gain = 1178; /* ~15% */

	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
		sd->imbalance_pct = 117;
		sd->cache_nice_tries = 1;
		sd->busy_idx = 2;

#ifdef CONFIG_NUMA
	} else if (sd->flags & SD_NUMA) {
		sd->cache_nice_tries = 2;
		sd->busy_idx = 3;
		sd->idle_idx = 2;

		sd->flags |= SD_SERIALIZE;
		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
			sd->flags &= ~(SD_BALANCE_EXEC |
				       SD_BALANCE_FORK |
				       SD_WAKE_AFFINE);
		}

#endif
	} else {
		sd->flags |= SD_PREFER_SIBLING;
		sd->cache_nice_tries = 1;
		sd->busy_idx = 2;
		sd->idle_idx = 1;
	}

	sd->private = &tl->data;
6296 6297 6298 6299

	return sd;
}

6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325
/*
 * Topology list, bottom-up.
 */
static struct sched_domain_topology_level default_topology[] = {
#ifdef CONFIG_SCHED_SMT
	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
#endif
#ifdef CONFIG_SCHED_MC
	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
#endif
	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
	{ NULL, },
};

struct sched_domain_topology_level *sched_domain_topology = default_topology;

#define for_each_sd_topology(tl)			\
	for (tl = sched_domain_topology; tl->mask; tl++)

void set_sched_topology(struct sched_domain_topology_level *tl)
{
	sched_domain_topology = tl;
}

#ifdef CONFIG_NUMA

6326 6327 6328 6329 6330
static const struct cpumask *sd_numa_mask(int cpu)
{
	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
}

6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351
static void sched_numa_warn(const char *str)
{
	static int done = false;
	int i,j;

	if (done)
		return;

	done = true;

	printk(KERN_WARNING "ERROR: %s\n\n", str);

	for (i = 0; i < nr_node_ids; i++) {
		printk(KERN_WARNING "  ");
		for (j = 0; j < nr_node_ids; j++)
			printk(KERN_CONT "%02d ", node_distance(i,j));
		printk(KERN_CONT "\n");
	}
	printk(KERN_WARNING "\n");
}

6352
bool find_numa_distance(int distance)
6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366
{
	int i;

	if (distance == node_distance(0, 0))
		return true;

	for (i = 0; i < sched_domains_numa_levels; i++) {
		if (sched_domains_numa_distance[i] == distance)
			return true;
	}

	return false;
}

6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416
/*
 * A system can have three types of NUMA topology:
 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
 *
 * The difference between a glueless mesh topology and a backplane
 * topology lies in whether communication between not directly
 * connected nodes goes through intermediary nodes (where programs
 * could run), or through backplane controllers. This affects
 * placement of programs.
 *
 * The type of topology can be discerned with the following tests:
 * - If the maximum distance between any nodes is 1 hop, the system
 *   is directly connected.
 * - If for two nodes A and B, located N > 1 hops away from each other,
 *   there is an intermediary node C, which is < N hops away from both
 *   nodes A and B, the system is a glueless mesh.
 */
static void init_numa_topology_type(void)
{
	int a, b, c, n;

	n = sched_max_numa_distance;

	if (n <= 1)
		sched_numa_topology_type = NUMA_DIRECT;

	for_each_online_node(a) {
		for_each_online_node(b) {
			/* Find two nodes furthest removed from each other. */
			if (node_distance(a, b) < n)
				continue;

			/* Is there an intermediary node between a and b? */
			for_each_online_node(c) {
				if (node_distance(a, c) < n &&
				    node_distance(b, c) < n) {
					sched_numa_topology_type =
							NUMA_GLUELESS_MESH;
					return;
				}
			}

			sched_numa_topology_type = NUMA_BACKPLANE;
			return;
		}
	}
}

6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437
static void sched_init_numa(void)
{
	int next_distance, curr_distance = node_distance(0, 0);
	struct sched_domain_topology_level *tl;
	int level = 0;
	int i, j, k;

	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
	if (!sched_domains_numa_distance)
		return;

	/*
	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
	 * unique distances in the node_distance() table.
	 *
	 * Assumes node_distance(0,j) includes all distances in
	 * node_distance(i,j) in order to avoid cubic time.
	 */
	next_distance = curr_distance;
	for (i = 0; i < nr_node_ids; i++) {
		for (j = 0; j < nr_node_ids; j++) {
6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461
			for (k = 0; k < nr_node_ids; k++) {
				int distance = node_distance(i, k);

				if (distance > curr_distance &&
				    (distance < next_distance ||
				     next_distance == curr_distance))
					next_distance = distance;

				/*
				 * While not a strong assumption it would be nice to know
				 * about cases where if node A is connected to B, B is not
				 * equally connected to A.
				 */
				if (sched_debug() && node_distance(k, i) != distance)
					sched_numa_warn("Node-distance not symmetric");

				if (sched_debug() && i && !find_numa_distance(distance))
					sched_numa_warn("Node-0 not representative");
			}
			if (next_distance != curr_distance) {
				sched_domains_numa_distance[level++] = next_distance;
				sched_domains_numa_levels = level;
				curr_distance = next_distance;
			} else break;
6462
		}
6463 6464 6465 6466 6467 6468

		/*
		 * In case of sched_debug() we verify the above assumption.
		 */
		if (!sched_debug())
			break;
6469
	}
6470 6471 6472 6473

	if (!level)
		return;

6474 6475 6476 6477
	/*
	 * 'level' contains the number of unique distances, excluding the
	 * identity distance node_distance(i,i).
	 *
V
Viresh Kumar 已提交
6478
	 * The sched_domains_numa_distance[] array includes the actual distance
6479 6480 6481
	 * numbers.
	 */

6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492
	/*
	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
	 * the array will contain less then 'level' members. This could be
	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
	 * in other functions.
	 *
	 * We reset it to 'level' at the end of this function.
	 */
	sched_domains_numa_levels = 0;

6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507
	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
	if (!sched_domains_numa_masks)
		return;

	/*
	 * Now for each level, construct a mask per node which contains all
	 * cpus of nodes that are that many hops away from us.
	 */
	for (i = 0; i < level; i++) {
		sched_domains_numa_masks[i] =
			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
		if (!sched_domains_numa_masks[i])
			return;

		for (j = 0; j < nr_node_ids; j++) {
6508
			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6509 6510 6511 6512 6513 6514
			if (!mask)
				return;

			sched_domains_numa_masks[i][j] = mask;

			for (k = 0; k < nr_node_ids; k++) {
6515
				if (node_distance(j, k) > sched_domains_numa_distance[i])
6516 6517 6518 6519 6520 6521 6522
					continue;

				cpumask_or(mask, mask, cpumask_of_node(k));
			}
		}
	}

6523 6524 6525
	/* Compute default topology size */
	for (i = 0; sched_domain_topology[i].mask; i++);

6526
	tl = kzalloc((i + level + 1) *
6527 6528 6529 6530 6531 6532 6533
			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
	if (!tl)
		return;

	/*
	 * Copy the default topology bits..
	 */
6534 6535
	for (i = 0; sched_domain_topology[i].mask; i++)
		tl[i] = sched_domain_topology[i];
6536 6537 6538 6539 6540 6541 6542

	/*
	 * .. and append 'j' levels of NUMA goodness.
	 */
	for (j = 0; j < level; i++, j++) {
		tl[i] = (struct sched_domain_topology_level){
			.mask = sd_numa_mask,
6543
			.sd_flags = cpu_numa_flags,
6544 6545
			.flags = SDTL_OVERLAP,
			.numa_level = j,
6546
			SD_INIT_NAME(NUMA)
6547 6548 6549 6550
		};
	}

	sched_domain_topology = tl;
6551 6552

	sched_domains_numa_levels = level;
6553
	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6554 6555

	init_numa_topology_type();
6556
}
6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603

static void sched_domains_numa_masks_set(int cpu)
{
	int i, j;
	int node = cpu_to_node(cpu);

	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++) {
			if (node_distance(j, node) <= sched_domains_numa_distance[i])
				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
		}
	}
}

static void sched_domains_numa_masks_clear(int cpu)
{
	int i, j;
	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++)
			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
	}
}

/*
 * Update sched_domains_numa_masks[level][node] array when new cpus
 * are onlined.
 */
static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	int cpu = (long)hcpu;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
		sched_domains_numa_masks_set(cpu);
		break;

	case CPU_DEAD:
		sched_domains_numa_masks_clear(cpu);
		break;

	default:
		return NOTIFY_DONE;
	}

	return NOTIFY_OK;
6604 6605 6606 6607 6608
}
#else
static inline void sched_init_numa(void)
{
}
6609 6610 6611 6612 6613 6614 6615

static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	return 0;
}
6616 6617
#endif /* CONFIG_NUMA */

6618 6619 6620 6621 6622
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

6623
	for_each_sd_topology(tl) {
6624 6625 6626 6627 6628 6629 6630 6631 6632 6633
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

6634 6635
		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
		if (!sdd->sgc)
6636 6637
			return -ENOMEM;

6638 6639 6640
		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_group *sg;
6641
			struct sched_group_capacity *sgc;
6642

P
Peter Zijlstra 已提交
6643
			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

6655 6656
			sg->next = sg;

6657
			*per_cpu_ptr(sdd->sg, j) = sg;
6658

6659
			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6660
					GFP_KERNEL, cpu_to_node(j));
6661
			if (!sgc)
6662 6663
				return -ENOMEM;

6664
			*per_cpu_ptr(sdd->sgc, j) = sgc;
6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

6676
	for_each_sd_topology(tl) {
6677 6678 6679
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690
			struct sched_domain *sd;

			if (sdd->sd) {
				sd = *per_cpu_ptr(sdd->sd, j);
				if (sd && (sd->flags & SD_OVERLAP))
					free_sched_groups(sd->groups, 0);
				kfree(*per_cpu_ptr(sdd->sd, j));
			}

			if (sdd->sg)
				kfree(*per_cpu_ptr(sdd->sg, j));
6691 6692
			if (sdd->sgc)
				kfree(*per_cpu_ptr(sdd->sgc, j));
6693 6694
		}
		free_percpu(sdd->sd);
6695
		sdd->sd = NULL;
6696
		free_percpu(sdd->sg);
6697
		sdd->sg = NULL;
6698 6699
		free_percpu(sdd->sgc);
		sdd->sgc = NULL;
6700 6701 6702
	}
}

6703
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6704 6705
		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
		struct sched_domain *child, int cpu)
6706
{
6707
	struct sched_domain *sd = sd_init(tl, cpu);
6708
	if (!sd)
6709
		return child;
6710 6711

	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6712 6713 6714
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6715
		child->parent = sd;
6716
		sd->child = child;
P
Peter Zijlstra 已提交
6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730

		if (!cpumask_subset(sched_domain_span(child),
				    sched_domain_span(sd))) {
			pr_err("BUG: arch topology borken\n");
#ifdef CONFIG_SCHED_DEBUG
			pr_err("     the %s domain not a subset of the %s domain\n",
					child->name, sd->name);
#endif
			/* Fixup, ensure @sd has at least @child cpus. */
			cpumask_or(sched_domain_span(sd),
				   sched_domain_span(sd),
				   sched_domain_span(child));
		}

6731
	}
6732
	set_domain_attribute(sd, attr);
6733 6734 6735 6736

	return sd;
}

6737 6738 6739 6740
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
6741 6742
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
6743
{
6744
	enum s_alloc alloc_state;
6745
	struct sched_domain *sd;
6746
	struct s_data d;
6747
	int i, ret = -ENOMEM;
6748

6749 6750 6751
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
6752

6753
	/* Set up domains for cpus specified by the cpu_map. */
6754
	for_each_cpu(i, cpu_map) {
6755 6756
		struct sched_domain_topology_level *tl;

6757
		sd = NULL;
6758
		for_each_sd_topology(tl) {
6759
			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6760 6761
			if (tl == sched_domain_topology)
				*per_cpu_ptr(d.sd, i) = sd;
6762 6763
			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
				sd->flags |= SD_OVERLAP;
6764 6765
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
				break;
6766
		}
6767 6768 6769 6770 6771 6772
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6773 6774 6775 6776 6777 6778 6779
			if (sd->flags & SD_OVERLAP) {
				if (build_overlap_sched_groups(sd, i))
					goto error;
			} else {
				if (build_sched_groups(sd, i))
					goto error;
			}
6780
		}
6781
	}
6782

6783
	/* Calculate CPU capacity for physical packages and nodes */
6784 6785 6786
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
6787

6788 6789
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
6790
			init_sched_groups_capacity(i, sd);
6791
		}
6792
	}
6793

L
Linus Torvalds 已提交
6794
	/* Attach the domains */
6795
	rcu_read_lock();
6796
	for_each_cpu(i, cpu_map) {
6797
		sd = *per_cpu_ptr(d.sd, i);
6798
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
6799
	}
6800
	rcu_read_unlock();
6801

6802
	ret = 0;
6803
error:
6804
	__free_domain_allocs(&d, alloc_state, cpu_map);
6805
	return ret;
L
Linus Torvalds 已提交
6806
}
P
Paul Jackson 已提交
6807

6808
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
6809
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
6810 6811
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
6812 6813 6814

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
6815 6816
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
6817
 */
6818
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
6819

6820 6821 6822 6823 6824
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
6825
int __weak arch_update_cpu_topology(void)
6826
{
6827
	return 0;
6828 6829
}

6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

6855
/*
I
Ingo Molnar 已提交
6856
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6857 6858
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6859
 */
6860
static int init_sched_domains(const struct cpumask *cpu_map)
6861
{
6862 6863
	int err;

6864
	arch_update_cpu_topology();
P
Paul Jackson 已提交
6865
	ndoms_cur = 1;
6866
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
6867
	if (!doms_cur)
6868 6869
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6870
	err = build_sched_domains(doms_cur[0], NULL);
6871
	register_sched_domain_sysctl();
6872 6873

	return err;
6874 6875 6876 6877 6878 6879
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6880
static void detach_destroy_domains(const struct cpumask *cpu_map)
6881 6882 6883
{
	int i;

6884
	rcu_read_lock();
6885
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
6886
		cpu_attach_domain(NULL, &def_root_domain, i);
6887
	rcu_read_unlock();
6888 6889
}

6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
6906 6907
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
6908
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
6909 6910 6911
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
6912
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
6913 6914 6915
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
6916 6917 6918
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
6919 6920 6921 6922 6923 6924
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
6925
 *
6926
 * If doms_new == NULL it will be replaced with cpu_online_mask.
6927 6928
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
6929
 *
P
Paul Jackson 已提交
6930 6931
 * Call with hotplug lock held
 */
6932
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6933
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
6934
{
6935
	int i, j, n;
6936
	int new_topology;
P
Paul Jackson 已提交
6937

6938
	mutex_lock(&sched_domains_mutex);
6939

6940 6941 6942
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

6943 6944 6945
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

6946
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
6947 6948 6949

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
6950
		for (j = 0; j < n && !new_topology; j++) {
6951
			if (cpumask_equal(doms_cur[i], doms_new[j])
6952
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
6953 6954 6955
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
6956
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
6957 6958 6959 6960
match1:
		;
	}

6961
	n = ndoms_cur;
6962
	if (doms_new == NULL) {
6963
		n = 0;
6964
		doms_new = &fallback_doms;
6965
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6966
		WARN_ON_ONCE(dattr_new);
6967 6968
	}

P
Paul Jackson 已提交
6969 6970
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
6971
		for (j = 0; j < n && !new_topology; j++) {
6972
			if (cpumask_equal(doms_new[i], doms_cur[j])
6973
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
6974 6975 6976
				goto match2;
		}
		/* no match - add a new doms_new */
6977
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
6978 6979 6980 6981 6982
match2:
		;
	}

	/* Remember the new sched domains */
6983 6984
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
6985
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
6986
	doms_cur = doms_new;
6987
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
6988
	ndoms_cur = ndoms_new;
6989 6990

	register_sched_domain_sysctl();
6991

6992
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
6993 6994
}

6995 6996
static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */

L
Linus Torvalds 已提交
6997
/*
6998 6999 7000
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
7001 7002 7003
 *
 * If we come here as part of a suspend/resume, don't touch cpusets because we
 * want to restore it back to its original state upon resume anyway.
L
Linus Torvalds 已提交
7004
 */
7005 7006
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
7007
{
7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029
	switch (action) {
	case CPU_ONLINE_FROZEN:
	case CPU_DOWN_FAILED_FROZEN:

		/*
		 * num_cpus_frozen tracks how many CPUs are involved in suspend
		 * resume sequence. As long as this is not the last online
		 * operation in the resume sequence, just build a single sched
		 * domain, ignoring cpusets.
		 */
		num_cpus_frozen--;
		if (likely(num_cpus_frozen)) {
			partition_sched_domains(1, NULL, NULL);
			break;
		}

		/*
		 * This is the last CPU online operation. So fall through and
		 * restore the original sched domains by considering the
		 * cpuset configurations.
		 */

7030
	case CPU_ONLINE:
7031
		cpuset_update_active_cpus(true);
7032
		break;
7033 7034 7035
	default:
		return NOTIFY_DONE;
	}
7036
	return NOTIFY_OK;
7037
}
7038

7039 7040
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
7041
{
7042 7043 7044
	unsigned long flags;
	long cpu = (long)hcpu;
	struct dl_bw *dl_b;
7045 7046
	bool overflow;
	int cpus;
7047

7048
	switch (action) {
7049
	case CPU_DOWN_PREPARE:
7050 7051
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);
7052

7053 7054 7055 7056
		raw_spin_lock_irqsave(&dl_b->lock, flags);
		cpus = dl_bw_cpus(cpu);
		overflow = __dl_overflow(dl_b, cpus, 0, 0);
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7057

7058
		rcu_read_unlock_sched();
7059

7060 7061
		if (overflow)
			return notifier_from_errno(-EBUSY);
7062
		cpuset_update_active_cpus(false);
7063 7064 7065 7066 7067
		break;
	case CPU_DOWN_PREPARE_FROZEN:
		num_cpus_frozen++;
		partition_sched_domains(1, NULL, NULL);
		break;
7068 7069 7070
	default:
		return NOTIFY_DONE;
	}
7071
	return NOTIFY_OK;
7072 7073
}

L
Linus Torvalds 已提交
7074 7075
void __init sched_init_smp(void)
{
7076 7077 7078
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7079
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7080

7081 7082
	sched_init_numa();

7083 7084 7085 7086 7087
	/*
	 * There's no userspace yet to cause hotplug operations; hence all the
	 * cpu masks are stable and all blatant races in the below code cannot
	 * happen.
	 */
7088
	mutex_lock(&sched_domains_mutex);
7089
	init_sched_domains(cpu_active_mask);
7090 7091 7092
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7093
	mutex_unlock(&sched_domains_mutex);
7094

7095
	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7096 7097
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7098

7099
	init_hrtick();
7100 7101

	/* Move init over to a non-isolated CPU */
7102
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7103
		BUG();
I
Ingo Molnar 已提交
7104
	sched_init_granularity();
7105
	free_cpumask_var(non_isolated_cpus);
7106

7107
	init_sched_rt_class();
7108
	init_sched_dl_class();
L
Linus Torvalds 已提交
7109 7110 7111 7112
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7113
	sched_init_granularity();
L
Linus Torvalds 已提交
7114 7115 7116
}
#endif /* CONFIG_SMP */

7117 7118
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
7119 7120 7121 7122 7123 7124 7125
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

7126
#ifdef CONFIG_CGROUP_SCHED
7127 7128 7129 7130
/*
 * Default task group.
 * Every task in system belongs to this group at bootup.
 */
7131
struct task_group root_task_group;
7132
LIST_HEAD(task_groups);
7133
#endif
P
Peter Zijlstra 已提交
7134

7135
DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
P
Peter Zijlstra 已提交
7136

L
Linus Torvalds 已提交
7137 7138
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7139
	int i, j;
7140 7141 7142 7143 7144 7145 7146 7147 7148
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
	if (alloc_size) {
7149
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7150 7151

#ifdef CONFIG_FAIR_GROUP_SCHED
7152
		root_task_group.se = (struct sched_entity **)ptr;
7153 7154
		ptr += nr_cpu_ids * sizeof(void **);

7155
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7156
		ptr += nr_cpu_ids * sizeof(void **);
7157

7158
#endif /* CONFIG_FAIR_GROUP_SCHED */
7159
#ifdef CONFIG_RT_GROUP_SCHED
7160
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7161 7162
		ptr += nr_cpu_ids * sizeof(void **);

7163
		root_task_group.rt_rq = (struct rt_rq **)ptr;
7164 7165
		ptr += nr_cpu_ids * sizeof(void **);

7166
#endif /* CONFIG_RT_GROUP_SCHED */
7167
	}
7168
#ifdef CONFIG_CPUMASK_OFFSTACK
7169 7170 7171
	for_each_possible_cpu(i) {
		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7172
	}
7173
#endif /* CONFIG_CPUMASK_OFFSTACK */
I
Ingo Molnar 已提交
7174

7175 7176 7177
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());
	init_dl_bandwidth(&def_dl_bandwidth,
7178
			global_rt_period(), global_rt_runtime());
7179

G
Gregory Haskins 已提交
7180 7181 7182 7183
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7184
#ifdef CONFIG_RT_GROUP_SCHED
7185
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7186
			global_rt_period(), global_rt_runtime());
7187
#endif /* CONFIG_RT_GROUP_SCHED */
7188

D
Dhaval Giani 已提交
7189
#ifdef CONFIG_CGROUP_SCHED
7190 7191
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
7192
	INIT_LIST_HEAD(&root_task_group.siblings);
7193
	autogroup_init(&init_task);
7194

D
Dhaval Giani 已提交
7195
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
7196

7197
	for_each_possible_cpu(i) {
7198
		struct rq *rq;
L
Linus Torvalds 已提交
7199 7200

		rq = cpu_rq(i);
7201
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
7202
		rq->nr_running = 0;
7203 7204
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
7205
		init_cfs_rq(&rq->cfs);
7206 7207
		init_rt_rq(&rq->rt);
		init_dl_rq(&rq->dl);
I
Ingo Molnar 已提交
7208
#ifdef CONFIG_FAIR_GROUP_SCHED
7209
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
7210
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
7211
		/*
7212
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
7213 7214 7215 7216
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
7217
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
7218 7219 7220
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
7221
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
7222 7223 7224
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
7225
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
7226
		 *
7227 7228
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
7229
		 */
7230
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7231
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
7232 7233 7234
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7235
#ifdef CONFIG_RT_GROUP_SCHED
7236
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
7237
#endif
L
Linus Torvalds 已提交
7238

I
Ingo Molnar 已提交
7239 7240
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
7241 7242 7243

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
7244
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7245
		rq->sd = NULL;
G
Gregory Haskins 已提交
7246
		rq->rd = NULL;
7247
		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7248
		rq->balance_callback = NULL;
L
Linus Torvalds 已提交
7249
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7250
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7251
		rq->push_cpu = 0;
7252
		rq->cpu = i;
7253
		rq->online = 0;
7254 7255
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
7256
		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7257 7258 7259

		INIT_LIST_HEAD(&rq->cfs_tasks);

7260
		rq_attach_root(rq, &def_root_domain);
7261
#ifdef CONFIG_NO_HZ_COMMON
7262
		rq->nohz_flags = 0;
7263
#endif
7264 7265 7266
#ifdef CONFIG_NO_HZ_FULL
		rq->last_sched_tick = 0;
#endif
L
Linus Torvalds 已提交
7267
#endif
P
Peter Zijlstra 已提交
7268
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7269 7270 7271
		atomic_set(&rq->nr_iowait, 0);
	}

7272
	set_load_weight(&init_task);
7273

7274 7275 7276 7277
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

L
Linus Torvalds 已提交
7278 7279 7280 7281 7282 7283
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

7284 7285 7286 7287 7288
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;

L
Linus Torvalds 已提交
7289 7290 7291 7292 7293 7294 7295
	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
7296 7297 7298

	calc_load_update = jiffies + LOAD_FREQ;

7299
#ifdef CONFIG_SMP
7300
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
R
Rusty Russell 已提交
7301 7302 7303
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7304
	idle_thread_set_boot_cpu();
7305
	set_cpu_rq_start_time();
7306 7307
#endif
	init_sched_fair_class();
7308

7309
	scheduler_running = 1;
L
Linus Torvalds 已提交
7310 7311
}

7312
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7313 7314
static inline int preempt_count_equals(int preempt_offset)
{
7315
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7316

A
Arnd Bergmann 已提交
7317
	return (nested == preempt_offset);
7318 7319
}

7320
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7321
{
P
Peter Zijlstra 已提交
7322 7323 7324 7325 7326
	/*
	 * Blocking primitives will set (and therefore destroy) current->state,
	 * since we will exit with TASK_RUNNING make sure we enter with it,
	 * otherwise we will destroy state.
	 */
7327
	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
P
Peter Zijlstra 已提交
7328 7329 7330 7331
			"do not call blocking ops when !TASK_RUNNING; "
			"state=%lx set at [<%p>] %pS\n",
			current->state,
			(void *)current->task_state_change,
7332
			(void *)current->task_state_change);
P
Peter Zijlstra 已提交
7333

7334 7335 7336 7337 7338
	___might_sleep(file, line, preempt_offset);
}
EXPORT_SYMBOL(__might_sleep);

void ___might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7339 7340 7341
{
	static unsigned long prev_jiffy;	/* ratelimiting */

7342
	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7343 7344
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
	     !is_idle_task(current)) ||
7345
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
7346 7347 7348 7349 7350
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
7351 7352 7353 7354 7355 7356 7357
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
7358

7359 7360 7361
	if (task_stack_end_corrupted(current))
		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");

I
Ingo Molnar 已提交
7362 7363 7364
	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
7365 7366 7367 7368 7369 7370 7371
#ifdef CONFIG_DEBUG_PREEMPT
	if (!preempt_count_equals(preempt_offset)) {
		pr_err("Preemption disabled at:");
		print_ip_sym(current->preempt_disable_ip);
		pr_cont("\n");
	}
#endif
I
Ingo Molnar 已提交
7372
	dump_stack();
L
Linus Torvalds 已提交
7373
}
7374
EXPORT_SYMBOL(___might_sleep);
L
Linus Torvalds 已提交
7375 7376 7377
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7378
void normalize_rt_tasks(void)
7379
{
7380
	struct task_struct *g, *p;
7381 7382 7383
	struct sched_attr attr = {
		.sched_policy = SCHED_NORMAL,
	};
L
Linus Torvalds 已提交
7384

7385
	read_lock(&tasklist_lock);
7386
	for_each_process_thread(g, p) {
7387 7388 7389
		/*
		 * Only normalize user tasks:
		 */
7390
		if (p->flags & PF_KTHREAD)
7391 7392
			continue;

I
Ingo Molnar 已提交
7393 7394
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
7395 7396 7397
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
7398
#endif
I
Ingo Molnar 已提交
7399

7400
		if (!dl_task(p) && !rt_task(p)) {
I
Ingo Molnar 已提交
7401 7402 7403 7404
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
7405
			if (task_nice(p) < 0)
I
Ingo Molnar 已提交
7406
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7407
			continue;
I
Ingo Molnar 已提交
7408
		}
L
Linus Torvalds 已提交
7409

7410
		__sched_setscheduler(p, &attr, false, false);
7411
	}
7412
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
7413 7414 7415
}

#endif /* CONFIG_MAGIC_SYSRQ */
7416

7417
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7418
/*
7419
 * These functions are only useful for the IA64 MCA handling, or kdb.
7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7433 7434
 *
 * Return: The current task for @cpu.
7435
 */
7436
struct task_struct *curr_task(int cpu)
7437 7438 7439 7440
{
	return cpu_curr(cpu);
}

7441 7442 7443
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
7444 7445 7446 7447 7448 7449
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7450 7451
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7452 7453 7454 7455 7456 7457 7458
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7459
void set_curr_task(int cpu, struct task_struct *p)
7460 7461 7462 7463 7464
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7465

D
Dhaval Giani 已提交
7466
#ifdef CONFIG_CGROUP_SCHED
7467 7468 7469
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

7470 7471 7472 7473
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
7474
	autogroup_free(tg);
7475 7476 7477 7478
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
7479
struct task_group *sched_create_group(struct task_group *parent)
7480 7481 7482 7483 7484 7485 7486
{
	struct task_group *tg;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

7487
	if (!alloc_fair_sched_group(tg, parent))
7488 7489
		goto err;

7490
	if (!alloc_rt_sched_group(tg, parent))
7491 7492
		goto err;

7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503
	return tg;

err:
	free_sched_group(tg);
	return ERR_PTR(-ENOMEM);
}

void sched_online_group(struct task_group *tg, struct task_group *parent)
{
	unsigned long flags;

7504
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7505
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
7506 7507 7508 7509 7510

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
7511
	list_add_rcu(&tg->siblings, &parent->children);
7512
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7513 7514
}

7515
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
7516
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7517 7518
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
7519
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
7520 7521
}

7522
/* Destroy runqueue etc associated with a task group */
7523
void sched_destroy_group(struct task_group *tg)
7524 7525 7526 7527 7528 7529
{
	/* wait for possible concurrent references to cfs_rqs complete */
	call_rcu(&tg->rcu, free_sched_group_rcu);
}

void sched_offline_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7530
{
7531
	unsigned long flags;
7532
	int i;
S
Srivatsa Vaddagiri 已提交
7533

7534 7535
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
7536
		unregister_fair_sched_group(tg, i);
7537 7538

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7539
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
7540
	list_del_rcu(&tg->siblings);
7541
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7542 7543
}

7544
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7545 7546 7547
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7548 7549
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7550
{
P
Peter Zijlstra 已提交
7551
	struct task_group *tg;
7552
	int queued, running;
S
Srivatsa Vaddagiri 已提交
7553 7554 7555 7556 7557
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

7558
	running = task_current(rq, tsk);
7559
	queued = task_on_rq_queued(tsk);
S
Srivatsa Vaddagiri 已提交
7560

7561
	if (queued)
S
Srivatsa Vaddagiri 已提交
7562
		dequeue_task(rq, tsk, 0);
7563
	if (unlikely(running))
7564
		put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7565

7566 7567 7568 7569 7570 7571
	/*
	 * All callers are synchronized by task_rq_lock(); we do not use RCU
	 * which is pointless here. Thus, we pass "true" to task_css_check()
	 * to prevent lockdep warnings.
	 */
	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
P
Peter Zijlstra 已提交
7572 7573 7574 7575
			  struct task_group, css);
	tg = autogroup_task_group(tsk, tg);
	tsk->sched_task_group = tg;

P
Peter Zijlstra 已提交
7576
#ifdef CONFIG_FAIR_GROUP_SCHED
7577
	if (tsk->sched_class->task_move_group)
7578
		tsk->sched_class->task_move_group(tsk, queued);
7579
	else
P
Peter Zijlstra 已提交
7580
#endif
7581
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
7582

7583 7584
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
7585
	if (queued)
7586
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
7587

7588
	task_rq_unlock(rq, tsk, &flags);
S
Srivatsa Vaddagiri 已提交
7589
}
D
Dhaval Giani 已提交
7590
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
7591

7592 7593 7594 7595 7596
#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
P
Peter Zijlstra 已提交
7597

P
Peter Zijlstra 已提交
7598 7599
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
7600
{
P
Peter Zijlstra 已提交
7601
	struct task_struct *g, *p;
7602

7603 7604 7605 7606 7607 7608
	/*
	 * Autogroups do not have RT tasks; see autogroup_create().
	 */
	if (task_group_is_autogroup(tg))
		return 0;

7609
	for_each_process_thread(g, p) {
7610
		if (rt_task(p) && task_group(p) == tg)
P
Peter Zijlstra 已提交
7611
			return 1;
7612
	}
7613

P
Peter Zijlstra 已提交
7614 7615
	return 0;
}
7616

P
Peter Zijlstra 已提交
7617 7618 7619 7620 7621
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
7622

7623
static int tg_rt_schedulable(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
7624 7625 7626 7627 7628
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
7629

P
Peter Zijlstra 已提交
7630 7631
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
7632

P
Peter Zijlstra 已提交
7633 7634 7635
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
7636 7637
	}

7638 7639 7640 7641 7642
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
7643

7644 7645 7646
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
7647 7648
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
7649

P
Peter Zijlstra 已提交
7650
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7651

7652 7653 7654 7655 7656
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
7657

7658 7659 7660
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
7661 7662 7663
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7664

P
Peter Zijlstra 已提交
7665 7666 7667 7668
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
7669

P
Peter Zijlstra 已提交
7670
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7671
	}
P
Peter Zijlstra 已提交
7672

P
Peter Zijlstra 已提交
7673 7674 7675 7676
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
7677 7678
}

P
Peter Zijlstra 已提交
7679
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7680
{
7681 7682
	int ret;

P
Peter Zijlstra 已提交
7683 7684 7685 7686 7687 7688
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

7689 7690 7691 7692 7693
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7694 7695
}

7696
static int tg_set_rt_bandwidth(struct task_group *tg,
7697
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
7698
{
P
Peter Zijlstra 已提交
7699
	int i, err = 0;
P
Peter Zijlstra 已提交
7700

7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711
	/*
	 * Disallowing the root group RT runtime is BAD, it would disallow the
	 * kernel creating (and or operating) RT threads.
	 */
	if (tg == &root_task_group && rt_runtime == 0)
		return -EINVAL;

	/* No period doesn't make any sense. */
	if (rt_period == 0)
		return -EINVAL;

P
Peter Zijlstra 已提交
7712
	mutex_lock(&rt_constraints_mutex);
7713
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
7714 7715
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
7716
		goto unlock;
P
Peter Zijlstra 已提交
7717

7718
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7719 7720
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
7721 7722 7723 7724

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

7725
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7726
		rt_rq->rt_runtime = rt_runtime;
7727
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7728
	}
7729
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
7730
unlock:
7731
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
7732 7733 7734
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
7735 7736
}

7737
static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7738 7739 7740 7741 7742 7743 7744 7745
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

7746
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7747 7748
}

7749
static long sched_group_rt_runtime(struct task_group *tg)
P
Peter Zijlstra 已提交
7750 7751 7752
{
	u64 rt_runtime_us;

7753
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7754 7755
		return -1;

7756
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7757 7758 7759
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
7760

7761
static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
7762 7763 7764
{
	u64 rt_runtime, rt_period;

7765
	rt_period = rt_period_us * NSEC_PER_USEC;
7766 7767
	rt_runtime = tg->rt_bandwidth.rt_runtime;

7768
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7769 7770
}

7771
static long sched_group_rt_period(struct task_group *tg)
7772 7773 7774 7775 7776 7777 7778
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}
7779
#endif /* CONFIG_RT_GROUP_SCHED */
7780

7781
#ifdef CONFIG_RT_GROUP_SCHED
7782 7783 7784 7785 7786
static int sched_rt_global_constraints(void)
{
	int ret = 0;

	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
7787
	read_lock(&tasklist_lock);
7788
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
7789
	read_unlock(&tasklist_lock);
7790 7791 7792 7793
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
7794

7795
static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7796 7797 7798 7799 7800 7801 7802 7803
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

7804
#else /* !CONFIG_RT_GROUP_SCHED */
7805 7806
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
7807
	unsigned long flags;
7808
	int i, ret = 0;
7809

7810
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7811 7812 7813
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

7814
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7815
		rt_rq->rt_runtime = global_rt_runtime();
7816
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7817
	}
7818
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7819

7820
	return ret;
7821
}
7822
#endif /* CONFIG_RT_GROUP_SCHED */
7823

7824
static int sched_dl_global_validate(void)
7825
{
7826 7827
	u64 runtime = global_rt_runtime();
	u64 period = global_rt_period();
7828
	u64 new_bw = to_ratio(period, runtime);
7829
	struct dl_bw *dl_b;
7830
	int cpu, ret = 0;
7831
	unsigned long flags;
7832 7833 7834 7835 7836 7837 7838 7839 7840 7841

	/*
	 * Here we want to check the bandwidth not being set to some
	 * value smaller than the currently allocated bandwidth in
	 * any of the root_domains.
	 *
	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
	 * cycling on root_domains... Discussion on different/better
	 * solutions is welcome!
	 */
7842
	for_each_possible_cpu(cpu) {
7843 7844
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);
7845

7846
		raw_spin_lock_irqsave(&dl_b->lock, flags);
7847 7848
		if (new_bw < dl_b->total_bw)
			ret = -EBUSY;
7849
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7850

7851 7852
		rcu_read_unlock_sched();

7853 7854
		if (ret)
			break;
7855 7856
	}

7857
	return ret;
7858 7859
}

7860
static void sched_dl_do_global(void)
7861
{
7862
	u64 new_bw = -1;
7863
	struct dl_bw *dl_b;
7864
	int cpu;
7865
	unsigned long flags;
7866

7867 7868 7869 7870 7871 7872 7873 7874 7875 7876
	def_dl_bandwidth.dl_period = global_rt_period();
	def_dl_bandwidth.dl_runtime = global_rt_runtime();

	if (global_rt_runtime() != RUNTIME_INF)
		new_bw = to_ratio(global_rt_period(), global_rt_runtime());

	/*
	 * FIXME: As above...
	 */
	for_each_possible_cpu(cpu) {
7877 7878
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);
7879

7880
		raw_spin_lock_irqsave(&dl_b->lock, flags);
7881
		dl_b->bw = new_bw;
7882
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7883 7884

		rcu_read_unlock_sched();
7885
	}
7886 7887 7888 7889 7890 7891 7892
}

static int sched_rt_global_validate(void)
{
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7893 7894
	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7895 7896 7897 7898 7899 7900 7901 7902 7903
		return -EINVAL;

	return 0;
}

static void sched_rt_do_global(void)
{
	def_rt_bandwidth.rt_runtime = global_rt_runtime();
	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7904 7905
}

7906
int sched_rt_handler(struct ctl_table *table, int write,
7907
		void __user *buffer, size_t *lenp,
7908 7909 7910 7911
		loff_t *ppos)
{
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);
7912
	int ret;
7913 7914 7915 7916 7917

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

7918
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7919 7920

	if (!ret && write) {
7921 7922 7923 7924
		ret = sched_rt_global_validate();
		if (ret)
			goto undo;

7925
		ret = sched_dl_global_validate();
7926 7927 7928
		if (ret)
			goto undo;

7929
		ret = sched_rt_global_constraints();
7930 7931 7932 7933 7934 7935 7936 7937 7938 7939
		if (ret)
			goto undo;

		sched_rt_do_global();
		sched_dl_do_global();
	}
	if (0) {
undo:
		sysctl_sched_rt_period = old_period;
		sysctl_sched_rt_runtime = old_runtime;
7940 7941 7942 7943 7944
	}
	mutex_unlock(&mutex);

	return ret;
}
7945

7946
int sched_rr_handler(struct ctl_table *table, int write,
7947 7948 7949 7950 7951 7952 7953 7954
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7955 7956
	/* make sure that internally we keep jiffies */
	/* also, writing zero resets timeslice to default */
7957
	if (!ret && write) {
7958 7959
		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7960 7961 7962 7963 7964
	}
	mutex_unlock(&mutex);
	return ret;
}

7965
#ifdef CONFIG_CGROUP_SCHED
7966

7967
static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7968
{
7969
	return css ? container_of(css, struct task_group, css) : NULL;
7970 7971
}

7972 7973
static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7974
{
7975 7976
	struct task_group *parent = css_tg(parent_css);
	struct task_group *tg;
7977

7978
	if (!parent) {
7979
		/* This is early initialization for the top cgroup */
7980
		return &root_task_group.css;
7981 7982
	}

7983
	tg = sched_create_group(parent);
7984 7985 7986 7987 7988 7989
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

7990
static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7991
{
7992
	struct task_group *tg = css_tg(css);
T
Tejun Heo 已提交
7993
	struct task_group *parent = css_tg(css->parent);
7994

T
Tejun Heo 已提交
7995 7996
	if (parent)
		sched_online_group(tg, parent);
7997 7998 7999
	return 0;
}

8000
static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8001
{
8002
	struct task_group *tg = css_tg(css);
8003 8004 8005 8006

	sched_destroy_group(tg);
}

8007
static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
8008
{
8009
	struct task_group *tg = css_tg(css);
8010 8011 8012 8013

	sched_offline_group(tg);
}

8014 8015 8016 8017 8018
static void cpu_cgroup_fork(struct task_struct *task)
{
	sched_move_task(task);
}

8019
static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
8020
				 struct cgroup_taskset *tset)
8021
{
8022 8023
	struct task_struct *task;

8024
	cgroup_taskset_for_each(task, tset) {
8025
#ifdef CONFIG_RT_GROUP_SCHED
8026
		if (!sched_rt_can_attach(css_tg(css), task))
8027
			return -EINVAL;
8028
#else
8029 8030 8031
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
8032
#endif
8033
	}
8034 8035
	return 0;
}
8036

8037
static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
8038
			      struct cgroup_taskset *tset)
8039
{
8040 8041
	struct task_struct *task;

8042
	cgroup_taskset_for_each(task, tset)
8043
		sched_move_task(task);
8044 8045
}

8046 8047 8048
static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
			    struct cgroup_subsys_state *old_css,
			    struct task_struct *task)
8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	sched_move_task(task);
}

8061
#ifdef CONFIG_FAIR_GROUP_SCHED
8062 8063
static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
				struct cftype *cftype, u64 shareval)
8064
{
8065
	return sched_group_set_shares(css_tg(css), scale_load(shareval));
8066 8067
}

8068 8069
static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
			       struct cftype *cft)
8070
{
8071
	struct task_group *tg = css_tg(css);
8072

8073
	return (u64) scale_load_down(tg->shares);
8074
}
8075 8076

#ifdef CONFIG_CFS_BANDWIDTH
8077 8078
static DEFINE_MUTEX(cfs_constraints_mutex);

8079 8080 8081
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

8082 8083
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

8084 8085
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
8086
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8087
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

8108 8109 8110 8111 8112
	/*
	 * Prevent race between setting of cfs_rq->runtime_enabled and
	 * unthrottle_offline_cfs_rqs().
	 */
	get_online_cpus();
8113 8114 8115 8116 8117
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

8118
	runtime_enabled = quota != RUNTIME_INF;
8119
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8120 8121 8122 8123 8124 8125
	/*
	 * If we need to toggle cfs_bandwidth_used, off->on must occur
	 * before making related changes, and on->off must occur afterwards
	 */
	if (runtime_enabled && !runtime_was_enabled)
		cfs_bandwidth_usage_inc();
8126 8127 8128
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
8129

P
Paul Turner 已提交
8130
	__refill_cfs_bandwidth_runtime(cfs_b);
8131
	/* restart the period timer (if active) to handle new period expiry */
P
Peter Zijlstra 已提交
8132 8133
	if (runtime_enabled)
		start_cfs_bandwidth(cfs_b);
8134 8135
	raw_spin_unlock_irq(&cfs_b->lock);

8136
	for_each_online_cpu(i) {
8137
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8138
		struct rq *rq = cfs_rq->rq;
8139 8140

		raw_spin_lock_irq(&rq->lock);
8141
		cfs_rq->runtime_enabled = runtime_enabled;
8142
		cfs_rq->runtime_remaining = 0;
8143

8144
		if (cfs_rq->throttled)
8145
			unthrottle_cfs_rq(cfs_rq);
8146 8147
		raw_spin_unlock_irq(&rq->lock);
	}
8148 8149
	if (runtime_was_enabled && !runtime_enabled)
		cfs_bandwidth_usage_dec();
8150 8151
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
8152
	put_online_cpus();
8153

8154
	return ret;
8155 8156 8157 8158 8159 8160
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

8161
	period = ktime_to_ns(tg->cfs_bandwidth.period);
8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

8174
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8175 8176
		return -1;

8177
	quota_us = tg->cfs_bandwidth.quota;
8178 8179 8180 8181 8182 8183 8184 8185 8186 8187
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
8188
	quota = tg->cfs_bandwidth.quota;
8189 8190 8191 8192 8193 8194 8195 8196

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

8197
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8198 8199 8200 8201 8202
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

8203 8204
static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
				  struct cftype *cft)
8205
{
8206
	return tg_get_cfs_quota(css_tg(css));
8207 8208
}

8209 8210
static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
				   struct cftype *cftype, s64 cfs_quota_us)
8211
{
8212
	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8213 8214
}

8215 8216
static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
				   struct cftype *cft)
8217
{
8218
	return tg_get_cfs_period(css_tg(css));
8219 8220
}

8221 8222
static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 cfs_period_us)
8223
{
8224
	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8225 8226
}

8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
8259
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8260 8261 8262 8263 8264
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
8265
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8266 8267

		quota = normalize_cfs_quota(tg, d);
8268
		parent_quota = parent_b->hierarchical_quota;
8269 8270 8271 8272 8273 8274 8275 8276 8277 8278

		/*
		 * ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
8279
	cfs_b->hierarchical_quota = quota;
8280 8281 8282 8283 8284 8285

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
8286
	int ret;
8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

8298 8299 8300 8301 8302
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
8303
}
8304

8305
static int cpu_stats_show(struct seq_file *sf, void *v)
8306
{
8307
	struct task_group *tg = css_tg(seq_css(sf));
8308
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8309

8310 8311 8312
	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8313 8314 8315

	return 0;
}
8316
#endif /* CONFIG_CFS_BANDWIDTH */
8317
#endif /* CONFIG_FAIR_GROUP_SCHED */
8318

8319
#ifdef CONFIG_RT_GROUP_SCHED
8320 8321
static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
				struct cftype *cft, s64 val)
P
Peter Zijlstra 已提交
8322
{
8323
	return sched_group_set_rt_runtime(css_tg(css), val);
P
Peter Zijlstra 已提交
8324 8325
}

8326 8327
static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
P
Peter Zijlstra 已提交
8328
{
8329
	return sched_group_rt_runtime(css_tg(css));
P
Peter Zijlstra 已提交
8330
}
8331

8332 8333
static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 rt_period_us)
8334
{
8335
	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8336 8337
}

8338 8339
static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
				   struct cftype *cft)
8340
{
8341
	return sched_group_rt_period(css_tg(css));
8342
}
8343
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
8344

8345
static struct cftype cpu_files[] = {
8346
#ifdef CONFIG_FAIR_GROUP_SCHED
8347 8348
	{
		.name = "shares",
8349 8350
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8351
	},
8352
#endif
8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
8364 8365
	{
		.name = "stat",
8366
		.seq_show = cpu_stats_show,
8367
	},
8368
#endif
8369
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8370
	{
P
Peter Zijlstra 已提交
8371
		.name = "rt_runtime_us",
8372 8373
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8374
	},
8375 8376
	{
		.name = "rt_period_us",
8377 8378
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8379
	},
8380
#endif
8381
	{ }	/* terminate */
8382 8383
};

8384
struct cgroup_subsys cpu_cgrp_subsys = {
8385 8386
	.css_alloc	= cpu_cgroup_css_alloc,
	.css_free	= cpu_cgroup_css_free,
8387 8388
	.css_online	= cpu_cgroup_css_online,
	.css_offline	= cpu_cgroup_css_offline,
8389
	.fork		= cpu_cgroup_fork,
8390 8391
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
8392
	.exit		= cpu_cgroup_exit,
8393
	.legacy_cftypes	= cpu_files,
8394 8395 8396
	.early_init	= 1,
};

8397
#endif	/* CONFIG_CGROUP_SCHED */
8398

8399 8400 8401 8402 8403
void dump_cpu_task(int cpu)
{
	pr_info("Task dump for CPU %d:\n", cpu);
	sched_show_task(cpu_curr(cpu));
}