perf_event.c 143.2 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4 5 6
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
16
#include <linux/file.h>
T
Thomas Gleixner 已提交
17
#include <linux/poll.h>
18
#include <linux/slab.h>
19
#include <linux/hash.h>
T
Thomas Gleixner 已提交
20
#include <linux/sysfs.h>
21
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
22
#include <linux/percpu.h>
23
#include <linux/ptrace.h>
24
#include <linux/vmstat.h>
25
#include <linux/vmalloc.h>
26 27
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
28 29 30
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
31
#include <linux/kernel_stat.h>
32
#include <linux/perf_event.h>
L
Li Zefan 已提交
33
#include <linux/ftrace_event.h>
T
Thomas Gleixner 已提交
34

35 36
#include <asm/irq_regs.h>

37 38 39 40
static atomic_t nr_events __read_mostly;
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
41

P
Peter Zijlstra 已提交
42 43 44 45
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

46
/*
47
 * perf event paranoia level:
48 49
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
50
 *   1 - disallow cpu events for unpriv
51
 *   2 - disallow kernel profiling for unpriv
52
 */
53
int sysctl_perf_event_paranoid __read_mostly = 1;
54

55
int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
56 57

/*
58
 * max perf event sample rate
59
 */
60
int sysctl_perf_event_sample_rate __read_mostly = 100000;
61

62
static atomic64_t perf_event_id;
63

64
void __weak perf_event_print_debug(void)	{ }
65

66 67 68 69 70
extern __weak const char *perf_pmu_name(void)
{
	return "pmu";
}

P
Peter Zijlstra 已提交
71
void perf_pmu_disable(struct pmu *pmu)
72
{
P
Peter Zijlstra 已提交
73 74 75
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
76 77
}

P
Peter Zijlstra 已提交
78
void perf_pmu_enable(struct pmu *pmu)
79
{
P
Peter Zijlstra 已提交
80 81 82
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
83 84
}

85 86 87 88 89 90 91
static DEFINE_PER_CPU(struct list_head, rotation_list);

/*
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
 */
P
Peter Zijlstra 已提交
92
static void perf_pmu_rotate_start(struct pmu *pmu)
93
{
P
Peter Zijlstra 已提交
94
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95
	struct list_head *head = &__get_cpu_var(rotation_list);
96

97
	WARN_ON(!irqs_disabled());
98

99 100
	if (list_empty(&cpuctx->rotation_list))
		list_add(&cpuctx->rotation_list, head);
101 102
}

103
static void get_ctx(struct perf_event_context *ctx)
104
{
105
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
106 107
}

108 109
static void free_ctx(struct rcu_head *head)
{
110
	struct perf_event_context *ctx;
111

112
	ctx = container_of(head, struct perf_event_context, rcu_head);
113 114 115
	kfree(ctx);
}

116
static void put_ctx(struct perf_event_context *ctx)
117
{
118 119 120
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
121 122 123
		if (ctx->task)
			put_task_struct(ctx->task);
		call_rcu(&ctx->rcu_head, free_ctx);
124
	}
125 126
}

127
static void unclone_ctx(struct perf_event_context *ctx)
128 129 130 131 132 133 134
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

135
/*
136
 * If we inherit events we want to return the parent event id
137 138
 * to userspace.
 */
139
static u64 primary_event_id(struct perf_event *event)
140
{
141
	u64 id = event->id;
142

143 144
	if (event->parent)
		id = event->parent->id;
145 146 147 148

	return id;
}

149
/*
150
 * Get the perf_event_context for a task and lock it.
151 152 153
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
154
static struct perf_event_context *
P
Peter Zijlstra 已提交
155
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
156
{
157
	struct perf_event_context *ctx;
158 159

	rcu_read_lock();
P
Peter Zijlstra 已提交
160
retry:
P
Peter Zijlstra 已提交
161
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
162 163 164 165
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
166
		 * perf_event_task_sched_out, though the
167 168 169 170 171 172
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
173
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
174
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
175
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
176 177
			goto retry;
		}
178 179

		if (!atomic_inc_not_zero(&ctx->refcount)) {
180
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
181 182
			ctx = NULL;
		}
183 184 185 186 187 188 189 190 191 192
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
193 194
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
195
{
196
	struct perf_event_context *ctx;
197 198
	unsigned long flags;

P
Peter Zijlstra 已提交
199
	ctx = perf_lock_task_context(task, ctxn, &flags);
200 201
	if (ctx) {
		++ctx->pin_count;
202
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
203 204 205 206
	}
	return ctx;
}

207
static void perf_unpin_context(struct perf_event_context *ctx)
208 209 210
{
	unsigned long flags;

211
	raw_spin_lock_irqsave(&ctx->lock, flags);
212
	--ctx->pin_count;
213
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
214 215 216
	put_ctx(ctx);
}

217 218
static inline u64 perf_clock(void)
{
219
	return local_clock();
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
}

/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;

245 246 247 248 249 250
	if (ctx->is_active)
		run_end = ctx->time;
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
251 252 253 254 255 256 257 258 259

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
		run_end = ctx->time;

	event->total_time_running = run_end - event->tstamp_running;
}

260 261 262 263 264 265 266 267 268 269 270 271
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

272 273 274 275 276 277 278 279 280
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

281
/*
282
 * Add a event from the lists for its context.
283 284
 * Must be called with ctx->mutex and ctx->lock held.
 */
285
static void
286
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
287
{
288 289
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
290 291

	/*
292 293 294
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
295
	 */
296
	if (event->group_leader == event) {
297 298
		struct list_head *list;

299 300 301
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

302 303
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
304
	}
P
Peter Zijlstra 已提交
305

306
	list_add_rcu(&event->event_entry, &ctx->event_list);
307
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
308
		perf_pmu_rotate_start(ctx->pmu);
309 310
	ctx->nr_events++;
	if (event->attr.inherit_stat)
311
		ctx->nr_stat++;
312 313
}

314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
static void perf_group_attach(struct perf_event *event)
{
	struct perf_event *group_leader = event->group_leader;

	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_GROUP);
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
}

332
/*
333
 * Remove a event from the lists for its context.
334
 * Must be called with ctx->mutex and ctx->lock held.
335
 */
336
static void
337
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
338
{
339 340 341 342
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
343
		return;
344 345 346

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

347 348
	ctx->nr_events--;
	if (event->attr.inherit_stat)
349
		ctx->nr_stat--;
350

351
	list_del_rcu(&event->event_entry);
352

353 354
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
355

356
	update_group_times(event);
357 358 359 360 361 362 363 364 365 366

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
367 368
}

369
static void perf_group_detach(struct perf_event *event)
370 371
{
	struct perf_event *sibling, *tmp;
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
		return;
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
393

394
	/*
395 396
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
397
	 * to whatever list we are on.
398
	 */
399
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
400 401
		if (list)
			list_move_tail(&sibling->group_entry, list);
402
		sibling->group_leader = sibling;
403 404 405

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
406 407 408
	}
}

409 410 411 412 413 414
static inline int
event_filter_match(struct perf_event *event)
{
	return event->cpu == -1 || event->cpu == smp_processor_id();
}

415
static void
416
event_sched_out(struct perf_event *event,
417
		  struct perf_cpu_context *cpuctx,
418
		  struct perf_event_context *ctx)
419
{
420 421 422 423 424 425 426 427 428 429 430 431 432 433
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
		delta = ctx->time - event->tstamp_stopped;
		event->tstamp_running += delta;
		event->tstamp_stopped = ctx->time;
	}

434
	if (event->state != PERF_EVENT_STATE_ACTIVE)
435 436
		return;

437 438 439 440
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
441
	}
442
	event->tstamp_stopped = ctx->time;
P
Peter Zijlstra 已提交
443
	event->pmu->del(event, 0);
444
	event->oncpu = -1;
445

446
	if (!is_software_event(event))
447 448
		cpuctx->active_oncpu--;
	ctx->nr_active--;
449
	if (event->attr.exclusive || !cpuctx->active_oncpu)
450 451 452
		cpuctx->exclusive = 0;
}

453
static void
454
group_sched_out(struct perf_event *group_event,
455
		struct perf_cpu_context *cpuctx,
456
		struct perf_event_context *ctx)
457
{
458
	struct perf_event *event;
459
	int state = group_event->state;
460

461
	event_sched_out(group_event, cpuctx, ctx);
462 463 464 465

	/*
	 * Schedule out siblings (if any):
	 */
466 467
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
468

469
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
470 471 472
		cpuctx->exclusive = 0;
}

P
Peter Zijlstra 已提交
473 474 475 476 477 478
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

T
Thomas Gleixner 已提交
479
/*
480
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
481
 *
482
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
483 484
 * remove it from the context list.
 */
485
static void __perf_event_remove_from_context(void *info)
T
Thomas Gleixner 已提交
486
{
487 488
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
489
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
490 491 492 493 494 495

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
496
	if (ctx->task && cpuctx->task_ctx != ctx)
T
Thomas Gleixner 已提交
497 498
		return;

499
	raw_spin_lock(&ctx->lock);
T
Thomas Gleixner 已提交
500

501
	event_sched_out(event, cpuctx, ctx);
502

503
	list_del_event(event, ctx);
T
Thomas Gleixner 已提交
504

505
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
506 507 508 509
}


/*
510
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
511
 *
512
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
513
 *
514
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
515
 * call when the task is on a CPU.
516
 *
517 518
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
519 520
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
521
 * When called from perf_event_exit_task, it's OK because the
522
 * context has been detached from its task.
T
Thomas Gleixner 已提交
523
 */
524
static void perf_event_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
525
{
526
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
527 528 529 530
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
531
		 * Per cpu events are removed via an smp call and
532
		 * the removal is always successful.
T
Thomas Gleixner 已提交
533
		 */
534 535 536
		smp_call_function_single(event->cpu,
					 __perf_event_remove_from_context,
					 event, 1);
T
Thomas Gleixner 已提交
537 538 539 540
		return;
	}

retry:
541 542
	task_oncpu_function_call(task, __perf_event_remove_from_context,
				 event);
T
Thomas Gleixner 已提交
543

544
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
545 546 547
	/*
	 * If the context is active we need to retry the smp call.
	 */
548
	if (ctx->nr_active && !list_empty(&event->group_entry)) {
549
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
550 551 552 553 554
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
555
	 * can remove the event safely, if the call above did not
T
Thomas Gleixner 已提交
556 557
	 * succeed.
	 */
P
Peter Zijlstra 已提交
558
	if (!list_empty(&event->group_entry))
559
		list_del_event(event, ctx);
560
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
561 562
}

563
/*
564
 * Cross CPU call to disable a performance event
565
 */
566
static void __perf_event_disable(void *info)
567
{
568 569
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
570
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
571 572

	/*
573 574
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
575
	 */
576
	if (ctx->task && cpuctx->task_ctx != ctx)
577 578
		return;

579
	raw_spin_lock(&ctx->lock);
580 581

	/*
582
	 * If the event is on, turn it off.
583 584
	 * If it is in error state, leave it in error state.
	 */
585
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
586
		update_context_time(ctx);
587 588 589
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
590
		else
591 592
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
593 594
	}

595
	raw_spin_unlock(&ctx->lock);
596 597 598
}

/*
599
 * Disable a event.
600
 *
601 602
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
603
 * remains valid.  This condition is satisifed when called through
604 605 606 607
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
608
 * is the current context on this CPU and preemption is disabled,
609
 * hence we can't get into perf_event_task_sched_out for this context.
610
 */
611
void perf_event_disable(struct perf_event *event)
612
{
613
	struct perf_event_context *ctx = event->ctx;
614 615 616 617
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
618
		 * Disable the event on the cpu that it's on
619
		 */
620 621
		smp_call_function_single(event->cpu, __perf_event_disable,
					 event, 1);
622 623 624
		return;
	}

P
Peter Zijlstra 已提交
625
retry:
626
	task_oncpu_function_call(task, __perf_event_disable, event);
627

628
	raw_spin_lock_irq(&ctx->lock);
629
	/*
630
	 * If the event is still active, we need to retry the cross-call.
631
	 */
632
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
633
		raw_spin_unlock_irq(&ctx->lock);
634 635 636 637 638 639 640
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
641 642 643
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
644
	}
645

646
	raw_spin_unlock_irq(&ctx->lock);
647 648
}

649
static int
650
event_sched_in(struct perf_event *event,
651
		 struct perf_cpu_context *cpuctx,
652
		 struct perf_event_context *ctx)
653
{
654
	if (event->state <= PERF_EVENT_STATE_OFF)
655 656
		return 0;

657
	event->state = PERF_EVENT_STATE_ACTIVE;
658
	event->oncpu = smp_processor_id();
659 660 661 662 663
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

P
Peter Zijlstra 已提交
664
	if (event->pmu->add(event, PERF_EF_START)) {
665 666
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
667 668 669
		return -EAGAIN;
	}

670
	event->tstamp_running += ctx->time - event->tstamp_stopped;
671

672
	if (!is_software_event(event))
673
		cpuctx->active_oncpu++;
674 675
	ctx->nr_active++;

676
	if (event->attr.exclusive)
677 678
		cpuctx->exclusive = 1;

679 680 681
	return 0;
}

682
static int
683
group_sched_in(struct perf_event *group_event,
684
	       struct perf_cpu_context *cpuctx,
685
	       struct perf_event_context *ctx)
686
{
687
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
688
	struct pmu *pmu = group_event->pmu;
689

690
	if (group_event->state == PERF_EVENT_STATE_OFF)
691 692
		return 0;

P
Peter Zijlstra 已提交
693
	pmu->start_txn(pmu);
694

695
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
696
		pmu->cancel_txn(pmu);
697
		return -EAGAIN;
698
	}
699 700 701 702

	/*
	 * Schedule in siblings as one group (if any):
	 */
703
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
704
		if (event_sched_in(event, cpuctx, ctx)) {
705
			partial_group = event;
706 707 708 709
			goto group_error;
		}
	}

P
Peter Zijlstra 已提交
710
	if (!pmu->commit_txn(pmu))
711
		return 0;
712

713 714 715 716 717
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
718 719
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
720
			break;
721
		event_sched_out(event, cpuctx, ctx);
722
	}
723
	event_sched_out(group_event, cpuctx, ctx);
724

P
Peter Zijlstra 已提交
725
	pmu->cancel_txn(pmu);
726

727 728 729
	return -EAGAIN;
}

730
/*
731
 * Work out whether we can put this event group on the CPU now.
732
 */
733
static int group_can_go_on(struct perf_event *event,
734 735 736 737
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
738
	 * Groups consisting entirely of software events can always go on.
739
	 */
740
	if (event->group_flags & PERF_GROUP_SOFTWARE)
741 742 743
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
744
	 * events can go on.
745 746 747 748 749
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
750
	 * events on the CPU, it can't go on.
751
	 */
752
	if (event->attr.exclusive && cpuctx->active_oncpu)
753 754 755 756 757 758 759 760
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

761 762
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
763
{
764
	list_add_event(event, ctx);
765
	perf_group_attach(event);
766 767 768
	event->tstamp_enabled = ctx->time;
	event->tstamp_running = ctx->time;
	event->tstamp_stopped = ctx->time;
769 770
}

T
Thomas Gleixner 已提交
771
/*
772
 * Cross CPU call to install and enable a performance event
773 774
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
775 776 777
 */
static void __perf_install_in_context(void *info)
{
778 779 780
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
781
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
782
	int err;
T
Thomas Gleixner 已提交
783 784 785 786 787

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
788
	 * Or possibly this is the right context but it isn't
789
	 * on this cpu because it had no events.
T
Thomas Gleixner 已提交
790
	 */
791
	if (ctx->task && cpuctx->task_ctx != ctx) {
792
		if (cpuctx->task_ctx || ctx->task != current)
793 794 795
			return;
		cpuctx->task_ctx = ctx;
	}
T
Thomas Gleixner 已提交
796

797
	raw_spin_lock(&ctx->lock);
798
	ctx->is_active = 1;
799
	update_context_time(ctx);
T
Thomas Gleixner 已提交
800

801
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
802

803 804 805
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

806
	/*
807
	 * Don't put the event on if it is disabled or if
808 809
	 * it is in a group and the group isn't on.
	 */
810 811
	if (event->state != PERF_EVENT_STATE_INACTIVE ||
	    (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
812 813
		goto unlock;

814
	/*
815 816 817
	 * An exclusive event can't go on if there are already active
	 * hardware events, and no hardware event can go on if there
	 * is already an exclusive event on.
818
	 */
819
	if (!group_can_go_on(event, cpuctx, 1))
820 821
		err = -EEXIST;
	else
822
		err = event_sched_in(event, cpuctx, ctx);
823

824 825
	if (err) {
		/*
826
		 * This event couldn't go on.  If it is in a group
827
		 * then we have to pull the whole group off.
828
		 * If the event group is pinned then put it in error state.
829
		 */
830
		if (leader != event)
831
			group_sched_out(leader, cpuctx, ctx);
832
		if (leader->attr.pinned) {
833
			update_group_times(leader);
834
			leader->state = PERF_EVENT_STATE_ERROR;
835
		}
836
	}
T
Thomas Gleixner 已提交
837

P
Peter Zijlstra 已提交
838
unlock:
839
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
840 841 842
}

/*
843
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
844
 *
845 846
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
847
 *
848
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
849 850
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
851 852
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
853 854
 */
static void
855 856
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
857 858 859 860
			int cpu)
{
	struct task_struct *task = ctx->task;

861 862
	event->ctx = ctx;

T
Thomas Gleixner 已提交
863 864
	if (!task) {
		/*
865
		 * Per cpu events are installed via an smp call and
866
		 * the install is always successful.
T
Thomas Gleixner 已提交
867 868
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
869
					 event, 1);
T
Thomas Gleixner 已提交
870 871 872 873 874
		return;
	}

retry:
	task_oncpu_function_call(task, __perf_install_in_context,
875
				 event);
T
Thomas Gleixner 已提交
876

877
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
878 879 880
	/*
	 * we need to retry the smp call.
	 */
881
	if (ctx->is_active && list_empty(&event->group_entry)) {
882
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
883 884 885 886 887
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
888
	 * can add the event safely, if it the call above did not
T
Thomas Gleixner 已提交
889 890
	 * succeed.
	 */
891 892
	if (list_empty(&event->group_entry))
		add_event_to_ctx(event, ctx);
893
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
894 895
}

896
/*
897
 * Put a event into inactive state and update time fields.
898 899 900 901 902 903
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
904 905
static void __perf_event_mark_enabled(struct perf_event *event,
					struct perf_event_context *ctx)
906
{
907
	struct perf_event *sub;
908

909 910
	event->state = PERF_EVENT_STATE_INACTIVE;
	event->tstamp_enabled = ctx->time - event->total_time_enabled;
P
Peter Zijlstra 已提交
911 912
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
913 914
			sub->tstamp_enabled =
				ctx->time - sub->total_time_enabled;
P
Peter Zijlstra 已提交
915 916
		}
	}
917 918
}

919
/*
920
 * Cross CPU call to enable a performance event
921
 */
922
static void __perf_event_enable(void *info)
923
{
924 925 926
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
927
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
928
	int err;
929

930
	/*
931 932
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
933
	 */
934
	if (ctx->task && cpuctx->task_ctx != ctx) {
935
		if (cpuctx->task_ctx || ctx->task != current)
936 937 938
			return;
		cpuctx->task_ctx = ctx;
	}
939

940
	raw_spin_lock(&ctx->lock);
941
	ctx->is_active = 1;
942
	update_context_time(ctx);
943

944
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
945
		goto unlock;
946
	__perf_event_mark_enabled(event, ctx);
947

948 949 950
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

951
	/*
952
	 * If the event is in a group and isn't the group leader,
953
	 * then don't put it on unless the group is on.
954
	 */
955
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
956
		goto unlock;
957

958
	if (!group_can_go_on(event, cpuctx, 1)) {
959
		err = -EEXIST;
960
	} else {
961
		if (event == leader)
962
			err = group_sched_in(event, cpuctx, ctx);
963
		else
964
			err = event_sched_in(event, cpuctx, ctx);
965
	}
966 967 968

	if (err) {
		/*
969
		 * If this event can't go on and it's part of a
970 971
		 * group, then the whole group has to come off.
		 */
972
		if (leader != event)
973
			group_sched_out(leader, cpuctx, ctx);
974
		if (leader->attr.pinned) {
975
			update_group_times(leader);
976
			leader->state = PERF_EVENT_STATE_ERROR;
977
		}
978 979
	}

P
Peter Zijlstra 已提交
980
unlock:
981
	raw_spin_unlock(&ctx->lock);
982 983 984
}

/*
985
 * Enable a event.
986
 *
987 988
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
989
 * remains valid.  This condition is satisfied when called through
990 991
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
992
 */
993
void perf_event_enable(struct perf_event *event)
994
{
995
	struct perf_event_context *ctx = event->ctx;
996 997 998 999
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1000
		 * Enable the event on the cpu that it's on
1001
		 */
1002 1003
		smp_call_function_single(event->cpu, __perf_event_enable,
					 event, 1);
1004 1005 1006
		return;
	}

1007
	raw_spin_lock_irq(&ctx->lock);
1008
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1009 1010 1011
		goto out;

	/*
1012 1013
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
1014 1015 1016 1017
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
1018 1019
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
1020

P
Peter Zijlstra 已提交
1021
retry:
1022
	raw_spin_unlock_irq(&ctx->lock);
1023
	task_oncpu_function_call(task, __perf_event_enable, event);
1024

1025
	raw_spin_lock_irq(&ctx->lock);
1026 1027

	/*
1028
	 * If the context is active and the event is still off,
1029 1030
	 * we need to retry the cross-call.
	 */
1031
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1032 1033 1034 1035 1036 1037
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1038 1039
	if (event->state == PERF_EVENT_STATE_OFF)
		__perf_event_mark_enabled(event, ctx);
1040

P
Peter Zijlstra 已提交
1041
out:
1042
	raw_spin_unlock_irq(&ctx->lock);
1043 1044
}

1045
static int perf_event_refresh(struct perf_event *event, int refresh)
1046
{
1047
	/*
1048
	 * not supported on inherited events
1049
	 */
1050
	if (event->attr.inherit)
1051 1052
		return -EINVAL;

1053 1054
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1055 1056

	return 0;
1057 1058
}

1059 1060 1061 1062 1063 1064 1065 1066 1067
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
1068
{
1069
	struct perf_event *event;
1070

1071
	raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1072
	perf_pmu_disable(ctx->pmu);
1073
	ctx->is_active = 0;
1074
	if (likely(!ctx->nr_events))
1075
		goto out;
1076
	update_context_time(ctx);
1077

1078
	if (!ctx->nr_active)
1079
		goto out;
1080

P
Peter Zijlstra 已提交
1081
	if (event_type & EVENT_PINNED) {
1082 1083
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1084
	}
1085

P
Peter Zijlstra 已提交
1086
	if (event_type & EVENT_FLEXIBLE) {
1087
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1088
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1089 1090
	}
out:
P
Peter Zijlstra 已提交
1091
	perf_pmu_enable(ctx->pmu);
1092
	raw_spin_unlock(&ctx->lock);
1093 1094
}

1095 1096 1097
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1098 1099 1100 1101
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1102
 * in them directly with an fd; we can only enable/disable all
1103
 * events via prctl, or enable/disable all events in a family
1104 1105
 * via ioctl, which will have the same effect on both contexts.
 */
1106 1107
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1108 1109
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1110
		&& ctx1->parent_gen == ctx2->parent_gen
1111
		&& !ctx1->pin_count && !ctx2->pin_count;
1112 1113
}

1114 1115
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1116 1117 1118
{
	u64 value;

1119
	if (!event->attr.inherit_stat)
1120 1121 1122
		return;

	/*
1123
	 * Update the event value, we cannot use perf_event_read()
1124 1125
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1126
	 * we know the event must be on the current CPU, therefore we
1127 1128
	 * don't need to use it.
	 */
1129 1130
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1131 1132
		event->pmu->read(event);
		/* fall-through */
1133

1134 1135
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1136 1137 1138 1139 1140 1141 1142
		break;

	default:
		break;
	}

	/*
1143
	 * In order to keep per-task stats reliable we need to flip the event
1144 1145
	 * values when we flip the contexts.
	 */
1146 1147 1148
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
1149

1150 1151
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1152

1153
	/*
1154
	 * Since we swizzled the values, update the user visible data too.
1155
	 */
1156 1157
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1158 1159 1160 1161 1162
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1163 1164
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1165
{
1166
	struct perf_event *event, *next_event;
1167 1168 1169 1170

	if (!ctx->nr_stat)
		return;

1171 1172
	update_context_time(ctx);

1173 1174
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1175

1176 1177
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1178

1179 1180
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1181

1182
		__perf_event_sync_stat(event, next_event);
1183

1184 1185
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1186 1187 1188
	}
}

P
Peter Zijlstra 已提交
1189 1190
void perf_event_context_sched_out(struct task_struct *task, int ctxn,
				  struct task_struct *next)
T
Thomas Gleixner 已提交
1191
{
P
Peter Zijlstra 已提交
1192
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1193 1194
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
P
Peter Zijlstra 已提交
1195
	struct perf_cpu_context *cpuctx;
1196
	int do_switch = 1;
T
Thomas Gleixner 已提交
1197

P
Peter Zijlstra 已提交
1198 1199
	if (likely(!ctx))
		return;
1200

P
Peter Zijlstra 已提交
1201 1202
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
1203 1204
		return;

1205 1206
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
P
Peter Zijlstra 已提交
1207
	next_ctx = next->perf_event_ctxp[ctxn];
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
1219 1220
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1221
		if (context_equiv(ctx, next_ctx)) {
1222 1223
			/*
			 * XXX do we need a memory barrier of sorts
1224
			 * wrt to rcu_dereference() of perf_event_ctxp
1225
			 */
P
Peter Zijlstra 已提交
1226 1227
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
1228 1229 1230
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1231

1232
			perf_event_sync_stat(ctx, next_ctx);
1233
		}
1234 1235
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
1236
	}
1237
	rcu_read_unlock();
1238

1239
	if (do_switch) {
1240
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1241 1242
		cpuctx->task_ctx = NULL;
	}
T
Thomas Gleixner 已提交
1243 1244
}

P
Peter Zijlstra 已提交
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
void perf_event_task_sched_out(struct task_struct *task,
			       struct task_struct *next)
{
	int ctxn;

	perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
}

1270 1271
static void task_ctx_sched_out(struct perf_event_context *ctx,
			       enum event_type_t event_type)
1272
{
P
Peter Zijlstra 已提交
1273
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1274

1275 1276
	if (!cpuctx->task_ctx)
		return;
1277 1278 1279 1280

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

1281
	ctx_sched_out(ctx, cpuctx, event_type);
1282 1283 1284
	cpuctx->task_ctx = NULL;
}

1285 1286 1287
/*
 * Called with IRQs disabled
 */
1288
static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1289
{
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
	task_ctx_sched_out(ctx, EVENT_ALL);
}

/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1300 1301
}

1302
static void
1303
ctx_pinned_sched_in(struct perf_event_context *ctx,
1304
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
1305
{
1306
	struct perf_event *event;
T
Thomas Gleixner 已提交
1307

1308 1309
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
1310
			continue;
1311
		if (event->cpu != -1 && event->cpu != smp_processor_id())
1312 1313
			continue;

1314
		if (group_can_go_on(event, cpuctx, 1))
1315
			group_sched_in(event, cpuctx, ctx);
1316 1317 1318 1319 1320

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
1321 1322 1323
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
1324
		}
1325
	}
1326 1327 1328 1329
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
1330
		      struct perf_cpu_context *cpuctx)
1331 1332 1333
{
	struct perf_event *event;
	int can_add_hw = 1;
1334

1335 1336 1337
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
1338
			continue;
1339 1340
		/*
		 * Listen to the 'cpu' scheduling filter constraint
1341
		 * of events:
1342
		 */
1343
		if (event->cpu != -1 && event->cpu != smp_processor_id())
T
Thomas Gleixner 已提交
1344 1345
			continue;

P
Peter Zijlstra 已提交
1346
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
1347
			if (group_sched_in(event, cpuctx, ctx))
1348
				can_add_hw = 0;
P
Peter Zijlstra 已提交
1349
		}
T
Thomas Gleixner 已提交
1350
	}
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type)
{
	raw_spin_lock(&ctx->lock);
	ctx->is_active = 1;
	if (likely(!ctx->nr_events))
		goto out;

	ctx->timestamp = perf_clock();

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	if (event_type & EVENT_PINNED)
1370
		ctx_pinned_sched_in(ctx, cpuctx);
1371 1372 1373

	/* Then walk through the lower prio flexible groups */
	if (event_type & EVENT_FLEXIBLE)
1374
		ctx_flexible_sched_in(ctx, cpuctx);
1375

P
Peter Zijlstra 已提交
1376
out:
1377
	raw_spin_unlock(&ctx->lock);
1378 1379
}

1380 1381 1382 1383 1384 1385 1386 1387
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
			     enum event_type_t event_type)
{
	struct perf_event_context *ctx = &cpuctx->ctx;

	ctx_sched_in(ctx, cpuctx, event_type);
}

P
Peter Zijlstra 已提交
1388
static void task_ctx_sched_in(struct perf_event_context *ctx,
1389 1390
			      enum event_type_t event_type)
{
P
Peter Zijlstra 已提交
1391
	struct perf_cpu_context *cpuctx;
1392

P
Peter Zijlstra 已提交
1393
       	cpuctx = __get_cpu_context(ctx);
1394 1395
	if (cpuctx->task_ctx == ctx)
		return;
P
Peter Zijlstra 已提交
1396

1397 1398 1399
	ctx_sched_in(ctx, cpuctx, event_type);
	cpuctx->task_ctx = ctx;
}
T
Thomas Gleixner 已提交
1400

P
Peter Zijlstra 已提交
1401
void perf_event_context_sched_in(struct perf_event_context *ctx)
1402
{
P
Peter Zijlstra 已提交
1403
	struct perf_cpu_context *cpuctx;
1404

P
Peter Zijlstra 已提交
1405
	cpuctx = __get_cpu_context(ctx);
1406 1407 1408
	if (cpuctx->task_ctx == ctx)
		return;

P
Peter Zijlstra 已提交
1409
	perf_pmu_disable(ctx->pmu);
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

	ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
	ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);

	cpuctx->task_ctx = ctx;
1422

1423 1424 1425 1426
	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
1427
	perf_pmu_rotate_start(ctx->pmu);
P
Peter Zijlstra 已提交
1428
	perf_pmu_enable(ctx->pmu);
1429 1430
}

P
Peter Zijlstra 已提交
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
void perf_event_task_sched_in(struct task_struct *task)
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

		perf_event_context_sched_in(ctx);
	}
1454 1455
}

1456 1457
#define MAX_INTERRUPTS (~0ULL)

1458
static void perf_log_throttle(struct perf_event *event, int enable);
1459

1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
#define REDUCE_FLS(a, b) 		\
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

1527 1528 1529
	if (!divisor)
		return dividend;

1530 1531 1532 1533
	return div64_u64(dividend, divisor);
}

static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1534
{
1535
	struct hw_perf_event *hwc = &event->hw;
1536
	s64 period, sample_period;
1537 1538
	s64 delta;

1539
	period = perf_calculate_period(event, nsec, count);
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
1550

1551
	if (local64_read(&hwc->period_left) > 8*sample_period) {
P
Peter Zijlstra 已提交
1552
		event->pmu->stop(event, PERF_EF_UPDATE);
1553
		local64_set(&hwc->period_left, 0);
P
Peter Zijlstra 已提交
1554
		event->pmu->start(event, PERF_EF_RELOAD);
1555
	}
1556 1557
}

1558
static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
1559
{
1560 1561
	struct perf_event *event;
	struct hw_perf_event *hwc;
1562 1563
	u64 interrupts, now;
	s64 delta;
1564

1565
	raw_spin_lock(&ctx->lock);
1566
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1567
		if (event->state != PERF_EVENT_STATE_ACTIVE)
1568 1569
			continue;

1570 1571 1572
		if (event->cpu != -1 && event->cpu != smp_processor_id())
			continue;

1573
		hwc = &event->hw;
1574 1575 1576

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
1577

1578
		/*
1579
		 * unthrottle events on the tick
1580
		 */
1581
		if (interrupts == MAX_INTERRUPTS) {
1582
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
1583
			event->pmu->start(event, 0);
1584 1585
		}

1586
		if (!event->attr.freq || !event->attr.sample_freq)
1587 1588
			continue;

1589
		event->pmu->read(event);
1590
		now = local64_read(&event->count);
1591 1592
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
1593

1594
		if (delta > 0)
1595
			perf_adjust_period(event, period, delta);
1596
	}
1597
	raw_spin_unlock(&ctx->lock);
1598 1599
}

1600
/*
1601
 * Round-robin a context's events:
1602
 */
1603
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
1604
{
1605
	raw_spin_lock(&ctx->lock);
1606 1607 1608 1609

	/* Rotate the first entry last of non-pinned groups */
	list_rotate_left(&ctx->flexible_groups);

1610
	raw_spin_unlock(&ctx->lock);
1611 1612
}

1613
/*
1614 1615 1616
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
1617
 */
1618
static void perf_rotate_context(struct perf_cpu_context *cpuctx)
1619
{
1620
	u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
P
Peter Zijlstra 已提交
1621
	struct perf_event_context *ctx = NULL;
1622
	int rotate = 0, remove = 1;
1623

1624
	if (cpuctx->ctx.nr_events) {
1625
		remove = 0;
1626 1627 1628
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
1629

P
Peter Zijlstra 已提交
1630
	ctx = cpuctx->task_ctx;
1631
	if (ctx && ctx->nr_events) {
1632
		remove = 0;
1633 1634 1635
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
1636

P
Peter Zijlstra 已提交
1637
	perf_pmu_disable(cpuctx->ctx.pmu);
1638
	perf_ctx_adjust_freq(&cpuctx->ctx, interval);
1639
	if (ctx)
1640
		perf_ctx_adjust_freq(ctx, interval);
1641

1642
	if (!rotate)
1643
		goto done;
1644

1645
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1646
	if (ctx)
1647
		task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
1648

1649
	rotate_ctx(&cpuctx->ctx);
1650 1651
	if (ctx)
		rotate_ctx(ctx);
1652

1653
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1654
	if (ctx)
P
Peter Zijlstra 已提交
1655
		task_ctx_sched_in(ctx, EVENT_FLEXIBLE);
1656 1657

done:
1658 1659 1660
	if (remove)
		list_del_init(&cpuctx->rotation_list);

P
Peter Zijlstra 已提交
1661
	perf_pmu_enable(cpuctx->ctx.pmu);
1662 1663 1664 1665 1666 1667
}

void perf_event_task_tick(void)
{
	struct list_head *head = &__get_cpu_var(rotation_list);
	struct perf_cpu_context *cpuctx, *tmp;
1668

1669 1670 1671 1672 1673 1674 1675
	WARN_ON(!irqs_disabled());

	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
		if (cpuctx->jiffies_interval == 1 ||
				!(jiffies % cpuctx->jiffies_interval))
			perf_rotate_context(cpuctx);
	}
T
Thomas Gleixner 已提交
1676 1677
}

1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

	__perf_event_mark_enabled(event, ctx);

	return 1;
}

1693
/*
1694
 * Enable all of a task's events that have been marked enable-on-exec.
1695 1696
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
1697
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
1698
{
1699
	struct perf_event *event;
1700 1701
	unsigned long flags;
	int enabled = 0;
1702
	int ret;
1703 1704

	local_irq_save(flags);
1705
	if (!ctx || !ctx->nr_events)
1706 1707
		goto out;

P
Peter Zijlstra 已提交
1708
	task_ctx_sched_out(ctx, EVENT_ALL);
1709

1710
	raw_spin_lock(&ctx->lock);
1711

1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
	}

	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
1722 1723 1724
	}

	/*
1725
	 * Unclone this context if we enabled any event.
1726
	 */
1727 1728
	if (enabled)
		unclone_ctx(ctx);
1729

1730
	raw_spin_unlock(&ctx->lock);
1731

P
Peter Zijlstra 已提交
1732
	perf_event_context_sched_in(ctx);
P
Peter Zijlstra 已提交
1733
out:
1734 1735 1736
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
1737
/*
1738
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
1739
 */
1740
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
1741
{
1742 1743
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1744
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
1745

1746 1747 1748 1749
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
1750 1751
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
1752 1753 1754 1755
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

1756
	raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1757
	update_context_time(ctx);
1758
	update_event_times(event);
1759
	raw_spin_unlock(&ctx->lock);
P
Peter Zijlstra 已提交
1760

P
Peter Zijlstra 已提交
1761
	event->pmu->read(event);
T
Thomas Gleixner 已提交
1762 1763
}

P
Peter Zijlstra 已提交
1764 1765
static inline u64 perf_event_count(struct perf_event *event)
{
1766
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
1767 1768
}

1769
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
1770 1771
{
	/*
1772 1773
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
1774
	 */
1775 1776 1777 1778
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
1779 1780 1781
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

1782
		raw_spin_lock_irqsave(&ctx->lock, flags);
P
Peter Zijlstra 已提交
1783
		update_context_time(ctx);
1784
		update_event_times(event);
1785
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1786 1787
	}

P
Peter Zijlstra 已提交
1788
	return perf_event_count(event);
T
Thomas Gleixner 已提交
1789 1790
}

1791
/*
1792
 * Callchain support
1793
 */
1794 1795 1796 1797 1798 1799

struct callchain_cpus_entries {
	struct rcu_head			rcu_head;
	struct perf_callchain_entry	*cpu_entries[0];
};

1800
static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
1801 1802 1803 1804 1805 1806 1807
static atomic_t nr_callchain_events;
static DEFINE_MUTEX(callchain_mutex);
struct callchain_cpus_entries *callchain_cpus_entries;


__weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
				  struct pt_regs *regs)
1808 1809 1810
{
}

1811 1812
__weak void perf_callchain_user(struct perf_callchain_entry *entry,
				struct pt_regs *regs)
T
Thomas Gleixner 已提交
1813
{
1814
}
T
Thomas Gleixner 已提交
1815

1816 1817 1818 1819
static void release_callchain_buffers_rcu(struct rcu_head *head)
{
	struct callchain_cpus_entries *entries;
	int cpu;
T
Thomas Gleixner 已提交
1820

1821
	entries = container_of(head, struct callchain_cpus_entries, rcu_head);
T
Thomas Gleixner 已提交
1822

1823 1824
	for_each_possible_cpu(cpu)
		kfree(entries->cpu_entries[cpu]);
T
Thomas Gleixner 已提交
1825

1826 1827
	kfree(entries);
}
T
Thomas Gleixner 已提交
1828

1829 1830 1831
static void release_callchain_buffers(void)
{
	struct callchain_cpus_entries *entries;
T
Thomas Gleixner 已提交
1832

1833 1834 1835 1836
	entries = callchain_cpus_entries;
	rcu_assign_pointer(callchain_cpus_entries, NULL);
	call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
}
T
Thomas Gleixner 已提交
1837

1838 1839 1840 1841 1842
static int alloc_callchain_buffers(void)
{
	int cpu;
	int size;
	struct callchain_cpus_entries *entries;
T
Thomas Gleixner 已提交
1843

1844
	/*
1845 1846 1847
	 * We can't use the percpu allocation API for data that can be
	 * accessed from NMI. Use a temporary manual per cpu allocation
	 * until that gets sorted out.
1848
	 */
1849 1850
	size = sizeof(*entries) + sizeof(struct perf_callchain_entry *) *
		num_possible_cpus();
1851

1852 1853 1854
	entries = kzalloc(size, GFP_KERNEL);
	if (!entries)
		return -ENOMEM;
1855

1856
	size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
T
Thomas Gleixner 已提交
1857

1858 1859 1860 1861 1862
	for_each_possible_cpu(cpu) {
		entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
							 cpu_to_node(cpu));
		if (!entries->cpu_entries[cpu])
			goto fail;
1863 1864
	}

1865
	rcu_assign_pointer(callchain_cpus_entries, entries);
T
Thomas Gleixner 已提交
1866

1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
	return 0;

fail:
	for_each_possible_cpu(cpu)
		kfree(entries->cpu_entries[cpu]);
	kfree(entries);

	return -ENOMEM;
}

static int get_callchain_buffers(void)
{
	int err = 0;
	int count;

	mutex_lock(&callchain_mutex);

	count = atomic_inc_return(&nr_callchain_events);
	if (WARN_ON_ONCE(count < 1)) {
		err = -EINVAL;
		goto exit;
	}

	if (count > 1) {
		/* If the allocation failed, give up */
		if (!callchain_cpus_entries)
			err = -ENOMEM;
		goto exit;
	}

	err = alloc_callchain_buffers();
	if (err)
		release_callchain_buffers();
exit:
	mutex_unlock(&callchain_mutex);

	return err;
}

static void put_callchain_buffers(void)
{
	if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
		release_callchain_buffers();
		mutex_unlock(&callchain_mutex);
	}
}

static int get_recursion_context(int *recursion)
{
	int rctx;

	if (in_nmi())
		rctx = 3;
	else if (in_irq())
		rctx = 2;
	else if (in_softirq())
		rctx = 1;
	else
		rctx = 0;

	if (recursion[rctx])
		return -1;

	recursion[rctx]++;
	barrier();

	return rctx;
}

static inline void put_recursion_context(int *recursion, int rctx)
{
	barrier();
	recursion[rctx]--;
}

static struct perf_callchain_entry *get_callchain_entry(int *rctx)
{
	int cpu;
	struct callchain_cpus_entries *entries;

	*rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
	if (*rctx == -1)
		return NULL;

	entries = rcu_dereference(callchain_cpus_entries);
	if (!entries)
		return NULL;

	cpu = smp_processor_id();

	return &entries->cpu_entries[cpu][*rctx];
}

static void
put_callchain_entry(int rctx)
{
	put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
}

static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
{
	int rctx;
	struct perf_callchain_entry *entry;


	entry = get_callchain_entry(&rctx);
	if (rctx == -1)
		return NULL;

	if (!entry)
		goto exit_put;

	entry->nr = 0;

	if (!user_mode(regs)) {
		perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
		perf_callchain_kernel(entry, regs);
		if (current->mm)
			regs = task_pt_regs(current);
		else
			regs = NULL;
	}

	if (regs) {
		perf_callchain_store(entry, PERF_CONTEXT_USER);
		perf_callchain_user(entry, regs);
	}

exit_put:
	put_callchain_entry(rctx);

	return entry;
}

2001
/*
2002
 * Initialize the perf_event context in a task_struct:
2003
 */
2004
static void __perf_event_init_context(struct perf_event_context *ctx)
2005
{
2006
	raw_spin_lock_init(&ctx->lock);
2007
	mutex_init(&ctx->mutex);
2008 2009
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
2010 2011
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
	}
	ctx->pmu = pmu;

	return ctx;
2031 2032
}

2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;

	rcu_read_lock();
	if (!vpid)
		task = current;
	else
		task = find_task_by_vpid(vpid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/*
	 * Can't attach events to a dying task.
	 */
	err = -ESRCH;
	if (task->flags & PF_EXITING)
		goto errout;

	/* Reuse ptrace permission checks for now. */
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

P
Peter Zijlstra 已提交
2070
static struct perf_event_context *
M
Matt Helsley 已提交
2071
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
2072
{
2073
	struct perf_event_context *ctx;
2074
	struct perf_cpu_context *cpuctx;
2075
	unsigned long flags;
P
Peter Zijlstra 已提交
2076
	int ctxn, err;
T
Thomas Gleixner 已提交
2077

M
Matt Helsley 已提交
2078
	if (!task && cpu != -1) {
2079
		/* Must be root to operate on a CPU event: */
2080
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
2081 2082
			return ERR_PTR(-EACCES);

2083
		if (cpu < 0 || cpu >= nr_cpumask_bits)
T
Thomas Gleixner 已提交
2084 2085 2086
			return ERR_PTR(-EINVAL);

		/*
2087
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
2088 2089 2090
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
2091
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
2092 2093
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
2094
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
2095
		ctx = &cpuctx->ctx;
2096
		get_ctx(ctx);
T
Thomas Gleixner 已提交
2097 2098 2099 2100

		return ctx;
	}

P
Peter Zijlstra 已提交
2101 2102 2103 2104 2105
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
2106
retry:
P
Peter Zijlstra 已提交
2107
	ctx = perf_lock_task_context(task, ctxn, &flags);
2108
	if (ctx) {
2109
		unclone_ctx(ctx);
2110
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
2111 2112
	}

2113
	if (!ctx) {
2114
		ctx = alloc_perf_context(pmu, task);
2115 2116 2117
		err = -ENOMEM;
		if (!ctx)
			goto errout;
2118

2119
		get_ctx(ctx);
2120

P
Peter Zijlstra 已提交
2121
		if (cmpxchg(&task->perf_event_ctxp[ctxn], NULL, ctx)) {
2122 2123 2124 2125
			/*
			 * We raced with some other task; use
			 * the context they set.
			 */
2126
			put_task_struct(task);
2127
			kfree(ctx);
2128
			goto retry;
2129 2130 2131
		}
	}

2132
	put_task_struct(task);
T
Thomas Gleixner 已提交
2133
	return ctx;
2134

P
Peter Zijlstra 已提交
2135
errout:
2136 2137
	put_task_struct(task);
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
2138 2139
}

L
Li Zefan 已提交
2140 2141
static void perf_event_free_filter(struct perf_event *event);

2142
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
2143
{
2144
	struct perf_event *event;
P
Peter Zijlstra 已提交
2145

2146 2147 2148
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
2149
	perf_event_free_filter(event);
2150
	kfree(event);
P
Peter Zijlstra 已提交
2151 2152
}

2153
static void perf_pending_sync(struct perf_event *event);
2154
static void perf_buffer_put(struct perf_buffer *buffer);
2155

2156
static void free_event(struct perf_event *event)
2157
{
2158
	perf_pending_sync(event);
2159

2160 2161
	if (!event->parent) {
		atomic_dec(&nr_events);
2162
		if (event->attr.mmap || event->attr.mmap_data)
2163 2164 2165 2166 2167
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
2168 2169
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
2170
	}
2171

2172 2173 2174
	if (event->buffer) {
		perf_buffer_put(event->buffer);
		event->buffer = NULL;
2175 2176
	}

2177 2178
	if (event->destroy)
		event->destroy(event);
2179

P
Peter Zijlstra 已提交
2180 2181 2182
	if (event->ctx)
		put_ctx(event->ctx);

2183
	call_rcu(&event->rcu_head, free_event_rcu);
2184 2185
}

2186
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
2187
{
2188
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
2189

2190 2191 2192 2193 2194 2195
	/*
	 * Remove from the PMU, can't get re-enabled since we got
	 * here because the last ref went.
	 */
	perf_event_disable(event);

2196
	WARN_ON_ONCE(ctx->parent_ctx);
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2210
	raw_spin_lock_irq(&ctx->lock);
2211
	perf_group_detach(event);
2212 2213
	list_del_event(event, ctx);
	raw_spin_unlock_irq(&ctx->lock);
2214
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
2215

2216 2217 2218 2219
	mutex_lock(&event->owner->perf_event_mutex);
	list_del_init(&event->owner_entry);
	mutex_unlock(&event->owner->perf_event_mutex);
	put_task_struct(event->owner);
2220

2221
	free_event(event);
T
Thomas Gleixner 已提交
2222 2223 2224

	return 0;
}
2225
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
2226

2227 2228 2229 2230
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
2231
{
2232
	struct perf_event *event = file->private_data;
2233

2234
	file->private_data = NULL;
2235

2236
	return perf_event_release_kernel(event);
2237 2238
}

2239
static int perf_event_read_size(struct perf_event *event)
2240 2241 2242 2243 2244
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

2245
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2246 2247
		size += sizeof(u64);

2248
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2249 2250
		size += sizeof(u64);

2251
	if (event->attr.read_format & PERF_FORMAT_ID)
2252 2253
		entry += sizeof(u64);

2254 2255
	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
2256 2257 2258 2259 2260 2261 2262 2263
		size += sizeof(u64);
	}

	size += entry * nr;

	return size;
}

2264
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2265
{
2266
	struct perf_event *child;
2267 2268
	u64 total = 0;

2269 2270 2271
	*enabled = 0;
	*running = 0;

2272
	mutex_lock(&event->child_mutex);
2273
	total += perf_event_read(event);
2274 2275 2276 2277 2278 2279
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
2280
		total += perf_event_read(child);
2281 2282 2283
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
2284
	mutex_unlock(&event->child_mutex);
2285 2286 2287

	return total;
}
2288
EXPORT_SYMBOL_GPL(perf_event_read_value);
2289

2290
static int perf_event_read_group(struct perf_event *event,
2291 2292
				   u64 read_format, char __user *buf)
{
2293
	struct perf_event *leader = event->group_leader, *sub;
2294 2295
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
2296
	u64 values[5];
2297
	u64 count, enabled, running;
2298

2299
	mutex_lock(&ctx->mutex);
2300
	count = perf_event_read_value(leader, &enabled, &running);
2301 2302

	values[n++] = 1 + leader->nr_siblings;
2303 2304 2305 2306
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
2307 2308 2309
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
2310 2311 2312 2313

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
2314
		goto unlock;
2315

2316
	ret = size;
2317

2318
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2319
		n = 0;
2320

2321
		values[n++] = perf_event_read_value(sub, &enabled, &running);
2322 2323 2324 2325 2326
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

2327
		if (copy_to_user(buf + ret, values, size)) {
2328 2329 2330
			ret = -EFAULT;
			goto unlock;
		}
2331 2332

		ret += size;
2333
	}
2334 2335
unlock:
	mutex_unlock(&ctx->mutex);
2336

2337
	return ret;
2338 2339
}

2340
static int perf_event_read_one(struct perf_event *event,
2341 2342
				 u64 read_format, char __user *buf)
{
2343
	u64 enabled, running;
2344 2345 2346
	u64 values[4];
	int n = 0;

2347 2348 2349 2350 2351
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
2352
	if (read_format & PERF_FORMAT_ID)
2353
		values[n++] = primary_event_id(event);
2354 2355 2356 2357 2358 2359 2360

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
2361
/*
2362
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
2363 2364
 */
static ssize_t
2365
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
2366
{
2367
	u64 read_format = event->attr.read_format;
2368
	int ret;
T
Thomas Gleixner 已提交
2369

2370
	/*
2371
	 * Return end-of-file for a read on a event that is in
2372 2373 2374
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
2375
	if (event->state == PERF_EVENT_STATE_ERROR)
2376 2377
		return 0;

2378
	if (count < perf_event_read_size(event))
2379 2380
		return -ENOSPC;

2381
	WARN_ON_ONCE(event->ctx->parent_ctx);
2382
	if (read_format & PERF_FORMAT_GROUP)
2383
		ret = perf_event_read_group(event, read_format, buf);
2384
	else
2385
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
2386

2387
	return ret;
T
Thomas Gleixner 已提交
2388 2389 2390 2391 2392
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
2393
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
2394

2395
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
2396 2397 2398 2399
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
2400
	struct perf_event *event = file->private_data;
2401
	struct perf_buffer *buffer;
2402
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
2403 2404

	rcu_read_lock();
2405 2406 2407
	buffer = rcu_dereference(event->buffer);
	if (buffer)
		events = atomic_xchg(&buffer->poll, 0);
P
Peter Zijlstra 已提交
2408
	rcu_read_unlock();
T
Thomas Gleixner 已提交
2409

2410
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
2411 2412 2413 2414

	return events;
}

2415
static void perf_event_reset(struct perf_event *event)
2416
{
2417
	(void)perf_event_read(event);
2418
	local64_set(&event->count, 0);
2419
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
2420 2421
}

2422
/*
2423 2424 2425 2426
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
2427
 */
2428 2429
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
2430
{
2431
	struct perf_event *child;
P
Peter Zijlstra 已提交
2432

2433 2434 2435 2436
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
2437
		func(child);
2438
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
2439 2440
}

2441 2442
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
2443
{
2444 2445
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
2446

2447 2448
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
2449
	event = event->group_leader;
2450

2451 2452 2453 2454
	perf_event_for_each_child(event, func);
	func(event);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
		perf_event_for_each_child(event, func);
2455
	mutex_unlock(&ctx->mutex);
2456 2457
}

2458
static int perf_event_period(struct perf_event *event, u64 __user *arg)
2459
{
2460
	struct perf_event_context *ctx = event->ctx;
2461 2462 2463 2464
	unsigned long size;
	int ret = 0;
	u64 value;

2465
	if (!event->attr.sample_period)
2466 2467 2468 2469 2470 2471 2472 2473 2474
		return -EINVAL;

	size = copy_from_user(&value, arg, sizeof(value));
	if (size != sizeof(value))
		return -EFAULT;

	if (!value)
		return -EINVAL;

2475
	raw_spin_lock_irq(&ctx->lock);
2476 2477
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
2478 2479 2480 2481
			ret = -EINVAL;
			goto unlock;
		}

2482
		event->attr.sample_freq = value;
2483
	} else {
2484 2485
		event->attr.sample_period = value;
		event->hw.sample_period = value;
2486 2487
	}
unlock:
2488
	raw_spin_unlock_irq(&ctx->lock);
2489 2490 2491 2492

	return ret;
}

2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513
static const struct file_operations perf_fops;

static struct perf_event *perf_fget_light(int fd, int *fput_needed)
{
	struct file *file;

	file = fget_light(fd, fput_needed);
	if (!file)
		return ERR_PTR(-EBADF);

	if (file->f_op != &perf_fops) {
		fput_light(file, *fput_needed);
		*fput_needed = 0;
		return ERR_PTR(-EBADF);
	}

	return file->private_data;
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
2514
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2515

2516 2517
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
2518 2519
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
2520
	u32 flags = arg;
2521 2522

	switch (cmd) {
2523 2524
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
2525
		break;
2526 2527
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
2528
		break;
2529 2530
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
2531
		break;
P
Peter Zijlstra 已提交
2532

2533 2534
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
2535

2536 2537
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
2538

2539
	case PERF_EVENT_IOC_SET_OUTPUT:
2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556
	{
		struct perf_event *output_event = NULL;
		int fput_needed = 0;
		int ret;

		if (arg != -1) {
			output_event = perf_fget_light(arg, &fput_needed);
			if (IS_ERR(output_event))
				return PTR_ERR(output_event);
		}

		ret = perf_event_set_output(event, output_event);
		if (output_event)
			fput_light(output_event->filp, fput_needed);

		return ret;
	}
2557

L
Li Zefan 已提交
2558 2559 2560
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

2561
	default:
P
Peter Zijlstra 已提交
2562
		return -ENOTTY;
2563
	}
P
Peter Zijlstra 已提交
2564 2565

	if (flags & PERF_IOC_FLAG_GROUP)
2566
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
2567
	else
2568
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
2569 2570

	return 0;
2571 2572
}

2573
int perf_event_task_enable(void)
2574
{
2575
	struct perf_event *event;
2576

2577 2578 2579 2580
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
2581 2582 2583 2584

	return 0;
}

2585
int perf_event_task_disable(void)
2586
{
2587
	struct perf_event *event;
2588

2589 2590 2591 2592
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
2593 2594 2595 2596

	return 0;
}

2597 2598
#ifndef PERF_EVENT_INDEX_OFFSET
# define PERF_EVENT_INDEX_OFFSET 0
I
Ingo Molnar 已提交
2599 2600
#endif

2601
static int perf_event_index(struct perf_event *event)
2602
{
P
Peter Zijlstra 已提交
2603 2604 2605
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

2606
	if (event->state != PERF_EVENT_STATE_ACTIVE)
2607 2608
		return 0;

2609
	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2610 2611
}

2612 2613 2614 2615 2616
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
2617
void perf_event_update_userpage(struct perf_event *event)
2618
{
2619
	struct perf_event_mmap_page *userpg;
2620
	struct perf_buffer *buffer;
2621 2622

	rcu_read_lock();
2623 2624
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
2625 2626
		goto unlock;

2627
	userpg = buffer->user_page;
2628

2629 2630 2631 2632 2633
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
2634
	++userpg->lock;
2635
	barrier();
2636
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
2637
	userpg->offset = perf_event_count(event);
2638
	if (event->state == PERF_EVENT_STATE_ACTIVE)
2639
		userpg->offset -= local64_read(&event->hw.prev_count);
2640

2641 2642
	userpg->time_enabled = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
2643

2644 2645
	userpg->time_running = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
2646

2647
	barrier();
2648
	++userpg->lock;
2649
	preempt_enable();
2650
unlock:
2651
	rcu_read_unlock();
2652 2653
}

2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672
static unsigned long perf_data_size(struct perf_buffer *buffer);

static void
perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
{
	long max_size = perf_data_size(buffer);

	if (watermark)
		buffer->watermark = min(max_size, watermark);

	if (!buffer->watermark)
		buffer->watermark = max_size / 2;

	if (flags & PERF_BUFFER_WRITABLE)
		buffer->writable = 1;

	atomic_set(&buffer->refcount, 1);
}

2673
#ifndef CONFIG_PERF_USE_VMALLOC
2674

2675 2676 2677
/*
 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
 */
2678

2679
static struct page *
2680
perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2681
{
2682
	if (pgoff > buffer->nr_pages)
2683
		return NULL;
2684

2685
	if (pgoff == 0)
2686
		return virt_to_page(buffer->user_page);
2687

2688
	return virt_to_page(buffer->data_pages[pgoff - 1]);
2689 2690
}

2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
static void *perf_mmap_alloc_page(int cpu)
{
	struct page *page;
	int node;

	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
	page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
	if (!page)
		return NULL;

	return page_address(page);
}

2704
static struct perf_buffer *
2705
perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2706
{
2707
	struct perf_buffer *buffer;
2708 2709 2710
	unsigned long size;
	int i;

2711
	size = sizeof(struct perf_buffer);
2712 2713
	size += nr_pages * sizeof(void *);

2714 2715
	buffer = kzalloc(size, GFP_KERNEL);
	if (!buffer)
2716 2717
		goto fail;

2718
	buffer->user_page = perf_mmap_alloc_page(cpu);
2719
	if (!buffer->user_page)
2720 2721 2722
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
2723
		buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2724
		if (!buffer->data_pages[i])
2725 2726 2727
			goto fail_data_pages;
	}

2728
	buffer->nr_pages = nr_pages;
2729

2730 2731
	perf_buffer_init(buffer, watermark, flags);

2732
	return buffer;
2733 2734 2735

fail_data_pages:
	for (i--; i >= 0; i--)
2736
		free_page((unsigned long)buffer->data_pages[i]);
2737

2738
	free_page((unsigned long)buffer->user_page);
2739 2740

fail_user_page:
2741
	kfree(buffer);
2742 2743

fail:
2744
	return NULL;
2745 2746
}

2747 2748
static void perf_mmap_free_page(unsigned long addr)
{
K
Kevin Cernekee 已提交
2749
	struct page *page = virt_to_page((void *)addr);
2750 2751 2752 2753 2754

	page->mapping = NULL;
	__free_page(page);
}

2755
static void perf_buffer_free(struct perf_buffer *buffer)
2756 2757 2758
{
	int i;

2759 2760 2761 2762
	perf_mmap_free_page((unsigned long)buffer->user_page);
	for (i = 0; i < buffer->nr_pages; i++)
		perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
	kfree(buffer);
2763 2764
}

2765
static inline int page_order(struct perf_buffer *buffer)
2766 2767 2768 2769
{
	return 0;
}

2770 2771 2772 2773 2774 2775 2776 2777
#else

/*
 * Back perf_mmap() with vmalloc memory.
 *
 * Required for architectures that have d-cache aliasing issues.
 */

2778
static inline int page_order(struct perf_buffer *buffer)
2779
{
2780
	return buffer->page_order;
2781 2782
}

2783
static struct page *
2784
perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2785
{
2786
	if (pgoff > (1UL << page_order(buffer)))
2787 2788
		return NULL;

2789
	return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2790 2791 2792 2793 2794 2795 2796 2797 2798
}

static void perf_mmap_unmark_page(void *addr)
{
	struct page *page = vmalloc_to_page(addr);

	page->mapping = NULL;
}

2799
static void perf_buffer_free_work(struct work_struct *work)
2800
{
2801
	struct perf_buffer *buffer;
2802 2803 2804
	void *base;
	int i, nr;

2805 2806
	buffer = container_of(work, struct perf_buffer, work);
	nr = 1 << page_order(buffer);
2807

2808
	base = buffer->user_page;
2809 2810 2811 2812
	for (i = 0; i < nr + 1; i++)
		perf_mmap_unmark_page(base + (i * PAGE_SIZE));

	vfree(base);
2813
	kfree(buffer);
2814 2815
}

2816
static void perf_buffer_free(struct perf_buffer *buffer)
2817
{
2818
	schedule_work(&buffer->work);
2819 2820
}

2821
static struct perf_buffer *
2822
perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2823
{
2824
	struct perf_buffer *buffer;
2825 2826 2827
	unsigned long size;
	void *all_buf;

2828
	size = sizeof(struct perf_buffer);
2829 2830
	size += sizeof(void *);

2831 2832
	buffer = kzalloc(size, GFP_KERNEL);
	if (!buffer)
2833 2834
		goto fail;

2835
	INIT_WORK(&buffer->work, perf_buffer_free_work);
2836 2837 2838 2839 2840

	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
	if (!all_buf)
		goto fail_all_buf;

2841 2842 2843 2844
	buffer->user_page = all_buf;
	buffer->data_pages[0] = all_buf + PAGE_SIZE;
	buffer->page_order = ilog2(nr_pages);
	buffer->nr_pages = 1;
2845

2846 2847
	perf_buffer_init(buffer, watermark, flags);

2848
	return buffer;
2849 2850

fail_all_buf:
2851
	kfree(buffer);
2852 2853 2854 2855 2856 2857 2858

fail:
	return NULL;
}

#endif

2859
static unsigned long perf_data_size(struct perf_buffer *buffer)
2860
{
2861
	return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
2862 2863
}

2864 2865 2866
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
2867
	struct perf_buffer *buffer;
2868 2869 2870 2871 2872 2873 2874 2875 2876
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
2877 2878
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
2879 2880 2881 2882 2883
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

2884
	vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

2899
static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
2900
{
2901
	struct perf_buffer *buffer;
2902

2903 2904
	buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
	perf_buffer_free(buffer);
2905 2906
}

2907
static struct perf_buffer *perf_buffer_get(struct perf_event *event)
2908
{
2909
	struct perf_buffer *buffer;
2910

2911
	rcu_read_lock();
2912 2913 2914 2915
	buffer = rcu_dereference(event->buffer);
	if (buffer) {
		if (!atomic_inc_not_zero(&buffer->refcount))
			buffer = NULL;
2916 2917 2918
	}
	rcu_read_unlock();

2919
	return buffer;
2920 2921
}

2922
static void perf_buffer_put(struct perf_buffer *buffer)
2923
{
2924
	if (!atomic_dec_and_test(&buffer->refcount))
2925
		return;
2926

2927
	call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
2928 2929 2930 2931
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
2932
	struct perf_event *event = vma->vm_file->private_data;
2933

2934
	atomic_inc(&event->mmap_count);
2935 2936 2937 2938
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
2939
	struct perf_event *event = vma->vm_file->private_data;
2940

2941
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2942
		unsigned long size = perf_data_size(event->buffer);
2943
		struct user_struct *user = event->mmap_user;
2944
		struct perf_buffer *buffer = event->buffer;
2945

2946
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2947
		vma->vm_mm->locked_vm -= event->mmap_locked;
2948
		rcu_assign_pointer(event->buffer, NULL);
2949
		mutex_unlock(&event->mmap_mutex);
2950

2951
		perf_buffer_put(buffer);
2952
		free_uid(user);
2953
	}
2954 2955
}

2956
static const struct vm_operations_struct perf_mmap_vmops = {
2957 2958 2959 2960
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
2961 2962 2963 2964
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
2965
	struct perf_event *event = file->private_data;
2966
	unsigned long user_locked, user_lock_limit;
2967
	struct user_struct *user = current_user();
2968
	unsigned long locked, lock_limit;
2969
	struct perf_buffer *buffer;
2970 2971
	unsigned long vma_size;
	unsigned long nr_pages;
2972
	long user_extra, extra;
2973
	int ret = 0, flags = 0;
2974

2975 2976 2977 2978 2979 2980 2981 2982
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
	 * same buffer.
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

2983
	if (!(vma->vm_flags & VM_SHARED))
2984
		return -EINVAL;
2985 2986 2987 2988

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

2989
	/*
2990
	 * If we have buffer pages ensure they're a power-of-two number, so we
2991 2992 2993
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
2994 2995
		return -EINVAL;

2996
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
2997 2998
		return -EINVAL;

2999 3000
	if (vma->vm_pgoff != 0)
		return -EINVAL;
3001

3002 3003
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
3004 3005 3006
	if (event->buffer) {
		if (event->buffer->nr_pages == nr_pages)
			atomic_inc(&event->buffer->refcount);
3007
		else
3008 3009 3010 3011
			ret = -EINVAL;
		goto unlock;
	}

3012
	user_extra = nr_pages + 1;
3013
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
3014 3015 3016 3017 3018 3019

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

3020
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3021

3022 3023 3024
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
3025

3026
	lock_limit = rlimit(RLIMIT_MEMLOCK);
3027
	lock_limit >>= PAGE_SHIFT;
3028
	locked = vma->vm_mm->locked_vm + extra;
3029

3030 3031
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
3032 3033 3034
		ret = -EPERM;
		goto unlock;
	}
3035

3036
	WARN_ON(event->buffer);
3037

3038 3039 3040 3041 3042
	if (vma->vm_flags & VM_WRITE)
		flags |= PERF_BUFFER_WRITABLE;

	buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
				   event->cpu, flags);
3043
	if (!buffer) {
3044
		ret = -ENOMEM;
3045
		goto unlock;
3046
	}
3047
	rcu_assign_pointer(event->buffer, buffer);
3048

3049 3050 3051 3052 3053
	atomic_long_add(user_extra, &user->locked_vm);
	event->mmap_locked = extra;
	event->mmap_user = get_current_user();
	vma->vm_mm->locked_vm += event->mmap_locked;

3054
unlock:
3055 3056
	if (!ret)
		atomic_inc(&event->mmap_count);
3057
	mutex_unlock(&event->mmap_mutex);
3058 3059 3060

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
3061 3062

	return ret;
3063 3064
}

P
Peter Zijlstra 已提交
3065 3066 3067
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
3068
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
3069 3070 3071
	int retval;

	mutex_lock(&inode->i_mutex);
3072
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
3073 3074 3075 3076 3077 3078 3079 3080
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
3081
static const struct file_operations perf_fops = {
3082
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
3083 3084 3085
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
3086 3087
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
3088
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
3089
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
3090 3091
};

3092
/*
3093
 * Perf event wakeup
3094 3095 3096 3097 3098
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

3099
void perf_event_wakeup(struct perf_event *event)
3100
{
3101
	wake_up_all(&event->waitq);
3102

3103 3104 3105
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
3106
	}
3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117
}

/*
 * Pending wakeups
 *
 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
 *
 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
 * single linked list and use cmpxchg() to add entries lockless.
 */

3118
static void perf_pending_event(struct perf_pending_entry *entry)
3119
{
3120 3121
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
3122

3123 3124 3125
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
3126 3127
	}

3128 3129 3130
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
3131 3132 3133
	}
}

3134
#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
3135

3136
static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
3137 3138 3139
	PENDING_TAIL,
};

3140 3141
static void perf_pending_queue(struct perf_pending_entry *entry,
			       void (*func)(struct perf_pending_entry *))
3142
{
3143
	struct perf_pending_entry **head;
3144

3145
	if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
3146 3147
		return;

3148 3149 3150
	entry->func = func;

	head = &get_cpu_var(perf_pending_head);
3151 3152

	do {
3153 3154
		entry->next = *head;
	} while (cmpxchg(head, entry->next, entry) != entry->next);
3155

3156
	set_perf_event_pending();
3157

3158
	put_cpu_var(perf_pending_head);
3159 3160 3161 3162
}

static int __perf_pending_run(void)
{
3163
	struct perf_pending_entry *list;
3164 3165
	int nr = 0;

3166
	list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
3167
	while (list != PENDING_TAIL) {
3168 3169
		void (*func)(struct perf_pending_entry *);
		struct perf_pending_entry *entry = list;
3170 3171 3172

		list = list->next;

3173 3174
		func = entry->func;
		entry->next = NULL;
3175 3176 3177 3178 3179 3180 3181
		/*
		 * Ensure we observe the unqueue before we issue the wakeup,
		 * so that we won't be waiting forever.
		 * -- see perf_not_pending().
		 */
		smp_wmb();

3182
		func(entry);
3183 3184 3185 3186 3187 3188
		nr++;
	}

	return nr;
}

3189
static inline int perf_not_pending(struct perf_event *event)
3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203
{
	/*
	 * If we flush on whatever cpu we run, there is a chance we don't
	 * need to wait.
	 */
	get_cpu();
	__perf_pending_run();
	put_cpu();

	/*
	 * Ensure we see the proper queue state before going to sleep
	 * so that we do not miss the wakeup. -- see perf_pending_handle()
	 */
	smp_rmb();
3204
	return event->pending.next == NULL;
3205 3206
}

3207
static void perf_pending_sync(struct perf_event *event)
3208
{
3209
	wait_event(event->waitq, perf_not_pending(event));
3210 3211
}

3212
void perf_event_do_pending(void)
3213 3214 3215 3216
{
	__perf_pending_run();
}

3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

3238 3239 3240
/*
 * Output
 */
3241
static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3242
			      unsigned long offset, unsigned long head)
3243 3244 3245
{
	unsigned long mask;

3246
	if (!buffer->writable)
3247 3248
		return true;

3249
	mask = perf_data_size(buffer) - 1;
3250 3251 3252 3253 3254 3255 3256 3257 3258 3259

	offset = (offset - tail) & mask;
	head   = (head   - tail) & mask;

	if ((int)(head - offset) < 0)
		return false;

	return true;
}

3260
static void perf_output_wakeup(struct perf_output_handle *handle)
3261
{
3262
	atomic_set(&handle->buffer->poll, POLL_IN);
3263

3264
	if (handle->nmi) {
3265 3266 3267
		handle->event->pending_wakeup = 1;
		perf_pending_queue(&handle->event->pending,
				   perf_pending_event);
3268
	} else
3269
		perf_event_wakeup(handle->event);
3270 3271
}

3272
/*
3273
 * We need to ensure a later event_id doesn't publish a head when a former
3274
 * event isn't done writing. However since we need to deal with NMIs we
3275 3276 3277
 * cannot fully serialize things.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
3278
 * event completes.
3279
 */
3280
static void perf_output_get_handle(struct perf_output_handle *handle)
3281
{
3282
	struct perf_buffer *buffer = handle->buffer;
3283

3284
	preempt_disable();
3285 3286
	local_inc(&buffer->nest);
	handle->wakeup = local_read(&buffer->wakeup);
3287 3288
}

3289
static void perf_output_put_handle(struct perf_output_handle *handle)
3290
{
3291
	struct perf_buffer *buffer = handle->buffer;
3292
	unsigned long head;
3293 3294

again:
3295
	head = local_read(&buffer->head);
3296 3297

	/*
3298
	 * IRQ/NMI can happen here, which means we can miss a head update.
3299 3300
	 */

3301
	if (!local_dec_and_test(&buffer->nest))
3302
		goto out;
3303 3304

	/*
3305
	 * Publish the known good head. Rely on the full barrier implied
3306
	 * by atomic_dec_and_test() order the buffer->head read and this
3307
	 * write.
3308
	 */
3309
	buffer->user_page->data_head = head;
3310

3311 3312
	/*
	 * Now check if we missed an update, rely on the (compiler)
3313
	 * barrier in atomic_dec_and_test() to re-read buffer->head.
3314
	 */
3315 3316
	if (unlikely(head != local_read(&buffer->head))) {
		local_inc(&buffer->nest);
3317 3318 3319
		goto again;
	}

3320
	if (handle->wakeup != local_read(&buffer->wakeup))
3321
		perf_output_wakeup(handle);
3322

P
Peter Zijlstra 已提交
3323
out:
3324
	preempt_enable();
3325 3326
}

3327
__always_inline void perf_output_copy(struct perf_output_handle *handle,
3328
		      const void *buf, unsigned int len)
3329
{
3330
	do {
3331
		unsigned long size = min_t(unsigned long, handle->size, len);
3332 3333 3334 3335 3336

		memcpy(handle->addr, buf, size);

		len -= size;
		handle->addr += size;
3337
		buf += size;
3338 3339
		handle->size -= size;
		if (!handle->size) {
3340
			struct perf_buffer *buffer = handle->buffer;
3341

3342
			handle->page++;
3343 3344 3345
			handle->page &= buffer->nr_pages - 1;
			handle->addr = buffer->data_pages[handle->page];
			handle->size = PAGE_SIZE << page_order(buffer);
3346 3347
		}
	} while (len);
3348 3349
}

3350
int perf_output_begin(struct perf_output_handle *handle,
3351
		      struct perf_event *event, unsigned int size,
3352
		      int nmi, int sample)
3353
{
3354
	struct perf_buffer *buffer;
3355
	unsigned long tail, offset, head;
3356 3357 3358 3359 3360 3361
	int have_lost;
	struct {
		struct perf_event_header header;
		u64			 id;
		u64			 lost;
	} lost_event;
3362

3363
	rcu_read_lock();
3364
	/*
3365
	 * For inherited events we send all the output towards the parent.
3366
	 */
3367 3368
	if (event->parent)
		event = event->parent;
3369

3370 3371
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
3372 3373
		goto out;

3374
	handle->buffer	= buffer;
3375
	handle->event	= event;
3376 3377
	handle->nmi	= nmi;
	handle->sample	= sample;
3378

3379
	if (!buffer->nr_pages)
3380
		goto out;
3381

3382
	have_lost = local_read(&buffer->lost);
3383 3384 3385
	if (have_lost)
		size += sizeof(lost_event);

3386
	perf_output_get_handle(handle);
3387

3388
	do {
3389 3390 3391 3392 3393
		/*
		 * Userspace could choose to issue a mb() before updating the
		 * tail pointer. So that all reads will be completed before the
		 * write is issued.
		 */
3394
		tail = ACCESS_ONCE(buffer->user_page->data_tail);
3395
		smp_rmb();
3396
		offset = head = local_read(&buffer->head);
P
Peter Zijlstra 已提交
3397
		head += size;
3398
		if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3399
			goto fail;
3400
	} while (local_cmpxchg(&buffer->head, offset, head) != offset);
3401

3402 3403
	if (head - local_read(&buffer->wakeup) > buffer->watermark)
		local_add(buffer->watermark, &buffer->wakeup);
3404

3405 3406 3407 3408
	handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
	handle->page &= buffer->nr_pages - 1;
	handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
	handle->addr = buffer->data_pages[handle->page];
3409
	handle->addr += handle->size;
3410
	handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3411

3412
	if (have_lost) {
3413
		lost_event.header.type = PERF_RECORD_LOST;
3414 3415
		lost_event.header.misc = 0;
		lost_event.header.size = sizeof(lost_event);
3416
		lost_event.id          = event->id;
3417
		lost_event.lost        = local_xchg(&buffer->lost, 0);
3418 3419 3420 3421

		perf_output_put(handle, lost_event);
	}

3422
	return 0;
3423

3424
fail:
3425
	local_inc(&buffer->lost);
3426
	perf_output_put_handle(handle);
3427 3428
out:
	rcu_read_unlock();
3429

3430 3431
	return -ENOSPC;
}
3432

3433
void perf_output_end(struct perf_output_handle *handle)
3434
{
3435
	struct perf_event *event = handle->event;
3436
	struct perf_buffer *buffer = handle->buffer;
3437

3438
	int wakeup_events = event->attr.wakeup_events;
P
Peter Zijlstra 已提交
3439

3440
	if (handle->sample && wakeup_events) {
3441
		int events = local_inc_return(&buffer->events);
P
Peter Zijlstra 已提交
3442
		if (events >= wakeup_events) {
3443 3444
			local_sub(wakeup_events, &buffer->events);
			local_inc(&buffer->wakeup);
P
Peter Zijlstra 已提交
3445
		}
3446 3447
	}

3448
	perf_output_put_handle(handle);
3449
	rcu_read_unlock();
3450 3451
}

3452
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3453 3454
{
	/*
3455
	 * only top level events have the pid namespace they were created in
3456
	 */
3457 3458
	if (event->parent)
		event = event->parent;
3459

3460
	return task_tgid_nr_ns(p, event->ns);
3461 3462
}

3463
static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3464 3465
{
	/*
3466
	 * only top level events have the pid namespace they were created in
3467
	 */
3468 3469
	if (event->parent)
		event = event->parent;
3470

3471
	return task_pid_nr_ns(p, event->ns);
3472 3473
}

3474
static void perf_output_read_one(struct perf_output_handle *handle,
3475
				 struct perf_event *event)
3476
{
3477
	u64 read_format = event->attr.read_format;
3478 3479 3480
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
3481
	values[n++] = perf_event_count(event);
3482
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3483 3484
		values[n++] = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
3485 3486
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3487 3488
		values[n++] = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
3489 3490
	}
	if (read_format & PERF_FORMAT_ID)
3491
		values[n++] = primary_event_id(event);
3492 3493 3494 3495 3496

	perf_output_copy(handle, values, n * sizeof(u64));
}

/*
3497
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3498 3499
 */
static void perf_output_read_group(struct perf_output_handle *handle,
3500
			    struct perf_event *event)
3501
{
3502 3503
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = leader->total_time_enabled;

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = leader->total_time_running;

3515
	if (leader != event)
3516 3517
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
3518
	values[n++] = perf_event_count(leader);
3519
	if (read_format & PERF_FORMAT_ID)
3520
		values[n++] = primary_event_id(leader);
3521 3522 3523

	perf_output_copy(handle, values, n * sizeof(u64));

3524
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3525 3526
		n = 0;

3527
		if (sub != event)
3528 3529
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
3530
		values[n++] = perf_event_count(sub);
3531
		if (read_format & PERF_FORMAT_ID)
3532
			values[n++] = primary_event_id(sub);
3533 3534 3535 3536 3537 3538

		perf_output_copy(handle, values, n * sizeof(u64));
	}
}

static void perf_output_read(struct perf_output_handle *handle,
3539
			     struct perf_event *event)
3540
{
3541 3542
	if (event->attr.read_format & PERF_FORMAT_GROUP)
		perf_output_read_group(handle, event);
3543
	else
3544
		perf_output_read_one(handle, event);
3545 3546
}

3547 3548 3549
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
3550
			struct perf_event *event)
3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
3581
		perf_output_read(handle, event);
3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

			perf_output_copy(handle, data->callchain, size);
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
			perf_output_copy(handle, data->raw->data,
					 data->raw->size);
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
3619
			 struct perf_event *event,
3620
			 struct pt_regs *regs)
3621
{
3622
	u64 sample_type = event->attr.sample_type;
3623

3624
	data->type = sample_type;
3625

3626
	header->type = PERF_RECORD_SAMPLE;
3627 3628 3629 3630
	header->size = sizeof(*header);

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
3631

3632
	if (sample_type & PERF_SAMPLE_IP) {
3633 3634 3635
		data->ip = perf_instruction_pointer(regs);

		header->size += sizeof(data->ip);
3636
	}
3637

3638
	if (sample_type & PERF_SAMPLE_TID) {
3639
		/* namespace issues */
3640 3641
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
3642

3643
		header->size += sizeof(data->tid_entry);
3644 3645
	}

3646
	if (sample_type & PERF_SAMPLE_TIME) {
P
Peter Zijlstra 已提交
3647
		data->time = perf_clock();
3648

3649
		header->size += sizeof(data->time);
3650 3651
	}

3652
	if (sample_type & PERF_SAMPLE_ADDR)
3653
		header->size += sizeof(data->addr);
3654

3655
	if (sample_type & PERF_SAMPLE_ID) {
3656
		data->id = primary_event_id(event);
3657

3658 3659 3660 3661
		header->size += sizeof(data->id);
	}

	if (sample_type & PERF_SAMPLE_STREAM_ID) {
3662
		data->stream_id = event->id;
3663 3664 3665

		header->size += sizeof(data->stream_id);
	}
3666

3667
	if (sample_type & PERF_SAMPLE_CPU) {
3668 3669
		data->cpu_entry.cpu		= raw_smp_processor_id();
		data->cpu_entry.reserved	= 0;
3670

3671
		header->size += sizeof(data->cpu_entry);
3672 3673
	}

3674
	if (sample_type & PERF_SAMPLE_PERIOD)
3675
		header->size += sizeof(data->period);
3676

3677
	if (sample_type & PERF_SAMPLE_READ)
3678
		header->size += perf_event_read_size(event);
3679

3680
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3681
		int size = 1;
3682

3683 3684 3685 3686 3687 3688
		data->callchain = perf_callchain(regs);

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
3689 3690
	}

3691
	if (sample_type & PERF_SAMPLE_RAW) {
3692 3693 3694 3695 3696 3697 3698 3699
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
3700
		header->size += size;
3701
	}
3702
}
3703

3704
static void perf_event_output(struct perf_event *event, int nmi,
3705 3706 3707 3708 3709
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
3710

3711 3712 3713
	/* protect the callchain buffers */
	rcu_read_lock();

3714
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
3715

3716
	if (perf_output_begin(&handle, event, header.size, nmi, 1))
3717
		goto exit;
3718

3719
	perf_output_sample(&handle, &header, data, event);
3720

3721
	perf_output_end(&handle);
3722 3723 3724

exit:
	rcu_read_unlock();
3725 3726
}

3727
/*
3728
 * read event_id
3729 3730 3731 3732 3733 3734 3735 3736 3737 3738
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
3739
perf_event_read_event(struct perf_event *event,
3740 3741 3742
			struct task_struct *task)
{
	struct perf_output_handle handle;
3743
	struct perf_read_event read_event = {
3744
		.header = {
3745
			.type = PERF_RECORD_READ,
3746
			.misc = 0,
3747
			.size = sizeof(read_event) + perf_event_read_size(event),
3748
		},
3749 3750
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
3751
	};
3752
	int ret;
3753

3754
	ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3755 3756 3757
	if (ret)
		return;

3758
	perf_output_put(&handle, read_event);
3759
	perf_output_read(&handle, event);
3760

3761 3762 3763
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
3764
/*
P
Peter Zijlstra 已提交
3765 3766
 * task tracking -- fork/exit
 *
3767
 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
3768 3769
 */

P
Peter Zijlstra 已提交
3770
struct perf_task_event {
3771
	struct task_struct		*task;
3772
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
3773 3774 3775 3776 3777 3778

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
3779 3780
		u32				tid;
		u32				ptid;
3781
		u64				time;
3782
	} event_id;
P
Peter Zijlstra 已提交
3783 3784
};

3785
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
3786
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3787 3788
{
	struct perf_output_handle handle;
P
Peter Zijlstra 已提交
3789
	struct task_struct *task = task_event->task;
3790 3791
	int size, ret;

3792 3793
	size  = task_event->event_id.header.size;
	ret = perf_output_begin(&handle, event, size, 0, 0);
P
Peter Zijlstra 已提交
3794

3795
	if (ret)
P
Peter Zijlstra 已提交
3796 3797
		return;

3798 3799
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
3800

3801 3802
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
3803

3804
	perf_output_put(&handle, task_event->event_id);
3805

P
Peter Zijlstra 已提交
3806 3807 3808
	perf_output_end(&handle);
}

3809
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
3810
{
P
Peter Zijlstra 已提交
3811
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3812 3813
		return 0;

3814 3815 3816
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3817 3818
	if (event->attr.comm || event->attr.mmap ||
	    event->attr.mmap_data || event->attr.task)
P
Peter Zijlstra 已提交
3819 3820 3821 3822 3823
		return 1;

	return 0;
}

3824
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
3825
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3826
{
3827
	struct perf_event *event;
P
Peter Zijlstra 已提交
3828

3829 3830 3831
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
3832 3833 3834
	}
}

3835
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3836 3837
{
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
3838
	struct perf_event_context *ctx;
P
Peter Zijlstra 已提交
3839
	struct pmu *pmu;
P
Peter Zijlstra 已提交
3840
	int ctxn;
P
Peter Zijlstra 已提交
3841

3842
	rcu_read_lock();
P
Peter Zijlstra 已提交
3843
	list_for_each_entry_rcu(pmu, &pmus, entry) {
3844
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
3845
		perf_event_task_ctx(&cpuctx->ctx, task_event);
P
Peter Zijlstra 已提交
3846 3847 3848 3849 3850

		ctx = task_event->task_ctx;
		if (!ctx) {
			ctxn = pmu->task_ctx_nr;
			if (ctxn < 0)
3851
				goto next;
P
Peter Zijlstra 已提交
3852 3853 3854 3855
			ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		}
		if (ctx)
			perf_event_task_ctx(ctx, task_event);
3856 3857
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
3858
	}
P
Peter Zijlstra 已提交
3859 3860 3861
	rcu_read_unlock();
}

3862 3863
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
3864
			      int new)
P
Peter Zijlstra 已提交
3865
{
P
Peter Zijlstra 已提交
3866
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
3867

3868 3869 3870
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
3871 3872
		return;

P
Peter Zijlstra 已提交
3873
	task_event = (struct perf_task_event){
3874 3875
		.task	  = task,
		.task_ctx = task_ctx,
3876
		.event_id    = {
P
Peter Zijlstra 已提交
3877
			.header = {
3878
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3879
				.misc = 0,
3880
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
3881
			},
3882 3883
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
3884 3885
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
3886
			.time = perf_clock(),
P
Peter Zijlstra 已提交
3887 3888 3889
		},
	};

3890
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
3891 3892
}

3893
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
3894
{
3895
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
3896 3897
}

3898 3899 3900 3901 3902
/*
 * comm tracking
 */

struct perf_comm_event {
3903 3904
	struct task_struct	*task;
	char			*comm;
3905 3906 3907 3908 3909 3910 3911
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
3912
	} event_id;
3913 3914
};

3915
static void perf_event_comm_output(struct perf_event *event,
3916 3917 3918
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
3919 3920
	int size = comm_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3921 3922 3923 3924

	if (ret)
		return;

3925 3926
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3927

3928
	perf_output_put(&handle, comm_event->event_id);
3929 3930 3931 3932 3933
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
	perf_output_end(&handle);
}

3934
static int perf_event_comm_match(struct perf_event *event)
3935
{
P
Peter Zijlstra 已提交
3936
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3937 3938
		return 0;

3939 3940 3941
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3942
	if (event->attr.comm)
3943 3944 3945 3946 3947
		return 1;

	return 0;
}

3948
static void perf_event_comm_ctx(struct perf_event_context *ctx,
3949 3950
				  struct perf_comm_event *comm_event)
{
3951
	struct perf_event *event;
3952

3953 3954 3955
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
3956 3957 3958
	}
}

3959
static void perf_event_comm_event(struct perf_comm_event *comm_event)
3960 3961
{
	struct perf_cpu_context *cpuctx;
3962
	struct perf_event_context *ctx;
3963
	char comm[TASK_COMM_LEN];
3964
	unsigned int size;
P
Peter Zijlstra 已提交
3965
	struct pmu *pmu;
P
Peter Zijlstra 已提交
3966
	int ctxn;
3967

3968
	memset(comm, 0, sizeof(comm));
3969
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
3970
	size = ALIGN(strlen(comm)+1, sizeof(u64));
3971 3972 3973 3974

	comm_event->comm = comm;
	comm_event->comm_size = size;

3975
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3976

3977
	rcu_read_lock();
P
Peter Zijlstra 已提交
3978
	list_for_each_entry_rcu(pmu, &pmus, entry) {
3979
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
3980
		perf_event_comm_ctx(&cpuctx->ctx, comm_event);
P
Peter Zijlstra 已提交
3981 3982 3983

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
3984
			goto next;
P
Peter Zijlstra 已提交
3985 3986 3987 3988

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
			perf_event_comm_ctx(ctx, comm_event);
3989 3990
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
3991
	}
3992
	rcu_read_unlock();
3993 3994
}

3995
void perf_event_comm(struct task_struct *task)
3996
{
3997
	struct perf_comm_event comm_event;
P
Peter Zijlstra 已提交
3998 3999
	struct perf_event_context *ctx;
	int ctxn;
4000

P
Peter Zijlstra 已提交
4001 4002 4003 4004
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
4005

P
Peter Zijlstra 已提交
4006 4007
		perf_event_enable_on_exec(ctx);
	}
4008

4009
	if (!atomic_read(&nr_comm_events))
4010
		return;
4011

4012
	comm_event = (struct perf_comm_event){
4013
		.task	= task,
4014 4015
		/* .comm      */
		/* .comm_size */
4016
		.event_id  = {
4017
			.header = {
4018
				.type = PERF_RECORD_COMM,
4019 4020 4021 4022 4023
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
4024 4025 4026
		},
	};

4027
	perf_event_comm_event(&comm_event);
4028 4029
}

4030 4031 4032 4033 4034
/*
 * mmap tracking
 */

struct perf_mmap_event {
4035 4036 4037 4038
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
4039 4040 4041 4042 4043 4044 4045 4046 4047

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
4048
	} event_id;
4049 4050
};

4051
static void perf_event_mmap_output(struct perf_event *event,
4052 4053 4054
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
4055 4056
	int size = mmap_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
4057 4058 4059 4060

	if (ret)
		return;

4061 4062
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
4063

4064
	perf_output_put(&handle, mmap_event->event_id);
4065 4066
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
4067
	perf_output_end(&handle);
4068 4069
}

4070
static int perf_event_mmap_match(struct perf_event *event,
4071 4072
				   struct perf_mmap_event *mmap_event,
				   int executable)
4073
{
P
Peter Zijlstra 已提交
4074
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4075 4076
		return 0;

4077 4078 4079
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

4080 4081
	if ((!executable && event->attr.mmap_data) ||
	    (executable && event->attr.mmap))
4082 4083 4084 4085 4086
		return 1;

	return 0;
}

4087
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4088 4089
				  struct perf_mmap_event *mmap_event,
				  int executable)
4090
{
4091
	struct perf_event *event;
4092

4093
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4094
		if (perf_event_mmap_match(event, mmap_event, executable))
4095
			perf_event_mmap_output(event, mmap_event);
4096 4097 4098
	}
}

4099
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4100 4101
{
	struct perf_cpu_context *cpuctx;
4102
	struct perf_event_context *ctx;
4103 4104
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
4105 4106 4107
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
4108
	const char *name;
P
Peter Zijlstra 已提交
4109
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4110
	int ctxn;
4111

4112 4113
	memset(tmp, 0, sizeof(tmp));

4114
	if (file) {
4115 4116 4117 4118 4119 4120
		/*
		 * d_path works from the end of the buffer backwards, so we
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4121 4122 4123 4124
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
4125
		name = d_path(&file->f_path, buf, PATH_MAX);
4126 4127 4128 4129 4130
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
4131 4132 4133
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
4134
			goto got_name;
4135
		}
4136 4137 4138 4139

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
4140 4141 4142 4143 4144 4145 4146 4147
		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
				vma->vm_end >= vma->vm_mm->brk) {
			name = strncpy(tmp, "[heap]", sizeof(tmp));
			goto got_name;
		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
				vma->vm_end >= vma->vm_mm->start_stack) {
			name = strncpy(tmp, "[stack]", sizeof(tmp));
			goto got_name;
4148 4149
		}

4150 4151 4152 4153 4154
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
4155
	size = ALIGN(strlen(name)+1, sizeof(u64));
4156 4157 4158 4159

	mmap_event->file_name = name;
	mmap_event->file_size = size;

4160
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4161

4162
	rcu_read_lock();
P
Peter Zijlstra 已提交
4163
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4164
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4165 4166
		perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
P
Peter Zijlstra 已提交
4167 4168 4169

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
4170
			goto next;
P
Peter Zijlstra 已提交
4171 4172 4173 4174 4175 4176

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx) {
			perf_event_mmap_ctx(ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
		}
4177 4178
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4179
	}
4180 4181
	rcu_read_unlock();

4182 4183 4184
	kfree(buf);
}

4185
void perf_event_mmap(struct vm_area_struct *vma)
4186
{
4187 4188
	struct perf_mmap_event mmap_event;

4189
	if (!atomic_read(&nr_mmap_events))
4190 4191 4192
		return;

	mmap_event = (struct perf_mmap_event){
4193
		.vma	= vma,
4194 4195
		/* .file_name */
		/* .file_size */
4196
		.event_id  = {
4197
			.header = {
4198
				.type = PERF_RECORD_MMAP,
4199
				.misc = PERF_RECORD_MISC_USER,
4200 4201 4202 4203
				/* .size */
			},
			/* .pid */
			/* .tid */
4204 4205
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
4206
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4207 4208 4209
		},
	};

4210
	perf_event_mmap_event(&mmap_event);
4211 4212
}

4213 4214 4215 4216
/*
 * IRQ throttle logging
 */

4217
static void perf_log_throttle(struct perf_event *event, int enable)
4218 4219 4220 4221 4222 4223 4224
{
	struct perf_output_handle handle;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
4225
		u64				id;
4226
		u64				stream_id;
4227 4228
	} throttle_event = {
		.header = {
4229
			.type = PERF_RECORD_THROTTLE,
4230 4231 4232
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
4233
		.time		= perf_clock(),
4234 4235
		.id		= primary_event_id(event),
		.stream_id	= event->id,
4236 4237
	};

4238
	if (enable)
4239
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4240

4241
	ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
4242 4243 4244 4245 4246 4247 4248
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
	perf_output_end(&handle);
}

4249
/*
4250
 * Generic event overflow handling, sampling.
4251 4252
 */

4253
static int __perf_event_overflow(struct perf_event *event, int nmi,
4254 4255
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
4256
{
4257 4258
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
4259 4260
	int ret = 0;

4261
	if (!throttle) {
4262
		hwc->interrupts++;
4263
	} else {
4264 4265
		if (hwc->interrupts != MAX_INTERRUPTS) {
			hwc->interrupts++;
4266
			if (HZ * hwc->interrupts >
4267
					(u64)sysctl_perf_event_sample_rate) {
4268
				hwc->interrupts = MAX_INTERRUPTS;
4269
				perf_log_throttle(event, 0);
4270 4271 4272 4273
				ret = 1;
			}
		} else {
			/*
4274
			 * Keep re-disabling events even though on the previous
4275
			 * pass we disabled it - just in case we raced with a
4276
			 * sched-in and the event got enabled again:
4277
			 */
4278 4279 4280
			ret = 1;
		}
	}
4281

4282
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
4283
		u64 now = perf_clock();
4284
		s64 delta = now - hwc->freq_time_stamp;
4285

4286
		hwc->freq_time_stamp = now;
4287

4288 4289
		if (delta > 0 && delta < 2*TICK_NSEC)
			perf_adjust_period(event, delta, hwc->last_period);
4290 4291
	}

4292 4293
	/*
	 * XXX event_limit might not quite work as expected on inherited
4294
	 * events
4295 4296
	 */

4297 4298
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
4299
		ret = 1;
4300
		event->pending_kill = POLL_HUP;
4301
		if (nmi) {
4302 4303 4304
			event->pending_disable = 1;
			perf_pending_queue(&event->pending,
					   perf_pending_event);
4305
		} else
4306
			perf_event_disable(event);
4307 4308
	}

4309 4310 4311 4312 4313
	if (event->overflow_handler)
		event->overflow_handler(event, nmi, data, regs);
	else
		perf_event_output(event, nmi, data, regs);

4314
	return ret;
4315 4316
}

4317
int perf_event_overflow(struct perf_event *event, int nmi,
4318 4319
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
4320
{
4321
	return __perf_event_overflow(event, nmi, 1, data, regs);
4322 4323
}

4324
/*
4325
 * Generic software event infrastructure
4326 4327
 */

4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

4339
/*
4340 4341
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
4342 4343 4344 4345
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

4346
static u64 perf_swevent_set_period(struct perf_event *event)
4347
{
4348
	struct hw_perf_event *hwc = &event->hw;
4349 4350 4351 4352 4353
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
4354 4355

again:
4356
	old = val = local64_read(&hwc->period_left);
4357 4358
	if (val < 0)
		return 0;
4359

4360 4361 4362
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
4363
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4364
		goto again;
4365

4366
	return nr;
4367 4368
}

4369
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4370 4371
				    int nmi, struct perf_sample_data *data,
				    struct pt_regs *regs)
4372
{
4373
	struct hw_perf_event *hwc = &event->hw;
4374
	int throttle = 0;
4375

4376
	data->period = event->hw.last_period;
4377 4378
	if (!overflow)
		overflow = perf_swevent_set_period(event);
4379

4380 4381
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
4382

4383
	for (; overflow; overflow--) {
4384
		if (__perf_event_overflow(event, nmi, throttle,
4385
					    data, regs)) {
4386 4387 4388 4389 4390 4391
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
4392
		throttle = 1;
4393
	}
4394 4395
}

P
Peter Zijlstra 已提交
4396
static void perf_swevent_event(struct perf_event *event, u64 nr,
4397 4398
			       int nmi, struct perf_sample_data *data,
			       struct pt_regs *regs)
4399
{
4400
	struct hw_perf_event *hwc = &event->hw;
4401

4402
	local64_add(nr, &event->count);
4403

4404 4405 4406
	if (!regs)
		return;

4407 4408
	if (!hwc->sample_period)
		return;
4409

4410 4411 4412
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
		return perf_swevent_overflow(event, 1, nmi, data, regs);

4413
	if (local64_add_negative(nr, &hwc->period_left))
4414
		return;
4415

4416
	perf_swevent_overflow(event, 0, nmi, data, regs);
4417 4418
}

4419 4420 4421
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
4422 4423 4424
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

4436
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
4437
				enum perf_type_id type,
L
Li Zefan 已提交
4438 4439 4440
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
4441
{
4442
	if (event->attr.type != type)
4443
		return 0;
4444

4445
	if (event->attr.config != event_id)
4446 4447
		return 0;

4448 4449
	if (perf_exclude_event(event, regs))
		return 0;
4450 4451 4452 4453

	return 1;
}

4454 4455 4456 4457 4458 4459 4460
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

4461 4462
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4463
{
4464 4465 4466 4467
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
4468

4469 4470
/* For the read side: events when they trigger */
static inline struct hlist_head *
4471
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4472 4473
{
	struct swevent_hlist *hlist;
4474

4475
	hlist = rcu_dereference(swhash->swevent_hlist);
4476 4477 4478
	if (!hlist)
		return NULL;

4479 4480 4481 4482 4483
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
4484
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4485 4486 4487 4488 4489 4490 4491 4492 4493 4494
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
4495
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
4496 4497 4498 4499 4500
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
4501 4502 4503 4504 4505 4506
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
				    u64 nr, int nmi,
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
4507
{
4508
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4509
	struct perf_event *event;
4510 4511
	struct hlist_node *node;
	struct hlist_head *head;
4512

4513
	rcu_read_lock();
4514
	head = find_swevent_head_rcu(swhash, type, event_id);
4515 4516 4517 4518
	if (!head)
		goto end;

	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
L
Li Zefan 已提交
4519
		if (perf_swevent_match(event, type, event_id, data, regs))
P
Peter Zijlstra 已提交
4520
			perf_swevent_event(event, nr, nmi, data, regs);
4521
	}
4522 4523
end:
	rcu_read_unlock();
4524 4525
}

4526
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
4527
{
4528
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
P
Peter Zijlstra 已提交
4529

4530
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
4531
}
I
Ingo Molnar 已提交
4532
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
4533

4534
void inline perf_swevent_put_recursion_context(int rctx)
4535
{
4536
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4537

4538
	put_recursion_context(swhash->recursion, rctx);
4539
}
4540

4541
void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4542
			    struct pt_regs *regs, u64 addr)
4543
{
4544
	struct perf_sample_data data;
4545 4546
	int rctx;

4547
	preempt_disable_notrace();
4548 4549 4550
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
4551

4552
	perf_sample_data_init(&data, addr);
4553

4554
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4555 4556

	perf_swevent_put_recursion_context(rctx);
4557
	preempt_enable_notrace();
4558 4559
}

4560
static void perf_swevent_read(struct perf_event *event)
4561 4562 4563
{
}

P
Peter Zijlstra 已提交
4564
static int perf_swevent_add(struct perf_event *event, int flags)
4565
{
4566
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4567
	struct hw_perf_event *hwc = &event->hw;
4568 4569
	struct hlist_head *head;

4570 4571
	if (hwc->sample_period) {
		hwc->last_period = hwc->sample_period;
4572
		perf_swevent_set_period(event);
4573
	}
4574

P
Peter Zijlstra 已提交
4575 4576
	hwc->state = !(flags & PERF_EF_START);

4577
	head = find_swevent_head(swhash, event);
4578 4579 4580 4581 4582
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

4583 4584 4585
	return 0;
}

P
Peter Zijlstra 已提交
4586
static void perf_swevent_del(struct perf_event *event, int flags)
4587
{
4588
	hlist_del_rcu(&event->hlist_entry);
4589 4590
}

P
Peter Zijlstra 已提交
4591
static void perf_swevent_start(struct perf_event *event, int flags)
4592
{
P
Peter Zijlstra 已提交
4593
	event->hw.state = 0;
4594 4595
}

P
Peter Zijlstra 已提交
4596
static void perf_swevent_stop(struct perf_event *event, int flags)
4597
{
P
Peter Zijlstra 已提交
4598
	event->hw.state = PERF_HES_STOPPED;
4599 4600
}

4601 4602
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
4603
swevent_hlist_deref(struct swevent_htable *swhash)
4604
{
4605 4606
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
4607 4608
}

4609 4610 4611 4612 4613 4614 4615 4616
static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
{
	struct swevent_hlist *hlist;

	hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
	kfree(hlist);
}

4617
static void swevent_hlist_release(struct swevent_htable *swhash)
4618
{
4619
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4620

4621
	if (!hlist)
4622 4623
		return;

4624
	rcu_assign_pointer(swhash->swevent_hlist, NULL);
4625 4626 4627 4628 4629
	call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
4630
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4631

4632
	mutex_lock(&swhash->hlist_mutex);
4633

4634 4635
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
4636

4637
	mutex_unlock(&swhash->hlist_mutex);
4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	if (event->cpu != -1) {
		swevent_hlist_put_cpu(event, event->cpu);
		return;
	}

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
4655
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4656 4657
	int err = 0;

4658
	mutex_lock(&swhash->hlist_mutex);
4659

4660
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4661 4662 4663 4664 4665 4666 4667
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
4668
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
4669
	}
4670
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
4671
exit:
4672
	mutex_unlock(&swhash->hlist_mutex);
4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	if (event->cpu != -1)
		return swevent_hlist_get_cpu(event, event->cpu);

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
4696
fail:
4697 4698 4699 4700 4701 4702 4703 4704 4705 4706
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

4707
atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4708

4709 4710 4711
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
4712

4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752
	WARN_ON(event->parent);

	atomic_dec(&perf_swevent_enabled[event_id]);
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
	int event_id = event->attr.config;

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

	if (event_id > PERF_COUNT_SW_MAX)
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

		atomic_inc(&perf_swevent_enabled[event_id]);
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
4753 4754
	.task_ctx_nr	= perf_sw_context,

4755
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
4756 4757 4758 4759
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
4760 4761 4762
	.read		= perf_swevent_read,
};

4763 4764
#ifdef CONFIG_EVENT_TRACING

4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
4779 4780 4781 4782
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
4783 4784 4785 4786 4787 4788 4789 4790 4791
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4792
		   struct pt_regs *regs, struct hlist_head *head, int rctx)
4793 4794
{
	struct perf_sample_data data;
4795 4796 4797
	struct perf_event *event;
	struct hlist_node *node;

4798 4799 4800 4801 4802 4803 4804 4805
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

	perf_sample_data_init(&data, addr);
	data.raw = &raw;

4806 4807
	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
		if (perf_tp_event_match(event, &data, regs))
P
Peter Zijlstra 已提交
4808
			perf_swevent_event(event, count, 1, &data, regs);
4809
	}
4810 4811

	perf_swevent_put_recursion_context(rctx);
4812 4813 4814
}
EXPORT_SYMBOL_GPL(perf_tp_event);

4815
static void tp_perf_event_destroy(struct perf_event *event)
4816
{
4817
	perf_trace_destroy(event);
4818 4819
}

4820
static int perf_tp_event_init(struct perf_event *event)
4821
{
4822 4823
	int err;

4824 4825 4826
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

4827 4828 4829 4830
	/*
	 * Raw tracepoint data is a severe data leak, only allow root to
	 * have these.
	 */
4831
	if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4832
			perf_paranoid_tracepoint_raw() &&
4833
			!capable(CAP_SYS_ADMIN))
4834
		return -EPERM;
4835

4836 4837
	err = perf_trace_init(event);
	if (err)
4838
		return err;
4839

4840
	event->destroy = tp_perf_event_destroy;
4841

4842 4843 4844 4845
	return 0;
}

static struct pmu perf_tracepoint = {
4846 4847
	.task_ctx_nr	= perf_sw_context,

4848
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
4849 4850 4851 4852
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
4853 4854 4855 4856 4857 4858
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
	perf_pmu_register(&perf_tracepoint);
4859
}
L
Li Zefan 已提交
4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

4884
#else
L
Li Zefan 已提交
4885

4886
static inline void perf_tp_register(void)
4887 4888
{
}
L
Li Zefan 已提交
4889 4890 4891 4892 4893 4894 4895 4896 4897 4898

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

4899
#endif /* CONFIG_EVENT_TRACING */
4900

4901
#ifdef CONFIG_HAVE_HW_BREAKPOINT
4902
void perf_bp_event(struct perf_event *bp, void *data)
4903
{
4904 4905 4906 4907 4908
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

	perf_sample_data_init(&sample, bp->attr.bp_addr);

P
Peter Zijlstra 已提交
4909 4910
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
		perf_swevent_event(bp, 1, 1, &sample, regs);
4911
}
4912 4913 4914 4915 4916
#endif

/*
 * hrtimer based swevent callback
 */
4917

4918
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4919
{
4920 4921 4922 4923 4924
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
4925

4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
	event->pmu->read(event);

	perf_sample_data_init(&data, 0);
	data.period = event->hw.last_period;
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
		if (!(event->attr.exclude_idle && current->pid == 0))
			if (perf_event_overflow(event, 0, &data, regs))
				ret = HRTIMER_NORESTART;
	}
4938

4939 4940
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4941

4942
	return ret;
4943 4944
}

4945
static void perf_swevent_start_hrtimer(struct perf_event *event)
4946
{
4947
	struct hw_perf_event *hwc = &event->hw;
4948

4949 4950 4951
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;
	if (hwc->sample_period) {
P
Peter Zijlstra 已提交
4952
		s64 period = local64_read(&hwc->period_left);
4953

P
Peter Zijlstra 已提交
4954 4955
		if (period) {
			if (period < 0)
4956
				period = 10000;
P
Peter Zijlstra 已提交
4957 4958

			local64_set(&hwc->period_left, 0);
4959 4960 4961 4962 4963
		} else {
			period = max_t(u64, 10000, hwc->sample_period);
		}
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(period), 0,
4964
				HRTIMER_MODE_REL_PINNED, 0);
4965
	}
4966
}
4967 4968

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4969
{
4970 4971 4972 4973
	struct hw_perf_event *hwc = &event->hw;

	if (hwc->sample_period) {
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
4974
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
4975 4976 4977

		hrtimer_cancel(&hwc->hrtimer);
	}
4978 4979
}

4980 4981 4982 4983 4984
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
4985
{
4986 4987 4988
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
4989
	now = local_clock();
4990 4991
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
4992 4993
}

P
Peter Zijlstra 已提交
4994
static void cpu_clock_event_start(struct perf_event *event, int flags)
4995
{
P
Peter Zijlstra 已提交
4996
	local64_set(&event->hw.prev_count, local_clock());
4997 4998 4999
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5000
static void cpu_clock_event_stop(struct perf_event *event, int flags)
5001
{
5002 5003 5004
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
5005

P
Peter Zijlstra 已提交
5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

5019 5020 5021 5022
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
5023

5024 5025 5026 5027 5028 5029 5030 5031 5032
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

	return 0;
5033 5034
}

5035
static struct pmu perf_cpu_clock = {
5036 5037
	.task_ctx_nr	= perf_sw_context,

5038
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
5039 5040 5041 5042
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
5043 5044 5045 5046 5047 5048 5049 5050
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
5051
{
5052 5053
	u64 prev;
	s64 delta;
5054

5055 5056 5057 5058
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
5059

P
Peter Zijlstra 已提交
5060
static void task_clock_event_start(struct perf_event *event, int flags)
5061
{
P
Peter Zijlstra 已提交
5062
	local64_set(&event->hw.prev_count, event->ctx->time);
5063 5064 5065
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5066
static void task_clock_event_stop(struct perf_event *event, int flags)
5067 5068 5069
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
5070 5071 5072 5073 5074 5075
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
5076

P
Peter Zijlstra 已提交
5077 5078 5079 5080 5081 5082
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101
}

static void task_clock_event_read(struct perf_event *event)
{
	u64 time;

	if (!in_nmi()) {
		update_context_time(event->ctx);
		time = event->ctx->time;
	} else {
		u64 now = perf_clock();
		u64 delta = now - event->ctx->timestamp;
		time = event->ctx->time + delta;
	}

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
5102
{
5103 5104 5105 5106 5107 5108 5109
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

	return 0;
L
Li Zefan 已提交
5110 5111
}

5112
static struct pmu perf_task_clock = {
5113 5114
	.task_ctx_nr	= perf_sw_context,

5115
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
5116 5117 5118 5119
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
5120 5121
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
5122

P
Peter Zijlstra 已提交
5123
static void perf_pmu_nop_void(struct pmu *pmu)
5124 5125
{
}
L
Li Zefan 已提交
5126

P
Peter Zijlstra 已提交
5127
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
5128
{
P
Peter Zijlstra 已提交
5129
	return 0;
L
Li Zefan 已提交
5130 5131
}

P
Peter Zijlstra 已提交
5132
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
5133
{
P
Peter Zijlstra 已提交
5134
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
5135 5136
}

P
Peter Zijlstra 已提交
5137 5138 5139 5140 5141
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
5142

P
Peter Zijlstra 已提交
5143
static void perf_pmu_cancel_txn(struct pmu *pmu)
5144
{
P
Peter Zijlstra 已提交
5145
	perf_pmu_enable(pmu);
5146 5147
}

P
Peter Zijlstra 已提交
5148 5149 5150 5151 5152
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
static void *find_pmu_context(int ctxn)
5153
{
P
Peter Zijlstra 已提交
5154
	struct pmu *pmu;
5155

P
Peter Zijlstra 已提交
5156 5157
	if (ctxn < 0)
		return NULL;
5158

P
Peter Zijlstra 已提交
5159 5160 5161 5162
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
5163

P
Peter Zijlstra 已提交
5164
	return NULL;
5165 5166
}

P
Peter Zijlstra 已提交
5167
static void free_pmu_context(void * __percpu cpu_context)
5168
{
P
Peter Zijlstra 已提交
5169
	struct pmu *pmu;
5170

P
Peter Zijlstra 已提交
5171 5172 5173 5174 5175 5176 5177 5178
	mutex_lock(&pmus_lock);
	/*
	 * Like a real lame refcount.
	 */
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->pmu_cpu_context == cpu_context)
			goto out;
	}
5179

P
Peter Zijlstra 已提交
5180 5181 5182
	free_percpu(cpu_context);
out:
	mutex_unlock(&pmus_lock);
5183 5184
}

5185
int perf_pmu_register(struct pmu *pmu)
5186
{
P
Peter Zijlstra 已提交
5187
	int cpu, ret;
5188

5189
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
5190 5191 5192 5193
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
5194

P
Peter Zijlstra 已提交
5195 5196 5197
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
5198

P
Peter Zijlstra 已提交
5199 5200 5201
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
		goto free_pdc;
5202

P
Peter Zijlstra 已提交
5203 5204 5205 5206
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5207
		__perf_event_init_context(&cpuctx->ctx);
5208
		cpuctx->ctx.type = cpu_context;
P
Peter Zijlstra 已提交
5209
		cpuctx->ctx.pmu = pmu;
5210 5211
		cpuctx->jiffies_interval = 1;
		INIT_LIST_HEAD(&cpuctx->rotation_list);
P
Peter Zijlstra 已提交
5212 5213
	}

P
Peter Zijlstra 已提交
5214
got_cpu_context:
P
Peter Zijlstra 已提交
5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
		}
	}

	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

5237
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
5238 5239
	ret = 0;
unlock:
5240 5241
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
5242
	return ret;
P
Peter Zijlstra 已提交
5243 5244 5245 5246

free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
5247 5248
}

5249
void perf_pmu_unregister(struct pmu *pmu)
5250
{
5251 5252 5253
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
5254

5255
	/*
P
Peter Zijlstra 已提交
5256 5257
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
5258
	 */
5259
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
5260
	synchronize_rcu();
5261

P
Peter Zijlstra 已提交
5262
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
5263
	free_pmu_context(pmu->pmu_cpu_context);
5264
}
5265

5266 5267 5268 5269 5270 5271 5272 5273 5274
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		int ret = pmu->event_init(event);
		if (!ret)
P
Peter Zijlstra 已提交
5275
			goto unlock;
5276

5277 5278
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
5279
			goto unlock;
5280
		}
5281
	}
P
Peter Zijlstra 已提交
5282 5283
	pmu = ERR_PTR(-ENOENT);
unlock:
5284
	srcu_read_unlock(&pmus_srcu, idx);
5285

5286
	return pmu;
5287 5288
}

T
Thomas Gleixner 已提交
5289
/*
5290
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
5291
 */
5292
static struct perf_event *
5293
perf_event_alloc(struct perf_event_attr *attr, int cpu,
5294 5295
		   struct perf_event *group_leader,
		   struct perf_event *parent_event,
5296
		   perf_overflow_handler_t overflow_handler)
T
Thomas Gleixner 已提交
5297
{
P
Peter Zijlstra 已提交
5298
	struct pmu *pmu;
5299 5300
	struct perf_event *event;
	struct hw_perf_event *hwc;
5301
	long err;
T
Thomas Gleixner 已提交
5302

5303
	event = kzalloc(sizeof(*event), GFP_KERNEL);
5304
	if (!event)
5305
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
5306

5307
	/*
5308
	 * Single events are their own group leaders, with an
5309 5310 5311
	 * empty sibling list:
	 */
	if (!group_leader)
5312
		group_leader = event;
5313

5314 5315
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
5316

5317 5318 5319 5320
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
	init_waitqueue_head(&event->waitq);
T
Thomas Gleixner 已提交
5321

5322
	mutex_init(&event->mmap_mutex);
5323

5324 5325 5326 5327 5328
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
5329

5330
	event->parent		= parent_event;
5331

5332 5333
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
5334

5335
	event->state		= PERF_EVENT_STATE_INACTIVE;
5336

5337 5338
	if (!overflow_handler && parent_event)
		overflow_handler = parent_event->overflow_handler;
5339
	
5340
	event->overflow_handler	= overflow_handler;
5341

5342
	if (attr->disabled)
5343
		event->state = PERF_EVENT_STATE_OFF;
5344

5345
	pmu = NULL;
5346

5347
	hwc = &event->hw;
5348
	hwc->sample_period = attr->sample_period;
5349
	if (attr->freq && attr->sample_freq)
5350
		hwc->sample_period = 1;
5351
	hwc->last_period = hwc->sample_period;
5352

5353
	local64_set(&hwc->period_left, hwc->sample_period);
5354

5355
	/*
5356
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
5357
	 */
5358
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5359 5360
		goto done;

5361
	pmu = perf_init_event(event);
5362

5363 5364
done:
	err = 0;
5365
	if (!pmu)
5366
		err = -EINVAL;
5367 5368
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
5369

5370
	if (err) {
5371 5372 5373
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
5374
		return ERR_PTR(err);
I
Ingo Molnar 已提交
5375
	}
5376

5377
	event->pmu = pmu;
T
Thomas Gleixner 已提交
5378

5379 5380
	if (!event->parent) {
		atomic_inc(&nr_events);
5381
		if (event->attr.mmap || event->attr.mmap_data)
5382 5383 5384 5385 5386
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
5387 5388 5389 5390 5391 5392 5393
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
			if (err) {
				free_event(event);
				return ERR_PTR(err);
			}
		}
5394
	}
5395

5396
	return event;
T
Thomas Gleixner 已提交
5397 5398
}

5399 5400
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
5401 5402
{
	u32 size;
5403
	int ret;
5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
5428 5429 5430
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
5431 5432
	 */
	if (size > sizeof(*attr)) {
5433 5434 5435
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
5436

5437 5438
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
5439

5440
		for (; addr < end; addr++) {
5441 5442 5443 5444 5445 5446
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
5447
		size = sizeof(*attr);
5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * If the type exists, the corresponding creation will verify
	 * the attr->config.
	 */
	if (attr->type >= PERF_TYPE_MAX)
		return -EINVAL;

5461
	if (attr->__reserved_1)
5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

5479 5480
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5481
{
5482
	struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5483 5484
	int ret = -EINVAL;

5485
	if (!output_event)
5486 5487
		goto set;

5488 5489
	/* don't allow circular references */
	if (event == output_event)
5490 5491
		goto out;

5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
	 * If its not a per-cpu buffer, it must be the same task.
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

5504
set:
5505
	mutex_lock(&event->mmap_mutex);
5506 5507 5508
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
5509

5510 5511
	if (output_event) {
		/* get the buffer we want to redirect to */
5512 5513
		buffer = perf_buffer_get(output_event);
		if (!buffer)
5514
			goto unlock;
5515 5516
	}

5517 5518
	old_buffer = event->buffer;
	rcu_assign_pointer(event->buffer, buffer);
5519
	ret = 0;
5520 5521 5522
unlock:
	mutex_unlock(&event->mmap_mutex);

5523 5524
	if (old_buffer)
		perf_buffer_put(old_buffer);
5525 5526 5527 5528
out:
	return ret;
}

T
Thomas Gleixner 已提交
5529
/**
5530
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
5531
 *
5532
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
5533
 * @pid:		target pid
I
Ingo Molnar 已提交
5534
 * @cpu:		target cpu
5535
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
5536
 */
5537 5538
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
5539
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
5540
{
5541 5542
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
5543 5544 5545
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
5546
	struct file *group_file = NULL;
M
Matt Helsley 已提交
5547
	struct task_struct *task = NULL;
5548
	struct pmu *pmu;
5549
	int event_fd;
5550
	int move_group = 0;
5551
	int fput_needed = 0;
5552
	int err;
T
Thomas Gleixner 已提交
5553

5554
	/* for future expandability... */
5555
	if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5556 5557
		return -EINVAL;

5558 5559 5560
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
5561

5562 5563 5564 5565 5566
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

5567
	if (attr.freq) {
5568
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
5569 5570 5571
			return -EINVAL;
	}

5572 5573 5574 5575
	event_fd = get_unused_fd_flags(O_RDWR);
	if (event_fd < 0)
		return event_fd;

5576 5577 5578 5579
	if (group_fd != -1) {
		group_leader = perf_fget_light(group_fd, &fput_needed);
		if (IS_ERR(group_leader)) {
			err = PTR_ERR(group_leader);
5580
			goto err_fd;
5581 5582 5583 5584 5585 5586 5587 5588
		}
		group_file = group_leader->filp;
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

5589 5590 5591 5592 5593 5594
	event = perf_event_alloc(&attr, cpu, group_leader, NULL, NULL);
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err_fd;
	}

5595 5596 5597 5598 5599
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
5623

5624
	if (pid != -1) {
M
Matt Helsley 已提交
5625
		task = find_lively_task_by_vpid(pid);
5626 5627 5628 5629 5630
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}
M
Matt Helsley 已提交
5631

5632 5633 5634
	/*
	 * Get the target context (task or percpu):
	 */
M
Matt Helsley 已提交
5635
	ctx = find_get_context(pmu, task, cpu);
5636 5637 5638 5639 5640
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
		goto err_group_fd;
	}

I
Ingo Molnar 已提交
5641
	/*
5642
	 * Look up the group leader (we will attach this event to it):
5643
	 */
5644
	if (group_leader) {
5645
		err = -EINVAL;
5646 5647

		/*
I
Ingo Molnar 已提交
5648 5649 5650 5651
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
5652
			goto err_context;
I
Ingo Molnar 已提交
5653 5654 5655
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
5656
		 */
5657 5658 5659 5660 5661 5662 5663 5664
		if (move_group) {
			if (group_leader->ctx->type != ctx->type)
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

5665 5666 5667
		/*
		 * Only a group leader can be exclusive or pinned
		 */
5668
		if (attr.exclusive || attr.pinned)
5669
			goto err_context;
5670 5671 5672 5673 5674
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
5675
			goto err_context;
5676
	}
T
Thomas Gleixner 已提交
5677

5678 5679 5680
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
5681
		goto err_context;
5682
	}
5683

5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695
	if (move_group) {
		struct perf_event_context *gctx = group_leader->ctx;

		mutex_lock(&gctx->mutex);
		perf_event_remove_from_context(group_leader);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
			perf_event_remove_from_context(sibling);
			put_ctx(gctx);
		}
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
5696
	}
5697

5698
	event->filp = event_file;
5699
	WARN_ON_ONCE(ctx->parent_ctx);
5700
	mutex_lock(&ctx->mutex);
5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711

	if (move_group) {
		perf_install_in_context(ctx, group_leader, cpu);
		get_ctx(ctx);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
			perf_install_in_context(ctx, sibling, cpu);
			get_ctx(ctx);
		}
	}

5712
	perf_install_in_context(ctx, event, cpu);
5713
	++ctx->generation;
5714
	mutex_unlock(&ctx->mutex);
5715

5716
	event->owner = current;
5717
	get_task_struct(current);
5718 5719 5720
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
5721

5722 5723 5724 5725 5726 5727
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
5728 5729 5730
	fput_light(group_file, fput_needed);
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
5731

5732
err_context:
5733
	put_ctx(ctx);
5734 5735
err_group_fd:
	fput_light(group_file, fput_needed);
5736
	free_event(event);
5737 5738
err_fd:
	put_unused_fd(event_fd);
5739
	return err;
T
Thomas Gleixner 已提交
5740 5741
}

5742 5743 5744 5745 5746
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
5747
 * @task: task to profile (NULL for percpu)
5748 5749 5750
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
5751
				 struct task_struct *task,
5752
				 perf_overflow_handler_t overflow_handler)
5753 5754
{
	struct perf_event_context *ctx;
5755
	struct perf_event *event;
5756
	int err;
5757

5758 5759 5760
	/*
	 * Get the target context (task or percpu):
	 */
5761

5762 5763 5764 5765 5766
	event = perf_event_alloc(attr, cpu, NULL, NULL, overflow_handler);
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
5767

M
Matt Helsley 已提交
5768
	ctx = find_get_context(event->pmu, task, cpu);
5769 5770
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
5771
		goto err_free;
5772
	}
5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788

	event->filp = NULL;
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
	mutex_unlock(&ctx->mutex);

	event->owner = current;
	get_task_struct(current);
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);

	return event;

5789 5790 5791
err_free:
	free_event(event);
err:
5792
	return ERR_PTR(err);
5793
}
5794
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5795

5796
static void sync_child_event(struct perf_event *child_event,
5797
			       struct task_struct *child)
5798
{
5799
	struct perf_event *parent_event = child_event->parent;
5800
	u64 child_val;
5801

5802 5803
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
5804

P
Peter Zijlstra 已提交
5805
	child_val = perf_event_count(child_event);
5806 5807 5808 5809

	/*
	 * Add back the child's count to the parent's count:
	 */
5810
	atomic64_add(child_val, &parent_event->child_count);
5811 5812 5813 5814
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
5815 5816

	/*
5817
	 * Remove this event from the parent's list
5818
	 */
5819 5820 5821 5822
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
5823 5824

	/*
5825
	 * Release the parent event, if this was the last
5826 5827
	 * reference to it.
	 */
5828
	fput(parent_event->filp);
5829 5830
}

5831
static void
5832 5833
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
5834
			 struct task_struct *child)
5835
{
5836
	struct perf_event *parent_event;
5837

5838
	perf_event_remove_from_context(child_event);
5839

5840
	parent_event = child_event->parent;
5841
	/*
5842
	 * It can happen that parent exits first, and has events
5843
	 * that are still around due to the child reference. These
5844
	 * events need to be zapped - but otherwise linger.
5845
	 */
5846 5847 5848
	if (parent_event) {
		sync_child_event(child_event, child);
		free_event(child_event);
5849
	}
5850 5851
}

P
Peter Zijlstra 已提交
5852
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
5853
{
5854 5855
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
5856
	unsigned long flags;
5857

P
Peter Zijlstra 已提交
5858
	if (likely(!child->perf_event_ctxp[ctxn])) {
5859
		perf_event_task(child, NULL, 0);
5860
		return;
P
Peter Zijlstra 已提交
5861
	}
5862

5863
	local_irq_save(flags);
5864 5865 5866 5867 5868 5869
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
P
Peter Zijlstra 已提交
5870
	child_ctx = child->perf_event_ctxp[ctxn];
5871
	__perf_event_task_sched_out(child_ctx);
5872 5873 5874

	/*
	 * Take the context lock here so that if find_get_context is
5875
	 * reading child->perf_event_ctxp, we wait until it has
5876 5877
	 * incremented the context's refcount before we do put_ctx below.
	 */
5878
	raw_spin_lock(&child_ctx->lock);
P
Peter Zijlstra 已提交
5879
	child->perf_event_ctxp[ctxn] = NULL;
5880 5881 5882
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
5883
	 * the events from it.
5884 5885
	 */
	unclone_ctx(child_ctx);
5886
	update_context_time(child_ctx);
5887
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
5888 5889

	/*
5890 5891 5892
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
5893
	 */
5894
	perf_event_task(child, child_ctx, 0);
5895

5896 5897 5898
	/*
	 * We can recurse on the same lock type through:
	 *
5899 5900 5901
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       fput(parent_event->filp)
5902 5903 5904 5905 5906
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
5907
	mutex_lock(&child_ctx->mutex);
5908

5909
again:
5910 5911 5912 5913 5914
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5915
				 group_entry)
5916
		__perf_event_exit_task(child_event, child_ctx, child);
5917 5918

	/*
5919
	 * If the last event was a group event, it will have appended all
5920 5921 5922
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
5923 5924
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
5925
		goto again;
5926 5927 5928 5929

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
5930 5931
}

P
Peter Zijlstra 已提交
5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

	fput(parent->filp);

5957
	perf_group_detach(event);
5958 5959 5960 5961
	list_del_event(event, ctx);
	free_event(event);
}

5962 5963
/*
 * free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
5964
 * perf_event_init_task below, used by fork() in case of fail.
5965
 */
5966
void perf_event_free_task(struct task_struct *task)
5967
{
P
Peter Zijlstra 已提交
5968
	struct perf_event_context *ctx;
5969
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
5970
	int ctxn;
5971

P
Peter Zijlstra 已提交
5972 5973 5974 5975
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
5976

P
Peter Zijlstra 已提交
5977
		mutex_lock(&ctx->mutex);
5978
again:
P
Peter Zijlstra 已提交
5979 5980 5981
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
5982

P
Peter Zijlstra 已提交
5983 5984 5985
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
5986

P
Peter Zijlstra 已提交
5987 5988 5989
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
5990

P
Peter Zijlstra 已提交
5991
		mutex_unlock(&ctx->mutex);
5992

P
Peter Zijlstra 已提交
5993 5994
		put_ctx(ctx);
	}
5995 5996
}

5997 5998 5999 6000 6001 6002 6003 6004
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *child_event;
6017
	unsigned long flags;
P
Peter Zijlstra 已提交
6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
					   group_leader, parent_event,
					   NULL);
	if (IS_ERR(child_event))
		return child_event;
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;

	/*
	 * Link it up in the child's context:
	 */
6062
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6063
	add_event_to_ctx(child_event, child_ctx);
6064
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105

	/*
	 * Get a reference to the parent filp - we will fput it
	 * when the child event exits. This is safe to do because
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
	atomic_long_inc(&parent_event->filp->f_count);

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
6106 6107 6108 6109 6110
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
6111
		   struct task_struct *child, int ctxn,
6112 6113 6114
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
6115
	struct perf_event_context *child_ctx;
6116 6117 6118 6119

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
6120 6121
	}

P
Peter Zijlstra 已提交
6122
       	child_ctx = child->perf_event_ctxp[ctxn];
6123 6124 6125 6126 6127 6128 6129
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
6130

6131
		child_ctx = alloc_perf_context(event->pmu, child);
6132 6133
		if (!child_ctx)
			return -ENOMEM;
6134

P
Peter Zijlstra 已提交
6135
		child->perf_event_ctxp[ctxn] = child_ctx;
6136 6137 6138 6139 6140 6141 6142 6143 6144
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
6145 6146
}

6147
/*
6148
 * Initialize the perf_event context in task_struct
6149
 */
P
Peter Zijlstra 已提交
6150
int perf_event_init_context(struct task_struct *child, int ctxn)
6151
{
6152
	struct perf_event_context *child_ctx, *parent_ctx;
6153 6154
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
6155
	struct task_struct *parent = current;
6156
	int inherited_all = 1;
6157
	int ret = 0;
6158

P
Peter Zijlstra 已提交
6159
	child->perf_event_ctxp[ctxn] = NULL;
6160

6161 6162
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);
6163

P
Peter Zijlstra 已提交
6164
	if (likely(!parent->perf_event_ctxp[ctxn]))
6165 6166
		return 0;

6167
	/*
6168 6169
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
6170
	 */
P
Peter Zijlstra 已提交
6171
	parent_ctx = perf_pin_task_context(parent, ctxn);
6172

6173 6174 6175 6176 6177 6178 6179
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

6180 6181 6182 6183
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
6184
	mutex_lock(&parent_ctx->mutex);
6185 6186 6187 6188 6189

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
6190
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
6191 6192
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
6193 6194 6195
		if (ret)
			break;
	}
6196

6197
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
6198 6199
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
6200
		if (ret)
6201
			break;
6202 6203
	}

P
Peter Zijlstra 已提交
6204
	child_ctx = child->perf_event_ctxp[ctxn];
6205

6206
	if (child_ctx && inherited_all) {
6207 6208 6209
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
6210 6211
		 * Note that if the parent is a clone, it could get
		 * uncloned at any point, but that doesn't matter
6212
		 * because the list of events and the generation
6213
		 * count can't have changed since we took the mutex.
6214
		 */
6215 6216 6217
		cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
6218
			child_ctx->parent_gen = parent_ctx->parent_gen;
6219 6220 6221 6222 6223
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
6224 6225
	}

6226
	mutex_unlock(&parent_ctx->mutex);
6227

6228
	perf_unpin_context(parent_ctx);
6229

6230
	return ret;
6231 6232
}

P
Peter Zijlstra 已提交
6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
		if (ret)
			return ret;
	}

	return 0;
}

6249 6250
static void __init perf_event_init_all_cpus(void)
{
6251
	struct swevent_htable *swhash;
6252 6253 6254
	int cpu;

	for_each_possible_cpu(cpu) {
6255 6256
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
6257
		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6258 6259 6260
	}
}

6261
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
6262
{
P
Peter Zijlstra 已提交
6263
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
6264

6265 6266
	mutex_lock(&swhash->hlist_mutex);
	if (swhash->hlist_refcount > 0) {
6267 6268
		struct swevent_hlist *hlist;

6269 6270 6271
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6272
	}
6273
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
6274 6275 6276
}

#ifdef CONFIG_HOTPLUG_CPU
6277
static void perf_pmu_rotate_stop(struct pmu *pmu)
T
Thomas Gleixner 已提交
6278
{
6279 6280 6281 6282 6283 6284 6285
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	WARN_ON(!irqs_disabled());

	list_del_init(&cpuctx->rotation_list);
}

P
Peter Zijlstra 已提交
6286
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
6287
{
P
Peter Zijlstra 已提交
6288
	struct perf_event_context *ctx = __info;
6289
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
6290

P
Peter Zijlstra 已提交
6291
	perf_pmu_rotate_stop(ctx->pmu);
6292

6293 6294 6295
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
		__perf_event_remove_from_context(event);
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6296
		__perf_event_remove_from_context(event);
T
Thomas Gleixner 已提交
6297
}
P
Peter Zijlstra 已提交
6298 6299 6300 6301 6302 6303 6304 6305 6306

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
6307
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
6308 6309 6310 6311 6312 6313 6314 6315

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

6316
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
6317
{
6318
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6319

6320 6321 6322
	mutex_lock(&swhash->hlist_mutex);
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
6323

P
Peter Zijlstra 已提交
6324
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
6325 6326
}
#else
6327
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
6328 6329 6330 6331 6332 6333 6334
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

P
Peter Zijlstra 已提交
6335
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
6336 6337

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
6338
	case CPU_DOWN_FAILED:
6339
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
6340 6341
		break;

P
Peter Zijlstra 已提交
6342
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
6343
	case CPU_DOWN_PREPARE:
6344
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
6345 6346 6347 6348 6349 6350 6351 6352 6353
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

6354
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
6355
{
6356
	perf_event_init_all_cpus();
6357 6358 6359 6360 6361 6362
	init_srcu_struct(&pmus_srcu);
	perf_pmu_register(&perf_swevent);
	perf_pmu_register(&perf_cpu_clock);
	perf_pmu_register(&perf_task_clock);
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
T
Thomas Gleixner 已提交
6363
}