perf_event.c 168.6 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4 5 6
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
T
Thomas Gleixner 已提交
21
#include <linux/sysfs.h>
22
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
23
#include <linux/percpu.h>
24
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
25
#include <linux/reboot.h>
26
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
27
#include <linux/device.h>
28
#include <linux/vmalloc.h>
29 30
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
31 32 33
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
34
#include <linux/kernel_stat.h>
35
#include <linux/perf_event.h>
L
Li Zefan 已提交
36
#include <linux/ftrace_event.h>
37
#include <linux/hw_breakpoint.h>
T
Thomas Gleixner 已提交
38

39 40
#include <asm/irq_regs.h>

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
struct remote_function_call {
	struct task_struct *p;
	int (*func)(void *info);
	void *info;
	int ret;
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
		.p = p,
		.func = func,
		.info = info,
		.ret = -ESRCH, /* No such (running) process */
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
		.p = NULL,
		.func = func,
		.info = info,
		.ret = -ENXIO, /* No such CPU */
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

S
Stephane Eranian 已提交
114 115 116 117
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
		       PERF_FLAG_PID_CGROUP)

118 119 120 121 122 123
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
124 125 126 127 128 129 130
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
atomic_t perf_sched_events __read_mostly;
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);

131 132 133
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
134

P
Peter Zijlstra 已提交
135 136 137 138
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

139
/*
140
 * perf event paranoia level:
141 142
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
143
 *   1 - disallow cpu events for unpriv
144
 *   2 - disallow kernel profiling for unpriv
145
 */
146
int sysctl_perf_event_paranoid __read_mostly = 1;
147

148
int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
149 150

/*
151
 * max perf event sample rate
152
 */
P
Peter Zijlstra 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
#define DEFAULT_MAX_SAMPLE_RATE 100000
int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
static int max_samples_per_tick __read_mostly =
	DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);

int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);

	return 0;
}
171

172
static atomic64_t perf_event_id;
173

174 175 176 177
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
178 179 180 181 182
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
183

184
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
185

186
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
187
{
188
	return "pmu";
T
Thomas Gleixner 已提交
189 190
}

191 192 193 194 195
static inline u64 perf_clock(void)
{
	return local_clock();
}

S
Stephane Eranian 已提交
196 197 198 199 200 201 202 203
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

#ifdef CONFIG_CGROUP_PERF

204 205 206 207 208
/*
 * Must ensure cgroup is pinned (css_get) before calling
 * this function. In other words, we cannot call this function
 * if there is no cgroup event for the current CPU context.
 */
S
Stephane Eranian 已提交
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct *task)
{
	return container_of(task_subsys_state(task, perf_subsys_id),
			struct perf_cgroup, css);
}

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

	return !event->cgrp || event->cgrp == cpuctx->cgrp;
}

static inline void perf_get_cgroup(struct perf_event *event)
{
	css_get(&event->cgrp->css);
}

static inline void perf_put_cgroup(struct perf_event *event)
{
	css_put(&event->cgrp->css);
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
	perf_put_cgroup(event);
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
276 277
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
278
	/*
279 280
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
281
	 */
282
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
283 284
		return;

285 286 287 288 289 290
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
291 292 293
}

static inline void
294 295
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
296 297 298 299
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

300 301 302 303 304 305
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
306 307 308 309
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
310
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {

		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		perf_pmu_disable(cpuctx->ctx.pmu);

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
				/* set cgrp before ctxsw in to
				 * allow event_filter_match() to not
				 * have to pass task around
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
		}

		perf_pmu_enable(cpuctx->ctx.pmu);
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

static inline void perf_cgroup_sched_out(struct task_struct *task)
{
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
}

static inline void perf_cgroup_sched_in(struct task_struct *task)
{
	perf_cgroup_switch(task, PERF_CGROUP_SWIN);
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
	struct file *file;
	int ret = 0, fput_needed;

	file = fget_light(fd, &fput_needed);
	if (!file)
		return -EBADF;

	css = cgroup_css_from_dir(file, perf_subsys_id);
407 408 409 410
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
411 412 413 414

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

415 416 417
	/* must be done before we fput() the file */
	perf_get_cgroup(event);

S
Stephane Eranian 已提交
418 419 420 421 422 423 424 425 426
	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
427
out:
S
Stephane Eranian 已提交
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
	fput_light(file, fput_needed);
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

static inline void perf_cgroup_sched_out(struct task_struct *task)
{
}

static inline void perf_cgroup_sched_in(struct task_struct *task)
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
518 519
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

P
Peter Zijlstra 已提交
550
void perf_pmu_disable(struct pmu *pmu)
551
{
P
Peter Zijlstra 已提交
552 553 554
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
555 556
}

P
Peter Zijlstra 已提交
557
void perf_pmu_enable(struct pmu *pmu)
558
{
P
Peter Zijlstra 已提交
559 560 561
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
562 563
}

564 565 566 567 568 569 570
static DEFINE_PER_CPU(struct list_head, rotation_list);

/*
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
 */
P
Peter Zijlstra 已提交
571
static void perf_pmu_rotate_start(struct pmu *pmu)
572
{
P
Peter Zijlstra 已提交
573
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
574
	struct list_head *head = &__get_cpu_var(rotation_list);
575

576
	WARN_ON(!irqs_disabled());
577

578 579
	if (list_empty(&cpuctx->rotation_list))
		list_add(&cpuctx->rotation_list, head);
580 581
}

582
static void get_ctx(struct perf_event_context *ctx)
583
{
584
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
585 586
}

587 588
static void free_ctx(struct rcu_head *head)
{
589
	struct perf_event_context *ctx;
590

591
	ctx = container_of(head, struct perf_event_context, rcu_head);
592 593 594
	kfree(ctx);
}

595
static void put_ctx(struct perf_event_context *ctx)
596
{
597 598 599
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
600 601 602
		if (ctx->task)
			put_task_struct(ctx->task);
		call_rcu(&ctx->rcu_head, free_ctx);
603
	}
604 605
}

606
static void unclone_ctx(struct perf_event_context *ctx)
607 608 609 610 611 612 613
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

636
/*
637
 * If we inherit events we want to return the parent event id
638 639
 * to userspace.
 */
640
static u64 primary_event_id(struct perf_event *event)
641
{
642
	u64 id = event->id;
643

644 645
	if (event->parent)
		id = event->parent->id;
646 647 648 649

	return id;
}

650
/*
651
 * Get the perf_event_context for a task and lock it.
652 653 654
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
655
static struct perf_event_context *
P
Peter Zijlstra 已提交
656
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
657
{
658
	struct perf_event_context *ctx;
659 660

	rcu_read_lock();
P
Peter Zijlstra 已提交
661
retry:
P
Peter Zijlstra 已提交
662
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
663 664 665 666
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
667
		 * perf_event_task_sched_out, though the
668 669 670 671 672 673
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
674
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
675
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
676
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
677 678
			goto retry;
		}
679 680

		if (!atomic_inc_not_zero(&ctx->refcount)) {
681
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
682 683
			ctx = NULL;
		}
684 685 686 687 688 689 690 691 692 693
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
694 695
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
696
{
697
	struct perf_event_context *ctx;
698 699
	unsigned long flags;

P
Peter Zijlstra 已提交
700
	ctx = perf_lock_task_context(task, ctxn, &flags);
701 702
	if (ctx) {
		++ctx->pin_count;
703
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
704 705 706 707
	}
	return ctx;
}

708
static void perf_unpin_context(struct perf_event_context *ctx)
709 710 711
{
	unsigned long flags;

712
	raw_spin_lock_irqsave(&ctx->lock, flags);
713
	--ctx->pin_count;
714
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
715 716
}

717 718 719 720 721 722 723 724 725 726 727
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

728 729 730
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
731 732 733 734

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

735 736 737
	return ctx ? ctx->time : 0;
}

738 739 740 741 742 743 744 745 746 747 748
/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
749 750 751 752 753 754 755 756 757 758 759
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
760
		run_end = perf_event_time(event);
S
Stephane Eranian 已提交
761 762
	else if (ctx->is_active)
		run_end = ctx->time;
763 764 765 766
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
767 768 769 770

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
771
		run_end = perf_event_time(event);
772 773

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
774

775 776
}

777 778 779 780 781 782 783 784 785 786 787 788
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

789 790 791 792 793 794 795 796 797
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

798
/*
799
 * Add a event from the lists for its context.
800 801
 * Must be called with ctx->mutex and ctx->lock held.
 */
802
static void
803
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
804
{
805 806
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
807 808

	/*
809 810 811
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
812
	 */
813
	if (event->group_leader == event) {
814 815
		struct list_head *list;

816 817 818
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

819 820
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
821
	}
P
Peter Zijlstra 已提交
822

823
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
824 825
		ctx->nr_cgroups++;

826
	list_add_rcu(&event->event_entry, &ctx->event_list);
827
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
828
		perf_pmu_rotate_start(ctx->pmu);
829 830
	ctx->nr_events++;
	if (event->attr.inherit_stat)
831
		ctx->nr_stat++;
832 833
}

834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

906
	event->id_header_size = size;
907 908
}

909 910
static void perf_group_attach(struct perf_event *event)
{
911
	struct perf_event *group_leader = event->group_leader, *pos;
912

P
Peter Zijlstra 已提交
913 914 915 916 917 918
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

919 920 921 922 923 924 925 926 927 928 929
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
930 931 932 933 934

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
935 936
}

937
/*
938
 * Remove a event from the lists for its context.
939
 * Must be called with ctx->mutex and ctx->lock held.
940
 */
941
static void
942
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
943
{
944 945 946 947
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
948
		return;
949 950 951

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

952
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
953 954
		ctx->nr_cgroups--;

955 956
	ctx->nr_events--;
	if (event->attr.inherit_stat)
957
		ctx->nr_stat--;
958

959
	list_del_rcu(&event->event_entry);
960

961 962
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
963

964
	update_group_times(event);
965 966 967 968 969 970 971 972 973 974

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
975 976
}

977
static void perf_group_detach(struct perf_event *event)
978 979
{
	struct perf_event *sibling, *tmp;
980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
996
		goto out;
997 998 999 1000
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1001

1002
	/*
1003 1004
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1005
	 * to whatever list we are on.
1006
	 */
1007
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1008 1009
		if (list)
			list_move_tail(&sibling->group_entry, list);
1010
		sibling->group_leader = sibling;
1011 1012 1013

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
1014
	}
1015 1016 1017 1018 1019 1020

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1021 1022
}

1023 1024 1025
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1026 1027
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1028 1029
}

1030 1031
static void
event_sched_out(struct perf_event *event,
1032
		  struct perf_cpu_context *cpuctx,
1033
		  struct perf_event_context *ctx)
1034
{
1035
	u64 tstamp = perf_event_time(event);
1036 1037 1038 1039 1040 1041 1042 1043 1044
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1045
		delta = tstamp - event->tstamp_stopped;
1046
		event->tstamp_running += delta;
1047
		event->tstamp_stopped = tstamp;
1048 1049
	}

1050
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1051
		return;
1052

1053 1054 1055 1056
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1057
	}
1058
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1059
	event->pmu->del(event, 0);
1060
	event->oncpu = -1;
1061

1062
	if (!is_software_event(event))
1063 1064
		cpuctx->active_oncpu--;
	ctx->nr_active--;
1065
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1066 1067 1068
		cpuctx->exclusive = 0;
}

1069
static void
1070
group_sched_out(struct perf_event *group_event,
1071
		struct perf_cpu_context *cpuctx,
1072
		struct perf_event_context *ctx)
1073
{
1074
	struct perf_event *event;
1075
	int state = group_event->state;
1076

1077
	event_sched_out(group_event, cpuctx, ctx);
1078 1079 1080 1081

	/*
	 * Schedule out siblings (if any):
	 */
1082 1083
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1084

1085
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1086 1087 1088
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
1089
/*
1090
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1091
 *
1092
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1093 1094
 * remove it from the context list.
 */
1095
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1096
{
1097 1098
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1099
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1100

1101
	raw_spin_lock(&ctx->lock);
1102 1103
	event_sched_out(event, cpuctx, ctx);
	list_del_event(event, ctx);
1104
	raw_spin_unlock(&ctx->lock);
1105 1106

	return 0;
T
Thomas Gleixner 已提交
1107 1108 1109 1110
}


/*
1111
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1112
 *
1113
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1114
 * call when the task is on a CPU.
1115
 *
1116 1117
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1118 1119
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1120
 * When called from perf_event_exit_task, it's OK because the
1121
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1122
 */
1123
static void perf_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
1124
{
1125
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1126 1127
	struct task_struct *task = ctx->task;

1128 1129
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1130 1131
	if (!task) {
		/*
1132
		 * Per cpu events are removed via an smp call and
1133
		 * the removal is always successful.
T
Thomas Gleixner 已提交
1134
		 */
1135
		cpu_function_call(event->cpu, __perf_remove_from_context, event);
T
Thomas Gleixner 已提交
1136 1137 1138 1139
		return;
	}

retry:
1140 1141
	if (!task_function_call(task, __perf_remove_from_context, event))
		return;
T
Thomas Gleixner 已提交
1142

1143
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1144
	/*
1145 1146
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1147
	 */
1148
	if (ctx->is_active) {
1149
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1150 1151 1152 1153
		goto retry;
	}

	/*
1154 1155
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1156
	 */
1157
	list_del_event(event, ctx);
1158
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1159 1160
}

1161
/*
1162
 * Cross CPU call to disable a performance event
1163
 */
1164
static int __perf_event_disable(void *info)
1165
{
1166 1167
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1168
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1169 1170

	/*
1171 1172
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1173 1174 1175
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1176
	 */
1177
	if (ctx->task && cpuctx->task_ctx != ctx)
1178
		return -EINVAL;
1179

1180
	raw_spin_lock(&ctx->lock);
1181 1182

	/*
1183
	 * If the event is on, turn it off.
1184 1185
	 * If it is in error state, leave it in error state.
	 */
1186
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1187
		update_context_time(ctx);
S
Stephane Eranian 已提交
1188
		update_cgrp_time_from_event(event);
1189 1190 1191
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1192
		else
1193 1194
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1195 1196
	}

1197
	raw_spin_unlock(&ctx->lock);
1198 1199

	return 0;
1200 1201 1202
}

/*
1203
 * Disable a event.
1204
 *
1205 1206
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1207
 * remains valid.  This condition is satisifed when called through
1208 1209 1210 1211
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1212
 * is the current context on this CPU and preemption is disabled,
1213
 * hence we can't get into perf_event_task_sched_out for this context.
1214
 */
1215
void perf_event_disable(struct perf_event *event)
1216
{
1217
	struct perf_event_context *ctx = event->ctx;
1218 1219 1220 1221
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1222
		 * Disable the event on the cpu that it's on
1223
		 */
1224
		cpu_function_call(event->cpu, __perf_event_disable, event);
1225 1226 1227
		return;
	}

P
Peter Zijlstra 已提交
1228
retry:
1229 1230
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1231

1232
	raw_spin_lock_irq(&ctx->lock);
1233
	/*
1234
	 * If the event is still active, we need to retry the cross-call.
1235
	 */
1236
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1237
		raw_spin_unlock_irq(&ctx->lock);
1238 1239 1240 1241 1242
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1243 1244 1245 1246 1247 1248 1249
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1250 1251 1252
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1253
	}
1254
	raw_spin_unlock_irq(&ctx->lock);
1255 1256
}

S
Stephane Eranian 已提交
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1292 1293 1294 1295
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);

1296
static int
1297
event_sched_in(struct perf_event *event,
1298
		 struct perf_cpu_context *cpuctx,
1299
		 struct perf_event_context *ctx)
1300
{
1301 1302
	u64 tstamp = perf_event_time(event);

1303
	if (event->state <= PERF_EVENT_STATE_OFF)
1304 1305
		return 0;

1306
	event->state = PERF_EVENT_STATE_ACTIVE;
1307
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1319 1320 1321 1322 1323
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

P
Peter Zijlstra 已提交
1324
	if (event->pmu->add(event, PERF_EF_START)) {
1325 1326
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1327 1328 1329
		return -EAGAIN;
	}

1330
	event->tstamp_running += tstamp - event->tstamp_stopped;
1331

S
Stephane Eranian 已提交
1332
	perf_set_shadow_time(event, ctx, tstamp);
1333

1334
	if (!is_software_event(event))
1335
		cpuctx->active_oncpu++;
1336 1337
	ctx->nr_active++;

1338
	if (event->attr.exclusive)
1339 1340
		cpuctx->exclusive = 1;

1341 1342 1343
	return 0;
}

1344
static int
1345
group_sched_in(struct perf_event *group_event,
1346
	       struct perf_cpu_context *cpuctx,
1347
	       struct perf_event_context *ctx)
1348
{
1349
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1350
	struct pmu *pmu = group_event->pmu;
1351 1352
	u64 now = ctx->time;
	bool simulate = false;
1353

1354
	if (group_event->state == PERF_EVENT_STATE_OFF)
1355 1356
		return 0;

P
Peter Zijlstra 已提交
1357
	pmu->start_txn(pmu);
1358

1359
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1360
		pmu->cancel_txn(pmu);
1361
		return -EAGAIN;
1362
	}
1363 1364 1365 1366

	/*
	 * Schedule in siblings as one group (if any):
	 */
1367
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1368
		if (event_sched_in(event, cpuctx, ctx)) {
1369
			partial_group = event;
1370 1371 1372 1373
			goto group_error;
		}
	}

1374
	if (!pmu->commit_txn(pmu))
1375
		return 0;
1376

1377 1378 1379 1380
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1391
	 */
1392 1393
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1394 1395 1396 1397 1398 1399 1400 1401
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1402
	}
1403
	event_sched_out(group_event, cpuctx, ctx);
1404

P
Peter Zijlstra 已提交
1405
	pmu->cancel_txn(pmu);
1406

1407 1408 1409
	return -EAGAIN;
}

1410
/*
1411
 * Work out whether we can put this event group on the CPU now.
1412
 */
1413
static int group_can_go_on(struct perf_event *event,
1414 1415 1416 1417
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1418
	 * Groups consisting entirely of software events can always go on.
1419
	 */
1420
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1421 1422 1423
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1424
	 * events can go on.
1425 1426 1427 1428 1429
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1430
	 * events on the CPU, it can't go on.
1431
	 */
1432
	if (event->attr.exclusive && cpuctx->active_oncpu)
1433 1434 1435 1436 1437 1438 1439 1440
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

1441 1442
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
1443
{
1444 1445
	u64 tstamp = perf_event_time(event);

1446
	list_add_event(event, ctx);
1447
	perf_group_attach(event);
1448 1449 1450
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
1451 1452
}

S
Stephane Eranian 已提交
1453 1454
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *tsk);
1455

T
Thomas Gleixner 已提交
1456
/*
1457
 * Cross CPU call to install and enable a performance event
1458 1459
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
1460
 */
1461
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
1462
{
1463 1464 1465
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
1466
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1467
	int err;
T
Thomas Gleixner 已提交
1468 1469

	/*
1470 1471 1472
	 * In case we're installing a new context to an already running task,
	 * could also happen before perf_event_task_sched_in() on architectures
	 * which do context switches with IRQs enabled.
T
Thomas Gleixner 已提交
1473
	 */
1474
	if (ctx->task && !cpuctx->task_ctx)
S
Stephane Eranian 已提交
1475
		perf_event_context_sched_in(ctx, ctx->task);
T
Thomas Gleixner 已提交
1476

1477
	raw_spin_lock(&ctx->lock);
1478
	ctx->is_active = 1;
1479
	update_context_time(ctx);
S
Stephane Eranian 已提交
1480 1481 1482 1483 1484 1485
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
1486

1487
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
1488

1489
	if (!event_filter_match(event))
1490 1491
		goto unlock;

1492
	/*
1493
	 * Don't put the event on if it is disabled or if
1494 1495
	 * it is in a group and the group isn't on.
	 */
1496 1497
	if (event->state != PERF_EVENT_STATE_INACTIVE ||
	    (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
1498 1499
		goto unlock;

1500
	/*
1501 1502 1503
	 * An exclusive event can't go on if there are already active
	 * hardware events, and no hardware event can go on if there
	 * is already an exclusive event on.
1504
	 */
1505
	if (!group_can_go_on(event, cpuctx, 1))
1506 1507
		err = -EEXIST;
	else
1508
		err = event_sched_in(event, cpuctx, ctx);
1509

1510 1511
	if (err) {
		/*
1512
		 * This event couldn't go on.  If it is in a group
1513
		 * then we have to pull the whole group off.
1514
		 * If the event group is pinned then put it in error state.
1515
		 */
1516
		if (leader != event)
1517
			group_sched_out(leader, cpuctx, ctx);
1518
		if (leader->attr.pinned) {
1519
			update_group_times(leader);
1520
			leader->state = PERF_EVENT_STATE_ERROR;
1521
		}
1522
	}
T
Thomas Gleixner 已提交
1523

P
Peter Zijlstra 已提交
1524
unlock:
1525
	raw_spin_unlock(&ctx->lock);
1526 1527

	return 0;
T
Thomas Gleixner 已提交
1528 1529 1530
}

/*
1531
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
1532
 *
1533 1534
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
1535
 *
1536
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
1537 1538 1539 1540
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
1541 1542
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
1543 1544 1545 1546
			int cpu)
{
	struct task_struct *task = ctx->task;

1547 1548
	lockdep_assert_held(&ctx->mutex);

1549 1550
	event->ctx = ctx;

T
Thomas Gleixner 已提交
1551 1552
	if (!task) {
		/*
1553
		 * Per cpu events are installed via an smp call and
1554
		 * the install is always successful.
T
Thomas Gleixner 已提交
1555
		 */
1556
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
1557 1558 1559 1560
		return;
	}

retry:
1561 1562
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
1563

1564
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1565
	/*
1566 1567
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1568
	 */
1569
	if (ctx->is_active) {
1570
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1571 1572 1573 1574
		goto retry;
	}

	/*
1575 1576
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1577
	 */
1578
	add_event_to_ctx(event, ctx);
1579
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1580 1581
}

1582
/*
1583
 * Put a event into inactive state and update time fields.
1584 1585 1586 1587 1588 1589
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
1590 1591
static void __perf_event_mark_enabled(struct perf_event *event,
					struct perf_event_context *ctx)
1592
{
1593
	struct perf_event *sub;
1594
	u64 tstamp = perf_event_time(event);
1595

1596
	event->state = PERF_EVENT_STATE_INACTIVE;
1597
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
1598
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1599 1600
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
1601
	}
1602 1603
}

1604
/*
1605
 * Cross CPU call to enable a performance event
1606
 */
1607
static int __perf_event_enable(void *info)
1608
{
1609 1610 1611
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
1612
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1613
	int err;
1614

1615 1616
	if (WARN_ON_ONCE(!ctx->is_active))
		return -EINVAL;
1617

1618
	raw_spin_lock(&ctx->lock);
1619
	update_context_time(ctx);
1620

1621
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1622
		goto unlock;
S
Stephane Eranian 已提交
1623 1624 1625 1626

	/*
	 * set current task's cgroup time reference point
	 */
1627
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
1628

1629
	__perf_event_mark_enabled(event, ctx);
1630

S
Stephane Eranian 已提交
1631 1632 1633
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
1634
		goto unlock;
S
Stephane Eranian 已提交
1635
	}
1636

1637
	/*
1638
	 * If the event is in a group and isn't the group leader,
1639
	 * then don't put it on unless the group is on.
1640
	 */
1641
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1642
		goto unlock;
1643

1644
	if (!group_can_go_on(event, cpuctx, 1)) {
1645
		err = -EEXIST;
1646
	} else {
1647
		if (event == leader)
1648
			err = group_sched_in(event, cpuctx, ctx);
1649
		else
1650
			err = event_sched_in(event, cpuctx, ctx);
1651
	}
1652 1653 1654

	if (err) {
		/*
1655
		 * If this event can't go on and it's part of a
1656 1657
		 * group, then the whole group has to come off.
		 */
1658
		if (leader != event)
1659
			group_sched_out(leader, cpuctx, ctx);
1660
		if (leader->attr.pinned) {
1661
			update_group_times(leader);
1662
			leader->state = PERF_EVENT_STATE_ERROR;
1663
		}
1664 1665
	}

P
Peter Zijlstra 已提交
1666
unlock:
1667
	raw_spin_unlock(&ctx->lock);
1668 1669

	return 0;
1670 1671 1672
}

/*
1673
 * Enable a event.
1674
 *
1675 1676
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1677
 * remains valid.  This condition is satisfied when called through
1678 1679
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
1680
 */
1681
void perf_event_enable(struct perf_event *event)
1682
{
1683
	struct perf_event_context *ctx = event->ctx;
1684 1685 1686 1687
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1688
		 * Enable the event on the cpu that it's on
1689
		 */
1690
		cpu_function_call(event->cpu, __perf_event_enable, event);
1691 1692 1693
		return;
	}

1694
	raw_spin_lock_irq(&ctx->lock);
1695
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1696 1697 1698
		goto out;

	/*
1699 1700
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
1701 1702 1703 1704
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
1705 1706
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
1707

P
Peter Zijlstra 已提交
1708
retry:
1709 1710 1711 1712 1713
	if (!ctx->is_active) {
		__perf_event_mark_enabled(event, ctx);
		goto out;
	}

1714
	raw_spin_unlock_irq(&ctx->lock);
1715 1716 1717

	if (!task_function_call(task, __perf_event_enable, event))
		return;
1718

1719
	raw_spin_lock_irq(&ctx->lock);
1720 1721

	/*
1722
	 * If the context is active and the event is still off,
1723 1724
	 * we need to retry the cross-call.
	 */
1725 1726 1727 1728 1729 1730
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
1731
		goto retry;
1732
	}
1733

P
Peter Zijlstra 已提交
1734
out:
1735
	raw_spin_unlock_irq(&ctx->lock);
1736 1737
}

1738
static int perf_event_refresh(struct perf_event *event, int refresh)
1739
{
1740
	/*
1741
	 * not supported on inherited events
1742
	 */
1743
	if (event->attr.inherit || !is_sampling_event(event))
1744 1745
		return -EINVAL;

1746 1747
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1748 1749

	return 0;
1750 1751
}

1752 1753 1754
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
1755
{
1756
	struct perf_event *event;
1757

1758
	raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1759
	perf_pmu_disable(ctx->pmu);
1760
	ctx->is_active = 0;
1761
	if (likely(!ctx->nr_events))
1762
		goto out;
1763
	update_context_time(ctx);
S
Stephane Eranian 已提交
1764
	update_cgrp_time_from_cpuctx(cpuctx);
1765

1766
	if (!ctx->nr_active)
1767
		goto out;
1768

P
Peter Zijlstra 已提交
1769
	if (event_type & EVENT_PINNED) {
1770 1771
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1772
	}
1773

P
Peter Zijlstra 已提交
1774
	if (event_type & EVENT_FLEXIBLE) {
1775
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1776
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1777 1778
	}
out:
P
Peter Zijlstra 已提交
1779
	perf_pmu_enable(ctx->pmu);
1780
	raw_spin_unlock(&ctx->lock);
1781 1782
}

1783 1784 1785
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1786 1787 1788 1789
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1790
 * in them directly with an fd; we can only enable/disable all
1791
 * events via prctl, or enable/disable all events in a family
1792 1793
 * via ioctl, which will have the same effect on both contexts.
 */
1794 1795
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1796 1797
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1798
		&& ctx1->parent_gen == ctx2->parent_gen
1799
		&& !ctx1->pin_count && !ctx2->pin_count;
1800 1801
}

1802 1803
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1804 1805 1806
{
	u64 value;

1807
	if (!event->attr.inherit_stat)
1808 1809 1810
		return;

	/*
1811
	 * Update the event value, we cannot use perf_event_read()
1812 1813
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1814
	 * we know the event must be on the current CPU, therefore we
1815 1816
	 * don't need to use it.
	 */
1817 1818
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1819 1820
		event->pmu->read(event);
		/* fall-through */
1821

1822 1823
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1824 1825 1826 1827 1828 1829 1830
		break;

	default:
		break;
	}

	/*
1831
	 * In order to keep per-task stats reliable we need to flip the event
1832 1833
	 * values when we flip the contexts.
	 */
1834 1835 1836
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
1837

1838 1839
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1840

1841
	/*
1842
	 * Since we swizzled the values, update the user visible data too.
1843
	 */
1844 1845
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1846 1847 1848 1849 1850
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1851 1852
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1853
{
1854
	struct perf_event *event, *next_event;
1855 1856 1857 1858

	if (!ctx->nr_stat)
		return;

1859 1860
	update_context_time(ctx);

1861 1862
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1863

1864 1865
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1866

1867 1868
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1869

1870
		__perf_event_sync_stat(event, next_event);
1871

1872 1873
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1874 1875 1876
	}
}

1877 1878
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
1879
{
P
Peter Zijlstra 已提交
1880
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1881 1882
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
P
Peter Zijlstra 已提交
1883
	struct perf_cpu_context *cpuctx;
1884
	int do_switch = 1;
T
Thomas Gleixner 已提交
1885

P
Peter Zijlstra 已提交
1886 1887
	if (likely(!ctx))
		return;
1888

P
Peter Zijlstra 已提交
1889 1890
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
1891 1892
		return;

1893 1894
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
P
Peter Zijlstra 已提交
1895
	next_ctx = next->perf_event_ctxp[ctxn];
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
1907 1908
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1909
		if (context_equiv(ctx, next_ctx)) {
1910 1911
			/*
			 * XXX do we need a memory barrier of sorts
1912
			 * wrt to rcu_dereference() of perf_event_ctxp
1913
			 */
P
Peter Zijlstra 已提交
1914 1915
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
1916 1917 1918
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1919

1920
			perf_event_sync_stat(ctx, next_ctx);
1921
		}
1922 1923
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
1924
	}
1925
	rcu_read_unlock();
1926

1927
	if (do_switch) {
1928
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1929 1930
		cpuctx->task_ctx = NULL;
	}
T
Thomas Gleixner 已提交
1931 1932
}

P
Peter Zijlstra 已提交
1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
1947 1948
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
1949 1950 1951 1952 1953
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
1954 1955 1956 1957 1958 1959 1960 1961

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
		perf_cgroup_sched_out(task);
P
Peter Zijlstra 已提交
1962 1963
}

1964 1965
static void task_ctx_sched_out(struct perf_event_context *ctx,
			       enum event_type_t event_type)
1966
{
P
Peter Zijlstra 已提交
1967
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1968

1969 1970
	if (!cpuctx->task_ctx)
		return;
1971 1972 1973 1974

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

1975
	ctx_sched_out(ctx, cpuctx, event_type);
1976 1977 1978
	cpuctx->task_ctx = NULL;
}

1979 1980 1981 1982 1983 1984 1985
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1986 1987
}

1988
static void
1989
ctx_pinned_sched_in(struct perf_event_context *ctx,
1990
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
1991
{
1992
	struct perf_event *event;
T
Thomas Gleixner 已提交
1993

1994 1995
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
1996
			continue;
1997
		if (!event_filter_match(event))
1998 1999
			continue;

S
Stephane Eranian 已提交
2000 2001 2002 2003
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2004
		if (group_can_go_on(event, cpuctx, 1))
2005
			group_sched_in(event, cpuctx, ctx);
2006 2007 2008 2009 2010

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2011 2012 2013
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2014
		}
2015
	}
2016 2017 2018 2019
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2020
		      struct perf_cpu_context *cpuctx)
2021 2022 2023
{
	struct perf_event *event;
	int can_add_hw = 1;
2024

2025 2026 2027
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2028
			continue;
2029 2030
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2031
		 * of events:
2032
		 */
2033
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2034 2035
			continue;

S
Stephane Eranian 已提交
2036 2037 2038 2039
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2040
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2041
			if (group_sched_in(event, cpuctx, ctx))
2042
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2043
		}
T
Thomas Gleixner 已提交
2044
	}
2045 2046 2047 2048 2049
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2050 2051
	     enum event_type_t event_type,
	     struct task_struct *task)
2052
{
S
Stephane Eranian 已提交
2053 2054
	u64 now;

2055 2056 2057 2058 2059
	raw_spin_lock(&ctx->lock);
	ctx->is_active = 1;
	if (likely(!ctx->nr_events))
		goto out;

S
Stephane Eranian 已提交
2060 2061
	now = perf_clock();
	ctx->timestamp = now;
2062
	perf_cgroup_set_timestamp(task, ctx);
2063 2064 2065 2066 2067
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	if (event_type & EVENT_PINNED)
2068
		ctx_pinned_sched_in(ctx, cpuctx);
2069 2070 2071

	/* Then walk through the lower prio flexible groups */
	if (event_type & EVENT_FLEXIBLE)
2072
		ctx_flexible_sched_in(ctx, cpuctx);
2073

P
Peter Zijlstra 已提交
2074
out:
2075
	raw_spin_unlock(&ctx->lock);
2076 2077
}

2078
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2079 2080
			     enum event_type_t event_type,
			     struct task_struct *task)
2081 2082 2083
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2084
	ctx_sched_in(ctx, cpuctx, event_type, task);
2085 2086
}

P
Peter Zijlstra 已提交
2087
static void task_ctx_sched_in(struct perf_event_context *ctx,
2088 2089
			      enum event_type_t event_type)
{
P
Peter Zijlstra 已提交
2090
	struct perf_cpu_context *cpuctx;
2091

2092
	cpuctx = __get_cpu_context(ctx);
2093 2094
	if (cpuctx->task_ctx == ctx)
		return;
P
Peter Zijlstra 已提交
2095

S
Stephane Eranian 已提交
2096
	ctx_sched_in(ctx, cpuctx, event_type, NULL);
2097 2098
	cpuctx->task_ctx = ctx;
}
T
Thomas Gleixner 已提交
2099

S
Stephane Eranian 已提交
2100 2101
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2102
{
P
Peter Zijlstra 已提交
2103
	struct perf_cpu_context *cpuctx;
2104

P
Peter Zijlstra 已提交
2105
	cpuctx = __get_cpu_context(ctx);
2106 2107 2108
	if (cpuctx->task_ctx == ctx)
		return;

P
Peter Zijlstra 已提交
2109
	perf_pmu_disable(ctx->pmu);
2110 2111 2112 2113 2114 2115 2116
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

S
Stephane Eranian 已提交
2117 2118 2119
	ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2120 2121

	cpuctx->task_ctx = ctx;
2122

2123 2124 2125 2126
	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
2127
	perf_pmu_rotate_start(ctx->pmu);
P
Peter Zijlstra 已提交
2128
	perf_pmu_enable(ctx->pmu);
2129 2130
}

P
Peter Zijlstra 已提交
2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2142
void __perf_event_task_sched_in(struct task_struct *task)
P
Peter Zijlstra 已提交
2143 2144 2145 2146 2147 2148 2149 2150 2151
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2152
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2153
	}
S
Stephane Eranian 已提交
2154 2155 2156 2157 2158 2159 2160
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
		perf_cgroup_sched_in(task);
2161 2162
}

2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2190
#define REDUCE_FLS(a, b)		\
2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2230 2231 2232
	if (!divisor)
		return dividend;

2233 2234 2235 2236
	return div64_u64(dividend, divisor);
}

static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
2237
{
2238
	struct hw_perf_event *hwc = &event->hw;
2239
	s64 period, sample_period;
2240 2241
	s64 delta;

2242
	period = perf_calculate_period(event, nsec, count);
2243 2244 2245 2246 2247 2248 2249 2250 2251 2252

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2253

2254
	if (local64_read(&hwc->period_left) > 8*sample_period) {
P
Peter Zijlstra 已提交
2255
		event->pmu->stop(event, PERF_EF_UPDATE);
2256
		local64_set(&hwc->period_left, 0);
P
Peter Zijlstra 已提交
2257
		event->pmu->start(event, PERF_EF_RELOAD);
2258
	}
2259 2260
}

2261
static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
2262
{
2263 2264
	struct perf_event *event;
	struct hw_perf_event *hwc;
2265 2266
	u64 interrupts, now;
	s64 delta;
2267

2268
	raw_spin_lock(&ctx->lock);
2269
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2270
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2271 2272
			continue;

2273
		if (!event_filter_match(event))
2274 2275
			continue;

2276
		hwc = &event->hw;
2277 2278 2279

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
2280

2281
		/*
2282
		 * unthrottle events on the tick
2283
		 */
2284
		if (interrupts == MAX_INTERRUPTS) {
2285
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2286
			event->pmu->start(event, 0);
2287 2288
		}

2289
		if (!event->attr.freq || !event->attr.sample_freq)
2290 2291
			continue;

2292
		event->pmu->read(event);
2293
		now = local64_read(&event->count);
2294 2295
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2296

2297
		if (delta > 0)
2298
			perf_adjust_period(event, period, delta);
2299
	}
2300
	raw_spin_unlock(&ctx->lock);
2301 2302
}

2303
/*
2304
 * Round-robin a context's events:
2305
 */
2306
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
2307
{
2308
	raw_spin_lock(&ctx->lock);
2309

2310 2311 2312 2313 2314 2315
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
2316

2317
	raw_spin_unlock(&ctx->lock);
2318 2319
}

2320
/*
2321 2322 2323
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
2324
 */
2325
static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2326
{
2327
	u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
P
Peter Zijlstra 已提交
2328
	struct perf_event_context *ctx = NULL;
2329
	int rotate = 0, remove = 1;
2330

2331
	if (cpuctx->ctx.nr_events) {
2332
		remove = 0;
2333 2334 2335
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
2336

P
Peter Zijlstra 已提交
2337
	ctx = cpuctx->task_ctx;
2338
	if (ctx && ctx->nr_events) {
2339
		remove = 0;
2340 2341 2342
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
2343

P
Peter Zijlstra 已提交
2344
	perf_pmu_disable(cpuctx->ctx.pmu);
2345
	perf_ctx_adjust_freq(&cpuctx->ctx, interval);
2346
	if (ctx)
2347
		perf_ctx_adjust_freq(ctx, interval);
2348

2349
	if (!rotate)
2350
		goto done;
2351

2352
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2353
	if (ctx)
2354
		task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
2355

2356
	rotate_ctx(&cpuctx->ctx);
2357 2358
	if (ctx)
		rotate_ctx(ctx);
2359

S
Stephane Eranian 已提交
2360
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, current);
2361
	if (ctx)
P
Peter Zijlstra 已提交
2362
		task_ctx_sched_in(ctx, EVENT_FLEXIBLE);
2363 2364

done:
2365 2366 2367
	if (remove)
		list_del_init(&cpuctx->rotation_list);

P
Peter Zijlstra 已提交
2368
	perf_pmu_enable(cpuctx->ctx.pmu);
2369 2370 2371 2372 2373 2374
}

void perf_event_task_tick(void)
{
	struct list_head *head = &__get_cpu_var(rotation_list);
	struct perf_cpu_context *cpuctx, *tmp;
2375

2376 2377 2378 2379 2380 2381 2382
	WARN_ON(!irqs_disabled());

	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
		if (cpuctx->jiffies_interval == 1 ||
				!(jiffies % cpuctx->jiffies_interval))
			perf_rotate_context(cpuctx);
	}
T
Thomas Gleixner 已提交
2383 2384
}

2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

	__perf_event_mark_enabled(event, ctx);

	return 1;
}

2400
/*
2401
 * Enable all of a task's events that have been marked enable-on-exec.
2402 2403
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
2404
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2405
{
2406
	struct perf_event *event;
2407 2408
	unsigned long flags;
	int enabled = 0;
2409
	int ret;
2410 2411

	local_irq_save(flags);
2412
	if (!ctx || !ctx->nr_events)
2413 2414
		goto out;

P
Peter Zijlstra 已提交
2415
	task_ctx_sched_out(ctx, EVENT_ALL);
2416

2417
	raw_spin_lock(&ctx->lock);
2418

2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
	}

	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
2429 2430 2431
	}

	/*
2432
	 * Unclone this context if we enabled any event.
2433
	 */
2434 2435
	if (enabled)
		unclone_ctx(ctx);
2436

2437
	raw_spin_unlock(&ctx->lock);
2438

S
Stephane Eranian 已提交
2439
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
2440
out:
2441 2442 2443
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
2444
/*
2445
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
2446
 */
2447
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
2448
{
2449 2450
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2451
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
2452

2453 2454 2455 2456
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
2457 2458
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
2459 2460 2461 2462
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

2463
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
2464
	if (ctx->is_active) {
2465
		update_context_time(ctx);
S
Stephane Eranian 已提交
2466 2467
		update_cgrp_time_from_event(event);
	}
2468
	update_event_times(event);
2469 2470
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
2471
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
2472 2473
}

P
Peter Zijlstra 已提交
2474 2475
static inline u64 perf_event_count(struct perf_event *event)
{
2476
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
2477 2478
}

2479
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
2480 2481
{
	/*
2482 2483
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
2484
	 */
2485 2486 2487 2488
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
2489 2490 2491
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

2492
		raw_spin_lock_irqsave(&ctx->lock, flags);
2493 2494 2495 2496 2497
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
2498
		if (ctx->is_active) {
2499
			update_context_time(ctx);
S
Stephane Eranian 已提交
2500 2501
			update_cgrp_time_from_event(event);
		}
2502
		update_event_times(event);
2503
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
2504 2505
	}

P
Peter Zijlstra 已提交
2506
	return perf_event_count(event);
T
Thomas Gleixner 已提交
2507 2508
}

2509
/*
2510
 * Callchain support
2511
 */
2512 2513 2514 2515 2516 2517

struct callchain_cpus_entries {
	struct rcu_head			rcu_head;
	struct perf_callchain_entry	*cpu_entries[0];
};

2518
static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
2519 2520 2521 2522 2523 2524 2525
static atomic_t nr_callchain_events;
static DEFINE_MUTEX(callchain_mutex);
struct callchain_cpus_entries *callchain_cpus_entries;


__weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
				  struct pt_regs *regs)
2526 2527 2528
{
}

2529 2530
__weak void perf_callchain_user(struct perf_callchain_entry *entry,
				struct pt_regs *regs)
T
Thomas Gleixner 已提交
2531
{
2532
}
T
Thomas Gleixner 已提交
2533

2534 2535 2536 2537
static void release_callchain_buffers_rcu(struct rcu_head *head)
{
	struct callchain_cpus_entries *entries;
	int cpu;
T
Thomas Gleixner 已提交
2538

2539
	entries = container_of(head, struct callchain_cpus_entries, rcu_head);
T
Thomas Gleixner 已提交
2540

2541 2542
	for_each_possible_cpu(cpu)
		kfree(entries->cpu_entries[cpu]);
T
Thomas Gleixner 已提交
2543

2544 2545
	kfree(entries);
}
T
Thomas Gleixner 已提交
2546

2547 2548 2549
static void release_callchain_buffers(void)
{
	struct callchain_cpus_entries *entries;
T
Thomas Gleixner 已提交
2550

2551 2552 2553 2554
	entries = callchain_cpus_entries;
	rcu_assign_pointer(callchain_cpus_entries, NULL);
	call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
}
T
Thomas Gleixner 已提交
2555

2556 2557 2558 2559 2560
static int alloc_callchain_buffers(void)
{
	int cpu;
	int size;
	struct callchain_cpus_entries *entries;
T
Thomas Gleixner 已提交
2561

2562
	/*
2563 2564 2565
	 * We can't use the percpu allocation API for data that can be
	 * accessed from NMI. Use a temporary manual per cpu allocation
	 * until that gets sorted out.
2566
	 */
2567
	size = offsetof(struct callchain_cpus_entries, cpu_entries[nr_cpu_ids]);
2568

2569 2570 2571
	entries = kzalloc(size, GFP_KERNEL);
	if (!entries)
		return -ENOMEM;
2572

2573
	size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
T
Thomas Gleixner 已提交
2574

2575 2576 2577 2578 2579
	for_each_possible_cpu(cpu) {
		entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
							 cpu_to_node(cpu));
		if (!entries->cpu_entries[cpu])
			goto fail;
2580 2581
	}

2582
	rcu_assign_pointer(callchain_cpus_entries, entries);
T
Thomas Gleixner 已提交
2583

2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
	return 0;

fail:
	for_each_possible_cpu(cpu)
		kfree(entries->cpu_entries[cpu]);
	kfree(entries);

	return -ENOMEM;
}

static int get_callchain_buffers(void)
{
	int err = 0;
	int count;

	mutex_lock(&callchain_mutex);

	count = atomic_inc_return(&nr_callchain_events);
	if (WARN_ON_ONCE(count < 1)) {
		err = -EINVAL;
		goto exit;
	}

	if (count > 1) {
		/* If the allocation failed, give up */
		if (!callchain_cpus_entries)
			err = -ENOMEM;
		goto exit;
	}

	err = alloc_callchain_buffers();
	if (err)
		release_callchain_buffers();
exit:
	mutex_unlock(&callchain_mutex);

	return err;
}

static void put_callchain_buffers(void)
{
	if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
		release_callchain_buffers();
		mutex_unlock(&callchain_mutex);
	}
}

static int get_recursion_context(int *recursion)
{
	int rctx;

	if (in_nmi())
		rctx = 3;
	else if (in_irq())
		rctx = 2;
	else if (in_softirq())
		rctx = 1;
	else
		rctx = 0;

	if (recursion[rctx])
		return -1;

	recursion[rctx]++;
	barrier();

	return rctx;
}

static inline void put_recursion_context(int *recursion, int rctx)
{
	barrier();
	recursion[rctx]--;
}

static struct perf_callchain_entry *get_callchain_entry(int *rctx)
{
	int cpu;
	struct callchain_cpus_entries *entries;

	*rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
	if (*rctx == -1)
		return NULL;

	entries = rcu_dereference(callchain_cpus_entries);
	if (!entries)
		return NULL;

	cpu = smp_processor_id();

	return &entries->cpu_entries[cpu][*rctx];
}

static void
put_callchain_entry(int rctx)
{
	put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
}

static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
{
	int rctx;
	struct perf_callchain_entry *entry;


	entry = get_callchain_entry(&rctx);
	if (rctx == -1)
		return NULL;

	if (!entry)
		goto exit_put;

	entry->nr = 0;

	if (!user_mode(regs)) {
		perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
		perf_callchain_kernel(entry, regs);
		if (current->mm)
			regs = task_pt_regs(current);
		else
			regs = NULL;
	}

	if (regs) {
		perf_callchain_store(entry, PERF_CONTEXT_USER);
		perf_callchain_user(entry, regs);
	}

exit_put:
	put_callchain_entry(rctx);

	return entry;
}

2718
/*
2719
 * Initialize the perf_event context in a task_struct:
2720
 */
2721
static void __perf_event_init_context(struct perf_event_context *ctx)
2722
{
2723
	raw_spin_lock_init(&ctx->lock);
2724
	mutex_init(&ctx->mutex);
2725 2726
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
2727 2728
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
2744
	}
2745 2746 2747
	ctx->pmu = pmu;

	return ctx;
2748 2749
}

2750 2751 2752 2753 2754
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
2755 2756

	rcu_read_lock();
2757
	if (!vpid)
T
Thomas Gleixner 已提交
2758 2759
		task = current;
	else
2760
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
2761 2762 2763 2764 2765 2766 2767 2768
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
2769 2770 2771 2772
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

2773 2774 2775 2776 2777 2778 2779
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

2780 2781 2782
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
2783
static struct perf_event_context *
M
Matt Helsley 已提交
2784
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
2785
{
2786
	struct perf_event_context *ctx;
2787
	struct perf_cpu_context *cpuctx;
2788
	unsigned long flags;
P
Peter Zijlstra 已提交
2789
	int ctxn, err;
T
Thomas Gleixner 已提交
2790

2791
	if (!task) {
2792
		/* Must be root to operate on a CPU event: */
2793
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
2794 2795 2796
			return ERR_PTR(-EACCES);

		/*
2797
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
2798 2799 2800
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
2801
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
2802 2803
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
2804
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
2805
		ctx = &cpuctx->ctx;
2806
		get_ctx(ctx);
2807
		++ctx->pin_count;
T
Thomas Gleixner 已提交
2808 2809 2810 2811

		return ctx;
	}

P
Peter Zijlstra 已提交
2812 2813 2814 2815 2816
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
2817
retry:
P
Peter Zijlstra 已提交
2818
	ctx = perf_lock_task_context(task, ctxn, &flags);
2819
	if (ctx) {
2820
		unclone_ctx(ctx);
2821
		++ctx->pin_count;
2822
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
2823 2824
	}

2825
	if (!ctx) {
2826
		ctx = alloc_perf_context(pmu, task);
2827 2828 2829
		err = -ENOMEM;
		if (!ctx)
			goto errout;
2830

2831
		get_ctx(ctx);
2832

2833 2834 2835 2836 2837 2838 2839 2840 2841 2842
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
2843 2844
		else {
			++ctx->pin_count;
2845
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2846
		}
2847 2848 2849
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
2850
			put_task_struct(task);
2851
			kfree(ctx);
2852 2853 2854 2855

			if (err == -EAGAIN)
				goto retry;
			goto errout;
2856 2857 2858
		}
	}

T
Thomas Gleixner 已提交
2859
	return ctx;
2860

P
Peter Zijlstra 已提交
2861
errout:
2862
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
2863 2864
}

L
Li Zefan 已提交
2865 2866
static void perf_event_free_filter(struct perf_event *event);

2867
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
2868
{
2869
	struct perf_event *event;
P
Peter Zijlstra 已提交
2870

2871 2872 2873
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
2874
	perf_event_free_filter(event);
2875
	kfree(event);
P
Peter Zijlstra 已提交
2876 2877
}

2878
static void perf_buffer_put(struct perf_buffer *buffer);
2879

2880
static void free_event(struct perf_event *event)
2881
{
2882
	irq_work_sync(&event->pending);
2883

2884
	if (!event->parent) {
2885
		if (event->attach_state & PERF_ATTACH_TASK)
S
Stephane Eranian 已提交
2886
			jump_label_dec(&perf_sched_events);
2887
		if (event->attr.mmap || event->attr.mmap_data)
2888 2889 2890 2891 2892
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
2893 2894
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
2895 2896 2897 2898
		if (is_cgroup_event(event)) {
			atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
			jump_label_dec(&perf_sched_events);
		}
2899
	}
2900

2901 2902 2903
	if (event->buffer) {
		perf_buffer_put(event->buffer);
		event->buffer = NULL;
2904 2905
	}

S
Stephane Eranian 已提交
2906 2907 2908
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

2909 2910
	if (event->destroy)
		event->destroy(event);
2911

P
Peter Zijlstra 已提交
2912 2913 2914
	if (event->ctx)
		put_ctx(event->ctx);

2915
	call_rcu(&event->rcu_head, free_event_rcu);
2916 2917
}

2918
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
2919
{
2920
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
2921

2922 2923 2924 2925 2926 2927
	/*
	 * Remove from the PMU, can't get re-enabled since we got
	 * here because the last ref went.
	 */
	perf_event_disable(event);

2928
	WARN_ON_ONCE(ctx->parent_ctx);
2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2942
	raw_spin_lock_irq(&ctx->lock);
2943
	perf_group_detach(event);
2944 2945
	list_del_event(event, ctx);
	raw_spin_unlock_irq(&ctx->lock);
2946
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
2947

2948
	free_event(event);
T
Thomas Gleixner 已提交
2949 2950 2951

	return 0;
}
2952
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
2953

2954 2955 2956 2957
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
2958
{
2959
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
2960
	struct task_struct *owner;
2961

2962
	file->private_data = NULL;
2963

P
Peter Zijlstra 已提交
2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
		mutex_lock(&owner->perf_event_mutex);
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}

2997
	return perf_event_release_kernel(event);
2998 2999
}

3000
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3001
{
3002
	struct perf_event *child;
3003 3004
	u64 total = 0;

3005 3006 3007
	*enabled = 0;
	*running = 0;

3008
	mutex_lock(&event->child_mutex);
3009
	total += perf_event_read(event);
3010 3011 3012 3013 3014 3015
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3016
		total += perf_event_read(child);
3017 3018 3019
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3020
	mutex_unlock(&event->child_mutex);
3021 3022 3023

	return total;
}
3024
EXPORT_SYMBOL_GPL(perf_event_read_value);
3025

3026
static int perf_event_read_group(struct perf_event *event,
3027 3028
				   u64 read_format, char __user *buf)
{
3029
	struct perf_event *leader = event->group_leader, *sub;
3030 3031
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
3032
	u64 values[5];
3033
	u64 count, enabled, running;
3034

3035
	mutex_lock(&ctx->mutex);
3036
	count = perf_event_read_value(leader, &enabled, &running);
3037 3038

	values[n++] = 1 + leader->nr_siblings;
3039 3040 3041 3042
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3043 3044 3045
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3046 3047 3048 3049

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
3050
		goto unlock;
3051

3052
	ret = size;
3053

3054
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3055
		n = 0;
3056

3057
		values[n++] = perf_event_read_value(sub, &enabled, &running);
3058 3059 3060 3061 3062
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

3063
		if (copy_to_user(buf + ret, values, size)) {
3064 3065 3066
			ret = -EFAULT;
			goto unlock;
		}
3067 3068

		ret += size;
3069
	}
3070 3071
unlock:
	mutex_unlock(&ctx->mutex);
3072

3073
	return ret;
3074 3075
}

3076
static int perf_event_read_one(struct perf_event *event,
3077 3078
				 u64 read_format, char __user *buf)
{
3079
	u64 enabled, running;
3080 3081 3082
	u64 values[4];
	int n = 0;

3083 3084 3085 3086 3087
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3088
	if (read_format & PERF_FORMAT_ID)
3089
		values[n++] = primary_event_id(event);
3090 3091 3092 3093 3094 3095 3096

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
3097
/*
3098
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3099 3100
 */
static ssize_t
3101
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3102
{
3103
	u64 read_format = event->attr.read_format;
3104
	int ret;
T
Thomas Gleixner 已提交
3105

3106
	/*
3107
	 * Return end-of-file for a read on a event that is in
3108 3109 3110
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3111
	if (event->state == PERF_EVENT_STATE_ERROR)
3112 3113
		return 0;

3114
	if (count < event->read_size)
3115 3116
		return -ENOSPC;

3117
	WARN_ON_ONCE(event->ctx->parent_ctx);
3118
	if (read_format & PERF_FORMAT_GROUP)
3119
		ret = perf_event_read_group(event, read_format, buf);
3120
	else
3121
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3122

3123
	return ret;
T
Thomas Gleixner 已提交
3124 3125 3126 3127 3128
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3129
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
3130

3131
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
3132 3133 3134 3135
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3136
	struct perf_event *event = file->private_data;
3137
	struct perf_buffer *buffer;
3138
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
3139 3140

	rcu_read_lock();
3141 3142 3143
	buffer = rcu_dereference(event->buffer);
	if (buffer)
		events = atomic_xchg(&buffer->poll, 0);
P
Peter Zijlstra 已提交
3144
	rcu_read_unlock();
T
Thomas Gleixner 已提交
3145

3146
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
3147 3148 3149 3150

	return events;
}

3151
static void perf_event_reset(struct perf_event *event)
3152
{
3153
	(void)perf_event_read(event);
3154
	local64_set(&event->count, 0);
3155
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3156 3157
}

3158
/*
3159 3160 3161 3162
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3163
 */
3164 3165
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3166
{
3167
	struct perf_event *child;
P
Peter Zijlstra 已提交
3168

3169 3170 3171 3172
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3173
		func(child);
3174
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3175 3176
}

3177 3178
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3179
{
3180 3181
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3182

3183 3184
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
3185
	event = event->group_leader;
3186

3187 3188 3189 3190
	perf_event_for_each_child(event, func);
	func(event);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
		perf_event_for_each_child(event, func);
3191
	mutex_unlock(&ctx->mutex);
3192 3193
}

3194
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3195
{
3196
	struct perf_event_context *ctx = event->ctx;
3197 3198 3199
	int ret = 0;
	u64 value;

3200
	if (!is_sampling_event(event))
3201 3202
		return -EINVAL;

3203
	if (copy_from_user(&value, arg, sizeof(value)))
3204 3205 3206 3207 3208
		return -EFAULT;

	if (!value)
		return -EINVAL;

3209
	raw_spin_lock_irq(&ctx->lock);
3210 3211
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3212 3213 3214 3215
			ret = -EINVAL;
			goto unlock;
		}

3216
		event->attr.sample_freq = value;
3217
	} else {
3218 3219
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3220 3221
	}
unlock:
3222
	raw_spin_unlock_irq(&ctx->lock);
3223 3224 3225 3226

	return ret;
}

3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
static const struct file_operations perf_fops;

static struct perf_event *perf_fget_light(int fd, int *fput_needed)
{
	struct file *file;

	file = fget_light(fd, fput_needed);
	if (!file)
		return ERR_PTR(-EBADF);

	if (file->f_op != &perf_fops) {
		fput_light(file, *fput_needed);
		*fput_needed = 0;
		return ERR_PTR(-EBADF);
	}

	return file->private_data;
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
3248
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3249

3250 3251
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
3252 3253
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
3254
	u32 flags = arg;
3255 3256

	switch (cmd) {
3257 3258
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
3259
		break;
3260 3261
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
3262
		break;
3263 3264
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
3265
		break;
P
Peter Zijlstra 已提交
3266

3267 3268
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
3269

3270 3271
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
3272

3273
	case PERF_EVENT_IOC_SET_OUTPUT:
3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290
	{
		struct perf_event *output_event = NULL;
		int fput_needed = 0;
		int ret;

		if (arg != -1) {
			output_event = perf_fget_light(arg, &fput_needed);
			if (IS_ERR(output_event))
				return PTR_ERR(output_event);
		}

		ret = perf_event_set_output(event, output_event);
		if (output_event)
			fput_light(output_event->filp, fput_needed);

		return ret;
	}
3291

L
Li Zefan 已提交
3292 3293 3294
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

3295
	default:
P
Peter Zijlstra 已提交
3296
		return -ENOTTY;
3297
	}
P
Peter Zijlstra 已提交
3298 3299

	if (flags & PERF_IOC_FLAG_GROUP)
3300
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
3301
	else
3302
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
3303 3304

	return 0;
3305 3306
}

3307
int perf_event_task_enable(void)
3308
{
3309
	struct perf_event *event;
3310

3311 3312 3313 3314
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
3315 3316 3317 3318

	return 0;
}

3319
int perf_event_task_disable(void)
3320
{
3321
	struct perf_event *event;
3322

3323 3324 3325 3326
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
3327 3328 3329 3330

	return 0;
}

3331 3332
#ifndef PERF_EVENT_INDEX_OFFSET
# define PERF_EVENT_INDEX_OFFSET 0
I
Ingo Molnar 已提交
3333 3334
#endif

3335
static int perf_event_index(struct perf_event *event)
3336
{
P
Peter Zijlstra 已提交
3337 3338 3339
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

3340
	if (event->state != PERF_EVENT_STATE_ACTIVE)
3341 3342
		return 0;

3343
	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
3344 3345
}

3346 3347 3348 3349 3350
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
3351
void perf_event_update_userpage(struct perf_event *event)
3352
{
3353
	struct perf_event_mmap_page *userpg;
3354
	struct perf_buffer *buffer;
3355 3356

	rcu_read_lock();
3357 3358
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
3359 3360
		goto unlock;

3361
	userpg = buffer->user_page;
3362

3363 3364 3365 3366 3367
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
3368
	++userpg->lock;
3369
	barrier();
3370
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
3371
	userpg->offset = perf_event_count(event);
3372
	if (event->state == PERF_EVENT_STATE_ACTIVE)
3373
		userpg->offset -= local64_read(&event->hw.prev_count);
3374

3375 3376
	userpg->time_enabled = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
3377

3378 3379
	userpg->time_running = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
3380

3381
	barrier();
3382
	++userpg->lock;
3383
	preempt_enable();
3384
unlock:
3385
	rcu_read_unlock();
3386 3387
}

3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406
static unsigned long perf_data_size(struct perf_buffer *buffer);

static void
perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
{
	long max_size = perf_data_size(buffer);

	if (watermark)
		buffer->watermark = min(max_size, watermark);

	if (!buffer->watermark)
		buffer->watermark = max_size / 2;

	if (flags & PERF_BUFFER_WRITABLE)
		buffer->writable = 1;

	atomic_set(&buffer->refcount, 1);
}

3407
#ifndef CONFIG_PERF_USE_VMALLOC
3408

3409 3410 3411
/*
 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
 */
3412

3413
static struct page *
3414
perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
3415
{
3416
	if (pgoff > buffer->nr_pages)
3417
		return NULL;
3418

3419
	if (pgoff == 0)
3420
		return virt_to_page(buffer->user_page);
3421

3422
	return virt_to_page(buffer->data_pages[pgoff - 1]);
3423 3424
}

3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437
static void *perf_mmap_alloc_page(int cpu)
{
	struct page *page;
	int node;

	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
	page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
	if (!page)
		return NULL;

	return page_address(page);
}

3438
static struct perf_buffer *
3439
perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
3440
{
3441
	struct perf_buffer *buffer;
3442 3443 3444
	unsigned long size;
	int i;

3445
	size = sizeof(struct perf_buffer);
3446 3447
	size += nr_pages * sizeof(void *);

3448 3449
	buffer = kzalloc(size, GFP_KERNEL);
	if (!buffer)
3450 3451
		goto fail;

3452
	buffer->user_page = perf_mmap_alloc_page(cpu);
3453
	if (!buffer->user_page)
3454 3455 3456
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
3457
		buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
3458
		if (!buffer->data_pages[i])
3459 3460 3461
			goto fail_data_pages;
	}

3462
	buffer->nr_pages = nr_pages;
3463

3464 3465
	perf_buffer_init(buffer, watermark, flags);

3466
	return buffer;
3467 3468 3469

fail_data_pages:
	for (i--; i >= 0; i--)
3470
		free_page((unsigned long)buffer->data_pages[i]);
3471

3472
	free_page((unsigned long)buffer->user_page);
3473 3474

fail_user_page:
3475
	kfree(buffer);
3476 3477

fail:
3478
	return NULL;
3479 3480
}

3481 3482
static void perf_mmap_free_page(unsigned long addr)
{
K
Kevin Cernekee 已提交
3483
	struct page *page = virt_to_page((void *)addr);
3484 3485 3486 3487 3488

	page->mapping = NULL;
	__free_page(page);
}

3489
static void perf_buffer_free(struct perf_buffer *buffer)
3490 3491 3492
{
	int i;

3493 3494 3495 3496
	perf_mmap_free_page((unsigned long)buffer->user_page);
	for (i = 0; i < buffer->nr_pages; i++)
		perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
	kfree(buffer);
3497 3498
}

3499
static inline int page_order(struct perf_buffer *buffer)
3500 3501 3502 3503
{
	return 0;
}

3504 3505 3506 3507 3508 3509 3510 3511
#else

/*
 * Back perf_mmap() with vmalloc memory.
 *
 * Required for architectures that have d-cache aliasing issues.
 */

3512
static inline int page_order(struct perf_buffer *buffer)
3513
{
3514
	return buffer->page_order;
3515 3516
}

3517
static struct page *
3518
perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
3519
{
3520
	if (pgoff > (1UL << page_order(buffer)))
3521 3522
		return NULL;

3523
	return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
3524 3525 3526 3527 3528 3529 3530 3531 3532
}

static void perf_mmap_unmark_page(void *addr)
{
	struct page *page = vmalloc_to_page(addr);

	page->mapping = NULL;
}

3533
static void perf_buffer_free_work(struct work_struct *work)
3534
{
3535
	struct perf_buffer *buffer;
3536 3537 3538
	void *base;
	int i, nr;

3539 3540
	buffer = container_of(work, struct perf_buffer, work);
	nr = 1 << page_order(buffer);
3541

3542
	base = buffer->user_page;
3543 3544 3545 3546
	for (i = 0; i < nr + 1; i++)
		perf_mmap_unmark_page(base + (i * PAGE_SIZE));

	vfree(base);
3547
	kfree(buffer);
3548 3549
}

3550
static void perf_buffer_free(struct perf_buffer *buffer)
3551
{
3552
	schedule_work(&buffer->work);
3553 3554
}

3555
static struct perf_buffer *
3556
perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
3557
{
3558
	struct perf_buffer *buffer;
3559 3560 3561
	unsigned long size;
	void *all_buf;

3562
	size = sizeof(struct perf_buffer);
3563 3564
	size += sizeof(void *);

3565 3566
	buffer = kzalloc(size, GFP_KERNEL);
	if (!buffer)
3567 3568
		goto fail;

3569
	INIT_WORK(&buffer->work, perf_buffer_free_work);
3570 3571 3572 3573 3574

	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
	if (!all_buf)
		goto fail_all_buf;

3575 3576 3577 3578
	buffer->user_page = all_buf;
	buffer->data_pages[0] = all_buf + PAGE_SIZE;
	buffer->page_order = ilog2(nr_pages);
	buffer->nr_pages = 1;
3579

3580 3581
	perf_buffer_init(buffer, watermark, flags);

3582
	return buffer;
3583 3584

fail_all_buf:
3585
	kfree(buffer);
3586 3587 3588 3589 3590 3591 3592

fail:
	return NULL;
}

#endif

3593
static unsigned long perf_data_size(struct perf_buffer *buffer)
3594
{
3595
	return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
3596 3597
}

3598 3599 3600
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
3601
	struct perf_buffer *buffer;
3602 3603 3604 3605 3606 3607 3608 3609 3610
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
3611 3612
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
3613 3614 3615 3616 3617
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

3618
	vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

3633
static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
3634
{
3635
	struct perf_buffer *buffer;
3636

3637 3638
	buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
	perf_buffer_free(buffer);
3639 3640
}

3641
static struct perf_buffer *perf_buffer_get(struct perf_event *event)
3642
{
3643
	struct perf_buffer *buffer;
3644

3645
	rcu_read_lock();
3646 3647 3648 3649
	buffer = rcu_dereference(event->buffer);
	if (buffer) {
		if (!atomic_inc_not_zero(&buffer->refcount))
			buffer = NULL;
3650 3651 3652
	}
	rcu_read_unlock();

3653
	return buffer;
3654 3655
}

3656
static void perf_buffer_put(struct perf_buffer *buffer)
3657
{
3658
	if (!atomic_dec_and_test(&buffer->refcount))
3659
		return;
3660

3661
	call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
3662 3663 3664 3665
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
3666
	struct perf_event *event = vma->vm_file->private_data;
3667

3668
	atomic_inc(&event->mmap_count);
3669 3670 3671 3672
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
3673
	struct perf_event *event = vma->vm_file->private_data;
3674

3675
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3676
		unsigned long size = perf_data_size(event->buffer);
3677
		struct user_struct *user = event->mmap_user;
3678
		struct perf_buffer *buffer = event->buffer;
3679

3680
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3681
		vma->vm_mm->locked_vm -= event->mmap_locked;
3682
		rcu_assign_pointer(event->buffer, NULL);
3683
		mutex_unlock(&event->mmap_mutex);
3684

3685
		perf_buffer_put(buffer);
3686
		free_uid(user);
3687
	}
3688 3689
}

3690
static const struct vm_operations_struct perf_mmap_vmops = {
3691 3692 3693 3694
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
3695 3696 3697 3698
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
3699
	struct perf_event *event = file->private_data;
3700
	unsigned long user_locked, user_lock_limit;
3701
	struct user_struct *user = current_user();
3702
	unsigned long locked, lock_limit;
3703
	struct perf_buffer *buffer;
3704 3705
	unsigned long vma_size;
	unsigned long nr_pages;
3706
	long user_extra, extra;
3707
	int ret = 0, flags = 0;
3708

3709 3710 3711 3712 3713 3714 3715 3716
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
	 * same buffer.
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

3717
	if (!(vma->vm_flags & VM_SHARED))
3718
		return -EINVAL;
3719 3720 3721 3722

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

3723
	/*
3724
	 * If we have buffer pages ensure they're a power-of-two number, so we
3725 3726 3727
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
3728 3729
		return -EINVAL;

3730
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
3731 3732
		return -EINVAL;

3733 3734
	if (vma->vm_pgoff != 0)
		return -EINVAL;
3735

3736 3737
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
3738 3739 3740
	if (event->buffer) {
		if (event->buffer->nr_pages == nr_pages)
			atomic_inc(&event->buffer->refcount);
3741
		else
3742 3743 3744 3745
			ret = -EINVAL;
		goto unlock;
	}

3746
	user_extra = nr_pages + 1;
3747
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
3748 3749 3750 3751 3752 3753

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

3754
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3755

3756 3757 3758
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
3759

3760
	lock_limit = rlimit(RLIMIT_MEMLOCK);
3761
	lock_limit >>= PAGE_SHIFT;
3762
	locked = vma->vm_mm->locked_vm + extra;
3763

3764 3765
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
3766 3767 3768
		ret = -EPERM;
		goto unlock;
	}
3769

3770
	WARN_ON(event->buffer);
3771

3772 3773 3774 3775 3776
	if (vma->vm_flags & VM_WRITE)
		flags |= PERF_BUFFER_WRITABLE;

	buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
				   event->cpu, flags);
3777
	if (!buffer) {
3778
		ret = -ENOMEM;
3779
		goto unlock;
3780
	}
3781
	rcu_assign_pointer(event->buffer, buffer);
3782

3783 3784 3785 3786 3787
	atomic_long_add(user_extra, &user->locked_vm);
	event->mmap_locked = extra;
	event->mmap_user = get_current_user();
	vma->vm_mm->locked_vm += event->mmap_locked;

3788
unlock:
3789 3790
	if (!ret)
		atomic_inc(&event->mmap_count);
3791
	mutex_unlock(&event->mmap_mutex);
3792 3793 3794

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
3795 3796

	return ret;
3797 3798
}

P
Peter Zijlstra 已提交
3799 3800 3801
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
3802
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
3803 3804 3805
	int retval;

	mutex_lock(&inode->i_mutex);
3806
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
3807 3808 3809 3810 3811 3812 3813 3814
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
3815
static const struct file_operations perf_fops = {
3816
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
3817 3818 3819
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
3820 3821
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
3822
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
3823
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
3824 3825
};

3826
/*
3827
 * Perf event wakeup
3828 3829 3830 3831 3832
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

3833
void perf_event_wakeup(struct perf_event *event)
3834
{
3835
	wake_up_all(&event->waitq);
3836

3837 3838 3839
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
3840
	}
3841 3842
}

3843
static void perf_pending_event(struct irq_work *entry)
3844
{
3845 3846
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
3847

3848 3849 3850
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
3851 3852
	}

3853 3854 3855
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
3856 3857 3858
	}
}

3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

3880 3881 3882
/*
 * Output
 */
3883
static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3884
			      unsigned long offset, unsigned long head)
3885 3886 3887
{
	unsigned long mask;

3888
	if (!buffer->writable)
3889 3890
		return true;

3891
	mask = perf_data_size(buffer) - 1;
3892 3893 3894 3895 3896 3897 3898 3899 3900 3901

	offset = (offset - tail) & mask;
	head   = (head   - tail) & mask;

	if ((int)(head - offset) < 0)
		return false;

	return true;
}

3902
static void perf_output_wakeup(struct perf_output_handle *handle)
3903
{
3904
	atomic_set(&handle->buffer->poll, POLL_IN);
3905

3906
	if (handle->nmi) {
3907
		handle->event->pending_wakeup = 1;
3908
		irq_work_queue(&handle->event->pending);
3909
	} else
3910
		perf_event_wakeup(handle->event);
3911 3912
}

3913
/*
3914
 * We need to ensure a later event_id doesn't publish a head when a former
3915
 * event isn't done writing. However since we need to deal with NMIs we
3916 3917 3918
 * cannot fully serialize things.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
3919
 * event completes.
3920
 */
3921
static void perf_output_get_handle(struct perf_output_handle *handle)
3922
{
3923
	struct perf_buffer *buffer = handle->buffer;
3924

3925
	preempt_disable();
3926 3927
	local_inc(&buffer->nest);
	handle->wakeup = local_read(&buffer->wakeup);
3928 3929
}

3930
static void perf_output_put_handle(struct perf_output_handle *handle)
3931
{
3932
	struct perf_buffer *buffer = handle->buffer;
3933
	unsigned long head;
3934 3935

again:
3936
	head = local_read(&buffer->head);
3937 3938

	/*
3939
	 * IRQ/NMI can happen here, which means we can miss a head update.
3940 3941
	 */

3942
	if (!local_dec_and_test(&buffer->nest))
3943
		goto out;
3944 3945

	/*
3946
	 * Publish the known good head. Rely on the full barrier implied
3947
	 * by atomic_dec_and_test() order the buffer->head read and this
3948
	 * write.
3949
	 */
3950
	buffer->user_page->data_head = head;
3951

3952 3953
	/*
	 * Now check if we missed an update, rely on the (compiler)
3954
	 * barrier in atomic_dec_and_test() to re-read buffer->head.
3955
	 */
3956 3957
	if (unlikely(head != local_read(&buffer->head))) {
		local_inc(&buffer->nest);
3958 3959 3960
		goto again;
	}

3961
	if (handle->wakeup != local_read(&buffer->wakeup))
3962
		perf_output_wakeup(handle);
3963

P
Peter Zijlstra 已提交
3964
out:
3965
	preempt_enable();
3966 3967
}

3968
__always_inline void perf_output_copy(struct perf_output_handle *handle,
3969
		      const void *buf, unsigned int len)
3970
{
3971
	do {
3972
		unsigned long size = min_t(unsigned long, handle->size, len);
3973 3974 3975 3976 3977

		memcpy(handle->addr, buf, size);

		len -= size;
		handle->addr += size;
3978
		buf += size;
3979 3980
		handle->size -= size;
		if (!handle->size) {
3981
			struct perf_buffer *buffer = handle->buffer;
3982

3983
			handle->page++;
3984 3985 3986
			handle->page &= buffer->nr_pages - 1;
			handle->addr = buffer->data_pages[handle->page];
			handle->size = PAGE_SIZE << page_order(buffer);
3987 3988
		}
	} while (len);
3989 3990
}

3991 3992 3993
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
		data->time = perf_clock();

	if (sample_type & PERF_SAMPLE_ID)
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057
static void perf_event_header__init_id(struct perf_event_header *header,
				       struct perf_sample_data *data,
				       struct perf_event *event)
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
}

static void perf_event__output_id_sample(struct perf_event *event,
					 struct perf_output_handle *handle,
					 struct perf_sample_data *sample)
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

4058
int perf_output_begin(struct perf_output_handle *handle,
4059
		      struct perf_event *event, unsigned int size,
4060
		      int nmi, int sample)
4061
{
4062
	struct perf_buffer *buffer;
4063
	unsigned long tail, offset, head;
4064
	int have_lost;
4065
	struct perf_sample_data sample_data;
4066 4067 4068 4069 4070
	struct {
		struct perf_event_header header;
		u64			 id;
		u64			 lost;
	} lost_event;
4071

4072
	rcu_read_lock();
4073
	/*
4074
	 * For inherited events we send all the output towards the parent.
4075
	 */
4076 4077
	if (event->parent)
		event = event->parent;
4078

4079 4080
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
4081 4082
		goto out;

4083
	handle->buffer	= buffer;
4084
	handle->event	= event;
4085 4086
	handle->nmi	= nmi;
	handle->sample	= sample;
4087

4088
	if (!buffer->nr_pages)
4089
		goto out;
4090

4091
	have_lost = local_read(&buffer->lost);
4092 4093 4094 4095 4096 4097
	if (have_lost) {
		lost_event.header.size = sizeof(lost_event);
		perf_event_header__init_id(&lost_event.header, &sample_data,
					   event);
		size += lost_event.header.size;
	}
4098

4099
	perf_output_get_handle(handle);
4100

4101
	do {
4102 4103 4104 4105 4106
		/*
		 * Userspace could choose to issue a mb() before updating the
		 * tail pointer. So that all reads will be completed before the
		 * write is issued.
		 */
4107
		tail = ACCESS_ONCE(buffer->user_page->data_tail);
4108
		smp_rmb();
4109
		offset = head = local_read(&buffer->head);
P
Peter Zijlstra 已提交
4110
		head += size;
4111
		if (unlikely(!perf_output_space(buffer, tail, offset, head)))
4112
			goto fail;
4113
	} while (local_cmpxchg(&buffer->head, offset, head) != offset);
4114

4115 4116
	if (head - local_read(&buffer->wakeup) > buffer->watermark)
		local_add(buffer->watermark, &buffer->wakeup);
4117

4118 4119 4120 4121
	handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
	handle->page &= buffer->nr_pages - 1;
	handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
	handle->addr = buffer->data_pages[handle->page];
4122
	handle->addr += handle->size;
4123
	handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
4124

4125
	if (have_lost) {
4126
		lost_event.header.type = PERF_RECORD_LOST;
4127
		lost_event.header.misc = 0;
4128
		lost_event.id          = event->id;
4129
		lost_event.lost        = local_xchg(&buffer->lost, 0);
4130 4131

		perf_output_put(handle, lost_event);
4132
		perf_event__output_id_sample(event, handle, &sample_data);
4133 4134
	}

4135
	return 0;
4136

4137
fail:
4138
	local_inc(&buffer->lost);
4139
	perf_output_put_handle(handle);
4140 4141
out:
	rcu_read_unlock();
4142

4143 4144
	return -ENOSPC;
}
4145

4146
void perf_output_end(struct perf_output_handle *handle)
4147
{
4148
	struct perf_event *event = handle->event;
4149
	struct perf_buffer *buffer = handle->buffer;
4150

4151
	int wakeup_events = event->attr.wakeup_events;
P
Peter Zijlstra 已提交
4152

4153
	if (handle->sample && wakeup_events) {
4154
		int events = local_inc_return(&buffer->events);
P
Peter Zijlstra 已提交
4155
		if (events >= wakeup_events) {
4156 4157
			local_sub(wakeup_events, &buffer->events);
			local_inc(&buffer->wakeup);
P
Peter Zijlstra 已提交
4158
		}
4159 4160
	}

4161
	perf_output_put_handle(handle);
4162
	rcu_read_unlock();
4163 4164
}

4165
static void perf_output_read_one(struct perf_output_handle *handle,
4166 4167
				 struct perf_event *event,
				 u64 enabled, u64 running)
4168
{
4169
	u64 read_format = event->attr.read_format;
4170 4171 4172
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
4173
	values[n++] = perf_event_count(event);
4174
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4175
		values[n++] = enabled +
4176
			atomic64_read(&event->child_total_time_enabled);
4177 4178
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4179
		values[n++] = running +
4180
			atomic64_read(&event->child_total_time_running);
4181 4182
	}
	if (read_format & PERF_FORMAT_ID)
4183
		values[n++] = primary_event_id(event);
4184 4185 4186 4187 4188

	perf_output_copy(handle, values, n * sizeof(u64));
}

/*
4189
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4190 4191
 */
static void perf_output_read_group(struct perf_output_handle *handle,
4192 4193
			    struct perf_event *event,
			    u64 enabled, u64 running)
4194
{
4195 4196
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
4197 4198 4199 4200 4201 4202
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4203
		values[n++] = enabled;
4204 4205

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4206
		values[n++] = running;
4207

4208
	if (leader != event)
4209 4210
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
4211
	values[n++] = perf_event_count(leader);
4212
	if (read_format & PERF_FORMAT_ID)
4213
		values[n++] = primary_event_id(leader);
4214 4215 4216

	perf_output_copy(handle, values, n * sizeof(u64));

4217
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4218 4219
		n = 0;

4220
		if (sub != event)
4221 4222
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
4223
		values[n++] = perf_event_count(sub);
4224
		if (read_format & PERF_FORMAT_ID)
4225
			values[n++] = primary_event_id(sub);
4226 4227 4228 4229 4230

		perf_output_copy(handle, values, n * sizeof(u64));
	}
}

4231 4232 4233
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

4234
static void perf_output_read(struct perf_output_handle *handle,
4235
			     struct perf_event *event)
4236
{
4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255
	u64 enabled = 0, running = 0, now, ctx_time;
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
	if (read_format & PERF_FORMAT_TOTAL_TIMES) {
		now = perf_clock();
		ctx_time = event->shadow_ctx_time + now;
		enabled = ctx_time - event->tstamp_enabled;
		running = ctx_time - event->tstamp_running;
	}

4256
	if (event->attr.read_format & PERF_FORMAT_GROUP)
4257
		perf_output_read_group(handle, event, enabled, running);
4258
	else
4259
		perf_output_read_one(handle, event, enabled, running);
4260 4261
}

4262 4263 4264
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
4265
			struct perf_event *event)
4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
4296
		perf_output_read(handle, event);
4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

			perf_output_copy(handle, data->callchain, size);
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
			perf_output_copy(handle, data->raw->data,
					 data->raw->size);
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
4334
			 struct perf_event *event,
4335
			 struct pt_regs *regs)
4336
{
4337
	u64 sample_type = event->attr.sample_type;
4338

4339
	header->type = PERF_RECORD_SAMPLE;
4340
	header->size = sizeof(*header) + event->header_size;
4341 4342 4343

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
4344

4345
	__perf_event_header__init_id(header, data, event);
4346

4347
	if (sample_type & PERF_SAMPLE_IP)
4348 4349
		data->ip = perf_instruction_pointer(regs);

4350
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4351
		int size = 1;
4352

4353 4354 4355 4356 4357 4358
		data->callchain = perf_callchain(regs);

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
4359 4360
	}

4361
	if (sample_type & PERF_SAMPLE_RAW) {
4362 4363 4364 4365 4366 4367 4368 4369
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
4370
		header->size += size;
4371
	}
4372
}
4373

4374
static void perf_event_output(struct perf_event *event, int nmi,
4375 4376 4377 4378 4379
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
4380

4381 4382 4383
	/* protect the callchain buffers */
	rcu_read_lock();

4384
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
4385

4386
	if (perf_output_begin(&handle, event, header.size, nmi, 1))
4387
		goto exit;
4388

4389
	perf_output_sample(&handle, &header, data, event);
4390

4391
	perf_output_end(&handle);
4392 4393 4394

exit:
	rcu_read_unlock();
4395 4396
}

4397
/*
4398
 * read event_id
4399 4400 4401 4402 4403 4404 4405 4406 4407 4408
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
4409
perf_event_read_event(struct perf_event *event,
4410 4411 4412
			struct task_struct *task)
{
	struct perf_output_handle handle;
4413
	struct perf_sample_data sample;
4414
	struct perf_read_event read_event = {
4415
		.header = {
4416
			.type = PERF_RECORD_READ,
4417
			.misc = 0,
4418
			.size = sizeof(read_event) + event->read_size,
4419
		},
4420 4421
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
4422
	};
4423
	int ret;
4424

4425
	perf_event_header__init_id(&read_event.header, &sample, event);
4426
	ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
4427 4428 4429
	if (ret)
		return;

4430
	perf_output_put(&handle, read_event);
4431
	perf_output_read(&handle, event);
4432
	perf_event__output_id_sample(event, &handle, &sample);
4433

4434 4435 4436
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
4437
/*
P
Peter Zijlstra 已提交
4438 4439
 * task tracking -- fork/exit
 *
4440
 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
4441 4442
 */

P
Peter Zijlstra 已提交
4443
struct perf_task_event {
4444
	struct task_struct		*task;
4445
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
4446 4447 4448 4449 4450 4451

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
4452 4453
		u32				tid;
		u32				ptid;
4454
		u64				time;
4455
	} event_id;
P
Peter Zijlstra 已提交
4456 4457
};

4458
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
4459
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4460 4461
{
	struct perf_output_handle handle;
4462
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
4463
	struct task_struct *task = task_event->task;
4464
	int ret, size = task_event->event_id.header.size;
4465

4466
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
4467

4468 4469
	ret = perf_output_begin(&handle, event,
				task_event->event_id.header.size, 0, 0);
4470
	if (ret)
4471
		goto out;
P
Peter Zijlstra 已提交
4472

4473 4474
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
4475

4476 4477
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
4478

4479
	perf_output_put(&handle, task_event->event_id);
4480

4481 4482
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
4483
	perf_output_end(&handle);
4484 4485
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
4486 4487
}

4488
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
4489
{
P
Peter Zijlstra 已提交
4490
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4491 4492
		return 0;

4493
	if (!event_filter_match(event))
4494 4495
		return 0;

4496 4497
	if (event->attr.comm || event->attr.mmap ||
	    event->attr.mmap_data || event->attr.task)
P
Peter Zijlstra 已提交
4498 4499 4500 4501 4502
		return 1;

	return 0;
}

4503
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
4504
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4505
{
4506
	struct perf_event *event;
P
Peter Zijlstra 已提交
4507

4508 4509 4510
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
4511 4512 4513
	}
}

4514
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4515 4516
{
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
4517
	struct perf_event_context *ctx;
P
Peter Zijlstra 已提交
4518
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4519
	int ctxn;
P
Peter Zijlstra 已提交
4520

4521
	rcu_read_lock();
P
Peter Zijlstra 已提交
4522
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4523
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4524 4525
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4526
		perf_event_task_ctx(&cpuctx->ctx, task_event);
P
Peter Zijlstra 已提交
4527 4528 4529 4530 4531

		ctx = task_event->task_ctx;
		if (!ctx) {
			ctxn = pmu->task_ctx_nr;
			if (ctxn < 0)
4532
				goto next;
P
Peter Zijlstra 已提交
4533 4534 4535 4536
			ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		}
		if (ctx)
			perf_event_task_ctx(ctx, task_event);
4537 4538
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4539
	}
P
Peter Zijlstra 已提交
4540 4541 4542
	rcu_read_unlock();
}

4543 4544
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
4545
			      int new)
P
Peter Zijlstra 已提交
4546
{
P
Peter Zijlstra 已提交
4547
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
4548

4549 4550 4551
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
4552 4553
		return;

P
Peter Zijlstra 已提交
4554
	task_event = (struct perf_task_event){
4555 4556
		.task	  = task,
		.task_ctx = task_ctx,
4557
		.event_id    = {
P
Peter Zijlstra 已提交
4558
			.header = {
4559
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4560
				.misc = 0,
4561
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
4562
			},
4563 4564
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
4565 4566
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
4567
			.time = perf_clock(),
P
Peter Zijlstra 已提交
4568 4569 4570
		},
	};

4571
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
4572 4573
}

4574
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
4575
{
4576
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
4577 4578
}

4579 4580 4581 4582 4583
/*
 * comm tracking
 */

struct perf_comm_event {
4584 4585
	struct task_struct	*task;
	char			*comm;
4586 4587 4588 4589 4590 4591 4592
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
4593
	} event_id;
4594 4595
};

4596
static void perf_event_comm_output(struct perf_event *event,
4597 4598 4599
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
4600
	struct perf_sample_data sample;
4601
	int size = comm_event->event_id.header.size;
4602 4603 4604 4605 4606
	int ret;

	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
				comm_event->event_id.header.size, 0, 0);
4607 4608

	if (ret)
4609
		goto out;
4610

4611 4612
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4613

4614
	perf_output_put(&handle, comm_event->event_id);
4615 4616
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
4617 4618 4619

	perf_event__output_id_sample(event, &handle, &sample);

4620
	perf_output_end(&handle);
4621 4622
out:
	comm_event->event_id.header.size = size;
4623 4624
}

4625
static int perf_event_comm_match(struct perf_event *event)
4626
{
P
Peter Zijlstra 已提交
4627
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4628 4629
		return 0;

4630
	if (!event_filter_match(event))
4631 4632
		return 0;

4633
	if (event->attr.comm)
4634 4635 4636 4637 4638
		return 1;

	return 0;
}

4639
static void perf_event_comm_ctx(struct perf_event_context *ctx,
4640 4641
				  struct perf_comm_event *comm_event)
{
4642
	struct perf_event *event;
4643

4644 4645 4646
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
4647 4648 4649
	}
}

4650
static void perf_event_comm_event(struct perf_comm_event *comm_event)
4651 4652
{
	struct perf_cpu_context *cpuctx;
4653
	struct perf_event_context *ctx;
4654
	char comm[TASK_COMM_LEN];
4655
	unsigned int size;
P
Peter Zijlstra 已提交
4656
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4657
	int ctxn;
4658

4659
	memset(comm, 0, sizeof(comm));
4660
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
4661
	size = ALIGN(strlen(comm)+1, sizeof(u64));
4662 4663 4664 4665

	comm_event->comm = comm;
	comm_event->comm_size = size;

4666
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4667
	rcu_read_lock();
P
Peter Zijlstra 已提交
4668
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4669
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4670 4671
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4672
		perf_event_comm_ctx(&cpuctx->ctx, comm_event);
P
Peter Zijlstra 已提交
4673 4674 4675

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
4676
			goto next;
P
Peter Zijlstra 已提交
4677 4678 4679 4680

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
			perf_event_comm_ctx(ctx, comm_event);
4681 4682
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4683
	}
4684
	rcu_read_unlock();
4685 4686
}

4687
void perf_event_comm(struct task_struct *task)
4688
{
4689
	struct perf_comm_event comm_event;
P
Peter Zijlstra 已提交
4690 4691
	struct perf_event_context *ctx;
	int ctxn;
4692

P
Peter Zijlstra 已提交
4693 4694 4695 4696
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
4697

P
Peter Zijlstra 已提交
4698 4699
		perf_event_enable_on_exec(ctx);
	}
4700

4701
	if (!atomic_read(&nr_comm_events))
4702
		return;
4703

4704
	comm_event = (struct perf_comm_event){
4705
		.task	= task,
4706 4707
		/* .comm      */
		/* .comm_size */
4708
		.event_id  = {
4709
			.header = {
4710
				.type = PERF_RECORD_COMM,
4711 4712 4713 4714 4715
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
4716 4717 4718
		},
	};

4719
	perf_event_comm_event(&comm_event);
4720 4721
}

4722 4723 4724 4725 4726
/*
 * mmap tracking
 */

struct perf_mmap_event {
4727 4728 4729 4730
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
4731 4732 4733 4734 4735 4736 4737 4738 4739

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
4740
	} event_id;
4741 4742
};

4743
static void perf_event_mmap_output(struct perf_event *event,
4744 4745 4746
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
4747
	struct perf_sample_data sample;
4748
	int size = mmap_event->event_id.header.size;
4749
	int ret;
4750

4751 4752 4753
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
				mmap_event->event_id.header.size, 0, 0);
4754
	if (ret)
4755
		goto out;
4756

4757 4758
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
4759

4760
	perf_output_put(&handle, mmap_event->event_id);
4761 4762
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
4763 4764 4765

	perf_event__output_id_sample(event, &handle, &sample);

4766
	perf_output_end(&handle);
4767 4768
out:
	mmap_event->event_id.header.size = size;
4769 4770
}

4771
static int perf_event_mmap_match(struct perf_event *event,
4772 4773
				   struct perf_mmap_event *mmap_event,
				   int executable)
4774
{
P
Peter Zijlstra 已提交
4775
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4776 4777
		return 0;

4778
	if (!event_filter_match(event))
4779 4780
		return 0;

4781 4782
	if ((!executable && event->attr.mmap_data) ||
	    (executable && event->attr.mmap))
4783 4784 4785 4786 4787
		return 1;

	return 0;
}

4788
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4789 4790
				  struct perf_mmap_event *mmap_event,
				  int executable)
4791
{
4792
	struct perf_event *event;
4793

4794
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4795
		if (perf_event_mmap_match(event, mmap_event, executable))
4796
			perf_event_mmap_output(event, mmap_event);
4797 4798 4799
	}
}

4800
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4801 4802
{
	struct perf_cpu_context *cpuctx;
4803
	struct perf_event_context *ctx;
4804 4805
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
4806 4807 4808
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
4809
	const char *name;
P
Peter Zijlstra 已提交
4810
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4811
	int ctxn;
4812

4813 4814
	memset(tmp, 0, sizeof(tmp));

4815
	if (file) {
4816 4817 4818 4819 4820 4821
		/*
		 * d_path works from the end of the buffer backwards, so we
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4822 4823 4824 4825
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
4826
		name = d_path(&file->f_path, buf, PATH_MAX);
4827 4828 4829 4830 4831
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
4832 4833 4834
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
4835
			goto got_name;
4836
		}
4837 4838 4839 4840

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
4841 4842 4843 4844 4845 4846 4847 4848
		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
				vma->vm_end >= vma->vm_mm->brk) {
			name = strncpy(tmp, "[heap]", sizeof(tmp));
			goto got_name;
		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
				vma->vm_end >= vma->vm_mm->start_stack) {
			name = strncpy(tmp, "[stack]", sizeof(tmp));
			goto got_name;
4849 4850
		}

4851 4852 4853 4854 4855
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
4856
	size = ALIGN(strlen(name)+1, sizeof(u64));
4857 4858 4859 4860

	mmap_event->file_name = name;
	mmap_event->file_size = size;

4861
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4862

4863
	rcu_read_lock();
P
Peter Zijlstra 已提交
4864
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4865
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4866 4867
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4868 4869
		perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
P
Peter Zijlstra 已提交
4870 4871 4872

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
4873
			goto next;
P
Peter Zijlstra 已提交
4874 4875 4876 4877 4878 4879

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx) {
			perf_event_mmap_ctx(ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
		}
4880 4881
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4882
	}
4883 4884
	rcu_read_unlock();

4885 4886 4887
	kfree(buf);
}

4888
void perf_event_mmap(struct vm_area_struct *vma)
4889
{
4890 4891
	struct perf_mmap_event mmap_event;

4892
	if (!atomic_read(&nr_mmap_events))
4893 4894 4895
		return;

	mmap_event = (struct perf_mmap_event){
4896
		.vma	= vma,
4897 4898
		/* .file_name */
		/* .file_size */
4899
		.event_id  = {
4900
			.header = {
4901
				.type = PERF_RECORD_MMAP,
4902
				.misc = PERF_RECORD_MISC_USER,
4903 4904 4905 4906
				/* .size */
			},
			/* .pid */
			/* .tid */
4907 4908
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
4909
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4910 4911 4912
		},
	};

4913
	perf_event_mmap_event(&mmap_event);
4914 4915
}

4916 4917 4918 4919
/*
 * IRQ throttle logging
 */

4920
static void perf_log_throttle(struct perf_event *event, int enable)
4921 4922
{
	struct perf_output_handle handle;
4923
	struct perf_sample_data sample;
4924 4925 4926 4927 4928
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
4929
		u64				id;
4930
		u64				stream_id;
4931 4932
	} throttle_event = {
		.header = {
4933
			.type = PERF_RECORD_THROTTLE,
4934 4935 4936
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
4937
		.time		= perf_clock(),
4938 4939
		.id		= primary_event_id(event),
		.stream_id	= event->id,
4940 4941
	};

4942
	if (enable)
4943
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4944

4945 4946 4947 4948
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
				throttle_event.header.size, 1, 0);
4949 4950 4951 4952
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
4953
	perf_event__output_id_sample(event, &handle, &sample);
4954 4955 4956
	perf_output_end(&handle);
}

4957
/*
4958
 * Generic event overflow handling, sampling.
4959 4960
 */

4961
static int __perf_event_overflow(struct perf_event *event, int nmi,
4962 4963
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
4964
{
4965 4966
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
4967 4968
	int ret = 0;

4969 4970 4971 4972 4973 4974 4975
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

P
Peter Zijlstra 已提交
4976 4977 4978 4979
	if (unlikely(hwc->interrupts >= max_samples_per_tick)) {
		if (throttle) {
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
4980 4981
			ret = 1;
		}
P
Peter Zijlstra 已提交
4982 4983
	} else
		hwc->interrupts++;
4984

4985
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
4986
		u64 now = perf_clock();
4987
		s64 delta = now - hwc->freq_time_stamp;
4988

4989
		hwc->freq_time_stamp = now;
4990

4991 4992
		if (delta > 0 && delta < 2*TICK_NSEC)
			perf_adjust_period(event, delta, hwc->last_period);
4993 4994
	}

4995 4996
	/*
	 * XXX event_limit might not quite work as expected on inherited
4997
	 * events
4998 4999
	 */

5000 5001
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
5002
		ret = 1;
5003
		event->pending_kill = POLL_HUP;
5004
		if (nmi) {
5005
			event->pending_disable = 1;
5006
			irq_work_queue(&event->pending);
5007
		} else
5008
			perf_event_disable(event);
5009 5010
	}

5011 5012 5013 5014 5015
	if (event->overflow_handler)
		event->overflow_handler(event, nmi, data, regs);
	else
		perf_event_output(event, nmi, data, regs);

5016
	return ret;
5017 5018
}

5019
int perf_event_overflow(struct perf_event *event, int nmi,
5020 5021
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
5022
{
5023
	return __perf_event_overflow(event, nmi, 1, data, regs);
5024 5025
}

5026
/*
5027
 * Generic software event infrastructure
5028 5029
 */

5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

5041
/*
5042 5043
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
5044 5045 5046 5047
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

5048
static u64 perf_swevent_set_period(struct perf_event *event)
5049
{
5050
	struct hw_perf_event *hwc = &event->hw;
5051 5052 5053 5054 5055
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
5056 5057

again:
5058
	old = val = local64_read(&hwc->period_left);
5059 5060
	if (val < 0)
		return 0;
5061

5062 5063 5064
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
5065
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5066
		goto again;
5067

5068
	return nr;
5069 5070
}

5071
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5072 5073
				    int nmi, struct perf_sample_data *data,
				    struct pt_regs *regs)
5074
{
5075
	struct hw_perf_event *hwc = &event->hw;
5076
	int throttle = 0;
5077

5078
	data->period = event->hw.last_period;
5079 5080
	if (!overflow)
		overflow = perf_swevent_set_period(event);
5081

5082 5083
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
5084

5085
	for (; overflow; overflow--) {
5086
		if (__perf_event_overflow(event, nmi, throttle,
5087
					    data, regs)) {
5088 5089 5090 5091 5092 5093
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
5094
		throttle = 1;
5095
	}
5096 5097
}

P
Peter Zijlstra 已提交
5098
static void perf_swevent_event(struct perf_event *event, u64 nr,
5099 5100
			       int nmi, struct perf_sample_data *data,
			       struct pt_regs *regs)
5101
{
5102
	struct hw_perf_event *hwc = &event->hw;
5103

5104
	local64_add(nr, &event->count);
5105

5106 5107 5108
	if (!regs)
		return;

5109
	if (!is_sampling_event(event))
5110
		return;
5111

5112 5113 5114
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
		return perf_swevent_overflow(event, 1, nmi, data, regs);

5115
	if (local64_add_negative(nr, &hwc->period_left))
5116
		return;
5117

5118
	perf_swevent_overflow(event, 0, nmi, data, regs);
5119 5120
}

5121 5122 5123
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
5124 5125 5126
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

5138
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
5139
				enum perf_type_id type,
L
Li Zefan 已提交
5140 5141 5142
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
5143
{
5144
	if (event->attr.type != type)
5145
		return 0;
5146

5147
	if (event->attr.config != event_id)
5148 5149
		return 0;

5150 5151
	if (perf_exclude_event(event, regs))
		return 0;
5152 5153 5154 5155

	return 1;
}

5156 5157 5158 5159 5160 5161 5162
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

5163 5164
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5165
{
5166 5167 5168 5169
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
5170

5171 5172
/* For the read side: events when they trigger */
static inline struct hlist_head *
5173
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5174 5175
{
	struct swevent_hlist *hlist;
5176

5177
	hlist = rcu_dereference(swhash->swevent_hlist);
5178 5179 5180
	if (!hlist)
		return NULL;

5181 5182 5183 5184 5185
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
5186
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5187 5188 5189 5190 5191 5192 5193 5194 5195 5196
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
5197
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
5198 5199 5200 5201 5202
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
5203 5204 5205 5206 5207 5208
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
				    u64 nr, int nmi,
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
5209
{
5210
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5211
	struct perf_event *event;
5212 5213
	struct hlist_node *node;
	struct hlist_head *head;
5214

5215
	rcu_read_lock();
5216
	head = find_swevent_head_rcu(swhash, type, event_id);
5217 5218 5219 5220
	if (!head)
		goto end;

	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
L
Li Zefan 已提交
5221
		if (perf_swevent_match(event, type, event_id, data, regs))
P
Peter Zijlstra 已提交
5222
			perf_swevent_event(event, nr, nmi, data, regs);
5223
	}
5224 5225
end:
	rcu_read_unlock();
5226 5227
}

5228
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
5229
{
5230
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
P
Peter Zijlstra 已提交
5231

5232
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
5233
}
I
Ingo Molnar 已提交
5234
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
5235

5236
inline void perf_swevent_put_recursion_context(int rctx)
5237
{
5238
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5239

5240
	put_recursion_context(swhash->recursion, rctx);
5241
}
5242

5243
void __perf_sw_event(u32 event_id, u64 nr, int nmi,
5244
			    struct pt_regs *regs, u64 addr)
5245
{
5246
	struct perf_sample_data data;
5247 5248
	int rctx;

5249
	preempt_disable_notrace();
5250 5251 5252
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
5253

5254
	perf_sample_data_init(&data, addr);
5255

5256
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
5257 5258

	perf_swevent_put_recursion_context(rctx);
5259
	preempt_enable_notrace();
5260 5261
}

5262
static void perf_swevent_read(struct perf_event *event)
5263 5264 5265
{
}

P
Peter Zijlstra 已提交
5266
static int perf_swevent_add(struct perf_event *event, int flags)
5267
{
5268
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5269
	struct hw_perf_event *hwc = &event->hw;
5270 5271
	struct hlist_head *head;

5272
	if (is_sampling_event(event)) {
5273
		hwc->last_period = hwc->sample_period;
5274
		perf_swevent_set_period(event);
5275
	}
5276

P
Peter Zijlstra 已提交
5277 5278
	hwc->state = !(flags & PERF_EF_START);

5279
	head = find_swevent_head(swhash, event);
5280 5281 5282 5283 5284
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

5285 5286 5287
	return 0;
}

P
Peter Zijlstra 已提交
5288
static void perf_swevent_del(struct perf_event *event, int flags)
5289
{
5290
	hlist_del_rcu(&event->hlist_entry);
5291 5292
}

P
Peter Zijlstra 已提交
5293
static void perf_swevent_start(struct perf_event *event, int flags)
5294
{
P
Peter Zijlstra 已提交
5295
	event->hw.state = 0;
5296
}
I
Ingo Molnar 已提交
5297

P
Peter Zijlstra 已提交
5298
static void perf_swevent_stop(struct perf_event *event, int flags)
5299
{
P
Peter Zijlstra 已提交
5300
	event->hw.state = PERF_HES_STOPPED;
5301 5302
}

5303 5304
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
5305
swevent_hlist_deref(struct swevent_htable *swhash)
5306
{
5307 5308
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
5309 5310
}

5311 5312 5313 5314 5315 5316 5317 5318
static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
{
	struct swevent_hlist *hlist;

	hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
	kfree(hlist);
}

5319
static void swevent_hlist_release(struct swevent_htable *swhash)
5320
{
5321
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5322

5323
	if (!hlist)
5324 5325
		return;

5326
	rcu_assign_pointer(swhash->swevent_hlist, NULL);
5327 5328 5329 5330 5331
	call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
5332
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5333

5334
	mutex_lock(&swhash->hlist_mutex);
5335

5336 5337
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
5338

5339
	mutex_unlock(&swhash->hlist_mutex);
5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	if (event->cpu != -1) {
		swevent_hlist_put_cpu(event, event->cpu);
		return;
	}

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
5357
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5358 5359
	int err = 0;

5360
	mutex_lock(&swhash->hlist_mutex);
5361

5362
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5363 5364 5365 5366 5367 5368 5369
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
5370
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5371
	}
5372
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
5373
exit:
5374
	mutex_unlock(&swhash->hlist_mutex);
5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	if (event->cpu != -1)
		return swevent_hlist_get_cpu(event, event->cpu);

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
5398
fail:
5399 5400 5401 5402 5403 5404 5405 5406 5407 5408
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

5409
atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
5410

5411 5412 5413
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
5414

5415 5416
	WARN_ON(event->parent);

P
Peter Zijlstra 已提交
5417
	jump_label_dec(&perf_swevent_enabled[event_id]);
5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
	int event_id = event->attr.config;

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

5437
	if (event_id >= PERF_COUNT_SW_MAX)
5438 5439 5440 5441 5442 5443 5444 5445 5446
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

P
Peter Zijlstra 已提交
5447
		jump_label_inc(&perf_swevent_enabled[event_id]);
5448 5449 5450 5451 5452 5453 5454
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
5455
	.task_ctx_nr	= perf_sw_context,
5456

5457
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
5458 5459 5460 5461
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5462 5463 5464
	.read		= perf_swevent_read,
};

5465 5466
#ifdef CONFIG_EVENT_TRACING

5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
5481 5482 5483 5484
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
5485 5486 5487 5488 5489 5490 5491 5492 5493
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5494
		   struct pt_regs *regs, struct hlist_head *head, int rctx)
5495 5496
{
	struct perf_sample_data data;
5497 5498 5499
	struct perf_event *event;
	struct hlist_node *node;

5500 5501 5502 5503 5504 5505 5506 5507
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

	perf_sample_data_init(&data, addr);
	data.raw = &raw;

5508 5509
	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
		if (perf_tp_event_match(event, &data, regs))
P
Peter Zijlstra 已提交
5510
			perf_swevent_event(event, count, 1, &data, regs);
5511
	}
5512 5513

	perf_swevent_put_recursion_context(rctx);
5514 5515 5516
}
EXPORT_SYMBOL_GPL(perf_tp_event);

5517
static void tp_perf_event_destroy(struct perf_event *event)
5518
{
5519
	perf_trace_destroy(event);
5520 5521
}

5522
static int perf_tp_event_init(struct perf_event *event)
5523
{
5524 5525
	int err;

5526 5527 5528
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

5529 5530
	err = perf_trace_init(event);
	if (err)
5531
		return err;
5532

5533
	event->destroy = tp_perf_event_destroy;
5534

5535 5536 5537 5538
	return 0;
}

static struct pmu perf_tracepoint = {
5539 5540
	.task_ctx_nr	= perf_sw_context,

5541
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
5542 5543 5544 5545
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5546 5547 5548 5549 5550
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
5551
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5552
}
L
Li Zefan 已提交
5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

5577
#else
L
Li Zefan 已提交
5578

5579
static inline void perf_tp_register(void)
5580 5581
{
}
L
Li Zefan 已提交
5582 5583 5584 5585 5586 5587 5588 5589 5590 5591

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

5592
#endif /* CONFIG_EVENT_TRACING */
5593

5594
#ifdef CONFIG_HAVE_HW_BREAKPOINT
5595
void perf_bp_event(struct perf_event *bp, void *data)
5596
{
5597 5598 5599
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

5600
	perf_sample_data_init(&sample, bp->attr.bp_addr);
5601

P
Peter Zijlstra 已提交
5602 5603
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
		perf_swevent_event(bp, 1, 1, &sample, regs);
5604 5605 5606
}
#endif

5607 5608 5609
/*
 * hrtimer based swevent callback
 */
5610

5611
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5612
{
5613 5614 5615 5616 5617
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
5618

5619
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
5620 5621 5622 5623

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

5624
	event->pmu->read(event);
5625

5626 5627 5628 5629 5630 5631 5632 5633 5634
	perf_sample_data_init(&data, 0);
	data.period = event->hw.last_period;
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
		if (!(event->attr.exclude_idle && current->pid == 0))
			if (perf_event_overflow(event, 0, &data, regs))
				ret = HRTIMER_NORESTART;
	}
5635

5636 5637
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5638

5639
	return ret;
5640 5641
}

5642
static void perf_swevent_start_hrtimer(struct perf_event *event)
5643
{
5644
	struct hw_perf_event *hwc = &event->hw;
5645 5646 5647 5648
	s64 period;

	if (!is_sampling_event(event))
		return;
5649

5650 5651 5652 5653
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
5654

5655 5656 5657 5658 5659
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
5660
				ns_to_ktime(period), 0,
5661
				HRTIMER_MODE_REL_PINNED, 0);
5662
}
5663 5664

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5665
{
5666 5667
	struct hw_perf_event *hwc = &event->hw;

5668
	if (is_sampling_event(event)) {
5669
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
5670
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
5671 5672 5673

		hrtimer_cancel(&hwc->hrtimer);
	}
5674 5675
}

P
Peter Zijlstra 已提交
5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
		event->attr.freq = 0;
	}
}

5700 5701 5702 5703 5704
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
5705
{
5706 5707 5708
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
5709
	now = local_clock();
5710 5711
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
5712 5713
}

P
Peter Zijlstra 已提交
5714
static void cpu_clock_event_start(struct perf_event *event, int flags)
5715
{
P
Peter Zijlstra 已提交
5716
	local64_set(&event->hw.prev_count, local_clock());
5717 5718 5719
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5720
static void cpu_clock_event_stop(struct perf_event *event, int flags)
5721
{
5722 5723 5724
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
5725

P
Peter Zijlstra 已提交
5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

5739 5740 5741 5742
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
5743

5744 5745 5746 5747 5748 5749 5750 5751
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

P
Peter Zijlstra 已提交
5752 5753
	perf_swevent_init_hrtimer(event);

5754
	return 0;
5755 5756
}

5757
static struct pmu perf_cpu_clock = {
5758 5759
	.task_ctx_nr	= perf_sw_context,

5760
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
5761 5762 5763 5764
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
5765 5766 5767 5768 5769 5770 5771 5772
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
5773
{
5774 5775
	u64 prev;
	s64 delta;
5776

5777 5778 5779 5780
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
5781

P
Peter Zijlstra 已提交
5782
static void task_clock_event_start(struct perf_event *event, int flags)
5783
{
P
Peter Zijlstra 已提交
5784
	local64_set(&event->hw.prev_count, event->ctx->time);
5785 5786 5787
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5788
static void task_clock_event_stop(struct perf_event *event, int flags)
5789 5790 5791
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
5792 5793 5794 5795 5796 5797
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
5798

P
Peter Zijlstra 已提交
5799 5800 5801 5802 5803 5804
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
5805 5806 5807 5808
}

static void task_clock_event_read(struct perf_event *event)
{
5809 5810 5811
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
5812 5813 5814 5815 5816

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
5817
{
5818 5819 5820 5821 5822 5823
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

P
Peter Zijlstra 已提交
5824 5825
	perf_swevent_init_hrtimer(event);

5826
	return 0;
L
Li Zefan 已提交
5827 5828
}

5829
static struct pmu perf_task_clock = {
5830 5831
	.task_ctx_nr	= perf_sw_context,

5832
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
5833 5834 5835 5836
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
5837 5838
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
5839

P
Peter Zijlstra 已提交
5840
static void perf_pmu_nop_void(struct pmu *pmu)
5841 5842
{
}
L
Li Zefan 已提交
5843

P
Peter Zijlstra 已提交
5844
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
5845
{
P
Peter Zijlstra 已提交
5846
	return 0;
L
Li Zefan 已提交
5847 5848
}

P
Peter Zijlstra 已提交
5849
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
5850
{
P
Peter Zijlstra 已提交
5851
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
5852 5853
}

P
Peter Zijlstra 已提交
5854 5855 5856 5857 5858
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
5859

P
Peter Zijlstra 已提交
5860
static void perf_pmu_cancel_txn(struct pmu *pmu)
5861
{
P
Peter Zijlstra 已提交
5862
	perf_pmu_enable(pmu);
5863 5864
}

P
Peter Zijlstra 已提交
5865 5866 5867 5868 5869
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
static void *find_pmu_context(int ctxn)
5870
{
P
Peter Zijlstra 已提交
5871
	struct pmu *pmu;
5872

P
Peter Zijlstra 已提交
5873 5874
	if (ctxn < 0)
		return NULL;
5875

P
Peter Zijlstra 已提交
5876 5877 5878 5879
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
5880

P
Peter Zijlstra 已提交
5881
	return NULL;
5882 5883
}

5884
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5885
{
5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

		if (cpuctx->active_pmu == old_pmu)
			cpuctx->active_pmu = pmu;
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
5901

P
Peter Zijlstra 已提交
5902
	mutex_lock(&pmus_lock);
5903
	/*
P
Peter Zijlstra 已提交
5904
	 * Like a real lame refcount.
5905
	 */
5906 5907 5908
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
5909
			goto out;
5910
		}
P
Peter Zijlstra 已提交
5911
	}
5912

5913
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
5914 5915
out:
	mutex_unlock(&pmus_lock);
5916
}
P
Peter Zijlstra 已提交
5917
static struct idr pmu_idr;
5918

P
Peter Zijlstra 已提交
5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}

static struct device_attribute pmu_dev_attrs[] = {
       __ATTR_RO(type),
       __ATTR_NULL,
};

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
	.dev_attrs	= pmu_dev_attrs,
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

5971 5972
static struct lock_class_key cpuctx_mutex;

P
Peter Zijlstra 已提交
5973
int perf_pmu_register(struct pmu *pmu, char *name, int type)
5974
{
P
Peter Zijlstra 已提交
5975
	int cpu, ret;
5976

5977
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
5978 5979 5980 5981
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
5982

P
Peter Zijlstra 已提交
5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
		int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
		if (!err)
			goto free_pdc;

		err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
		if (err) {
			ret = err;
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
6001 6002 6003 6004 6005 6006
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
6007
skip_type:
P
Peter Zijlstra 已提交
6008 6009 6010
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
6011

P
Peter Zijlstra 已提交
6012 6013
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
6014
		goto free_dev;
6015

P
Peter Zijlstra 已提交
6016 6017 6018 6019
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6020
		__perf_event_init_context(&cpuctx->ctx);
6021
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6022
		cpuctx->ctx.type = cpu_context;
P
Peter Zijlstra 已提交
6023
		cpuctx->ctx.pmu = pmu;
6024 6025
		cpuctx->jiffies_interval = 1;
		INIT_LIST_HEAD(&cpuctx->rotation_list);
6026
		cpuctx->active_pmu = pmu;
P
Peter Zijlstra 已提交
6027
	}
6028

P
Peter Zijlstra 已提交
6029
got_cpu_context:
P
Peter Zijlstra 已提交
6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
6044
		}
6045
	}
6046

P
Peter Zijlstra 已提交
6047 6048 6049 6050 6051
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

6052
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
6053 6054
	ret = 0;
unlock:
6055 6056
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
6057
	return ret;
P
Peter Zijlstra 已提交
6058

P
Peter Zijlstra 已提交
6059 6060 6061 6062
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
6063 6064 6065 6066
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
6067 6068 6069
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
6070 6071
}

6072
void perf_pmu_unregister(struct pmu *pmu)
6073
{
6074 6075 6076
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
6077

6078
	/*
P
Peter Zijlstra 已提交
6079 6080
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
6081
	 */
6082
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
6083
	synchronize_rcu();
6084

P
Peter Zijlstra 已提交
6085
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
6086 6087
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
6088 6089
	device_del(pmu->dev);
	put_device(pmu->dev);
6090
	free_pmu_context(pmu);
6091
}
6092

6093 6094 6095 6096
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
6097
	int ret;
6098 6099

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
6100 6101 6102 6103

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
6104 6105 6106 6107
	if (pmu) {
		ret = pmu->event_init(event);
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6108
		goto unlock;
6109
	}
P
Peter Zijlstra 已提交
6110

6111
	list_for_each_entry_rcu(pmu, &pmus, entry) {
6112
		ret = pmu->event_init(event);
6113
		if (!ret)
P
Peter Zijlstra 已提交
6114
			goto unlock;
6115

6116 6117
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6118
			goto unlock;
6119
		}
6120
	}
P
Peter Zijlstra 已提交
6121 6122
	pmu = ERR_PTR(-ENOENT);
unlock:
6123
	srcu_read_unlock(&pmus_srcu, idx);
6124

6125
	return pmu;
6126 6127
}

T
Thomas Gleixner 已提交
6128
/*
6129
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
6130
 */
6131
static struct perf_event *
6132
perf_event_alloc(struct perf_event_attr *attr, int cpu,
6133 6134 6135 6136
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
		 perf_overflow_handler_t overflow_handler)
T
Thomas Gleixner 已提交
6137
{
P
Peter Zijlstra 已提交
6138
	struct pmu *pmu;
6139 6140
	struct perf_event *event;
	struct hw_perf_event *hwc;
6141
	long err;
T
Thomas Gleixner 已提交
6142

6143 6144 6145 6146 6147
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

6148
	event = kzalloc(sizeof(*event), GFP_KERNEL);
6149
	if (!event)
6150
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
6151

6152
	/*
6153
	 * Single events are their own group leaders, with an
6154 6155 6156
	 * empty sibling list:
	 */
	if (!group_leader)
6157
		group_leader = event;
6158

6159 6160
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
6161

6162 6163 6164 6165
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
	init_waitqueue_head(&event->waitq);
6166
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
6167

6168
	mutex_init(&event->mmap_mutex);
6169

6170 6171 6172 6173 6174
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
6175

6176
	event->parent		= parent_event;
6177

6178 6179
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
6180

6181
	event->state		= PERF_EVENT_STATE_INACTIVE;
6182

6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
		if (attr->type == PERF_TYPE_BREAKPOINT)
			event->hw.bp_target = task;
#endif
	}

6194 6195
	if (!overflow_handler && parent_event)
		overflow_handler = parent_event->overflow_handler;
6196

6197
	event->overflow_handler	= overflow_handler;
6198

6199
	if (attr->disabled)
6200
		event->state = PERF_EVENT_STATE_OFF;
6201

6202
	pmu = NULL;
6203

6204
	hwc = &event->hw;
6205
	hwc->sample_period = attr->sample_period;
6206
	if (attr->freq && attr->sample_freq)
6207
		hwc->sample_period = 1;
6208
	hwc->last_period = hwc->sample_period;
6209

6210
	local64_set(&hwc->period_left, hwc->sample_period);
6211

6212
	/*
6213
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
6214
	 */
6215
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6216 6217
		goto done;

6218
	pmu = perf_init_event(event);
6219

6220 6221
done:
	err = 0;
6222
	if (!pmu)
6223
		err = -EINVAL;
6224 6225
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
6226

6227
	if (err) {
6228 6229 6230
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
6231
		return ERR_PTR(err);
I
Ingo Molnar 已提交
6232
	}
6233

6234
	event->pmu = pmu;
T
Thomas Gleixner 已提交
6235

6236
	if (!event->parent) {
6237
		if (event->attach_state & PERF_ATTACH_TASK)
S
Stephane Eranian 已提交
6238
			jump_label_inc(&perf_sched_events);
6239
		if (event->attr.mmap || event->attr.mmap_data)
6240 6241 6242 6243 6244
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
6245 6246 6247 6248 6249 6250 6251
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
			if (err) {
				free_event(event);
				return ERR_PTR(err);
			}
		}
6252
	}
6253

6254
	return event;
T
Thomas Gleixner 已提交
6255 6256
}

6257 6258
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
6259 6260
{
	u32 size;
6261
	int ret;
6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
6286 6287 6288
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
6289 6290
	 */
	if (size > sizeof(*attr)) {
6291 6292 6293
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
6294

6295 6296
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
6297

6298
		for (; addr < end; addr++) {
6299 6300 6301 6302 6303 6304
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
6305
		size = sizeof(*attr);
6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * If the type exists, the corresponding creation will verify
	 * the attr->config.
	 */
	if (attr->type >= PERF_TYPE_MAX)
		return -EINVAL;

6319
	if (attr->__reserved_1)
6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

6337 6338
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6339
{
6340
	struct perf_buffer *buffer = NULL, *old_buffer = NULL;
6341 6342
	int ret = -EINVAL;

6343
	if (!output_event)
6344 6345
		goto set;

6346 6347
	/* don't allow circular references */
	if (event == output_event)
6348 6349
		goto out;

6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
	 * If its not a per-cpu buffer, it must be the same task.
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

6362
set:
6363
	mutex_lock(&event->mmap_mutex);
6364 6365 6366
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
6367

6368 6369
	if (output_event) {
		/* get the buffer we want to redirect to */
6370 6371
		buffer = perf_buffer_get(output_event);
		if (!buffer)
6372
			goto unlock;
6373 6374
	}

6375 6376
	old_buffer = event->buffer;
	rcu_assign_pointer(event->buffer, buffer);
6377
	ret = 0;
6378 6379 6380
unlock:
	mutex_unlock(&event->mmap_mutex);

6381 6382
	if (old_buffer)
		perf_buffer_put(old_buffer);
6383 6384 6385 6386
out:
	return ret;
}

T
Thomas Gleixner 已提交
6387
/**
6388
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
6389
 *
6390
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
6391
 * @pid:		target pid
I
Ingo Molnar 已提交
6392
 * @cpu:		target cpu
6393
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
6394
 */
6395 6396
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
6397
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
6398
{
6399 6400
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
6401 6402 6403
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
6404
	struct file *group_file = NULL;
M
Matt Helsley 已提交
6405
	struct task_struct *task = NULL;
6406
	struct pmu *pmu;
6407
	int event_fd;
6408
	int move_group = 0;
6409
	int fput_needed = 0;
6410
	int err;
T
Thomas Gleixner 已提交
6411

6412
	/* for future expandability... */
S
Stephane Eranian 已提交
6413
	if (flags & ~PERF_FLAG_ALL)
6414 6415
		return -EINVAL;

6416 6417 6418
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
6419

6420 6421 6422 6423 6424
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

6425
	if (attr.freq) {
6426
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
6427 6428 6429
			return -EINVAL;
	}

S
Stephane Eranian 已提交
6430 6431 6432 6433 6434 6435 6436 6437 6438
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

6439 6440 6441 6442
	event_fd = get_unused_fd_flags(O_RDWR);
	if (event_fd < 0)
		return event_fd;

6443 6444 6445 6446
	if (group_fd != -1) {
		group_leader = perf_fget_light(group_fd, &fput_needed);
		if (IS_ERR(group_leader)) {
			err = PTR_ERR(group_leader);
6447
			goto err_fd;
6448 6449 6450 6451 6452 6453 6454 6455
		}
		group_file = group_leader->filp;
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
6456
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6457 6458 6459 6460 6461 6462 6463
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

6464
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, NULL);
6465 6466
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
6467
		goto err_task;
6468 6469
	}

S
Stephane Eranian 已提交
6470 6471 6472 6473
	if (flags & PERF_FLAG_PID_CGROUP) {
		err = perf_cgroup_connect(pid, event, &attr, group_leader);
		if (err)
			goto err_alloc;
6474 6475 6476 6477 6478 6479 6480
		/*
		 * one more event:
		 * - that has cgroup constraint on event->cpu
		 * - that may need work on context switch
		 */
		atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
		jump_label_inc(&perf_sched_events);
S
Stephane Eranian 已提交
6481 6482
	}

6483 6484 6485 6486 6487
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
6511 6512 6513 6514

	/*
	 * Get the target context (task or percpu):
	 */
M
Matt Helsley 已提交
6515
	ctx = find_get_context(pmu, task, cpu);
6516 6517
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6518
		goto err_alloc;
6519 6520
	}

I
Ingo Molnar 已提交
6521
	/*
6522
	 * Look up the group leader (we will attach this event to it):
6523
	 */
6524
	if (group_leader) {
6525
		err = -EINVAL;
6526 6527

		/*
I
Ingo Molnar 已提交
6528 6529 6530 6531
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
6532
			goto err_context;
I
Ingo Molnar 已提交
6533 6534 6535
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
6536
		 */
6537 6538 6539 6540 6541 6542 6543 6544
		if (move_group) {
			if (group_leader->ctx->type != ctx->type)
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

6545 6546 6547
		/*
		 * Only a group leader can be exclusive or pinned
		 */
6548
		if (attr.exclusive || attr.pinned)
6549
			goto err_context;
6550 6551 6552 6553 6554
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
6555
			goto err_context;
6556
	}
T
Thomas Gleixner 已提交
6557

6558 6559 6560
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
6561
		goto err_context;
6562
	}
6563

6564 6565 6566 6567
	if (move_group) {
		struct perf_event_context *gctx = group_leader->ctx;

		mutex_lock(&gctx->mutex);
6568
		perf_remove_from_context(group_leader);
6569 6570
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
6571
			perf_remove_from_context(sibling);
6572 6573 6574 6575
			put_ctx(gctx);
		}
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
6576
	}
6577

6578
	event->filp = event_file;
6579
	WARN_ON_ONCE(ctx->parent_ctx);
6580
	mutex_lock(&ctx->mutex);
6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591

	if (move_group) {
		perf_install_in_context(ctx, group_leader, cpu);
		get_ctx(ctx);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
			perf_install_in_context(ctx, sibling, cpu);
			get_ctx(ctx);
		}
	}

6592
	perf_install_in_context(ctx, event, cpu);
6593
	++ctx->generation;
6594
	perf_unpin_context(ctx);
6595
	mutex_unlock(&ctx->mutex);
6596

6597
	event->owner = current;
P
Peter Zijlstra 已提交
6598

6599 6600 6601
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
6602

6603 6604 6605 6606
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
6607
	perf_event__id_header_size(event);
6608

6609 6610 6611 6612 6613 6614
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
6615 6616 6617
	fput_light(group_file, fput_needed);
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
6618

6619
err_context:
6620
	perf_unpin_context(ctx);
6621
	put_ctx(ctx);
6622
err_alloc:
6623
	free_event(event);
P
Peter Zijlstra 已提交
6624 6625 6626
err_task:
	if (task)
		put_task_struct(task);
6627
err_group_fd:
6628
	fput_light(group_file, fput_needed);
6629 6630
err_fd:
	put_unused_fd(event_fd);
6631
	return err;
T
Thomas Gleixner 已提交
6632 6633
}

6634 6635 6636 6637 6638
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
6639
 * @task: task to profile (NULL for percpu)
6640 6641 6642
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
6643
				 struct task_struct *task,
6644
				 perf_overflow_handler_t overflow_handler)
6645 6646
{
	struct perf_event_context *ctx;
6647
	struct perf_event *event;
6648
	int err;
6649

6650 6651 6652
	/*
	 * Get the target context (task or percpu):
	 */
6653

6654
	event = perf_event_alloc(attr, cpu, task, NULL, NULL, overflow_handler);
6655 6656 6657 6658
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
6659

M
Matt Helsley 已提交
6660
	ctx = find_get_context(event->pmu, task, cpu);
6661 6662
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6663
		goto err_free;
6664
	}
6665 6666 6667 6668 6669 6670

	event->filp = NULL;
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
6671
	perf_unpin_context(ctx);
6672 6673 6674 6675
	mutex_unlock(&ctx->mutex);

	return event;

6676 6677 6678
err_free:
	free_event(event);
err:
6679
	return ERR_PTR(err);
6680
}
6681
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6682

6683
static void sync_child_event(struct perf_event *child_event,
6684
			       struct task_struct *child)
6685
{
6686
	struct perf_event *parent_event = child_event->parent;
6687
	u64 child_val;
6688

6689 6690
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
6691

P
Peter Zijlstra 已提交
6692
	child_val = perf_event_count(child_event);
6693 6694 6695 6696

	/*
	 * Add back the child's count to the parent's count:
	 */
6697
	atomic64_add(child_val, &parent_event->child_count);
6698 6699 6700 6701
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
6702 6703

	/*
6704
	 * Remove this event from the parent's list
6705
	 */
6706 6707 6708 6709
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
6710 6711

	/*
6712
	 * Release the parent event, if this was the last
6713 6714
	 * reference to it.
	 */
6715
	fput(parent_event->filp);
6716 6717
}

6718
static void
6719 6720
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
6721
			 struct task_struct *child)
6722
{
6723
	struct perf_event *parent_event;
6724

6725
	perf_remove_from_context(child_event);
6726

6727
	parent_event = child_event->parent;
6728
	/*
6729
	 * It can happen that parent exits first, and has events
6730
	 * that are still around due to the child reference. These
6731
	 * events need to be zapped - but otherwise linger.
6732
	 */
6733 6734 6735
	if (parent_event) {
		sync_child_event(child_event, child);
		free_event(child_event);
6736
	}
6737 6738
}

P
Peter Zijlstra 已提交
6739
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6740
{
6741 6742
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
6743
	unsigned long flags;
6744

P
Peter Zijlstra 已提交
6745
	if (likely(!child->perf_event_ctxp[ctxn])) {
6746
		perf_event_task(child, NULL, 0);
6747
		return;
P
Peter Zijlstra 已提交
6748
	}
6749

6750
	local_irq_save(flags);
6751 6752 6753 6754 6755 6756
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
6757
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6758
	task_ctx_sched_out(child_ctx, EVENT_ALL);
6759 6760 6761

	/*
	 * Take the context lock here so that if find_get_context is
6762
	 * reading child->perf_event_ctxp, we wait until it has
6763 6764
	 * incremented the context's refcount before we do put_ctx below.
	 */
6765
	raw_spin_lock(&child_ctx->lock);
P
Peter Zijlstra 已提交
6766
	child->perf_event_ctxp[ctxn] = NULL;
6767 6768 6769
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
6770
	 * the events from it.
6771 6772
	 */
	unclone_ctx(child_ctx);
6773
	update_context_time(child_ctx);
6774
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6775 6776

	/*
6777 6778 6779
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
6780
	 */
6781
	perf_event_task(child, child_ctx, 0);
6782

6783 6784 6785
	/*
	 * We can recurse on the same lock type through:
	 *
6786 6787 6788
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       fput(parent_event->filp)
6789 6790 6791 6792 6793
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
6794
	mutex_lock(&child_ctx->mutex);
6795

6796
again:
6797 6798 6799 6800 6801
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6802
				 group_entry)
6803
		__perf_event_exit_task(child_event, child_ctx, child);
6804 6805

	/*
6806
	 * If the last event was a group event, it will have appended all
6807 6808 6809
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
6810 6811
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
6812
		goto again;
6813 6814 6815 6816

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
6817 6818
}

P
Peter Zijlstra 已提交
6819 6820 6821 6822 6823
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
6824
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
6825 6826
	int ctxn;

P
Peter Zijlstra 已提交
6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
6842 6843 6844 6845
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

	fput(parent->filp);

6860
	perf_group_detach(event);
6861 6862 6863 6864
	list_del_event(event, ctx);
	free_event(event);
}

6865 6866
/*
 * free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
6867
 * perf_event_init_task below, used by fork() in case of fail.
6868
 */
6869
void perf_event_free_task(struct task_struct *task)
6870
{
P
Peter Zijlstra 已提交
6871
	struct perf_event_context *ctx;
6872
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
6873
	int ctxn;
6874

P
Peter Zijlstra 已提交
6875 6876 6877 6878
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
6879

P
Peter Zijlstra 已提交
6880
		mutex_lock(&ctx->mutex);
6881
again:
P
Peter Zijlstra 已提交
6882 6883 6884
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
6885

P
Peter Zijlstra 已提交
6886 6887 6888
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
6889

P
Peter Zijlstra 已提交
6890 6891 6892
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
6893

P
Peter Zijlstra 已提交
6894
		mutex_unlock(&ctx->mutex);
6895

P
Peter Zijlstra 已提交
6896 6897
		put_ctx(ctx);
	}
6898 6899
}

6900 6901 6902 6903 6904 6905 6906 6907
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *child_event;
6920
	unsigned long flags;
P
Peter Zijlstra 已提交
6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
6933
					   child,
P
Peter Zijlstra 已提交
6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962
					   group_leader, parent_event,
					   NULL);
	if (IS_ERR(child_event))
		return child_event;
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;

6963 6964 6965 6966
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
6967
	perf_event__id_header_size(child_event);
6968

P
Peter Zijlstra 已提交
6969 6970 6971
	/*
	 * Link it up in the child's context:
	 */
6972
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6973
	add_event_to_ctx(child_event, child_ctx);
6974
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015

	/*
	 * Get a reference to the parent filp - we will fput it
	 * when the child event exits. This is safe to do because
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
	atomic_long_inc(&parent_event->filp->f_count);

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
7016 7017 7018 7019 7020
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
7021
		   struct task_struct *child, int ctxn,
7022 7023 7024
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
7025
	struct perf_event_context *child_ctx;
7026 7027 7028 7029

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
7030 7031
	}

7032
	child_ctx = child->perf_event_ctxp[ctxn];
7033 7034 7035 7036 7037 7038 7039
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
7040

7041
		child_ctx = alloc_perf_context(event->pmu, child);
7042 7043
		if (!child_ctx)
			return -ENOMEM;
7044

P
Peter Zijlstra 已提交
7045
		child->perf_event_ctxp[ctxn] = child_ctx;
7046 7047 7048 7049 7050 7051 7052 7053 7054
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
7055 7056
}

7057
/*
7058
 * Initialize the perf_event context in task_struct
7059
 */
P
Peter Zijlstra 已提交
7060
int perf_event_init_context(struct task_struct *child, int ctxn)
7061
{
7062
	struct perf_event_context *child_ctx, *parent_ctx;
7063 7064
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
7065
	struct task_struct *parent = current;
7066
	int inherited_all = 1;
7067
	unsigned long flags;
7068
	int ret = 0;
7069

P
Peter Zijlstra 已提交
7070
	if (likely(!parent->perf_event_ctxp[ctxn]))
7071 7072
		return 0;

7073
	/*
7074 7075
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
7076
	 */
P
Peter Zijlstra 已提交
7077
	parent_ctx = perf_pin_task_context(parent, ctxn);
7078

7079 7080 7081 7082 7083 7084 7085
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

7086 7087 7088 7089
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
7090
	mutex_lock(&parent_ctx->mutex);
7091 7092 7093 7094 7095

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
7096
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
7097 7098
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7099 7100 7101
		if (ret)
			break;
	}
7102

7103 7104 7105 7106 7107 7108 7109 7110 7111
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

7112
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
7113 7114
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7115
		if (ret)
7116
			break;
7117 7118
	}

7119 7120 7121
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
7122
	child_ctx = child->perf_event_ctxp[ctxn];
7123

7124
	if (child_ctx && inherited_all) {
7125 7126 7127
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
7128 7129 7130
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
7131
		 */
P
Peter Zijlstra 已提交
7132
		cloned_ctx = parent_ctx->parent_ctx;
7133 7134
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
7135
			child_ctx->parent_gen = parent_ctx->parent_gen;
7136 7137 7138 7139 7140
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
7141 7142
	}

P
Peter Zijlstra 已提交
7143
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7144
	mutex_unlock(&parent_ctx->mutex);
7145

7146
	perf_unpin_context(parent_ctx);
7147
	put_ctx(parent_ctx);
7148

7149
	return ret;
7150 7151
}

P
Peter Zijlstra 已提交
7152 7153 7154 7155 7156 7157 7158
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

7159 7160 7161 7162
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
7163 7164 7165 7166 7167 7168 7169 7170 7171
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
		if (ret)
			return ret;
	}

	return 0;
}

7172 7173
static void __init perf_event_init_all_cpus(void)
{
7174
	struct swevent_htable *swhash;
7175 7176 7177
	int cpu;

	for_each_possible_cpu(cpu) {
7178 7179
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
7180
		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7181 7182 7183
	}
}

7184
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
7185
{
P
Peter Zijlstra 已提交
7186
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
7187

7188 7189
	mutex_lock(&swhash->hlist_mutex);
	if (swhash->hlist_refcount > 0) {
7190 7191
		struct swevent_hlist *hlist;

7192 7193 7194
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7195
	}
7196
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
7197 7198
}

P
Peter Zijlstra 已提交
7199
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7200
static void perf_pmu_rotate_stop(struct pmu *pmu)
T
Thomas Gleixner 已提交
7201
{
7202 7203 7204 7205 7206 7207 7208
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	WARN_ON(!irqs_disabled());

	list_del_init(&cpuctx->rotation_list);
}

P
Peter Zijlstra 已提交
7209
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
7210
{
P
Peter Zijlstra 已提交
7211
	struct perf_event_context *ctx = __info;
7212
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
7213

P
Peter Zijlstra 已提交
7214
	perf_pmu_rotate_stop(ctx->pmu);
7215

7216
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7217
		__perf_remove_from_context(event);
7218
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7219
		__perf_remove_from_context(event);
T
Thomas Gleixner 已提交
7220
}
P
Peter Zijlstra 已提交
7221 7222 7223 7224 7225 7226 7227 7228 7229

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7230
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
7231 7232 7233 7234 7235 7236 7237 7238

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

7239
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
7240
{
7241
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7242

7243 7244 7245
	mutex_lock(&swhash->hlist_mutex);
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
7246

P
Peter Zijlstra 已提交
7247
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
7248 7249
}
#else
7250
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
7251 7252
#endif

P
Peter Zijlstra 已提交
7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

T
Thomas Gleixner 已提交
7273 7274 7275 7276 7277
static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

P
Peter Zijlstra 已提交
7278
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
7279 7280

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
7281
	case CPU_DOWN_FAILED:
7282
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
7283 7284
		break;

P
Peter Zijlstra 已提交
7285
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
7286
	case CPU_DOWN_PREPARE:
7287
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
7288 7289 7290 7291 7292 7293 7294 7295 7296
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

7297
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
7298
{
7299 7300
	int ret;

P
Peter Zijlstra 已提交
7301 7302
	idr_init(&pmu_idr);

7303
	perf_event_init_all_cpus();
7304
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
7305 7306 7307
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
7308 7309
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
7310
	register_reboot_notifier(&perf_reboot_notifier);
7311 7312 7313

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
T
Thomas Gleixner 已提交
7314
}
P
Peter Zijlstra 已提交
7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342

static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
7343 7344 7345 7346 7347 7348 7349

#ifdef CONFIG_CGROUP_PERF
static struct cgroup_subsys_state *perf_cgroup_create(
	struct cgroup_subsys *ss, struct cgroup *cont)
{
	struct perf_cgroup *jc;

7350
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

static void perf_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
	struct perf_cgroup *jc;
	jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
			  struct perf_cgroup, css);
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

static void perf_cgroup_move(struct task_struct *task)
{
	task_function_call(task, __perf_cgroup_move, task);
}

static void perf_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		struct cgroup *old_cgrp, struct task_struct *task,
		bool threadgroup)
{
	perf_cgroup_move(task);
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &task->thread_group, thread_group) {
			perf_cgroup_move(c);
		}
		rcu_read_unlock();
	}
}

static void perf_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
		struct cgroup *old_cgrp, struct task_struct *task)
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	perf_cgroup_move(task);
}

struct cgroup_subsys perf_subsys = {
	.name = "perf_event",
	.subsys_id = perf_subsys_id,
	.create = perf_cgroup_create,
	.destroy = perf_cgroup_destroy,
	.exit = perf_cgroup_exit,
	.attach = perf_cgroup_attach,
};
#endif /* CONFIG_CGROUP_PERF */