core.c 193.6 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/highmem.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
37
#include <linux/capability.h>
L
Linus Torvalds 已提交
38 39
#include <linux/completion.h>
#include <linux/kernel_stat.h>
40
#include <linux/debug_locks.h>
41
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
57
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
58
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/unistd.h>
J
Jens Axboe 已提交
66
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
67
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
68
#include <linux/tick.h>
P
Peter Zijlstra 已提交
69 70
#include <linux/debugfs.h>
#include <linux/ctype.h>
71
#include <linux/ftrace.h>
72
#include <linux/slab.h>
73
#include <linux/init_task.h>
A
Al Viro 已提交
74
#include <linux/binfmts.h>
L
Linus Torvalds 已提交
75

76
#include <asm/switch_to.h>
77
#include <asm/tlb.h>
78
#include <asm/irq_regs.h>
79
#include <asm/mutex.h>
G
Glauber Costa 已提交
80 81 82
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
83

84
#include "sched.h"
85
#include "../workqueue_sched.h"
86
#include "../smpboot.h"
87

88
#define CREATE_TRACE_POINTS
89
#include <trace/events/sched.h>
90

91
void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
92
{
93 94
	unsigned long delta;
	ktime_t soft, hard, now;
95

96 97 98 99 100 101
	for (;;) {
		if (hrtimer_active(period_timer))
			break;

		now = hrtimer_cb_get_time(period_timer);
		hrtimer_forward(period_timer, now, period);
102

103 104 105 106 107 108 109 110
		soft = hrtimer_get_softexpires(period_timer);
		hard = hrtimer_get_expires(period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(period_timer, soft, delta,
					 HRTIMER_MODE_ABS_PINNED, 0);
	}
}

111 112
DEFINE_MUTEX(sched_domains_mutex);
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
113

114
static void update_rq_clock_task(struct rq *rq, s64 delta);
115

116
void update_rq_clock(struct rq *rq)
117
{
118
	s64 delta;
119

120
	if (rq->skip_clock_update > 0)
121
		return;
122

123 124 125
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
126 127
}

I
Ingo Molnar 已提交
128 129 130
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
131 132 133 134

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
135
const_debug unsigned int sysctl_sched_features =
136
#include "features.h"
P
Peter Zijlstra 已提交
137 138 139 140 141 142 143 144
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

145
static const char * const sched_feat_names[] = {
146
#include "features.h"
P
Peter Zijlstra 已提交
147 148 149 150
};

#undef SCHED_FEAT

L
Li Zefan 已提交
151
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
152 153 154
{
	int i;

155
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
L
Li Zefan 已提交
156 157 158
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
159
	}
L
Li Zefan 已提交
160
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
161

L
Li Zefan 已提交
162
	return 0;
P
Peter Zijlstra 已提交
163 164
}

165 166
#ifdef HAVE_JUMP_LABEL

167 168
#define jump_label_key__true  STATIC_KEY_INIT_TRUE
#define jump_label_key__false STATIC_KEY_INIT_FALSE
169 170 171 172

#define SCHED_FEAT(name, enabled)	\
	jump_label_key__##enabled ,

173
struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
174 175 176 177 178 179 180
#include "features.h"
};

#undef SCHED_FEAT

static void sched_feat_disable(int i)
{
181 182
	if (static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_dec(&sched_feat_keys[i]);
183 184 185 186
}

static void sched_feat_enable(int i)
{
187 188
	if (!static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_inc(&sched_feat_keys[i]);
189 190 191 192 193 194
}
#else
static void sched_feat_disable(int i) { };
static void sched_feat_enable(int i) { };
#endif /* HAVE_JUMP_LABEL */

P
Peter Zijlstra 已提交
195 196 197 198 199
static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
200
	char *cmp;
P
Peter Zijlstra 已提交
201 202 203 204 205 206 207 208 209 210
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
211
	cmp = strstrip(buf);
P
Peter Zijlstra 已提交
212

H
Hillf Danton 已提交
213
	if (strncmp(cmp, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
214 215 216 217
		neg = 1;
		cmp += 3;
	}

218
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
219
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
220
			if (neg) {
P
Peter Zijlstra 已提交
221
				sysctl_sched_features &= ~(1UL << i);
222 223
				sched_feat_disable(i);
			} else {
P
Peter Zijlstra 已提交
224
				sysctl_sched_features |= (1UL << i);
225 226
				sched_feat_enable(i);
			}
P
Peter Zijlstra 已提交
227 228 229 230
			break;
		}
	}

231
	if (i == __SCHED_FEAT_NR)
P
Peter Zijlstra 已提交
232 233
		return -EINVAL;

234
	*ppos += cnt;
P
Peter Zijlstra 已提交
235 236 237 238

	return cnt;
}

L
Li Zefan 已提交
239 240 241 242 243
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

244
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
245 246 247 248 249
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
250 251 252 253 254 255 256 257 258 259
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);
260
#endif /* CONFIG_SCHED_DEBUG */
I
Ingo Molnar 已提交
261

262 263 264 265 266 267
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

268 269 270 271 272 273 274 275
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
276
/*
P
Peter Zijlstra 已提交
277
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
278 279
 * default: 1s
 */
P
Peter Zijlstra 已提交
280
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
281

282
__read_mostly int scheduler_running;
283

P
Peter Zijlstra 已提交
284 285 286 287 288
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
289 290


L
Linus Torvalds 已提交
291

292
/*
293
 * __task_rq_lock - lock the rq @p resides on.
294
 */
295
static inline struct rq *__task_rq_lock(struct task_struct *p)
296 297
	__acquires(rq->lock)
{
298 299
	struct rq *rq;

300 301
	lockdep_assert_held(&p->pi_lock);

302
	for (;;) {
303
		rq = task_rq(p);
304
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
305
		if (likely(rq == task_rq(p)))
306
			return rq;
307
		raw_spin_unlock(&rq->lock);
308 309 310
	}
}

L
Linus Torvalds 已提交
311
/*
312
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
L
Linus Torvalds 已提交
313
 */
314
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
315
	__acquires(p->pi_lock)
L
Linus Torvalds 已提交
316 317
	__acquires(rq->lock)
{
318
	struct rq *rq;
L
Linus Torvalds 已提交
319

320
	for (;;) {
321
		raw_spin_lock_irqsave(&p->pi_lock, *flags);
322
		rq = task_rq(p);
323
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
324
		if (likely(rq == task_rq(p)))
325
			return rq;
326 327
		raw_spin_unlock(&rq->lock);
		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
328 329 330
	}
}

A
Alexey Dobriyan 已提交
331
static void __task_rq_unlock(struct rq *rq)
332 333
	__releases(rq->lock)
{
334
	raw_spin_unlock(&rq->lock);
335 336
}

337 338
static inline void
task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
339
	__releases(rq->lock)
340
	__releases(p->pi_lock)
L
Linus Torvalds 已提交
341
{
342 343
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
344 345 346
}

/*
347
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
348
 */
A
Alexey Dobriyan 已提交
349
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
350 351
	__acquires(rq->lock)
{
352
	struct rq *rq;
L
Linus Torvalds 已提交
353 354 355

	local_irq_disable();
	rq = this_rq();
356
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
357 358 359 360

	return rq;
}

P
Peter Zijlstra 已提交
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

389
	raw_spin_lock(&rq->lock);
390
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
391
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
392
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
393 394 395 396

	return HRTIMER_NORESTART;
}

397
#ifdef CONFIG_SMP
398 399 400 401
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
402
{
403
	struct rq *rq = arg;
404

405
	raw_spin_lock(&rq->lock);
406 407
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
408
	raw_spin_unlock(&rq->lock);
409 410
}

411 412 413 414 415
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
416
void hrtick_start(struct rq *rq, u64 delay)
417
{
418 419
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
420

421
	hrtimer_set_expires(timer, time);
422 423 424 425

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
426
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
427 428
		rq->hrtick_csd_pending = 1;
	}
429 430 431 432 433 434 435 436 437 438 439 440 441 442
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
443
		hrtick_clear(cpu_rq(cpu));
444 445 446 447 448 449
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

450
static __init void init_hrtick(void)
451 452 453
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
454 455 456 457 458 459
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
460
void hrtick_start(struct rq *rq, u64 delay)
461
{
462
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
463
			HRTIMER_MODE_REL_PINNED, 0);
464
}
465

A
Andrew Morton 已提交
466
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
467 468
{
}
469
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
470

471
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
472
{
473 474
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
475

476 477 478 479
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
480

481 482
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
483
}
A
Andrew Morton 已提交
484
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
485 486 487 488 489 490 491 492
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

493 494 495
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
496
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
497

I
Ingo Molnar 已提交
498 499 500 501 502 503 504 505 506 507 508 509 510
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

511
void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
512 513 514
{
	int cpu;

515
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
516

517
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
518 519
		return;

520
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
521 522 523 524 525 526 527 528 529 530 531

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

532
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
533 534 535 536
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

537
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
538 539
		return;
	resched_task(cpu_curr(cpu));
540
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
541
}
542 543

#ifdef CONFIG_NO_HZ
544 545 546 547 548 549 550 551 552 553 554 555 556 557
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
int get_nohz_timer_target(void)
{
	int cpu = smp_processor_id();
	int i;
	struct sched_domain *sd;

558
	rcu_read_lock();
559
	for_each_domain(cpu, sd) {
560 561 562 563 564 565
		for_each_cpu(i, sched_domain_span(sd)) {
			if (!idle_cpu(i)) {
				cpu = i;
				goto unlock;
			}
		}
566
	}
567 568
unlock:
	rcu_read_unlock();
569 570
	return cpu;
}
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;
597 598

	/*
599 600 601
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
602
	 */
603
	set_tsk_need_resched(rq->idle);
604

605 606 607 608
	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
609 610
}

611
static inline bool got_nohz_idle_kick(void)
612
{
613 614
	int cpu = smp_processor_id();
	return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
615 616
}

617
#else /* CONFIG_NO_HZ */
618

619
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
620
{
621
	return false;
P
Peter Zijlstra 已提交
622 623
}

624
#endif /* CONFIG_NO_HZ */
625

626
void sched_avg_update(struct rq *rq)
627
{
628 629 630
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
631 632 633 634 635 636
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
637 638 639
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
640 641
}

642
#else /* !CONFIG_SMP */
643
void resched_task(struct task_struct *p)
644
{
645
	assert_raw_spin_locked(&task_rq(p)->lock);
646
	set_tsk_need_resched(p);
647
}
648
#endif /* CONFIG_SMP */
649

650 651
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
652
/*
653 654 655 656
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
657
 */
658
int walk_tg_tree_from(struct task_group *from,
659
			     tg_visitor down, tg_visitor up, void *data)
660 661
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
662
	int ret;
663

664 665
	parent = from;

666
down:
P
Peter Zijlstra 已提交
667 668
	ret = (*down)(parent, data);
	if (ret)
669
		goto out;
670 671 672 673 674 675 676
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
677
	ret = (*up)(parent, data);
678 679
	if (ret || parent == from)
		goto out;
680 681 682 683 684

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
685
out:
P
Peter Zijlstra 已提交
686
	return ret;
687 688
}

689
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
690
{
691
	return 0;
P
Peter Zijlstra 已提交
692
}
693 694
#endif

695 696
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
697 698 699
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
700 701 702 703
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
704
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
705
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
706 707
		return;
	}
708

709
	load->weight = scale_load(prio_to_weight[prio]);
N
Nikhil Rao 已提交
710
	load->inv_weight = prio_to_wmult[prio];
711 712
}

713
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
714
{
715
	update_rq_clock(rq);
I
Ingo Molnar 已提交
716
	sched_info_queued(p);
717
	p->sched_class->enqueue_task(rq, p, flags);
718 719
}

720
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
721
{
722
	update_rq_clock(rq);
723
	sched_info_dequeued(p);
724
	p->sched_class->dequeue_task(rq, p, flags);
725 726
}

727
void activate_task(struct rq *rq, struct task_struct *p, int flags)
728 729 730 731
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

732
	enqueue_task(rq, p, flags);
733 734
}

735
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
736 737 738 739
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

740
	dequeue_task(rq, p, flags);
741 742
}

743
static void update_rq_clock_task(struct rq *rq, s64 delta)
744
{
745 746 747 748 749 750 751 752
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
753
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
775 776
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
777
	if (static_key_false((&paravirt_steal_rq_enabled))) {
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
		u64 st;

		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		st = steal_ticks(steal);
		steal = st * TICK_NSEC;

		rq->prev_steal_time_rq += steal;

		delta -= steal;
	}
#endif

795 796
	rq->clock_task += delta;

797 798 799 800
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
801 802
}

803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

833
/*
I
Ingo Molnar 已提交
834
 * __normal_prio - return the priority that is based on the static prio
835 836 837
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
838
	return p->static_prio;
839 840
}

841 842 843 844 845 846 847
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
848
static inline int normal_prio(struct task_struct *p)
849 850 851
{
	int prio;

852
	if (task_has_rt_policy(p))
853 854 855 856 857 858 859 860 861 862 863 864 865
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
866
static int effective_prio(struct task_struct *p)
867 868 869 870 871 872 873 874 875 876 877 878
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
879 880 881 882
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
883
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
884 885 886 887
{
	return cpu_curr(task_cpu(p)) == p;
}

888 889
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
890
				       int oldprio)
891 892 893
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
894 895 896 897
			prev_class->switched_from(rq, p);
		p->sched_class->switched_to(rq, p);
	} else if (oldprio != p->prio)
		p->sched_class->prio_changed(rq, p, oldprio);
898 899
}

900
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
				resched_task(rq->curr);
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
P
Peter Zijlstra 已提交
921
	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
922 923 924
		rq->skip_clock_update = 1;
}

L
Linus Torvalds 已提交
925
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
926
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
927
{
928 929 930 931 932
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
933 934
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
935 936

#ifdef CONFIG_LOCKDEP
937 938 939 940 941
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
P
Peter Zijlstra 已提交
942
	 * see task_group().
943 944 945 946
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
947 948 949
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
950 951
#endif

952
	trace_sched_migrate_task(p, new_cpu);
953

954 955
	if (task_cpu(p) != new_cpu) {
		p->se.nr_migrations++;
956
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
957
	}
I
Ingo Molnar 已提交
958 959

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
960 961
}

962
struct migration_arg {
963
	struct task_struct *task;
L
Linus Torvalds 已提交
964
	int dest_cpu;
965
};
L
Linus Torvalds 已提交
966

967 968
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
969 970 971
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
972 973 974 975 976 977 978
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
979 980 981 982 983 984
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
985
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
986 987
{
	unsigned long flags;
I
Ingo Molnar 已提交
988
	int running, on_rq;
R
Roland McGrath 已提交
989
	unsigned long ncsw;
990
	struct rq *rq;
L
Linus Torvalds 已提交
991

992 993 994 995 996 997 998 999
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1000

1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1012 1013 1014
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1015
			cpu_relax();
R
Roland McGrath 已提交
1016
		}
1017

1018 1019 1020 1021 1022 1023
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1024
		trace_sched_wait_task(p);
1025
		running = task_running(rq, p);
P
Peter Zijlstra 已提交
1026
		on_rq = p->on_rq;
R
Roland McGrath 已提交
1027
		ncsw = 0;
1028
		if (!match_state || p->state == match_state)
1029
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1030
		task_rq_unlock(rq, p, &flags);
1031

R
Roland McGrath 已提交
1032 1033 1034 1035 1036 1037
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1048

1049 1050 1051 1052 1053
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1054
		 * So if it was still runnable (but just not actively
1055 1056 1057 1058
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
1059 1060 1061 1062
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1063 1064
			continue;
		}
1065

1066 1067 1068 1069 1070 1071 1072
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1073 1074

	return ncsw;
L
Linus Torvalds 已提交
1075 1076 1077 1078 1079 1080 1081 1082 1083
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1084
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1085 1086 1087 1088 1089
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1090
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1091 1092 1093 1094 1095 1096 1097 1098 1099
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1100
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
1101
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1102

1103
#ifdef CONFIG_SMP
1104
/*
1105
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1106
 */
1107 1108 1109
static int select_fallback_rq(int cpu, struct task_struct *p)
{
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1110 1111
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1112 1113

	/* Look for allowed, online CPU in same node. */
1114
	for_each_cpu(dest_cpu, nodemask) {
1115 1116 1117 1118
		if (!cpu_online(dest_cpu))
			continue;
		if (!cpu_active(dest_cpu))
			continue;
1119
		if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1120
			return dest_cpu;
1121
	}
1122

1123 1124
	for (;;) {
		/* Any allowed, online CPU? */
1125
		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1126 1127 1128 1129 1130 1131
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			goto out;
		}
1132

1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
		switch (state) {
		case cpuset:
			/* No more Mr. Nice Guy. */
			cpuset_cpus_allowed_fallback(p);
			state = possible;
			break;

		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk_sched("process %d (%s) no longer affine to cpu%d\n",
					task_pid_nr(p), p->comm, cpu);
		}
1162 1163 1164 1165 1166
	}

	return dest_cpu;
}

1167
/*
1168
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1169
 */
1170
static inline
1171
int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1172
{
1173
	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1185
	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
P
Peter Zijlstra 已提交
1186
		     !cpu_online(cpu)))
1187
		cpu = select_fallback_rq(task_cpu(p), p);
1188 1189

	return cpu;
1190
}
1191 1192 1193 1194 1195 1196

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1197 1198
#endif

P
Peter Zijlstra 已提交
1199
static void
1200
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1201
{
P
Peter Zijlstra 已提交
1202
#ifdef CONFIG_SCHEDSTATS
1203 1204
	struct rq *rq = this_rq();

P
Peter Zijlstra 已提交
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
#ifdef CONFIG_SMP
	int this_cpu = smp_processor_id();

	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	} else {
		struct sched_domain *sd;

		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1215
		rcu_read_lock();
P
Peter Zijlstra 已提交
1216 1217 1218 1219 1220 1221
		for_each_domain(this_cpu, sd) {
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
1222
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1223
	}
1224 1225 1226 1227

	if (wake_flags & WF_MIGRATED)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);

P
Peter Zijlstra 已提交
1228 1229 1230
#endif /* CONFIG_SMP */

	schedstat_inc(rq, ttwu_count);
T
Tejun Heo 已提交
1231
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1232 1233

	if (wake_flags & WF_SYNC)
T
Tejun Heo 已提交
1234
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1235 1236 1237 1238 1239 1240

#endif /* CONFIG_SCHEDSTATS */
}

static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
{
T
Tejun Heo 已提交
1241
	activate_task(rq, p, en_flags);
P
Peter Zijlstra 已提交
1242
	p->on_rq = 1;
1243 1244 1245 1246

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1247 1248
}

1249 1250 1251
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1252
static void
1253
ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
T
Tejun Heo 已提交
1254
{
1255
	trace_sched_wakeup(p, true);
T
Tejun Heo 已提交
1256 1257 1258 1259 1260 1261 1262
	check_preempt_curr(rq, p, wake_flags);

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);

1263
	if (rq->idle_stamp) {
T
Tejun Heo 已提交
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
#endif
}

1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
static void
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
{
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
#endif

	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
	ttwu_do_wakeup(rq, p, wake_flags);
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
	if (p->on_rq) {
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;
}

1309
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1310
static void sched_ttwu_pending(void)
1311 1312
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1313 1314
	struct llist_node *llist = llist_del_all(&rq->wake_list);
	struct task_struct *p;
1315 1316 1317

	raw_spin_lock(&rq->lock);

P
Peter Zijlstra 已提交
1318 1319 1320
	while (llist) {
		p = llist_entry(llist, struct task_struct, wake_entry);
		llist = llist_next(llist);
1321 1322 1323 1324 1325 1326 1327 1328
		ttwu_do_activate(rq, p, 0);
	}

	raw_spin_unlock(&rq->lock);
}

void scheduler_ipi(void)
{
1329
	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
P
Peter Zijlstra 已提交
1346
	sched_ttwu_pending();
1347 1348 1349 1350

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1351 1352
	if (unlikely(got_nohz_idle_kick() && !need_resched())) {
		this_rq()->idle_balance = 1;
1353
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1354
	}
1355
	irq_exit();
1356 1357 1358 1359
}

static void ttwu_queue_remote(struct task_struct *p, int cpu)
{
P
Peter Zijlstra 已提交
1360
	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1361 1362
		smp_send_reschedule(cpu);
}
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381

#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
	if (p->on_cpu) {
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;

}
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1382

1383
bool cpus_share_cache(int this_cpu, int that_cpu)
1384 1385 1386
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1387
#endif /* CONFIG_SMP */
1388

1389 1390 1391 1392
static void ttwu_queue(struct task_struct *p, int cpu)
{
	struct rq *rq = cpu_rq(cpu);

1393
#if defined(CONFIG_SMP)
1394
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1395
		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1396 1397 1398 1399 1400
		ttwu_queue_remote(p, cpu);
		return;
	}
#endif

1401 1402 1403
	raw_spin_lock(&rq->lock);
	ttwu_do_activate(rq, p, 0);
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
1404 1405 1406
}

/**
L
Linus Torvalds 已提交
1407
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1408
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1409
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1410
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1411 1412 1413 1414 1415 1416 1417
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
T
Tejun Heo 已提交
1418 1419
 * Returns %true if @p was woken up, %false if it was already running
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
1420
 */
1421 1422
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1423 1424
{
	unsigned long flags;
1425
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1426

1427
	smp_wmb();
1428
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
1429
	if (!(p->state & state))
L
Linus Torvalds 已提交
1430 1431
		goto out;

1432
	success = 1; /* we're going to change ->state */
L
Linus Torvalds 已提交
1433 1434
	cpu = task_cpu(p);

1435 1436
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
1437 1438

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1439
	/*
1440 1441
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
P
Peter Zijlstra 已提交
1442
	 */
1443 1444 1445
	while (p->on_cpu) {
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
		/*
1446 1447 1448 1449 1450
		 * In case the architecture enables interrupts in
		 * context_switch(), we cannot busy wait, since that
		 * would lead to deadlocks when an interrupt hits and
		 * tries to wake up @prev. So bail and do a complete
		 * remote wakeup.
1451
		 */
1452
		if (ttwu_activate_remote(p, wake_flags))
1453
			goto stat;
1454
#else
1455
		cpu_relax();
1456
#endif
1457
	}
1458
	/*
1459
	 * Pairs with the smp_wmb() in finish_lock_switch().
1460
	 */
1461
	smp_rmb();
L
Linus Torvalds 已提交
1462

1463
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
1464
	p->state = TASK_WAKING;
1465

1466
	if (p->sched_class->task_waking)
1467
		p->sched_class->task_waking(p);
1468

1469
	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1470 1471
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
1472
		set_task_cpu(p, cpu);
1473
	}
L
Linus Torvalds 已提交
1474 1475
#endif /* CONFIG_SMP */

1476 1477
	ttwu_queue(p, cpu);
stat:
1478
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
1479
out:
1480
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
1481 1482 1483 1484

	return success;
}

T
Tejun Heo 已提交
1485 1486 1487 1488
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
1489
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
1490
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1491
 * the current task.
T
Tejun Heo 已提交
1492 1493 1494 1495 1496 1497 1498 1499 1500
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	BUG_ON(rq != this_rq());
	BUG_ON(p == current);
	lockdep_assert_held(&rq->lock);

1501 1502 1503 1504 1505 1506
	if (!raw_spin_trylock(&p->pi_lock)) {
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
	}

T
Tejun Heo 已提交
1507
	if (!(p->state & TASK_NORMAL))
1508
		goto out;
T
Tejun Heo 已提交
1509

P
Peter Zijlstra 已提交
1510
	if (!p->on_rq)
P
Peter Zijlstra 已提交
1511 1512
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

1513
	ttwu_do_wakeup(rq, p, 0);
1514
	ttwu_stat(p, smp_processor_id(), 0);
1515 1516
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
1517 1518
}

1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
1530
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1531
{
1532
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
1533 1534 1535
}
EXPORT_SYMBOL(wake_up_process);

1536
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1537 1538 1539 1540 1541 1542 1543
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1544 1545 1546 1547 1548
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
P
Peter Zijlstra 已提交
1549 1550 1551
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
1552 1553
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1554
	p->se.prev_sum_exec_runtime	= 0;
1555
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
1556
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
1557
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
1558 1559

#ifdef CONFIG_SCHEDSTATS
1560
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
1561
#endif
N
Nick Piggin 已提交
1562

P
Peter Zijlstra 已提交
1563
	INIT_LIST_HEAD(&p->rt.run_list);
N
Nick Piggin 已提交
1564

1565 1566 1567
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
I
Ingo Molnar 已提交
1568 1569 1570 1571 1572
}

/*
 * fork()/clone()-time setup:
 */
1573
void sched_fork(struct task_struct *p)
I
Ingo Molnar 已提交
1574
{
1575
	unsigned long flags;
I
Ingo Molnar 已提交
1576 1577 1578
	int cpu = get_cpu();

	__sched_fork(p);
1579
	/*
1580
	 * We mark the process as running here. This guarantees that
1581 1582 1583
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
1584
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1585

1586 1587 1588 1589 1590
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

1591 1592 1593 1594
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
1595
		if (task_has_rt_policy(p)) {
1596
			p->policy = SCHED_NORMAL;
1597
			p->static_prio = NICE_TO_PRIO(0);
1598 1599 1600 1601 1602 1603
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
1604

1605 1606 1607 1608 1609 1610
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
1611

H
Hiroshi Shimamoto 已提交
1612 1613
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
1614

P
Peter Zijlstra 已提交
1615 1616 1617
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

1618 1619 1620 1621 1622 1623 1624
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
1625
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1626
	set_task_cpu(p, cpu);
1627
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1628

1629
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1630
	if (likely(sched_info_on()))
1631
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1632
#endif
P
Peter Zijlstra 已提交
1633 1634
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
1635
#endif
1636
#ifdef CONFIG_PREEMPT_COUNT
1637
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1638
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1639
#endif
1640
#ifdef CONFIG_SMP
1641
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1642
#endif
1643

N
Nick Piggin 已提交
1644
	put_cpu();
L
Linus Torvalds 已提交
1645 1646 1647 1648 1649 1650 1651 1652 1653
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1654
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
1655 1656
{
	unsigned long flags;
I
Ingo Molnar 已提交
1657
	struct rq *rq;
1658

1659
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1660 1661 1662 1663 1664 1665
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 */
1666
	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1667 1668
#endif

1669
	rq = __task_rq_lock(p);
P
Peter Zijlstra 已提交
1670
	activate_task(rq, p, 0);
P
Peter Zijlstra 已提交
1671
	p->on_rq = 1;
1672
	trace_sched_wakeup_new(p, true);
P
Peter Zijlstra 已提交
1673
	check_preempt_curr(rq, p, WF_FORK);
1674
#ifdef CONFIG_SMP
1675 1676
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
1677
#endif
1678
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
1679 1680
}

1681 1682 1683
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
1684
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
1685
 * @notifier: notifier struct to register
1686 1687 1688 1689 1690 1691 1692 1693 1694
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1695
 * @notifier: notifier struct to unregister
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

1725
#else /* !CONFIG_PREEMPT_NOTIFIERS */
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

1737
#endif /* CONFIG_PREEMPT_NOTIFIERS */
1738

1739 1740 1741
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1742
 * @prev: the current task that is being switched out
1743 1744 1745 1746 1747 1748 1749 1750 1751
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1752 1753 1754
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1755
{
1756
	trace_sched_switch(prev, next);
1757 1758
	sched_info_switch(prev, next);
	perf_event_task_sched_out(prev, next);
1759
	fire_sched_out_preempt_notifiers(prev, next);
1760 1761 1762 1763
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1764 1765
/**
 * finish_task_switch - clean up after a task-switch
1766
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1767 1768
 * @prev: the thread we just switched away from.
 *
1769 1770 1771 1772
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1773 1774
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
1775
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
1776 1777 1778
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
1779
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1780 1781 1782
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1783
	long prev_state;
L
Linus Torvalds 已提交
1784 1785 1786 1787 1788

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1789
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1790 1791
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1792
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1793 1794 1795 1796 1797
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1798
	prev_state = prev->state;
1799
	account_switch_vtime(prev);
1800
	finish_arch_switch(prev);
1801 1802 1803
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_disable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1804
	perf_event_task_sched_in(prev, current);
1805 1806 1807
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1808
	finish_lock_switch(rq, prev);
1809
	finish_arch_post_lock_switch();
S
Steven Rostedt 已提交
1810

1811
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1812 1813
	if (mm)
		mmdrop(mm);
1814
	if (unlikely(prev_state == TASK_DEAD)) {
1815 1816 1817
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1818
		 */
1819
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1820
		put_task_struct(prev);
1821
	}
L
Linus Torvalds 已提交
1822 1823
}

1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

1839
		raw_spin_lock_irqsave(&rq->lock, flags);
1840 1841
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
1842
		raw_spin_unlock_irqrestore(&rq->lock, flags);
1843 1844 1845 1846 1847 1848

		rq->post_schedule = 0;
	}
}

#else
1849

1850 1851 1852 1853 1854 1855
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
1856 1857
}

1858 1859
#endif

L
Linus Torvalds 已提交
1860 1861 1862 1863
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1864
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1865 1866
	__releases(rq->lock)
{
1867 1868
	struct rq *rq = this_rq();

1869
	finish_task_switch(rq, prev);
1870

1871 1872 1873 1874 1875
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
1876

1877 1878 1879 1880
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1881
	if (current->set_child_tid)
1882
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
1883 1884 1885 1886 1887 1888
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
1889
static inline void
1890
context_switch(struct rq *rq, struct task_struct *prev,
1891
	       struct task_struct *next)
L
Linus Torvalds 已提交
1892
{
I
Ingo Molnar 已提交
1893
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
1894

1895
	prepare_task_switch(rq, prev, next);
1896

I
Ingo Molnar 已提交
1897 1898
	mm = next->mm;
	oldmm = prev->active_mm;
1899 1900 1901 1902 1903
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
1904
	arch_start_context_switch(prev);
1905

1906
	if (!mm) {
L
Linus Torvalds 已提交
1907 1908 1909 1910 1911 1912
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

1913
	if (!prev->mm) {
L
Linus Torvalds 已提交
1914 1915 1916
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
1917 1918 1919 1920 1921 1922 1923
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1924
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1925
#endif
L
Linus Torvalds 已提交
1926 1927 1928 1929

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
1930 1931 1932 1933 1934 1935 1936
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
1954
}
L
Linus Torvalds 已提交
1955 1956

unsigned long nr_uninterruptible(void)
1957
{
L
Linus Torvalds 已提交
1958
	unsigned long i, sum = 0;
1959

1960
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1961
		sum += cpu_rq(i)->nr_uninterruptible;
1962 1963

	/*
L
Linus Torvalds 已提交
1964 1965
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
1966
	 */
L
Linus Torvalds 已提交
1967 1968
	if (unlikely((long)sum < 0))
		sum = 0;
1969

L
Linus Torvalds 已提交
1970
	return sum;
1971 1972
}

L
Linus Torvalds 已提交
1973
unsigned long long nr_context_switches(void)
1974
{
1975 1976
	int i;
	unsigned long long sum = 0;
1977

1978
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1979
		sum += cpu_rq(i)->nr_switches;
1980

L
Linus Torvalds 已提交
1981 1982
	return sum;
}
1983

L
Linus Torvalds 已提交
1984 1985 1986
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
1987

1988
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1989
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
1990

L
Linus Torvalds 已提交
1991 1992
	return sum;
}
1993

1994
unsigned long nr_iowait_cpu(int cpu)
1995
{
1996
	struct rq *this = cpu_rq(cpu);
1997 1998
	return atomic_read(&this->nr_iowait);
}
1999

2000 2001 2002 2003 2004
unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}
2005

2006

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
/*
 * Global load-average calculations
 *
 * We take a distributed and async approach to calculating the global load-avg
 * in order to minimize overhead.
 *
 * The global load average is an exponentially decaying average of nr_running +
 * nr_uninterruptible.
 *
 * Once every LOAD_FREQ:
 *
 *   nr_active = 0;
 *   for_each_possible_cpu(cpu)
 *   	nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
 *
 *   avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
 *
 * Due to a number of reasons the above turns in the mess below:
 *
 *  - for_each_possible_cpu() is prohibitively expensive on machines with
 *    serious number of cpus, therefore we need to take a distributed approach
 *    to calculating nr_active.
 *
 *        \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
 *                      = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
 *
 *    So assuming nr_active := 0 when we start out -- true per definition, we
 *    can simply take per-cpu deltas and fold those into a global accumulate
 *    to obtain the same result. See calc_load_fold_active().
 *
 *    Furthermore, in order to avoid synchronizing all per-cpu delta folding
 *    across the machine, we assume 10 ticks is sufficient time for every
 *    cpu to have completed this task.
 *
 *    This places an upper-bound on the IRQ-off latency of the machine. Then
 *    again, being late doesn't loose the delta, just wrecks the sample.
 *
 *  - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
 *    this would add another cross-cpu cacheline miss and atomic operation
 *    to the wakeup path. Instead we increment on whatever cpu the task ran
 *    when it went into uninterruptible state and decrement on whatever cpu
 *    did the wakeup. This means that only the sum of nr_uninterruptible over
 *    all cpus yields the correct result.
 *
 *  This covers the NO_HZ=n code, for extra head-aches, see the comment below.
 */

2054 2055 2056 2057
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
EXPORT_SYMBOL(avenrun); /* should be removed */

/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
}
2074

2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
static long calc_load_fold_active(struct rq *this_rq)
{
	long nr_active, delta = 0;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
	}

	return delta;
}

2090 2091 2092
/*
 * a1 = a0 * e + a * (1 - e)
 */
2093 2094 2095 2096 2097 2098 2099 2100 2101
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
{
	load *= exp;
	load += active * (FIXED_1 - exp);
	load += 1UL << (FSHIFT - 1);
	return load >> FSHIFT;
}

2102 2103
#ifdef CONFIG_NO_HZ
/*
2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
 * Handle NO_HZ for the global load-average.
 *
 * Since the above described distributed algorithm to compute the global
 * load-average relies on per-cpu sampling from the tick, it is affected by
 * NO_HZ.
 *
 * The basic idea is to fold the nr_active delta into a global idle-delta upon
 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
 * when we read the global state.
 *
 * Obviously reality has to ruin such a delightfully simple scheme:
 *
 *  - When we go NO_HZ idle during the window, we can negate our sample
 *    contribution, causing under-accounting.
 *
 *    We avoid this by keeping two idle-delta counters and flipping them
 *    when the window starts, thus separating old and new NO_HZ load.
 *
 *    The only trick is the slight shift in index flip for read vs write.
 *
 *        0s            5s            10s           15s
 *          +10           +10           +10           +10
 *        |-|-----------|-|-----------|-|-----------|-|
 *    r:0 0 1           1 0           0 1           1 0
 *    w:0 1 1           0 0           1 1           0 0
 *
 *    This ensures we'll fold the old idle contribution in this window while
 *    accumlating the new one.
 *
 *  - When we wake up from NO_HZ idle during the window, we push up our
 *    contribution, since we effectively move our sample point to a known
 *    busy state.
 *
 *    This is solved by pushing the window forward, and thus skipping the
 *    sample, for this cpu (effectively using the idle-delta for this cpu which
 *    was in effect at the time the window opened). This also solves the issue
 *    of having to deal with a cpu having been in NOHZ idle for multiple
 *    LOAD_FREQ intervals.
2142 2143 2144
 *
 * When making the ILB scale, we should try to pull this in as well.
 */
2145 2146
static atomic_long_t calc_load_idle[2];
static int calc_load_idx;
2147

2148
static inline int calc_load_write_idx(void)
2149
{
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
	int idx = calc_load_idx;

	/*
	 * See calc_global_nohz(), if we observe the new index, we also
	 * need to observe the new update time.
	 */
	smp_rmb();

	/*
	 * If the folding window started, make sure we start writing in the
	 * next idle-delta.
	 */
	if (!time_before(jiffies, calc_load_update))
		idx++;

	return idx & 1;
}

static inline int calc_load_read_idx(void)
{
	return calc_load_idx & 1;
}

void calc_load_enter_idle(void)
{
	struct rq *this_rq = this_rq();
2176 2177
	long delta;

2178 2179 2180 2181
	/*
	 * We're going into NOHZ mode, if there's any pending delta, fold it
	 * into the pending idle delta.
	 */
2182
	delta = calc_load_fold_active(this_rq);
2183 2184 2185 2186
	if (delta) {
		int idx = calc_load_write_idx();
		atomic_long_add(delta, &calc_load_idle[idx]);
	}
2187 2188
}

2189
void calc_load_exit_idle(void)
2190
{
2191 2192 2193 2194 2195 2196 2197
	struct rq *this_rq = this_rq();

	/*
	 * If we're still before the sample window, we're done.
	 */
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
2198 2199

	/*
2200 2201 2202
	 * We woke inside or after the sample window, this means we're already
	 * accounted through the nohz accounting, so skip the entire deal and
	 * sync up for the next window.
2203
	 */
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
	this_rq->calc_load_update = calc_load_update;
	if (time_before(jiffies, this_rq->calc_load_update + 10))
		this_rq->calc_load_update += LOAD_FREQ;
}

static long calc_load_fold_idle(void)
{
	int idx = calc_load_read_idx();
	long delta = 0;

	if (atomic_long_read(&calc_load_idle[idx]))
		delta = atomic_long_xchg(&calc_load_idle[idx], 0);
2216 2217 2218

	return delta;
}
2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296

/**
 * fixed_power_int - compute: x^n, in O(log n) time
 *
 * @x:         base of the power
 * @frac_bits: fractional bits of @x
 * @n:         power to raise @x to.
 *
 * By exploiting the relation between the definition of the natural power
 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
 * (where: n_i \elem {0, 1}, the binary vector representing n),
 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
 * of course trivially computable in O(log_2 n), the length of our binary
 * vector.
 */
static unsigned long
fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
{
	unsigned long result = 1UL << frac_bits;

	if (n) for (;;) {
		if (n & 1) {
			result *= x;
			result += 1UL << (frac_bits - 1);
			result >>= frac_bits;
		}
		n >>= 1;
		if (!n)
			break;
		x *= x;
		x += 1UL << (frac_bits - 1);
		x >>= frac_bits;
	}

	return result;
}

/*
 * a1 = a0 * e + a * (1 - e)
 *
 * a2 = a1 * e + a * (1 - e)
 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
 *    = a0 * e^2 + a * (1 - e) * (1 + e)
 *
 * a3 = a2 * e + a * (1 - e)
 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
 *
 *  ...
 *
 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
 *    = a0 * e^n + a * (1 - e^n)
 *
 * [1] application of the geometric series:
 *
 *              n         1 - x^(n+1)
 *     S_n := \Sum x^i = -------------
 *             i=0          1 - x
 */
static unsigned long
calc_load_n(unsigned long load, unsigned long exp,
	    unsigned long active, unsigned int n)
{

	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
}

/*
 * NO_HZ can leave us missing all per-cpu ticks calling
 * calc_load_account_active(), but since an idle CPU folds its delta into
 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
 * in the pending idle delta if our idle period crossed a load cycle boundary.
 *
 * Once we've updated the global active value, we need to apply the exponential
 * weights adjusted to the number of cycles missed.
 */
2297
static void calc_global_nohz(void)
2298 2299 2300
{
	long delta, active, n;

2301 2302 2303 2304 2305 2306
	if (!time_before(jiffies, calc_load_update + 10)) {
		/*
		 * Catch-up, fold however many we are behind still
		 */
		delta = jiffies - calc_load_update - 10;
		n = 1 + (delta / LOAD_FREQ);
2307

2308 2309
		active = atomic_long_read(&calc_load_tasks);
		active = active > 0 ? active * FIXED_1 : 0;
2310

2311 2312 2313
		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2314

2315 2316
		calc_load_update += n * LOAD_FREQ;
	}
2317

2318 2319 2320 2321 2322 2323 2324 2325 2326
	/*
	 * Flip the idle index...
	 *
	 * Make sure we first write the new time then flip the index, so that
	 * calc_load_write_idx() will see the new time when it reads the new
	 * index, this avoids a double flip messing things up.
	 */
	smp_wmb();
	calc_load_idx++;
2327
}
2328
#else /* !CONFIG_NO_HZ */
2329

2330 2331
static inline long calc_load_fold_idle(void) { return 0; }
static inline void calc_global_nohz(void) { }
2332

2333
#endif /* CONFIG_NO_HZ */
2334 2335

/*
2336 2337
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
2338
 */
2339
void calc_global_load(unsigned long ticks)
2340
{
2341
	long active, delta;
L
Linus Torvalds 已提交
2342

2343
	if (time_before(jiffies, calc_load_update + 10))
2344
		return;
L
Linus Torvalds 已提交
2345

2346 2347 2348 2349 2350 2351 2352
	/*
	 * Fold the 'old' idle-delta to include all NO_HZ cpus.
	 */
	delta = calc_load_fold_idle();
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);

2353 2354
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
L
Linus Torvalds 已提交
2355

2356 2357 2358
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
I
Ingo Molnar 已提交
2359

2360
	calc_load_update += LOAD_FREQ;
2361 2362

	/*
2363
	 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
2364 2365
	 */
	calc_global_nohz();
2366
}
L
Linus Torvalds 已提交
2367

2368
/*
2369 2370
 * Called from update_cpu_load() to periodically update this CPU's
 * active count.
2371 2372 2373
 */
static void calc_load_account_active(struct rq *this_rq)
{
2374
	long delta;
2375

2376 2377
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
2378

2379 2380
	delta  = calc_load_fold_active(this_rq);
	if (delta)
2381
		atomic_long_add(delta, &calc_load_tasks);
2382 2383

	this_rq->calc_load_update += LOAD_FREQ;
2384 2385
}

2386 2387 2388 2389
/*
 * End of global load-average stuff
 */

2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
/*
 * The exact cpuload at various idx values, calculated at every tick would be
 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
 *
 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
 * on nth tick when cpu may be busy, then we have:
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
 *
 * decay_load_missed() below does efficient calculation of
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
 *
 * The calculation is approximated on a 128 point scale.
 * degrade_zero_ticks is the number of ticks after which load at any
 * particular idx is approximated to be zero.
 * degrade_factor is a precomputed table, a row for each load idx.
 * Each column corresponds to degradation factor for a power of two ticks,
 * based on 128 point scale.
 * Example:
 * row 2, col 3 (=12) says that the degradation at load idx 2 after
 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
 *
 * With this power of 2 load factors, we can degrade the load n times
 * by looking at 1 bits in n and doing as many mult/shift instead of
 * n mult/shifts needed by the exact degradation.
 */
#define DEGRADE_SHIFT		7
static const unsigned char
		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const unsigned char
		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
					{0, 0, 0, 0, 0, 0, 0, 0},
					{64, 32, 8, 0, 0, 0, 0, 0},
					{96, 72, 40, 12, 1, 0, 0},
					{112, 98, 75, 43, 15, 1, 0},
					{120, 112, 98, 76, 45, 16, 2} };

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}

2457
/*
I
Ingo Molnar 已提交
2458
 * Update rq->cpu_load[] statistics. This function is usually called every
2459 2460
 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
 * every tick. We fix it up based on jiffies.
2461
 */
2462 2463
static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
			      unsigned long pending_updates)
2464
{
I
Ingo Molnar 已提交
2465
	int i, scale;
2466

I
Ingo Molnar 已提交
2467
	this_rq->nr_load_updates++;
2468

I
Ingo Molnar 已提交
2469
	/* Update our load: */
2470 2471
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
I
Ingo Molnar 已提交
2472
		unsigned long old_load, new_load;
2473

I
Ingo Molnar 已提交
2474
		/* scale is effectively 1 << i now, and >> i divides by scale */
2475

I
Ingo Molnar 已提交
2476
		old_load = this_rq->cpu_load[i];
2477
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
I
Ingo Molnar 已提交
2478
		new_load = this_load;
I
Ingo Molnar 已提交
2479 2480 2481 2482 2483 2484
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
2485 2486 2487
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
I
Ingo Molnar 已提交
2488
	}
2489 2490

	sched_avg_update(this_rq);
2491 2492
}

2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506
#ifdef CONFIG_NO_HZ
/*
 * There is no sane way to deal with nohz on smp when using jiffies because the
 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
 *
 * Therefore we cannot use the delta approach from the regular tick since that
 * would seriously skew the load calculation. However we'll make do for those
 * updates happening while idle (nohz_idle_balance) or coming out of idle
 * (tick_nohz_idle_exit).
 *
 * This means we might still be one tick off for nohz periods.
 */

2507 2508 2509 2510 2511 2512
/*
 * Called from nohz_idle_balance() to update the load ratings before doing the
 * idle balance.
 */
void update_idle_cpu_load(struct rq *this_rq)
{
2513
	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2514 2515 2516 2517
	unsigned long load = this_rq->load.weight;
	unsigned long pending_updates;

	/*
2518
	 * bail if there's load or we're actually up-to-date.
2519 2520 2521 2522 2523 2524 2525 2526 2527 2528
	 */
	if (load || curr_jiffies == this_rq->last_load_update_tick)
		return;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	this_rq->last_load_update_tick = curr_jiffies;

	__update_cpu_load(this_rq, load, pending_updates);
}

2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554
/*
 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
 */
void update_cpu_load_nohz(void)
{
	struct rq *this_rq = this_rq();
	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
	unsigned long pending_updates;

	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

	raw_spin_lock(&this_rq->lock);
	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	if (pending_updates) {
		this_rq->last_load_update_tick = curr_jiffies;
		/*
		 * We were idle, this means load 0, the current load might be
		 * !0 due to remote wakeups and the sort.
		 */
		__update_cpu_load(this_rq, 0, pending_updates);
	}
	raw_spin_unlock(&this_rq->lock);
}
#endif /* CONFIG_NO_HZ */

2555 2556 2557
/*
 * Called from scheduler_tick()
 */
2558 2559
static void update_cpu_load_active(struct rq *this_rq)
{
2560
	/*
2561
	 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
2562 2563 2564
	 */
	this_rq->last_load_update_tick = jiffies;
	__update_cpu_load(this_rq, this_rq->load.weight, 1);
2565

2566
	calc_load_account_active(this_rq);
2567 2568
}

I
Ingo Molnar 已提交
2569
#ifdef CONFIG_SMP
2570

2571
/*
P
Peter Zijlstra 已提交
2572 2573
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2574
 */
P
Peter Zijlstra 已提交
2575
void sched_exec(void)
2576
{
P
Peter Zijlstra 已提交
2577
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2578
	unsigned long flags;
2579
	int dest_cpu;
2580

2581
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2582
	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2583 2584
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2585

2586
	if (likely(cpu_active(dest_cpu))) {
2587
		struct migration_arg arg = { p, dest_cpu };
2588

2589 2590
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2591 2592
		return;
	}
2593
unlock:
2594
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2595
}
I
Ingo Molnar 已提交
2596

L
Linus Torvalds 已提交
2597 2598 2599
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2600
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
2601 2602

EXPORT_PER_CPU_SYMBOL(kstat);
2603
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
2604 2605

/*
2606
 * Return any ns on the sched_clock that have not yet been accounted in
2607
 * @p in case that task is currently running.
2608 2609
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
2610
 */
2611 2612 2613 2614 2615 2616
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
2617
		ns = rq->clock_task - p->se.exec_start;
2618 2619 2620 2621 2622 2623 2624
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

2625
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
2626 2627
{
	unsigned long flags;
2628
	struct rq *rq;
2629
	u64 ns = 0;
2630

2631
	rq = task_rq_lock(p, &flags);
2632
	ns = do_task_delta_exec(p, rq);
2633
	task_rq_unlock(rq, p, &flags);
2634

2635 2636
	return ns;
}
2637

2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2651
	task_rq_unlock(rq, p, &flags);
2652 2653 2654

	return ns;
}
2655

2656 2657 2658 2659 2660 2661 2662 2663
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2664
	struct task_struct *curr = rq->curr;
2665 2666

	sched_clock_tick();
I
Ingo Molnar 已提交
2667

2668
	raw_spin_lock(&rq->lock);
2669
	update_rq_clock(rq);
2670
	update_cpu_load_active(rq);
P
Peter Zijlstra 已提交
2671
	curr->sched_class->task_tick(rq, curr, 0);
2672
	raw_spin_unlock(&rq->lock);
2673

2674
	perf_event_task_tick();
2675

2676
#ifdef CONFIG_SMP
2677
	rq->idle_balance = idle_cpu(cpu);
I
Ingo Molnar 已提交
2678
	trigger_load_balance(rq, cpu);
2679
#endif
L
Linus Torvalds 已提交
2680 2681
}

2682
notrace unsigned long get_parent_ip(unsigned long addr)
2683 2684 2685 2686 2687 2688 2689 2690
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
2691

2692 2693 2694
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

2695
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
2696
{
2697
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2698 2699 2700
	/*
	 * Underflow?
	 */
2701 2702
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
2703
#endif
L
Linus Torvalds 已提交
2704
	preempt_count() += val;
2705
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2706 2707 2708
	/*
	 * Spinlock count overflowing soon?
	 */
2709 2710
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
2711 2712 2713
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
2714 2715 2716
}
EXPORT_SYMBOL(add_preempt_count);

2717
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
2718
{
2719
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2720 2721 2722
	/*
	 * Underflow?
	 */
2723
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2724
		return;
L
Linus Torvalds 已提交
2725 2726 2727
	/*
	 * Is the spinlock portion underflowing?
	 */
2728 2729 2730
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
2731
#endif
2732

2733 2734
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
2735 2736 2737 2738 2739 2740 2741
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
2742
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
2743
 */
I
Ingo Molnar 已提交
2744
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
2745
{
2746 2747 2748
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
2749 2750
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
2751

I
Ingo Molnar 已提交
2752
	debug_show_held_locks(prev);
2753
	print_modules();
I
Ingo Molnar 已提交
2754 2755
	if (irqs_disabled())
		print_irqtrace_events(prev);
2756
	dump_stack();
2757
	add_taint(TAINT_WARN);
I
Ingo Molnar 已提交
2758
}
L
Linus Torvalds 已提交
2759

I
Ingo Molnar 已提交
2760 2761 2762 2763 2764
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
2765
	/*
I
Ingo Molnar 已提交
2766
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
2767 2768 2769
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
2770
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
2771
		__schedule_bug(prev);
2772
	rcu_sleep_check();
I
Ingo Molnar 已提交
2773

L
Linus Torvalds 已提交
2774 2775
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

2776
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
2777 2778
}

P
Peter Zijlstra 已提交
2779
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
2780
{
2781
	if (prev->on_rq || rq->skip_clock_update < 0)
2782
		update_rq_clock(rq);
P
Peter Zijlstra 已提交
2783
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
2784 2785
}

I
Ingo Molnar 已提交
2786 2787 2788 2789
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
2790
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
2791
{
2792
	const struct sched_class *class;
I
Ingo Molnar 已提交
2793
	struct task_struct *p;
L
Linus Torvalds 已提交
2794 2795

	/*
I
Ingo Molnar 已提交
2796 2797
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
2798
	 */
2799
	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2800
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
2801 2802
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
2803 2804
	}

2805
	for_each_class(class) {
2806
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
2807 2808 2809
		if (p)
			return p;
	}
2810 2811

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
2812
}
L
Linus Torvalds 已提交
2813

I
Ingo Molnar 已提交
2814
/*
2815
 * __schedule() is the main scheduler function.
2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849
 *
 * The main means of driving the scheduler and thus entering this function are:
 *
 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 *      paths. For example, see arch/x86/entry_64.S.
 *
 *      To drive preemption between tasks, the scheduler sets the flag in timer
 *      interrupt handler scheduler_tick().
 *
 *   3. Wakeups don't really cause entry into schedule(). They add a
 *      task to the run-queue and that's it.
 *
 *      Now, if the new task added to the run-queue preempts the current
 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 *      called on the nearest possible occasion:
 *
 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
 *
 *         - in syscall or exception context, at the next outmost
 *           preempt_enable(). (this might be as soon as the wake_up()'s
 *           spin_unlock()!)
 *
 *         - in IRQ context, return from interrupt-handler to
 *           preemptible context
 *
 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
 *         then at the next:
 *
 *          - cond_resched() call
 *          - explicit schedule() call
 *          - return from syscall or exception to user-space
 *          - return from interrupt-handler to user-space
I
Ingo Molnar 已提交
2850
 */
2851
static void __sched __schedule(void)
I
Ingo Molnar 已提交
2852 2853
{
	struct task_struct *prev, *next;
2854
	unsigned long *switch_count;
I
Ingo Molnar 已提交
2855
	struct rq *rq;
2856
	int cpu;
I
Ingo Molnar 已提交
2857

2858 2859
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
2860 2861
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
2862
	rcu_note_context_switch(cpu);
I
Ingo Molnar 已提交
2863 2864 2865
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
2866

2867
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
2868
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
2869

2870
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
2871

2872
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
2873
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
2874
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
2875
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
2876
		} else {
2877 2878 2879
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

T
Tejun Heo 已提交
2880
			/*
2881 2882 2883
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
2884 2885 2886 2887 2888 2889 2890 2891 2892
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
		}
I
Ingo Molnar 已提交
2893
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
2894 2895
	}

2896
	pre_schedule(rq, prev);
2897

I
Ingo Molnar 已提交
2898
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
2899 2900
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
2901
	put_prev_task(rq, prev);
2902
	next = pick_next_task(rq);
2903 2904
	clear_tsk_need_resched(prev);
	rq->skip_clock_update = 0;
L
Linus Torvalds 已提交
2905 2906 2907 2908 2909 2910

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
2911
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
2912
		/*
2913 2914 2915 2916
		 * The context switch have flipped the stack from under us
		 * and restored the local variables which were saved when
		 * this task called schedule() in the past. prev == current
		 * is still correct, but it can be moved to another cpu/rq.
P
Peter Zijlstra 已提交
2917 2918 2919
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
2920
	} else
2921
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
2922

2923
	post_schedule(rq);
L
Linus Torvalds 已提交
2924

2925
	sched_preempt_enable_no_resched();
2926
	if (need_resched())
L
Linus Torvalds 已提交
2927 2928
		goto need_resched;
}
2929

2930 2931
static inline void sched_submit_work(struct task_struct *tsk)
{
2932
	if (!tsk->state || tsk_is_pi_blocked(tsk))
2933 2934 2935 2936 2937 2938 2939 2940 2941
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

S
Simon Kirby 已提交
2942
asmlinkage void __sched schedule(void)
2943
{
2944 2945 2946
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
2947 2948
	__schedule();
}
L
Linus Torvalds 已提交
2949 2950
EXPORT_SYMBOL(schedule);

2951 2952 2953 2954 2955 2956 2957
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
2958
	sched_preempt_enable_no_resched();
2959 2960 2961 2962
	schedule();
	preempt_disable();
}

2963
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
2964

2965 2966 2967
static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
{
	if (lock->owner != owner)
2968
		return false;
2969 2970

	/*
2971 2972 2973 2974
	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
	 * lock->owner still matches owner, if that fails, owner might
	 * point to free()d memory, if it still matches, the rcu_read_lock()
	 * ensures the memory stays valid.
2975
	 */
2976
	barrier();
2977

2978
	return owner->on_cpu;
2979
}
2980

2981 2982 2983 2984 2985 2986 2987 2988
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
{
	if (!sched_feat(OWNER_SPIN))
		return 0;
2989

2990
	rcu_read_lock();
2991 2992
	while (owner_running(lock, owner)) {
		if (need_resched())
2993
			break;
2994

2995
		arch_mutex_cpu_relax();
2996
	}
2997
	rcu_read_unlock();
2998

2999
	/*
3000 3001 3002
	 * We break out the loop above on need_resched() and when the
	 * owner changed, which is a sign for heavy contention. Return
	 * success only when lock->owner is NULL.
3003
	 */
3004
	return lock->owner == NULL;
3005 3006 3007
}
#endif

L
Linus Torvalds 已提交
3008 3009
#ifdef CONFIG_PREEMPT
/*
3010
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3011
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3012 3013
 * occur there and call schedule directly.
 */
3014
asmlinkage void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
3015 3016
{
	struct thread_info *ti = current_thread_info();
3017

L
Linus Torvalds 已提交
3018 3019
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3020
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3021
	 */
N
Nick Piggin 已提交
3022
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3023 3024
		return;

3025
	do {
3026
		add_preempt_count_notrace(PREEMPT_ACTIVE);
3027
		__schedule();
3028
		sub_preempt_count_notrace(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3029

3030 3031 3032 3033 3034
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3035
	} while (need_resched());
L
Linus Torvalds 已提交
3036 3037 3038 3039
}
EXPORT_SYMBOL(preempt_schedule);

/*
3040
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3041 3042 3043 3044 3045 3046 3047
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
3048

3049
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3050 3051
	BUG_ON(ti->preempt_count || !irqs_disabled());

3052 3053 3054
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
3055
		__schedule();
3056 3057
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3058

3059 3060 3061 3062 3063
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3064
	} while (need_resched());
L
Linus Torvalds 已提交
3065 3066 3067 3068
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
3069
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3070
			  void *key)
L
Linus Torvalds 已提交
3071
{
P
Peter Zijlstra 已提交
3072
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3073 3074 3075 3076
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
3077 3078
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
3079 3080 3081
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
3082
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
3083 3084
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
3085
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
3086
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
3087
{
3088
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3089

3090
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3091 3092
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
3093
		if (curr->func(curr, mode, wake_flags, key) &&
3094
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3095 3096 3097 3098 3099 3100 3101 3102 3103
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3104
 * @key: is directly passed to the wakeup function
3105 3106 3107
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3108
 */
3109
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3110
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
3123
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
L
Linus Torvalds 已提交
3124
{
3125
	__wake_up_common(q, mode, nr, 0, NULL);
L
Linus Torvalds 已提交
3126
}
3127
EXPORT_SYMBOL_GPL(__wake_up_locked);
L
Linus Torvalds 已提交
3128

3129 3130 3131 3132
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}
3133
EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3134

L
Linus Torvalds 已提交
3135
/**
3136
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3137 3138 3139
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3140
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
3141 3142 3143 3144 3145 3146 3147
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
3148 3149 3150
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3151
 */
3152 3153
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3154 3155
{
	unsigned long flags;
P
Peter Zijlstra 已提交
3156
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
3157 3158 3159 3160 3161

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
3162
		wake_flags = 0;
L
Linus Torvalds 已提交
3163 3164

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
3165
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
3166 3167
	spin_unlock_irqrestore(&q->lock, flags);
}
3168 3169 3170 3171 3172 3173 3174 3175 3176
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
3177 3178
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

3179 3180 3181 3182 3183 3184 3185 3186
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
3187 3188 3189
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3190
 */
3191
void complete(struct completion *x)
L
Linus Torvalds 已提交
3192 3193 3194 3195 3196
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
3197
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
3198 3199 3200 3201
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

3202 3203 3204 3205 3206
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
3207 3208 3209
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3210
 */
3211
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
3212 3213 3214 3215 3216
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
3217
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
3218 3219 3220 3221
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

3222 3223
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3224 3225 3226 3227
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

C
Changli Gao 已提交
3228
		__add_wait_queue_tail_exclusive(&x->wait, &wait);
L
Linus Torvalds 已提交
3229
		do {
3230
			if (signal_pending_state(state, current)) {
3231 3232
				timeout = -ERESTARTSYS;
				break;
3233 3234
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
3235 3236 3237
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
3238
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
3239
		__remove_wait_queue(&x->wait, &wait);
3240 3241
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
3242 3243
	}
	x->done--;
3244
	return timeout ?: 1;
L
Linus Torvalds 已提交
3245 3246
}

3247 3248
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3249 3250 3251 3252
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
3253
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
3254
	spin_unlock_irq(&x->wait.lock);
3255 3256
	return timeout;
}
L
Linus Torvalds 已提交
3257

3258 3259 3260 3261 3262 3263 3264 3265 3266 3267
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
3268
void __sched wait_for_completion(struct completion *x)
3269 3270
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3271
}
3272
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
3273

3274 3275 3276 3277 3278 3279 3280 3281
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
3282 3283 3284
 *
 * The return value is 0 if timed out, and positive (at least 1, or number of
 * jiffies left till timeout) if completed.
3285
 */
3286
unsigned long __sched
3287
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
3288
{
3289
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3290
}
3291
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
3292

3293 3294 3295 3296 3297 3298
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
3299 3300
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3301
 */
3302
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
3303
{
3304 3305 3306 3307
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
3308
}
3309
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
3310

3311 3312 3313 3314 3315 3316 3317
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3318 3319 3320
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
 * positive (at least 1, or number of jiffies left till timeout) if completed.
3321
 */
3322
long __sched
3323 3324
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
3325
{
3326
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
3327
}
3328
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
3329

3330 3331 3332 3333 3334 3335
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
3336 3337
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3338
 */
M
Matthew Wilcox 已提交
3339 3340 3341 3342 3343 3344 3345 3346 3347
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

3348 3349 3350 3351 3352 3353 3354 3355
/**
 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be
 * signaled or for a specified timeout to expire. It can be
 * interrupted by a kill signal. The timeout is in jiffies.
3356 3357 3358
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
 * positive (at least 1, or number of jiffies left till timeout) if completed.
3359
 */
3360
long __sched
3361 3362 3363 3364 3365 3366 3367
wait_for_completion_killable_timeout(struct completion *x,
				     unsigned long timeout)
{
	return wait_for_common(x, timeout, TASK_KILLABLE);
}
EXPORT_SYMBOL(wait_for_completion_killable_timeout);

3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
3382
	unsigned long flags;
3383 3384
	int ret = 1;

3385
	spin_lock_irqsave(&x->wait.lock, flags);
3386 3387 3388 3389
	if (!x->done)
		ret = 0;
	else
		x->done--;
3390
	spin_unlock_irqrestore(&x->wait.lock, flags);
3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
3405
	unsigned long flags;
3406 3407
	int ret = 1;

3408
	spin_lock_irqsave(&x->wait.lock, flags);
3409 3410
	if (!x->done)
		ret = 0;
3411
	spin_unlock_irqrestore(&x->wait.lock, flags);
3412 3413 3414 3415
	return ret;
}
EXPORT_SYMBOL(completion_done);

3416 3417
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
3418
{
I
Ingo Molnar 已提交
3419 3420 3421 3422
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3423

3424
	__set_current_state(state);
L
Linus Torvalds 已提交
3425

3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3440 3441 3442
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3443
long __sched
I
Ingo Molnar 已提交
3444
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3445
{
3446
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3447 3448 3449
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
3450
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3451
{
3452
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3453 3454 3455
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
3456
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3457
{
3458
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3459 3460 3461
}
EXPORT_SYMBOL(sleep_on_timeout);

3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
3474
void rt_mutex_setprio(struct task_struct *p, int prio)
3475
{
3476
	int oldprio, on_rq, running;
3477
	struct rq *rq;
3478
	const struct sched_class *prev_class;
3479 3480 3481

	BUG_ON(prio < 0 || prio > MAX_PRIO);

3482
	rq = __task_rq_lock(p);
3483

3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

3502
	trace_sched_pi_setprio(p, prio);
3503
	oldprio = p->prio;
3504
	prev_class = p->sched_class;
P
Peter Zijlstra 已提交
3505
	on_rq = p->on_rq;
3506
	running = task_current(rq, p);
3507
	if (on_rq)
3508
		dequeue_task(rq, p, 0);
3509 3510
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
3511 3512 3513 3514 3515 3516

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

3517 3518
	p->prio = prio;

3519 3520
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
3521
	if (on_rq)
3522
		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3523

P
Peter Zijlstra 已提交
3524
	check_class_changed(rq, p, prev_class, oldprio);
3525
out_unlock:
3526
	__task_rq_unlock(rq);
3527 3528
}
#endif
3529
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3530
{
I
Ingo Molnar 已提交
3531
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
3532
	unsigned long flags;
3533
	struct rq *rq;
L
Linus Torvalds 已提交
3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
3546
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
3547
	 */
3548
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3549 3550 3551
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
P
Peter Zijlstra 已提交
3552
	on_rq = p->on_rq;
3553
	if (on_rq)
3554
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
3555 3556

	p->static_prio = NICE_TO_PRIO(nice);
3557
	set_load_weight(p);
3558 3559 3560
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3561

I
Ingo Molnar 已提交
3562
	if (on_rq) {
3563
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
3564
		/*
3565 3566
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3567
		 */
3568
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
3569 3570 3571
			resched_task(rq->curr);
	}
out_unlock:
3572
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3573 3574 3575
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3576 3577 3578 3579 3580
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3581
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3582
{
3583 3584
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
3585

3586
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3587 3588 3589
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3590 3591 3592 3593 3594 3595 3596 3597 3598
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3599
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3600
{
3601
	long nice, retval;
L
Linus Torvalds 已提交
3602 3603 3604 3605 3606 3607

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
3608 3609
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
3610 3611 3612
	if (increment > 40)
		increment = 40;

3613
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
3614 3615 3616 3617 3618
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
3619 3620 3621
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3640
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3641 3642 3643 3644 3645 3646 3647 3648
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
3649
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
3650 3651 3652
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
3653
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
3654 3655 3656 3657 3658 3659 3660

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3675 3676 3677 3678 3679 3680
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
3681
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3682 3683 3684 3685 3686 3687 3688 3689
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
3690
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
3691
{
3692
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
3693 3694 3695
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
3696 3697
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
3698 3699 3700
{
	p->policy = policy;
	p->rt_priority = prio;
3701 3702 3703
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
3704 3705 3706 3707
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
3708
	set_load_weight(p);
L
Linus Torvalds 已提交
3709 3710
}

3711 3712 3713 3714 3715 3716 3717 3718 3719 3720
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
3721 3722
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
3723 3724 3725 3726
	rcu_read_unlock();
	return match;
}

3727
static int __sched_setscheduler(struct task_struct *p, int policy,
3728
				const struct sched_param *param, bool user)
L
Linus Torvalds 已提交
3729
{
3730
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
3731
	unsigned long flags;
3732
	const struct sched_class *prev_class;
3733
	struct rq *rq;
3734
	int reset_on_fork;
L
Linus Torvalds 已提交
3735

3736 3737
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
3738 3739
recheck:
	/* double check policy once rq lock held */
3740 3741
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
3742
		policy = oldpolicy = p->policy;
3743 3744 3745 3746 3747 3748 3749 3750 3751 3752
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
3753 3754
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
3755 3756
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
3757 3758
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
3759
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3760
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
3761
		return -EINVAL;
3762
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
3763 3764
		return -EINVAL;

3765 3766 3767
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
3768
	if (user && !capable(CAP_SYS_NICE)) {
3769
		if (rt_policy(policy)) {
3770 3771
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
3772 3773 3774 3775 3776 3777 3778 3779 3780 3781

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
3782

I
Ingo Molnar 已提交
3783
		/*
3784 3785
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
3786
		 */
3787 3788 3789 3790
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
			if (!can_nice(p, TASK_NICE(p)))
				return -EPERM;
		}
3791

3792
		/* can't change other user's priorities */
3793
		if (!check_same_owner(p))
3794
			return -EPERM;
3795 3796 3797 3798

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
3799
	}
L
Linus Torvalds 已提交
3800

3801
	if (user) {
3802
		retval = security_task_setscheduler(p);
3803 3804 3805 3806
		if (retval)
			return retval;
	}

3807 3808 3809
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
3810
	 *
L
Lucas De Marchi 已提交
3811
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
3812 3813
	 * runqueue lock must be held.
	 */
3814
	rq = task_rq_lock(p, &flags);
3815

3816 3817 3818 3819
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
3820
		task_rq_unlock(rq, p, &flags);
3821 3822 3823
		return -EINVAL;
	}

3824 3825 3826 3827 3828
	/*
	 * If not changing anything there's no need to proceed further:
	 */
	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
			param->sched_priority == p->rt_priority))) {
3829
		task_rq_unlock(rq, p, &flags);
3830 3831 3832
		return 0;
	}

3833 3834 3835 3836 3837 3838 3839
#ifdef CONFIG_RT_GROUP_SCHED
	if (user) {
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3840 3841
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
3842
			task_rq_unlock(rq, p, &flags);
3843 3844 3845 3846 3847
			return -EPERM;
		}
	}
#endif

L
Linus Torvalds 已提交
3848 3849 3850
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
3851
		task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3852 3853
		goto recheck;
	}
P
Peter Zijlstra 已提交
3854
	on_rq = p->on_rq;
3855
	running = task_current(rq, p);
3856
	if (on_rq)
3857
		dequeue_task(rq, p, 0);
3858 3859
	if (running)
		p->sched_class->put_prev_task(rq, p);
3860

3861 3862
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
3863
	oldprio = p->prio;
3864
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
3865
	__setscheduler(rq, p, policy, param->sched_priority);
3866

3867 3868
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
3869
	if (on_rq)
3870
		enqueue_task(rq, p, 0);
3871

P
Peter Zijlstra 已提交
3872
	check_class_changed(rq, p, prev_class, oldprio);
3873
	task_rq_unlock(rq, p, &flags);
3874

3875 3876
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
3877 3878
	return 0;
}
3879 3880 3881 3882 3883 3884 3885 3886 3887 3888

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
3889
		       const struct sched_param *param)
3890 3891 3892
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
3893 3894
EXPORT_SYMBOL_GPL(sched_setscheduler);

3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3907
			       const struct sched_param *param)
3908 3909 3910 3911
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
3912 3913
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
3914 3915 3916
{
	struct sched_param lparam;
	struct task_struct *p;
3917
	int retval;
L
Linus Torvalds 已提交
3918 3919 3920 3921 3922

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
3923 3924 3925

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
3926
	p = find_process_by_pid(pid);
3927 3928 3929
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
3930

L
Linus Torvalds 已提交
3931 3932 3933 3934 3935 3936 3937 3938 3939
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
3940 3941
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
3942
{
3943 3944 3945 3946
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
3947 3948 3949 3950 3951 3952 3953 3954
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
3955
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
3956 3957 3958 3959 3960 3961 3962 3963
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
3964
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
3965
{
3966
	struct task_struct *p;
3967
	int retval;
L
Linus Torvalds 已提交
3968 3969

	if (pid < 0)
3970
		return -EINVAL;
L
Linus Torvalds 已提交
3971 3972

	retval = -ESRCH;
3973
	rcu_read_lock();
L
Linus Torvalds 已提交
3974 3975 3976 3977
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
3978 3979
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
3980
	}
3981
	rcu_read_unlock();
L
Linus Torvalds 已提交
3982 3983 3984 3985
	return retval;
}

/**
3986
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
3987 3988 3989
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
3990
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
3991 3992
{
	struct sched_param lp;
3993
	struct task_struct *p;
3994
	int retval;
L
Linus Torvalds 已提交
3995 3996

	if (!param || pid < 0)
3997
		return -EINVAL;
L
Linus Torvalds 已提交
3998

3999
	rcu_read_lock();
L
Linus Torvalds 已提交
4000 4001 4002 4003 4004 4005 4006 4007 4008 4009
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
4010
	rcu_read_unlock();
L
Linus Torvalds 已提交
4011 4012 4013 4014 4015 4016 4017 4018 4019

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4020
	rcu_read_unlock();
L
Linus Torvalds 已提交
4021 4022 4023
	return retval;
}

4024
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4025
{
4026
	cpumask_var_t cpus_allowed, new_mask;
4027 4028
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4029

4030
	get_online_cpus();
4031
	rcu_read_lock();
L
Linus Torvalds 已提交
4032 4033 4034

	p = find_process_by_pid(pid);
	if (!p) {
4035
		rcu_read_unlock();
4036
		put_online_cpus();
L
Linus Torvalds 已提交
4037 4038 4039
		return -ESRCH;
	}

4040
	/* Prevent p going away */
L
Linus Torvalds 已提交
4041
	get_task_struct(p);
4042
	rcu_read_unlock();
L
Linus Torvalds 已提交
4043

4044 4045 4046 4047 4048 4049 4050 4051
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4052
	retval = -EPERM;
4053
	if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
L
Linus Torvalds 已提交
4054 4055
		goto out_unlock;

4056
	retval = security_task_setscheduler(p);
4057 4058 4059
	if (retval)
		goto out_unlock;

4060 4061
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Peter Zijlstra 已提交
4062
again:
4063
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
4064

P
Paul Menage 已提交
4065
	if (!retval) {
4066 4067
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4068 4069 4070 4071 4072
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4073
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4074 4075 4076
			goto again;
		}
	}
L
Linus Torvalds 已提交
4077
out_unlock:
4078 4079 4080 4081
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4082
	put_task_struct(p);
4083
	put_online_cpus();
L
Linus Torvalds 已提交
4084 4085 4086 4087
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4088
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4089
{
4090 4091 4092 4093 4094
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4095 4096 4097 4098 4099 4100 4101 4102 4103
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
4104 4105
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4106
{
4107
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4108 4109
	int retval;

4110 4111
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4112

4113 4114 4115 4116 4117
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4118 4119
}

4120
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4121
{
4122
	struct task_struct *p;
4123
	unsigned long flags;
L
Linus Torvalds 已提交
4124 4125
	int retval;

4126
	get_online_cpus();
4127
	rcu_read_lock();
L
Linus Torvalds 已提交
4128 4129 4130 4131 4132 4133

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4134 4135 4136 4137
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4138
	raw_spin_lock_irqsave(&p->pi_lock, flags);
4139
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4140
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4141 4142

out_unlock:
4143
	rcu_read_unlock();
4144
	put_online_cpus();
L
Linus Torvalds 已提交
4145

4146
	return retval;
L
Linus Torvalds 已提交
4147 4148 4149 4150 4151 4152 4153 4154
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
4155 4156
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4157 4158
{
	int ret;
4159
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4160

A
Anton Blanchard 已提交
4161
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4162 4163
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4164 4165
		return -EINVAL;

4166 4167
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4168

4169 4170
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4171
		size_t retlen = min_t(size_t, len, cpumask_size());
4172 4173

		if (copy_to_user(user_mask_ptr, mask, retlen))
4174 4175
			ret = -EFAULT;
		else
4176
			ret = retlen;
4177 4178
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4179

4180
	return ret;
L
Linus Torvalds 已提交
4181 4182 4183 4184 4185
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4186 4187
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4188
 */
4189
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4190
{
4191
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4192

4193
	schedstat_inc(rq, yld_count);
4194
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4195 4196 4197 4198 4199 4200

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4201
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4202
	do_raw_spin_unlock(&rq->lock);
4203
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
4204 4205 4206 4207 4208 4209

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
4210 4211 4212 4213 4214
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
4215
static void __cond_resched(void)
L
Linus Torvalds 已提交
4216
{
4217
	add_preempt_count(PREEMPT_ACTIVE);
4218
	__schedule();
4219
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4220 4221
}

4222
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4223
{
P
Peter Zijlstra 已提交
4224
	if (should_resched()) {
L
Linus Torvalds 已提交
4225 4226 4227 4228 4229
		__cond_resched();
		return 1;
	}
	return 0;
}
4230
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4231 4232

/*
4233
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4234 4235
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4236
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4237 4238 4239
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4240
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4241
{
P
Peter Zijlstra 已提交
4242
	int resched = should_resched();
J
Jan Kara 已提交
4243 4244
	int ret = 0;

4245 4246
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
4247
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4248
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4249
		if (resched)
N
Nick Piggin 已提交
4250 4251 4252
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
4253
		ret = 1;
L
Linus Torvalds 已提交
4254 4255
		spin_lock(lock);
	}
J
Jan Kara 已提交
4256
	return ret;
L
Linus Torvalds 已提交
4257
}
4258
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4259

4260
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4261 4262 4263
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
4264
	if (should_resched()) {
4265
		local_bh_enable();
L
Linus Torvalds 已提交
4266 4267 4268 4269 4270 4271
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
4272
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4273 4274 4275 4276

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
 * 	yield();
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
4295 4296 4297 4298 4299 4300 4301 4302
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

4303 4304 4305 4306
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
4307 4308
 * @p: target task
 * @preempt: whether task preemption is allowed or not
4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
 * Returns true if we indeed boosted the target task.
 */
bool __sched yield_to(struct task_struct *p, bool preempt)
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
	bool yielded = 0;

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
	double_rq_lock(rq, p_rq);
	while (task_rq(p) != p_rq) {
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
		goto out;

	if (curr->sched_class != p->sched_class)
		goto out;

	if (task_running(p_rq, p) || p->state)
		goto out;

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4343
	if (yielded) {
4344
		schedstat_inc(rq, yld_count);
4345 4346 4347 4348 4349 4350
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
			resched_task(p_rq->curr);
4351 4352 4353 4354 4355 4356 4357
	} else {
		/*
		 * We might have set it in task_yield_fair(), but are
		 * not going to schedule(), so don't want to skip
		 * the next update.
		 */
		rq->skip_clock_update = 0;
4358
	}
4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370

out:
	double_rq_unlock(rq, p_rq);
	local_irq_restore(flags);

	if (yielded)
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
4371
/*
I
Ingo Molnar 已提交
4372
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4373 4374 4375 4376
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
4377
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4378

4379
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4380
	atomic_inc(&rq->nr_iowait);
4381
	blk_flush_plug(current);
4382
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4383
	schedule();
4384
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4385
	atomic_dec(&rq->nr_iowait);
4386
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4387 4388 4389 4390 4391
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4392
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4393 4394
	long ret;

4395
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4396
	atomic_inc(&rq->nr_iowait);
4397
	blk_flush_plug(current);
4398
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4399
	ret = schedule_timeout(timeout);
4400
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4401
	atomic_dec(&rq->nr_iowait);
4402
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4403 4404 4405 4406 4407 4408 4409 4410 4411 4412
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
4413
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
4414 4415 4416 4417 4418 4419 4420 4421 4422
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4423
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4424
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
4438
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
4439 4440 4441 4442 4443 4444 4445 4446 4447
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4448
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4449
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
4463
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4464
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
4465
{
4466
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4467
	unsigned int time_slice;
4468 4469
	unsigned long flags;
	struct rq *rq;
4470
	int retval;
L
Linus Torvalds 已提交
4471 4472 4473
	struct timespec t;

	if (pid < 0)
4474
		return -EINVAL;
L
Linus Torvalds 已提交
4475 4476

	retval = -ESRCH;
4477
	rcu_read_lock();
L
Linus Torvalds 已提交
4478 4479 4480 4481 4482 4483 4484 4485
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4486 4487
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
4488
	task_rq_unlock(rq, p, &flags);
D
Dmitry Adamushko 已提交
4489

4490
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
4491
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4492 4493
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4494

L
Linus Torvalds 已提交
4495
out_unlock:
4496
	rcu_read_unlock();
L
Linus Torvalds 已提交
4497 4498 4499
	return retval;
}

4500
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4501

4502
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4503 4504
{
	unsigned long free = 0;
4505
	unsigned state;
L
Linus Torvalds 已提交
4506 4507

	state = p->state ? __ffs(p->state) + 1 : 0;
4508
	printk(KERN_INFO "%-15.15s %c", p->comm,
4509
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4510
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4511
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4512
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4513
	else
P
Peter Zijlstra 已提交
4514
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4515 4516
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4517
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4518
	else
P
Peter Zijlstra 已提交
4519
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4520 4521
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
4522
	free = stack_not_used(p);
L
Linus Torvalds 已提交
4523
#endif
P
Peter Zijlstra 已提交
4524
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4525
		task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
4526
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
4527

4528
	show_stack(p, NULL);
L
Linus Torvalds 已提交
4529 4530
}

I
Ingo Molnar 已提交
4531
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4532
{
4533
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4534

4535
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
4536 4537
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4538
#else
P
Peter Zijlstra 已提交
4539 4540
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4541
#endif
4542
	rcu_read_lock();
L
Linus Torvalds 已提交
4543 4544 4545
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
4546
		 * console might take a lot of time:
L
Linus Torvalds 已提交
4547 4548
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4549
		if (!state_filter || (p->state & state_filter))
4550
			sched_show_task(p);
L
Linus Torvalds 已提交
4551 4552
	} while_each_thread(g, p);

4553 4554
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4555 4556 4557
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
4558
	rcu_read_unlock();
I
Ingo Molnar 已提交
4559 4560 4561
	/*
	 * Only show locks if all tasks are dumped:
	 */
4562
	if (!state_filter)
I
Ingo Molnar 已提交
4563
		debug_show_all_locks();
L
Linus Torvalds 已提交
4564 4565
}

I
Ingo Molnar 已提交
4566 4567
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
4568
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4569 4570
}

4571 4572 4573 4574 4575 4576 4577 4578
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4579
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4580
{
4581
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4582 4583
	unsigned long flags;

4584
	raw_spin_lock_irqsave(&rq->lock, flags);
4585

I
Ingo Molnar 已提交
4586
	__sched_fork(idle);
4587
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
4588 4589
	idle->se.exec_start = sched_clock();

4590
	do_set_cpus_allowed(idle, cpumask_of(cpu));
4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
4602
	__set_task_cpu(idle, cpu);
4603
	rcu_read_unlock();
L
Linus Torvalds 已提交
4604 4605

	rq->curr = rq->idle = idle;
P
Peter Zijlstra 已提交
4606 4607
#if defined(CONFIG_SMP)
	idle->on_cpu = 1;
4608
#endif
4609
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
4610 4611

	/* Set the preempt count _outside_ the spinlocks! */
A
Al Viro 已提交
4612
	task_thread_info(idle)->preempt_count = 0;
4613

I
Ingo Molnar 已提交
4614 4615 4616 4617
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
4618
	ftrace_graph_init_idle_task(idle, cpu);
4619 4620 4621
#if defined(CONFIG_SMP)
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
4622 4623
}

L
Linus Torvalds 已提交
4624
#ifdef CONFIG_SMP
4625 4626 4627 4628
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
	if (p->sched_class && p->sched_class->set_cpus_allowed)
		p->sched_class->set_cpus_allowed(p, new_mask);
4629 4630

	cpumask_copy(&p->cpus_allowed, new_mask);
4631
	p->nr_cpus_allowed = cpumask_weight(new_mask);
4632 4633
}

L
Linus Torvalds 已提交
4634 4635 4636
/*
 * This is how migration works:
 *
4637 4638 4639 4640 4641 4642
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
4643
 *    it and puts it into the right queue.
4644 4645
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
4646 4647 4648 4649 4650 4651 4652 4653
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
4654
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
4655 4656
 * call is not atomic; no spinlocks may be held.
 */
4657
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
4658 4659
{
	unsigned long flags;
4660
	struct rq *rq;
4661
	unsigned int dest_cpu;
4662
	int ret = 0;
L
Linus Torvalds 已提交
4663 4664

	rq = task_rq_lock(p, &flags);
4665

4666 4667 4668
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

4669
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
4670 4671 4672 4673
		ret = -EINVAL;
		goto out;
	}

4674
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
4675 4676 4677 4678
		ret = -EINVAL;
		goto out;
	}

4679
	do_set_cpus_allowed(p, new_mask);
4680

L
Linus Torvalds 已提交
4681
	/* Can the task run on the task's current CPU? If so, we're done */
4682
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
4683 4684
		goto out;

4685
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4686
	if (p->on_rq) {
4687
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
4688
		/* Need help from migration thread: drop lock and wait. */
4689
		task_rq_unlock(rq, p, &flags);
4690
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
4691 4692 4693 4694
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
4695
	task_rq_unlock(rq, p, &flags);
4696

L
Linus Torvalds 已提交
4697 4698
	return ret;
}
4699
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
4700 4701

/*
I
Ingo Molnar 已提交
4702
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
4703 4704 4705 4706 4707 4708
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4709 4710
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4711
 */
4712
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4713
{
4714
	struct rq *rq_dest, *rq_src;
4715
	int ret = 0;
L
Linus Torvalds 已提交
4716

4717
	if (unlikely(!cpu_active(dest_cpu)))
4718
		return ret;
L
Linus Torvalds 已提交
4719 4720 4721 4722

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

4723
	raw_spin_lock(&p->pi_lock);
L
Linus Torvalds 已提交
4724 4725 4726
	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
4727
		goto done;
L
Linus Torvalds 已提交
4728
	/* Affinity changed (again). */
4729
	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
L
Linus Torvalds 已提交
4730
		goto fail;
L
Linus Torvalds 已提交
4731

4732 4733 4734 4735
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
P
Peter Zijlstra 已提交
4736
	if (p->on_rq) {
4737
		dequeue_task(rq_src, p, 0);
4738
		set_task_cpu(p, dest_cpu);
4739
		enqueue_task(rq_dest, p, 0);
4740
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
4741
	}
L
Linus Torvalds 已提交
4742
done:
4743
	ret = 1;
L
Linus Torvalds 已提交
4744
fail:
L
Linus Torvalds 已提交
4745
	double_rq_unlock(rq_src, rq_dest);
4746
	raw_spin_unlock(&p->pi_lock);
4747
	return ret;
L
Linus Torvalds 已提交
4748 4749 4750
}

/*
4751 4752 4753
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
4754
 */
4755
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
4756
{
4757
	struct migration_arg *arg = data;
4758

4759 4760 4761 4762
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
4763
	local_irq_disable();
4764
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4765
	local_irq_enable();
L
Linus Torvalds 已提交
4766
	return 0;
4767 4768
}

L
Linus Torvalds 已提交
4769
#ifdef CONFIG_HOTPLUG_CPU
4770

4771
/*
4772 4773
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
4774
 */
4775
void idle_task_exit(void)
L
Linus Torvalds 已提交
4776
{
4777
	struct mm_struct *mm = current->active_mm;
4778

4779
	BUG_ON(cpu_online(smp_processor_id()));
4780

4781 4782 4783
	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
L
Linus Torvalds 已提交
4784 4785 4786
}

/*
4787 4788 4789 4790 4791
 * Since this CPU is going 'away' for a while, fold any nr_active delta
 * we might have. Assumes we're called after migrate_tasks() so that the
 * nr_active count is stable.
 *
 * Also see the comment "Global load-average calculations".
L
Linus Torvalds 已提交
4792
 */
4793
static void calc_load_migrate(struct rq *rq)
L
Linus Torvalds 已提交
4794
{
4795 4796 4797
	long delta = calc_load_fold_active(rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
4798 4799
}

4800
/*
4801 4802 4803 4804 4805 4806
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
4807
 */
4808
static void migrate_tasks(unsigned int dead_cpu)
L
Linus Torvalds 已提交
4809
{
4810
	struct rq *rq = cpu_rq(dead_cpu);
4811 4812
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
4813 4814

	/*
4815 4816 4817 4818 4819 4820 4821
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
4822
	 */
4823
	rq->stop = NULL;
4824

I
Ingo Molnar 已提交
4825
	for ( ; ; ) {
4826 4827 4828 4829 4830
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
4831
			break;
4832

4833
		next = pick_next_task(rq);
4834
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
4835
		next->sched_class->put_prev_task(rq, next);
4836

4837 4838 4839 4840 4841 4842 4843
		/* Find suitable destination for @next, with force if needed. */
		dest_cpu = select_fallback_rq(dead_cpu, next);
		raw_spin_unlock(&rq->lock);

		__migrate_task(next, dead_cpu, dest_cpu);

		raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
4844
	}
4845

4846
	rq->stop = stop;
4847
}
4848

L
Linus Torvalds 已提交
4849 4850
#endif /* CONFIG_HOTPLUG_CPU */

4851 4852 4853
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
4854 4855
	{
		.procname	= "sched_domain",
4856
		.mode		= 0555,
4857
	},
4858
	{}
4859 4860 4861
};

static struct ctl_table sd_ctl_root[] = {
4862 4863
	{
		.procname	= "kernel",
4864
		.mode		= 0555,
4865 4866
		.child		= sd_ctl_dir,
	},
4867
	{}
4868 4869 4870 4871 4872
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
4873
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4874 4875 4876 4877

	return entry;
}

4878 4879
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
4880
	struct ctl_table *entry;
4881

4882 4883 4884
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
4885
	 * will always be set. In the lowest directory the names are
4886 4887 4888
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
4889 4890
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
4891 4892 4893
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
4894 4895 4896 4897 4898

	kfree(*tablep);
	*tablep = NULL;
}

4899
static void
4900
set_table_entry(struct ctl_table *entry,
4901
		const char *procname, void *data, int maxlen,
4902
		umode_t mode, proc_handler *proc_handler)
4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
4914
	struct ctl_table *table = sd_alloc_ctl_entry(13);
4915

4916 4917 4918
	if (table == NULL)
		return NULL;

4919
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4920
		sizeof(long), 0644, proc_doulongvec_minmax);
4921
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4922
		sizeof(long), 0644, proc_doulongvec_minmax);
4923
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4924
		sizeof(int), 0644, proc_dointvec_minmax);
4925
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4926
		sizeof(int), 0644, proc_dointvec_minmax);
4927
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4928
		sizeof(int), 0644, proc_dointvec_minmax);
4929
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4930
		sizeof(int), 0644, proc_dointvec_minmax);
4931
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4932
		sizeof(int), 0644, proc_dointvec_minmax);
4933
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4934
		sizeof(int), 0644, proc_dointvec_minmax);
4935
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4936
		sizeof(int), 0644, proc_dointvec_minmax);
4937
	set_table_entry(&table[9], "cache_nice_tries",
4938 4939
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
4940
	set_table_entry(&table[10], "flags", &sd->flags,
4941
		sizeof(int), 0644, proc_dointvec_minmax);
4942 4943 4944
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
4945 4946 4947 4948

	return table;
}

4949
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4950 4951 4952 4953 4954 4955 4956 4957 4958
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4959 4960
	if (table == NULL)
		return NULL;
4961 4962 4963 4964 4965

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
4966
		entry->mode = 0555;
4967 4968 4969 4970 4971 4972 4973 4974
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
4975
static void register_sched_domain_sysctl(void)
4976
{
4977
	int i, cpu_num = num_possible_cpus();
4978 4979 4980
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

4981 4982 4983
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

4984 4985 4986
	if (entry == NULL)
		return;

4987
	for_each_possible_cpu(i) {
4988 4989
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
4990
		entry->mode = 0555;
4991
		entry->child = sd_alloc_ctl_cpu_table(i);
4992
		entry++;
4993
	}
4994 4995

	WARN_ON(sd_sysctl_header);
4996 4997
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
4998

4999
/* may be called multiple times per register */
5000 5001
static void unregister_sched_domain_sysctl(void)
{
5002 5003
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5004
	sd_sysctl_header = NULL;
5005 5006
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5007
}
5008
#else
5009 5010 5011 5012
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5013 5014 5015 5016
{
}
#endif

5017 5018 5019 5020 5021
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5022
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5042
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5043 5044 5045 5046
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5047 5048 5049 5050
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5051 5052
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5053
{
5054
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5055
	unsigned long flags;
5056
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5057

5058
	switch (action & ~CPU_TASKS_FROZEN) {
5059

L
Linus Torvalds 已提交
5060
	case CPU_UP_PREPARE:
5061
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5062
		break;
5063

L
Linus Torvalds 已提交
5064
	case CPU_ONLINE:
5065
		/* Update our root-domain */
5066
		raw_spin_lock_irqsave(&rq->lock, flags);
5067
		if (rq->rd) {
5068
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5069 5070

			set_rq_online(rq);
5071
		}
5072
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5073
		break;
5074

L
Linus Torvalds 已提交
5075
#ifdef CONFIG_HOTPLUG_CPU
5076
	case CPU_DYING:
5077
		sched_ttwu_pending();
G
Gregory Haskins 已提交
5078
		/* Update our root-domain */
5079
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5080
		if (rq->rd) {
5081
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5082
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5083
		}
5084 5085
		migrate_tasks(cpu);
		BUG_ON(rq->nr_running != 1); /* the migration thread */
5086
		raw_spin_unlock_irqrestore(&rq->lock, flags);
5087

5088
		calc_load_migrate(rq);
G
Gregory Haskins 已提交
5089
		break;
L
Linus Torvalds 已提交
5090 5091
#endif
	}
5092 5093 5094

	update_max_interval();

L
Linus Torvalds 已提交
5095 5096 5097
	return NOTIFY_OK;
}

5098 5099 5100
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5101
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5102
 */
5103
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5104
	.notifier_call = migration_call,
5105
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
5106 5107
};

5108 5109 5110 5111
static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
5112
	case CPU_STARTING:
5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		set_cpu_active((long)hcpu, false);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

5133
static int __init migration_init(void)
L
Linus Torvalds 已提交
5134 5135
{
	void *cpu = (void *)(long)smp_processor_id();
5136
	int err;
5137

5138
	/* Initialize migration for the boot CPU */
5139 5140
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5141 5142
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5143

5144 5145 5146 5147
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

5148
	return 0;
L
Linus Torvalds 已提交
5149
}
5150
early_initcall(migration_init);
L
Linus Torvalds 已提交
5151 5152 5153
#endif

#ifdef CONFIG_SMP
5154

5155 5156
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

5157
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5158

5159
static __read_mostly int sched_debug_enabled;
5160

5161
static int __init sched_debug_setup(char *str)
5162
{
5163
	sched_debug_enabled = 1;
5164 5165 5166

	return 0;
}
5167 5168 5169 5170 5171 5172
early_param("sched_debug", sched_debug_setup);

static inline bool sched_debug(void)
{
	return sched_debug_enabled;
}
5173

5174
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5175
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5176
{
I
Ingo Molnar 已提交
5177
	struct sched_group *group = sd->groups;
5178
	char str[256];
L
Linus Torvalds 已提交
5179

R
Rusty Russell 已提交
5180
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5181
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5182 5183 5184 5185

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5186
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5187
		if (sd->parent)
P
Peter Zijlstra 已提交
5188 5189
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5190
		return -1;
N
Nick Piggin 已提交
5191 5192
	}

P
Peter Zijlstra 已提交
5193
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
5194

5195
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5196 5197
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5198
	}
5199
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5200 5201
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5202
	}
L
Linus Torvalds 已提交
5203

I
Ingo Molnar 已提交
5204
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5205
	do {
I
Ingo Molnar 已提交
5206
		if (!group) {
P
Peter Zijlstra 已提交
5207 5208
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5209 5210 5211
			break;
		}

5212 5213 5214 5215 5216 5217
		/*
		 * Even though we initialize ->power to something semi-sane,
		 * we leave power_orig unset. This allows us to detect if
		 * domain iteration is still funny without causing /0 traps.
		 */
		if (!group->sgp->power_orig) {
P
Peter Zijlstra 已提交
5218 5219 5220
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
5221 5222
			break;
		}
L
Linus Torvalds 已提交
5223

5224
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5225 5226
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
5227 5228
			break;
		}
L
Linus Torvalds 已提交
5229

5230 5231
		if (!(sd->flags & SD_OVERLAP) &&
		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5232 5233
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
5234 5235
			break;
		}
L
Linus Torvalds 已提交
5236

5237
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
5238

R
Rusty Russell 已提交
5239
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5240

P
Peter Zijlstra 已提交
5241
		printk(KERN_CONT " %s", str);
5242
		if (group->sgp->power != SCHED_POWER_SCALE) {
P
Peter Zijlstra 已提交
5243
			printk(KERN_CONT " (cpu_power = %d)",
5244
				group->sgp->power);
5245
		}
L
Linus Torvalds 已提交
5246

I
Ingo Molnar 已提交
5247 5248
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
5249
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5250

5251
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
5252
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5253

5254 5255
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
5256 5257
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
5258 5259
	return 0;
}
L
Linus Torvalds 已提交
5260

I
Ingo Molnar 已提交
5261 5262 5263
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5264

5265
	if (!sched_debug_enabled)
5266 5267
		return;

I
Ingo Molnar 已提交
5268 5269 5270 5271
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5272

I
Ingo Molnar 已提交
5273 5274 5275
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
5276
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
I
Ingo Molnar 已提交
5277
			break;
L
Linus Torvalds 已提交
5278 5279
		level++;
		sd = sd->parent;
5280
		if (!sd)
I
Ingo Molnar 已提交
5281 5282
			break;
	}
L
Linus Torvalds 已提交
5283
}
5284
#else /* !CONFIG_SCHED_DEBUG */
5285
# define sched_domain_debug(sd, cpu) do { } while (0)
5286 5287 5288 5289
static inline bool sched_debug(void)
{
	return false;
}
5290
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
5291

5292
static int sd_degenerate(struct sched_domain *sd)
5293
{
5294
	if (cpumask_weight(sched_domain_span(sd)) == 1)
5295 5296 5297 5298 5299 5300
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5301 5302 5303
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5304 5305 5306 5307 5308
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
5309
	if (sd->flags & (SD_WAKE_AFFINE))
5310 5311 5312 5313 5314
		return 0;

	return 1;
}

5315 5316
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5317 5318 5319 5320 5321 5322
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

5323
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5324 5325 5326 5327 5328 5329 5330
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5331 5332 5333
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5334 5335
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
5336 5337 5338 5339 5340 5341 5342
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

5343
static void free_rootdomain(struct rcu_head *rcu)
5344
{
5345
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5346

5347
	cpupri_cleanup(&rd->cpupri);
5348 5349 5350 5351 5352 5353
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
5354 5355
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
5356
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
5357 5358
	unsigned long flags;

5359
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5360 5361

	if (rq->rd) {
I
Ingo Molnar 已提交
5362
		old_rd = rq->rd;
G
Gregory Haskins 已提交
5363

5364
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5365
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5366

5367
		cpumask_clear_cpu(rq->cpu, old_rd->span);
5368

I
Ingo Molnar 已提交
5369 5370 5371 5372 5373 5374 5375
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
5376 5377 5378 5379 5380
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

5381
	cpumask_set_cpu(rq->cpu, rd->span);
5382
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5383
		set_rq_online(rq);
G
Gregory Haskins 已提交
5384

5385
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
5386 5387

	if (old_rd)
5388
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
5389 5390
}

5391
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
5392 5393 5394
{
	memset(rd, 0, sizeof(*rd));

5395
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5396
		goto out;
5397
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5398
		goto free_span;
5399
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5400
		goto free_online;
5401

5402
	if (cpupri_init(&rd->cpupri) != 0)
5403
		goto free_rto_mask;
5404
	return 0;
5405

5406 5407
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
5408 5409 5410 5411
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
5412
out:
5413
	return -ENOMEM;
G
Gregory Haskins 已提交
5414 5415
}

5416 5417 5418 5419 5420 5421
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
struct root_domain def_root_domain;

G
Gregory Haskins 已提交
5422 5423
static void init_defrootdomain(void)
{
5424
	init_rootdomain(&def_root_domain);
5425

G
Gregory Haskins 已提交
5426 5427 5428
	atomic_set(&def_root_domain.refcount, 1);
}

5429
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
5430 5431 5432 5433 5434 5435 5436
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

5437
	if (init_rootdomain(rd) != 0) {
5438 5439 5440
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
5441 5442 5443 5444

	return rd;
}

5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463
static void free_sched_groups(struct sched_group *sg, int free_sgp)
{
	struct sched_group *tmp, *first;

	if (!sg)
		return;

	first = sg;
	do {
		tmp = sg->next;

		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
			kfree(sg->sgp);

		kfree(sg);
		sg = tmp;
	} while (sg != first);
}

5464 5465 5466
static void free_sched_domain(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5467 5468 5469 5470 5471 5472 5473 5474

	/*
	 * If its an overlapping domain it has private groups, iterate and
	 * nuke them all.
	 */
	if (sd->flags & SD_OVERLAP) {
		free_sched_groups(sd->groups, 1);
	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5475
		kfree(sd->groups->sgp);
5476
		kfree(sd->groups);
5477
	}
5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491
	kfree(sd);
}

static void destroy_sched_domain(struct sched_domain *sd, int cpu)
{
	call_rcu(&sd->rcu, free_sched_domain);
}

static void destroy_sched_domains(struct sched_domain *sd, int cpu)
{
	for (; sd; sd = sd->parent)
		destroy_sched_domain(sd, cpu);
}

5492 5493 5494 5495 5496
/*
 * Keep a special pointer to the highest sched_domain that has
 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 * allows us to avoid some pointer chasing select_idle_sibling().
 *
5497 5498 5499 5500 5501
 * Iterate domains and sched_groups downward, assigning CPUs to be
 * select_idle_sibling() hw buddy.  Cross-wiring hw makes bouncing
 * due to random perturbation self canceling, ie sw buddies pull
 * their counterpart to their CPU's hw counterpart.
 *
5502 5503
 * Also keep a unique ID per domain (we use the first cpu number in
 * the cpumask of the domain), this allows us to quickly tell if
5504
 * two cpus are in the same cache domain, see cpus_share_cache().
5505 5506 5507 5508 5509 5510 5511 5512 5513 5514
 */
DEFINE_PER_CPU(struct sched_domain *, sd_llc);
DEFINE_PER_CPU(int, sd_llc_id);

static void update_top_cache_domain(int cpu)
{
	struct sched_domain *sd;
	int id = cpu;

	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546
	if (sd) {
		struct sched_domain *tmp = sd;
		struct sched_group *sg, *prev;
		bool right;

		/*
		 * Traverse to first CPU in group, and count hops
		 * to cpu from there, switching direction on each
		 * hop, never ever pointing the last CPU rightward.
		 */
		do {
			id = cpumask_first(sched_domain_span(tmp));
			prev = sg = tmp->groups;
			right = 1;

			while (cpumask_first(sched_group_cpus(sg)) != id)
				sg = sg->next;

			while (!cpumask_test_cpu(cpu, sched_group_cpus(sg))) {
				prev = sg;
				sg = sg->next;
				right = !right;
			}

			/* A CPU went down, never point back to domain start. */
			if (right && cpumask_first(sched_group_cpus(sg->next)) == id)
				right = false;

			sg = right ? sg->next : prev;
			tmp->idle_buddy = cpumask_first(sched_group_cpus(sg));
		} while ((tmp = tmp->child));

5547
		id = cpumask_first(sched_domain_span(sd));
5548
	}
5549 5550 5551 5552 5553

	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
	per_cpu(sd_llc_id, cpu) = id;
}

L
Linus Torvalds 已提交
5554
/*
I
Ingo Molnar 已提交
5555
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
5556 5557
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
5558 5559
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
5560
{
5561
	struct rq *rq = cpu_rq(cpu);
5562 5563 5564
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
5565
	for (tmp = sd; tmp; ) {
5566 5567 5568
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5569

5570
		if (sd_parent_degenerate(tmp, parent)) {
5571
			tmp->parent = parent->parent;
5572 5573
			if (parent->parent)
				parent->parent->child = tmp;
5574
			destroy_sched_domain(parent, cpu);
5575 5576
		} else
			tmp = tmp->parent;
5577 5578
	}

5579
	if (sd && sd_degenerate(sd)) {
5580
		tmp = sd;
5581
		sd = sd->parent;
5582
		destroy_sched_domain(tmp, cpu);
5583 5584 5585
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5586

5587
	sched_domain_debug(sd, cpu);
L
Linus Torvalds 已提交
5588

G
Gregory Haskins 已提交
5589
	rq_attach_root(rq, rd);
5590
	tmp = rq->sd;
N
Nick Piggin 已提交
5591
	rcu_assign_pointer(rq->sd, sd);
5592
	destroy_sched_domains(tmp, cpu);
5593 5594

	update_top_cache_domain(cpu);
L
Linus Torvalds 已提交
5595 5596 5597
}

/* cpus with isolated domains */
5598
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
5599 5600 5601 5602

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
5603
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
5604
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
5605 5606 5607
	return 1;
}

I
Ingo Molnar 已提交
5608
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5609

5610 5611 5612 5613 5614
static const struct cpumask *cpu_cpu_mask(int cpu)
{
	return cpumask_of_node(cpu_to_node(cpu));
}

5615 5616 5617
struct sd_data {
	struct sched_domain **__percpu sd;
	struct sched_group **__percpu sg;
5618
	struct sched_group_power **__percpu sgp;
5619 5620
};

5621
struct s_data {
5622
	struct sched_domain ** __percpu sd;
5623 5624 5625
	struct root_domain	*rd;
};

5626 5627
enum s_alloc {
	sa_rootdomain,
5628
	sa_sd,
5629
	sa_sd_storage,
5630 5631 5632
	sa_none,
};

5633 5634 5635
struct sched_domain_topology_level;

typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5636 5637
typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);

5638 5639
#define SDTL_OVERLAP	0x01

5640
struct sched_domain_topology_level {
5641 5642
	sched_domain_init_f init;
	sched_domain_mask_f mask;
5643
	int		    flags;
5644
	int		    numa_level;
5645
	struct sd_data      data;
5646 5647
};

P
Peter Zijlstra 已提交
5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685
/*
 * Build an iteration mask that can exclude certain CPUs from the upwards
 * domain traversal.
 *
 * Asymmetric node setups can result in situations where the domain tree is of
 * unequal depth, make sure to skip domains that already cover the entire
 * range.
 *
 * In that case build_sched_domains() will have terminated the iteration early
 * and our sibling sd spans will be empty. Domains should always include the
 * cpu they're built on, so check that.
 *
 */
static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
{
	const struct cpumask *span = sched_domain_span(sd);
	struct sd_data *sdd = sd->private;
	struct sched_domain *sibling;
	int i;

	for_each_cpu(i, span) {
		sibling = *per_cpu_ptr(sdd->sd, i);
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
			continue;

		cpumask_set_cpu(i, sched_group_mask(sg));
	}
}

/*
 * Return the canonical balance cpu for this group, this is the first cpu
 * of this group that's also in the iteration mask.
 */
int group_balance_cpu(struct sched_group *sg)
{
	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
}

5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703
static int
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered = sched_domains_tmpmask;
	struct sd_data *sdd = sd->private;
	struct sched_domain *child;
	int i;

	cpumask_clear(covered);

	for_each_cpu(i, span) {
		struct cpumask *sg_span;

		if (cpumask_test_cpu(i, covered))
			continue;

P
Peter Zijlstra 已提交
5704 5705 5706 5707 5708 5709
		child = *per_cpu_ptr(sdd->sd, i);

		/* See the comment near build_group_mask(). */
		if (!cpumask_test_cpu(i, sched_domain_span(child)))
			continue;

5710
		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5711
				GFP_KERNEL, cpu_to_node(cpu));
5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724

		if (!sg)
			goto fail;

		sg_span = sched_group_cpus(sg);
		if (child->child) {
			child = child->child;
			cpumask_copy(sg_span, sched_domain_span(child));
		} else
			cpumask_set_cpu(i, sg_span);

		cpumask_or(covered, covered, sg_span);

P
Peter Zijlstra 已提交
5725
		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
P
Peter Zijlstra 已提交
5726 5727 5728
		if (atomic_inc_return(&sg->sgp->ref) == 1)
			build_group_mask(sd, sg);

5729 5730 5731 5732 5733 5734
		/*
		 * Initialize sgp->power such that even if we mess up the
		 * domains and no possible iteration will get us here, we won't
		 * die on a /0 trap.
		 */
		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5735

P
Peter Zijlstra 已提交
5736 5737 5738 5739 5740
		/*
		 * Make sure the first group of this domain contains the
		 * canonical balance cpu. Otherwise the sched_domain iteration
		 * breaks. See update_sg_lb_stats().
		 */
P
Peter Zijlstra 已提交
5741
		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
P
Peter Zijlstra 已提交
5742
		    group_balance_cpu(sg) == cpu)
5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761
			groups = sg;

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
		last->next = first;
	}
	sd->groups = groups;

	return 0;

fail:
	free_sched_groups(first, 0);

	return -ENOMEM;
}

5762
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
5763
{
5764 5765
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
5766

5767 5768
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
5769

5770
	if (sg) {
5771
		*sg = *per_cpu_ptr(sdd->sg, cpu);
5772
		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5773
		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5774
	}
5775 5776

	return cpu;
5777 5778
}

5779
/*
5780 5781 5782
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
5783 5784
 *
 * Assumes the sched_domain tree is fully constructed
5785
 */
5786 5787
static int
build_sched_groups(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5788
{
5789 5790 5791
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
5792
	struct cpumask *covered;
5793
	int i;
5794

5795 5796 5797 5798 5799 5800
	get_group(cpu, sdd, &sd->groups);
	atomic_inc(&sd->groups->ref);

	if (cpu != cpumask_first(sched_domain_span(sd)))
		return 0;

5801 5802 5803
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

5804
	cpumask_clear(covered);
5805

5806 5807 5808 5809
	for_each_cpu(i, span) {
		struct sched_group *sg;
		int group = get_group(i, sdd, &sg);
		int j;
5810

5811 5812
		if (cpumask_test_cpu(i, covered))
			continue;
5813

5814
		cpumask_clear(sched_group_cpus(sg));
5815
		sg->sgp->power = 0;
P
Peter Zijlstra 已提交
5816
		cpumask_setall(sched_group_mask(sg));
5817

5818 5819 5820
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
5821

5822 5823 5824
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
5825

5826 5827 5828 5829 5830 5831 5832
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
5833 5834

	return 0;
5835
}
5836

5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
5849
	struct sched_group *sg = sd->groups;
5850

5851 5852 5853 5854 5855 5856
	WARN_ON(!sd || !sg);

	do {
		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
		sg = sg->next;
	} while (sg != sd->groups);
5857

P
Peter Zijlstra 已提交
5858
	if (cpu != group_balance_cpu(sg))
5859
		return;
5860

5861
	update_group_power(sd, cpu);
5862
	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5863 5864
}

5865 5866 5867
int __weak arch_sd_sibling_asym_packing(void)
{
       return 0*SD_ASYM_PACKING;
5868 5869
}

5870 5871 5872 5873 5874
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

5875 5876 5877 5878 5879 5880
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

5881 5882 5883 5884 5885 5886 5887 5888 5889
#define SD_INIT_FUNC(type)						\
static noinline struct sched_domain *					\
sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
{									\
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
	*sd = SD_##type##_INIT;						\
	SD_INIT_NAME(sd, type);						\
	sd->private = &tl->data;					\
	return sd;							\
5890 5891 5892 5893 5894 5895 5896 5897 5898
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif
5899 5900 5901
#ifdef CONFIG_SCHED_BOOK
 SD_INIT_FUNC(BOOK)
#endif
5902

5903
static int default_relax_domain_level = -1;
5904
int sched_domain_level_max;
5905 5906 5907

static int __init setup_relax_domain_level(char *str)
{
5908 5909
	if (kstrtoint(str, 0, &default_relax_domain_level))
		pr_warn("Unable to set relax_domain_level\n");
5910

5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
5929
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5930 5931
	} else {
		/* turn on idle balance on this domain */
5932
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5933 5934 5935
	}
}

5936 5937 5938
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

5939 5940 5941 5942 5943
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
5944 5945
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
5946 5947
	case sa_sd:
		free_percpu(d->sd); /* fall through */
5948
	case sa_sd_storage:
5949
		__sdt_free(cpu_map); /* fall through */
5950 5951 5952 5953
	case sa_none:
		break;
	}
}
5954

5955 5956 5957
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
5958 5959
	memset(d, 0, sizeof(*d));

5960 5961
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
5962 5963 5964
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
5965
	d->rd = alloc_rootdomain();
5966
	if (!d->rd)
5967
		return sa_sd;
5968 5969
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
5970

5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

5983
	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5984
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5985 5986

	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5987
		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
5988 5989
}

5990 5991
#ifdef CONFIG_SCHED_SMT
static const struct cpumask *cpu_smt_mask(int cpu)
5992
{
5993
	return topology_thread_cpumask(cpu);
5994
}
5995
#endif
5996

5997 5998 5999
/*
 * Topology list, bottom-up.
 */
6000
static struct sched_domain_topology_level default_topology[] = {
6001 6002
#ifdef CONFIG_SCHED_SMT
	{ sd_init_SIBLING, cpu_smt_mask, },
6003
#endif
6004
#ifdef CONFIG_SCHED_MC
6005
	{ sd_init_MC, cpu_coregroup_mask, },
6006
#endif
6007 6008 6009 6010
#ifdef CONFIG_SCHED_BOOK
	{ sd_init_BOOK, cpu_book_mask, },
#endif
	{ sd_init_CPU, cpu_cpu_mask, },
6011 6012 6013 6014 6015
	{ NULL, },
};

static struct sched_domain_topology_level *sched_domain_topology = default_topology;

6016 6017 6018 6019 6020 6021 6022 6023 6024
#ifdef CONFIG_NUMA

static int sched_domains_numa_levels;
static int *sched_domains_numa_distance;
static struct cpumask ***sched_domains_numa_masks;
static int sched_domains_curr_level;

static inline int sd_local_flags(int level)
{
6025
	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042
		return 0;

	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
}

static struct sched_domain *
sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
{
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
	int level = tl->numa_level;
	int sd_weight = cpumask_weight(
			sched_domains_numa_masks[level][cpu_to_node(cpu)]);

	*sd = (struct sched_domain){
		.min_interval		= sd_weight,
		.max_interval		= 2*sd_weight,
		.busy_factor		= 32,
6043
		.imbalance_pct		= 125,
6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081
		.cache_nice_tries	= 2,
		.busy_idx		= 3,
		.idle_idx		= 2,
		.newidle_idx		= 0,
		.wake_idx		= 0,
		.forkexec_idx		= 0,

		.flags			= 1*SD_LOAD_BALANCE
					| 1*SD_BALANCE_NEWIDLE
					| 0*SD_BALANCE_EXEC
					| 0*SD_BALANCE_FORK
					| 0*SD_BALANCE_WAKE
					| 0*SD_WAKE_AFFINE
					| 0*SD_SHARE_CPUPOWER
					| 0*SD_SHARE_PKG_RESOURCES
					| 1*SD_SERIALIZE
					| 0*SD_PREFER_SIBLING
					| sd_local_flags(level)
					,
		.last_balance		= jiffies,
		.balance_interval	= sd_weight,
	};
	SD_INIT_NAME(sd, NUMA);
	sd->private = &tl->data;

	/*
	 * Ugly hack to pass state to sd_numa_mask()...
	 */
	sched_domains_curr_level = tl->numa_level;

	return sd;
}

static const struct cpumask *sd_numa_mask(int cpu)
{
	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
}

6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117
static void sched_numa_warn(const char *str)
{
	static int done = false;
	int i,j;

	if (done)
		return;

	done = true;

	printk(KERN_WARNING "ERROR: %s\n\n", str);

	for (i = 0; i < nr_node_ids; i++) {
		printk(KERN_WARNING "  ");
		for (j = 0; j < nr_node_ids; j++)
			printk(KERN_CONT "%02d ", node_distance(i,j));
		printk(KERN_CONT "\n");
	}
	printk(KERN_WARNING "\n");
}

static bool find_numa_distance(int distance)
{
	int i;

	if (distance == node_distance(0, 0))
		return true;

	for (i = 0; i < sched_domains_numa_levels; i++) {
		if (sched_domains_numa_distance[i] == distance)
			return true;
	}

	return false;
}

6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138
static void sched_init_numa(void)
{
	int next_distance, curr_distance = node_distance(0, 0);
	struct sched_domain_topology_level *tl;
	int level = 0;
	int i, j, k;

	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
	if (!sched_domains_numa_distance)
		return;

	/*
	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
	 * unique distances in the node_distance() table.
	 *
	 * Assumes node_distance(0,j) includes all distances in
	 * node_distance(i,j) in order to avoid cubic time.
	 */
	next_distance = curr_distance;
	for (i = 0; i < nr_node_ids; i++) {
		for (j = 0; j < nr_node_ids; j++) {
6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162
			for (k = 0; k < nr_node_ids; k++) {
				int distance = node_distance(i, k);

				if (distance > curr_distance &&
				    (distance < next_distance ||
				     next_distance == curr_distance))
					next_distance = distance;

				/*
				 * While not a strong assumption it would be nice to know
				 * about cases where if node A is connected to B, B is not
				 * equally connected to A.
				 */
				if (sched_debug() && node_distance(k, i) != distance)
					sched_numa_warn("Node-distance not symmetric");

				if (sched_debug() && i && !find_numa_distance(distance))
					sched_numa_warn("Node-0 not representative");
			}
			if (next_distance != curr_distance) {
				sched_domains_numa_distance[level++] = next_distance;
				sched_domains_numa_levels = level;
				curr_distance = next_distance;
			} else break;
6163
		}
6164 6165 6166 6167 6168 6169

		/*
		 * In case of sched_debug() we verify the above assumption.
		 */
		if (!sched_debug())
			break;
6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193
	}
	/*
	 * 'level' contains the number of unique distances, excluding the
	 * identity distance node_distance(i,i).
	 *
	 * The sched_domains_nume_distance[] array includes the actual distance
	 * numbers.
	 */

	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
	if (!sched_domains_numa_masks)
		return;

	/*
	 * Now for each level, construct a mask per node which contains all
	 * cpus of nodes that are that many hops away from us.
	 */
	for (i = 0; i < level; i++) {
		sched_domains_numa_masks[i] =
			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
		if (!sched_domains_numa_masks[i])
			return;

		for (j = 0; j < nr_node_ids; j++) {
6194
			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6195 6196 6197 6198 6199 6200
			if (!mask)
				return;

			sched_domains_numa_masks[i][j] = mask;

			for (k = 0; k < nr_node_ids; k++) {
6201
				if (node_distance(j, k) > sched_domains_numa_distance[i])
6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239
					continue;

				cpumask_or(mask, mask, cpumask_of_node(k));
			}
		}
	}

	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
	if (!tl)
		return;

	/*
	 * Copy the default topology bits..
	 */
	for (i = 0; default_topology[i].init; i++)
		tl[i] = default_topology[i];

	/*
	 * .. and append 'j' levels of NUMA goodness.
	 */
	for (j = 0; j < level; i++, j++) {
		tl[i] = (struct sched_domain_topology_level){
			.init = sd_numa_init,
			.mask = sd_numa_mask,
			.flags = SDTL_OVERLAP,
			.numa_level = j,
		};
	}

	sched_domain_topology = tl;
}
#else
static inline void sched_init_numa(void)
{
}
#endif /* CONFIG_NUMA */

6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for (tl = sched_domain_topology; tl->init; tl++) {
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

6256 6257 6258 6259
		sdd->sgp = alloc_percpu(struct sched_group_power *);
		if (!sdd->sgp)
			return -ENOMEM;

6260 6261 6262
		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_group *sg;
6263
			struct sched_group_power *sgp;
6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276

		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

6277 6278
			sg->next = sg;

6279
			*per_cpu_ptr(sdd->sg, j) = sg;
6280

P
Peter Zijlstra 已提交
6281
			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6282 6283 6284 6285 6286
					GFP_KERNEL, cpu_to_node(j));
			if (!sgp)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sgp, j) = sgp;
6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for (tl = sched_domain_topology; tl->init; tl++) {
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314
			struct sched_domain *sd;

			if (sdd->sd) {
				sd = *per_cpu_ptr(sdd->sd, j);
				if (sd && (sd->flags & SD_OVERLAP))
					free_sched_groups(sd->groups, 0);
				kfree(*per_cpu_ptr(sdd->sd, j));
			}

			if (sdd->sg)
				kfree(*per_cpu_ptr(sdd->sg, j));
			if (sdd->sgp)
				kfree(*per_cpu_ptr(sdd->sgp, j));
6315 6316
		}
		free_percpu(sdd->sd);
6317
		sdd->sd = NULL;
6318
		free_percpu(sdd->sg);
6319
		sdd->sg = NULL;
6320
		free_percpu(sdd->sgp);
6321
		sdd->sgp = NULL;
6322 6323 6324
	}
}

6325 6326
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
		struct s_data *d, const struct cpumask *cpu_map,
6327
		struct sched_domain_attr *attr, struct sched_domain *child,
6328 6329
		int cpu)
{
6330
	struct sched_domain *sd = tl->init(tl, cpu);
6331
	if (!sd)
6332
		return child;
6333 6334

	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6335 6336 6337
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6338
		child->parent = sd;
6339
	}
6340
	sd->child = child;
6341
	set_domain_attribute(sd, attr);
6342 6343 6344 6345

	return sd;
}

6346 6347 6348 6349
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
6350 6351
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
6352 6353
{
	enum s_alloc alloc_state = sa_none;
6354
	struct sched_domain *sd;
6355
	struct s_data d;
6356
	int i, ret = -ENOMEM;
6357

6358 6359 6360
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
6361

6362
	/* Set up domains for cpus specified by the cpu_map. */
6363
	for_each_cpu(i, cpu_map) {
6364 6365
		struct sched_domain_topology_level *tl;

6366
		sd = NULL;
6367
		for (tl = sched_domain_topology; tl->init; tl++) {
6368
			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6369 6370
			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
				sd->flags |= SD_OVERLAP;
6371 6372
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
				break;
6373
		}
6374

6375 6376 6377
		while (sd->child)
			sd = sd->child;

6378
		*per_cpu_ptr(d.sd, i) = sd;
6379 6380 6381 6382 6383 6384
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6385 6386 6387 6388 6389 6390 6391
			if (sd->flags & SD_OVERLAP) {
				if (build_overlap_sched_groups(sd, i))
					goto error;
			} else {
				if (build_sched_groups(sd, i))
					goto error;
			}
6392
		}
6393
	}
6394

L
Linus Torvalds 已提交
6395
	/* Calculate CPU power for physical packages and nodes */
6396 6397 6398
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
6399

6400 6401
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
6402
			init_sched_groups_power(i, sd);
6403
		}
6404
	}
6405

L
Linus Torvalds 已提交
6406
	/* Attach the domains */
6407
	rcu_read_lock();
6408
	for_each_cpu(i, cpu_map) {
6409
		sd = *per_cpu_ptr(d.sd, i);
6410
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
6411
	}
6412
	rcu_read_unlock();
6413

6414
	ret = 0;
6415
error:
6416
	__free_domain_allocs(&d, alloc_state, cpu_map);
6417
	return ret;
L
Linus Torvalds 已提交
6418
}
P
Paul Jackson 已提交
6419

6420
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
6421
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
6422 6423
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
6424 6425 6426

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
6427 6428
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
6429
 */
6430
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
6431

6432 6433 6434 6435 6436 6437
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
6438
{
6439
	return 0;
6440 6441
}

6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

6467
/*
I
Ingo Molnar 已提交
6468
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6469 6470
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6471
 */
6472
static int init_sched_domains(const struct cpumask *cpu_map)
6473
{
6474 6475
	int err;

6476
	arch_update_cpu_topology();
P
Paul Jackson 已提交
6477
	ndoms_cur = 1;
6478
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
6479
	if (!doms_cur)
6480 6481
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6482
	err = build_sched_domains(doms_cur[0], NULL);
6483
	register_sched_domain_sysctl();
6484 6485

	return err;
6486 6487 6488 6489 6490 6491
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6492
static void detach_destroy_domains(const struct cpumask *cpu_map)
6493 6494 6495
{
	int i;

6496
	rcu_read_lock();
6497
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
6498
		cpu_attach_domain(NULL, &def_root_domain, i);
6499
	rcu_read_unlock();
6500 6501
}

6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
6518 6519
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
6520
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
6521 6522 6523
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
6524
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
6525 6526 6527
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
6528 6529 6530
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
6531 6532 6533 6534 6535 6536
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
6537
 *
6538
 * If doms_new == NULL it will be replaced with cpu_online_mask.
6539 6540
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
6541
 *
P
Paul Jackson 已提交
6542 6543
 * Call with hotplug lock held
 */
6544
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6545
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
6546
{
6547
	int i, j, n;
6548
	int new_topology;
P
Paul Jackson 已提交
6549

6550
	mutex_lock(&sched_domains_mutex);
6551

6552 6553 6554
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

6555 6556 6557
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

6558
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
6559 6560 6561

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
6562
		for (j = 0; j < n && !new_topology; j++) {
6563
			if (cpumask_equal(doms_cur[i], doms_new[j])
6564
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
6565 6566 6567
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
6568
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
6569 6570 6571 6572
match1:
		;
	}

6573 6574
	if (doms_new == NULL) {
		ndoms_cur = 0;
6575
		doms_new = &fallback_doms;
6576
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6577
		WARN_ON_ONCE(dattr_new);
6578 6579
	}

P
Paul Jackson 已提交
6580 6581
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
6582
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6583
			if (cpumask_equal(doms_new[i], doms_cur[j])
6584
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
6585 6586 6587
				goto match2;
		}
		/* no match - add a new doms_new */
6588
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
6589 6590 6591 6592 6593
match2:
		;
	}

	/* Remember the new sched domains */
6594 6595
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
6596
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
6597
	doms_cur = doms_new;
6598
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
6599
	ndoms_cur = ndoms_new;
6600 6601

	register_sched_domain_sysctl();
6602

6603
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
6604 6605
}

6606 6607
static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */

L
Linus Torvalds 已提交
6608
/*
6609 6610 6611
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
6612 6613 6614
 *
 * If we come here as part of a suspend/resume, don't touch cpusets because we
 * want to restore it back to its original state upon resume anyway.
L
Linus Torvalds 已提交
6615
 */
6616 6617
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
6618
{
6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640
	switch (action) {
	case CPU_ONLINE_FROZEN:
	case CPU_DOWN_FAILED_FROZEN:

		/*
		 * num_cpus_frozen tracks how many CPUs are involved in suspend
		 * resume sequence. As long as this is not the last online
		 * operation in the resume sequence, just build a single sched
		 * domain, ignoring cpusets.
		 */
		num_cpus_frozen--;
		if (likely(num_cpus_frozen)) {
			partition_sched_domains(1, NULL, NULL);
			break;
		}

		/*
		 * This is the last CPU online operation. So fall through and
		 * restore the original sched domains by considering the
		 * cpuset configurations.
		 */

6641
	case CPU_ONLINE:
6642
	case CPU_DOWN_FAILED:
6643
		cpuset_update_active_cpus(true);
6644
		break;
6645 6646 6647
	default:
		return NOTIFY_DONE;
	}
6648
	return NOTIFY_OK;
6649
}
6650

6651 6652
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
6653
{
6654
	switch (action) {
6655
	case CPU_DOWN_PREPARE:
6656
		cpuset_update_active_cpus(false);
6657 6658 6659 6660 6661
		break;
	case CPU_DOWN_PREPARE_FROZEN:
		num_cpus_frozen++;
		partition_sched_domains(1, NULL, NULL);
		break;
6662 6663 6664
	default:
		return NOTIFY_DONE;
	}
6665
	return NOTIFY_OK;
6666 6667
}

L
Linus Torvalds 已提交
6668 6669
void __init sched_init_smp(void)
{
6670 6671 6672
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6673
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6674

6675 6676
	sched_init_numa();

6677
	get_online_cpus();
6678
	mutex_lock(&sched_domains_mutex);
6679
	init_sched_domains(cpu_active_mask);
6680 6681 6682
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6683
	mutex_unlock(&sched_domains_mutex);
6684
	put_online_cpus();
6685

6686 6687
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6688 6689 6690 6691

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

6692
	init_hrtick();
6693 6694

	/* Move init over to a non-isolated CPU */
6695
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6696
		BUG();
I
Ingo Molnar 已提交
6697
	sched_init_granularity();
6698
	free_cpumask_var(non_isolated_cpus);
6699

6700
	init_sched_rt_class();
L
Linus Torvalds 已提交
6701 6702 6703 6704
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6705
	sched_init_granularity();
L
Linus Torvalds 已提交
6706 6707 6708
}
#endif /* CONFIG_SMP */

6709 6710
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
6711 6712 6713 6714 6715 6716 6717
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

6718 6719
#ifdef CONFIG_CGROUP_SCHED
struct task_group root_task_group;
6720
LIST_HEAD(task_groups);
6721
#endif
P
Peter Zijlstra 已提交
6722

6723
DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
P
Peter Zijlstra 已提交
6724

L
Linus Torvalds 已提交
6725 6726
void __init sched_init(void)
{
I
Ingo Molnar 已提交
6727
	int i, j;
6728 6729 6730 6731 6732 6733 6734
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6735
#endif
6736
#ifdef CONFIG_CPUMASK_OFFSTACK
6737
	alloc_size += num_possible_cpus() * cpumask_size();
6738 6739
#endif
	if (alloc_size) {
6740
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6741 6742

#ifdef CONFIG_FAIR_GROUP_SCHED
6743
		root_task_group.se = (struct sched_entity **)ptr;
6744 6745
		ptr += nr_cpu_ids * sizeof(void **);

6746
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6747
		ptr += nr_cpu_ids * sizeof(void **);
6748

6749
#endif /* CONFIG_FAIR_GROUP_SCHED */
6750
#ifdef CONFIG_RT_GROUP_SCHED
6751
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6752 6753
		ptr += nr_cpu_ids * sizeof(void **);

6754
		root_task_group.rt_rq = (struct rt_rq **)ptr;
6755 6756
		ptr += nr_cpu_ids * sizeof(void **);

6757
#endif /* CONFIG_RT_GROUP_SCHED */
6758 6759 6760 6761 6762 6763
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
6764
	}
I
Ingo Molnar 已提交
6765

G
Gregory Haskins 已提交
6766 6767 6768 6769
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

6770 6771 6772 6773
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
6774
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6775
			global_rt_period(), global_rt_runtime());
6776
#endif /* CONFIG_RT_GROUP_SCHED */
6777

D
Dhaval Giani 已提交
6778
#ifdef CONFIG_CGROUP_SCHED
6779 6780
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
6781
	INIT_LIST_HEAD(&root_task_group.siblings);
6782
	autogroup_init(&init_task);
6783

D
Dhaval Giani 已提交
6784
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
6785

6786 6787 6788 6789 6790 6791
#ifdef CONFIG_CGROUP_CPUACCT
	root_cpuacct.cpustat = &kernel_cpustat;
	root_cpuacct.cpuusage = alloc_percpu(u64);
	/* Too early, not expected to fail */
	BUG_ON(!root_cpuacct.cpuusage);
#endif
6792
	for_each_possible_cpu(i) {
6793
		struct rq *rq;
L
Linus Torvalds 已提交
6794 6795

		rq = cpu_rq(i);
6796
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
6797
		rq->nr_running = 0;
6798 6799
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
6800
		init_cfs_rq(&rq->cfs);
P
Peter Zijlstra 已提交
6801
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
6802
#ifdef CONFIG_FAIR_GROUP_SCHED
6803
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
6804
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
6805
		/*
6806
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
6807 6808 6809 6810
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
6811
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
6812 6813 6814
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
6815
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
6816 6817 6818
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
6819
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
6820
		 *
6821 6822
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
6823
		 */
6824
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6825
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
6826 6827 6828
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6829
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
6830
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6831
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
6832
#endif
L
Linus Torvalds 已提交
6833

I
Ingo Molnar 已提交
6834 6835
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
6836 6837 6838

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
6839
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6840
		rq->sd = NULL;
G
Gregory Haskins 已提交
6841
		rq->rd = NULL;
6842
		rq->cpu_power = SCHED_POWER_SCALE;
6843
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
6844
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6845
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6846
		rq->push_cpu = 0;
6847
		rq->cpu = i;
6848
		rq->online = 0;
6849 6850
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
6851 6852 6853

		INIT_LIST_HEAD(&rq->cfs_tasks);

6854
		rq_attach_root(rq, &def_root_domain);
6855
#ifdef CONFIG_NO_HZ
6856
		rq->nohz_flags = 0;
6857
#endif
L
Linus Torvalds 已提交
6858
#endif
P
Peter Zijlstra 已提交
6859
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
6860 6861 6862
		atomic_set(&rq->nr_iowait, 0);
	}

6863
	set_load_weight(&init_task);
6864

6865 6866 6867 6868
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

6869
#ifdef CONFIG_RT_MUTEXES
6870
	plist_head_init(&init_task.pi_waiters);
6871 6872
#endif

L
Linus Torvalds 已提交
6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
6886 6887 6888

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
6889 6890 6891 6892
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
6893

6894
#ifdef CONFIG_SMP
6895
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
R
Rusty Russell 已提交
6896 6897 6898
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6899
	idle_thread_set_boot_cpu();
6900 6901
#endif
	init_sched_fair_class();
6902

6903
	scheduler_running = 1;
L
Linus Torvalds 已提交
6904 6905
}

6906
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6907 6908
static inline int preempt_count_equals(int preempt_offset)
{
6909
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6910

A
Arnd Bergmann 已提交
6911
	return (nested == preempt_offset);
6912 6913
}

6914
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
6915 6916 6917
{
	static unsigned long prev_jiffy;	/* ratelimiting */

6918
	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6919 6920
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
6921 6922 6923 6924 6925
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
6926 6927 6928 6929 6930 6931 6932
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
6933 6934 6935 6936 6937

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
6938 6939 6940 6941 6942
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
6943 6944
static void normalize_task(struct rq *rq, struct task_struct *p)
{
P
Peter Zijlstra 已提交
6945 6946
	const struct sched_class *prev_class = p->sched_class;
	int old_prio = p->prio;
6947
	int on_rq;
6948

P
Peter Zijlstra 已提交
6949
	on_rq = p->on_rq;
6950
	if (on_rq)
6951
		dequeue_task(rq, p, 0);
6952 6953
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
6954
		enqueue_task(rq, p, 0);
6955 6956
		resched_task(rq->curr);
	}
P
Peter Zijlstra 已提交
6957 6958

	check_class_changed(rq, p, prev_class, old_prio);
6959 6960
}

L
Linus Torvalds 已提交
6961 6962
void normalize_rt_tasks(void)
{
6963
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6964
	unsigned long flags;
6965
	struct rq *rq;
L
Linus Torvalds 已提交
6966

6967
	read_lock_irqsave(&tasklist_lock, flags);
6968
	do_each_thread(g, p) {
6969 6970 6971 6972 6973 6974
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
6975 6976
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
6977 6978 6979
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
6980
#endif
I
Ingo Molnar 已提交
6981 6982 6983 6984 6985 6986 6987 6988

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
6989
			continue;
I
Ingo Molnar 已提交
6990
		}
L
Linus Torvalds 已提交
6991

6992
		raw_spin_lock(&p->pi_lock);
6993
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
6994

6995
		normalize_task(rq, p);
6996

6997
		__task_rq_unlock(rq);
6998
		raw_spin_unlock(&p->pi_lock);
6999 7000
	} while_each_thread(g, p);

7001
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7002 7003 7004
}

#endif /* CONFIG_MAGIC_SYSRQ */
7005

7006
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7007
/*
7008
 * These functions are only useful for the IA64 MCA handling, or kdb.
7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7023
struct task_struct *curr_task(int cpu)
7024 7025 7026 7027
{
	return cpu_curr(cpu);
}

7028 7029 7030
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
7031 7032 7033 7034 7035 7036
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7037 7038
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7039 7040 7041 7042 7043 7044 7045
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7046
void set_curr_task(int cpu, struct task_struct *p)
7047 7048 7049 7050 7051
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7052

D
Dhaval Giani 已提交
7053
#ifdef CONFIG_CGROUP_SCHED
7054 7055 7056
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

7057 7058 7059 7060
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
7061
	autogroup_free(tg);
7062 7063 7064 7065
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
7066
struct task_group *sched_create_group(struct task_group *parent)
7067 7068 7069 7070 7071 7072 7073 7074
{
	struct task_group *tg;
	unsigned long flags;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

7075
	if (!alloc_fair_sched_group(tg, parent))
7076 7077
		goto err;

7078
	if (!alloc_rt_sched_group(tg, parent))
7079 7080
		goto err;

7081
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7082
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
7083 7084 7085 7086 7087

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
7088
	list_add_rcu(&tg->siblings, &parent->children);
7089
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7090

7091
	return tg;
S
Srivatsa Vaddagiri 已提交
7092 7093

err:
P
Peter Zijlstra 已提交
7094
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
7095 7096 7097
	return ERR_PTR(-ENOMEM);
}

7098
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
7099
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7100 7101
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
7102
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
7103 7104
}

7105
/* Destroy runqueue etc associated with a task group */
7106
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7107
{
7108
	unsigned long flags;
7109
	int i;
S
Srivatsa Vaddagiri 已提交
7110

7111 7112
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
7113
		unregister_fair_sched_group(tg, i);
7114 7115

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7116
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
7117
	list_del_rcu(&tg->siblings);
7118
	spin_unlock_irqrestore(&task_group_lock, flags);
7119 7120

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
7121
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
7122 7123
}

7124
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7125 7126 7127
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7128 7129
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7130
{
P
Peter Zijlstra 已提交
7131
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
7132 7133 7134 7135 7136 7137
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

7138
	running = task_current(rq, tsk);
P
Peter Zijlstra 已提交
7139
	on_rq = tsk->on_rq;
S
Srivatsa Vaddagiri 已提交
7140

7141
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
7142
		dequeue_task(rq, tsk, 0);
7143 7144
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7145

P
Peter Zijlstra 已提交
7146 7147 7148 7149 7150 7151
	tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
				lockdep_is_held(&tsk->sighand->siglock)),
			  struct task_group, css);
	tg = autogroup_task_group(tsk, tg);
	tsk->sched_task_group = tg;

P
Peter Zijlstra 已提交
7152
#ifdef CONFIG_FAIR_GROUP_SCHED
7153 7154 7155
	if (tsk->sched_class->task_move_group)
		tsk->sched_class->task_move_group(tsk, on_rq);
	else
P
Peter Zijlstra 已提交
7156
#endif
7157
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
7158

7159 7160 7161
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
7162
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
7163

7164
	task_rq_unlock(rq, tsk, &flags);
S
Srivatsa Vaddagiri 已提交
7165
}
D
Dhaval Giani 已提交
7166
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
7167

7168
#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
P
Peter Zijlstra 已提交
7169 7170 7171
static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7172
		return 1ULL << 20;
P
Peter Zijlstra 已提交
7173

P
Peter Zijlstra 已提交
7174
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
7175
}
7176 7177 7178 7179 7180 7181 7182
#endif

#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
P
Peter Zijlstra 已提交
7183

P
Peter Zijlstra 已提交
7184 7185
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
7186
{
P
Peter Zijlstra 已提交
7187
	struct task_struct *g, *p;
7188

P
Peter Zijlstra 已提交
7189
	do_each_thread(g, p) {
7190
		if (rt_task(p) && task_rq(p)->rt.tg == tg)
P
Peter Zijlstra 已提交
7191 7192
			return 1;
	} while_each_thread(g, p);
7193

P
Peter Zijlstra 已提交
7194 7195
	return 0;
}
7196

P
Peter Zijlstra 已提交
7197 7198 7199 7200 7201
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
7202

7203
static int tg_rt_schedulable(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
7204 7205 7206 7207 7208
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
7209

P
Peter Zijlstra 已提交
7210 7211
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
7212

P
Peter Zijlstra 已提交
7213 7214 7215
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
7216 7217
	}

7218 7219 7220 7221 7222
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
7223

7224 7225 7226
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
7227 7228
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
7229

P
Peter Zijlstra 已提交
7230
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7231

7232 7233 7234 7235 7236
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
7237

7238 7239 7240
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
7241 7242 7243
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7244

P
Peter Zijlstra 已提交
7245 7246 7247 7248
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
7249

P
Peter Zijlstra 已提交
7250
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7251
	}
P
Peter Zijlstra 已提交
7252

P
Peter Zijlstra 已提交
7253 7254 7255 7256
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
7257 7258
}

P
Peter Zijlstra 已提交
7259
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7260
{
7261 7262
	int ret;

P
Peter Zijlstra 已提交
7263 7264 7265 7266 7267 7268
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

7269 7270 7271 7272 7273
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7274 7275
}

7276
static int tg_set_rt_bandwidth(struct task_group *tg,
7277
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
7278
{
P
Peter Zijlstra 已提交
7279
	int i, err = 0;
P
Peter Zijlstra 已提交
7280 7281

	mutex_lock(&rt_constraints_mutex);
7282
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
7283 7284
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
7285
		goto unlock;
P
Peter Zijlstra 已提交
7286

7287
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7288 7289
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
7290 7291 7292 7293

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

7294
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7295
		rt_rq->rt_runtime = rt_runtime;
7296
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7297
	}
7298
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
7299
unlock:
7300
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
7301 7302 7303
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
7304 7305
}

7306 7307 7308 7309 7310 7311 7312 7313 7314
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

7315
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7316 7317
}

P
Peter Zijlstra 已提交
7318 7319 7320 7321
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

7322
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7323 7324
		return -1;

7325
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7326 7327 7328
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
7329 7330 7331 7332 7333 7334 7335 7336

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

7337 7338 7339
	if (rt_period == 0)
		return -EINVAL;

7340
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
7354
	u64 runtime, period;
7355 7356
	int ret = 0;

7357 7358 7359
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7360 7361 7362 7363 7364 7365 7366 7367
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
7368

7369
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
7370
	read_lock(&tasklist_lock);
7371
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
7372
	read_unlock(&tasklist_lock);
7373 7374 7375 7376
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
7377 7378 7379 7380 7381 7382 7383 7384 7385 7386

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

7387
#else /* !CONFIG_RT_GROUP_SCHED */
7388 7389
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
7390 7391 7392
	unsigned long flags;
	int i;

7393 7394 7395
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7396 7397 7398 7399 7400 7401 7402
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

7403
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7404 7405 7406
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

7407
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7408
		rt_rq->rt_runtime = global_rt_runtime();
7409
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7410
	}
7411
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7412

7413 7414
	return 0;
}
7415
#endif /* CONFIG_RT_GROUP_SCHED */
7416 7417

int sched_rt_handler(struct ctl_table *table, int write,
7418
		void __user *buffer, size_t *lenp,
7419 7420 7421 7422 7423 7424 7425 7426 7427 7428
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

7429
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
7446

7447
#ifdef CONFIG_CGROUP_SCHED
7448 7449

/* return corresponding task_group object of a cgroup */
7450
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7451
{
7452 7453
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
7454 7455
}

7456
static struct cgroup_subsys_state *cpu_cgroup_create(struct cgroup *cgrp)
7457
{
7458
	struct task_group *tg, *parent;
7459

7460
	if (!cgrp->parent) {
7461
		/* This is early initialization for the top cgroup */
7462
		return &root_task_group.css;
7463 7464
	}

7465 7466
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
7467 7468 7469 7470 7471 7472
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

7473
static void cpu_cgroup_destroy(struct cgroup *cgrp)
7474
{
7475
	struct task_group *tg = cgroup_tg(cgrp);
7476 7477 7478 7479

	sched_destroy_group(tg);
}

7480
static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7481
				 struct cgroup_taskset *tset)
7482
{
7483 7484 7485
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset) {
7486
#ifdef CONFIG_RT_GROUP_SCHED
7487 7488
		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
			return -EINVAL;
7489
#else
7490 7491 7492
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
7493
#endif
7494
	}
7495 7496
	return 0;
}
7497

7498
static void cpu_cgroup_attach(struct cgroup *cgrp,
7499
			      struct cgroup_taskset *tset)
7500
{
7501 7502 7503 7504
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset)
		sched_move_task(task);
7505 7506
}

7507
static void
7508 7509
cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
		struct task_struct *task)
7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	sched_move_task(task);
}

7522
#ifdef CONFIG_FAIR_GROUP_SCHED
7523
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7524
				u64 shareval)
7525
{
7526
	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7527 7528
}

7529
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7530
{
7531
	struct task_group *tg = cgroup_tg(cgrp);
7532

7533
	return (u64) scale_load_down(tg->shares);
7534
}
7535 7536

#ifdef CONFIG_CFS_BANDWIDTH
7537 7538
static DEFINE_MUTEX(cfs_constraints_mutex);

7539 7540 7541
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

7542 7543
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

7544 7545
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
7546
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7547
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

7568 7569 7570 7571 7572
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

7573
	runtime_enabled = quota != RUNTIME_INF;
7574 7575
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7576 7577 7578
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
7579

P
Paul Turner 已提交
7580
	__refill_cfs_bandwidth_runtime(cfs_b);
7581 7582 7583 7584 7585 7586
	/* restart the period timer (if active) to handle new period expiry */
	if (runtime_enabled && cfs_b->timer_active) {
		/* force a reprogram */
		cfs_b->timer_active = 0;
		__start_cfs_bandwidth(cfs_b);
	}
7587 7588 7589 7590
	raw_spin_unlock_irq(&cfs_b->lock);

	for_each_possible_cpu(i) {
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7591
		struct rq *rq = cfs_rq->rq;
7592 7593

		raw_spin_lock_irq(&rq->lock);
7594
		cfs_rq->runtime_enabled = runtime_enabled;
7595
		cfs_rq->runtime_remaining = 0;
7596

7597
		if (cfs_rq->throttled)
7598
			unthrottle_cfs_rq(cfs_rq);
7599 7600
		raw_spin_unlock_irq(&rq->lock);
	}
7601 7602
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
7603

7604
	return ret;
7605 7606 7607 7608 7609 7610
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

7611
	period = ktime_to_ns(tg->cfs_bandwidth.period);
7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

7624
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7625 7626
		return -1;

7627
	quota_us = tg->cfs_bandwidth.quota;
7628 7629 7630 7631 7632 7633 7634 7635 7636 7637
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
7638
	quota = tg->cfs_bandwidth.quota;
7639 7640 7641 7642 7643 7644 7645 7646

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

7647
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
{
	return tg_get_cfs_quota(cgroup_tg(cgrp));
}

static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
				s64 cfs_quota_us)
{
	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
}

static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
{
	return tg_get_cfs_period(cgroup_tg(cgrp));
}

static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
				u64 cfs_period_us)
{
	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
}

7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
7707
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7708 7709 7710 7711 7712
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
7713
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733

		quota = normalize_cfs_quota(tg, d);
		parent_quota = parent_b->hierarchal_quota;

		/*
		 * ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
	cfs_b->hierarchal_quota = quota;

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
7734
	int ret;
7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

7746 7747 7748 7749 7750
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7751
}
7752 7753 7754 7755 7756

static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct task_group *tg = cgroup_tg(cgrp);
7757
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7758 7759 7760 7761 7762 7763 7764

	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
	cb->fill(cb, "throttled_time", cfs_b->throttled_time);

	return 0;
}
7765
#endif /* CONFIG_CFS_BANDWIDTH */
7766
#endif /* CONFIG_FAIR_GROUP_SCHED */
7767

7768
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
7769
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7770
				s64 val)
P
Peter Zijlstra 已提交
7771
{
7772
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
7773 7774
}

7775
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
7776
{
7777
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
7778
}
7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
7790
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
7791

7792
static struct cftype cpu_files[] = {
7793
#ifdef CONFIG_FAIR_GROUP_SCHED
7794 7795
	{
		.name = "shares",
7796 7797
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
7798
	},
7799
#endif
7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
7811 7812 7813 7814
	{
		.name = "stat",
		.read_map = cpu_stats_show,
	},
7815
#endif
7816
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7817
	{
P
Peter Zijlstra 已提交
7818
		.name = "rt_runtime_us",
7819 7820
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
7821
	},
7822 7823
	{
		.name = "rt_period_us",
7824 7825
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
7826
	},
7827
#endif
7828
	{ }	/* terminate */
7829 7830 7831
};

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
7832 7833 7834
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
7835 7836
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
7837
	.exit		= cpu_cgroup_exit,
I
Ingo Molnar 已提交
7838
	.subsys_id	= cpu_cgroup_subsys_id,
7839
	.base_cftypes	= cpu_files,
7840 7841 7842
	.early_init	= 1,
};

7843
#endif	/* CONFIG_CGROUP_SCHED */
7844 7845 7846 7847 7848 7849 7850 7851 7852 7853

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

7854 7855
struct cpuacct root_cpuacct;

7856
/* create a new cpu accounting group */
7857
static struct cgroup_subsys_state *cpuacct_create(struct cgroup *cgrp)
7858
{
7859
	struct cpuacct *ca;
7860

7861 7862 7863 7864
	if (!cgrp->parent)
		return &root_cpuacct.css;

	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7865
	if (!ca)
7866
		goto out;
7867 7868

	ca->cpuusage = alloc_percpu(u64);
7869 7870 7871
	if (!ca->cpuusage)
		goto out_free_ca;

7872 7873 7874
	ca->cpustat = alloc_percpu(struct kernel_cpustat);
	if (!ca->cpustat)
		goto out_free_cpuusage;
7875

7876
	return &ca->css;
7877

7878
out_free_cpuusage:
7879 7880 7881 7882 7883
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
7884 7885 7886
}

/* destroy an existing cpu accounting group */
7887
static void cpuacct_destroy(struct cgroup *cgrp)
7888
{
7889
	struct cpuacct *ca = cgroup_ca(cgrp);
7890

7891
	free_percpu(ca->cpustat);
7892 7893 7894 7895
	free_percpu(ca->cpuusage);
	kfree(ca);
}

7896 7897
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
7898
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
7899 7900 7901 7902 7903 7904
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
7905
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
7906
	data = *cpuusage;
7907
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
7908 7909 7910 7911 7912 7913 7914 7915 7916
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
7917
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
7918 7919 7920 7921 7922

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
7923
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
7924
	*cpuusage = val;
7925
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
7926 7927 7928 7929 7930
#else
	*cpuusage = val;
#endif
}

7931
/* return total cpu usage (in nanoseconds) of a group */
7932
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
7933
{
7934
	struct cpuacct *ca = cgroup_ca(cgrp);
7935 7936 7937
	u64 totalcpuusage = 0;
	int i;

7938 7939
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
7940 7941 7942 7943

	return totalcpuusage;
}

7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

7956 7957
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
7958 7959 7960 7961 7962

out:
	return err;
}

7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

7978 7979 7980 7981 7982 7983
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
7984
			      struct cgroup_map_cb *cb)
7985 7986
{
	struct cpuacct *ca = cgroup_ca(cgrp);
7987 7988
	int cpu;
	s64 val = 0;
7989

7990 7991 7992 7993
	for_each_online_cpu(cpu) {
		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
		val += kcpustat->cpustat[CPUTIME_USER];
		val += kcpustat->cpustat[CPUTIME_NICE];
7994
	}
7995 7996
	val = cputime64_to_clock_t(val);
	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
7997

7998 7999 8000 8001 8002 8003
	val = 0;
	for_each_online_cpu(cpu) {
		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
		val += kcpustat->cpustat[CPUTIME_SYSTEM];
		val += kcpustat->cpustat[CPUTIME_IRQ];
		val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8004
	}
8005 8006 8007 8008

	val = cputime64_to_clock_t(val);
	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);

8009 8010 8011
	return 0;
}

8012 8013 8014
static struct cftype files[] = {
	{
		.name = "usage",
8015 8016
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
8017
	},
8018 8019 8020 8021
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
8022 8023 8024 8025
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
8026
	{ }	/* terminate */
8027 8028 8029 8030 8031 8032 8033
};

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
8034
void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8035 8036
{
	struct cpuacct *ca;
8037
	int cpu;
8038

L
Li Zefan 已提交
8039
	if (unlikely(!cpuacct_subsys.active))
8040 8041
		return;

8042
	cpu = task_cpu(tsk);
8043 8044 8045

	rcu_read_lock();

8046 8047
	ca = task_ca(tsk);

8048
	for (; ca; ca = parent_ca(ca)) {
8049
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8050 8051
		*cpuusage += cputime;
	}
8052 8053

	rcu_read_unlock();
8054 8055 8056 8057 8058 8059 8060
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.subsys_id = cpuacct_subsys_id,
8061
	.base_cftypes = files,
8062 8063
};
#endif	/* CONFIG_CGROUP_CPUACCT */