memcontrol.c 151.6 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

28
#include <linux/page_counter.h>
B
Balbir Singh 已提交
29 30
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47
#include <linux/eventfd.h>
48
#include <linux/poll.h>
49
#include <linux/sort.h>
50
#include <linux/fs.h>
51
#include <linux/seq_file.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/swap_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
57
#include <linux/lockdep.h>
58
#include <linux/file.h>
K
KAMEZAWA Hiroyuki 已提交
59
#include "internal.h"
G
Glauber Costa 已提交
60
#include <net/sock.h>
M
Michal Hocko 已提交
61
#include <net/ip.h>
G
Glauber Costa 已提交
62
#include <net/tcp_memcontrol.h>
63
#include "slab.h"
B
Balbir Singh 已提交
64

65 66
#include <asm/uaccess.h>

67 68
#include <trace/events/vmscan.h>

69 70
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
71

72
#define MEM_CGROUP_RECLAIM_RETRIES	5
73
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
74

A
Andrew Morton 已提交
75
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
76
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77
int do_swap_account __read_mostly;
78 79

/* for remember boot option*/
A
Andrew Morton 已提交
80
#ifdef CONFIG_MEMCG_SWAP_ENABLED
81 82
static int really_do_swap_account __initdata = 1;
#else
83
static int really_do_swap_account __initdata;
84 85
#endif

86
#else
87
#define do_swap_account		0
88 89 90
#endif


91 92 93
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
94
	"rss_huge",
95
	"mapped_file",
96
	"writeback",
97 98 99
	"swap",
};

100 101 102
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
103 104
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
105 106
	MEM_CGROUP_EVENTS_NSTATS,
};
107 108 109 110 111 112 113 114

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

115 116 117 118 119 120 121 122
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

123 124 125 126 127 128 129 130
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
131
	MEM_CGROUP_TARGET_SOFTLIMIT,
132
	MEM_CGROUP_TARGET_NUMAINFO,
133 134
	MEM_CGROUP_NTARGETS,
};
135 136 137
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
138

139
struct mem_cgroup_stat_cpu {
140
	long count[MEM_CGROUP_STAT_NSTATS];
141
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142
	unsigned long nr_page_events;
143
	unsigned long targets[MEM_CGROUP_NTARGETS];
144 145
};

146 147
struct reclaim_iter {
	struct mem_cgroup *position;
148 149 150 151
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

152 153 154 155
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
156
	struct lruvec		lruvec;
157
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
158

159
	struct reclaim_iter	iter[DEF_PRIORITY + 1];
160

161
	struct rb_node		tree_node;	/* RB tree node */
162
	unsigned long		usage_in_excess;/* Set to the value by which */
163 164
						/* the soft limit is exceeded*/
	bool			on_tree;
165
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
166
						/* use container_of	   */
167 168 169 170 171 172
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

193 194
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
195
	unsigned long threshold;
196 197
};

K
KAMEZAWA Hiroyuki 已提交
198
/* For threshold */
199
struct mem_cgroup_threshold_ary {
200
	/* An array index points to threshold just below or equal to usage. */
201
	int current_threshold;
202 203 204 205 206
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
207 208 209 210 211 212 213 214 215 216 217 218

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
219 220 221 222 223
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
224

225 226 227
/*
 * cgroup_event represents events which userspace want to receive.
 */
228
struct mem_cgroup_event {
229
	/*
230
	 * memcg which the event belongs to.
231
	 */
232
	struct mem_cgroup *memcg;
233 234 235 236 237 238 239 240
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
241 242 243 244 245
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
246
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
247
			      struct eventfd_ctx *eventfd, const char *args);
248 249 250 251 252
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
253
	void (*unregister_event)(struct mem_cgroup *memcg,
254
				 struct eventfd_ctx *eventfd);
255 256 257 258 259 260 261 262 263 264
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

265 266
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
267

B
Balbir Singh 已提交
268 269 270 271 272 273 274
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
275 276 277
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
278 279 280
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
281 282 283 284 285 286 287

	/* Accounted resources */
	struct page_counter memory;
	struct page_counter memsw;
	struct page_counter kmem;

	unsigned long soft_limit;
288

289 290 291
	/* vmpressure notifications */
	struct vmpressure vmpressure;

292 293 294
	/* css_online() has been completed */
	int initialized;

295 296 297 298
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
299
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
300 301 302

	bool		oom_lock;
	atomic_t	under_oom;
303
	atomic_t	oom_wakeups;
304

305
	int	swappiness;
306 307
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
308

309 310 311 312
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
313
	struct mem_cgroup_thresholds thresholds;
314

315
	/* thresholds for mem+swap usage. RCU-protected */
316
	struct mem_cgroup_thresholds memsw_thresholds;
317

K
KAMEZAWA Hiroyuki 已提交
318 319
	/* For oom notifier event fd */
	struct list_head oom_notify;
320

321 322 323 324
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
A
Andrew Morton 已提交
325
	unsigned long move_charge_at_immigrate;
326 327 328 329
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
330 331
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
332
	/*
333
	 * percpu counter.
334
	 */
335
	struct mem_cgroup_stat_cpu __percpu *stat;
336 337 338 339 340 341
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
342

M
Michal Hocko 已提交
343
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
344
	struct cg_proto tcp_mem;
G
Glauber Costa 已提交
345
#endif
346
#if defined(CONFIG_MEMCG_KMEM)
347 348
	/* analogous to slab_common's slab_caches list, but per-memcg;
	 * protected by memcg_slab_mutex */
349 350 351 352
	struct list_head memcg_slab_caches;
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
353 354 355 356 357 358 359

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
360

361 362 363 364
	/* List of events which userspace want to receive */
	struct list_head event_list;
	spinlock_t event_list_lock;

365 366
	struct mem_cgroup_per_node *nodeinfo[0];
	/* WARNING: nodeinfo must be the last member here */
B
Balbir Singh 已提交
367 368
};

369 370
/* internal only representation about the status of kmem accounting. */
enum {
371
	KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
372 373 374 375 376 377 378
};

#ifdef CONFIG_MEMCG_KMEM
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}
379 380 381 382 383 384

static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}

385 386
#endif

387 388
/* Stuffs for move charges at task migration. */
/*
389 390
 * Types of charges to be moved. "move_charge_at_immitgrate" and
 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
391 392
 */
enum move_type {
393
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
394
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
395 396 397
	NR_MOVE_TYPE,
};

398 399
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
400
	spinlock_t	  lock; /* for from, to */
401 402
	struct mem_cgroup *from;
	struct mem_cgroup *to;
403
	unsigned long immigrate_flags;
404
	unsigned long precharge;
405
	unsigned long moved_charge;
406
	unsigned long moved_swap;
407 408 409
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
410
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
411 412
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
413

D
Daisuke Nishimura 已提交
414 415
static bool move_anon(void)
{
416
	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
D
Daisuke Nishimura 已提交
417 418
}

419 420
static bool move_file(void)
{
421
	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
422 423
}

424 425 426 427
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
428
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
429
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
430

431 432
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
433
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
434
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
435
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
436 437 438
	NR_CHARGE_TYPE,
};

439
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
440 441 442 443
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
444
	_KMEM,
G
Glauber Costa 已提交
445 446
};

447 448
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
449
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
450 451
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
452

453 454 455 456 457 458 459
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

460 461
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
462
	return s ? container_of(s, struct mem_cgroup, css) : NULL;
463 464
}

465 466 467 468 469 470 471 472 473 474 475 476 477
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

478 479 480 481 482
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

483 484 485 486 487 488
/*
 * We restrict the id in the range of [1, 65535], so it can fit into
 * an unsigned short.
 */
#define MEM_CGROUP_ID_MAX	USHRT_MAX

L
Li Zefan 已提交
489 490
static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
{
491
	return memcg->css.id;
L
Li Zefan 已提交
492 493 494 495 496 497
}

static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	struct cgroup_subsys_state *css;

498
	css = css_from_id(id, &memory_cgrp_subsys);
L
Li Zefan 已提交
499 500 501
	return mem_cgroup_from_css(css);
}

G
Glauber Costa 已提交
502
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
503
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
504 505 506

void sock_update_memcg(struct sock *sk)
{
507
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
508
		struct mem_cgroup *memcg;
509
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
510 511 512

		BUG_ON(!sk->sk_prot->proto_cgroup);

513 514 515 516 517 518 519 520 521 522
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
523
			css_get(&sk->sk_cgrp->memcg->css);
524 525 526
			return;
		}

G
Glauber Costa 已提交
527 528
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
529
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
530
		if (!mem_cgroup_is_root(memcg) &&
531 532
		    memcg_proto_active(cg_proto) &&
		    css_tryget_online(&memcg->css)) {
533
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
534 535 536 537 538 539 540 541
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
542
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
543 544 545
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
546
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
547 548
	}
}
G
Glauber Costa 已提交
549 550 551 552 553 554

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

555
	return &memcg->tcp_mem;
G
Glauber Costa 已提交
556 557
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
558

559 560
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
561
	if (!memcg_proto_activated(&memcg->tcp_mem))
562 563 564 565 566 567 568 569 570
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

571
#ifdef CONFIG_MEMCG_KMEM
572 573
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
L
Li Zefan 已提交
574 575 576 577 578
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
579 580 581 582 583 584
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
585 586
int memcg_limited_groups_array_size;

587 588 589 590 591 592
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
593
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
594 595
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
596
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
597 598 599
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
600
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
601

602 603 604 605 606 607
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
608
struct static_key memcg_kmem_enabled_key;
609
EXPORT_SYMBOL(memcg_kmem_enabled_key);
610

611 612
static void memcg_free_cache_id(int id);

613 614
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
615
	if (memcg_kmem_is_active(memcg)) {
616
		static_key_slow_dec(&memcg_kmem_enabled_key);
617
		memcg_free_cache_id(memcg->kmemcg_id);
618
	}
619 620 621 622
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
623
	WARN_ON(page_counter_read(&memcg->kmem));
624 625 626 627 628 629 630 631 632 633 634 635 636
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

637
static struct mem_cgroup_per_zone *
638
mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
639
{
640 641 642
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);

643
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
644 645
}

646
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
647
{
648
	return &memcg->css;
649 650
}

651
static struct mem_cgroup_per_zone *
652
mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
653
{
654 655
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
656

657
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
658 659
}

660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

675 676
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz,
677
					 unsigned long new_usage_in_excess)
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

707 708
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz)
709 710 711 712 713 714 715
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

716 717
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
				       struct mem_cgroup_tree_per_zone *mctz)
718
{
719 720 721
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
722
	__mem_cgroup_remove_exceeded(mz, mctz);
723
	spin_unlock_irqrestore(&mctz->lock, flags);
724 725
}

726 727 728 729 730 731 732 733 734 735 736
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
	unsigned long soft_limit = ACCESS_ONCE(memcg->soft_limit);
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
737 738 739

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
740
	unsigned long excess;
741 742 743
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

744
	mctz = soft_limit_tree_from_page(page);
745 746 747 748 749
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
750
		mz = mem_cgroup_page_zoneinfo(memcg, page);
751
		excess = soft_limit_excess(memcg);
752 753 754 755 756
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
757 758 759
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
760 761
			/* if on-tree, remove it */
			if (mz->on_tree)
762
				__mem_cgroup_remove_exceeded(mz, mctz);
763 764 765 766
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
767
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
768
			spin_unlock_irqrestore(&mctz->lock, flags);
769 770 771 772 773 774 775
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	struct mem_cgroup_tree_per_zone *mctz;
776 777
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
778

779 780 781 782
	for_each_node(nid) {
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			mctz = soft_limit_tree_node_zone(nid, zid);
783
			mem_cgroup_remove_exceeded(mz, mctz);
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
806
	__mem_cgroup_remove_exceeded(mz, mctz);
807
	if (!soft_limit_excess(mz->memcg) ||
808
	    !css_tryget_online(&mz->memcg->css))
809 810 811 812 813 814 815 816 817 818
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

819
	spin_lock_irq(&mctz->lock);
820
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
821
	spin_unlock_irq(&mctz->lock);
822 823 824
	return mz;
}

825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
844
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
845
				 enum mem_cgroup_stat_index idx)
846
{
847
	long val = 0;
848 849
	int cpu;

850 851
	get_online_cpus();
	for_each_online_cpu(cpu)
852
		val += per_cpu(memcg->stat->count[idx], cpu);
853
#ifdef CONFIG_HOTPLUG_CPU
854 855 856
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
857 858
#endif
	put_online_cpus();
859 860 861
	return val;
}

862
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
863 864 865 866 867
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

868
	get_online_cpus();
869
	for_each_online_cpu(cpu)
870
		val += per_cpu(memcg->stat->events[idx], cpu);
871
#ifdef CONFIG_HOTPLUG_CPU
872 873 874
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
875
#endif
876
	put_online_cpus();
877 878 879
	return val;
}

880
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
881
					 struct page *page,
882
					 int nr_pages)
883
{
884 885 886 887
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
888
	if (PageAnon(page))
889
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
890
				nr_pages);
891
	else
892
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
893
				nr_pages);
894

895 896 897 898
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

899 900
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
901
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
902
	else {
903
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
904 905
		nr_pages = -nr_pages; /* for event */
	}
906

907
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
908 909
}

910
unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
911 912 913 914 915 916 917
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

918 919 920
static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
						  int nid,
						  unsigned int lru_mask)
921
{
922
	unsigned long nr = 0;
923 924
	int zid;

925
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
926

927 928 929 930 931 932 933 934 935 936 937 938
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct mem_cgroup_per_zone *mz;
		enum lru_list lru;

		for_each_lru(lru) {
			if (!(BIT(lru) & lru_mask))
				continue;
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			nr += mz->lru_size[lru];
		}
	}
	return nr;
939
}
940

941
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
942
			unsigned int lru_mask)
943
{
944
	unsigned long nr = 0;
945
	int nid;
946

947
	for_each_node_state(nid, N_MEMORY)
948 949
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
950 951
}

952 953
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
954 955 956
{
	unsigned long val, next;

957
	val = __this_cpu_read(memcg->stat->nr_page_events);
958
	next = __this_cpu_read(memcg->stat->targets[target]);
959
	/* from time_after() in jiffies.h */
960 961 962 963 964
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
965 966 967
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
968 969 970 971 972 973 974 975
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
976
	}
977
	return false;
978 979 980 981 982 983
}

/*
 * Check events in order.
 *
 */
984
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
985 986
{
	/* threshold event is triggered in finer grain than soft limit */
987 988
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
989
		bool do_softlimit;
990
		bool do_numainfo __maybe_unused;
991

992 993
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
994 995 996 997
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
998
		mem_cgroup_threshold(memcg);
999 1000
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
1001
#if MAX_NUMNODES > 1
1002
		if (unlikely(do_numainfo))
1003
			atomic_inc(&memcg->numainfo_events);
1004
#endif
1005
	}
1006 1007
}

1008
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1009
{
1010 1011 1012 1013 1014 1015 1016 1017
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1018
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1019 1020
}

1021
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1022
{
1023
	struct mem_cgroup *memcg = NULL;
1024

1025 1026
	rcu_read_lock();
	do {
1027 1028 1029 1030 1031 1032
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
1033
			memcg = root_mem_cgroup;
1034 1035 1036 1037 1038
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
1039
	} while (!css_tryget_online(&memcg->css));
1040
	rcu_read_unlock();
1041
	return memcg;
1042 1043
}

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
1061
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1062
				   struct mem_cgroup *prev,
1063
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1064
{
1065 1066
	struct reclaim_iter *uninitialized_var(iter);
	struct cgroup_subsys_state *css = NULL;
1067
	struct mem_cgroup *memcg = NULL;
1068
	struct mem_cgroup *pos = NULL;
1069

1070 1071
	if (mem_cgroup_disabled())
		return NULL;
1072

1073 1074
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1075

1076
	if (prev && !reclaim)
1077
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
1078

1079 1080
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1081
			goto out;
1082
		return root;
1083
	}
K
KAMEZAWA Hiroyuki 已提交
1084

1085
	rcu_read_lock();
M
Michal Hocko 已提交
1086

1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
	if (reclaim) {
		struct mem_cgroup_per_zone *mz;

		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

		do {
			pos = ACCESS_ONCE(iter->position);
			/*
			 * A racing update may change the position and
			 * put the last reference, hence css_tryget(),
			 * or retry to see the updated position.
			 */
		} while (pos && !css_tryget(&pos->css));
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
1121
		}
K
KAMEZAWA Hiroyuki 已提交
1122

1123 1124 1125 1126 1127 1128
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
1129

1130 1131
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
1132

1133
		if (css_tryget(css)) {
1134 1135 1136 1137 1138 1139 1140
			/*
			 * Make sure the memcg is initialized:
			 * mem_cgroup_css_online() orders the the
			 * initialization against setting the flag.
			 */
			if (smp_load_acquire(&memcg->initialized))
				break;
1141

1142
			css_put(css);
1143
		}
1144

1145
		memcg = NULL;
1146
	}
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166

	if (reclaim) {
		if (cmpxchg(&iter->position, pos, memcg) == pos) {
			if (memcg)
				css_get(&memcg->css);
			if (pos)
				css_put(&pos->css);
		}

		/*
		 * pairs with css_tryget when dereferencing iter->position
		 * above.
		 */
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
1167
	}
1168

1169 1170
out_unlock:
	rcu_read_unlock();
1171
out:
1172 1173 1174
	if (prev && prev != root)
		css_put(&prev->css);

1175
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1176
}
K
KAMEZAWA Hiroyuki 已提交
1177

1178 1179 1180 1181 1182 1183 1184
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1185 1186 1187 1188 1189 1190
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1191

1192 1193 1194 1195 1196 1197
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1198
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1199
	     iter != NULL;				\
1200
	     iter = mem_cgroup_iter(root, iter, NULL))
1201

1202
#define for_each_mem_cgroup(iter)			\
1203
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1204
	     iter != NULL;				\
1205
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1206

1207
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1208
{
1209
	struct mem_cgroup *memcg;
1210 1211

	rcu_read_lock();
1212 1213
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1214 1215 1216 1217
		goto out;

	switch (idx) {
	case PGFAULT:
1218 1219 1220 1221
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1222 1223 1224 1225 1226 1227 1228
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1229
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1230

1231 1232 1233
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1234
 * @memcg: memcg of the wanted lruvec
1235 1236 1237 1238 1239 1240 1241 1242 1243
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1244
	struct lruvec *lruvec;
1245

1246 1247 1248 1249
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1250

1251
	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1262 1263 1264
}

/**
1265
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1266
 * @page: the page
1267
 * @zone: zone of the page
1268 1269 1270 1271
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
1272
 */
1273
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1274 1275
{
	struct mem_cgroup_per_zone *mz;
1276
	struct mem_cgroup *memcg;
1277
	struct lruvec *lruvec;
1278

1279 1280 1281 1282
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1283

1284
	memcg = page->mem_cgroup;
1285
	/*
1286
	 * Swapcache readahead pages are added to the LRU - and
1287
	 * possibly migrated - before they are charged.
1288
	 */
1289 1290
	if (!memcg)
		memcg = root_mem_cgroup;
1291

1292
	mz = mem_cgroup_page_zoneinfo(memcg, page);
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1303
}
1304

1305
/**
1306 1307 1308 1309
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1310
 *
1311 1312
 * This function must be called when a page is added to or removed from an
 * lru list.
1313
 */
1314 1315
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1316 1317
{
	struct mem_cgroup_per_zone *mz;
1318
	unsigned long *lru_size;
1319 1320 1321 1322

	if (mem_cgroup_disabled())
		return;

1323 1324 1325 1326
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1327
}
1328

1329
bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root)
1330
{
1331
	if (root == memcg)
1332
		return true;
1333
	if (!root->use_hierarchy)
1334
		return false;
1335
	return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
1336 1337
}

1338
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1339
{
1340
	struct mem_cgroup *task_memcg;
1341
	struct task_struct *p;
1342
	bool ret;
1343

1344
	p = find_lock_task_mm(task);
1345
	if (p) {
1346
		task_memcg = get_mem_cgroup_from_mm(p->mm);
1347 1348 1349 1350 1351 1352 1353
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1354
		rcu_read_lock();
1355 1356
		task_memcg = mem_cgroup_from_task(task);
		css_get(&task_memcg->css);
1357
		rcu_read_unlock();
1358
	}
1359 1360
	ret = mem_cgroup_is_descendant(task_memcg, memcg);
	css_put(&task_memcg->css);
1361 1362 1363
	return ret;
}

1364
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1365
{
1366
	unsigned long inactive_ratio;
1367
	unsigned long inactive;
1368
	unsigned long active;
1369
	unsigned long gb;
1370

1371 1372
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1373

1374 1375 1376 1377 1378 1379
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1380
	return inactive * inactive_ratio < active;
1381 1382
}

1383
#define mem_cgroup_from_counter(counter, member)	\
1384 1385
	container_of(counter, struct mem_cgroup, member)

1386
/**
1387
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1388
 * @memcg: the memory cgroup
1389
 *
1390
 * Returns the maximum amount of memory @mem can be charged with, in
1391
 * pages.
1392
 */
1393
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1394
{
1395 1396 1397
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1398

1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
	count = page_counter_read(&memcg->memory);
	limit = ACCESS_ONCE(memcg->memory.limit);
	if (count < limit)
		margin = limit - count;

	if (do_swap_account) {
		count = page_counter_read(&memcg->memsw);
		limit = ACCESS_ONCE(memcg->memsw.limit);
		if (count <= limit)
			margin = min(margin, limit - count);
	}

	return margin;
1412 1413
}

1414
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1415 1416
{
	/* root ? */
1417
	if (mem_cgroup_disabled() || !memcg->css.parent)
K
KOSAKI Motohiro 已提交
1418 1419
		return vm_swappiness;

1420
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1421 1422
}

1423
/*
Q
Qiang Huang 已提交
1424
 * A routine for checking "mem" is under move_account() or not.
1425
 *
Q
Qiang Huang 已提交
1426 1427 1428
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1429
 */
1430
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1431
{
1432 1433
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1434
	bool ret = false;
1435 1436 1437 1438 1439 1440 1441 1442 1443
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1444

1445 1446
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1447 1448
unlock:
	spin_unlock(&mc.lock);
1449 1450 1451
	return ret;
}

1452
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1453 1454
{
	if (mc.moving_task && current != mc.moving_task) {
1455
		if (mem_cgroup_under_move(memcg)) {
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1468
#define K(x) ((x) << (PAGE_SHIFT-10))
1469
/**
1470
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1471 1472 1473 1474 1475 1476 1477 1478
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
T
Tejun Heo 已提交
1479
	/* oom_info_lock ensures that parallel ooms do not interleave */
1480
	static DEFINE_MUTEX(oom_info_lock);
1481 1482
	struct mem_cgroup *iter;
	unsigned int i;
1483

1484
	if (!p)
1485 1486
		return;

1487
	mutex_lock(&oom_info_lock);
1488 1489
	rcu_read_lock();

T
Tejun Heo 已提交
1490 1491 1492 1493 1494
	pr_info("Task in ");
	pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
	pr_info(" killed as a result of limit of ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_info("\n");
1495 1496 1497

	rcu_read_unlock();

1498 1499 1500 1501 1502 1503 1504 1505 1506
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
		K((u64)memcg->memory.limit), memcg->memory.failcnt);
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1507 1508

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1509 1510
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1526
	mutex_unlock(&oom_info_lock);
1527 1528
}

1529 1530 1531 1532
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1533
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1534 1535
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1536 1537
	struct mem_cgroup *iter;

1538
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1539
		num++;
1540 1541 1542
	return num;
}

D
David Rientjes 已提交
1543 1544 1545
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1546
static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1547
{
1548
	unsigned long limit;
1549

1550
	limit = memcg->memory.limit;
1551
	if (mem_cgroup_swappiness(memcg)) {
1552
		unsigned long memsw_limit;
1553

1554 1555
		memsw_limit = memcg->memsw.limit;
		limit = min(limit + total_swap_pages, memsw_limit);
1556 1557
	}
	return limit;
D
David Rientjes 已提交
1558 1559
}

1560 1561
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1562 1563 1564 1565 1566 1567 1568
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1569
	/*
1570 1571 1572
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1573
	 */
1574
	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1575 1576 1577 1578 1579
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1580
	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1581
	for_each_mem_cgroup_tree(iter, memcg) {
1582
		struct css_task_iter it;
1583 1584
		struct task_struct *task;

1585 1586
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1599
				css_task_iter_end(&it);
1600 1601 1602 1603 1604 1605 1606 1607
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
			if (!points || points < chosen_points)
				continue;
			/* Prefer thread group leaders for display purposes */
			if (points == chosen_points &&
			    thread_group_leader(chosen))
				continue;

			if (chosen)
				put_task_struct(chosen);
			chosen = task;
			chosen_points = points;
			get_task_struct(chosen);
1620
		}
1621
		css_task_iter_end(&it);
1622 1623 1624 1625 1626 1627 1628 1629 1630
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1631 1632
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1633
 * @memcg: the target memcg
1634 1635 1636 1637 1638 1639 1640
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1641
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1642 1643
		int nid, bool noswap)
{
1644
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1645 1646 1647
		return true;
	if (noswap || !total_swap_pages)
		return false;
1648
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1649 1650 1651 1652
		return true;
	return false;

}
1653
#if MAX_NUMNODES > 1
1654 1655 1656 1657 1658 1659 1660

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1661
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1662 1663
{
	int nid;
1664 1665 1666 1667
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1668
	if (!atomic_read(&memcg->numainfo_events))
1669
		return;
1670
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1671 1672 1673
		return;

	/* make a nodemask where this memcg uses memory from */
1674
	memcg->scan_nodes = node_states[N_MEMORY];
1675

1676
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1677

1678 1679
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1680
	}
1681

1682 1683
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1698
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1699 1700 1701
{
	int node;

1702 1703
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1704

1705
	node = next_node(node, memcg->scan_nodes);
1706
	if (node == MAX_NUMNODES)
1707
		node = first_node(memcg->scan_nodes);
1708 1709 1710 1711 1712 1713 1714 1715 1716
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1717
	memcg->last_scanned_node = node;
1718 1719 1720
	return node;
}
#else
1721
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1722 1723 1724 1725 1726
{
	return 0;
}
#endif

1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

1742
	excess = soft_limit_excess(root_memcg);
1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
1771
		if (!soft_limit_excess(root_memcg))
1772
			break;
1773
	}
1774 1775
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1776 1777
}

1778 1779 1780 1781 1782 1783
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1784 1785
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1786 1787 1788 1789
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1790
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1791
{
1792
	struct mem_cgroup *iter, *failed = NULL;
1793

1794 1795
	spin_lock(&memcg_oom_lock);

1796
	for_each_mem_cgroup_tree(iter, memcg) {
1797
		if (iter->oom_lock) {
1798 1799 1800 1801 1802
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1803 1804
			mem_cgroup_iter_break(memcg, iter);
			break;
1805 1806
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1807
	}
K
KAMEZAWA Hiroyuki 已提交
1808

1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1820
		}
1821 1822
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1823 1824 1825 1826

	spin_unlock(&memcg_oom_lock);

	return !failed;
1827
}
1828

1829
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1830
{
K
KAMEZAWA Hiroyuki 已提交
1831 1832
	struct mem_cgroup *iter;

1833
	spin_lock(&memcg_oom_lock);
1834
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1835
	for_each_mem_cgroup_tree(iter, memcg)
1836
		iter->oom_lock = false;
1837
	spin_unlock(&memcg_oom_lock);
1838 1839
}

1840
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1841 1842 1843
{
	struct mem_cgroup *iter;

1844
	for_each_mem_cgroup_tree(iter, memcg)
1845 1846 1847
		atomic_inc(&iter->under_oom);
}

1848
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1849 1850 1851
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1852 1853 1854 1855 1856
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1857
	for_each_mem_cgroup_tree(iter, memcg)
1858
		atomic_add_unless(&iter->under_oom, -1, 0);
1859 1860
}

K
KAMEZAWA Hiroyuki 已提交
1861 1862
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1863
struct oom_wait_info {
1864
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1865 1866 1867 1868 1869 1870
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1871 1872
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1873 1874 1875
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1876
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1877

1878 1879
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1880 1881 1882 1883
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1884
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1885
{
1886
	atomic_inc(&memcg->oom_wakeups);
1887 1888
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1889 1890
}

1891
static void memcg_oom_recover(struct mem_cgroup *memcg)
1892
{
1893 1894
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1895 1896
}

1897
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1898
{
1899 1900
	if (!current->memcg_oom.may_oom)
		return;
K
KAMEZAWA Hiroyuki 已提交
1901
	/*
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
1914
	 */
1915 1916 1917 1918
	css_get(&memcg->css);
	current->memcg_oom.memcg = memcg;
	current->memcg_oom.gfp_mask = mask;
	current->memcg_oom.order = order;
1919 1920 1921 1922
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1923
 * @handle: actually kill/wait or just clean up the OOM state
1924
 *
1925 1926
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1927
 *
1928
 * Memcg supports userspace OOM handling where failed allocations must
1929 1930 1931 1932
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1933
 * the end of the page fault to complete the OOM handling.
1934 1935
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1936
 * completed, %false otherwise.
1937
 */
1938
bool mem_cgroup_oom_synchronize(bool handle)
1939
{
1940
	struct mem_cgroup *memcg = current->memcg_oom.memcg;
1941
	struct oom_wait_info owait;
1942
	bool locked;
1943 1944 1945

	/* OOM is global, do not handle */
	if (!memcg)
1946
		return false;
1947

1948 1949
	if (!handle)
		goto cleanup;
1950 1951 1952 1953 1954 1955

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
1956

1957
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
		mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
					 current->memcg_oom.order);
	} else {
1971
		schedule();
1972 1973 1974 1975 1976
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1977 1978 1979 1980 1981 1982 1983 1984
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1985 1986
cleanup:
	current->memcg_oom.memcg = NULL;
1987
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1988
	return true;
1989 1990
}

1991 1992 1993 1994 1995
/**
 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
 * @page: page that is going to change accounted state
 * @locked: &memcg->move_lock slowpath was taken
 * @flags: IRQ-state flags for &memcg->move_lock
1996
 *
1997 1998 1999
 * This function must mark the beginning of an accounted page state
 * change to prevent double accounting when the page is concurrently
 * being moved to another memcg:
2000
 *
2001 2002 2003 2004
 *   memcg = mem_cgroup_begin_page_stat(page, &locked, &flags);
 *   if (TestClearPageState(page))
 *     mem_cgroup_update_page_stat(memcg, state, -1);
 *   mem_cgroup_end_page_stat(memcg, locked, flags);
2005
 *
2006 2007 2008
 * The RCU lock is held throughout the transaction.  The fast path can
 * get away without acquiring the memcg->move_lock (@locked is false)
 * because page moving starts with an RCU grace period.
2009
 *
2010 2011 2012 2013 2014
 * The RCU lock also protects the memcg from being freed when the page
 * state that is going to change is the only thing preventing the page
 * from being uncharged.  E.g. end-writeback clearing PageWriteback(),
 * which allows migration to go ahead and uncharge the page before the
 * account transaction might be complete.
2015
 */
2016 2017 2018
struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page,
					      bool *locked,
					      unsigned long *flags)
2019 2020 2021
{
	struct mem_cgroup *memcg;

2022 2023 2024 2025
	rcu_read_lock();

	if (mem_cgroup_disabled())
		return NULL;
2026
again:
2027
	memcg = page->mem_cgroup;
2028
	if (unlikely(!memcg))
2029 2030 2031
		return NULL;

	*locked = false;
Q
Qiang Huang 已提交
2032
	if (atomic_read(&memcg->moving_account) <= 0)
2033
		return memcg;
2034

2035
	spin_lock_irqsave(&memcg->move_lock, *flags);
2036
	if (memcg != page->mem_cgroup) {
2037
		spin_unlock_irqrestore(&memcg->move_lock, *flags);
2038 2039 2040
		goto again;
	}
	*locked = true;
2041 2042

	return memcg;
2043 2044
}

2045 2046 2047 2048 2049 2050
/**
 * mem_cgroup_end_page_stat - finish a page state statistics transaction
 * @memcg: the memcg that was accounted against
 * @locked: value received from mem_cgroup_begin_page_stat()
 * @flags: value received from mem_cgroup_begin_page_stat()
 */
2051 2052
void mem_cgroup_end_page_stat(struct mem_cgroup *memcg, bool *locked,
			      unsigned long *flags)
2053
{
2054 2055
	if (memcg && *locked)
		spin_unlock_irqrestore(&memcg->move_lock, *flags);
2056

2057
	rcu_read_unlock();
2058 2059
}

2060 2061 2062 2063 2064 2065 2066 2067 2068
/**
 * mem_cgroup_update_page_stat - update page state statistics
 * @memcg: memcg to account against
 * @idx: page state item to account
 * @val: number of pages (positive or negative)
 *
 * See mem_cgroup_begin_page_stat() for locking requirements.
 */
void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
S
Sha Zhengju 已提交
2069
				 enum mem_cgroup_stat_index idx, int val)
2070
{
2071
	VM_BUG_ON(!rcu_read_lock_held());
2072

2073 2074
	if (memcg)
		this_cpu_add(memcg->stat->count[idx], val);
2075
}
2076

2077 2078 2079 2080
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2081
#define CHARGE_BATCH	32U
2082 2083
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2084
	unsigned int nr_pages;
2085
	struct work_struct work;
2086
	unsigned long flags;
2087
#define FLUSHING_CACHED_CHARGE	0
2088 2089
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2090
static DEFINE_MUTEX(percpu_charge_mutex);
2091

2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2102
 */
2103
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2104 2105
{
	struct memcg_stock_pcp *stock;
2106
	bool ret = false;
2107

2108
	if (nr_pages > CHARGE_BATCH)
2109
		return ret;
2110

2111
	stock = &get_cpu_var(memcg_stock);
2112
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2113
		stock->nr_pages -= nr_pages;
2114 2115
		ret = true;
	}
2116 2117 2118 2119 2120
	put_cpu_var(memcg_stock);
	return ret;
}

/*
2121
 * Returns stocks cached in percpu and reset cached information.
2122 2123 2124 2125 2126
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2127
	if (stock->nr_pages) {
2128
		page_counter_uncharge(&old->memory, stock->nr_pages);
2129
		if (do_swap_account)
2130
			page_counter_uncharge(&old->memsw, stock->nr_pages);
2131
		css_put_many(&old->css, stock->nr_pages);
2132
		stock->nr_pages = 0;
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
2143
	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2144
	drain_stock(stock);
2145
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2146 2147
}

2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
static void __init memcg_stock_init(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct memcg_stock_pcp *stock =
					&per_cpu(memcg_stock, cpu);
		INIT_WORK(&stock->work, drain_local_stock);
	}
}

2159
/*
2160
 * Cache charges(val) to local per_cpu area.
2161
 * This will be consumed by consume_stock() function, later.
2162
 */
2163
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2164 2165 2166
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2167
	if (stock->cached != memcg) { /* reset if necessary */
2168
		drain_stock(stock);
2169
		stock->cached = memcg;
2170
	}
2171
	stock->nr_pages += nr_pages;
2172 2173 2174 2175
	put_cpu_var(memcg_stock);
}

/*
2176
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2177
 * of the hierarchy under it.
2178
 */
2179
static void drain_all_stock(struct mem_cgroup *root_memcg)
2180
{
2181
	int cpu, curcpu;
2182

2183 2184 2185
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2186 2187
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2188
	curcpu = get_cpu();
2189 2190
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2191
		struct mem_cgroup *memcg;
2192

2193 2194
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2195
			continue;
2196
		if (!mem_cgroup_is_descendant(memcg, root_memcg))
2197
			continue;
2198 2199 2200 2201 2202 2203
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2204
	}
2205
	put_cpu();
A
Andrew Morton 已提交
2206
	put_online_cpus();
2207
	mutex_unlock(&percpu_charge_mutex);
2208 2209
}

2210 2211 2212 2213
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2214
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2215 2216 2217
{
	int i;

2218
	spin_lock(&memcg->pcp_counter_lock);
2219
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2220
		long x = per_cpu(memcg->stat->count[i], cpu);
2221

2222 2223
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2224
	}
2225
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2226
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2227

2228 2229
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2230
	}
2231
	spin_unlock(&memcg->pcp_counter_lock);
2232 2233
}

2234
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2235 2236 2237 2238 2239
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2240
	struct mem_cgroup *iter;
2241

2242
	if (action == CPU_ONLINE)
2243 2244
		return NOTIFY_OK;

2245
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2246
		return NOTIFY_OK;
2247

2248
	for_each_mem_cgroup(iter)
2249 2250
		mem_cgroup_drain_pcp_counter(iter, cpu);

2251 2252 2253 2254 2255
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2256 2257
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
2258
{
2259
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2260
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2261
	struct mem_cgroup *mem_over_limit;
2262
	struct page_counter *counter;
2263
	unsigned long nr_reclaimed;
2264 2265
	bool may_swap = true;
	bool drained = false;
2266
	int ret = 0;
2267

2268 2269
	if (mem_cgroup_is_root(memcg))
		goto done;
2270
retry:
2271 2272
	if (consume_stock(memcg, nr_pages))
		goto done;
2273

2274
	if (!do_swap_account ||
2275 2276
	    !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (!page_counter_try_charge(&memcg->memory, batch, &counter))
2277
			goto done_restock;
2278
		if (do_swap_account)
2279 2280
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2281
	} else {
2282
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2283
		may_swap = false;
2284
	}
2285

2286 2287 2288 2289
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2290

2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
		goto bypass;

	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2305 2306
	if (!(gfp_mask & __GFP_WAIT))
		goto nomem;
2307

2308 2309
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2310

2311
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2312
		goto retry;
2313

2314
	if (!drained) {
2315
		drain_all_stock(mem_over_limit);
2316 2317 2318 2319
		drained = true;
		goto retry;
	}

2320 2321
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2322 2323 2324 2325 2326 2327 2328 2329 2330
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2331
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2332 2333 2334 2335 2336 2337 2338 2339
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2340 2341 2342
	if (nr_retries--)
		goto retry;

2343 2344 2345
	if (gfp_mask & __GFP_NOFAIL)
		goto bypass;

2346 2347 2348
	if (fatal_signal_pending(current))
		goto bypass;

2349
	mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2350
nomem:
2351
	if (!(gfp_mask & __GFP_NOFAIL))
2352
		return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2353
bypass:
2354
	return -EINTR;
2355 2356

done_restock:
2357
	css_get_many(&memcg->css, batch);
2358 2359 2360
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
done:
2361
	return ret;
2362
}
2363

2364
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2365
{
2366 2367 2368
	if (mem_cgroup_is_root(memcg))
		return;

2369
	page_counter_uncharge(&memcg->memory, nr_pages);
2370
	if (do_swap_account)
2371
		page_counter_uncharge(&memcg->memsw, nr_pages);
2372

2373
	css_put_many(&memcg->css, nr_pages);
2374 2375
}

2376 2377
/*
 * A helper function to get mem_cgroup from ID. must be called under
2378 2379 2380
 * rcu_read_lock().  The caller is responsible for calling
 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
 * refcnt from swap can be called against removed memcg.)
2381 2382 2383 2384 2385 2386
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	/* ID 0 is unused ID */
	if (!id)
		return NULL;
L
Li Zefan 已提交
2387
	return mem_cgroup_from_id(id);
2388 2389
}

2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
/*
 * try_get_mem_cgroup_from_page - look up page's memcg association
 * @page: the page
 *
 * Look up, get a css reference, and return the memcg that owns @page.
 *
 * The page must be locked to prevent racing with swap-in and page
 * cache charges.  If coming from an unlocked page table, the caller
 * must ensure the page is on the LRU or this can race with charging.
 */
2400
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2401
{
2402
	struct mem_cgroup *memcg;
2403
	unsigned short id;
2404 2405
	swp_entry_t ent;

2406
	VM_BUG_ON_PAGE(!PageLocked(page), page);
2407

2408
	memcg = page->mem_cgroup;
2409 2410
	if (memcg) {
		if (!css_tryget_online(&memcg->css))
2411
			memcg = NULL;
2412
	} else if (PageSwapCache(page)) {
2413
		ent.val = page_private(page);
2414
		id = lookup_swap_cgroup_id(ent);
2415
		rcu_read_lock();
2416
		memcg = mem_cgroup_lookup(id);
2417
		if (memcg && !css_tryget_online(&memcg->css))
2418
			memcg = NULL;
2419
		rcu_read_unlock();
2420
	}
2421
	return memcg;
2422 2423
}

2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

	spin_lock_irq(&zone->lru_lock);
	if (PageLRU(page)) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
	spin_unlock_irq(&zone->lru_lock);
}

2455
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2456
			  bool lrucare)
2457
{
2458
	int isolated;
2459

2460
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2461 2462 2463 2464 2465

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2466 2467
	if (lrucare)
		lock_page_lru(page, &isolated);
2468

2469 2470
	/*
	 * Nobody should be changing or seriously looking at
2471
	 * page->mem_cgroup at this point:
2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2483
	page->mem_cgroup = memcg;
2484

2485 2486
	if (lrucare)
		unlock_page_lru(page, isolated);
2487
}
2488

2489
#ifdef CONFIG_MEMCG_KMEM
2490 2491 2492 2493 2494 2495
/*
 * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or
 * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.
 */
static DEFINE_MUTEX(memcg_slab_mutex);

G
Glauber Costa 已提交
2496 2497 2498 2499 2500 2501 2502 2503 2504 2505
/*
 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
 * in the memcg_cache_params struct.
 */
static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
{
	struct kmem_cache *cachep;

	VM_BUG_ON(p->is_root_cache);
	cachep = p->root_cache;
2506
	return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
G
Glauber Costa 已提交
2507 2508
}

2509 2510
static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
			     unsigned long nr_pages)
2511
{
2512
	struct page_counter *counter;
2513 2514
	int ret = 0;

2515 2516
	ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
	if (ret < 0)
2517 2518
		return ret;

2519
	ret = try_charge(memcg, gfp, nr_pages);
2520 2521
	if (ret == -EINTR)  {
		/*
2522 2523 2524 2525 2526 2527
		 * try_charge() chose to bypass to root due to OOM kill or
		 * fatal signal.  Since our only options are to either fail
		 * the allocation or charge it to this cgroup, do it as a
		 * temporary condition. But we can't fail. From a kmem/slab
		 * perspective, the cache has already been selected, by
		 * mem_cgroup_kmem_get_cache(), so it is too late to change
2528 2529 2530
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
2531 2532 2533
		 * memcg_charge_kmem in a sane state, but was OOM-killed
		 * during try_charge() above. Tasks that were already dying
		 * when the allocation triggers should have been already
2534 2535
		 * directed to the root cgroup in memcontrol.h
		 */
2536
		page_counter_charge(&memcg->memory, nr_pages);
2537
		if (do_swap_account)
2538
			page_counter_charge(&memcg->memsw, nr_pages);
2539
		css_get_many(&memcg->css, nr_pages);
2540 2541
		ret = 0;
	} else if (ret)
2542
		page_counter_uncharge(&memcg->kmem, nr_pages);
2543 2544 2545 2546

	return ret;
}

2547 2548
static void memcg_uncharge_kmem(struct mem_cgroup *memcg,
				unsigned long nr_pages)
2549
{
2550
	page_counter_uncharge(&memcg->memory, nr_pages);
2551
	if (do_swap_account)
2552
		page_counter_uncharge(&memcg->memsw, nr_pages);
2553

2554
	page_counter_uncharge(&memcg->kmem, nr_pages);
2555

2556
	css_put_many(&memcg->css, nr_pages);
2557 2558
}

2559 2560 2561 2562 2563 2564 2565 2566 2567 2568
/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

2569
static int memcg_alloc_cache_id(void)
2570
{
2571 2572 2573 2574 2575 2576 2577
	int id, size;
	int err;

	id = ida_simple_get(&kmem_limited_groups,
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2578

2579 2580 2581 2582 2583 2584 2585 2586 2587
	if (id < memcg_limited_groups_array_size)
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */

	size = 2 * (id + 1);
2588 2589 2590 2591 2592
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606
	mutex_lock(&memcg_slab_mutex);
	err = memcg_update_all_caches(size);
	mutex_unlock(&memcg_slab_mutex);

	if (err) {
		ida_simple_remove(&kmem_limited_groups, id);
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
	ida_simple_remove(&kmem_limited_groups, id);
2607 2608 2609 2610 2611 2612 2613 2614 2615
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
2616
	memcg_limited_groups_array_size = num;
2617 2618
}

2619 2620
static void memcg_register_cache(struct mem_cgroup *memcg,
				 struct kmem_cache *root_cache)
2621
{
2622 2623
	static char memcg_name_buf[NAME_MAX + 1]; /* protected by
						     memcg_slab_mutex */
2624
	struct kmem_cache *cachep;
2625 2626
	int id;

2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
	lockdep_assert_held(&memcg_slab_mutex);

	id = memcg_cache_id(memcg);

	/*
	 * Since per-memcg caches are created asynchronously on first
	 * allocation (see memcg_kmem_get_cache()), several threads can try to
	 * create the same cache, but only one of them may succeed.
	 */
	if (cache_from_memcg_idx(root_cache, id))
2637 2638
		return;

2639
	cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1);
2640
	cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf);
2641
	/*
2642 2643 2644
	 * If we could not create a memcg cache, do not complain, because
	 * that's not critical at all as we can always proceed with the root
	 * cache.
2645
	 */
2646 2647
	if (!cachep)
		return;
2648

2649
	css_get(&memcg->css);
2650
	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
2651

2652
	/*
2653 2654 2655
	 * Since readers won't lock (see cache_from_memcg_idx()), we need a
	 * barrier here to ensure nobody will see the kmem_cache partially
	 * initialized.
2656
	 */
2657 2658
	smp_wmb();

2659 2660
	BUG_ON(root_cache->memcg_params->memcg_caches[id]);
	root_cache->memcg_params->memcg_caches[id] = cachep;
2661
}
2662

2663
static void memcg_unregister_cache(struct kmem_cache *cachep)
2664
{
2665
	struct kmem_cache *root_cache;
2666 2667 2668
	struct mem_cgroup *memcg;
	int id;

2669
	lockdep_assert_held(&memcg_slab_mutex);
2670

2671
	BUG_ON(is_root_cache(cachep));
2672

2673 2674
	root_cache = cachep->memcg_params->root_cache;
	memcg = cachep->memcg_params->memcg;
2675
	id = memcg_cache_id(memcg);
2676

2677 2678
	BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep);
	root_cache->memcg_params->memcg_caches[id] = NULL;
2679

2680 2681 2682
	list_del(&cachep->memcg_params->list);

	kmem_cache_destroy(cachep);
2683 2684 2685

	/* drop the reference taken in memcg_register_cache */
	css_put(&memcg->css);
2686 2687
}

2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718
/*
 * During the creation a new cache, we need to disable our accounting mechanism
 * altogether. This is true even if we are not creating, but rather just
 * enqueing new caches to be created.
 *
 * This is because that process will trigger allocations; some visible, like
 * explicit kmallocs to auxiliary data structures, name strings and internal
 * cache structures; some well concealed, like INIT_WORK() that can allocate
 * objects during debug.
 *
 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
 * to it. This may not be a bounded recursion: since the first cache creation
 * failed to complete (waiting on the allocation), we'll just try to create the
 * cache again, failing at the same point.
 *
 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
 * inside the following two functions.
 */
static inline void memcg_stop_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account++;
}

static inline void memcg_resume_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account--;
}

2719
int __memcg_cleanup_cache_params(struct kmem_cache *s)
2720 2721
{
	struct kmem_cache *c;
2722
	int i, failed = 0;
2723

2724
	mutex_lock(&memcg_slab_mutex);
2725 2726
	for_each_memcg_cache_index(i) {
		c = cache_from_memcg_idx(s, i);
2727 2728 2729
		if (!c)
			continue;

2730
		memcg_unregister_cache(c);
2731 2732 2733

		if (cache_from_memcg_idx(s, i))
			failed++;
2734
	}
2735
	mutex_unlock(&memcg_slab_mutex);
2736
	return failed;
2737 2738
}

2739
static void memcg_unregister_all_caches(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
2740 2741
{
	struct kmem_cache *cachep;
2742
	struct memcg_cache_params *params, *tmp;
G
Glauber Costa 已提交
2743 2744 2745 2746

	if (!memcg_kmem_is_active(memcg))
		return;

2747 2748
	mutex_lock(&memcg_slab_mutex);
	list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) {
G
Glauber Costa 已提交
2749
		cachep = memcg_params_to_cache(params);
2750 2751
		kmem_cache_shrink(cachep);
		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
2752
			memcg_unregister_cache(cachep);
G
Glauber Costa 已提交
2753
	}
2754
	mutex_unlock(&memcg_slab_mutex);
G
Glauber Costa 已提交
2755 2756
}

2757
struct memcg_register_cache_work {
2758 2759 2760 2761 2762
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2763
static void memcg_register_cache_func(struct work_struct *w)
2764
{
2765 2766
	struct memcg_register_cache_work *cw =
		container_of(w, struct memcg_register_cache_work, work);
2767 2768
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2769

2770
	mutex_lock(&memcg_slab_mutex);
2771
	memcg_register_cache(memcg, cachep);
2772 2773
	mutex_unlock(&memcg_slab_mutex);

2774
	css_put(&memcg->css);
2775 2776 2777 2778 2779 2780
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2781 2782
static void __memcg_schedule_register_cache(struct mem_cgroup *memcg,
					    struct kmem_cache *cachep)
2783
{
2784
	struct memcg_register_cache_work *cw;
2785

2786
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2787 2788
	if (cw == NULL) {
		css_put(&memcg->css);
2789 2790 2791 2792 2793 2794
		return;
	}

	cw->memcg = memcg;
	cw->cachep = cachep;

2795
	INIT_WORK(&cw->work, memcg_register_cache_func);
2796 2797 2798
	schedule_work(&cw->work);
}

2799 2800
static void memcg_schedule_register_cache(struct mem_cgroup *memcg,
					  struct kmem_cache *cachep)
2801 2802 2803 2804
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
2805
	 * in __memcg_schedule_register_cache will recurse.
2806 2807 2808 2809 2810 2811 2812 2813
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
	memcg_stop_kmem_account();
2814
	__memcg_schedule_register_cache(memcg, cachep);
2815 2816
	memcg_resume_kmem_account();
}
2817 2818 2819

int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order)
{
2820
	unsigned int nr_pages = 1 << order;
2821 2822
	int res;

2823
	res = memcg_charge_kmem(cachep->memcg_params->memcg, gfp, nr_pages);
2824
	if (!res)
2825
		atomic_add(nr_pages, &cachep->memcg_params->nr_pages);
2826 2827 2828 2829 2830
	return res;
}

void __memcg_uncharge_slab(struct kmem_cache *cachep, int order)
{
2831 2832 2833 2834
	unsigned int nr_pages = 1 << order;

	memcg_uncharge_kmem(cachep->memcg_params->memcg, nr_pages);
	atomic_sub(nr_pages, &cachep->memcg_params->nr_pages);
2835 2836
}

2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
					  gfp_t gfp)
{
	struct mem_cgroup *memcg;
2854
	struct kmem_cache *memcg_cachep;
2855 2856 2857 2858

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

2859
	if (current->memcg_kmem_skip_account)
2860 2861
		return cachep;

2862 2863 2864
	rcu_read_lock();
	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));

2865
	if (!memcg_kmem_is_active(memcg))
2866
		goto out;
2867

2868 2869 2870
	memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
	if (likely(memcg_cachep)) {
		cachep = memcg_cachep;
2871
		goto out;
2872 2873
	}

2874
	/* The corresponding put will be done in the workqueue. */
2875
	if (!css_tryget_online(&memcg->css))
2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886
		goto out;
	rcu_read_unlock();

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2887 2888 2889
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2890
	 */
2891
	memcg_schedule_register_cache(memcg, cachep);
2892 2893 2894 2895
	return cachep;
out:
	rcu_read_unlock();
	return cachep;
2896 2897
}

2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
2919 2920 2921 2922

	/*
	 * Disabling accounting is only relevant for some specific memcg
	 * internal allocations. Therefore we would initially not have such
V
Vladimir Davydov 已提交
2923 2924 2925 2926 2927 2928
	 * check here, since direct calls to the page allocator that are
	 * accounted to kmemcg (alloc_kmem_pages and friends) only happen
	 * outside memcg core. We are mostly concerned with cache allocations,
	 * and by having this test at memcg_kmem_get_cache, we are already able
	 * to relay the allocation to the root cache and bypass the memcg cache
	 * altogether.
2929 2930 2931 2932 2933 2934
	 *
	 * There is one exception, though: the SLUB allocator does not create
	 * large order caches, but rather service large kmallocs directly from
	 * the page allocator. Therefore, the following sequence when backed by
	 * the SLUB allocator:
	 *
A
Andrew Morton 已提交
2935 2936 2937
	 *	memcg_stop_kmem_account();
	 *	kmalloc(<large_number>)
	 *	memcg_resume_kmem_account();
2938 2939 2940 2941 2942 2943 2944
	 *
	 * would effectively ignore the fact that we should skip accounting,
	 * since it will drive us directly to this function without passing
	 * through the cache selector memcg_kmem_get_cache. Such large
	 * allocations are extremely rare but can happen, for instance, for the
	 * cache arrays. We bring this test here.
	 */
2945
	if (current->memcg_kmem_skip_account)
2946 2947
		return true;

2948
	memcg = get_mem_cgroup_from_mm(current->mm);
2949

2950
	if (!memcg_kmem_is_active(memcg)) {
2951 2952 2953 2954
		css_put(&memcg->css);
		return true;
	}

2955
	ret = memcg_charge_kmem(memcg, gfp, 1 << order);
2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
2970
		memcg_uncharge_kmem(memcg, 1 << order);
2971 2972
		return;
	}
2973
	page->mem_cgroup = memcg;
2974 2975 2976 2977
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
2978
	struct mem_cgroup *memcg = page->mem_cgroup;
2979 2980 2981 2982

	if (!memcg)
		return;

2983
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2984

2985
	memcg_uncharge_kmem(memcg, 1 << order);
2986
	page->mem_cgroup = NULL;
2987
}
G
Glauber Costa 已提交
2988
#else
2989
static inline void memcg_unregister_all_caches(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
2990 2991
{
}
2992 2993
#endif /* CONFIG_MEMCG_KMEM */

2994 2995 2996 2997
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2998 2999 3000
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
3001
 */
3002
void mem_cgroup_split_huge_fixup(struct page *head)
3003
{
3004
	int i;
3005

3006 3007
	if (mem_cgroup_disabled())
		return;
3008

3009
	for (i = 1; i < HPAGE_PMD_NR; i++)
3010
		head[i].mem_cgroup = head->mem_cgroup;
3011

3012
	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3013
		       HPAGE_PMD_NR);
3014
}
3015
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3016

3017
/**
3018
 * mem_cgroup_move_account - move account of the page
3019
 * @page: the page
3020
 * @nr_pages: number of regular pages (>1 for huge pages)
3021 3022 3023 3024
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
3025
 * - page is not on LRU (isolate_page() is useful.)
3026
 * - compound_lock is held when nr_pages > 1
3027
 *
3028 3029
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
3030
 */
3031 3032 3033
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct mem_cgroup *from,
3034
				   struct mem_cgroup *to)
3035
{
3036 3037
	unsigned long flags;
	int ret;
3038

3039
	VM_BUG_ON(from == to);
3040
	VM_BUG_ON_PAGE(PageLRU(page), page);
3041 3042 3043 3044 3045 3046 3047
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
3048
	if (nr_pages > 1 && !PageTransHuge(page))
3049 3050
		goto out;

3051
	/*
3052
	 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
3053 3054 3055 3056 3057
	 * of its source page while we change it: page migration takes
	 * both pages off the LRU, but page cache replacement doesn't.
	 */
	if (!trylock_page(page))
		goto out;
3058 3059

	ret = -EINVAL;
3060
	if (page->mem_cgroup != from)
3061
		goto out_unlock;
3062

3063
	spin_lock_irqsave(&from->move_lock, flags);
3064

3065
	if (!PageAnon(page) && page_mapped(page)) {
3066 3067 3068 3069 3070
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
	}
3071

3072 3073 3074 3075 3076 3077
	if (PageWriteback(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
	}
3078

3079
	/*
3080
	 * It is safe to change page->mem_cgroup here because the page
3081 3082 3083
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */
3084

3085
	/* caller should have done css_get */
3086
	page->mem_cgroup = to;
3087 3088
	spin_unlock_irqrestore(&from->move_lock, flags);

3089
	ret = 0;
3090 3091 3092

	local_irq_disable();
	mem_cgroup_charge_statistics(to, page, nr_pages);
3093
	memcg_check_events(to, page);
3094
	mem_cgroup_charge_statistics(from, page, -nr_pages);
3095
	memcg_check_events(from, page);
3096 3097 3098
	local_irq_enable();
out_unlock:
	unlock_page(page);
3099
out:
3100 3101 3102
	return ret;
}

A
Andrew Morton 已提交
3103
#ifdef CONFIG_MEMCG_SWAP
3104 3105
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
					 bool charge)
K
KAMEZAWA Hiroyuki 已提交
3106
{
3107 3108
	int val = (charge) ? 1 : -1;
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
K
KAMEZAWA Hiroyuki 已提交
3109
}
3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
3122
 * The caller must have charged to @to, IOW, called page_counter_charge() about
3123 3124 3125
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3126
				struct mem_cgroup *from, struct mem_cgroup *to)
3127 3128 3129
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
3130 3131
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
3132 3133 3134

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3135
		mem_cgroup_swap_statistics(to, true);
3136
		/*
3137
		 * This function is only called from task migration context now.
3138
		 * It postpones page_counter and refcount handling till the end
3139
		 * of task migration(mem_cgroup_clear_mc()) for performance
L
Li Zefan 已提交
3140 3141 3142 3143 3144 3145
		 * improvement. But we cannot postpone css_get(to)  because if
		 * the process that has been moved to @to does swap-in, the
		 * refcount of @to might be decreased to 0.
		 *
		 * We are in attach() phase, so the cgroup is guaranteed to be
		 * alive, so we can just call css_get().
3146
		 */
L
Li Zefan 已提交
3147
		css_get(&to->css);
3148 3149 3150 3151 3152 3153
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3154
				struct mem_cgroup *from, struct mem_cgroup *to)
3155 3156 3157
{
	return -EINVAL;
}
3158
#endif
K
KAMEZAWA Hiroyuki 已提交
3159

3160
static DEFINE_MUTEX(memcg_limit_mutex);
3161

3162
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3163
				   unsigned long limit)
3164
{
3165 3166 3167
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
3168
	int retry_count;
3169
	int ret;
3170 3171 3172 3173 3174 3175

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
3176 3177
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);
3178

3179
	oldusage = page_counter_read(&memcg->memory);
3180

3181
	do {
3182 3183 3184 3185
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3186 3187 3188 3189

		mutex_lock(&memcg_limit_mutex);
		if (limit > memcg->memsw.limit) {
			mutex_unlock(&memcg_limit_mutex);
3190
			ret = -EINVAL;
3191 3192
			break;
		}
3193 3194 3195 3196
		if (limit > memcg->memory.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memory, limit);
		mutex_unlock(&memcg_limit_mutex);
3197 3198 3199 3200

		if (!ret)
			break;

3201 3202
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);

3203
		curusage = page_counter_read(&memcg->memory);
3204
		/* Usage is reduced ? */
A
Andrew Morton 已提交
3205
		if (curusage >= oldusage)
3206 3207 3208
			retry_count--;
		else
			oldusage = curusage;
3209 3210
	} while (retry_count);

3211 3212
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3213

3214 3215 3216
	return ret;
}

L
Li Zefan 已提交
3217
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3218
					 unsigned long limit)
3219
{
3220 3221 3222
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
3223
	int retry_count;
3224
	int ret;
3225

3226
	/* see mem_cgroup_resize_res_limit */
3227 3228 3229 3230 3231 3232
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);

	oldusage = page_counter_read(&memcg->memsw);

	do {
3233 3234 3235 3236
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3237 3238 3239 3240

		mutex_lock(&memcg_limit_mutex);
		if (limit < memcg->memory.limit) {
			mutex_unlock(&memcg_limit_mutex);
3241 3242 3243
			ret = -EINVAL;
			break;
		}
3244 3245 3246 3247
		if (limit > memcg->memsw.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memsw, limit);
		mutex_unlock(&memcg_limit_mutex);
3248 3249 3250 3251

		if (!ret)
			break;

3252 3253
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);

3254
		curusage = page_counter_read(&memcg->memsw);
3255
		/* Usage is reduced ? */
3256
		if (curusage >= oldusage)
3257
			retry_count--;
3258 3259
		else
			oldusage = curusage;
3260 3261
	} while (retry_count);

3262 3263
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3264

3265 3266 3267
	return ret;
}

3268 3269 3270 3271 3272 3273 3274 3275 3276
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3277
	unsigned long excess;
3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
3302
		spin_lock_irq(&mctz->lock);
3303
		__mem_cgroup_remove_exceeded(mz, mctz);
3304 3305 3306 3307 3308 3309

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
3310 3311 3312
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

3313
		excess = soft_limit_excess(mz->memcg);
3314 3315 3316 3317 3318 3319 3320 3321 3322
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
3323
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3324
		spin_unlock_irq(&mctz->lock);
3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

3342 3343 3344 3345 3346 3347
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
3348 3349
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
3350 3351
	bool ret;

3352
	/*
3353 3354 3355 3356
	 * The lock does not prevent addition or deletion of children, but
	 * it prevents a new child from being initialized based on this
	 * parent in css_online(), so it's enough to decide whether
	 * hierarchically inherited attributes can still be changed or not.
3357
	 */
3358 3359 3360 3361 3362 3363
	lockdep_assert_held(&memcg_create_mutex);

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
3364 3365
}

3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

3376 3377
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3378
	/* try to free all pages in this cgroup */
3379
	while (nr_retries && page_counter_read(&memcg->memory)) {
3380
		int progress;
3381

3382 3383 3384
		if (signal_pending(current))
			return -EINTR;

3385 3386
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
3387
		if (!progress) {
3388
			nr_retries--;
3389
			/* maybe some writeback is necessary */
3390
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3391
		}
3392 3393

	}
3394 3395

	return 0;
3396 3397
}

3398 3399 3400
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
3401
{
3402
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3403

3404 3405
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
3406
	return mem_cgroup_force_empty(memcg) ?: nbytes;
3407 3408
}

3409 3410
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
3411
{
3412
	return mem_cgroup_from_css(css)->use_hierarchy;
3413 3414
}

3415 3416
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
3417 3418
{
	int retval = 0;
3419
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
3420
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3421

3422
	mutex_lock(&memcg_create_mutex);
3423 3424 3425 3426

	if (memcg->use_hierarchy == val)
		goto out;

3427
	/*
3428
	 * If parent's use_hierarchy is set, we can't make any modifications
3429 3430 3431 3432 3433 3434
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3435
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3436
				(val == 1 || val == 0)) {
3437
		if (!memcg_has_children(memcg))
3438
			memcg->use_hierarchy = val;
3439 3440 3441 3442
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
3443 3444

out:
3445
	mutex_unlock(&memcg_create_mutex);
3446 3447 3448 3449

	return retval;
}

3450 3451
static unsigned long tree_stat(struct mem_cgroup *memcg,
			       enum mem_cgroup_stat_index idx)
3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468
{
	struct mem_cgroup *iter;
	long val = 0;

	/* Per-cpu values can be negative, use a signed accumulator */
	for_each_mem_cgroup_tree(iter, memcg)
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
}

static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
{
	u64 val;

3469 3470 3471 3472 3473 3474
	if (mem_cgroup_is_root(memcg)) {
		val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
		val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
		if (swap)
			val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
	} else {
3475
		if (!swap)
3476
			val = page_counter_read(&memcg->memory);
3477
		else
3478
			val = page_counter_read(&memcg->memsw);
3479 3480 3481 3482
	}
	return val << PAGE_SHIFT;
}

3483 3484 3485 3486 3487 3488 3489
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
3490

3491
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3492
			       struct cftype *cft)
B
Balbir Singh 已提交
3493
{
3494
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3495
	struct page_counter *counter;
3496

3497
	switch (MEMFILE_TYPE(cft->private)) {
3498
	case _MEM:
3499 3500
		counter = &memcg->memory;
		break;
3501
	case _MEMSWAP:
3502 3503
		counter = &memcg->memsw;
		break;
3504
	case _KMEM:
3505
		counter = &memcg->kmem;
3506
		break;
3507 3508 3509
	default:
		BUG();
	}
3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
			return mem_cgroup_usage(memcg, false);
		if (counter == &memcg->memsw)
			return mem_cgroup_usage(memcg, true);
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
		return (u64)counter->limit * PAGE_SIZE;
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
3529
}
3530 3531

#ifdef CONFIG_MEMCG_KMEM
3532 3533
static int memcg_activate_kmem(struct mem_cgroup *memcg,
			       unsigned long nr_pages)
3534 3535 3536 3537 3538 3539 3540
{
	int err = 0;
	int memcg_id;

	if (memcg_kmem_is_active(memcg))
		return 0;

3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
3553
	mutex_lock(&memcg_create_mutex);
3554 3555
	if (cgroup_has_tasks(memcg->css.cgroup) ||
	    (memcg->use_hierarchy && memcg_has_children(memcg)))
3556 3557 3558 3559
		err = -EBUSY;
	mutex_unlock(&memcg_create_mutex);
	if (err)
		goto out;
3560

3561
	memcg_id = memcg_alloc_cache_id();
3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573
	if (memcg_id < 0) {
		err = memcg_id;
		goto out;
	}

	memcg->kmemcg_id = memcg_id;
	INIT_LIST_HEAD(&memcg->memcg_slab_caches);

	/*
	 * We couldn't have accounted to this cgroup, because it hasn't got the
	 * active bit set yet, so this should succeed.
	 */
3574
	err = page_counter_limit(&memcg->kmem, nr_pages);
3575 3576 3577 3578 3579 3580 3581 3582 3583
	VM_BUG_ON(err);

	static_key_slow_inc(&memcg_kmem_enabled_key);
	/*
	 * Setting the active bit after enabling static branching will
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
	memcg_kmem_set_active(memcg);
3584
out:
3585 3586 3587 3588
	return err;
}

static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3589
				   unsigned long limit)
3590 3591 3592
{
	int ret;

3593
	mutex_lock(&memcg_limit_mutex);
3594
	if (!memcg_kmem_is_active(memcg))
3595
		ret = memcg_activate_kmem(memcg, limit);
3596
	else
3597 3598
		ret = page_counter_limit(&memcg->kmem, limit);
	mutex_unlock(&memcg_limit_mutex);
3599 3600 3601
	return ret;
}

3602
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
3603
{
3604
	int ret = 0;
3605
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
3606

3607 3608
	if (!parent)
		return 0;
3609

3610
	mutex_lock(&memcg_limit_mutex);
3611
	/*
3612 3613
	 * If the parent cgroup is not kmem-active now, it cannot be activated
	 * after this point, because it has at least one child already.
3614
	 */
3615
	if (memcg_kmem_is_active(parent))
3616 3617
		ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
	mutex_unlock(&memcg_limit_mutex);
3618
	return ret;
3619
}
3620 3621
#else
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3622
				   unsigned long limit)
3623 3624 3625
{
	return -EINVAL;
}
3626
#endif /* CONFIG_MEMCG_KMEM */
3627

3628 3629 3630 3631
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3632 3633
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3634
{
3635
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3636
	unsigned long nr_pages;
3637 3638
	int ret;

3639
	buf = strstrip(buf);
3640 3641 3642
	ret = page_counter_memparse(buf, &nr_pages);
	if (ret)
		return ret;
3643

3644
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3645
	case RES_LIMIT:
3646 3647 3648 3649
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3650 3651 3652
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
			ret = mem_cgroup_resize_limit(memcg, nr_pages);
3653
			break;
3654 3655
		case _MEMSWAP:
			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3656
			break;
3657 3658 3659 3660
		case _KMEM:
			ret = memcg_update_kmem_limit(memcg, nr_pages);
			break;
		}
3661
		break;
3662 3663 3664
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3665 3666
		break;
	}
3667
	return ret ?: nbytes;
B
Balbir Singh 已提交
3668 3669
}

3670 3671
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3672
{
3673
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3674
	struct page_counter *counter;
3675

3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
	default:
		BUG();
	}
3689

3690
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3691
	case RES_MAX_USAGE:
3692
		page_counter_reset_watermark(counter);
3693 3694
		break;
	case RES_FAILCNT:
3695
		counter->failcnt = 0;
3696
		break;
3697 3698
	default:
		BUG();
3699
	}
3700

3701
	return nbytes;
3702 3703
}

3704
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3705 3706
					struct cftype *cft)
{
3707
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3708 3709
}

3710
#ifdef CONFIG_MMU
3711
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3712 3713
					struct cftype *cft, u64 val)
{
3714
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3715 3716 3717

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
3718

3719
	/*
3720 3721 3722 3723
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3724
	 */
3725
	memcg->move_charge_at_immigrate = val;
3726 3727
	return 0;
}
3728
#else
3729
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3730 3731 3732 3733 3734
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3735

3736
#ifdef CONFIG_NUMA
3737
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3738
{
3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3751
	int nid;
3752
	unsigned long nr;
3753
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3754

3755 3756 3757 3758 3759 3760 3761 3762 3763
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3764 3765
	}

3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3781 3782 3783 3784 3785 3786
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3787 3788 3789 3790 3791
static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

3792
static int memcg_stat_show(struct seq_file *m, void *v)
3793
{
3794
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3795
	unsigned long memory, memsw;
3796 3797
	struct mem_cgroup *mi;
	unsigned int i;
3798

3799
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3800
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3801
			continue;
3802 3803
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3804
	}
L
Lee Schermerhorn 已提交
3805

3806 3807 3808 3809 3810 3811 3812 3813
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
3814
	/* Hierarchical information */
3815 3816 3817 3818
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
		memory = min(memory, mi->memory.limit);
		memsw = min(memsw, mi->memsw.limit);
3819
	}
3820 3821 3822 3823 3824
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
	if (do_swap_account)
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3825

3826 3827 3828
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

3829
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3830
			continue;
3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3851
	}
K
KAMEZAWA Hiroyuki 已提交
3852

K
KOSAKI Motohiro 已提交
3853 3854 3855 3856
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
3857
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3858 3859 3860 3861 3862
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3863
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3864
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3865

3866 3867 3868 3869
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
3870
			}
3871 3872 3873 3874
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3875 3876 3877
	}
#endif

3878 3879 3880
	return 0;
}

3881 3882
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3883
{
3884
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3885

3886
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3887 3888
}

3889 3890
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3891
{
3892
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3893

3894
	if (val > 100)
K
KOSAKI Motohiro 已提交
3895 3896
		return -EINVAL;

3897
	if (css->parent)
3898 3899 3900
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3901

K
KOSAKI Motohiro 已提交
3902 3903 3904
	return 0;
}

3905 3906 3907
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3908
	unsigned long usage;
3909 3910 3911 3912
	int i;

	rcu_read_lock();
	if (!swap)
3913
		t = rcu_dereference(memcg->thresholds.primary);
3914
	else
3915
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3916 3917 3918 3919

	if (!t)
		goto unlock;

3920
	usage = mem_cgroup_usage(memcg, swap);
3921 3922

	/*
3923
	 * current_threshold points to threshold just below or equal to usage.
3924 3925 3926
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3927
	i = t->current_threshold;
3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3951
	t->current_threshold = i - 1;
3952 3953 3954 3955 3956 3957
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3958 3959 3960 3961 3962 3963 3964
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3965 3966 3967 3968 3969 3970 3971
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3972 3973 3974 3975 3976 3977 3978
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3979 3980
}

3981
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3982 3983 3984
{
	struct mem_cgroup_eventfd_list *ev;

3985 3986
	spin_lock(&memcg_oom_lock);

3987
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3988
		eventfd_signal(ev->eventfd, 1);
3989 3990

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3991 3992 3993
	return 0;
}

3994
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3995
{
K
KAMEZAWA Hiroyuki 已提交
3996 3997
	struct mem_cgroup *iter;

3998
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3999
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4000 4001
}

4002
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4003
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4004
{
4005 4006
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4007 4008
	unsigned long threshold;
	unsigned long usage;
4009
	int i, size, ret;
4010

4011
	ret = page_counter_memparse(args, &threshold);
4012 4013 4014 4015
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4016

4017
	if (type == _MEM) {
4018
		thresholds = &memcg->thresholds;
4019
		usage = mem_cgroup_usage(memcg, false);
4020
	} else if (type == _MEMSWAP) {
4021
		thresholds = &memcg->memsw_thresholds;
4022
		usage = mem_cgroup_usage(memcg, true);
4023
	} else
4024 4025 4026
		BUG();

	/* Check if a threshold crossed before adding a new one */
4027
	if (thresholds->primary)
4028 4029
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4030
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4031 4032

	/* Allocate memory for new array of thresholds */
4033
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4034
			GFP_KERNEL);
4035
	if (!new) {
4036 4037 4038
		ret = -ENOMEM;
		goto unlock;
	}
4039
	new->size = size;
4040 4041

	/* Copy thresholds (if any) to new array */
4042 4043
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4044
				sizeof(struct mem_cgroup_threshold));
4045 4046
	}

4047
	/* Add new threshold */
4048 4049
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4050 4051

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4052
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4053 4054 4055
			compare_thresholds, NULL);

	/* Find current threshold */
4056
	new->current_threshold = -1;
4057
	for (i = 0; i < size; i++) {
4058
		if (new->entries[i].threshold <= usage) {
4059
			/*
4060 4061
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4062 4063
			 * it here.
			 */
4064
			++new->current_threshold;
4065 4066
		} else
			break;
4067 4068
	}

4069 4070 4071 4072 4073
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4074

4075
	/* To be sure that nobody uses thresholds */
4076 4077 4078 4079 4080 4081 4082 4083
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4084
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4085 4086
	struct eventfd_ctx *eventfd, const char *args)
{
4087
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
4088 4089
}

4090
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4091 4092
	struct eventfd_ctx *eventfd, const char *args)
{
4093
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
4094 4095
}

4096
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4097
	struct eventfd_ctx *eventfd, enum res_type type)
4098
{
4099 4100
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4101
	unsigned long usage;
4102
	int i, j, size;
4103 4104

	mutex_lock(&memcg->thresholds_lock);
4105 4106

	if (type == _MEM) {
4107
		thresholds = &memcg->thresholds;
4108
		usage = mem_cgroup_usage(memcg, false);
4109
	} else if (type == _MEMSWAP) {
4110
		thresholds = &memcg->memsw_thresholds;
4111
		usage = mem_cgroup_usage(memcg, true);
4112
	} else
4113 4114
		BUG();

4115 4116 4117
	if (!thresholds->primary)
		goto unlock;

4118 4119 4120 4121
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4122 4123 4124
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4125 4126 4127
			size++;
	}

4128
	new = thresholds->spare;
4129

4130 4131
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4132 4133
		kfree(new);
		new = NULL;
4134
		goto swap_buffers;
4135 4136
	}

4137
	new->size = size;
4138 4139

	/* Copy thresholds and find current threshold */
4140 4141 4142
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4143 4144
			continue;

4145
		new->entries[j] = thresholds->primary->entries[i];
4146
		if (new->entries[j].threshold <= usage) {
4147
			/*
4148
			 * new->current_threshold will not be used
4149 4150 4151
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4152
			++new->current_threshold;
4153 4154 4155 4156
		}
		j++;
	}

4157
swap_buffers:
4158 4159
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
4160 4161 4162 4163 4164 4165
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

4166
	rcu_assign_pointer(thresholds->primary, new);
4167

4168
	/* To be sure that nobody uses thresholds */
4169
	synchronize_rcu();
4170
unlock:
4171 4172
	mutex_unlock(&memcg->thresholds_lock);
}
4173

4174
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4175 4176
	struct eventfd_ctx *eventfd)
{
4177
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
4178 4179
}

4180
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4181 4182
	struct eventfd_ctx *eventfd)
{
4183
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
4184 4185
}

4186
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4187
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
4188 4189 4190 4191 4192 4193 4194
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4195
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4196 4197 4198 4199 4200

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4201
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
4202
		eventfd_signal(eventfd, 1);
4203
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4204 4205 4206 4207

	return 0;
}

4208
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4209
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
4210 4211 4212
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

4213
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4214

4215
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4216 4217 4218 4219 4220 4221
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4222
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4223 4224
}

4225
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4226
{
4227
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
4228

4229 4230
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
	seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
4231 4232 4233
	return 0;
}

4234
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4235 4236
	struct cftype *cft, u64 val)
{
4237
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4238 4239

	/* cannot set to root cgroup and only 0 and 1 are allowed */
4240
	if (!css->parent || !((val == 0) || (val == 1)))
4241 4242
		return -EINVAL;

4243
	memcg->oom_kill_disable = val;
4244
	if (!val)
4245
		memcg_oom_recover(memcg);
4246

4247 4248 4249
	return 0;
}

A
Andrew Morton 已提交
4250
#ifdef CONFIG_MEMCG_KMEM
4251
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4252
{
4253 4254
	int ret;

4255
	memcg->kmemcg_id = -1;
4256 4257 4258
	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
4259

4260
	return mem_cgroup_sockets_init(memcg, ss);
4261
}
4262

4263
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4264
{
4265
	mem_cgroup_sockets_destroy(memcg);
4266
}
4267
#else
4268
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4269 4270 4271
{
	return 0;
}
G
Glauber Costa 已提交
4272

4273 4274 4275
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}
4276 4277
#endif

4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

4291 4292 4293 4294 4295
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
4296
static void memcg_event_remove(struct work_struct *work)
4297
{
4298 4299
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
4300
	struct mem_cgroup *memcg = event->memcg;
4301 4302 4303

	remove_wait_queue(event->wqh, &event->wait);

4304
	event->unregister_event(memcg, event->eventfd);
4305 4306 4307 4308 4309 4310

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
4311
	css_put(&memcg->css);
4312 4313 4314 4315 4316 4317 4318
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
4319 4320
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
4321
{
4322 4323
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
4324
	struct mem_cgroup *memcg = event->memcg;
4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
4337
		spin_lock(&memcg->event_list_lock);
4338 4339 4340 4341 4342 4343 4344 4345
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
4346
		spin_unlock(&memcg->event_list_lock);
4347 4348 4349 4350 4351
	}

	return 0;
}

4352
static void memcg_event_ptable_queue_proc(struct file *file,
4353 4354
		wait_queue_head_t *wqh, poll_table *pt)
{
4355 4356
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
4357 4358 4359 4360 4361 4362

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
4363 4364
 * DO NOT USE IN NEW FILES.
 *
4365 4366 4367 4368 4369
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
4370 4371
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
4372
{
4373
	struct cgroup_subsys_state *css = of_css(of);
4374
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4375
	struct mem_cgroup_event *event;
4376 4377 4378 4379
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
4380
	const char *name;
4381 4382 4383
	char *endp;
	int ret;

4384 4385 4386
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
4387 4388
	if (*endp != ' ')
		return -EINVAL;
4389
	buf = endp + 1;
4390

4391
	cfd = simple_strtoul(buf, &endp, 10);
4392 4393
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
4394
	buf = endp + 1;
4395 4396 4397 4398 4399

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4400
	event->memcg = memcg;
4401
	INIT_LIST_HEAD(&event->list);
4402 4403 4404
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

4430 4431 4432 4433 4434
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
4435 4436
	 *
	 * DO NOT ADD NEW FILES.
4437
	 */
A
Al Viro 已提交
4438
	name = cfile.file->f_path.dentry->d_name.name;
4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
4450 4451
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
4452 4453 4454 4455 4456
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

4457
	/*
4458 4459 4460
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
4461
	 */
A
Al Viro 已提交
4462
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4463
					       &memory_cgrp_subsys);
4464
	ret = -EINVAL;
4465
	if (IS_ERR(cfile_css))
4466
		goto out_put_cfile;
4467 4468
	if (cfile_css != css) {
		css_put(cfile_css);
4469
		goto out_put_cfile;
4470
	}
4471

4472
	ret = event->register_event(memcg, event->eventfd, buf);
4473 4474 4475 4476 4477
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

4478 4479 4480
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
4481 4482 4483 4484

	fdput(cfile);
	fdput(efile);

4485
	return nbytes;
4486 4487

out_put_css:
4488
	css_put(css);
4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

B
Balbir Singh 已提交
4501 4502
static struct cftype mem_cgroup_files[] = {
	{
4503
		.name = "usage_in_bytes",
4504
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4505
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4506
	},
4507 4508
	{
		.name = "max_usage_in_bytes",
4509
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4510
		.write = mem_cgroup_reset,
4511
		.read_u64 = mem_cgroup_read_u64,
4512
	},
B
Balbir Singh 已提交
4513
	{
4514
		.name = "limit_in_bytes",
4515
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4516
		.write = mem_cgroup_write,
4517
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4518
	},
4519 4520 4521
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4522
		.write = mem_cgroup_write,
4523
		.read_u64 = mem_cgroup_read_u64,
4524
	},
B
Balbir Singh 已提交
4525 4526
	{
		.name = "failcnt",
4527
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4528
		.write = mem_cgroup_reset,
4529
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4530
	},
4531 4532
	{
		.name = "stat",
4533
		.seq_show = memcg_stat_show,
4534
	},
4535 4536
	{
		.name = "force_empty",
4537
		.write = mem_cgroup_force_empty_write,
4538
	},
4539 4540 4541 4542 4543
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4544
	{
4545
		.name = "cgroup.event_control",		/* XXX: for compat */
4546
		.write = memcg_write_event_control,
4547 4548 4549
		.flags = CFTYPE_NO_PREFIX,
		.mode = S_IWUGO,
	},
K
KOSAKI Motohiro 已提交
4550 4551 4552 4553 4554
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4555 4556 4557 4558 4559
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4560 4561
	{
		.name = "oom_control",
4562
		.seq_show = mem_cgroup_oom_control_read,
4563
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4564 4565
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4566 4567 4568
	{
		.name = "pressure_level",
	},
4569 4570 4571
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4572
		.seq_show = memcg_numa_stat_show,
4573 4574
	},
#endif
4575 4576 4577 4578
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4579
		.write = mem_cgroup_write,
4580
		.read_u64 = mem_cgroup_read_u64,
4581 4582 4583 4584
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4585
		.read_u64 = mem_cgroup_read_u64,
4586 4587 4588 4589
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4590
		.write = mem_cgroup_reset,
4591
		.read_u64 = mem_cgroup_read_u64,
4592 4593 4594 4595
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4596
		.write = mem_cgroup_reset,
4597
		.read_u64 = mem_cgroup_read_u64,
4598
	},
4599 4600 4601
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
4602 4603 4604 4605
		.seq_start = slab_start,
		.seq_next = slab_next,
		.seq_stop = slab_stop,
		.seq_show = memcg_slab_show,
4606 4607
	},
#endif
4608
#endif
4609
	{ },	/* terminate */
4610
};
4611

4612 4613 4614 4615 4616
#ifdef CONFIG_MEMCG_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4617
		.read_u64 = mem_cgroup_read_u64,
4618 4619 4620 4621
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4622
		.write = mem_cgroup_reset,
4623
		.read_u64 = mem_cgroup_read_u64,
4624 4625 4626 4627
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4628
		.write = mem_cgroup_write,
4629
		.read_u64 = mem_cgroup_read_u64,
4630 4631 4632 4633
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4634
		.write = mem_cgroup_reset,
4635
		.read_u64 = mem_cgroup_read_u64,
4636 4637 4638 4639
	},
	{ },	/* terminate */
};
#endif
4640
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4641 4642
{
	struct mem_cgroup_per_node *pn;
4643
	struct mem_cgroup_per_zone *mz;
4644
	int zone, tmp = node;
4645 4646 4647 4648 4649 4650 4651 4652
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4653 4654
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4655
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4656 4657
	if (!pn)
		return 1;
4658 4659 4660

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4661
		lruvec_init(&mz->lruvec);
4662 4663
		mz->usage_in_excess = 0;
		mz->on_tree = false;
4664
		mz->memcg = memcg;
4665
	}
4666
	memcg->nodeinfo[node] = pn;
4667 4668 4669
	return 0;
}

4670
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4671
{
4672
	kfree(memcg->nodeinfo[node]);
4673 4674
}

4675 4676
static struct mem_cgroup *mem_cgroup_alloc(void)
{
4677
	struct mem_cgroup *memcg;
4678
	size_t size;
4679

4680 4681
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4682

4683
	memcg = kzalloc(size, GFP_KERNEL);
4684
	if (!memcg)
4685 4686
		return NULL;

4687 4688
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
4689
		goto out_free;
4690 4691
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
4692 4693

out_free:
4694
	kfree(memcg);
4695
	return NULL;
4696 4697
}

4698
/*
4699 4700 4701 4702 4703 4704 4705 4706
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
4707
 */
4708 4709

static void __mem_cgroup_free(struct mem_cgroup *memcg)
4710
{
4711
	int node;
4712

4713
	mem_cgroup_remove_from_trees(memcg);
4714 4715 4716 4717 4718 4719

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

4720
	disarm_static_keys(memcg);
4721
	kfree(memcg);
4722
}
4723

4724 4725 4726
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
4727
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4728
{
4729
	if (!memcg->memory.parent)
4730
		return NULL;
4731
	return mem_cgroup_from_counter(memcg->memory.parent, memory);
4732
}
G
Glauber Costa 已提交
4733
EXPORT_SYMBOL(parent_mem_cgroup);
4734

4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757
static void __init mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node(node) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		BUG_ON(!rtpn);

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
}

L
Li Zefan 已提交
4758
static struct cgroup_subsys_state * __ref
4759
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
4760
{
4761
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4762
	long error = -ENOMEM;
4763
	int node;
B
Balbir Singh 已提交
4764

4765 4766
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4767
		return ERR_PTR(error);
4768

B
Bob Liu 已提交
4769
	for_each_node(node)
4770
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4771
			goto free_out;
4772

4773
	/* root ? */
4774
	if (parent_css == NULL) {
4775
		root_mem_cgroup = memcg;
4776 4777 4778
		page_counter_init(&memcg->memory, NULL);
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4779
	}
4780

4781 4782 4783 4784 4785
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4786
	vmpressure_init(&memcg->vmpressure);
4787 4788
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
4789 4790 4791 4792 4793 4794 4795 4796 4797

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
4798
mem_cgroup_css_online(struct cgroup_subsys_state *css)
4799
{
4800
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
4801
	struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4802
	int ret;
4803

4804
	if (css->id > MEM_CGROUP_ID_MAX)
4805 4806
		return -ENOSPC;

T
Tejun Heo 已提交
4807
	if (!parent)
4808 4809
		return 0;

4810
	mutex_lock(&memcg_create_mutex);
4811 4812 4813 4814 4815 4816

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
4817 4818 4819
		page_counter_init(&memcg->memory, &parent->memory);
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4820

4821
		/*
4822 4823
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
4824
		 */
4825
	} else {
4826 4827 4828
		page_counter_init(&memcg->memory, NULL);
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4829 4830 4831 4832 4833
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4834
		if (parent != root_mem_cgroup)
4835
			memory_cgrp_subsys.broken_hierarchy = true;
4836
	}
4837
	mutex_unlock(&memcg_create_mutex);
4838

4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850
	ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
	if (ret)
		return ret;

	/*
	 * Make sure the memcg is initialized: mem_cgroup_iter()
	 * orders reading memcg->initialized against its callers
	 * reading the memcg members.
	 */
	smp_store_release(&memcg->initialized, 1);

	return 0;
B
Balbir Singh 已提交
4851 4852
}

4853
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4854
{
4855
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4856
	struct mem_cgroup_event *event, *tmp;
4857 4858 4859 4860 4861 4862

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4863 4864
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4865 4866 4867
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4868
	spin_unlock(&memcg->event_list_lock);
4869

4870
	memcg_unregister_all_caches(memcg);
4871
	vmpressure_cleanup(&memcg->vmpressure);
4872 4873
}

4874
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4875
{
4876
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4877

4878
	memcg_destroy_kmem(memcg);
4879
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4880 4881
}

4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4899 4900 4901 4902
	mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
	mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
	memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
	memcg->soft_limit = 0;
4903 4904
}

4905
#ifdef CONFIG_MMU
4906
/* Handlers for move charge at task migration. */
4907
static int mem_cgroup_do_precharge(unsigned long count)
4908
{
4909
	int ret;
4910 4911

	/* Try a single bulk charge without reclaim first */
4912
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
4913
	if (!ret) {
4914 4915 4916
		mc.precharge += count;
		return ret;
	}
4917
	if (ret == -EINTR) {
4918
		cancel_charge(root_mem_cgroup, count);
4919 4920
		return ret;
	}
4921 4922

	/* Try charges one by one with reclaim */
4923
	while (count--) {
4924
		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4925 4926 4927
		/*
		 * In case of failure, any residual charges against
		 * mc.to will be dropped by mem_cgroup_clear_mc()
4928 4929
		 * later on.  However, cancel any charges that are
		 * bypassed to root right away or they'll be lost.
4930
		 */
4931
		if (ret == -EINTR)
4932
			cancel_charge(root_mem_cgroup, 1);
4933 4934
		if (ret)
			return ret;
4935
		mc.precharge++;
4936
		cond_resched();
4937
	}
4938
	return 0;
4939 4940 4941
}

/**
4942
 * get_mctgt_type - get target type of moving charge
4943 4944 4945
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
4946
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4947 4948 4949 4950 4951 4952
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
4953 4954 4955
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4956 4957 4958 4959 4960
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
4961
	swp_entry_t	ent;
4962 4963 4964
};

enum mc_target_type {
4965
	MC_TARGET_NONE = 0,
4966
	MC_TARGET_PAGE,
4967
	MC_TARGET_SWAP,
4968 4969
};

D
Daisuke Nishimura 已提交
4970 4971
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4972
{
D
Daisuke Nishimura 已提交
4973
	struct page *page = vm_normal_page(vma, addr, ptent);
4974

D
Daisuke Nishimura 已提交
4975 4976 4977 4978
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
4979
		if (!move_anon())
D
Daisuke Nishimura 已提交
4980
			return NULL;
4981 4982
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
4983 4984 4985 4986 4987 4988 4989
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

4990
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
4991 4992 4993 4994 4995 4996 4997 4998
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
4999 5000 5001 5002
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
5003
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
5004 5005 5006 5007 5008
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
5009 5010 5011 5012 5013 5014 5015
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
5016

5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
5036 5037
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
			if (do_swap_account)
				*entry = swp;
			page = find_get_page(swap_address_space(swp), swp.val);
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
5050
#endif
5051 5052 5053
	return page;
}

5054
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
5055 5056 5057
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
5058
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
5059 5060 5061 5062 5063 5064
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5065 5066
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5067 5068

	if (!page && !ent.val)
5069
		return ret;
5070 5071
	if (page) {
		/*
5072
		 * Do only loose check w/o serialization.
5073
		 * mem_cgroup_move_account() checks the page is valid or
5074
		 * not under LRU exclusion.
5075
		 */
5076
		if (page->mem_cgroup == mc.from) {
5077 5078 5079 5080 5081 5082 5083
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5084 5085
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
5086
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5087 5088 5089
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5090 5091 5092 5093
	}
	return ret;
}

5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
5107
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5108 5109
	if (!move_anon())
		return ret;
5110
	if (page->mem_cgroup == mc.from) {
5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5127 5128 5129 5130 5131 5132 5133 5134
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5135
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5136 5137
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
5138
		spin_unlock(ptl);
5139
		return 0;
5140
	}
5141

5142 5143
	if (pmd_trans_unstable(pmd))
		return 0;
5144 5145
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5146
		if (get_mctgt_type(vma, addr, *pte, NULL))
5147 5148 5149 5150
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5151 5152 5153
	return 0;
}

5154 5155 5156 5157 5158
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5159
	down_read(&mm->mmap_sem);
5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5171
	up_read(&mm->mmap_sem);
5172 5173 5174 5175 5176 5177 5178 5179 5180

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5181 5182 5183 5184 5185
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5186 5187
}

5188 5189
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5190
{
5191 5192 5193
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5194
	/* we must uncharge all the leftover precharges from mc.to */
5195
	if (mc.precharge) {
5196
		cancel_charge(mc.to, mc.precharge);
5197 5198 5199 5200 5201 5202 5203
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
5204
		cancel_charge(mc.from, mc.moved_charge);
5205
		mc.moved_charge = 0;
5206
	}
5207 5208 5209
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
5210
		if (!mem_cgroup_is_root(mc.from))
5211
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5212

5213
		/*
5214 5215
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
5216
		 */
5217
		if (!mem_cgroup_is_root(mc.to))
5218 5219
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

5220
		css_put_many(&mc.from->css, mc.moved_swap);
5221

L
Li Zefan 已提交
5222
		/* we've already done css_get(mc.to) */
5223 5224
		mc.moved_swap = 0;
	}
5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5238
	spin_lock(&mc.lock);
5239 5240
	mc.from = NULL;
	mc.to = NULL;
5241
	spin_unlock(&mc.lock);
5242 5243
}

5244
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5245
				 struct cgroup_taskset *tset)
5246
{
5247
	struct task_struct *p = cgroup_taskset_first(tset);
5248
	int ret = 0;
5249
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5250
	unsigned long move_charge_at_immigrate;
5251

5252 5253 5254 5255 5256 5257 5258
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
	if (move_charge_at_immigrate) {
5259 5260 5261
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

5262
		VM_BUG_ON(from == memcg);
5263 5264 5265 5266 5267

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5268 5269 5270 5271
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5272
			VM_BUG_ON(mc.moved_charge);
5273
			VM_BUG_ON(mc.moved_swap);
5274

5275
			spin_lock(&mc.lock);
5276
			mc.from = from;
5277
			mc.to = memcg;
5278
			mc.immigrate_flags = move_charge_at_immigrate;
5279
			spin_unlock(&mc.lock);
5280
			/* We set mc.moving_task later */
5281 5282 5283 5284

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5285 5286
		}
		mmput(mm);
5287 5288 5289 5290
	}
	return ret;
}

5291
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5292
				     struct cgroup_taskset *tset)
5293
{
5294 5295
	if (mc.to)
		mem_cgroup_clear_mc();
5296 5297
}

5298 5299 5300
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5301
{
5302 5303 5304 5305
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
5306 5307 5308
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
5309

5310 5311 5312 5313 5314 5315 5316 5317 5318 5319
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
5320
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5321
		if (mc.precharge < HPAGE_PMD_NR) {
5322
			spin_unlock(ptl);
5323 5324 5325 5326 5327 5328 5329
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5330
							     mc.from, mc.to)) {
5331 5332 5333 5334 5335 5336 5337
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
5338
		spin_unlock(ptl);
5339
		return 0;
5340 5341
	}

5342 5343
	if (pmd_trans_unstable(pmd))
		return 0;
5344 5345 5346 5347
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
5348
		swp_entry_t ent;
5349 5350 5351 5352

		if (!mc.precharge)
			break;

5353
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5354 5355 5356 5357
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
5358
			if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
5359
				mc.precharge--;
5360 5361
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5362 5363
			}
			putback_lru_page(page);
5364
put:			/* get_mctgt_type() gets the page */
5365 5366
			put_page(page);
			break;
5367 5368
		case MC_TARGET_SWAP:
			ent = target.ent;
5369
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5370
				mc.precharge--;
5371 5372 5373
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5374
			break;
5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5389
		ret = mem_cgroup_do_precharge(1);
5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5402 5403 5404 5405 5406 5407 5408
	/*
	 * Signal mem_cgroup_begin_page_stat() to take the memcg's
	 * move_lock while we're moving its pages to another memcg.
	 * Then wait for already started RCU-only updates to finish.
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5440
	up_read(&mm->mmap_sem);
5441
	atomic_dec(&mc.from->moving_account);
5442 5443
}

5444
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5445
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5446
{
5447
	struct task_struct *p = cgroup_taskset_first(tset);
5448
	struct mm_struct *mm = get_task_mm(p);
5449 5450

	if (mm) {
5451 5452
		if (mc.to)
			mem_cgroup_move_charge(mm);
5453 5454
		mmput(mm);
	}
5455 5456
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5457
}
5458
#else	/* !CONFIG_MMU */
5459
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5460
				 struct cgroup_taskset *tset)
5461 5462 5463
{
	return 0;
}
5464
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5465
				     struct cgroup_taskset *tset)
5466 5467
{
}
5468
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5469
				 struct cgroup_taskset *tset)
5470 5471 5472
{
}
#endif
B
Balbir Singh 已提交
5473

5474 5475
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5476 5477
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5478
 */
5479
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5480 5481
{
	/*
5482
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5483 5484 5485
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5486
	if (cgroup_on_dfl(root_css->cgroup))
5487
		mem_cgroup_from_css(root_css)->use_hierarchy = true;
5488 5489
}

5490
struct cgroup_subsys memory_cgrp_subsys = {
5491
	.css_alloc = mem_cgroup_css_alloc,
5492
	.css_online = mem_cgroup_css_online,
5493 5494
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
5495
	.css_reset = mem_cgroup_css_reset,
5496 5497
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5498
	.attach = mem_cgroup_move_task,
5499
	.bind = mem_cgroup_bind,
5500
	.legacy_cftypes = mem_cgroup_files,
5501
	.early_init = 0,
B
Balbir Singh 已提交
5502
};
5503

A
Andrew Morton 已提交
5504
#ifdef CONFIG_MEMCG_SWAP
5505 5506
static int __init enable_swap_account(char *s)
{
5507
	if (!strcmp(s, "1"))
5508
		really_do_swap_account = 1;
5509
	else if (!strcmp(s, "0"))
5510 5511 5512
		really_do_swap_account = 0;
	return 1;
}
5513
__setup("swapaccount=", enable_swap_account);
5514

5515 5516
static void __init memsw_file_init(void)
{
5517 5518
	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
					  memsw_cgroup_files));
5519 5520 5521 5522 5523 5524 5525 5526
}

static void __init enable_swap_cgroup(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		memsw_file_init();
	}
5527
}
5528

5529
#else
5530
static void __init enable_swap_cgroup(void)
5531 5532
{
}
5533
#endif
5534

5535 5536 5537 5538 5539 5540 5541 5542 5543 5544
#ifdef CONFIG_MEMCG_SWAP
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
5545
	struct mem_cgroup *memcg;
5546 5547 5548 5549 5550 5551 5552 5553
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

	if (!do_swap_account)
		return;

5554
	memcg = page->mem_cgroup;
5555 5556

	/* Readahead page, never charged */
5557
	if (!memcg)
5558 5559
		return;

5560
	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5561
	VM_BUG_ON_PAGE(oldid, page);
5562 5563
	mem_cgroup_swap_statistics(memcg, true);

5564
	page->mem_cgroup = NULL;
5565

5566 5567 5568 5569 5570
	if (!mem_cgroup_is_root(memcg))
		page_counter_uncharge(&memcg->memory, 1);

	/* XXX: caller holds IRQ-safe mapping->tree_lock */
	VM_BUG_ON(!irqs_disabled());
5571

5572 5573
	mem_cgroup_charge_statistics(memcg, page, -1);
	memcg_check_events(memcg, page);
5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593
}

/**
 * mem_cgroup_uncharge_swap - uncharge a swap entry
 * @entry: swap entry to uncharge
 *
 * Drop the memsw charge associated with @entry.
 */
void mem_cgroup_uncharge_swap(swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short id;

	if (!do_swap_account)
		return;

	id = swap_cgroup_record(entry, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
	if (memcg) {
5594
		if (!mem_cgroup_is_root(memcg))
5595
			page_counter_uncharge(&memcg->memsw, 1);
5596 5597 5598 5599 5600 5601 5602
		mem_cgroup_swap_statistics(memcg, false);
		css_put(&memcg->css);
	}
	rcu_read_unlock();
}
#endif

5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
			  gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	struct mem_cgroup *memcg = NULL;
	unsigned int nr_pages = 1;
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5638
		if (page->mem_cgroup)
5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698
			goto out;
	}

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	if (do_swap_account && PageSwapCache(page))
		memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);

	if (ret == -EINTR) {
		memcg = root_mem_cgroup;
		ret = 0;
	}
out:
	*memcgp = memcg;
	return ret;
}

/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      bool lrucare)
{
	unsigned int nr_pages = 1;

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

5699 5700
	commit_charge(page, memcg, lrucare);

5701 5702 5703 5704 5705
	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

5706 5707 5708 5709
	local_irq_disable();
	mem_cgroup_charge_statistics(memcg, page, nr_pages);
	memcg_check_events(memcg, page);
	local_irq_enable();
5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750

	if (do_swap_account && PageSwapCache(page)) {
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
		mem_cgroup_uncharge_swap(entry);
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
{
	unsigned int nr_pages = 1;

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	cancel_charge(memcg, nr_pages);
}

5751 5752 5753 5754
static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
			   unsigned long nr_anon, unsigned long nr_file,
			   unsigned long nr_huge, struct page *dummy_page)
{
5755
	unsigned long nr_pages = nr_anon + nr_file;
5756 5757
	unsigned long flags;

5758
	if (!mem_cgroup_is_root(memcg)) {
5759 5760 5761
		page_counter_uncharge(&memcg->memory, nr_pages);
		if (do_swap_account)
			page_counter_uncharge(&memcg->memsw, nr_pages);
5762 5763
		memcg_oom_recover(memcg);
	}
5764 5765 5766 5767 5768 5769

	local_irq_save(flags);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5770
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5771 5772
	memcg_check_events(memcg, dummy_page);
	local_irq_restore(flags);
5773 5774

	if (!mem_cgroup_is_root(memcg))
5775
		css_put_many(&memcg->css, nr_pages);
5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797
}

static void uncharge_list(struct list_head *page_list)
{
	struct mem_cgroup *memcg = NULL;
	unsigned long nr_anon = 0;
	unsigned long nr_file = 0;
	unsigned long nr_huge = 0;
	unsigned long pgpgout = 0;
	struct list_head *next;
	struct page *page;

	next = page_list->next;
	do {
		unsigned int nr_pages = 1;

		page = list_entry(next, struct page, lru);
		next = page->lru.next;

		VM_BUG_ON_PAGE(PageLRU(page), page);
		VM_BUG_ON_PAGE(page_count(page), page);

5798
		if (!page->mem_cgroup)
5799 5800 5801 5802
			continue;

		/*
		 * Nobody should be changing or seriously looking at
5803
		 * page->mem_cgroup at this point, we have fully
5804
		 * exclusive access to the page.
5805 5806
		 */

5807
		if (memcg != page->mem_cgroup) {
5808
			if (memcg) {
5809 5810 5811
				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
					       nr_huge, page);
				pgpgout = nr_anon = nr_file = nr_huge = 0;
5812
			}
5813
			memcg = page->mem_cgroup;
5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826
		}

		if (PageTransHuge(page)) {
			nr_pages <<= compound_order(page);
			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
			nr_huge += nr_pages;
		}

		if (PageAnon(page))
			nr_anon += nr_pages;
		else
			nr_file += nr_pages;

5827
		page->mem_cgroup = NULL;
5828 5829 5830 5831 5832

		pgpgout++;
	} while (next != page_list);

	if (memcg)
5833 5834
		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
			       nr_huge, page);
5835 5836
}

5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
	if (mem_cgroup_disabled())
		return;

5849
	/* Don't touch page->lru of any random page, pre-check: */
5850
	if (!page->mem_cgroup)
5851 5852
		return;

5853 5854 5855
	INIT_LIST_HEAD(&page->lru);
	uncharge_list(&page->lru);
}
5856

5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
5868

5869 5870
	if (!list_empty(page_list))
		uncharge_list(page_list);
5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885
}

/**
 * mem_cgroup_migrate - migrate a charge to another page
 * @oldpage: currently charged page
 * @newpage: page to transfer the charge to
 * @lrucare: both pages might be on the LRU already
 *
 * Migrate the charge from @oldpage to @newpage.
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
			bool lrucare)
{
5886
	struct mem_cgroup *memcg;
5887 5888 5889 5890 5891 5892 5893
	int isolated;

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
	VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5894 5895
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
5896 5897 5898 5899 5900

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
5901
	if (newpage->mem_cgroup)
5902 5903
		return;

5904 5905 5906 5907 5908 5909
	/*
	 * Swapcache readahead pages can get migrated before being
	 * charged, and migration from compaction can happen to an
	 * uncharged page when the PFN walker finds a page that
	 * reclaim just put back on the LRU but has not released yet.
	 */
5910
	memcg = oldpage->mem_cgroup;
5911
	if (!memcg)
5912 5913 5914 5915 5916
		return;

	if (lrucare)
		lock_page_lru(oldpage, &isolated);

5917
	oldpage->mem_cgroup = NULL;
5918 5919 5920 5921

	if (lrucare)
		unlock_page_lru(oldpage, isolated);

5922
	commit_charge(newpage, memcg, lrucare);
5923 5924
}

5925
/*
5926 5927 5928 5929 5930 5931
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
5932 5933 5934 5935
 */
static int __init mem_cgroup_init(void)
{
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5936
	enable_swap_cgroup();
5937
	mem_cgroup_soft_limit_tree_init();
5938
	memcg_stock_init();
5939 5940 5941
	return 0;
}
subsys_initcall(mem_cgroup_init);