perf_event.c 137.7 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4 5 6
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
16
#include <linux/file.h>
T
Thomas Gleixner 已提交
17
#include <linux/poll.h>
18
#include <linux/slab.h>
19
#include <linux/hash.h>
T
Thomas Gleixner 已提交
20
#include <linux/sysfs.h>
21
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
22
#include <linux/percpu.h>
23
#include <linux/ptrace.h>
24
#include <linux/vmstat.h>
25
#include <linux/vmalloc.h>
26 27
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
28 29 30
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
31
#include <linux/kernel_stat.h>
32
#include <linux/perf_event.h>
L
Li Zefan 已提交
33
#include <linux/ftrace_event.h>
T
Thomas Gleixner 已提交
34

35 36
#include <asm/irq_regs.h>

37 38 39 40
static atomic_t nr_events __read_mostly;
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
41

P
Peter Zijlstra 已提交
42 43 44 45
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

46
/*
47
 * perf event paranoia level:
48 49
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
50
 *   1 - disallow cpu events for unpriv
51
 *   2 - disallow kernel profiling for unpriv
52
 */
53
int sysctl_perf_event_paranoid __read_mostly = 1;
54

55
int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
56 57

/*
58
 * max perf event sample rate
59
 */
60
int sysctl_perf_event_sample_rate __read_mostly = 100000;
61

62
static atomic64_t perf_event_id;
63

64
void __weak perf_event_print_debug(void)	{ }
65

P
Peter Zijlstra 已提交
66
void perf_pmu_disable(struct pmu *pmu)
67
{
P
Peter Zijlstra 已提交
68 69 70
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
71 72
}

P
Peter Zijlstra 已提交
73
void perf_pmu_enable(struct pmu *pmu)
74
{
P
Peter Zijlstra 已提交
75 76 77
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
78 79
}

P
Peter Zijlstra 已提交
80
static void perf_pmu_rotate_start(struct pmu *pmu)
81
{
P
Peter Zijlstra 已提交
82
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
83 84 85 86 87 88 89 90 91

	if (hrtimer_active(&cpuctx->timer))
		return;

	__hrtimer_start_range_ns(&cpuctx->timer,
			ns_to_ktime(cpuctx->timer_interval), 0,
			HRTIMER_MODE_REL_PINNED, 0);
}

P
Peter Zijlstra 已提交
92
static void perf_pmu_rotate_stop(struct pmu *pmu)
93
{
P
Peter Zijlstra 已提交
94
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95 96 97 98

	hrtimer_cancel(&cpuctx->timer);
}

99
static void get_ctx(struct perf_event_context *ctx)
100
{
101
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
102 103
}

104 105
static void free_ctx(struct rcu_head *head)
{
106
	struct perf_event_context *ctx;
107

108
	ctx = container_of(head, struct perf_event_context, rcu_head);
109 110 111
	kfree(ctx);
}

112
static void put_ctx(struct perf_event_context *ctx)
113
{
114 115 116
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
117 118 119
		if (ctx->task)
			put_task_struct(ctx->task);
		call_rcu(&ctx->rcu_head, free_ctx);
120
	}
121 122
}

123
static void unclone_ctx(struct perf_event_context *ctx)
124 125 126 127 128 129 130
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

131
/*
132
 * If we inherit events we want to return the parent event id
133 134
 * to userspace.
 */
135
static u64 primary_event_id(struct perf_event *event)
136
{
137
	u64 id = event->id;
138

139 140
	if (event->parent)
		id = event->parent->id;
141 142 143 144

	return id;
}

145
/*
146
 * Get the perf_event_context for a task and lock it.
147 148 149
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
150
static struct perf_event_context *
151
perf_lock_task_context(struct task_struct *task, unsigned long *flags)
152
{
153
	struct perf_event_context *ctx;
154 155

	rcu_read_lock();
P
Peter Zijlstra 已提交
156
retry:
157
	ctx = rcu_dereference(task->perf_event_ctxp);
158 159 160 161
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
162
		 * perf_event_task_sched_out, though the
163 164 165 166 167 168
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
169
		raw_spin_lock_irqsave(&ctx->lock, *flags);
170
		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
171
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
172 173
			goto retry;
		}
174 175

		if (!atomic_inc_not_zero(&ctx->refcount)) {
176
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
177 178
			ctx = NULL;
		}
179 180 181 182 183 184 185 186 187 188
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
189
static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
190
{
191
	struct perf_event_context *ctx;
192 193 194 195 196
	unsigned long flags;

	ctx = perf_lock_task_context(task, &flags);
	if (ctx) {
		++ctx->pin_count;
197
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
198 199 200 201
	}
	return ctx;
}

202
static void perf_unpin_context(struct perf_event_context *ctx)
203 204 205
{
	unsigned long flags;

206
	raw_spin_lock_irqsave(&ctx->lock, flags);
207
	--ctx->pin_count;
208
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
209 210 211
	put_ctx(ctx);
}

212 213
static inline u64 perf_clock(void)
{
214
	return local_clock();
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
}

/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;

240 241 242 243 244 245
	if (ctx->is_active)
		run_end = ctx->time;
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
246 247 248 249 250 251 252 253 254

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
		run_end = ctx->time;

	event->total_time_running = run_end - event->tstamp_running;
}

255 256 257 258 259 260 261 262 263 264 265 266
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

267 268 269 270 271 272 273 274 275
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

276
/*
277
 * Add a event from the lists for its context.
278 279
 * Must be called with ctx->mutex and ctx->lock held.
 */
280
static void
281
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
282
{
283 284
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
285 286

	/*
287 288 289
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
290
	 */
291
	if (event->group_leader == event) {
292 293
		struct list_head *list;

294 295 296
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

297 298
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
299
	}
P
Peter Zijlstra 已提交
300

301
	list_add_rcu(&event->event_entry, &ctx->event_list);
302
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
303
		perf_pmu_rotate_start(ctx->pmu);
304 305
	ctx->nr_events++;
	if (event->attr.inherit_stat)
306
		ctx->nr_stat++;
307 308
}

309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
static void perf_group_attach(struct perf_event *event)
{
	struct perf_event *group_leader = event->group_leader;

	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_GROUP);
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
}

327
/*
328
 * Remove a event from the lists for its context.
329
 * Must be called with ctx->mutex and ctx->lock held.
330
 */
331
static void
332
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
333
{
334 335 336 337
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
338
		return;
339 340 341

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

342 343
	ctx->nr_events--;
	if (event->attr.inherit_stat)
344
		ctx->nr_stat--;
345

346
	list_del_rcu(&event->event_entry);
347

348 349
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
350

351
	update_group_times(event);
352 353 354 355 356 357 358 359 360 361

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
362 363
}

364
static void perf_group_detach(struct perf_event *event)
365 366
{
	struct perf_event *sibling, *tmp;
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
		return;
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
388

389
	/*
390 391
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
392
	 * to whatever list we are on.
393
	 */
394
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
395 396
		if (list)
			list_move_tail(&sibling->group_entry, list);
397
		sibling->group_leader = sibling;
398 399 400

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
401 402 403
	}
}

404 405 406 407 408 409
static inline int
event_filter_match(struct perf_event *event)
{
	return event->cpu == -1 || event->cpu == smp_processor_id();
}

410
static void
411
event_sched_out(struct perf_event *event,
412
		  struct perf_cpu_context *cpuctx,
413
		  struct perf_event_context *ctx)
414
{
415 416 417 418 419 420 421 422 423 424 425 426 427 428
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
		delta = ctx->time - event->tstamp_stopped;
		event->tstamp_running += delta;
		event->tstamp_stopped = ctx->time;
	}

429
	if (event->state != PERF_EVENT_STATE_ACTIVE)
430 431
		return;

432 433 434 435
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
436
	}
437
	event->tstamp_stopped = ctx->time;
P
Peter Zijlstra 已提交
438
	event->pmu->del(event, 0);
439
	event->oncpu = -1;
440

441
	if (!is_software_event(event))
442 443
		cpuctx->active_oncpu--;
	ctx->nr_active--;
444
	if (event->attr.exclusive || !cpuctx->active_oncpu)
445 446 447
		cpuctx->exclusive = 0;
}

448
static void
449
group_sched_out(struct perf_event *group_event,
450
		struct perf_cpu_context *cpuctx,
451
		struct perf_event_context *ctx)
452
{
453
	struct perf_event *event;
454
	int state = group_event->state;
455

456
	event_sched_out(group_event, cpuctx, ctx);
457 458 459 460

	/*
	 * Schedule out siblings (if any):
	 */
461 462
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
463

464
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
465 466 467
		cpuctx->exclusive = 0;
}

P
Peter Zijlstra 已提交
468 469 470 471 472 473
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

T
Thomas Gleixner 已提交
474
/*
475
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
476
 *
477
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
478 479
 * remove it from the context list.
 */
480
static void __perf_event_remove_from_context(void *info)
T
Thomas Gleixner 已提交
481
{
482 483
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
484
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
485 486 487 488 489 490

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
491
	if (ctx->task && cpuctx->task_ctx != ctx)
T
Thomas Gleixner 已提交
492 493
		return;

494
	raw_spin_lock(&ctx->lock);
T
Thomas Gleixner 已提交
495

496
	event_sched_out(event, cpuctx, ctx);
497

498
	list_del_event(event, ctx);
T
Thomas Gleixner 已提交
499

500
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
501 502 503 504
}


/*
505
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
506
 *
507
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
508
 *
509
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
510
 * call when the task is on a CPU.
511
 *
512 513
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
514 515
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
516
 * When called from perf_event_exit_task, it's OK because the
517
 * context has been detached from its task.
T
Thomas Gleixner 已提交
518
 */
519
static void perf_event_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
520
{
521
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
522 523 524 525
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
526
		 * Per cpu events are removed via an smp call and
527
		 * the removal is always successful.
T
Thomas Gleixner 已提交
528
		 */
529 530 531
		smp_call_function_single(event->cpu,
					 __perf_event_remove_from_context,
					 event, 1);
T
Thomas Gleixner 已提交
532 533 534 535
		return;
	}

retry:
536 537
	task_oncpu_function_call(task, __perf_event_remove_from_context,
				 event);
T
Thomas Gleixner 已提交
538

539
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
540 541 542
	/*
	 * If the context is active we need to retry the smp call.
	 */
543
	if (ctx->nr_active && !list_empty(&event->group_entry)) {
544
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
545 546 547 548 549
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
550
	 * can remove the event safely, if the call above did not
T
Thomas Gleixner 已提交
551 552
	 * succeed.
	 */
P
Peter Zijlstra 已提交
553
	if (!list_empty(&event->group_entry))
554
		list_del_event(event, ctx);
555
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
556 557
}

558
/*
559
 * Cross CPU call to disable a performance event
560
 */
561
static void __perf_event_disable(void *info)
562
{
563 564
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
565
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
566 567

	/*
568 569
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
570
	 */
571
	if (ctx->task && cpuctx->task_ctx != ctx)
572 573
		return;

574
	raw_spin_lock(&ctx->lock);
575 576

	/*
577
	 * If the event is on, turn it off.
578 579
	 * If it is in error state, leave it in error state.
	 */
580
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
581
		update_context_time(ctx);
582 583 584
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
585
		else
586 587
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
588 589
	}

590
	raw_spin_unlock(&ctx->lock);
591 592 593
}

/*
594
 * Disable a event.
595
 *
596 597
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
598
 * remains valid.  This condition is satisifed when called through
599 600 601 602
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
603
 * is the current context on this CPU and preemption is disabled,
604
 * hence we can't get into perf_event_task_sched_out for this context.
605
 */
606
void perf_event_disable(struct perf_event *event)
607
{
608
	struct perf_event_context *ctx = event->ctx;
609 610 611 612
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
613
		 * Disable the event on the cpu that it's on
614
		 */
615 616
		smp_call_function_single(event->cpu, __perf_event_disable,
					 event, 1);
617 618 619
		return;
	}

P
Peter Zijlstra 已提交
620
retry:
621
	task_oncpu_function_call(task, __perf_event_disable, event);
622

623
	raw_spin_lock_irq(&ctx->lock);
624
	/*
625
	 * If the event is still active, we need to retry the cross-call.
626
	 */
627
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
628
		raw_spin_unlock_irq(&ctx->lock);
629 630 631 632 633 634 635
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
636 637 638
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
639
	}
640

641
	raw_spin_unlock_irq(&ctx->lock);
642 643
}

644
static int
645
event_sched_in(struct perf_event *event,
646
		 struct perf_cpu_context *cpuctx,
647
		 struct perf_event_context *ctx)
648
{
649
	if (event->state <= PERF_EVENT_STATE_OFF)
650 651
		return 0;

652
	event->state = PERF_EVENT_STATE_ACTIVE;
653
	event->oncpu = smp_processor_id();
654 655 656 657 658
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

P
Peter Zijlstra 已提交
659
	if (event->pmu->add(event, PERF_EF_START)) {
660 661
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
662 663 664
		return -EAGAIN;
	}

665
	event->tstamp_running += ctx->time - event->tstamp_stopped;
666

667
	if (!is_software_event(event))
668
		cpuctx->active_oncpu++;
669 670
	ctx->nr_active++;

671
	if (event->attr.exclusive)
672 673
		cpuctx->exclusive = 1;

674 675 676
	return 0;
}

677
static int
678
group_sched_in(struct perf_event *group_event,
679
	       struct perf_cpu_context *cpuctx,
680
	       struct perf_event_context *ctx)
681
{
682
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
683
	struct pmu *pmu = group_event->pmu;
684

685
	if (group_event->state == PERF_EVENT_STATE_OFF)
686 687
		return 0;

P
Peter Zijlstra 已提交
688
	pmu->start_txn(pmu);
689

690
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
691
		pmu->cancel_txn(pmu);
692
		return -EAGAIN;
693
	}
694 695 696 697

	/*
	 * Schedule in siblings as one group (if any):
	 */
698
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
699
		if (event_sched_in(event, cpuctx, ctx)) {
700
			partial_group = event;
701 702 703 704
			goto group_error;
		}
	}

P
Peter Zijlstra 已提交
705
	if (!pmu->commit_txn(pmu))
706
		return 0;
707

708 709 710 711 712
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
713 714
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
715
			break;
716
		event_sched_out(event, cpuctx, ctx);
717
	}
718
	event_sched_out(group_event, cpuctx, ctx);
719

P
Peter Zijlstra 已提交
720
	pmu->cancel_txn(pmu);
721

722 723 724
	return -EAGAIN;
}

725
/*
726
 * Work out whether we can put this event group on the CPU now.
727
 */
728
static int group_can_go_on(struct perf_event *event,
729 730 731 732
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
733
	 * Groups consisting entirely of software events can always go on.
734
	 */
735
	if (event->group_flags & PERF_GROUP_SOFTWARE)
736 737 738
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
739
	 * events can go on.
740 741 742 743 744
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
745
	 * events on the CPU, it can't go on.
746
	 */
747
	if (event->attr.exclusive && cpuctx->active_oncpu)
748 749 750 751 752 753 754 755
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

756 757
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
758
{
759
	list_add_event(event, ctx);
760
	perf_group_attach(event);
761 762 763
	event->tstamp_enabled = ctx->time;
	event->tstamp_running = ctx->time;
	event->tstamp_stopped = ctx->time;
764 765
}

T
Thomas Gleixner 已提交
766
/*
767
 * Cross CPU call to install and enable a performance event
768 769
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
770 771 772
 */
static void __perf_install_in_context(void *info)
{
773 774 775
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
776
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
777
	int err;
T
Thomas Gleixner 已提交
778 779 780 781 782

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
783
	 * Or possibly this is the right context but it isn't
784
	 * on this cpu because it had no events.
T
Thomas Gleixner 已提交
785
	 */
786
	if (ctx->task && cpuctx->task_ctx != ctx) {
787
		if (cpuctx->task_ctx || ctx->task != current)
788 789 790
			return;
		cpuctx->task_ctx = ctx;
	}
T
Thomas Gleixner 已提交
791

792
	raw_spin_lock(&ctx->lock);
793
	ctx->is_active = 1;
794
	update_context_time(ctx);
T
Thomas Gleixner 已提交
795

796
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
797

798 799 800
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

801
	/*
802
	 * Don't put the event on if it is disabled or if
803 804
	 * it is in a group and the group isn't on.
	 */
805 806
	if (event->state != PERF_EVENT_STATE_INACTIVE ||
	    (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
807 808
		goto unlock;

809
	/*
810 811 812
	 * An exclusive event can't go on if there are already active
	 * hardware events, and no hardware event can go on if there
	 * is already an exclusive event on.
813
	 */
814
	if (!group_can_go_on(event, cpuctx, 1))
815 816
		err = -EEXIST;
	else
817
		err = event_sched_in(event, cpuctx, ctx);
818

819 820
	if (err) {
		/*
821
		 * This event couldn't go on.  If it is in a group
822
		 * then we have to pull the whole group off.
823
		 * If the event group is pinned then put it in error state.
824
		 */
825
		if (leader != event)
826
			group_sched_out(leader, cpuctx, ctx);
827
		if (leader->attr.pinned) {
828
			update_group_times(leader);
829
			leader->state = PERF_EVENT_STATE_ERROR;
830
		}
831
	}
T
Thomas Gleixner 已提交
832

P
Peter Zijlstra 已提交
833
unlock:
834
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
835 836 837
}

/*
838
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
839
 *
840 841
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
842
 *
843
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
844 845
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
846 847
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
848 849
 */
static void
850 851
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
852 853 854 855
			int cpu)
{
	struct task_struct *task = ctx->task;

856 857
	event->ctx = ctx;

T
Thomas Gleixner 已提交
858 859
	if (!task) {
		/*
860
		 * Per cpu events are installed via an smp call and
861
		 * the install is always successful.
T
Thomas Gleixner 已提交
862 863
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
864
					 event, 1);
T
Thomas Gleixner 已提交
865 866 867 868 869
		return;
	}

retry:
	task_oncpu_function_call(task, __perf_install_in_context,
870
				 event);
T
Thomas Gleixner 已提交
871

872
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
873 874 875
	/*
	 * we need to retry the smp call.
	 */
876
	if (ctx->is_active && list_empty(&event->group_entry)) {
877
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
878 879 880 881 882
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
883
	 * can add the event safely, if it the call above did not
T
Thomas Gleixner 已提交
884 885
	 * succeed.
	 */
886 887
	if (list_empty(&event->group_entry))
		add_event_to_ctx(event, ctx);
888
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
889 890
}

891
/*
892
 * Put a event into inactive state and update time fields.
893 894 895 896 897 898
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
899 900
static void __perf_event_mark_enabled(struct perf_event *event,
					struct perf_event_context *ctx)
901
{
902
	struct perf_event *sub;
903

904 905
	event->state = PERF_EVENT_STATE_INACTIVE;
	event->tstamp_enabled = ctx->time - event->total_time_enabled;
P
Peter Zijlstra 已提交
906 907
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
908 909
			sub->tstamp_enabled =
				ctx->time - sub->total_time_enabled;
P
Peter Zijlstra 已提交
910 911
		}
	}
912 913
}

914
/*
915
 * Cross CPU call to enable a performance event
916
 */
917
static void __perf_event_enable(void *info)
918
{
919 920 921
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
922
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
923
	int err;
924

925
	/*
926 927
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
928
	 */
929
	if (ctx->task && cpuctx->task_ctx != ctx) {
930
		if (cpuctx->task_ctx || ctx->task != current)
931 932 933
			return;
		cpuctx->task_ctx = ctx;
	}
934

935
	raw_spin_lock(&ctx->lock);
936
	ctx->is_active = 1;
937
	update_context_time(ctx);
938

939
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
940
		goto unlock;
941
	__perf_event_mark_enabled(event, ctx);
942

943 944 945
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

946
	/*
947
	 * If the event is in a group and isn't the group leader,
948
	 * then don't put it on unless the group is on.
949
	 */
950
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
951
		goto unlock;
952

953
	if (!group_can_go_on(event, cpuctx, 1)) {
954
		err = -EEXIST;
955
	} else {
956
		if (event == leader)
957
			err = group_sched_in(event, cpuctx, ctx);
958
		else
959
			err = event_sched_in(event, cpuctx, ctx);
960
	}
961 962 963

	if (err) {
		/*
964
		 * If this event can't go on and it's part of a
965 966
		 * group, then the whole group has to come off.
		 */
967
		if (leader != event)
968
			group_sched_out(leader, cpuctx, ctx);
969
		if (leader->attr.pinned) {
970
			update_group_times(leader);
971
			leader->state = PERF_EVENT_STATE_ERROR;
972
		}
973 974
	}

P
Peter Zijlstra 已提交
975
unlock:
976
	raw_spin_unlock(&ctx->lock);
977 978 979
}

/*
980
 * Enable a event.
981
 *
982 983
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
984
 * remains valid.  This condition is satisfied when called through
985 986
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
987
 */
988
void perf_event_enable(struct perf_event *event)
989
{
990
	struct perf_event_context *ctx = event->ctx;
991 992 993 994
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
995
		 * Enable the event on the cpu that it's on
996
		 */
997 998
		smp_call_function_single(event->cpu, __perf_event_enable,
					 event, 1);
999 1000 1001
		return;
	}

1002
	raw_spin_lock_irq(&ctx->lock);
1003
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1004 1005 1006
		goto out;

	/*
1007 1008
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
1009 1010 1011 1012
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
1013 1014
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
1015

P
Peter Zijlstra 已提交
1016
retry:
1017
	raw_spin_unlock_irq(&ctx->lock);
1018
	task_oncpu_function_call(task, __perf_event_enable, event);
1019

1020
	raw_spin_lock_irq(&ctx->lock);
1021 1022

	/*
1023
	 * If the context is active and the event is still off,
1024 1025
	 * we need to retry the cross-call.
	 */
1026
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1027 1028 1029 1030 1031 1032
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1033 1034
	if (event->state == PERF_EVENT_STATE_OFF)
		__perf_event_mark_enabled(event, ctx);
1035

P
Peter Zijlstra 已提交
1036
out:
1037
	raw_spin_unlock_irq(&ctx->lock);
1038 1039
}

1040
static int perf_event_refresh(struct perf_event *event, int refresh)
1041
{
1042
	/*
1043
	 * not supported on inherited events
1044
	 */
1045
	if (event->attr.inherit)
1046 1047
		return -EINVAL;

1048 1049
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1050 1051

	return 0;
1052 1053
}

1054 1055 1056 1057 1058 1059 1060 1061 1062
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
1063
{
1064
	struct perf_event *event;
1065

1066
	raw_spin_lock(&ctx->lock);
1067
	ctx->is_active = 0;
1068
	if (likely(!ctx->nr_events))
1069
		goto out;
1070
	update_context_time(ctx);
1071

1072
	if (!ctx->nr_active)
1073
		goto out;
1074

P
Peter Zijlstra 已提交
1075
	if (event_type & EVENT_PINNED) {
1076 1077
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1078
	}
1079

P
Peter Zijlstra 已提交
1080
	if (event_type & EVENT_FLEXIBLE) {
1081
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1082
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1083 1084
	}
out:
1085
	raw_spin_unlock(&ctx->lock);
1086 1087
}

1088 1089 1090
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1091 1092 1093 1094
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1095
 * in them directly with an fd; we can only enable/disable all
1096
 * events via prctl, or enable/disable all events in a family
1097 1098
 * via ioctl, which will have the same effect on both contexts.
 */
1099 1100
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1101 1102
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1103
		&& ctx1->parent_gen == ctx2->parent_gen
1104
		&& !ctx1->pin_count && !ctx2->pin_count;
1105 1106
}

1107 1108
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1109 1110 1111
{
	u64 value;

1112
	if (!event->attr.inherit_stat)
1113 1114 1115
		return;

	/*
1116
	 * Update the event value, we cannot use perf_event_read()
1117 1118
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1119
	 * we know the event must be on the current CPU, therefore we
1120 1121
	 * don't need to use it.
	 */
1122 1123
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1124 1125
		event->pmu->read(event);
		/* fall-through */
1126

1127 1128
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1129 1130 1131 1132 1133 1134 1135
		break;

	default:
		break;
	}

	/*
1136
	 * In order to keep per-task stats reliable we need to flip the event
1137 1138
	 * values when we flip the contexts.
	 */
1139 1140 1141
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
1142

1143 1144
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1145

1146
	/*
1147
	 * Since we swizzled the values, update the user visible data too.
1148
	 */
1149 1150
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1151 1152 1153 1154 1155
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1156 1157
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1158
{
1159
	struct perf_event *event, *next_event;
1160 1161 1162 1163

	if (!ctx->nr_stat)
		return;

1164 1165
	update_context_time(ctx);

1166 1167
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1168

1169 1170
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1171

1172 1173
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1174

1175
		__perf_event_sync_stat(event, next_event);
1176

1177 1178
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1179 1180 1181
	}
}

T
Thomas Gleixner 已提交
1182
/*
1183
 * Called from scheduler to remove the events of the current task,
T
Thomas Gleixner 已提交
1184 1185
 * with interrupts disabled.
 *
1186
 * We stop each event and update the event value in event->count.
T
Thomas Gleixner 已提交
1187
 *
I
Ingo Molnar 已提交
1188
 * This does not protect us against NMI, but disable()
1189 1190 1191
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
T
Thomas Gleixner 已提交
1192
 */
1193
void perf_event_task_sched_out(struct task_struct *task,
1194
				 struct task_struct *next)
T
Thomas Gleixner 已提交
1195
{
1196 1197 1198
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
P
Peter Zijlstra 已提交
1199
	struct perf_cpu_context *cpuctx;
1200
	int do_switch = 1;
T
Thomas Gleixner 已提交
1201

1202
	perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1203

P
Peter Zijlstra 已提交
1204 1205 1206 1207 1208
	if (likely(!ctx))
		return;

	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
1209 1210
		return;

1211 1212
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
1213
	next_ctx = next->perf_event_ctxp;
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
1225 1226
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1227
		if (context_equiv(ctx, next_ctx)) {
1228 1229
			/*
			 * XXX do we need a memory barrier of sorts
1230
			 * wrt to rcu_dereference() of perf_event_ctxp
1231
			 */
1232 1233
			task->perf_event_ctxp = next_ctx;
			next->perf_event_ctxp = ctx;
1234 1235 1236
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1237

1238
			perf_event_sync_stat(ctx, next_ctx);
1239
		}
1240 1241
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
1242
	}
1243
	rcu_read_unlock();
1244

1245
	if (do_switch) {
1246
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1247 1248
		cpuctx->task_ctx = NULL;
	}
T
Thomas Gleixner 已提交
1249 1250
}

1251 1252
static void task_ctx_sched_out(struct perf_event_context *ctx,
			       enum event_type_t event_type)
1253
{
P
Peter Zijlstra 已提交
1254
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1255

1256 1257
	if (!cpuctx->task_ctx)
		return;
1258 1259 1260 1261

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

1262
	ctx_sched_out(ctx, cpuctx, event_type);
1263 1264 1265
	cpuctx->task_ctx = NULL;
}

1266 1267 1268
/*
 * Called with IRQs disabled
 */
1269
static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1270
{
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
	task_ctx_sched_out(ctx, EVENT_ALL);
}

/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1281 1282
}

1283
static void
1284
ctx_pinned_sched_in(struct perf_event_context *ctx,
1285
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
1286
{
1287
	struct perf_event *event;
T
Thomas Gleixner 已提交
1288

1289 1290
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
1291
			continue;
1292
		if (event->cpu != -1 && event->cpu != smp_processor_id())
1293 1294
			continue;

1295
		if (group_can_go_on(event, cpuctx, 1))
1296
			group_sched_in(event, cpuctx, ctx);
1297 1298 1299 1300 1301

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
1302 1303 1304
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
1305
		}
1306
	}
1307 1308 1309 1310
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
1311
		      struct perf_cpu_context *cpuctx)
1312 1313 1314
{
	struct perf_event *event;
	int can_add_hw = 1;
1315

1316 1317 1318
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
1319
			continue;
1320 1321
		/*
		 * Listen to the 'cpu' scheduling filter constraint
1322
		 * of events:
1323
		 */
1324
		if (event->cpu != -1 && event->cpu != smp_processor_id())
T
Thomas Gleixner 已提交
1325 1326
			continue;

P
Peter Zijlstra 已提交
1327
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
1328
			if (group_sched_in(event, cpuctx, ctx))
1329
				can_add_hw = 0;
P
Peter Zijlstra 已提交
1330
		}
T
Thomas Gleixner 已提交
1331
	}
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type)
{
	raw_spin_lock(&ctx->lock);
	ctx->is_active = 1;
	if (likely(!ctx->nr_events))
		goto out;

	ctx->timestamp = perf_clock();

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	if (event_type & EVENT_PINNED)
1351
		ctx_pinned_sched_in(ctx, cpuctx);
1352 1353 1354

	/* Then walk through the lower prio flexible groups */
	if (event_type & EVENT_FLEXIBLE)
1355
		ctx_flexible_sched_in(ctx, cpuctx);
1356

P
Peter Zijlstra 已提交
1357
out:
1358
	raw_spin_unlock(&ctx->lock);
1359 1360
}

1361 1362 1363 1364 1365 1366 1367 1368
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
			     enum event_type_t event_type)
{
	struct perf_event_context *ctx = &cpuctx->ctx;

	ctx_sched_in(ctx, cpuctx, event_type);
}

1369 1370 1371 1372
static void task_ctx_sched_in(struct task_struct *task,
			      enum event_type_t event_type)
{
	struct perf_event_context *ctx = task->perf_event_ctxp;
P
Peter Zijlstra 已提交
1373
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1374 1375 1376 1377 1378 1379 1380 1381

	if (likely(!ctx))
		return;
	if (cpuctx->task_ctx == ctx)
		return;
	ctx_sched_in(ctx, cpuctx, event_type);
	cpuctx->task_ctx = ctx;
}
1382
/*
1383
 * Called from scheduler to add the events of the current task
1384 1385
 * with interrupts disabled.
 *
1386
 * We restore the event value and then enable it.
1387 1388
 *
 * This does not protect us against NMI, but enable()
1389 1390 1391
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
1392
 */
1393
void perf_event_task_sched_in(struct task_struct *task)
1394
{
1395
	struct perf_event_context *ctx = task->perf_event_ctxp;
P
Peter Zijlstra 已提交
1396
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
1397

1398 1399
	if (likely(!ctx))
		return;
1400

P
Peter Zijlstra 已提交
1401
	cpuctx = __get_cpu_context(ctx);
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
	if (cpuctx->task_ctx == ctx)
		return;

	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

	ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
	ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);

	cpuctx->task_ctx = ctx;
1417 1418 1419 1420 1421

	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
1422
	perf_pmu_rotate_start(ctx->pmu);
1423 1424
}

1425 1426
#define MAX_INTERRUPTS (~0ULL)

1427
static void perf_log_throttle(struct perf_event *event, int enable);
1428

1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
#define REDUCE_FLS(a, b) 		\
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

1496 1497 1498
	if (!divisor)
		return dividend;

1499 1500 1501 1502
	return div64_u64(dividend, divisor);
}

static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1503
{
1504
	struct hw_perf_event *hwc = &event->hw;
1505
	s64 period, sample_period;
1506 1507
	s64 delta;

1508
	period = perf_calculate_period(event, nsec, count);
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
1519

1520
	if (local64_read(&hwc->period_left) > 8*sample_period) {
P
Peter Zijlstra 已提交
1521
		event->pmu->stop(event, PERF_EF_UPDATE);
1522
		local64_set(&hwc->period_left, 0);
P
Peter Zijlstra 已提交
1523
		event->pmu->start(event, PERF_EF_RELOAD);
1524
	}
1525 1526
}

1527
static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
1528
{
1529 1530
	struct perf_event *event;
	struct hw_perf_event *hwc;
1531 1532
	u64 interrupts, now;
	s64 delta;
1533

1534
	raw_spin_lock(&ctx->lock);
1535
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1536
		if (event->state != PERF_EVENT_STATE_ACTIVE)
1537 1538
			continue;

1539 1540 1541
		if (event->cpu != -1 && event->cpu != smp_processor_id())
			continue;

1542
		hwc = &event->hw;
1543 1544 1545

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
1546

1547
		/*
1548
		 * unthrottle events on the tick
1549
		 */
1550
		if (interrupts == MAX_INTERRUPTS) {
1551
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
1552
			event->pmu->start(event, 0);
1553 1554
		}

1555
		if (!event->attr.freq || !event->attr.sample_freq)
1556 1557
			continue;

1558
		event->pmu->read(event);
1559
		now = local64_read(&event->count);
1560 1561
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
1562

1563
		if (delta > 0)
1564
			perf_adjust_period(event, period, delta);
1565
	}
1566
	raw_spin_unlock(&ctx->lock);
1567 1568
}

1569
/*
1570
 * Round-robin a context's events:
1571
 */
1572
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
1573
{
1574
	raw_spin_lock(&ctx->lock);
1575 1576 1577 1578

	/* Rotate the first entry last of non-pinned groups */
	list_rotate_left(&ctx->flexible_groups);

1579
	raw_spin_unlock(&ctx->lock);
1580 1581
}

1582 1583 1584 1585 1586 1587
/*
 * Cannot race with ->pmu_rotate_start() because this is ran from hardirq
 * context, and ->pmu_rotate_start() is called with irqs disabled (both are
 * cpu affine, so there are no SMP races).
 */
static enum hrtimer_restart perf_event_context_tick(struct hrtimer *timer)
1588
{
1589
	enum hrtimer_restart restart = HRTIMER_NORESTART;
1590
	struct perf_cpu_context *cpuctx;
1591
	struct perf_event_context *ctx;
1592
	int rotate = 0;
1593

1594
	cpuctx = container_of(timer, struct perf_cpu_context, timer);
1595

1596 1597 1598 1599 1600
	if (cpuctx->ctx.nr_events) {
		restart = HRTIMER_RESTART;
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
1601

1602 1603 1604 1605 1606 1607
	ctx = current->perf_event_ctxp;
	if (ctx && ctx->nr_events) {
		restart = HRTIMER_RESTART;
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
1608

1609
	perf_ctx_adjust_freq(&cpuctx->ctx, cpuctx->timer_interval);
1610
	if (ctx)
1611
		perf_ctx_adjust_freq(ctx, cpuctx->timer_interval);
1612

1613
	if (!rotate)
1614
		goto done;
1615

1616
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1617
	if (ctx)
1618
		task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
1619

1620
	rotate_ctx(&cpuctx->ctx);
1621 1622
	if (ctx)
		rotate_ctx(ctx);
1623

1624
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1625
	if (ctx)
1626 1627 1628 1629 1630 1631
		task_ctx_sched_in(current, EVENT_FLEXIBLE);

done:
	hrtimer_forward_now(timer, ns_to_ktime(cpuctx->timer_interval));

	return restart;
T
Thomas Gleixner 已提交
1632 1633
}

1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

	__perf_event_mark_enabled(event, ctx);

	return 1;
}

1649
/*
1650
 * Enable all of a task's events that have been marked enable-on-exec.
1651 1652
 * This expects task == current.
 */
1653
static void perf_event_enable_on_exec(struct task_struct *task)
1654
{
1655 1656
	struct perf_event_context *ctx;
	struct perf_event *event;
1657 1658
	unsigned long flags;
	int enabled = 0;
1659
	int ret;
1660 1661

	local_irq_save(flags);
1662 1663
	ctx = task->perf_event_ctxp;
	if (!ctx || !ctx->nr_events)
1664 1665
		goto out;

1666
	__perf_event_task_sched_out(ctx);
1667

1668
	raw_spin_lock(&ctx->lock);
1669

1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
	}

	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
1680 1681 1682
	}

	/*
1683
	 * Unclone this context if we enabled any event.
1684
	 */
1685 1686
	if (enabled)
		unclone_ctx(ctx);
1687

1688
	raw_spin_unlock(&ctx->lock);
1689

1690
	perf_event_task_sched_in(task);
P
Peter Zijlstra 已提交
1691
out:
1692 1693 1694
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
1695
/*
1696
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
1697
 */
1698
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
1699
{
1700 1701
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1702
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
1703

1704 1705 1706 1707
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
1708 1709
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
1710 1711 1712 1713
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

1714
	raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1715
	update_context_time(ctx);
1716
	update_event_times(event);
1717
	raw_spin_unlock(&ctx->lock);
P
Peter Zijlstra 已提交
1718

P
Peter Zijlstra 已提交
1719
	event->pmu->read(event);
T
Thomas Gleixner 已提交
1720 1721
}

P
Peter Zijlstra 已提交
1722 1723
static inline u64 perf_event_count(struct perf_event *event)
{
1724
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
1725 1726
}

1727
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
1728 1729
{
	/*
1730 1731
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
1732
	 */
1733 1734 1735 1736
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
1737 1738 1739
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

1740
		raw_spin_lock_irqsave(&ctx->lock, flags);
P
Peter Zijlstra 已提交
1741
		update_context_time(ctx);
1742
		update_event_times(event);
1743
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1744 1745
	}

P
Peter Zijlstra 已提交
1746
	return perf_event_count(event);
T
Thomas Gleixner 已提交
1747 1748
}

1749 1750 1751 1752 1753 1754 1755 1756 1757
/*
 * Callchain support
 */

struct callchain_cpus_entries {
	struct rcu_head			rcu_head;
	struct perf_callchain_entry	*cpu_entries[0];
};

1758
static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
static atomic_t nr_callchain_events;
static DEFINE_MUTEX(callchain_mutex);
struct callchain_cpus_entries *callchain_cpus_entries;


__weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
				  struct pt_regs *regs)
{
}

__weak void perf_callchain_user(struct perf_callchain_entry *entry,
				struct pt_regs *regs)
{
}

static void release_callchain_buffers_rcu(struct rcu_head *head)
{
	struct callchain_cpus_entries *entries;
	int cpu;

	entries = container_of(head, struct callchain_cpus_entries, rcu_head);

	for_each_possible_cpu(cpu)
		kfree(entries->cpu_entries[cpu]);

	kfree(entries);
}

static void release_callchain_buffers(void)
{
	struct callchain_cpus_entries *entries;

	entries = callchain_cpus_entries;
	rcu_assign_pointer(callchain_cpus_entries, NULL);
	call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
}

static int alloc_callchain_buffers(void)
{
	int cpu;
	int size;
	struct callchain_cpus_entries *entries;

	/*
	 * We can't use the percpu allocation API for data that can be
	 * accessed from NMI. Use a temporary manual per cpu allocation
	 * until that gets sorted out.
	 */
	size = sizeof(*entries) + sizeof(struct perf_callchain_entry *) *
		num_possible_cpus();

	entries = kzalloc(size, GFP_KERNEL);
	if (!entries)
		return -ENOMEM;

1814
	size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958

	for_each_possible_cpu(cpu) {
		entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
							 cpu_to_node(cpu));
		if (!entries->cpu_entries[cpu])
			goto fail;
	}

	rcu_assign_pointer(callchain_cpus_entries, entries);

	return 0;

fail:
	for_each_possible_cpu(cpu)
		kfree(entries->cpu_entries[cpu]);
	kfree(entries);

	return -ENOMEM;
}

static int get_callchain_buffers(void)
{
	int err = 0;
	int count;

	mutex_lock(&callchain_mutex);

	count = atomic_inc_return(&nr_callchain_events);
	if (WARN_ON_ONCE(count < 1)) {
		err = -EINVAL;
		goto exit;
	}

	if (count > 1) {
		/* If the allocation failed, give up */
		if (!callchain_cpus_entries)
			err = -ENOMEM;
		goto exit;
	}

	err = alloc_callchain_buffers();
	if (err)
		release_callchain_buffers();
exit:
	mutex_unlock(&callchain_mutex);

	return err;
}

static void put_callchain_buffers(void)
{
	if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
		release_callchain_buffers();
		mutex_unlock(&callchain_mutex);
	}
}

static int get_recursion_context(int *recursion)
{
	int rctx;

	if (in_nmi())
		rctx = 3;
	else if (in_irq())
		rctx = 2;
	else if (in_softirq())
		rctx = 1;
	else
		rctx = 0;

	if (recursion[rctx])
		return -1;

	recursion[rctx]++;
	barrier();

	return rctx;
}

static inline void put_recursion_context(int *recursion, int rctx)
{
	barrier();
	recursion[rctx]--;
}

static struct perf_callchain_entry *get_callchain_entry(int *rctx)
{
	int cpu;
	struct callchain_cpus_entries *entries;

	*rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
	if (*rctx == -1)
		return NULL;

	entries = rcu_dereference(callchain_cpus_entries);
	if (!entries)
		return NULL;

	cpu = smp_processor_id();

	return &entries->cpu_entries[cpu][*rctx];
}

static void
put_callchain_entry(int rctx)
{
	put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
}

static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
{
	int rctx;
	struct perf_callchain_entry *entry;


	entry = get_callchain_entry(&rctx);
	if (rctx == -1)
		return NULL;

	if (!entry)
		goto exit_put;

	entry->nr = 0;

	if (!user_mode(regs)) {
		perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
		perf_callchain_kernel(entry, regs);
		if (current->mm)
			regs = task_pt_regs(current);
		else
			regs = NULL;
	}

	if (regs) {
		perf_callchain_store(entry, PERF_CONTEXT_USER);
		perf_callchain_user(entry, regs);
	}

exit_put:
	put_callchain_entry(rctx);

	return entry;
}

1959
/*
1960
 * Initialize the perf_event context in a task_struct:
1961 1962
 */
static void
1963
__perf_event_init_context(struct perf_event_context *ctx,
1964 1965
			    struct task_struct *task)
{
1966
	raw_spin_lock_init(&ctx->lock);
1967
	mutex_init(&ctx->mutex);
1968 1969
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
1970 1971 1972 1973 1974
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
	ctx->task = task;
}

P
Peter Zijlstra 已提交
1975 1976
static struct perf_event_context *
find_get_context(struct pmu *pmu, pid_t pid, int cpu)
T
Thomas Gleixner 已提交
1977
{
1978
	struct perf_event_context *ctx;
1979
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
1980
	struct task_struct *task;
1981
	unsigned long flags;
1982
	int err;
T
Thomas Gleixner 已提交
1983

1984
	if (pid == -1 && cpu != -1) {
1985
		/* Must be root to operate on a CPU event: */
1986
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
1987 1988
			return ERR_PTR(-EACCES);

1989
		if (cpu < 0 || cpu >= nr_cpumask_bits)
T
Thomas Gleixner 已提交
1990 1991 1992
			return ERR_PTR(-EINVAL);

		/*
1993
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
1994 1995 1996
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
1997
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
1998 1999
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
2000
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
2001
		ctx = &cpuctx->ctx;
2002
		get_ctx(ctx);
T
Thomas Gleixner 已提交
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

2019
	/*
2020
	 * Can't attach events to a dying task.
2021 2022 2023 2024 2025
	 */
	err = -ESRCH;
	if (task->flags & PF_EXITING)
		goto errout;

T
Thomas Gleixner 已提交
2026
	/* Reuse ptrace permission checks for now. */
2027 2028 2029 2030
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

P
Peter Zijlstra 已提交
2031
retry:
2032
	ctx = perf_lock_task_context(task, &flags);
2033
	if (ctx) {
2034
		unclone_ctx(ctx);
2035
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
2036 2037
	}

2038
	if (!ctx) {
2039
		ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2040 2041 2042
		err = -ENOMEM;
		if (!ctx)
			goto errout;
2043
		__perf_event_init_context(ctx, task);
P
Peter Zijlstra 已提交
2044
		ctx->pmu = pmu;
2045
		get_ctx(ctx);
2046
		if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
2047 2048 2049 2050 2051
			/*
			 * We raced with some other task; use
			 * the context they set.
			 */
			kfree(ctx);
2052
			goto retry;
2053
		}
2054
		get_task_struct(task);
2055 2056
	}

2057
	put_task_struct(task);
T
Thomas Gleixner 已提交
2058
	return ctx;
2059

P
Peter Zijlstra 已提交
2060
errout:
2061 2062
	put_task_struct(task);
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
2063 2064
}

L
Li Zefan 已提交
2065 2066
static void perf_event_free_filter(struct perf_event *event);

2067
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
2068
{
2069
	struct perf_event *event;
P
Peter Zijlstra 已提交
2070

2071 2072 2073
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
2074
	perf_event_free_filter(event);
2075
	kfree(event);
P
Peter Zijlstra 已提交
2076 2077
}

2078
static void perf_pending_sync(struct perf_event *event);
2079
static void perf_buffer_put(struct perf_buffer *buffer);
2080

2081
static void free_event(struct perf_event *event)
2082
{
2083
	perf_pending_sync(event);
2084

2085 2086
	if (!event->parent) {
		atomic_dec(&nr_events);
2087
		if (event->attr.mmap || event->attr.mmap_data)
2088 2089 2090 2091 2092
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
2093 2094
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
2095
	}
2096

2097 2098 2099
	if (event->buffer) {
		perf_buffer_put(event->buffer);
		event->buffer = NULL;
2100 2101
	}

2102 2103
	if (event->destroy)
		event->destroy(event);
2104

2105 2106
	put_ctx(event->ctx);
	call_rcu(&event->rcu_head, free_event_rcu);
2107 2108
}

2109
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
2110
{
2111
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
2112

2113 2114 2115 2116 2117 2118
	/*
	 * Remove from the PMU, can't get re-enabled since we got
	 * here because the last ref went.
	 */
	perf_event_disable(event);

2119
	WARN_ON_ONCE(ctx->parent_ctx);
2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2133
	raw_spin_lock_irq(&ctx->lock);
2134
	perf_group_detach(event);
2135 2136
	list_del_event(event, ctx);
	raw_spin_unlock_irq(&ctx->lock);
2137
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
2138

2139 2140 2141 2142
	mutex_lock(&event->owner->perf_event_mutex);
	list_del_init(&event->owner_entry);
	mutex_unlock(&event->owner->perf_event_mutex);
	put_task_struct(event->owner);
2143

2144
	free_event(event);
T
Thomas Gleixner 已提交
2145 2146 2147

	return 0;
}
2148
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
2149

2150 2151 2152 2153
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
2154
{
2155
	struct perf_event *event = file->private_data;
2156

2157
	file->private_data = NULL;
2158

2159
	return perf_event_release_kernel(event);
2160 2161
}

2162
static int perf_event_read_size(struct perf_event *event)
2163 2164 2165 2166 2167
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

2168
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2169 2170
		size += sizeof(u64);

2171
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2172 2173
		size += sizeof(u64);

2174
	if (event->attr.read_format & PERF_FORMAT_ID)
2175 2176
		entry += sizeof(u64);

2177 2178
	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
2179 2180 2181 2182 2183 2184 2185 2186
		size += sizeof(u64);
	}

	size += entry * nr;

	return size;
}

2187
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2188
{
2189
	struct perf_event *child;
2190 2191
	u64 total = 0;

2192 2193 2194
	*enabled = 0;
	*running = 0;

2195
	mutex_lock(&event->child_mutex);
2196
	total += perf_event_read(event);
2197 2198 2199 2200 2201 2202
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
2203
		total += perf_event_read(child);
2204 2205 2206
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
2207
	mutex_unlock(&event->child_mutex);
2208 2209 2210

	return total;
}
2211
EXPORT_SYMBOL_GPL(perf_event_read_value);
2212

2213
static int perf_event_read_group(struct perf_event *event,
2214 2215
				   u64 read_format, char __user *buf)
{
2216
	struct perf_event *leader = event->group_leader, *sub;
2217 2218
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
2219
	u64 values[5];
2220
	u64 count, enabled, running;
2221

2222
	mutex_lock(&ctx->mutex);
2223
	count = perf_event_read_value(leader, &enabled, &running);
2224 2225

	values[n++] = 1 + leader->nr_siblings;
2226 2227 2228 2229
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
2230 2231 2232
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
2233 2234 2235 2236

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
2237
		goto unlock;
2238

2239
	ret = size;
2240

2241
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2242
		n = 0;
2243

2244
		values[n++] = perf_event_read_value(sub, &enabled, &running);
2245 2246 2247 2248 2249
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

2250
		if (copy_to_user(buf + ret, values, size)) {
2251 2252 2253
			ret = -EFAULT;
			goto unlock;
		}
2254 2255

		ret += size;
2256
	}
2257 2258
unlock:
	mutex_unlock(&ctx->mutex);
2259

2260
	return ret;
2261 2262
}

2263
static int perf_event_read_one(struct perf_event *event,
2264 2265
				 u64 read_format, char __user *buf)
{
2266
	u64 enabled, running;
2267 2268 2269
	u64 values[4];
	int n = 0;

2270 2271 2272 2273 2274
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
2275
	if (read_format & PERF_FORMAT_ID)
2276
		values[n++] = primary_event_id(event);
2277 2278 2279 2280 2281 2282 2283

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
2284
/*
2285
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
2286 2287
 */
static ssize_t
2288
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
2289
{
2290
	u64 read_format = event->attr.read_format;
2291
	int ret;
T
Thomas Gleixner 已提交
2292

2293
	/*
2294
	 * Return end-of-file for a read on a event that is in
2295 2296 2297
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
2298
	if (event->state == PERF_EVENT_STATE_ERROR)
2299 2300
		return 0;

2301
	if (count < perf_event_read_size(event))
2302 2303
		return -ENOSPC;

2304
	WARN_ON_ONCE(event->ctx->parent_ctx);
2305
	if (read_format & PERF_FORMAT_GROUP)
2306
		ret = perf_event_read_group(event, read_format, buf);
2307
	else
2308
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
2309

2310
	return ret;
T
Thomas Gleixner 已提交
2311 2312 2313 2314 2315
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
2316
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
2317

2318
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
2319 2320 2321 2322
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
2323
	struct perf_event *event = file->private_data;
2324
	struct perf_buffer *buffer;
2325
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
2326 2327

	rcu_read_lock();
2328 2329 2330
	buffer = rcu_dereference(event->buffer);
	if (buffer)
		events = atomic_xchg(&buffer->poll, 0);
P
Peter Zijlstra 已提交
2331
	rcu_read_unlock();
T
Thomas Gleixner 已提交
2332

2333
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
2334 2335 2336 2337

	return events;
}

2338
static void perf_event_reset(struct perf_event *event)
2339
{
2340
	(void)perf_event_read(event);
2341
	local64_set(&event->count, 0);
2342
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
2343 2344
}

2345
/*
2346 2347 2348 2349
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
2350
 */
2351 2352
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
2353
{
2354
	struct perf_event *child;
P
Peter Zijlstra 已提交
2355

2356 2357 2358 2359
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
2360
		func(child);
2361
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
2362 2363
}

2364 2365
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
2366
{
2367 2368
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
2369

2370 2371
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
2372
	event = event->group_leader;
2373

2374 2375 2376 2377
	perf_event_for_each_child(event, func);
	func(event);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
		perf_event_for_each_child(event, func);
2378
	mutex_unlock(&ctx->mutex);
2379 2380
}

2381
static int perf_event_period(struct perf_event *event, u64 __user *arg)
2382
{
2383
	struct perf_event_context *ctx = event->ctx;
2384 2385 2386 2387
	unsigned long size;
	int ret = 0;
	u64 value;

2388
	if (!event->attr.sample_period)
2389 2390 2391 2392 2393 2394 2395 2396 2397
		return -EINVAL;

	size = copy_from_user(&value, arg, sizeof(value));
	if (size != sizeof(value))
		return -EFAULT;

	if (!value)
		return -EINVAL;

2398
	raw_spin_lock_irq(&ctx->lock);
2399 2400
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
2401 2402 2403 2404
			ret = -EINVAL;
			goto unlock;
		}

2405
		event->attr.sample_freq = value;
2406
	} else {
2407 2408
		event->attr.sample_period = value;
		event->hw.sample_period = value;
2409 2410
	}
unlock:
2411
	raw_spin_unlock_irq(&ctx->lock);
2412 2413 2414 2415

	return ret;
}

2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
static const struct file_operations perf_fops;

static struct perf_event *perf_fget_light(int fd, int *fput_needed)
{
	struct file *file;

	file = fget_light(fd, fput_needed);
	if (!file)
		return ERR_PTR(-EBADF);

	if (file->f_op != &perf_fops) {
		fput_light(file, *fput_needed);
		*fput_needed = 0;
		return ERR_PTR(-EBADF);
	}

	return file->private_data;
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
2437
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2438

2439 2440
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
2441 2442
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
2443
	u32 flags = arg;
2444 2445

	switch (cmd) {
2446 2447
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
2448
		break;
2449 2450
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
2451
		break;
2452 2453
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
2454
		break;
P
Peter Zijlstra 已提交
2455

2456 2457
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
2458

2459 2460
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
2461

2462
	case PERF_EVENT_IOC_SET_OUTPUT:
2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
	{
		struct perf_event *output_event = NULL;
		int fput_needed = 0;
		int ret;

		if (arg != -1) {
			output_event = perf_fget_light(arg, &fput_needed);
			if (IS_ERR(output_event))
				return PTR_ERR(output_event);
		}

		ret = perf_event_set_output(event, output_event);
		if (output_event)
			fput_light(output_event->filp, fput_needed);

		return ret;
	}
2480

L
Li Zefan 已提交
2481 2482 2483
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

2484
	default:
P
Peter Zijlstra 已提交
2485
		return -ENOTTY;
2486
	}
P
Peter Zijlstra 已提交
2487 2488

	if (flags & PERF_IOC_FLAG_GROUP)
2489
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
2490
	else
2491
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
2492 2493

	return 0;
2494 2495
}

2496
int perf_event_task_enable(void)
2497
{
2498
	struct perf_event *event;
2499

2500 2501 2502 2503
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
2504 2505 2506 2507

	return 0;
}

2508
int perf_event_task_disable(void)
2509
{
2510
	struct perf_event *event;
2511

2512 2513 2514 2515
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
2516 2517 2518 2519

	return 0;
}

2520 2521
#ifndef PERF_EVENT_INDEX_OFFSET
# define PERF_EVENT_INDEX_OFFSET 0
I
Ingo Molnar 已提交
2522 2523
#endif

2524
static int perf_event_index(struct perf_event *event)
2525
{
P
Peter Zijlstra 已提交
2526 2527 2528
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

2529
	if (event->state != PERF_EVENT_STATE_ACTIVE)
2530 2531
		return 0;

2532
	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2533 2534
}

2535 2536 2537 2538 2539
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
2540
void perf_event_update_userpage(struct perf_event *event)
2541
{
2542
	struct perf_event_mmap_page *userpg;
2543
	struct perf_buffer *buffer;
2544 2545

	rcu_read_lock();
2546 2547
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
2548 2549
		goto unlock;

2550
	userpg = buffer->user_page;
2551

2552 2553 2554 2555 2556
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
2557
	++userpg->lock;
2558
	barrier();
2559
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
2560
	userpg->offset = perf_event_count(event);
2561
	if (event->state == PERF_EVENT_STATE_ACTIVE)
2562
		userpg->offset -= local64_read(&event->hw.prev_count);
2563

2564 2565
	userpg->time_enabled = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
2566

2567 2568
	userpg->time_running = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
2569

2570
	barrier();
2571
	++userpg->lock;
2572
	preempt_enable();
2573
unlock:
2574
	rcu_read_unlock();
2575 2576
}

2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595
static unsigned long perf_data_size(struct perf_buffer *buffer);

static void
perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
{
	long max_size = perf_data_size(buffer);

	if (watermark)
		buffer->watermark = min(max_size, watermark);

	if (!buffer->watermark)
		buffer->watermark = max_size / 2;

	if (flags & PERF_BUFFER_WRITABLE)
		buffer->writable = 1;

	atomic_set(&buffer->refcount, 1);
}

2596
#ifndef CONFIG_PERF_USE_VMALLOC
2597

2598 2599 2600
/*
 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
 */
2601

2602
static struct page *
2603
perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2604
{
2605
	if (pgoff > buffer->nr_pages)
2606
		return NULL;
2607

2608
	if (pgoff == 0)
2609
		return virt_to_page(buffer->user_page);
2610

2611
	return virt_to_page(buffer->data_pages[pgoff - 1]);
2612 2613
}

2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
static void *perf_mmap_alloc_page(int cpu)
{
	struct page *page;
	int node;

	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
	page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
	if (!page)
		return NULL;

	return page_address(page);
}

2627
static struct perf_buffer *
2628
perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2629
{
2630
	struct perf_buffer *buffer;
2631 2632 2633
	unsigned long size;
	int i;

2634
	size = sizeof(struct perf_buffer);
2635 2636
	size += nr_pages * sizeof(void *);

2637 2638
	buffer = kzalloc(size, GFP_KERNEL);
	if (!buffer)
2639 2640
		goto fail;

2641
	buffer->user_page = perf_mmap_alloc_page(cpu);
2642
	if (!buffer->user_page)
2643 2644 2645
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
2646
		buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2647
		if (!buffer->data_pages[i])
2648 2649 2650
			goto fail_data_pages;
	}

2651
	buffer->nr_pages = nr_pages;
2652

2653 2654
	perf_buffer_init(buffer, watermark, flags);

2655
	return buffer;
2656 2657 2658

fail_data_pages:
	for (i--; i >= 0; i--)
2659
		free_page((unsigned long)buffer->data_pages[i]);
2660

2661
	free_page((unsigned long)buffer->user_page);
2662 2663

fail_user_page:
2664
	kfree(buffer);
2665 2666

fail:
2667
	return NULL;
2668 2669
}

2670 2671
static void perf_mmap_free_page(unsigned long addr)
{
K
Kevin Cernekee 已提交
2672
	struct page *page = virt_to_page((void *)addr);
2673 2674 2675 2676 2677

	page->mapping = NULL;
	__free_page(page);
}

2678
static void perf_buffer_free(struct perf_buffer *buffer)
2679 2680 2681
{
	int i;

2682 2683 2684 2685
	perf_mmap_free_page((unsigned long)buffer->user_page);
	for (i = 0; i < buffer->nr_pages; i++)
		perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
	kfree(buffer);
2686 2687
}

2688
static inline int page_order(struct perf_buffer *buffer)
2689 2690 2691 2692
{
	return 0;
}

2693 2694 2695 2696 2697 2698 2699 2700
#else

/*
 * Back perf_mmap() with vmalloc memory.
 *
 * Required for architectures that have d-cache aliasing issues.
 */

2701
static inline int page_order(struct perf_buffer *buffer)
2702
{
2703
	return buffer->page_order;
2704 2705
}

2706
static struct page *
2707
perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2708
{
2709
	if (pgoff > (1UL << page_order(buffer)))
2710 2711
		return NULL;

2712
	return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2713 2714 2715 2716 2717 2718 2719 2720 2721
}

static void perf_mmap_unmark_page(void *addr)
{
	struct page *page = vmalloc_to_page(addr);

	page->mapping = NULL;
}

2722
static void perf_buffer_free_work(struct work_struct *work)
2723
{
2724
	struct perf_buffer *buffer;
2725 2726 2727
	void *base;
	int i, nr;

2728 2729
	buffer = container_of(work, struct perf_buffer, work);
	nr = 1 << page_order(buffer);
2730

2731
	base = buffer->user_page;
2732 2733 2734 2735
	for (i = 0; i < nr + 1; i++)
		perf_mmap_unmark_page(base + (i * PAGE_SIZE));

	vfree(base);
2736
	kfree(buffer);
2737 2738
}

2739
static void perf_buffer_free(struct perf_buffer *buffer)
2740
{
2741
	schedule_work(&buffer->work);
2742 2743
}

2744
static struct perf_buffer *
2745
perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2746
{
2747
	struct perf_buffer *buffer;
2748 2749 2750
	unsigned long size;
	void *all_buf;

2751
	size = sizeof(struct perf_buffer);
2752 2753
	size += sizeof(void *);

2754 2755
	buffer = kzalloc(size, GFP_KERNEL);
	if (!buffer)
2756 2757
		goto fail;

2758
	INIT_WORK(&buffer->work, perf_buffer_free_work);
2759 2760 2761 2762 2763

	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
	if (!all_buf)
		goto fail_all_buf;

2764 2765 2766 2767
	buffer->user_page = all_buf;
	buffer->data_pages[0] = all_buf + PAGE_SIZE;
	buffer->page_order = ilog2(nr_pages);
	buffer->nr_pages = 1;
2768

2769 2770
	perf_buffer_init(buffer, watermark, flags);

2771
	return buffer;
2772 2773

fail_all_buf:
2774
	kfree(buffer);
2775 2776 2777 2778 2779 2780 2781

fail:
	return NULL;
}

#endif

2782
static unsigned long perf_data_size(struct perf_buffer *buffer)
2783
{
2784
	return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
2785 2786
}

2787 2788 2789
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
2790
	struct perf_buffer *buffer;
2791 2792 2793 2794 2795 2796 2797 2798 2799
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
2800 2801
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
2802 2803 2804 2805 2806
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

2807
	vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

2822
static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
2823
{
2824
	struct perf_buffer *buffer;
2825

2826 2827
	buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
	perf_buffer_free(buffer);
2828 2829
}

2830
static struct perf_buffer *perf_buffer_get(struct perf_event *event)
2831
{
2832
	struct perf_buffer *buffer;
2833

2834
	rcu_read_lock();
2835 2836 2837 2838
	buffer = rcu_dereference(event->buffer);
	if (buffer) {
		if (!atomic_inc_not_zero(&buffer->refcount))
			buffer = NULL;
2839 2840 2841
	}
	rcu_read_unlock();

2842
	return buffer;
2843 2844
}

2845
static void perf_buffer_put(struct perf_buffer *buffer)
2846
{
2847
	if (!atomic_dec_and_test(&buffer->refcount))
2848
		return;
2849

2850
	call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
2851 2852 2853 2854
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
2855
	struct perf_event *event = vma->vm_file->private_data;
2856

2857
	atomic_inc(&event->mmap_count);
2858 2859 2860 2861
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
2862
	struct perf_event *event = vma->vm_file->private_data;
2863

2864
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2865
		unsigned long size = perf_data_size(event->buffer);
2866
		struct user_struct *user = event->mmap_user;
2867
		struct perf_buffer *buffer = event->buffer;
2868

2869
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2870
		vma->vm_mm->locked_vm -= event->mmap_locked;
2871
		rcu_assign_pointer(event->buffer, NULL);
2872
		mutex_unlock(&event->mmap_mutex);
2873

2874
		perf_buffer_put(buffer);
2875
		free_uid(user);
2876
	}
2877 2878
}

2879
static const struct vm_operations_struct perf_mmap_vmops = {
2880 2881 2882 2883
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
2884 2885 2886 2887
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
2888
	struct perf_event *event = file->private_data;
2889
	unsigned long user_locked, user_lock_limit;
2890
	struct user_struct *user = current_user();
2891
	unsigned long locked, lock_limit;
2892
	struct perf_buffer *buffer;
2893 2894
	unsigned long vma_size;
	unsigned long nr_pages;
2895
	long user_extra, extra;
2896
	int ret = 0, flags = 0;
2897

2898 2899 2900 2901 2902 2903 2904 2905
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
	 * same buffer.
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

2906
	if (!(vma->vm_flags & VM_SHARED))
2907
		return -EINVAL;
2908 2909 2910 2911

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

2912
	/*
2913
	 * If we have buffer pages ensure they're a power-of-two number, so we
2914 2915 2916
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
2917 2918
		return -EINVAL;

2919
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
2920 2921
		return -EINVAL;

2922 2923
	if (vma->vm_pgoff != 0)
		return -EINVAL;
2924

2925 2926
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
2927 2928 2929
	if (event->buffer) {
		if (event->buffer->nr_pages == nr_pages)
			atomic_inc(&event->buffer->refcount);
2930
		else
2931 2932 2933 2934
			ret = -EINVAL;
		goto unlock;
	}

2935
	user_extra = nr_pages + 1;
2936
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
2937 2938 2939 2940 2941 2942

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

2943
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2944

2945 2946 2947
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
2948

2949
	lock_limit = rlimit(RLIMIT_MEMLOCK);
2950
	lock_limit >>= PAGE_SHIFT;
2951
	locked = vma->vm_mm->locked_vm + extra;
2952

2953 2954
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
2955 2956 2957
		ret = -EPERM;
		goto unlock;
	}
2958

2959
	WARN_ON(event->buffer);
2960

2961 2962 2963 2964 2965
	if (vma->vm_flags & VM_WRITE)
		flags |= PERF_BUFFER_WRITABLE;

	buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
				   event->cpu, flags);
2966
	if (!buffer) {
2967
		ret = -ENOMEM;
2968
		goto unlock;
2969
	}
2970
	rcu_assign_pointer(event->buffer, buffer);
2971

2972 2973 2974 2975 2976
	atomic_long_add(user_extra, &user->locked_vm);
	event->mmap_locked = extra;
	event->mmap_user = get_current_user();
	vma->vm_mm->locked_vm += event->mmap_locked;

2977
unlock:
2978 2979
	if (!ret)
		atomic_inc(&event->mmap_count);
2980
	mutex_unlock(&event->mmap_mutex);
2981 2982 2983

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
2984 2985

	return ret;
2986 2987
}

P
Peter Zijlstra 已提交
2988 2989 2990
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
2991
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
2992 2993 2994
	int retval;

	mutex_lock(&inode->i_mutex);
2995
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
2996 2997 2998 2999 3000 3001 3002 3003
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
3004
static const struct file_operations perf_fops = {
3005
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
3006 3007 3008
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
3009 3010
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
3011
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
3012
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
3013 3014
};

3015
/*
3016
 * Perf event wakeup
3017 3018 3019 3020 3021
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

3022
void perf_event_wakeup(struct perf_event *event)
3023
{
3024
	wake_up_all(&event->waitq);
3025

3026 3027 3028
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
3029
	}
3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040
}

/*
 * Pending wakeups
 *
 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
 *
 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
 * single linked list and use cmpxchg() to add entries lockless.
 */

3041
static void perf_pending_event(struct perf_pending_entry *entry)
3042
{
3043 3044
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
3045

3046 3047 3048
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
3049 3050
	}

3051 3052 3053
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
3054 3055 3056
	}
}

3057
#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
3058

3059
static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
3060 3061 3062
	PENDING_TAIL,
};

3063 3064
static void perf_pending_queue(struct perf_pending_entry *entry,
			       void (*func)(struct perf_pending_entry *))
3065
{
3066
	struct perf_pending_entry **head;
3067

3068
	if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
3069 3070
		return;

3071 3072 3073
	entry->func = func;

	head = &get_cpu_var(perf_pending_head);
3074 3075

	do {
3076 3077
		entry->next = *head;
	} while (cmpxchg(head, entry->next, entry) != entry->next);
3078

3079
	set_perf_event_pending();
3080

3081
	put_cpu_var(perf_pending_head);
3082 3083 3084 3085
}

static int __perf_pending_run(void)
{
3086
	struct perf_pending_entry *list;
3087 3088
	int nr = 0;

3089
	list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
3090
	while (list != PENDING_TAIL) {
3091 3092
		void (*func)(struct perf_pending_entry *);
		struct perf_pending_entry *entry = list;
3093 3094 3095

		list = list->next;

3096 3097
		func = entry->func;
		entry->next = NULL;
3098 3099 3100 3101 3102 3103 3104
		/*
		 * Ensure we observe the unqueue before we issue the wakeup,
		 * so that we won't be waiting forever.
		 * -- see perf_not_pending().
		 */
		smp_wmb();

3105
		func(entry);
3106 3107 3108 3109 3110 3111
		nr++;
	}

	return nr;
}

3112
static inline int perf_not_pending(struct perf_event *event)
3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126
{
	/*
	 * If we flush on whatever cpu we run, there is a chance we don't
	 * need to wait.
	 */
	get_cpu();
	__perf_pending_run();
	put_cpu();

	/*
	 * Ensure we see the proper queue state before going to sleep
	 * so that we do not miss the wakeup. -- see perf_pending_handle()
	 */
	smp_rmb();
3127
	return event->pending.next == NULL;
3128 3129
}

3130
static void perf_pending_sync(struct perf_event *event)
3131
{
3132
	wait_event(event->waitq, perf_not_pending(event));
3133 3134
}

3135
void perf_event_do_pending(void)
3136 3137 3138 3139
{
	__perf_pending_run();
}

3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

3161 3162 3163
/*
 * Output
 */
3164
static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3165
			      unsigned long offset, unsigned long head)
3166 3167 3168
{
	unsigned long mask;

3169
	if (!buffer->writable)
3170 3171
		return true;

3172
	mask = perf_data_size(buffer) - 1;
3173 3174 3175 3176 3177 3178 3179 3180 3181 3182

	offset = (offset - tail) & mask;
	head   = (head   - tail) & mask;

	if ((int)(head - offset) < 0)
		return false;

	return true;
}

3183
static void perf_output_wakeup(struct perf_output_handle *handle)
3184
{
3185
	atomic_set(&handle->buffer->poll, POLL_IN);
3186

3187
	if (handle->nmi) {
3188 3189 3190
		handle->event->pending_wakeup = 1;
		perf_pending_queue(&handle->event->pending,
				   perf_pending_event);
3191
	} else
3192
		perf_event_wakeup(handle->event);
3193 3194
}

3195
/*
3196
 * We need to ensure a later event_id doesn't publish a head when a former
3197
 * event isn't done writing. However since we need to deal with NMIs we
3198 3199 3200
 * cannot fully serialize things.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
3201
 * event completes.
3202
 */
3203
static void perf_output_get_handle(struct perf_output_handle *handle)
3204
{
3205
	struct perf_buffer *buffer = handle->buffer;
3206

3207
	preempt_disable();
3208 3209
	local_inc(&buffer->nest);
	handle->wakeup = local_read(&buffer->wakeup);
3210 3211
}

3212
static void perf_output_put_handle(struct perf_output_handle *handle)
3213
{
3214
	struct perf_buffer *buffer = handle->buffer;
3215
	unsigned long head;
3216 3217

again:
3218
	head = local_read(&buffer->head);
3219 3220

	/*
3221
	 * IRQ/NMI can happen here, which means we can miss a head update.
3222 3223
	 */

3224
	if (!local_dec_and_test(&buffer->nest))
3225
		goto out;
3226 3227

	/*
3228
	 * Publish the known good head. Rely on the full barrier implied
3229
	 * by atomic_dec_and_test() order the buffer->head read and this
3230
	 * write.
3231
	 */
3232
	buffer->user_page->data_head = head;
3233

3234 3235
	/*
	 * Now check if we missed an update, rely on the (compiler)
3236
	 * barrier in atomic_dec_and_test() to re-read buffer->head.
3237
	 */
3238 3239
	if (unlikely(head != local_read(&buffer->head))) {
		local_inc(&buffer->nest);
3240 3241 3242
		goto again;
	}

3243
	if (handle->wakeup != local_read(&buffer->wakeup))
3244
		perf_output_wakeup(handle);
3245

P
Peter Zijlstra 已提交
3246
out:
3247
	preempt_enable();
3248 3249
}

3250
__always_inline void perf_output_copy(struct perf_output_handle *handle,
3251
		      const void *buf, unsigned int len)
3252
{
3253
	do {
3254
		unsigned long size = min_t(unsigned long, handle->size, len);
3255 3256 3257 3258 3259

		memcpy(handle->addr, buf, size);

		len -= size;
		handle->addr += size;
3260
		buf += size;
3261 3262
		handle->size -= size;
		if (!handle->size) {
3263
			struct perf_buffer *buffer = handle->buffer;
3264

3265
			handle->page++;
3266 3267 3268
			handle->page &= buffer->nr_pages - 1;
			handle->addr = buffer->data_pages[handle->page];
			handle->size = PAGE_SIZE << page_order(buffer);
3269 3270
		}
	} while (len);
3271 3272
}

3273
int perf_output_begin(struct perf_output_handle *handle,
3274
		      struct perf_event *event, unsigned int size,
3275
		      int nmi, int sample)
3276
{
3277
	struct perf_buffer *buffer;
3278
	unsigned long tail, offset, head;
3279 3280 3281 3282 3283 3284
	int have_lost;
	struct {
		struct perf_event_header header;
		u64			 id;
		u64			 lost;
	} lost_event;
3285

3286
	rcu_read_lock();
3287
	/*
3288
	 * For inherited events we send all the output towards the parent.
3289
	 */
3290 3291
	if (event->parent)
		event = event->parent;
3292

3293 3294
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
3295 3296
		goto out;

3297
	handle->buffer	= buffer;
3298
	handle->event	= event;
3299 3300
	handle->nmi	= nmi;
	handle->sample	= sample;
3301

3302
	if (!buffer->nr_pages)
3303
		goto out;
3304

3305
	have_lost = local_read(&buffer->lost);
3306 3307 3308
	if (have_lost)
		size += sizeof(lost_event);

3309
	perf_output_get_handle(handle);
3310

3311
	do {
3312 3313 3314 3315 3316
		/*
		 * Userspace could choose to issue a mb() before updating the
		 * tail pointer. So that all reads will be completed before the
		 * write is issued.
		 */
3317
		tail = ACCESS_ONCE(buffer->user_page->data_tail);
3318
		smp_rmb();
3319
		offset = head = local_read(&buffer->head);
P
Peter Zijlstra 已提交
3320
		head += size;
3321
		if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3322
			goto fail;
3323
	} while (local_cmpxchg(&buffer->head, offset, head) != offset);
3324

3325 3326
	if (head - local_read(&buffer->wakeup) > buffer->watermark)
		local_add(buffer->watermark, &buffer->wakeup);
3327

3328 3329 3330 3331
	handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
	handle->page &= buffer->nr_pages - 1;
	handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
	handle->addr = buffer->data_pages[handle->page];
3332
	handle->addr += handle->size;
3333
	handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3334

3335
	if (have_lost) {
3336
		lost_event.header.type = PERF_RECORD_LOST;
3337 3338
		lost_event.header.misc = 0;
		lost_event.header.size = sizeof(lost_event);
3339
		lost_event.id          = event->id;
3340
		lost_event.lost        = local_xchg(&buffer->lost, 0);
3341 3342 3343 3344

		perf_output_put(handle, lost_event);
	}

3345
	return 0;
3346

3347
fail:
3348
	local_inc(&buffer->lost);
3349
	perf_output_put_handle(handle);
3350 3351
out:
	rcu_read_unlock();
3352

3353 3354
	return -ENOSPC;
}
3355

3356
void perf_output_end(struct perf_output_handle *handle)
3357
{
3358
	struct perf_event *event = handle->event;
3359
	struct perf_buffer *buffer = handle->buffer;
3360

3361
	int wakeup_events = event->attr.wakeup_events;
P
Peter Zijlstra 已提交
3362

3363
	if (handle->sample && wakeup_events) {
3364
		int events = local_inc_return(&buffer->events);
P
Peter Zijlstra 已提交
3365
		if (events >= wakeup_events) {
3366 3367
			local_sub(wakeup_events, &buffer->events);
			local_inc(&buffer->wakeup);
P
Peter Zijlstra 已提交
3368
		}
3369 3370
	}

3371
	perf_output_put_handle(handle);
3372
	rcu_read_unlock();
3373 3374
}

3375
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3376 3377
{
	/*
3378
	 * only top level events have the pid namespace they were created in
3379
	 */
3380 3381
	if (event->parent)
		event = event->parent;
3382

3383
	return task_tgid_nr_ns(p, event->ns);
3384 3385
}

3386
static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3387 3388
{
	/*
3389
	 * only top level events have the pid namespace they were created in
3390
	 */
3391 3392
	if (event->parent)
		event = event->parent;
3393

3394
	return task_pid_nr_ns(p, event->ns);
3395 3396
}

3397
static void perf_output_read_one(struct perf_output_handle *handle,
3398
				 struct perf_event *event)
3399
{
3400
	u64 read_format = event->attr.read_format;
3401 3402 3403
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
3404
	values[n++] = perf_event_count(event);
3405
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3406 3407
		values[n++] = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
3408 3409
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3410 3411
		values[n++] = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
3412 3413
	}
	if (read_format & PERF_FORMAT_ID)
3414
		values[n++] = primary_event_id(event);
3415 3416 3417 3418 3419

	perf_output_copy(handle, values, n * sizeof(u64));
}

/*
3420
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3421 3422
 */
static void perf_output_read_group(struct perf_output_handle *handle,
3423
			    struct perf_event *event)
3424
{
3425 3426
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = leader->total_time_enabled;

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = leader->total_time_running;

3438
	if (leader != event)
3439 3440
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
3441
	values[n++] = perf_event_count(leader);
3442
	if (read_format & PERF_FORMAT_ID)
3443
		values[n++] = primary_event_id(leader);
3444 3445 3446

	perf_output_copy(handle, values, n * sizeof(u64));

3447
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3448 3449
		n = 0;

3450
		if (sub != event)
3451 3452
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
3453
		values[n++] = perf_event_count(sub);
3454
		if (read_format & PERF_FORMAT_ID)
3455
			values[n++] = primary_event_id(sub);
3456 3457 3458 3459 3460 3461

		perf_output_copy(handle, values, n * sizeof(u64));
	}
}

static void perf_output_read(struct perf_output_handle *handle,
3462
			     struct perf_event *event)
3463
{
3464 3465
	if (event->attr.read_format & PERF_FORMAT_GROUP)
		perf_output_read_group(handle, event);
3466
	else
3467
		perf_output_read_one(handle, event);
3468 3469
}

3470 3471 3472
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
3473
			struct perf_event *event)
3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
3504
		perf_output_read(handle, event);
3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

			perf_output_copy(handle, data->callchain, size);
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
			perf_output_copy(handle, data->raw->data,
					 data->raw->size);
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
3542
			 struct perf_event *event,
3543
			 struct pt_regs *regs)
3544
{
3545
	u64 sample_type = event->attr.sample_type;
3546

3547
	data->type = sample_type;
3548

3549
	header->type = PERF_RECORD_SAMPLE;
3550 3551 3552 3553
	header->size = sizeof(*header);

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
3554

3555
	if (sample_type & PERF_SAMPLE_IP) {
3556 3557 3558
		data->ip = perf_instruction_pointer(regs);

		header->size += sizeof(data->ip);
3559
	}
3560

3561
	if (sample_type & PERF_SAMPLE_TID) {
3562
		/* namespace issues */
3563 3564
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
3565

3566
		header->size += sizeof(data->tid_entry);
3567 3568
	}

3569
	if (sample_type & PERF_SAMPLE_TIME) {
P
Peter Zijlstra 已提交
3570
		data->time = perf_clock();
3571

3572
		header->size += sizeof(data->time);
3573 3574
	}

3575
	if (sample_type & PERF_SAMPLE_ADDR)
3576
		header->size += sizeof(data->addr);
3577

3578
	if (sample_type & PERF_SAMPLE_ID) {
3579
		data->id = primary_event_id(event);
3580

3581 3582 3583 3584
		header->size += sizeof(data->id);
	}

	if (sample_type & PERF_SAMPLE_STREAM_ID) {
3585
		data->stream_id = event->id;
3586 3587 3588

		header->size += sizeof(data->stream_id);
	}
3589

3590
	if (sample_type & PERF_SAMPLE_CPU) {
3591 3592
		data->cpu_entry.cpu		= raw_smp_processor_id();
		data->cpu_entry.reserved	= 0;
3593

3594
		header->size += sizeof(data->cpu_entry);
3595 3596
	}

3597
	if (sample_type & PERF_SAMPLE_PERIOD)
3598
		header->size += sizeof(data->period);
3599

3600
	if (sample_type & PERF_SAMPLE_READ)
3601
		header->size += perf_event_read_size(event);
3602

3603
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3604
		int size = 1;
3605

3606 3607 3608 3609 3610 3611
		data->callchain = perf_callchain(regs);

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
3612 3613
	}

3614
	if (sample_type & PERF_SAMPLE_RAW) {
3615 3616 3617 3618 3619 3620 3621 3622
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
3623
		header->size += size;
3624
	}
3625
}
3626

3627
static void perf_event_output(struct perf_event *event, int nmi,
3628 3629 3630 3631 3632
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
3633

3634 3635 3636
	/* protect the callchain buffers */
	rcu_read_lock();

3637
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
3638

3639
	if (perf_output_begin(&handle, event, header.size, nmi, 1))
3640
		goto exit;
3641

3642
	perf_output_sample(&handle, &header, data, event);
3643

3644
	perf_output_end(&handle);
3645 3646 3647

exit:
	rcu_read_unlock();
3648 3649
}

3650
/*
3651
 * read event_id
3652 3653 3654 3655 3656 3657 3658 3659 3660 3661
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
3662
perf_event_read_event(struct perf_event *event,
3663 3664 3665
			struct task_struct *task)
{
	struct perf_output_handle handle;
3666
	struct perf_read_event read_event = {
3667
		.header = {
3668
			.type = PERF_RECORD_READ,
3669
			.misc = 0,
3670
			.size = sizeof(read_event) + perf_event_read_size(event),
3671
		},
3672 3673
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
3674
	};
3675
	int ret;
3676

3677
	ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3678 3679 3680
	if (ret)
		return;

3681
	perf_output_put(&handle, read_event);
3682
	perf_output_read(&handle, event);
3683

3684 3685 3686
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
3687
/*
P
Peter Zijlstra 已提交
3688 3689
 * task tracking -- fork/exit
 *
3690
 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
3691 3692
 */

P
Peter Zijlstra 已提交
3693
struct perf_task_event {
3694
	struct task_struct		*task;
3695
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
3696 3697 3698 3699 3700 3701

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
3702 3703
		u32				tid;
		u32				ptid;
3704
		u64				time;
3705
	} event_id;
P
Peter Zijlstra 已提交
3706 3707
};

3708
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
3709
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3710 3711
{
	struct perf_output_handle handle;
P
Peter Zijlstra 已提交
3712
	struct task_struct *task = task_event->task;
3713 3714
	int size, ret;

3715 3716
	size  = task_event->event_id.header.size;
	ret = perf_output_begin(&handle, event, size, 0, 0);
P
Peter Zijlstra 已提交
3717

3718
	if (ret)
P
Peter Zijlstra 已提交
3719 3720
		return;

3721 3722
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
3723

3724 3725
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
3726

3727
	perf_output_put(&handle, task_event->event_id);
3728

P
Peter Zijlstra 已提交
3729 3730 3731
	perf_output_end(&handle);
}

3732
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
3733
{
P
Peter Zijlstra 已提交
3734
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3735 3736
		return 0;

3737 3738 3739
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3740 3741
	if (event->attr.comm || event->attr.mmap ||
	    event->attr.mmap_data || event->attr.task)
P
Peter Zijlstra 已提交
3742 3743 3744 3745 3746
		return 1;

	return 0;
}

3747
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
3748
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3749
{
3750
	struct perf_event *event;
P
Peter Zijlstra 已提交
3751

3752 3753 3754
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
3755 3756 3757
	}
}

3758
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3759
{
3760
	struct perf_event_context *ctx = task_event->task_ctx;
P
Peter Zijlstra 已提交
3761 3762
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
P
Peter Zijlstra 已提交
3763

P
Peter Zijlstra 已提交
3764 3765 3766 3767 3768
	rcu_read_lock_sched();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
		perf_event_task_ctx(&cpuctx->ctx, task_event);
	}
3769
	if (!ctx)
P
Peter Zijlstra 已提交
3770
		ctx = rcu_dereference(current->perf_event_ctxp);
P
Peter Zijlstra 已提交
3771
	if (ctx)
3772
		perf_event_task_ctx(ctx, task_event);
P
Peter Zijlstra 已提交
3773
	rcu_read_unlock_sched();
P
Peter Zijlstra 已提交
3774 3775
}

3776 3777
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
3778
			      int new)
P
Peter Zijlstra 已提交
3779
{
P
Peter Zijlstra 已提交
3780
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
3781

3782 3783 3784
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
3785 3786
		return;

P
Peter Zijlstra 已提交
3787
	task_event = (struct perf_task_event){
3788 3789
		.task	  = task,
		.task_ctx = task_ctx,
3790
		.event_id    = {
P
Peter Zijlstra 已提交
3791
			.header = {
3792
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3793
				.misc = 0,
3794
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
3795
			},
3796 3797
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
3798 3799
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
3800
			.time = perf_clock(),
P
Peter Zijlstra 已提交
3801 3802 3803
		},
	};

3804
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
3805 3806
}

3807
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
3808
{
3809
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
3810 3811
}

3812 3813 3814 3815 3816
/*
 * comm tracking
 */

struct perf_comm_event {
3817 3818
	struct task_struct	*task;
	char			*comm;
3819 3820 3821 3822 3823 3824 3825
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
3826
	} event_id;
3827 3828
};

3829
static void perf_event_comm_output(struct perf_event *event,
3830 3831 3832
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
3833 3834
	int size = comm_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3835 3836 3837 3838

	if (ret)
		return;

3839 3840
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3841

3842
	perf_output_put(&handle, comm_event->event_id);
3843 3844 3845 3846 3847
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
	perf_output_end(&handle);
}

3848
static int perf_event_comm_match(struct perf_event *event)
3849
{
P
Peter Zijlstra 已提交
3850
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3851 3852
		return 0;

3853 3854 3855
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3856
	if (event->attr.comm)
3857 3858 3859 3860 3861
		return 1;

	return 0;
}

3862
static void perf_event_comm_ctx(struct perf_event_context *ctx,
3863 3864
				  struct perf_comm_event *comm_event)
{
3865
	struct perf_event *event;
3866

3867 3868 3869
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
3870 3871 3872
	}
}

3873
static void perf_event_comm_event(struct perf_comm_event *comm_event)
3874 3875
{
	struct perf_cpu_context *cpuctx;
3876
	struct perf_event_context *ctx;
3877
	unsigned int size;
P
Peter Zijlstra 已提交
3878
	struct pmu *pmu;
3879
	char comm[TASK_COMM_LEN];
3880

3881
	memset(comm, 0, sizeof(comm));
3882
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
3883
	size = ALIGN(strlen(comm)+1, sizeof(u64));
3884 3885 3886 3887

	comm_event->comm = comm;
	comm_event->comm_size = size;

3888
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3889

P
Peter Zijlstra 已提交
3890 3891 3892 3893 3894
	rcu_read_lock_sched();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
		perf_event_comm_ctx(&cpuctx->ctx, comm_event);
	}
3895
	ctx = rcu_dereference(current->perf_event_ctxp);
3896
	if (ctx)
3897
		perf_event_comm_ctx(ctx, comm_event);
P
Peter Zijlstra 已提交
3898
	rcu_read_unlock_sched();
3899 3900
}

3901
void perf_event_comm(struct task_struct *task)
3902
{
3903 3904
	struct perf_comm_event comm_event;

3905 3906
	if (task->perf_event_ctxp)
		perf_event_enable_on_exec(task);
3907

3908
	if (!atomic_read(&nr_comm_events))
3909
		return;
3910

3911
	comm_event = (struct perf_comm_event){
3912
		.task	= task,
3913 3914
		/* .comm      */
		/* .comm_size */
3915
		.event_id  = {
3916
			.header = {
3917
				.type = PERF_RECORD_COMM,
3918 3919 3920 3921 3922
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
3923 3924 3925
		},
	};

3926
	perf_event_comm_event(&comm_event);
3927 3928
}

3929 3930 3931 3932 3933
/*
 * mmap tracking
 */

struct perf_mmap_event {
3934 3935 3936 3937
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
3938 3939 3940 3941 3942 3943 3944 3945 3946

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
3947
	} event_id;
3948 3949
};

3950
static void perf_event_mmap_output(struct perf_event *event,
3951 3952 3953
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
3954 3955
	int size = mmap_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3956 3957 3958 3959

	if (ret)
		return;

3960 3961
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
3962

3963
	perf_output_put(&handle, mmap_event->event_id);
3964 3965
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
3966
	perf_output_end(&handle);
3967 3968
}

3969
static int perf_event_mmap_match(struct perf_event *event,
3970 3971
				   struct perf_mmap_event *mmap_event,
				   int executable)
3972
{
P
Peter Zijlstra 已提交
3973
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3974 3975
		return 0;

3976 3977 3978
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3979 3980
	if ((!executable && event->attr.mmap_data) ||
	    (executable && event->attr.mmap))
3981 3982 3983 3984 3985
		return 1;

	return 0;
}

3986
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3987 3988
				  struct perf_mmap_event *mmap_event,
				  int executable)
3989
{
3990
	struct perf_event *event;
3991

3992
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3993
		if (perf_event_mmap_match(event, mmap_event, executable))
3994
			perf_event_mmap_output(event, mmap_event);
3995 3996 3997
	}
}

3998
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3999 4000
{
	struct perf_cpu_context *cpuctx;
4001
	struct perf_event_context *ctx;
4002 4003
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
4004 4005 4006
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
4007
	const char *name;
P
Peter Zijlstra 已提交
4008
	struct pmu *pmu;
4009

4010 4011
	memset(tmp, 0, sizeof(tmp));

4012
	if (file) {
4013 4014 4015 4016 4017 4018
		/*
		 * d_path works from the end of the buffer backwards, so we
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4019 4020 4021 4022
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
4023
		name = d_path(&file->f_path, buf, PATH_MAX);
4024 4025 4026 4027 4028
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
4029 4030 4031
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
4032
			goto got_name;
4033
		}
4034 4035 4036 4037

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
4038 4039 4040 4041 4042 4043 4044 4045
		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
				vma->vm_end >= vma->vm_mm->brk) {
			name = strncpy(tmp, "[heap]", sizeof(tmp));
			goto got_name;
		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
				vma->vm_end >= vma->vm_mm->start_stack) {
			name = strncpy(tmp, "[stack]", sizeof(tmp));
			goto got_name;
4046 4047
		}

4048 4049 4050 4051 4052
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
4053
	size = ALIGN(strlen(name)+1, sizeof(u64));
4054 4055 4056 4057

	mmap_event->file_name = name;
	mmap_event->file_size = size;

4058
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4059

P
Peter Zijlstra 已提交
4060 4061 4062 4063 4064 4065
	rcu_read_lock_sched();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
		perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
	}
4066
	ctx = rcu_dereference(current->perf_event_ctxp);
4067
	if (ctx)
4068
		perf_event_mmap_ctx(ctx, mmap_event, vma->vm_flags & VM_EXEC);
P
Peter Zijlstra 已提交
4069
	rcu_read_unlock_sched();
4070

4071 4072 4073
	kfree(buf);
}

4074
void perf_event_mmap(struct vm_area_struct *vma)
4075
{
4076 4077
	struct perf_mmap_event mmap_event;

4078
	if (!atomic_read(&nr_mmap_events))
4079 4080 4081
		return;

	mmap_event = (struct perf_mmap_event){
4082
		.vma	= vma,
4083 4084
		/* .file_name */
		/* .file_size */
4085
		.event_id  = {
4086
			.header = {
4087
				.type = PERF_RECORD_MMAP,
4088
				.misc = PERF_RECORD_MISC_USER,
4089 4090 4091 4092
				/* .size */
			},
			/* .pid */
			/* .tid */
4093 4094
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
4095
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4096 4097 4098
		},
	};

4099
	perf_event_mmap_event(&mmap_event);
4100 4101
}

4102 4103 4104 4105
/*
 * IRQ throttle logging
 */

4106
static void perf_log_throttle(struct perf_event *event, int enable)
4107 4108 4109 4110 4111 4112 4113
{
	struct perf_output_handle handle;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
4114
		u64				id;
4115
		u64				stream_id;
4116 4117
	} throttle_event = {
		.header = {
4118
			.type = PERF_RECORD_THROTTLE,
4119 4120 4121
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
4122
		.time		= perf_clock(),
4123 4124
		.id		= primary_event_id(event),
		.stream_id	= event->id,
4125 4126
	};

4127
	if (enable)
4128
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4129

4130
	ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
4131 4132 4133 4134 4135 4136 4137
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
	perf_output_end(&handle);
}

4138
/*
4139
 * Generic event overflow handling, sampling.
4140 4141
 */

4142
static int __perf_event_overflow(struct perf_event *event, int nmi,
4143 4144
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
4145
{
4146 4147
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
4148 4149
	int ret = 0;

4150
	if (!throttle) {
4151
		hwc->interrupts++;
4152
	} else {
4153 4154
		if (hwc->interrupts != MAX_INTERRUPTS) {
			hwc->interrupts++;
4155
			if (HZ * hwc->interrupts >
4156
					(u64)sysctl_perf_event_sample_rate) {
4157
				hwc->interrupts = MAX_INTERRUPTS;
4158
				perf_log_throttle(event, 0);
4159 4160 4161 4162
				ret = 1;
			}
		} else {
			/*
4163
			 * Keep re-disabling events even though on the previous
4164
			 * pass we disabled it - just in case we raced with a
4165
			 * sched-in and the event got enabled again:
4166
			 */
4167 4168 4169
			ret = 1;
		}
	}
4170

4171
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
4172
		u64 now = perf_clock();
4173
		s64 delta = now - hwc->freq_time_stamp;
4174

4175
		hwc->freq_time_stamp = now;
4176

4177 4178
		if (delta > 0 && delta < 2*TICK_NSEC)
			perf_adjust_period(event, delta, hwc->last_period);
4179 4180
	}

4181 4182
	/*
	 * XXX event_limit might not quite work as expected on inherited
4183
	 * events
4184 4185
	 */

4186 4187
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
4188
		ret = 1;
4189
		event->pending_kill = POLL_HUP;
4190
		if (nmi) {
4191 4192 4193
			event->pending_disable = 1;
			perf_pending_queue(&event->pending,
					   perf_pending_event);
4194
		} else
4195
			perf_event_disable(event);
4196 4197
	}

4198 4199 4200 4201 4202
	if (event->overflow_handler)
		event->overflow_handler(event, nmi, data, regs);
	else
		perf_event_output(event, nmi, data, regs);

4203
	return ret;
4204 4205
}

4206
int perf_event_overflow(struct perf_event *event, int nmi,
4207 4208
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
4209
{
4210
	return __perf_event_overflow(event, nmi, 1, data, regs);
4211 4212
}

4213
/*
4214
 * Generic software event infrastructure
4215 4216
 */

4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

4228
/*
4229 4230
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
4231 4232 4233 4234
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

4235
static u64 perf_swevent_set_period(struct perf_event *event)
4236
{
4237
	struct hw_perf_event *hwc = &event->hw;
4238 4239 4240 4241 4242
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
4243 4244

again:
4245
	old = val = local64_read(&hwc->period_left);
4246 4247
	if (val < 0)
		return 0;
4248

4249 4250 4251
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
4252
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4253
		goto again;
4254

4255
	return nr;
4256 4257
}

4258
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4259 4260
				    int nmi, struct perf_sample_data *data,
				    struct pt_regs *regs)
4261
{
4262
	struct hw_perf_event *hwc = &event->hw;
4263
	int throttle = 0;
4264

4265
	data->period = event->hw.last_period;
4266 4267
	if (!overflow)
		overflow = perf_swevent_set_period(event);
4268

4269 4270
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
4271

4272
	for (; overflow; overflow--) {
4273
		if (__perf_event_overflow(event, nmi, throttle,
4274
					    data, regs)) {
4275 4276 4277 4278 4279 4280
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
4281
		throttle = 1;
4282
	}
4283 4284
}

P
Peter Zijlstra 已提交
4285
static void perf_swevent_event(struct perf_event *event, u64 nr,
4286 4287
			       int nmi, struct perf_sample_data *data,
			       struct pt_regs *regs)
4288
{
4289
	struct hw_perf_event *hwc = &event->hw;
4290

4291
	local64_add(nr, &event->count);
4292

4293 4294 4295
	if (!regs)
		return;

4296 4297
	if (!hwc->sample_period)
		return;
4298

4299 4300 4301
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
		return perf_swevent_overflow(event, 1, nmi, data, regs);

4302
	if (local64_add_negative(nr, &hwc->period_left))
4303
		return;
4304

4305
	perf_swevent_overflow(event, 0, nmi, data, regs);
4306 4307
}

4308 4309 4310
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
4311 4312 4313
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

4325
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
4326
				enum perf_type_id type,
L
Li Zefan 已提交
4327 4328 4329
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
4330
{
4331
	if (event->attr.type != type)
4332
		return 0;
4333

4334
	if (event->attr.config != event_id)
4335 4336
		return 0;

4337 4338
	if (perf_exclude_event(event, regs))
		return 0;
4339 4340 4341 4342

	return 1;
}

4343 4344 4345 4346 4347 4348 4349
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

4350 4351
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4352
{
4353 4354 4355 4356
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
4357

4358 4359
/* For the read side: events when they trigger */
static inline struct hlist_head *
4360
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4361 4362
{
	struct swevent_hlist *hlist;
4363

4364
	hlist = rcu_dereference(swhash->swevent_hlist);
4365 4366 4367
	if (!hlist)
		return NULL;

4368 4369 4370 4371 4372
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
4373
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4374 4375 4376 4377 4378 4379 4380 4381 4382 4383
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
4384
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
4385 4386 4387 4388 4389
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
4390 4391 4392 4393 4394 4395
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
				    u64 nr, int nmi,
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
4396
{
4397
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4398
	struct perf_event *event;
4399 4400
	struct hlist_node *node;
	struct hlist_head *head;
4401

4402
	rcu_read_lock();
4403
	head = find_swevent_head_rcu(swhash, type, event_id);
4404 4405 4406 4407
	if (!head)
		goto end;

	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
L
Li Zefan 已提交
4408
		if (perf_swevent_match(event, type, event_id, data, regs))
P
Peter Zijlstra 已提交
4409
			perf_swevent_event(event, nr, nmi, data, regs);
4410
	}
4411 4412
end:
	rcu_read_unlock();
4413 4414
}

4415
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
4416
{
4417
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4418

4419
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
4420
}
I
Ingo Molnar 已提交
4421
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
4422

4423
void inline perf_swevent_put_recursion_context(int rctx)
4424
{
4425
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4426

4427
	put_recursion_context(swhash->recursion, rctx);
4428
}
4429

4430
void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4431
			    struct pt_regs *regs, u64 addr)
4432
{
4433
	struct perf_sample_data data;
4434 4435
	int rctx;

4436
	preempt_disable_notrace();
4437 4438 4439
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
4440

4441
	perf_sample_data_init(&data, addr);
4442

4443
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4444 4445

	perf_swevent_put_recursion_context(rctx);
4446
	preempt_enable_notrace();
4447 4448
}

4449
static void perf_swevent_read(struct perf_event *event)
4450 4451 4452
{
}

P
Peter Zijlstra 已提交
4453
static int perf_swevent_add(struct perf_event *event, int flags)
4454
{
4455
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4456
	struct hw_perf_event *hwc = &event->hw;
4457 4458
	struct hlist_head *head;

4459 4460
	if (hwc->sample_period) {
		hwc->last_period = hwc->sample_period;
4461
		perf_swevent_set_period(event);
4462
	}
4463

P
Peter Zijlstra 已提交
4464 4465
	hwc->state = !(flags & PERF_EF_START);

4466
	head = find_swevent_head(swhash, event);
4467 4468 4469 4470 4471
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

4472 4473 4474
	return 0;
}

P
Peter Zijlstra 已提交
4475
static void perf_swevent_del(struct perf_event *event, int flags)
4476
{
4477
	hlist_del_rcu(&event->hlist_entry);
4478 4479
}

P
Peter Zijlstra 已提交
4480
static void perf_swevent_start(struct perf_event *event, int flags)
P
Peter Zijlstra 已提交
4481
{
P
Peter Zijlstra 已提交
4482
	event->hw.state = 0;
P
Peter Zijlstra 已提交
4483 4484
}

P
Peter Zijlstra 已提交
4485
static void perf_swevent_stop(struct perf_event *event, int flags)
P
Peter Zijlstra 已提交
4486
{
P
Peter Zijlstra 已提交
4487
	event->hw.state = PERF_HES_STOPPED;
P
Peter Zijlstra 已提交
4488 4489
}

4490 4491
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
4492
swevent_hlist_deref(struct swevent_htable *swhash)
4493
{
4494 4495
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
4496 4497
}

4498 4499 4500 4501 4502 4503 4504 4505
static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
{
	struct swevent_hlist *hlist;

	hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
	kfree(hlist);
}

4506
static void swevent_hlist_release(struct swevent_htable *swhash)
4507
{
4508
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4509

4510
	if (!hlist)
4511 4512
		return;

4513
	rcu_assign_pointer(swhash->swevent_hlist, NULL);
4514 4515 4516 4517 4518
	call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
4519
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4520

4521
	mutex_lock(&swhash->hlist_mutex);
4522

4523 4524
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
4525

4526
	mutex_unlock(&swhash->hlist_mutex);
4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	if (event->cpu != -1) {
		swevent_hlist_put_cpu(event, event->cpu);
		return;
	}

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
4544
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4545 4546
	int err = 0;

4547
	mutex_lock(&swhash->hlist_mutex);
4548

4549
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4550 4551 4552 4553 4554 4555 4556
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
4557
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
4558
	}
4559
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
4560
exit:
4561
	mutex_unlock(&swhash->hlist_mutex);
4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	if (event->cpu != -1)
		return swevent_hlist_get_cpu(event, event->cpu);

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
4585
fail:
4586 4587 4588 4589 4590 4591 4592 4593 4594 4595
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

4596
atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4597

4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;

	WARN_ON(event->parent);

	atomic_dec(&perf_swevent_enabled[event_id]);
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
	int event_id = event->attr.config;

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

	if (event_id > PERF_COUNT_SW_MAX)
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

		atomic_inc(&perf_swevent_enabled[event_id]);
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
4643 4644 4645 4646
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
4647 4648 4649
	.read		= perf_swevent_read,
};

4650 4651
#ifdef CONFIG_EVENT_TRACING

4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
4666 4667 4668 4669
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
4670 4671 4672 4673 4674 4675 4676 4677 4678
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4679
		   struct pt_regs *regs, struct hlist_head *head, int rctx)
4680 4681
{
	struct perf_sample_data data;
4682 4683 4684
	struct perf_event *event;
	struct hlist_node *node;

4685 4686 4687 4688 4689 4690 4691 4692
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

	perf_sample_data_init(&data, addr);
	data.raw = &raw;

4693 4694
	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
		if (perf_tp_event_match(event, &data, regs))
P
Peter Zijlstra 已提交
4695
			perf_swevent_event(event, count, 1, &data, regs);
4696
	}
4697 4698

	perf_swevent_put_recursion_context(rctx);
4699 4700 4701
}
EXPORT_SYMBOL_GPL(perf_tp_event);

4702
static void tp_perf_event_destroy(struct perf_event *event)
4703
{
4704
	perf_trace_destroy(event);
4705 4706
}

4707
static int perf_tp_event_init(struct perf_event *event)
4708
{
4709 4710
	int err;

4711 4712 4713
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

4714 4715 4716 4717
	/*
	 * Raw tracepoint data is a severe data leak, only allow root to
	 * have these.
	 */
4718
	if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4719
			perf_paranoid_tracepoint_raw() &&
4720
			!capable(CAP_SYS_ADMIN))
4721
		return -EPERM;
4722

4723 4724
	err = perf_trace_init(event);
	if (err)
4725
		return err;
4726

4727
	event->destroy = tp_perf_event_destroy;
4728

4729 4730 4731 4732 4733
	return 0;
}

static struct pmu perf_tracepoint = {
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
4734 4735 4736 4737
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
4738 4739 4740 4741 4742 4743
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
	perf_pmu_register(&perf_tracepoint);
4744
}
L
Li Zefan 已提交
4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

4769
#else
L
Li Zefan 已提交
4770

4771
static inline void perf_tp_register(void)
4772 4773
{
}
L
Li Zefan 已提交
4774 4775 4776 4777 4778 4779 4780 4781 4782 4783

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

4784
#endif /* CONFIG_EVENT_TRACING */
4785

4786
#ifdef CONFIG_HAVE_HW_BREAKPOINT
4787
void perf_bp_event(struct perf_event *bp, void *data)
4788
{
4789 4790 4791 4792 4793
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

	perf_sample_data_init(&sample, bp->attr.bp_addr);

P
Peter Zijlstra 已提交
4794 4795
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
		perf_swevent_event(bp, 1, 1, &sample, regs);
4796
}
4797 4798 4799 4800 4801
#endif

/*
 * hrtimer based swevent callback
 */
4802

4803
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4804
{
4805 4806 4807 4808 4809
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
4810

4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
	event->pmu->read(event);

	perf_sample_data_init(&data, 0);
	data.period = event->hw.last_period;
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
		if (!(event->attr.exclude_idle && current->pid == 0))
			if (perf_event_overflow(event, 0, &data, regs))
				ret = HRTIMER_NORESTART;
	}
4823

4824 4825
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4826

4827
	return ret;
4828 4829
}

4830
static void perf_swevent_start_hrtimer(struct perf_event *event)
4831
{
4832
	struct hw_perf_event *hwc = &event->hw;
4833

4834 4835 4836
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;
	if (hwc->sample_period) {
P
Peter Zijlstra 已提交
4837
		s64 period = local64_read(&hwc->period_left);
4838

P
Peter Zijlstra 已提交
4839 4840
		if (period) {
			if (period < 0)
4841
				period = 10000;
P
Peter Zijlstra 已提交
4842 4843

			local64_set(&hwc->period_left, 0);
4844 4845 4846 4847 4848
		} else {
			period = max_t(u64, 10000, hwc->sample_period);
		}
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(period), 0,
4849
				HRTIMER_MODE_REL_PINNED, 0);
4850
	}
4851
}
4852 4853

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4854
{
4855 4856 4857 4858
	struct hw_perf_event *hwc = &event->hw;

	if (hwc->sample_period) {
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
4859
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
4860 4861 4862

		hrtimer_cancel(&hwc->hrtimer);
	}
4863 4864
}

4865 4866 4867 4868 4869
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
4870
{
4871 4872 4873
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
4874
	now = local_clock();
4875 4876
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
4877 4878
}

P
Peter Zijlstra 已提交
4879
static void cpu_clock_event_start(struct perf_event *event, int flags)
4880
{
P
Peter Zijlstra 已提交
4881
	local64_set(&event->hw.prev_count, local_clock());
4882 4883 4884
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
4885
static void cpu_clock_event_stop(struct perf_event *event, int flags)
4886
{
4887 4888 4889
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
4890

P
Peter Zijlstra 已提交
4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

4904 4905 4906 4907
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
4908

4909 4910 4911 4912 4913 4914 4915 4916 4917
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

	return 0;
4918 4919
}

4920 4921
static struct pmu perf_cpu_clock = {
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
4922 4923 4924 4925
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
4926 4927 4928 4929 4930 4931 4932 4933
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
4934
{
4935 4936
	u64 prev;
	s64 delta;
4937

4938 4939 4940 4941
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
4942

P
Peter Zijlstra 已提交
4943
static void task_clock_event_start(struct perf_event *event, int flags)
4944
{
P
Peter Zijlstra 已提交
4945
	local64_set(&event->hw.prev_count, event->ctx->time);
4946 4947 4948
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
4949
static void task_clock_event_stop(struct perf_event *event, int flags)
4950 4951 4952
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
4953 4954 4955 4956 4957 4958
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
4959

P
Peter Zijlstra 已提交
4960 4961 4962 4963 4964 4965
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996
}

static void task_clock_event_read(struct perf_event *event)
{
	u64 time;

	if (!in_nmi()) {
		update_context_time(event->ctx);
		time = event->ctx->time;
	} else {
		u64 now = perf_clock();
		u64 delta = now - event->ctx->timestamp;
		time = event->ctx->time + delta;
	}

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

	return 0;
}

static struct pmu perf_task_clock = {
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
4997 4998 4999 5000
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
5001 5002 5003
	.read		= task_clock_event_read,
};

P
Peter Zijlstra 已提交
5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028
static void perf_pmu_nop_void(struct pmu *pmu)
{
}

static int perf_pmu_nop_int(struct pmu *pmu)
{
	return 0;
}

static void perf_pmu_start_txn(struct pmu *pmu)
{
	perf_pmu_disable(pmu);
}

static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}

static void perf_pmu_cancel_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
}

5029 5030
int perf_pmu_register(struct pmu *pmu)
{
P
Peter Zijlstra 已提交
5031
	int cpu, ret;
P
Peter Zijlstra 已提交
5032

5033
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
5034 5035 5036 5037
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
P
Peter Zijlstra 已提交
5038

P
Peter Zijlstra 已提交
5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
		goto free_pdc;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		__perf_event_init_context(&cpuctx->ctx, NULL);
		cpuctx->ctx.pmu = pmu;
		cpuctx->timer_interval = TICK_NSEC;
		hrtimer_init(&cpuctx->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
		cpuctx->timer.function = perf_event_context_tick;
	}

P
Peter Zijlstra 已提交
5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
		}
	}

	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

5076
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
5077 5078
	ret = 0;
unlock:
5079 5080
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
5081
	return ret;
P
Peter Zijlstra 已提交
5082 5083 5084 5085

free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
5086 5087 5088 5089 5090 5091 5092 5093
}

void perf_pmu_unregister(struct pmu *pmu)
{
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
5094 5095 5096 5097
	/*
	 * We use the pmu list either under SRCU or preempt_disable,
	 * synchronize_srcu() implies synchronize_sched() so we're good.
	 */
5098
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
5099 5100

	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
5101
	free_percpu(pmu->pmu_cpu_context);
5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116
}

struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		int ret = pmu->event_init(event);
		if (!ret)
			break;
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
			break;
5117
		}
5118
	}
5119
	srcu_read_unlock(&pmus_srcu, idx);
5120

5121
	return pmu;
5122 5123
}

T
Thomas Gleixner 已提交
5124
/*
5125
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
5126
 */
5127
static struct perf_event *
5128
perf_event_alloc(struct perf_event_attr *attr, int cpu,
5129 5130
		   struct perf_event *group_leader,
		   struct perf_event *parent_event,
5131
		   perf_overflow_handler_t overflow_handler)
T
Thomas Gleixner 已提交
5132
{
P
Peter Zijlstra 已提交
5133
	struct pmu *pmu;
5134 5135
	struct perf_event *event;
	struct hw_perf_event *hwc;
5136
	long err;
T
Thomas Gleixner 已提交
5137

5138
	event = kzalloc(sizeof(*event), GFP_KERNEL);
5139
	if (!event)
5140
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
5141

5142
	/*
5143
	 * Single events are their own group leaders, with an
5144 5145 5146
	 * empty sibling list:
	 */
	if (!group_leader)
5147
		group_leader = event;
5148

5149 5150
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
5151

5152 5153 5154 5155
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
	init_waitqueue_head(&event->waitq);
T
Thomas Gleixner 已提交
5156

5157
	mutex_init(&event->mmap_mutex);
5158

5159 5160 5161 5162 5163
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
5164

5165
	event->parent		= parent_event;
5166

5167 5168
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
5169

5170
	event->state		= PERF_EVENT_STATE_INACTIVE;
5171

5172 5173
	if (!overflow_handler && parent_event)
		overflow_handler = parent_event->overflow_handler;
5174
	
5175
	event->overflow_handler	= overflow_handler;
5176

5177
	if (attr->disabled)
5178
		event->state = PERF_EVENT_STATE_OFF;
5179

5180
	pmu = NULL;
5181

5182
	hwc = &event->hw;
5183
	hwc->sample_period = attr->sample_period;
5184
	if (attr->freq && attr->sample_freq)
5185
		hwc->sample_period = 1;
5186
	hwc->last_period = hwc->sample_period;
5187

5188
	local64_set(&hwc->period_left, hwc->sample_period);
5189

5190
	/*
5191
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
5192
	 */
5193
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5194 5195
		goto done;

5196
	pmu = perf_init_event(event);
5197

5198 5199
done:
	err = 0;
5200
	if (!pmu)
5201
		err = -EINVAL;
5202 5203
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
5204

5205
	if (err) {
5206 5207 5208
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
5209
		return ERR_PTR(err);
I
Ingo Molnar 已提交
5210
	}
5211

5212
	event->pmu = pmu;
T
Thomas Gleixner 已提交
5213

5214 5215
	if (!event->parent) {
		atomic_inc(&nr_events);
5216
		if (event->attr.mmap || event->attr.mmap_data)
5217 5218 5219 5220 5221
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
5222 5223 5224 5225 5226 5227 5228
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
			if (err) {
				free_event(event);
				return ERR_PTR(err);
			}
		}
5229
	}
5230

5231
	return event;
T
Thomas Gleixner 已提交
5232 5233
}

5234 5235
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
5236 5237
{
	u32 size;
5238
	int ret;
5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
5263 5264 5265
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
5266 5267
	 */
	if (size > sizeof(*attr)) {
5268 5269 5270
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
5271

5272 5273
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
5274

5275
		for (; addr < end; addr++) {
5276 5277 5278 5279 5280 5281
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
5282
		size = sizeof(*attr);
5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * If the type exists, the corresponding creation will verify
	 * the attr->config.
	 */
	if (attr->type >= PERF_TYPE_MAX)
		return -EINVAL;

5296
	if (attr->__reserved_1)
5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

5314 5315
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5316
{
5317
	struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5318 5319
	int ret = -EINVAL;

5320
	if (!output_event)
5321 5322
		goto set;

5323 5324
	/* don't allow circular references */
	if (event == output_event)
5325 5326
		goto out;

5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
	 * If its not a per-cpu buffer, it must be the same task.
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

5339
set:
5340
	mutex_lock(&event->mmap_mutex);
5341 5342 5343
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
5344

5345 5346
	if (output_event) {
		/* get the buffer we want to redirect to */
5347 5348
		buffer = perf_buffer_get(output_event);
		if (!buffer)
5349
			goto unlock;
5350 5351
	}

5352 5353
	old_buffer = event->buffer;
	rcu_assign_pointer(event->buffer, buffer);
5354
	ret = 0;
5355 5356 5357
unlock:
	mutex_unlock(&event->mmap_mutex);

5358 5359
	if (old_buffer)
		perf_buffer_put(old_buffer);
5360 5361 5362 5363
out:
	return ret;
}

T
Thomas Gleixner 已提交
5364
/**
5365
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
5366
 *
5367
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
5368
 * @pid:		target pid
I
Ingo Molnar 已提交
5369
 * @cpu:		target cpu
5370
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
5371
 */
5372 5373
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
5374
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
5375
{
5376
	struct perf_event *event, *group_leader = NULL, *output_event = NULL;
5377 5378 5379
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
5380
	struct file *group_file = NULL;
5381
	int event_fd;
5382
	int fput_needed = 0;
5383
	int err;
T
Thomas Gleixner 已提交
5384

5385
	/* for future expandability... */
5386
	if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5387 5388
		return -EINVAL;

5389 5390 5391
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
5392

5393 5394 5395 5396 5397
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

5398
	if (attr.freq) {
5399
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
5400 5401 5402
			return -EINVAL;
	}

5403 5404 5405 5406
	event_fd = get_unused_fd_flags(O_RDWR);
	if (event_fd < 0)
		return event_fd;

5407 5408 5409 5410 5411 5412
	event = perf_event_alloc(&attr, cpu, group_leader, NULL, NULL);
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err_fd;
	}

5413
	/*
I
Ingo Molnar 已提交
5414 5415
	 * Get the target context (task or percpu):
	 */
P
Peter Zijlstra 已提交
5416
	ctx = find_get_context(event->pmu, pid, cpu);
5417 5418
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
5419
		goto err_alloc;
5420
	}
I
Ingo Molnar 已提交
5421

5422 5423 5424 5425
	if (group_fd != -1) {
		group_leader = perf_fget_light(group_fd, &fput_needed);
		if (IS_ERR(group_leader)) {
			err = PTR_ERR(group_leader);
5426
			goto err_context;
5427 5428 5429 5430 5431 5432 5433 5434
		}
		group_file = group_leader->filp;
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

I
Ingo Molnar 已提交
5435
	/*
5436
	 * Look up the group leader (we will attach this event to it):
5437
	 */
5438
	if (group_leader) {
5439
		err = -EINVAL;
5440 5441

		/*
I
Ingo Molnar 已提交
5442 5443 5444 5445
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
5446
			goto err_context;
I
Ingo Molnar 已提交
5447 5448 5449
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
5450
		 */
I
Ingo Molnar 已提交
5451
		if (group_leader->ctx != ctx)
5452
			goto err_context;
5453 5454 5455
		/*
		 * Only a group leader can be exclusive or pinned
		 */
5456
		if (attr.exclusive || attr.pinned)
5457
			goto err_context;
5458 5459 5460 5461 5462
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
5463
			goto err_context;
5464
	}
T
Thomas Gleixner 已提交
5465

5466 5467 5468
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
5469
		goto err_context;
5470
	}
5471

5472
	event->filp = event_file;
5473
	WARN_ON_ONCE(ctx->parent_ctx);
5474
	mutex_lock(&ctx->mutex);
5475
	perf_install_in_context(ctx, event, cpu);
5476
	++ctx->generation;
5477
	mutex_unlock(&ctx->mutex);
5478

5479
	event->owner = current;
5480
	get_task_struct(current);
5481 5482 5483
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
5484

5485 5486 5487 5488 5489 5490
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
5491 5492 5493
	fput_light(group_file, fput_needed);
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
5494

5495
err_context:
5496
	fput_light(group_file, fput_needed);
5497
	put_ctx(ctx);
5498 5499
err_alloc:
	free_event(event);
5500 5501
err_fd:
	put_unused_fd(event_fd);
5502
	return err;
T
Thomas Gleixner 已提交
5503 5504
}

5505 5506 5507 5508 5509 5510 5511 5512 5513
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
 * @pid: task to profile
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5514 5515
				 pid_t pid,
				 perf_overflow_handler_t overflow_handler)
5516 5517
{
	struct perf_event_context *ctx;
5518
	struct perf_event *event;
5519 5520 5521 5522 5523 5524
	int err;

	/*
	 * Get the target context (task or percpu):
	 */

5525 5526 5527 5528 5529 5530
	event = perf_event_alloc(attr, cpu, NULL, NULL, overflow_handler);
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}

P
Peter Zijlstra 已提交
5531
	ctx = find_get_context(event->pmu, pid, cpu);
5532 5533
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
5534
		goto err_free;
5535
	}
5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551

	event->filp = NULL;
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
	mutex_unlock(&ctx->mutex);

	event->owner = current;
	get_task_struct(current);
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);

	return event;

5552 5553 5554
err_free:
	free_event(event);
err:
5555
	return ERR_PTR(err);
5556 5557 5558
}
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);

5559
/*
5560
 * inherit a event from parent task to child task:
5561
 */
5562 5563
static struct perf_event *
inherit_event(struct perf_event *parent_event,
5564
	      struct task_struct *parent,
5565
	      struct perf_event_context *parent_ctx,
5566
	      struct task_struct *child,
5567 5568
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
5569
{
5570
	struct perf_event *child_event;
5571

5572
	/*
5573 5574
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
5575 5576 5577
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
5578 5579
	if (parent_event->parent)
		parent_event = parent_event->parent;
5580

5581
	child_event = perf_event_alloc(&parent_event->attr,
5582
					   parent_event->cpu,
5583
					   group_leader, parent_event,
5584
					   NULL);
5585 5586
	if (IS_ERR(child_event))
		return child_event;
5587
	get_ctx(child_ctx);
5588

5589
	/*
5590
	 * Make the child state follow the state of the parent event,
5591
	 * not its attr.disabled bit.  We hold the parent's mutex,
5592
	 * so we won't race with perf_event_{en, dis}able_family.
5593
	 */
5594 5595
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
5596
	else
5597
		child_event->state = PERF_EVENT_STATE_OFF;
5598

5599 5600 5601 5602 5603 5604 5605
	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

5606
		local64_set(&hwc->period_left, sample_period);
5607
	}
5608

5609
	child_event->ctx = child_ctx;
5610 5611
	child_event->overflow_handler = parent_event->overflow_handler;

5612 5613 5614
	/*
	 * Link it up in the child's context:
	 */
5615
	add_event_to_ctx(child_event, child_ctx);
5616 5617 5618

	/*
	 * Get a reference to the parent filp - we will fput it
5619
	 * when the child event exits. This is safe to do because
5620 5621 5622
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
5623
	atomic_long_inc(&parent_event->filp->f_count);
5624

5625
	/*
5626
	 * Link this into the parent event's child list
5627
	 */
5628 5629 5630 5631
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
5632

5633
	return child_event;
5634 5635
}

5636
static int inherit_group(struct perf_event *parent_event,
5637
	      struct task_struct *parent,
5638
	      struct perf_event_context *parent_ctx,
5639
	      struct task_struct *child,
5640
	      struct perf_event_context *child_ctx)
5641
{
5642 5643 5644
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;
5645

5646
	leader = inherit_event(parent_event, parent, parent_ctx,
5647
				 child, NULL, child_ctx);
5648 5649
	if (IS_ERR(leader))
		return PTR_ERR(leader);
5650 5651
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
5652 5653 5654
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
5655
	}
5656 5657 5658
	return 0;
}

5659
static void sync_child_event(struct perf_event *child_event,
5660
			       struct task_struct *child)
5661
{
5662
	struct perf_event *parent_event = child_event->parent;
5663
	u64 child_val;
5664

5665 5666
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
5667

P
Peter Zijlstra 已提交
5668
	child_val = perf_event_count(child_event);
5669 5670 5671 5672

	/*
	 * Add back the child's count to the parent's count:
	 */
5673
	atomic64_add(child_val, &parent_event->child_count);
5674 5675 5676 5677
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
5678 5679

	/*
5680
	 * Remove this event from the parent's list
5681
	 */
5682 5683 5684 5685
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
5686 5687

	/*
5688
	 * Release the parent event, if this was the last
5689 5690
	 * reference to it.
	 */
5691
	fput(parent_event->filp);
5692 5693
}

5694
static void
5695 5696
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
5697
			 struct task_struct *child)
5698
{
5699
	struct perf_event *parent_event;
5700

5701
	perf_event_remove_from_context(child_event);
5702

5703
	parent_event = child_event->parent;
5704
	/*
5705
	 * It can happen that parent exits first, and has events
5706
	 * that are still around due to the child reference. These
5707
	 * events need to be zapped - but otherwise linger.
5708
	 */
5709 5710 5711
	if (parent_event) {
		sync_child_event(child_event, child);
		free_event(child_event);
5712
	}
5713 5714 5715
}

/*
5716
 * When a child task exits, feed back event values to parent events.
5717
 */
5718
void perf_event_exit_task(struct task_struct *child)
5719
{
5720 5721
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
5722
	unsigned long flags;
5723

5724 5725
	if (likely(!child->perf_event_ctxp)) {
		perf_event_task(child, NULL, 0);
5726
		return;
P
Peter Zijlstra 已提交
5727
	}
5728

5729
	local_irq_save(flags);
5730 5731 5732 5733 5734 5735
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
5736 5737
	child_ctx = child->perf_event_ctxp;
	__perf_event_task_sched_out(child_ctx);
5738 5739 5740

	/*
	 * Take the context lock here so that if find_get_context is
5741
	 * reading child->perf_event_ctxp, we wait until it has
5742 5743
	 * incremented the context's refcount before we do put_ctx below.
	 */
5744
	raw_spin_lock(&child_ctx->lock);
5745
	child->perf_event_ctxp = NULL;
5746 5747 5748
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
5749
	 * the events from it.
5750 5751
	 */
	unclone_ctx(child_ctx);
5752
	update_context_time(child_ctx);
5753
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
5754 5755

	/*
5756 5757 5758
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
5759
	 */
5760
	perf_event_task(child, child_ctx, 0);
5761

5762 5763 5764
	/*
	 * We can recurse on the same lock type through:
	 *
5765 5766 5767
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       fput(parent_event->filp)
5768 5769 5770 5771 5772
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
5773
	mutex_lock(&child_ctx->mutex);
5774

5775
again:
5776 5777 5778 5779 5780
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5781
				 group_entry)
5782
		__perf_event_exit_task(child_event, child_ctx, child);
5783 5784

	/*
5785
	 * If the last event was a group event, it will have appended all
5786 5787 5788
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
5789 5790
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
5791
		goto again;
5792 5793 5794 5795

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
5796 5797
}

5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

	fput(parent->filp);

5812
	perf_group_detach(event);
5813 5814 5815 5816
	list_del_event(event, ctx);
	free_event(event);
}

5817 5818 5819 5820
/*
 * free an unexposed, unused context as created by inheritance by
 * init_task below, used by fork() in case of fail.
 */
5821
void perf_event_free_task(struct task_struct *task)
5822
{
5823 5824
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event *event, *tmp;
5825 5826 5827 5828 5829 5830

	if (!ctx)
		return;

	mutex_lock(&ctx->mutex);
again:
5831 5832
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
		perf_free_event(event, ctx);
5833

5834 5835 5836
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				 group_entry)
		perf_free_event(event, ctx);
5837

5838 5839 5840
	if (!list_empty(&ctx->pinned_groups) ||
	    !list_empty(&ctx->flexible_groups))
		goto again;
5841

5842
	mutex_unlock(&ctx->mutex);
5843

5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858
	put_ctx(ctx);
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
		   struct task_struct *child,
		   int *inherited_all)
{
	int ret;
	struct perf_event_context *child_ctx = child->perf_event_ctxp;

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
5859 5860
	}

5861 5862 5863 5864 5865 5866 5867
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
5868

5869 5870 5871 5872
		child_ctx = kzalloc(sizeof(struct perf_event_context),
				    GFP_KERNEL);
		if (!child_ctx)
			return -ENOMEM;
5873

5874
		__perf_event_init_context(child_ctx, child);
P
Peter Zijlstra 已提交
5875
		child_ctx->pmu = event->pmu;
5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886
		child->perf_event_ctxp = child_ctx;
		get_task_struct(child);
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
5887 5888
}

5889

5890
/*
5891
 * Initialize the perf_event context in task_struct
5892
 */
5893
int perf_event_init_task(struct task_struct *child)
5894
{
5895
	struct perf_event_context *child_ctx, *parent_ctx;
5896 5897
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
5898
	struct task_struct *parent = current;
5899
	int inherited_all = 1;
5900
	int ret = 0;
5901

5902
	child->perf_event_ctxp = NULL;
5903

5904 5905
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);
5906

5907
	if (likely(!parent->perf_event_ctxp))
5908 5909
		return 0;

5910
	/*
5911 5912
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
5913
	 */
5914 5915
	parent_ctx = perf_pin_task_context(parent);

5916 5917 5918 5919 5920 5921 5922
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

5923 5924 5925 5926
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
5927
	mutex_lock(&parent_ctx->mutex);
5928 5929 5930 5931 5932

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
5933 5934 5935 5936 5937 5938
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
		ret = inherit_task_group(event, parent, parent_ctx, child,
					 &inherited_all);
		if (ret)
			break;
	}
5939

5940 5941 5942 5943
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
		ret = inherit_task_group(event, parent, parent_ctx, child,
					 &inherited_all);
		if (ret)
5944
			break;
5945 5946
	}

5947 5948
	child_ctx = child->perf_event_ctxp;

5949
	if (child_ctx && inherited_all) {
5950 5951 5952
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
5953 5954
		 * Note that if the parent is a clone, it could get
		 * uncloned at any point, but that doesn't matter
5955
		 * because the list of events and the generation
5956
		 * count can't have changed since we took the mutex.
5957
		 */
5958 5959 5960
		cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
5961
			child_ctx->parent_gen = parent_ctx->parent_gen;
5962 5963 5964 5965 5966
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
5967 5968
	}

5969
	mutex_unlock(&parent_ctx->mutex);
5970

5971
	perf_unpin_context(parent_ctx);
5972

5973
	return ret;
5974 5975
}

5976 5977
static void __init perf_event_init_all_cpus(void)
{
5978 5979
	struct swevent_htable *swhash;
	int cpu;
5980 5981

	for_each_possible_cpu(cpu) {
5982 5983
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
5984 5985 5986
	}
}

5987
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
5988
{
P
Peter Zijlstra 已提交
5989
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5990 5991 5992

	mutex_lock(&swhash->hlist_mutex);
	if (swhash->hlist_refcount > 0) {
5993 5994
		struct swevent_hlist *hlist;

5995 5996 5997
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5998
	}
5999
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
6000 6001 6002
}

#ifdef CONFIG_HOTPLUG_CPU
P
Peter Zijlstra 已提交
6003
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
6004
{
P
Peter Zijlstra 已提交
6005
	struct perf_event_context *ctx = __info;
6006
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
6007

P
Peter Zijlstra 已提交
6008
	perf_pmu_rotate_stop(ctx->pmu);
6009

6010 6011 6012
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
		__perf_event_remove_from_context(event);
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6013
		__perf_event_remove_from_context(event);
T
Thomas Gleixner 已提交
6014
}
P
Peter Zijlstra 已提交
6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		ctx = &this_cpu_ptr(pmu->pmu_cpu_context)->ctx;

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);

}

6034
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
6035
{
6036
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6037

6038 6039 6040
	mutex_lock(&swhash->hlist_mutex);
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
6041

P
Peter Zijlstra 已提交
6042
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
6043 6044
}
#else
6045
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
6046 6047 6048 6049 6050 6051 6052
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

P
Peter Zijlstra 已提交
6053
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
6054 6055

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
6056
	case CPU_DOWN_FAILED:
6057
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
6058 6059
		break;

P
Peter Zijlstra 已提交
6060
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
6061
	case CPU_DOWN_PREPARE:
6062
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
6063 6064 6065 6066 6067 6068 6069 6070 6071
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

6072
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
6073
{
6074
	perf_event_init_all_cpus();
6075 6076 6077 6078 6079 6080
	init_srcu_struct(&pmus_srcu);
	perf_pmu_register(&perf_swevent);
	perf_pmu_register(&perf_cpu_clock);
	perf_pmu_register(&perf_task_clock);
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
T
Thomas Gleixner 已提交
6081
}