perf_event.c 141.1 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4 5 6
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
16
#include <linux/file.h>
T
Thomas Gleixner 已提交
17
#include <linux/poll.h>
18
#include <linux/slab.h>
19
#include <linux/hash.h>
T
Thomas Gleixner 已提交
20
#include <linux/sysfs.h>
21
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
22
#include <linux/percpu.h>
23
#include <linux/ptrace.h>
24
#include <linux/vmstat.h>
25
#include <linux/vmalloc.h>
26 27
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
28 29 30
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
31
#include <linux/kernel_stat.h>
32
#include <linux/perf_event.h>
L
Li Zefan 已提交
33
#include <linux/ftrace_event.h>
T
Thomas Gleixner 已提交
34

35 36
#include <asm/irq_regs.h>

37 38 39 40
static atomic_t nr_events __read_mostly;
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
41

P
Peter Zijlstra 已提交
42 43 44 45
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

46
/*
47
 * perf event paranoia level:
48 49
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
50
 *   1 - disallow cpu events for unpriv
51
 *   2 - disallow kernel profiling for unpriv
52
 */
53
int sysctl_perf_event_paranoid __read_mostly = 1;
54

55
int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
56 57

/*
58
 * max perf event sample rate
59
 */
60
int sysctl_perf_event_sample_rate __read_mostly = 100000;
61

62
static atomic64_t perf_event_id;
63

64
void __weak perf_event_print_debug(void)	{ }
65

P
Peter Zijlstra 已提交
66
void perf_pmu_disable(struct pmu *pmu)
67
{
P
Peter Zijlstra 已提交
68 69 70
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
71 72
}

P
Peter Zijlstra 已提交
73
void perf_pmu_enable(struct pmu *pmu)
74
{
P
Peter Zijlstra 已提交
75 76 77
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
78 79
}

P
Peter Zijlstra 已提交
80
static void perf_pmu_rotate_start(struct pmu *pmu)
81
{
P
Peter Zijlstra 已提交
82
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
83 84 85 86 87 88 89 90 91

	if (hrtimer_active(&cpuctx->timer))
		return;

	__hrtimer_start_range_ns(&cpuctx->timer,
			ns_to_ktime(cpuctx->timer_interval), 0,
			HRTIMER_MODE_REL_PINNED, 0);
}

P
Peter Zijlstra 已提交
92
static void perf_pmu_rotate_stop(struct pmu *pmu)
93
{
P
Peter Zijlstra 已提交
94
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95 96 97 98

	hrtimer_cancel(&cpuctx->timer);
}

99
static void get_ctx(struct perf_event_context *ctx)
100
{
101
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
102 103
}

104 105
static void free_ctx(struct rcu_head *head)
{
106
	struct perf_event_context *ctx;
107

108
	ctx = container_of(head, struct perf_event_context, rcu_head);
109 110 111
	kfree(ctx);
}

112
static void put_ctx(struct perf_event_context *ctx)
113
{
114 115 116
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
117 118 119
		if (ctx->task)
			put_task_struct(ctx->task);
		call_rcu(&ctx->rcu_head, free_ctx);
120
	}
121 122
}

123
static void unclone_ctx(struct perf_event_context *ctx)
124 125 126 127 128 129 130
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

131
/*
132
 * If we inherit events we want to return the parent event id
133 134
 * to userspace.
 */
135
static u64 primary_event_id(struct perf_event *event)
136
{
137
	u64 id = event->id;
138

139 140
	if (event->parent)
		id = event->parent->id;
141 142 143 144

	return id;
}

145
/*
146
 * Get the perf_event_context for a task and lock it.
147 148 149
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
150
static struct perf_event_context *
P
Peter Zijlstra 已提交
151
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
152
{
153
	struct perf_event_context *ctx;
154 155

	rcu_read_lock();
P
Peter Zijlstra 已提交
156
retry:
P
Peter Zijlstra 已提交
157
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
158 159 160 161
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
162
		 * perf_event_task_sched_out, though the
163 164 165 166 167 168
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
169
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
170
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
171
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
172 173
			goto retry;
		}
174 175

		if (!atomic_inc_not_zero(&ctx->refcount)) {
176
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
177 178
			ctx = NULL;
		}
179 180 181 182 183 184 185 186 187 188
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
189 190
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
191
{
192
	struct perf_event_context *ctx;
193 194
	unsigned long flags;

P
Peter Zijlstra 已提交
195
	ctx = perf_lock_task_context(task, ctxn, &flags);
196 197
	if (ctx) {
		++ctx->pin_count;
198
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
199 200 201 202
	}
	return ctx;
}

203
static void perf_unpin_context(struct perf_event_context *ctx)
204 205 206
{
	unsigned long flags;

207
	raw_spin_lock_irqsave(&ctx->lock, flags);
208
	--ctx->pin_count;
209
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
210 211 212
	put_ctx(ctx);
}

213 214
static inline u64 perf_clock(void)
{
215
	return local_clock();
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
}

/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;

241 242 243 244 245 246
	if (ctx->is_active)
		run_end = ctx->time;
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
247 248 249 250 251 252 253 254 255

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
		run_end = ctx->time;

	event->total_time_running = run_end - event->tstamp_running;
}

256 257 258 259 260 261 262 263 264 265 266 267
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

268 269 270 271 272 273 274 275 276
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

277
/*
278
 * Add a event from the lists for its context.
279 280
 * Must be called with ctx->mutex and ctx->lock held.
 */
281
static void
282
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
283
{
284 285
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
286 287

	/*
288 289 290
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
291
	 */
292
	if (event->group_leader == event) {
293 294
		struct list_head *list;

295 296 297
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

298 299
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
300
	}
P
Peter Zijlstra 已提交
301

302
	list_add_rcu(&event->event_entry, &ctx->event_list);
303
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
304
		perf_pmu_rotate_start(ctx->pmu);
305 306
	ctx->nr_events++;
	if (event->attr.inherit_stat)
307
		ctx->nr_stat++;
308 309
}

310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
static void perf_group_attach(struct perf_event *event)
{
	struct perf_event *group_leader = event->group_leader;

	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_GROUP);
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
}

328
/*
329
 * Remove a event from the lists for its context.
330
 * Must be called with ctx->mutex and ctx->lock held.
331
 */
332
static void
333
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
334
{
335 336 337 338
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
339
		return;
340 341 342

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

343 344
	ctx->nr_events--;
	if (event->attr.inherit_stat)
345
		ctx->nr_stat--;
346

347
	list_del_rcu(&event->event_entry);
348

349 350
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
351

352
	update_group_times(event);
353 354 355 356 357 358 359 360 361 362

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
363 364
}

365
static void perf_group_detach(struct perf_event *event)
366 367
{
	struct perf_event *sibling, *tmp;
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
		return;
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
389

390
	/*
391 392
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
393
	 * to whatever list we are on.
394
	 */
395
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
396 397
		if (list)
			list_move_tail(&sibling->group_entry, list);
398
		sibling->group_leader = sibling;
399 400 401

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
402 403 404
	}
}

405 406 407 408 409 410
static inline int
event_filter_match(struct perf_event *event)
{
	return event->cpu == -1 || event->cpu == smp_processor_id();
}

411
static void
412
event_sched_out(struct perf_event *event,
413
		  struct perf_cpu_context *cpuctx,
414
		  struct perf_event_context *ctx)
415
{
416 417 418 419 420 421 422 423 424 425 426 427 428 429
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
		delta = ctx->time - event->tstamp_stopped;
		event->tstamp_running += delta;
		event->tstamp_stopped = ctx->time;
	}

430
	if (event->state != PERF_EVENT_STATE_ACTIVE)
431 432
		return;

433 434 435 436
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
437
	}
438
	event->tstamp_stopped = ctx->time;
P
Peter Zijlstra 已提交
439
	event->pmu->del(event, 0);
440
	event->oncpu = -1;
441

442
	if (!is_software_event(event))
443 444
		cpuctx->active_oncpu--;
	ctx->nr_active--;
445
	if (event->attr.exclusive || !cpuctx->active_oncpu)
446 447 448
		cpuctx->exclusive = 0;
}

449
static void
450
group_sched_out(struct perf_event *group_event,
451
		struct perf_cpu_context *cpuctx,
452
		struct perf_event_context *ctx)
453
{
454
	struct perf_event *event;
455
	int state = group_event->state;
456

457
	event_sched_out(group_event, cpuctx, ctx);
458 459 460 461

	/*
	 * Schedule out siblings (if any):
	 */
462 463
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
464

465
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
466 467 468
		cpuctx->exclusive = 0;
}

P
Peter Zijlstra 已提交
469 470 471 472 473 474
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

T
Thomas Gleixner 已提交
475
/*
476
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
477
 *
478
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
479 480
 * remove it from the context list.
 */
481
static void __perf_event_remove_from_context(void *info)
T
Thomas Gleixner 已提交
482
{
483 484
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
485
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
486 487 488 489 490 491

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
492
	if (ctx->task && cpuctx->task_ctx != ctx)
T
Thomas Gleixner 已提交
493 494
		return;

495
	raw_spin_lock(&ctx->lock);
T
Thomas Gleixner 已提交
496

497
	event_sched_out(event, cpuctx, ctx);
498

499
	list_del_event(event, ctx);
T
Thomas Gleixner 已提交
500

501
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
502 503 504 505
}


/*
506
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
507
 *
508
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
509
 *
510
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
511
 * call when the task is on a CPU.
512
 *
513 514
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
515 516
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
517
 * When called from perf_event_exit_task, it's OK because the
518
 * context has been detached from its task.
T
Thomas Gleixner 已提交
519
 */
520
static void perf_event_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
521
{
522
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
523 524 525 526
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
527
		 * Per cpu events are removed via an smp call and
528
		 * the removal is always successful.
T
Thomas Gleixner 已提交
529
		 */
530 531 532
		smp_call_function_single(event->cpu,
					 __perf_event_remove_from_context,
					 event, 1);
T
Thomas Gleixner 已提交
533 534 535 536
		return;
	}

retry:
537 538
	task_oncpu_function_call(task, __perf_event_remove_from_context,
				 event);
T
Thomas Gleixner 已提交
539

540
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
541 542 543
	/*
	 * If the context is active we need to retry the smp call.
	 */
544
	if (ctx->nr_active && !list_empty(&event->group_entry)) {
545
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
546 547 548 549 550
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
551
	 * can remove the event safely, if the call above did not
T
Thomas Gleixner 已提交
552 553
	 * succeed.
	 */
P
Peter Zijlstra 已提交
554
	if (!list_empty(&event->group_entry))
555
		list_del_event(event, ctx);
556
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
557 558
}

559
/*
560
 * Cross CPU call to disable a performance event
561
 */
562
static void __perf_event_disable(void *info)
563
{
564 565
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
566
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
567 568

	/*
569 570
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
571
	 */
572
	if (ctx->task && cpuctx->task_ctx != ctx)
573 574
		return;

575
	raw_spin_lock(&ctx->lock);
576 577

	/*
578
	 * If the event is on, turn it off.
579 580
	 * If it is in error state, leave it in error state.
	 */
581
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
582
		update_context_time(ctx);
583 584 585
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
586
		else
587 588
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
589 590
	}

591
	raw_spin_unlock(&ctx->lock);
592 593 594
}

/*
595
 * Disable a event.
596
 *
597 598
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
599
 * remains valid.  This condition is satisifed when called through
600 601 602 603
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
604
 * is the current context on this CPU and preemption is disabled,
605
 * hence we can't get into perf_event_task_sched_out for this context.
606
 */
607
void perf_event_disable(struct perf_event *event)
608
{
609
	struct perf_event_context *ctx = event->ctx;
610 611 612 613
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
614
		 * Disable the event on the cpu that it's on
615
		 */
616 617
		smp_call_function_single(event->cpu, __perf_event_disable,
					 event, 1);
618 619 620
		return;
	}

P
Peter Zijlstra 已提交
621
retry:
622
	task_oncpu_function_call(task, __perf_event_disable, event);
623

624
	raw_spin_lock_irq(&ctx->lock);
625
	/*
626
	 * If the event is still active, we need to retry the cross-call.
627
	 */
628
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
629
		raw_spin_unlock_irq(&ctx->lock);
630 631 632 633 634 635 636
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
637 638 639
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
640
	}
641

642
	raw_spin_unlock_irq(&ctx->lock);
643 644
}

645
static int
646
event_sched_in(struct perf_event *event,
647
		 struct perf_cpu_context *cpuctx,
648
		 struct perf_event_context *ctx)
649
{
650
	if (event->state <= PERF_EVENT_STATE_OFF)
651 652
		return 0;

653
	event->state = PERF_EVENT_STATE_ACTIVE;
654
	event->oncpu = smp_processor_id();
655 656 657 658 659
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

P
Peter Zijlstra 已提交
660
	if (event->pmu->add(event, PERF_EF_START)) {
661 662
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
663 664 665
		return -EAGAIN;
	}

666
	event->tstamp_running += ctx->time - event->tstamp_stopped;
667

668
	if (!is_software_event(event))
669
		cpuctx->active_oncpu++;
670 671
	ctx->nr_active++;

672
	if (event->attr.exclusive)
673 674
		cpuctx->exclusive = 1;

675 676 677
	return 0;
}

678
static int
679
group_sched_in(struct perf_event *group_event,
680
	       struct perf_cpu_context *cpuctx,
681
	       struct perf_event_context *ctx)
682
{
683
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
684
	struct pmu *pmu = group_event->pmu;
685

686
	if (group_event->state == PERF_EVENT_STATE_OFF)
687 688
		return 0;

P
Peter Zijlstra 已提交
689
	pmu->start_txn(pmu);
690

691
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
692
		pmu->cancel_txn(pmu);
693
		return -EAGAIN;
694
	}
695 696 697 698

	/*
	 * Schedule in siblings as one group (if any):
	 */
699
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
700
		if (event_sched_in(event, cpuctx, ctx)) {
701
			partial_group = event;
702 703 704 705
			goto group_error;
		}
	}

P
Peter Zijlstra 已提交
706
	if (!pmu->commit_txn(pmu))
707
		return 0;
708

709 710 711 712 713
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
714 715
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
716
			break;
717
		event_sched_out(event, cpuctx, ctx);
718
	}
719
	event_sched_out(group_event, cpuctx, ctx);
720

P
Peter Zijlstra 已提交
721
	pmu->cancel_txn(pmu);
722

723 724 725
	return -EAGAIN;
}

726
/*
727
 * Work out whether we can put this event group on the CPU now.
728
 */
729
static int group_can_go_on(struct perf_event *event,
730 731 732 733
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
734
	 * Groups consisting entirely of software events can always go on.
735
	 */
736
	if (event->group_flags & PERF_GROUP_SOFTWARE)
737 738 739
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
740
	 * events can go on.
741 742 743 744 745
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
746
	 * events on the CPU, it can't go on.
747
	 */
748
	if (event->attr.exclusive && cpuctx->active_oncpu)
749 750 751 752 753 754 755 756
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

757 758
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
759
{
760
	list_add_event(event, ctx);
761
	perf_group_attach(event);
762 763 764
	event->tstamp_enabled = ctx->time;
	event->tstamp_running = ctx->time;
	event->tstamp_stopped = ctx->time;
765 766
}

T
Thomas Gleixner 已提交
767
/*
768
 * Cross CPU call to install and enable a performance event
769 770
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
771 772 773
 */
static void __perf_install_in_context(void *info)
{
774 775 776
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
777
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
778
	int err;
T
Thomas Gleixner 已提交
779 780 781 782 783

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
784
	 * Or possibly this is the right context but it isn't
785
	 * on this cpu because it had no events.
T
Thomas Gleixner 已提交
786
	 */
787
	if (ctx->task && cpuctx->task_ctx != ctx) {
788
		if (cpuctx->task_ctx || ctx->task != current)
789 790 791
			return;
		cpuctx->task_ctx = ctx;
	}
T
Thomas Gleixner 已提交
792

793
	raw_spin_lock(&ctx->lock);
794
	ctx->is_active = 1;
795
	update_context_time(ctx);
T
Thomas Gleixner 已提交
796

797
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
798

799 800 801
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

802
	/*
803
	 * Don't put the event on if it is disabled or if
804 805
	 * it is in a group and the group isn't on.
	 */
806 807
	if (event->state != PERF_EVENT_STATE_INACTIVE ||
	    (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
808 809
		goto unlock;

810
	/*
811 812 813
	 * An exclusive event can't go on if there are already active
	 * hardware events, and no hardware event can go on if there
	 * is already an exclusive event on.
814
	 */
815
	if (!group_can_go_on(event, cpuctx, 1))
816 817
		err = -EEXIST;
	else
818
		err = event_sched_in(event, cpuctx, ctx);
819

820 821
	if (err) {
		/*
822
		 * This event couldn't go on.  If it is in a group
823
		 * then we have to pull the whole group off.
824
		 * If the event group is pinned then put it in error state.
825
		 */
826
		if (leader != event)
827
			group_sched_out(leader, cpuctx, ctx);
828
		if (leader->attr.pinned) {
829
			update_group_times(leader);
830
			leader->state = PERF_EVENT_STATE_ERROR;
831
		}
832
	}
T
Thomas Gleixner 已提交
833

P
Peter Zijlstra 已提交
834
unlock:
835
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
836 837 838
}

/*
839
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
840
 *
841 842
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
843
 *
844
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
845 846
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
847 848
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
849 850
 */
static void
851 852
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
853 854 855 856
			int cpu)
{
	struct task_struct *task = ctx->task;

857 858
	event->ctx = ctx;

T
Thomas Gleixner 已提交
859 860
	if (!task) {
		/*
861
		 * Per cpu events are installed via an smp call and
862
		 * the install is always successful.
T
Thomas Gleixner 已提交
863 864
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
865
					 event, 1);
T
Thomas Gleixner 已提交
866 867 868 869 870
		return;
	}

retry:
	task_oncpu_function_call(task, __perf_install_in_context,
871
				 event);
T
Thomas Gleixner 已提交
872

873
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
874 875 876
	/*
	 * we need to retry the smp call.
	 */
877
	if (ctx->is_active && list_empty(&event->group_entry)) {
878
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
879 880 881 882 883
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
884
	 * can add the event safely, if it the call above did not
T
Thomas Gleixner 已提交
885 886
	 * succeed.
	 */
887 888
	if (list_empty(&event->group_entry))
		add_event_to_ctx(event, ctx);
889
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
890 891
}

892
/*
893
 * Put a event into inactive state and update time fields.
894 895 896 897 898 899
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
900 901
static void __perf_event_mark_enabled(struct perf_event *event,
					struct perf_event_context *ctx)
902
{
903
	struct perf_event *sub;
904

905 906
	event->state = PERF_EVENT_STATE_INACTIVE;
	event->tstamp_enabled = ctx->time - event->total_time_enabled;
P
Peter Zijlstra 已提交
907 908
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
909 910
			sub->tstamp_enabled =
				ctx->time - sub->total_time_enabled;
P
Peter Zijlstra 已提交
911 912
		}
	}
913 914
}

915
/*
916
 * Cross CPU call to enable a performance event
917
 */
918
static void __perf_event_enable(void *info)
919
{
920 921 922
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
923
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
924
	int err;
925

926
	/*
927 928
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
929
	 */
930
	if (ctx->task && cpuctx->task_ctx != ctx) {
931
		if (cpuctx->task_ctx || ctx->task != current)
932 933 934
			return;
		cpuctx->task_ctx = ctx;
	}
935

936
	raw_spin_lock(&ctx->lock);
937
	ctx->is_active = 1;
938
	update_context_time(ctx);
939

940
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
941
		goto unlock;
942
	__perf_event_mark_enabled(event, ctx);
943

944 945 946
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

947
	/*
948
	 * If the event is in a group and isn't the group leader,
949
	 * then don't put it on unless the group is on.
950
	 */
951
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
952
		goto unlock;
953

954
	if (!group_can_go_on(event, cpuctx, 1)) {
955
		err = -EEXIST;
956
	} else {
957
		if (event == leader)
958
			err = group_sched_in(event, cpuctx, ctx);
959
		else
960
			err = event_sched_in(event, cpuctx, ctx);
961
	}
962 963 964

	if (err) {
		/*
965
		 * If this event can't go on and it's part of a
966 967
		 * group, then the whole group has to come off.
		 */
968
		if (leader != event)
969
			group_sched_out(leader, cpuctx, ctx);
970
		if (leader->attr.pinned) {
971
			update_group_times(leader);
972
			leader->state = PERF_EVENT_STATE_ERROR;
973
		}
974 975
	}

P
Peter Zijlstra 已提交
976
unlock:
977
	raw_spin_unlock(&ctx->lock);
978 979 980
}

/*
981
 * Enable a event.
982
 *
983 984
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
985
 * remains valid.  This condition is satisfied when called through
986 987
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
988
 */
989
void perf_event_enable(struct perf_event *event)
990
{
991
	struct perf_event_context *ctx = event->ctx;
992 993 994 995
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
996
		 * Enable the event on the cpu that it's on
997
		 */
998 999
		smp_call_function_single(event->cpu, __perf_event_enable,
					 event, 1);
1000 1001 1002
		return;
	}

1003
	raw_spin_lock_irq(&ctx->lock);
1004
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1005 1006 1007
		goto out;

	/*
1008 1009
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
1010 1011 1012 1013
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
1014 1015
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
1016

P
Peter Zijlstra 已提交
1017
retry:
1018
	raw_spin_unlock_irq(&ctx->lock);
1019
	task_oncpu_function_call(task, __perf_event_enable, event);
1020

1021
	raw_spin_lock_irq(&ctx->lock);
1022 1023

	/*
1024
	 * If the context is active and the event is still off,
1025 1026
	 * we need to retry the cross-call.
	 */
1027
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1028 1029 1030 1031 1032 1033
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1034 1035
	if (event->state == PERF_EVENT_STATE_OFF)
		__perf_event_mark_enabled(event, ctx);
1036

P
Peter Zijlstra 已提交
1037
out:
1038
	raw_spin_unlock_irq(&ctx->lock);
1039 1040
}

1041
static int perf_event_refresh(struct perf_event *event, int refresh)
1042
{
1043
	/*
1044
	 * not supported on inherited events
1045
	 */
1046
	if (event->attr.inherit)
1047 1048
		return -EINVAL;

1049 1050
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1051 1052

	return 0;
1053 1054
}

1055 1056 1057 1058 1059 1060 1061 1062 1063
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
1064
{
1065
	struct perf_event *event;
1066

1067
	raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1068
	perf_pmu_disable(ctx->pmu);
1069
	ctx->is_active = 0;
1070
	if (likely(!ctx->nr_events))
1071
		goto out;
1072
	update_context_time(ctx);
1073

1074
	if (!ctx->nr_active)
1075
		goto out;
1076

P
Peter Zijlstra 已提交
1077
	if (event_type & EVENT_PINNED) {
1078 1079
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1080
	}
1081

P
Peter Zijlstra 已提交
1082
	if (event_type & EVENT_FLEXIBLE) {
1083
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1084
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1085 1086
	}
out:
P
Peter Zijlstra 已提交
1087
	perf_pmu_enable(ctx->pmu);
1088
	raw_spin_unlock(&ctx->lock);
1089 1090
}

1091 1092 1093
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1094 1095 1096 1097
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1098
 * in them directly with an fd; we can only enable/disable all
1099
 * events via prctl, or enable/disable all events in a family
1100 1101
 * via ioctl, which will have the same effect on both contexts.
 */
1102 1103
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1104 1105
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1106
		&& ctx1->parent_gen == ctx2->parent_gen
1107
		&& !ctx1->pin_count && !ctx2->pin_count;
1108 1109
}

1110 1111
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1112 1113 1114
{
	u64 value;

1115
	if (!event->attr.inherit_stat)
1116 1117 1118
		return;

	/*
1119
	 * Update the event value, we cannot use perf_event_read()
1120 1121
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1122
	 * we know the event must be on the current CPU, therefore we
1123 1124
	 * don't need to use it.
	 */
1125 1126
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1127 1128
		event->pmu->read(event);
		/* fall-through */
1129

1130 1131
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1132 1133 1134 1135 1136 1137 1138
		break;

	default:
		break;
	}

	/*
1139
	 * In order to keep per-task stats reliable we need to flip the event
1140 1141
	 * values when we flip the contexts.
	 */
1142 1143 1144
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
1145

1146 1147
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1148

1149
	/*
1150
	 * Since we swizzled the values, update the user visible data too.
1151
	 */
1152 1153
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1154 1155 1156 1157 1158
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1159 1160
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1161
{
1162
	struct perf_event *event, *next_event;
1163 1164 1165 1166

	if (!ctx->nr_stat)
		return;

1167 1168
	update_context_time(ctx);

1169 1170
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1171

1172 1173
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1174

1175 1176
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1177

1178
		__perf_event_sync_stat(event, next_event);
1179

1180 1181
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1182 1183 1184
	}
}

P
Peter Zijlstra 已提交
1185 1186
void perf_event_context_sched_out(struct task_struct *task, int ctxn,
				  struct task_struct *next)
T
Thomas Gleixner 已提交
1187
{
P
Peter Zijlstra 已提交
1188
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1189 1190
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
P
Peter Zijlstra 已提交
1191
	struct perf_cpu_context *cpuctx;
1192
	int do_switch = 1;
T
Thomas Gleixner 已提交
1193

P
Peter Zijlstra 已提交
1194 1195 1196 1197 1198
	if (likely(!ctx))
		return;

	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
1199 1200
		return;

1201 1202
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
P
Peter Zijlstra 已提交
1203
	next_ctx = next->perf_event_ctxp[ctxn];
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
1215 1216
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1217
		if (context_equiv(ctx, next_ctx)) {
1218 1219
			/*
			 * XXX do we need a memory barrier of sorts
1220
			 * wrt to rcu_dereference() of perf_event_ctxp
1221
			 */
P
Peter Zijlstra 已提交
1222 1223
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
1224 1225 1226
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1227

1228
			perf_event_sync_stat(ctx, next_ctx);
1229
		}
1230 1231
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
1232
	}
1233
	rcu_read_unlock();
1234

1235
	if (do_switch) {
1236
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1237 1238
		cpuctx->task_ctx = NULL;
	}
T
Thomas Gleixner 已提交
1239 1240
}

P
Peter Zijlstra 已提交
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
void perf_event_task_sched_out(struct task_struct *task,
			       struct task_struct *next)
{
	int ctxn;

	perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
}

1266 1267
static void task_ctx_sched_out(struct perf_event_context *ctx,
			       enum event_type_t event_type)
1268
{
P
Peter Zijlstra 已提交
1269
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1270

1271 1272
	if (!cpuctx->task_ctx)
		return;
1273 1274 1275 1276

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

1277
	ctx_sched_out(ctx, cpuctx, event_type);
1278 1279 1280
	cpuctx->task_ctx = NULL;
}

1281 1282 1283
/*
 * Called with IRQs disabled
 */
1284
static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1285
{
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
	task_ctx_sched_out(ctx, EVENT_ALL);
}

/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1296 1297
}

1298
static void
1299
ctx_pinned_sched_in(struct perf_event_context *ctx,
1300
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
1301
{
1302
	struct perf_event *event;
T
Thomas Gleixner 已提交
1303

1304 1305
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
1306
			continue;
1307
		if (event->cpu != -1 && event->cpu != smp_processor_id())
1308 1309
			continue;

1310
		if (group_can_go_on(event, cpuctx, 1))
1311
			group_sched_in(event, cpuctx, ctx);
1312 1313 1314 1315 1316

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
1317 1318 1319
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
1320
		}
1321
	}
1322 1323 1324 1325
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
1326
		      struct perf_cpu_context *cpuctx)
1327 1328 1329
{
	struct perf_event *event;
	int can_add_hw = 1;
1330

1331 1332 1333
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
1334
			continue;
1335 1336
		/*
		 * Listen to the 'cpu' scheduling filter constraint
1337
		 * of events:
1338
		 */
1339
		if (event->cpu != -1 && event->cpu != smp_processor_id())
T
Thomas Gleixner 已提交
1340 1341
			continue;

P
Peter Zijlstra 已提交
1342
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
1343
			if (group_sched_in(event, cpuctx, ctx))
1344
				can_add_hw = 0;
P
Peter Zijlstra 已提交
1345
		}
T
Thomas Gleixner 已提交
1346
	}
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type)
{
	raw_spin_lock(&ctx->lock);
	ctx->is_active = 1;
	if (likely(!ctx->nr_events))
		goto out;

	ctx->timestamp = perf_clock();

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	if (event_type & EVENT_PINNED)
1366
		ctx_pinned_sched_in(ctx, cpuctx);
1367 1368 1369

	/* Then walk through the lower prio flexible groups */
	if (event_type & EVENT_FLEXIBLE)
1370
		ctx_flexible_sched_in(ctx, cpuctx);
1371

P
Peter Zijlstra 已提交
1372
out:
1373
	raw_spin_unlock(&ctx->lock);
1374 1375
}

1376 1377 1378 1379 1380 1381 1382 1383
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
			     enum event_type_t event_type)
{
	struct perf_event_context *ctx = &cpuctx->ctx;

	ctx_sched_in(ctx, cpuctx, event_type);
}

P
Peter Zijlstra 已提交
1384
static void task_ctx_sched_in(struct perf_event_context *ctx,
1385 1386
			      enum event_type_t event_type)
{
P
Peter Zijlstra 已提交
1387
	struct perf_cpu_context *cpuctx;
1388

P
Peter Zijlstra 已提交
1389
       	cpuctx = __get_cpu_context(ctx);
1390 1391
	if (cpuctx->task_ctx == ctx)
		return;
P
Peter Zijlstra 已提交
1392

1393 1394 1395
	ctx_sched_in(ctx, cpuctx, event_type);
	cpuctx->task_ctx = ctx;
}
P
Peter Zijlstra 已提交
1396 1397

void perf_event_context_sched_in(struct perf_event_context *ctx)
1398
{
P
Peter Zijlstra 已提交
1399
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
1400

P
Peter Zijlstra 已提交
1401
	cpuctx = __get_cpu_context(ctx);
1402 1403 1404
	if (cpuctx->task_ctx == ctx)
		return;

P
Peter Zijlstra 已提交
1405
	perf_pmu_disable(ctx->pmu);
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

	ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
	ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);

	cpuctx->task_ctx = ctx;
1418 1419 1420 1421 1422

	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
1423
	perf_pmu_rotate_start(ctx->pmu);
P
Peter Zijlstra 已提交
1424
	perf_pmu_enable(ctx->pmu);
1425 1426
}

P
Peter Zijlstra 已提交
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
void perf_event_task_sched_in(struct task_struct *task)
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

		perf_event_context_sched_in(ctx);
	}
}

1452 1453
#define MAX_INTERRUPTS (~0ULL)

1454
static void perf_log_throttle(struct perf_event *event, int enable);
1455

1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
#define REDUCE_FLS(a, b) 		\
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

1523 1524 1525
	if (!divisor)
		return dividend;

1526 1527 1528 1529
	return div64_u64(dividend, divisor);
}

static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1530
{
1531
	struct hw_perf_event *hwc = &event->hw;
1532
	s64 period, sample_period;
1533 1534
	s64 delta;

1535
	period = perf_calculate_period(event, nsec, count);
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
1546

1547
	if (local64_read(&hwc->period_left) > 8*sample_period) {
P
Peter Zijlstra 已提交
1548
		event->pmu->stop(event, PERF_EF_UPDATE);
1549
		local64_set(&hwc->period_left, 0);
P
Peter Zijlstra 已提交
1550
		event->pmu->start(event, PERF_EF_RELOAD);
1551
	}
1552 1553
}

1554
static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
1555
{
1556 1557
	struct perf_event *event;
	struct hw_perf_event *hwc;
1558 1559
	u64 interrupts, now;
	s64 delta;
1560

1561
	raw_spin_lock(&ctx->lock);
1562
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1563
		if (event->state != PERF_EVENT_STATE_ACTIVE)
1564 1565
			continue;

1566 1567 1568
		if (event->cpu != -1 && event->cpu != smp_processor_id())
			continue;

1569
		hwc = &event->hw;
1570 1571 1572

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
1573

1574
		/*
1575
		 * unthrottle events on the tick
1576
		 */
1577
		if (interrupts == MAX_INTERRUPTS) {
1578
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
1579
			event->pmu->start(event, 0);
1580 1581
		}

1582
		if (!event->attr.freq || !event->attr.sample_freq)
1583 1584
			continue;

1585
		event->pmu->read(event);
1586
		now = local64_read(&event->count);
1587 1588
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
1589

1590
		if (delta > 0)
1591
			perf_adjust_period(event, period, delta);
1592
	}
1593
	raw_spin_unlock(&ctx->lock);
1594 1595
}

1596
/*
1597
 * Round-robin a context's events:
1598
 */
1599
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
1600
{
1601
	raw_spin_lock(&ctx->lock);
1602 1603 1604 1605

	/* Rotate the first entry last of non-pinned groups */
	list_rotate_left(&ctx->flexible_groups);

1606
	raw_spin_unlock(&ctx->lock);
1607 1608
}

1609 1610 1611 1612 1613 1614
/*
 * Cannot race with ->pmu_rotate_start() because this is ran from hardirq
 * context, and ->pmu_rotate_start() is called with irqs disabled (both are
 * cpu affine, so there are no SMP races).
 */
static enum hrtimer_restart perf_event_context_tick(struct hrtimer *timer)
1615
{
1616
	enum hrtimer_restart restart = HRTIMER_NORESTART;
1617
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
1618
	struct perf_event_context *ctx = NULL;
1619
	int rotate = 0;
1620

1621
	cpuctx = container_of(timer, struct perf_cpu_context, timer);
1622

1623 1624 1625 1626 1627
	if (cpuctx->ctx.nr_events) {
		restart = HRTIMER_RESTART;
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
1628

P
Peter Zijlstra 已提交
1629
	ctx = cpuctx->task_ctx;
1630 1631 1632 1633 1634
	if (ctx && ctx->nr_events) {
		restart = HRTIMER_RESTART;
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
1635

P
Peter Zijlstra 已提交
1636
	perf_pmu_disable(cpuctx->ctx.pmu);
1637
	perf_ctx_adjust_freq(&cpuctx->ctx, cpuctx->timer_interval);
1638
	if (ctx)
1639
		perf_ctx_adjust_freq(ctx, cpuctx->timer_interval);
1640

1641
	if (!rotate)
1642
		goto done;
1643

1644
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1645
	if (ctx)
1646
		task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
1647

1648
	rotate_ctx(&cpuctx->ctx);
1649 1650
	if (ctx)
		rotate_ctx(ctx);
1651

1652
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1653
	if (ctx)
P
Peter Zijlstra 已提交
1654
		task_ctx_sched_in(ctx, EVENT_FLEXIBLE);
1655 1656

done:
P
Peter Zijlstra 已提交
1657
	perf_pmu_enable(cpuctx->ctx.pmu);
1658 1659 1660
	hrtimer_forward_now(timer, ns_to_ktime(cpuctx->timer_interval));

	return restart;
T
Thomas Gleixner 已提交
1661 1662
}

1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

	__perf_event_mark_enabled(event, ctx);

	return 1;
}

1678
/*
1679
 * Enable all of a task's events that have been marked enable-on-exec.
1680 1681
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
1682
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
1683
{
1684
	struct perf_event *event;
1685 1686
	unsigned long flags;
	int enabled = 0;
1687
	int ret;
1688 1689

	local_irq_save(flags);
1690
	if (!ctx || !ctx->nr_events)
1691 1692
		goto out;

P
Peter Zijlstra 已提交
1693
	task_ctx_sched_out(ctx, EVENT_ALL);
1694

1695
	raw_spin_lock(&ctx->lock);
1696

1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
	}

	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
1707 1708 1709
	}

	/*
1710
	 * Unclone this context if we enabled any event.
1711
	 */
1712 1713
	if (enabled)
		unclone_ctx(ctx);
1714

1715
	raw_spin_unlock(&ctx->lock);
1716

P
Peter Zijlstra 已提交
1717
	perf_event_context_sched_in(ctx);
P
Peter Zijlstra 已提交
1718
out:
1719 1720 1721
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
1722
/*
1723
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
1724
 */
1725
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
1726
{
1727 1728
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1729
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
1730

1731 1732 1733 1734
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
1735 1736
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
1737 1738 1739 1740
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

1741
	raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1742
	update_context_time(ctx);
1743
	update_event_times(event);
1744
	raw_spin_unlock(&ctx->lock);
P
Peter Zijlstra 已提交
1745

P
Peter Zijlstra 已提交
1746
	event->pmu->read(event);
T
Thomas Gleixner 已提交
1747 1748
}

P
Peter Zijlstra 已提交
1749 1750
static inline u64 perf_event_count(struct perf_event *event)
{
1751
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
1752 1753
}

1754
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
1755 1756
{
	/*
1757 1758
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
1759
	 */
1760 1761 1762 1763
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
1764 1765 1766
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

1767
		raw_spin_lock_irqsave(&ctx->lock, flags);
P
Peter Zijlstra 已提交
1768
		update_context_time(ctx);
1769
		update_event_times(event);
1770
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1771 1772
	}

P
Peter Zijlstra 已提交
1773
	return perf_event_count(event);
T
Thomas Gleixner 已提交
1774 1775
}

1776 1777 1778 1779 1780 1781 1782 1783 1784
/*
 * Callchain support
 */

struct callchain_cpus_entries {
	struct rcu_head			rcu_head;
	struct perf_callchain_entry	*cpu_entries[0];
};

1785
static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
static atomic_t nr_callchain_events;
static DEFINE_MUTEX(callchain_mutex);
struct callchain_cpus_entries *callchain_cpus_entries;


__weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
				  struct pt_regs *regs)
{
}

__weak void perf_callchain_user(struct perf_callchain_entry *entry,
				struct pt_regs *regs)
{
}

static void release_callchain_buffers_rcu(struct rcu_head *head)
{
	struct callchain_cpus_entries *entries;
	int cpu;

	entries = container_of(head, struct callchain_cpus_entries, rcu_head);

	for_each_possible_cpu(cpu)
		kfree(entries->cpu_entries[cpu]);

	kfree(entries);
}

static void release_callchain_buffers(void)
{
	struct callchain_cpus_entries *entries;

	entries = callchain_cpus_entries;
	rcu_assign_pointer(callchain_cpus_entries, NULL);
	call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
}

static int alloc_callchain_buffers(void)
{
	int cpu;
	int size;
	struct callchain_cpus_entries *entries;

	/*
	 * We can't use the percpu allocation API for data that can be
	 * accessed from NMI. Use a temporary manual per cpu allocation
	 * until that gets sorted out.
	 */
	size = sizeof(*entries) + sizeof(struct perf_callchain_entry *) *
		num_possible_cpus();

	entries = kzalloc(size, GFP_KERNEL);
	if (!entries)
		return -ENOMEM;

1841
	size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985

	for_each_possible_cpu(cpu) {
		entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
							 cpu_to_node(cpu));
		if (!entries->cpu_entries[cpu])
			goto fail;
	}

	rcu_assign_pointer(callchain_cpus_entries, entries);

	return 0;

fail:
	for_each_possible_cpu(cpu)
		kfree(entries->cpu_entries[cpu]);
	kfree(entries);

	return -ENOMEM;
}

static int get_callchain_buffers(void)
{
	int err = 0;
	int count;

	mutex_lock(&callchain_mutex);

	count = atomic_inc_return(&nr_callchain_events);
	if (WARN_ON_ONCE(count < 1)) {
		err = -EINVAL;
		goto exit;
	}

	if (count > 1) {
		/* If the allocation failed, give up */
		if (!callchain_cpus_entries)
			err = -ENOMEM;
		goto exit;
	}

	err = alloc_callchain_buffers();
	if (err)
		release_callchain_buffers();
exit:
	mutex_unlock(&callchain_mutex);

	return err;
}

static void put_callchain_buffers(void)
{
	if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
		release_callchain_buffers();
		mutex_unlock(&callchain_mutex);
	}
}

static int get_recursion_context(int *recursion)
{
	int rctx;

	if (in_nmi())
		rctx = 3;
	else if (in_irq())
		rctx = 2;
	else if (in_softirq())
		rctx = 1;
	else
		rctx = 0;

	if (recursion[rctx])
		return -1;

	recursion[rctx]++;
	barrier();

	return rctx;
}

static inline void put_recursion_context(int *recursion, int rctx)
{
	barrier();
	recursion[rctx]--;
}

static struct perf_callchain_entry *get_callchain_entry(int *rctx)
{
	int cpu;
	struct callchain_cpus_entries *entries;

	*rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
	if (*rctx == -1)
		return NULL;

	entries = rcu_dereference(callchain_cpus_entries);
	if (!entries)
		return NULL;

	cpu = smp_processor_id();

	return &entries->cpu_entries[cpu][*rctx];
}

static void
put_callchain_entry(int rctx)
{
	put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
}

static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
{
	int rctx;
	struct perf_callchain_entry *entry;


	entry = get_callchain_entry(&rctx);
	if (rctx == -1)
		return NULL;

	if (!entry)
		goto exit_put;

	entry->nr = 0;

	if (!user_mode(regs)) {
		perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
		perf_callchain_kernel(entry, regs);
		if (current->mm)
			regs = task_pt_regs(current);
		else
			regs = NULL;
	}

	if (regs) {
		perf_callchain_store(entry, PERF_CONTEXT_USER);
		perf_callchain_user(entry, regs);
	}

exit_put:
	put_callchain_entry(rctx);

	return entry;
}

1986
/*
1987
 * Initialize the perf_event context in a task_struct:
1988
 */
1989
static void __perf_event_init_context(struct perf_event_context *ctx)
1990
{
1991
	raw_spin_lock_init(&ctx->lock);
1992
	mutex_init(&ctx->mutex);
1993 1994
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
1995 1996
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
	}
	ctx->pmu = pmu;

	return ctx;
2016 2017
}

2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;

	rcu_read_lock();
	if (!vpid)
		task = current;
	else
		task = find_task_by_vpid(vpid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/*
	 * Can't attach events to a dying task.
	 */
	err = -ESRCH;
	if (task->flags & PF_EXITING)
		goto errout;

	/* Reuse ptrace permission checks for now. */
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

P
Peter Zijlstra 已提交
2055
static struct perf_event_context *
M
Matt Helsley 已提交
2056
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
2057
{
2058
	struct perf_event_context *ctx;
2059
	struct perf_cpu_context *cpuctx;
2060
	unsigned long flags;
P
Peter Zijlstra 已提交
2061
	int ctxn, err;
T
Thomas Gleixner 已提交
2062

M
Matt Helsley 已提交
2063
	if (!task && cpu != -1) {
2064
		/* Must be root to operate on a CPU event: */
2065
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
2066 2067
			return ERR_PTR(-EACCES);

2068
		if (cpu < 0 || cpu >= nr_cpumask_bits)
T
Thomas Gleixner 已提交
2069 2070 2071
			return ERR_PTR(-EINVAL);

		/*
2072
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
2073 2074 2075
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
2076
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
2077 2078
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
2079
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
2080
		ctx = &cpuctx->ctx;
2081
		get_ctx(ctx);
T
Thomas Gleixner 已提交
2082 2083 2084 2085

		return ctx;
	}

P
Peter Zijlstra 已提交
2086 2087 2088 2089 2090
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
2091
retry:
P
Peter Zijlstra 已提交
2092
	ctx = perf_lock_task_context(task, ctxn, &flags);
2093
	if (ctx) {
2094
		unclone_ctx(ctx);
2095
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
2096 2097
	}

2098
	if (!ctx) {
2099
		ctx = alloc_perf_context(pmu, task);
2100 2101 2102
		err = -ENOMEM;
		if (!ctx)
			goto errout;
2103

2104
		get_ctx(ctx);
2105

P
Peter Zijlstra 已提交
2106
		if (cmpxchg(&task->perf_event_ctxp[ctxn], NULL, ctx)) {
2107 2108 2109 2110
			/*
			 * We raced with some other task; use
			 * the context they set.
			 */
2111
			put_task_struct(task);
2112
			kfree(ctx);
2113
			goto retry;
2114 2115 2116
		}
	}

2117
	put_task_struct(task);
T
Thomas Gleixner 已提交
2118
	return ctx;
2119

P
Peter Zijlstra 已提交
2120
errout:
2121 2122
	put_task_struct(task);
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
2123 2124
}

L
Li Zefan 已提交
2125 2126
static void perf_event_free_filter(struct perf_event *event);

2127
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
2128
{
2129
	struct perf_event *event;
P
Peter Zijlstra 已提交
2130

2131 2132 2133
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
2134
	perf_event_free_filter(event);
2135
	kfree(event);
P
Peter Zijlstra 已提交
2136 2137
}

2138
static void perf_pending_sync(struct perf_event *event);
2139
static void perf_buffer_put(struct perf_buffer *buffer);
2140

2141
static void free_event(struct perf_event *event)
2142
{
2143
	perf_pending_sync(event);
2144

2145 2146
	if (!event->parent) {
		atomic_dec(&nr_events);
2147
		if (event->attr.mmap || event->attr.mmap_data)
2148 2149 2150 2151 2152
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
2153 2154
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
2155
	}
2156

2157 2158 2159
	if (event->buffer) {
		perf_buffer_put(event->buffer);
		event->buffer = NULL;
2160 2161
	}

2162 2163
	if (event->destroy)
		event->destroy(event);
2164

P
Peter Zijlstra 已提交
2165 2166 2167
	if (event->ctx)
		put_ctx(event->ctx);

2168
	call_rcu(&event->rcu_head, free_event_rcu);
2169 2170
}

2171
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
2172
{
2173
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
2174

2175 2176 2177 2178 2179 2180
	/*
	 * Remove from the PMU, can't get re-enabled since we got
	 * here because the last ref went.
	 */
	perf_event_disable(event);

2181
	WARN_ON_ONCE(ctx->parent_ctx);
2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2195
	raw_spin_lock_irq(&ctx->lock);
2196
	perf_group_detach(event);
2197 2198
	list_del_event(event, ctx);
	raw_spin_unlock_irq(&ctx->lock);
2199
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
2200

2201 2202 2203 2204
	mutex_lock(&event->owner->perf_event_mutex);
	list_del_init(&event->owner_entry);
	mutex_unlock(&event->owner->perf_event_mutex);
	put_task_struct(event->owner);
2205

2206
	free_event(event);
T
Thomas Gleixner 已提交
2207 2208 2209

	return 0;
}
2210
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
2211

2212 2213 2214 2215
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
2216
{
2217
	struct perf_event *event = file->private_data;
2218

2219
	file->private_data = NULL;
2220

2221
	return perf_event_release_kernel(event);
2222 2223
}

2224
static int perf_event_read_size(struct perf_event *event)
2225 2226 2227 2228 2229
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

2230
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2231 2232
		size += sizeof(u64);

2233
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2234 2235
		size += sizeof(u64);

2236
	if (event->attr.read_format & PERF_FORMAT_ID)
2237 2238
		entry += sizeof(u64);

2239 2240
	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
2241 2242 2243 2244 2245 2246 2247 2248
		size += sizeof(u64);
	}

	size += entry * nr;

	return size;
}

2249
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2250
{
2251
	struct perf_event *child;
2252 2253
	u64 total = 0;

2254 2255 2256
	*enabled = 0;
	*running = 0;

2257
	mutex_lock(&event->child_mutex);
2258
	total += perf_event_read(event);
2259 2260 2261 2262 2263 2264
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
2265
		total += perf_event_read(child);
2266 2267 2268
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
2269
	mutex_unlock(&event->child_mutex);
2270 2271 2272

	return total;
}
2273
EXPORT_SYMBOL_GPL(perf_event_read_value);
2274

2275
static int perf_event_read_group(struct perf_event *event,
2276 2277
				   u64 read_format, char __user *buf)
{
2278
	struct perf_event *leader = event->group_leader, *sub;
2279 2280
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
2281
	u64 values[5];
2282
	u64 count, enabled, running;
2283

2284
	mutex_lock(&ctx->mutex);
2285
	count = perf_event_read_value(leader, &enabled, &running);
2286 2287

	values[n++] = 1 + leader->nr_siblings;
2288 2289 2290 2291
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
2292 2293 2294
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
2295 2296 2297 2298

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
2299
		goto unlock;
2300

2301
	ret = size;
2302

2303
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2304
		n = 0;
2305

2306
		values[n++] = perf_event_read_value(sub, &enabled, &running);
2307 2308 2309 2310 2311
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

2312
		if (copy_to_user(buf + ret, values, size)) {
2313 2314 2315
			ret = -EFAULT;
			goto unlock;
		}
2316 2317

		ret += size;
2318
	}
2319 2320
unlock:
	mutex_unlock(&ctx->mutex);
2321

2322
	return ret;
2323 2324
}

2325
static int perf_event_read_one(struct perf_event *event,
2326 2327
				 u64 read_format, char __user *buf)
{
2328
	u64 enabled, running;
2329 2330 2331
	u64 values[4];
	int n = 0;

2332 2333 2334 2335 2336
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
2337
	if (read_format & PERF_FORMAT_ID)
2338
		values[n++] = primary_event_id(event);
2339 2340 2341 2342 2343 2344 2345

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
2346
/*
2347
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
2348 2349
 */
static ssize_t
2350
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
2351
{
2352
	u64 read_format = event->attr.read_format;
2353
	int ret;
T
Thomas Gleixner 已提交
2354

2355
	/*
2356
	 * Return end-of-file for a read on a event that is in
2357 2358 2359
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
2360
	if (event->state == PERF_EVENT_STATE_ERROR)
2361 2362
		return 0;

2363
	if (count < perf_event_read_size(event))
2364 2365
		return -ENOSPC;

2366
	WARN_ON_ONCE(event->ctx->parent_ctx);
2367
	if (read_format & PERF_FORMAT_GROUP)
2368
		ret = perf_event_read_group(event, read_format, buf);
2369
	else
2370
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
2371

2372
	return ret;
T
Thomas Gleixner 已提交
2373 2374 2375 2376 2377
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
2378
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
2379

2380
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
2381 2382 2383 2384
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
2385
	struct perf_event *event = file->private_data;
2386
	struct perf_buffer *buffer;
2387
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
2388 2389

	rcu_read_lock();
2390 2391 2392
	buffer = rcu_dereference(event->buffer);
	if (buffer)
		events = atomic_xchg(&buffer->poll, 0);
P
Peter Zijlstra 已提交
2393
	rcu_read_unlock();
T
Thomas Gleixner 已提交
2394

2395
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
2396 2397 2398 2399

	return events;
}

2400
static void perf_event_reset(struct perf_event *event)
2401
{
2402
	(void)perf_event_read(event);
2403
	local64_set(&event->count, 0);
2404
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
2405 2406
}

2407
/*
2408 2409 2410 2411
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
2412
 */
2413 2414
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
2415
{
2416
	struct perf_event *child;
P
Peter Zijlstra 已提交
2417

2418 2419 2420 2421
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
2422
		func(child);
2423
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
2424 2425
}

2426 2427
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
2428
{
2429 2430
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
2431

2432 2433
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
2434
	event = event->group_leader;
2435

2436 2437 2438 2439
	perf_event_for_each_child(event, func);
	func(event);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
		perf_event_for_each_child(event, func);
2440
	mutex_unlock(&ctx->mutex);
2441 2442
}

2443
static int perf_event_period(struct perf_event *event, u64 __user *arg)
2444
{
2445
	struct perf_event_context *ctx = event->ctx;
2446 2447 2448 2449
	unsigned long size;
	int ret = 0;
	u64 value;

2450
	if (!event->attr.sample_period)
2451 2452 2453 2454 2455 2456 2457 2458 2459
		return -EINVAL;

	size = copy_from_user(&value, arg, sizeof(value));
	if (size != sizeof(value))
		return -EFAULT;

	if (!value)
		return -EINVAL;

2460
	raw_spin_lock_irq(&ctx->lock);
2461 2462
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
2463 2464 2465 2466
			ret = -EINVAL;
			goto unlock;
		}

2467
		event->attr.sample_freq = value;
2468
	} else {
2469 2470
		event->attr.sample_period = value;
		event->hw.sample_period = value;
2471 2472
	}
unlock:
2473
	raw_spin_unlock_irq(&ctx->lock);
2474 2475 2476 2477

	return ret;
}

2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
static const struct file_operations perf_fops;

static struct perf_event *perf_fget_light(int fd, int *fput_needed)
{
	struct file *file;

	file = fget_light(fd, fput_needed);
	if (!file)
		return ERR_PTR(-EBADF);

	if (file->f_op != &perf_fops) {
		fput_light(file, *fput_needed);
		*fput_needed = 0;
		return ERR_PTR(-EBADF);
	}

	return file->private_data;
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
2499
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2500

2501 2502
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
2503 2504
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
2505
	u32 flags = arg;
2506 2507

	switch (cmd) {
2508 2509
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
2510
		break;
2511 2512
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
2513
		break;
2514 2515
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
2516
		break;
P
Peter Zijlstra 已提交
2517

2518 2519
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
2520

2521 2522
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
2523

2524
	case PERF_EVENT_IOC_SET_OUTPUT:
2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541
	{
		struct perf_event *output_event = NULL;
		int fput_needed = 0;
		int ret;

		if (arg != -1) {
			output_event = perf_fget_light(arg, &fput_needed);
			if (IS_ERR(output_event))
				return PTR_ERR(output_event);
		}

		ret = perf_event_set_output(event, output_event);
		if (output_event)
			fput_light(output_event->filp, fput_needed);

		return ret;
	}
2542

L
Li Zefan 已提交
2543 2544 2545
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

2546
	default:
P
Peter Zijlstra 已提交
2547
		return -ENOTTY;
2548
	}
P
Peter Zijlstra 已提交
2549 2550

	if (flags & PERF_IOC_FLAG_GROUP)
2551
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
2552
	else
2553
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
2554 2555

	return 0;
2556 2557
}

2558
int perf_event_task_enable(void)
2559
{
2560
	struct perf_event *event;
2561

2562 2563 2564 2565
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
2566 2567 2568 2569

	return 0;
}

2570
int perf_event_task_disable(void)
2571
{
2572
	struct perf_event *event;
2573

2574 2575 2576 2577
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
2578 2579 2580 2581

	return 0;
}

2582 2583
#ifndef PERF_EVENT_INDEX_OFFSET
# define PERF_EVENT_INDEX_OFFSET 0
I
Ingo Molnar 已提交
2584 2585
#endif

2586
static int perf_event_index(struct perf_event *event)
2587
{
P
Peter Zijlstra 已提交
2588 2589 2590
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

2591
	if (event->state != PERF_EVENT_STATE_ACTIVE)
2592 2593
		return 0;

2594
	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2595 2596
}

2597 2598 2599 2600 2601
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
2602
void perf_event_update_userpage(struct perf_event *event)
2603
{
2604
	struct perf_event_mmap_page *userpg;
2605
	struct perf_buffer *buffer;
2606 2607

	rcu_read_lock();
2608 2609
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
2610 2611
		goto unlock;

2612
	userpg = buffer->user_page;
2613

2614 2615 2616 2617 2618
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
2619
	++userpg->lock;
2620
	barrier();
2621
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
2622
	userpg->offset = perf_event_count(event);
2623
	if (event->state == PERF_EVENT_STATE_ACTIVE)
2624
		userpg->offset -= local64_read(&event->hw.prev_count);
2625

2626 2627
	userpg->time_enabled = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
2628

2629 2630
	userpg->time_running = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
2631

2632
	barrier();
2633
	++userpg->lock;
2634
	preempt_enable();
2635
unlock:
2636
	rcu_read_unlock();
2637 2638
}

2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
static unsigned long perf_data_size(struct perf_buffer *buffer);

static void
perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
{
	long max_size = perf_data_size(buffer);

	if (watermark)
		buffer->watermark = min(max_size, watermark);

	if (!buffer->watermark)
		buffer->watermark = max_size / 2;

	if (flags & PERF_BUFFER_WRITABLE)
		buffer->writable = 1;

	atomic_set(&buffer->refcount, 1);
}

2658
#ifndef CONFIG_PERF_USE_VMALLOC
2659

2660 2661 2662
/*
 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
 */
2663

2664
static struct page *
2665
perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2666
{
2667
	if (pgoff > buffer->nr_pages)
2668
		return NULL;
2669

2670
	if (pgoff == 0)
2671
		return virt_to_page(buffer->user_page);
2672

2673
	return virt_to_page(buffer->data_pages[pgoff - 1]);
2674 2675
}

2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688
static void *perf_mmap_alloc_page(int cpu)
{
	struct page *page;
	int node;

	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
	page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
	if (!page)
		return NULL;

	return page_address(page);
}

2689
static struct perf_buffer *
2690
perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2691
{
2692
	struct perf_buffer *buffer;
2693 2694 2695
	unsigned long size;
	int i;

2696
	size = sizeof(struct perf_buffer);
2697 2698
	size += nr_pages * sizeof(void *);

2699 2700
	buffer = kzalloc(size, GFP_KERNEL);
	if (!buffer)
2701 2702
		goto fail;

2703
	buffer->user_page = perf_mmap_alloc_page(cpu);
2704
	if (!buffer->user_page)
2705 2706 2707
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
2708
		buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2709
		if (!buffer->data_pages[i])
2710 2711 2712
			goto fail_data_pages;
	}

2713
	buffer->nr_pages = nr_pages;
2714

2715 2716
	perf_buffer_init(buffer, watermark, flags);

2717
	return buffer;
2718 2719 2720

fail_data_pages:
	for (i--; i >= 0; i--)
2721
		free_page((unsigned long)buffer->data_pages[i]);
2722

2723
	free_page((unsigned long)buffer->user_page);
2724 2725

fail_user_page:
2726
	kfree(buffer);
2727 2728

fail:
2729
	return NULL;
2730 2731
}

2732 2733
static void perf_mmap_free_page(unsigned long addr)
{
K
Kevin Cernekee 已提交
2734
	struct page *page = virt_to_page((void *)addr);
2735 2736 2737 2738 2739

	page->mapping = NULL;
	__free_page(page);
}

2740
static void perf_buffer_free(struct perf_buffer *buffer)
2741 2742 2743
{
	int i;

2744 2745 2746 2747
	perf_mmap_free_page((unsigned long)buffer->user_page);
	for (i = 0; i < buffer->nr_pages; i++)
		perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
	kfree(buffer);
2748 2749
}

2750
static inline int page_order(struct perf_buffer *buffer)
2751 2752 2753 2754
{
	return 0;
}

2755 2756 2757 2758 2759 2760 2761 2762
#else

/*
 * Back perf_mmap() with vmalloc memory.
 *
 * Required for architectures that have d-cache aliasing issues.
 */

2763
static inline int page_order(struct perf_buffer *buffer)
2764
{
2765
	return buffer->page_order;
2766 2767
}

2768
static struct page *
2769
perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2770
{
2771
	if (pgoff > (1UL << page_order(buffer)))
2772 2773
		return NULL;

2774
	return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2775 2776 2777 2778 2779 2780 2781 2782 2783
}

static void perf_mmap_unmark_page(void *addr)
{
	struct page *page = vmalloc_to_page(addr);

	page->mapping = NULL;
}

2784
static void perf_buffer_free_work(struct work_struct *work)
2785
{
2786
	struct perf_buffer *buffer;
2787 2788 2789
	void *base;
	int i, nr;

2790 2791
	buffer = container_of(work, struct perf_buffer, work);
	nr = 1 << page_order(buffer);
2792

2793
	base = buffer->user_page;
2794 2795 2796 2797
	for (i = 0; i < nr + 1; i++)
		perf_mmap_unmark_page(base + (i * PAGE_SIZE));

	vfree(base);
2798
	kfree(buffer);
2799 2800
}

2801
static void perf_buffer_free(struct perf_buffer *buffer)
2802
{
2803
	schedule_work(&buffer->work);
2804 2805
}

2806
static struct perf_buffer *
2807
perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2808
{
2809
	struct perf_buffer *buffer;
2810 2811 2812
	unsigned long size;
	void *all_buf;

2813
	size = sizeof(struct perf_buffer);
2814 2815
	size += sizeof(void *);

2816 2817
	buffer = kzalloc(size, GFP_KERNEL);
	if (!buffer)
2818 2819
		goto fail;

2820
	INIT_WORK(&buffer->work, perf_buffer_free_work);
2821 2822 2823 2824 2825

	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
	if (!all_buf)
		goto fail_all_buf;

2826 2827 2828 2829
	buffer->user_page = all_buf;
	buffer->data_pages[0] = all_buf + PAGE_SIZE;
	buffer->page_order = ilog2(nr_pages);
	buffer->nr_pages = 1;
2830

2831 2832
	perf_buffer_init(buffer, watermark, flags);

2833
	return buffer;
2834 2835

fail_all_buf:
2836
	kfree(buffer);
2837 2838 2839 2840 2841 2842 2843

fail:
	return NULL;
}

#endif

2844
static unsigned long perf_data_size(struct perf_buffer *buffer)
2845
{
2846
	return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
2847 2848
}

2849 2850 2851
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
2852
	struct perf_buffer *buffer;
2853 2854 2855 2856 2857 2858 2859 2860 2861
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
2862 2863
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
2864 2865 2866 2867 2868
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

2869
	vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

2884
static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
2885
{
2886
	struct perf_buffer *buffer;
2887

2888 2889
	buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
	perf_buffer_free(buffer);
2890 2891
}

2892
static struct perf_buffer *perf_buffer_get(struct perf_event *event)
2893
{
2894
	struct perf_buffer *buffer;
2895

2896
	rcu_read_lock();
2897 2898 2899 2900
	buffer = rcu_dereference(event->buffer);
	if (buffer) {
		if (!atomic_inc_not_zero(&buffer->refcount))
			buffer = NULL;
2901 2902 2903
	}
	rcu_read_unlock();

2904
	return buffer;
2905 2906
}

2907
static void perf_buffer_put(struct perf_buffer *buffer)
2908
{
2909
	if (!atomic_dec_and_test(&buffer->refcount))
2910
		return;
2911

2912
	call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
2913 2914 2915 2916
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
2917
	struct perf_event *event = vma->vm_file->private_data;
2918

2919
	atomic_inc(&event->mmap_count);
2920 2921 2922 2923
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
2924
	struct perf_event *event = vma->vm_file->private_data;
2925

2926
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2927
		unsigned long size = perf_data_size(event->buffer);
2928
		struct user_struct *user = event->mmap_user;
2929
		struct perf_buffer *buffer = event->buffer;
2930

2931
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2932
		vma->vm_mm->locked_vm -= event->mmap_locked;
2933
		rcu_assign_pointer(event->buffer, NULL);
2934
		mutex_unlock(&event->mmap_mutex);
2935

2936
		perf_buffer_put(buffer);
2937
		free_uid(user);
2938
	}
2939 2940
}

2941
static const struct vm_operations_struct perf_mmap_vmops = {
2942 2943 2944 2945
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
2946 2947 2948 2949
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
2950
	struct perf_event *event = file->private_data;
2951
	unsigned long user_locked, user_lock_limit;
2952
	struct user_struct *user = current_user();
2953
	unsigned long locked, lock_limit;
2954
	struct perf_buffer *buffer;
2955 2956
	unsigned long vma_size;
	unsigned long nr_pages;
2957
	long user_extra, extra;
2958
	int ret = 0, flags = 0;
2959

2960 2961 2962 2963 2964 2965 2966 2967
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
	 * same buffer.
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

2968
	if (!(vma->vm_flags & VM_SHARED))
2969
		return -EINVAL;
2970 2971 2972 2973

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

2974
	/*
2975
	 * If we have buffer pages ensure they're a power-of-two number, so we
2976 2977 2978
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
2979 2980
		return -EINVAL;

2981
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
2982 2983
		return -EINVAL;

2984 2985
	if (vma->vm_pgoff != 0)
		return -EINVAL;
2986

2987 2988
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
2989 2990 2991
	if (event->buffer) {
		if (event->buffer->nr_pages == nr_pages)
			atomic_inc(&event->buffer->refcount);
2992
		else
2993 2994 2995 2996
			ret = -EINVAL;
		goto unlock;
	}

2997
	user_extra = nr_pages + 1;
2998
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
2999 3000 3001 3002 3003 3004

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

3005
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3006

3007 3008 3009
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
3010

3011
	lock_limit = rlimit(RLIMIT_MEMLOCK);
3012
	lock_limit >>= PAGE_SHIFT;
3013
	locked = vma->vm_mm->locked_vm + extra;
3014

3015 3016
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
3017 3018 3019
		ret = -EPERM;
		goto unlock;
	}
3020

3021
	WARN_ON(event->buffer);
3022

3023 3024 3025 3026 3027
	if (vma->vm_flags & VM_WRITE)
		flags |= PERF_BUFFER_WRITABLE;

	buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
				   event->cpu, flags);
3028
	if (!buffer) {
3029
		ret = -ENOMEM;
3030
		goto unlock;
3031
	}
3032
	rcu_assign_pointer(event->buffer, buffer);
3033

3034 3035 3036 3037 3038
	atomic_long_add(user_extra, &user->locked_vm);
	event->mmap_locked = extra;
	event->mmap_user = get_current_user();
	vma->vm_mm->locked_vm += event->mmap_locked;

3039
unlock:
3040 3041
	if (!ret)
		atomic_inc(&event->mmap_count);
3042
	mutex_unlock(&event->mmap_mutex);
3043 3044 3045

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
3046 3047

	return ret;
3048 3049
}

P
Peter Zijlstra 已提交
3050 3051 3052
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
3053
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
3054 3055 3056
	int retval;

	mutex_lock(&inode->i_mutex);
3057
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
3058 3059 3060 3061 3062 3063 3064 3065
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
3066
static const struct file_operations perf_fops = {
3067
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
3068 3069 3070
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
3071 3072
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
3073
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
3074
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
3075 3076
};

3077
/*
3078
 * Perf event wakeup
3079 3080 3081 3082 3083
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

3084
void perf_event_wakeup(struct perf_event *event)
3085
{
3086
	wake_up_all(&event->waitq);
3087

3088 3089 3090
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
3091
	}
3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102
}

/*
 * Pending wakeups
 *
 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
 *
 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
 * single linked list and use cmpxchg() to add entries lockless.
 */

3103
static void perf_pending_event(struct perf_pending_entry *entry)
3104
{
3105 3106
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
3107

3108 3109 3110
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
3111 3112
	}

3113 3114 3115
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
3116 3117 3118
	}
}

3119
#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
3120

3121
static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
3122 3123 3124
	PENDING_TAIL,
};

3125 3126
static void perf_pending_queue(struct perf_pending_entry *entry,
			       void (*func)(struct perf_pending_entry *))
3127
{
3128
	struct perf_pending_entry **head;
3129

3130
	if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
3131 3132
		return;

3133 3134 3135
	entry->func = func;

	head = &get_cpu_var(perf_pending_head);
3136 3137

	do {
3138 3139
		entry->next = *head;
	} while (cmpxchg(head, entry->next, entry) != entry->next);
3140

3141
	set_perf_event_pending();
3142

3143
	put_cpu_var(perf_pending_head);
3144 3145 3146 3147
}

static int __perf_pending_run(void)
{
3148
	struct perf_pending_entry *list;
3149 3150
	int nr = 0;

3151
	list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
3152
	while (list != PENDING_TAIL) {
3153 3154
		void (*func)(struct perf_pending_entry *);
		struct perf_pending_entry *entry = list;
3155 3156 3157

		list = list->next;

3158 3159
		func = entry->func;
		entry->next = NULL;
3160 3161 3162 3163 3164 3165 3166
		/*
		 * Ensure we observe the unqueue before we issue the wakeup,
		 * so that we won't be waiting forever.
		 * -- see perf_not_pending().
		 */
		smp_wmb();

3167
		func(entry);
3168 3169 3170 3171 3172 3173
		nr++;
	}

	return nr;
}

3174
static inline int perf_not_pending(struct perf_event *event)
3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188
{
	/*
	 * If we flush on whatever cpu we run, there is a chance we don't
	 * need to wait.
	 */
	get_cpu();
	__perf_pending_run();
	put_cpu();

	/*
	 * Ensure we see the proper queue state before going to sleep
	 * so that we do not miss the wakeup. -- see perf_pending_handle()
	 */
	smp_rmb();
3189
	return event->pending.next == NULL;
3190 3191
}

3192
static void perf_pending_sync(struct perf_event *event)
3193
{
3194
	wait_event(event->waitq, perf_not_pending(event));
3195 3196
}

3197
void perf_event_do_pending(void)
3198 3199 3200 3201
{
	__perf_pending_run();
}

3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

3223 3224 3225
/*
 * Output
 */
3226
static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3227
			      unsigned long offset, unsigned long head)
3228 3229 3230
{
	unsigned long mask;

3231
	if (!buffer->writable)
3232 3233
		return true;

3234
	mask = perf_data_size(buffer) - 1;
3235 3236 3237 3238 3239 3240 3241 3242 3243 3244

	offset = (offset - tail) & mask;
	head   = (head   - tail) & mask;

	if ((int)(head - offset) < 0)
		return false;

	return true;
}

3245
static void perf_output_wakeup(struct perf_output_handle *handle)
3246
{
3247
	atomic_set(&handle->buffer->poll, POLL_IN);
3248

3249
	if (handle->nmi) {
3250 3251 3252
		handle->event->pending_wakeup = 1;
		perf_pending_queue(&handle->event->pending,
				   perf_pending_event);
3253
	} else
3254
		perf_event_wakeup(handle->event);
3255 3256
}

3257
/*
3258
 * We need to ensure a later event_id doesn't publish a head when a former
3259
 * event isn't done writing. However since we need to deal with NMIs we
3260 3261 3262
 * cannot fully serialize things.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
3263
 * event completes.
3264
 */
3265
static void perf_output_get_handle(struct perf_output_handle *handle)
3266
{
3267
	struct perf_buffer *buffer = handle->buffer;
3268

3269
	preempt_disable();
3270 3271
	local_inc(&buffer->nest);
	handle->wakeup = local_read(&buffer->wakeup);
3272 3273
}

3274
static void perf_output_put_handle(struct perf_output_handle *handle)
3275
{
3276
	struct perf_buffer *buffer = handle->buffer;
3277
	unsigned long head;
3278 3279

again:
3280
	head = local_read(&buffer->head);
3281 3282

	/*
3283
	 * IRQ/NMI can happen here, which means we can miss a head update.
3284 3285
	 */

3286
	if (!local_dec_and_test(&buffer->nest))
3287
		goto out;
3288 3289

	/*
3290
	 * Publish the known good head. Rely on the full barrier implied
3291
	 * by atomic_dec_and_test() order the buffer->head read and this
3292
	 * write.
3293
	 */
3294
	buffer->user_page->data_head = head;
3295

3296 3297
	/*
	 * Now check if we missed an update, rely on the (compiler)
3298
	 * barrier in atomic_dec_and_test() to re-read buffer->head.
3299
	 */
3300 3301
	if (unlikely(head != local_read(&buffer->head))) {
		local_inc(&buffer->nest);
3302 3303 3304
		goto again;
	}

3305
	if (handle->wakeup != local_read(&buffer->wakeup))
3306
		perf_output_wakeup(handle);
3307

P
Peter Zijlstra 已提交
3308
out:
3309
	preempt_enable();
3310 3311
}

3312
__always_inline void perf_output_copy(struct perf_output_handle *handle,
3313
		      const void *buf, unsigned int len)
3314
{
3315
	do {
3316
		unsigned long size = min_t(unsigned long, handle->size, len);
3317 3318 3319 3320 3321

		memcpy(handle->addr, buf, size);

		len -= size;
		handle->addr += size;
3322
		buf += size;
3323 3324
		handle->size -= size;
		if (!handle->size) {
3325
			struct perf_buffer *buffer = handle->buffer;
3326

3327
			handle->page++;
3328 3329 3330
			handle->page &= buffer->nr_pages - 1;
			handle->addr = buffer->data_pages[handle->page];
			handle->size = PAGE_SIZE << page_order(buffer);
3331 3332
		}
	} while (len);
3333 3334
}

3335
int perf_output_begin(struct perf_output_handle *handle,
3336
		      struct perf_event *event, unsigned int size,
3337
		      int nmi, int sample)
3338
{
3339
	struct perf_buffer *buffer;
3340
	unsigned long tail, offset, head;
3341 3342 3343 3344 3345 3346
	int have_lost;
	struct {
		struct perf_event_header header;
		u64			 id;
		u64			 lost;
	} lost_event;
3347

3348
	rcu_read_lock();
3349
	/*
3350
	 * For inherited events we send all the output towards the parent.
3351
	 */
3352 3353
	if (event->parent)
		event = event->parent;
3354

3355 3356
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
3357 3358
		goto out;

3359
	handle->buffer	= buffer;
3360
	handle->event	= event;
3361 3362
	handle->nmi	= nmi;
	handle->sample	= sample;
3363

3364
	if (!buffer->nr_pages)
3365
		goto out;
3366

3367
	have_lost = local_read(&buffer->lost);
3368 3369 3370
	if (have_lost)
		size += sizeof(lost_event);

3371
	perf_output_get_handle(handle);
3372

3373
	do {
3374 3375 3376 3377 3378
		/*
		 * Userspace could choose to issue a mb() before updating the
		 * tail pointer. So that all reads will be completed before the
		 * write is issued.
		 */
3379
		tail = ACCESS_ONCE(buffer->user_page->data_tail);
3380
		smp_rmb();
3381
		offset = head = local_read(&buffer->head);
P
Peter Zijlstra 已提交
3382
		head += size;
3383
		if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3384
			goto fail;
3385
	} while (local_cmpxchg(&buffer->head, offset, head) != offset);
3386

3387 3388
	if (head - local_read(&buffer->wakeup) > buffer->watermark)
		local_add(buffer->watermark, &buffer->wakeup);
3389

3390 3391 3392 3393
	handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
	handle->page &= buffer->nr_pages - 1;
	handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
	handle->addr = buffer->data_pages[handle->page];
3394
	handle->addr += handle->size;
3395
	handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3396

3397
	if (have_lost) {
3398
		lost_event.header.type = PERF_RECORD_LOST;
3399 3400
		lost_event.header.misc = 0;
		lost_event.header.size = sizeof(lost_event);
3401
		lost_event.id          = event->id;
3402
		lost_event.lost        = local_xchg(&buffer->lost, 0);
3403 3404 3405 3406

		perf_output_put(handle, lost_event);
	}

3407
	return 0;
3408

3409
fail:
3410
	local_inc(&buffer->lost);
3411
	perf_output_put_handle(handle);
3412 3413
out:
	rcu_read_unlock();
3414

3415 3416
	return -ENOSPC;
}
3417

3418
void perf_output_end(struct perf_output_handle *handle)
3419
{
3420
	struct perf_event *event = handle->event;
3421
	struct perf_buffer *buffer = handle->buffer;
3422

3423
	int wakeup_events = event->attr.wakeup_events;
P
Peter Zijlstra 已提交
3424

3425
	if (handle->sample && wakeup_events) {
3426
		int events = local_inc_return(&buffer->events);
P
Peter Zijlstra 已提交
3427
		if (events >= wakeup_events) {
3428 3429
			local_sub(wakeup_events, &buffer->events);
			local_inc(&buffer->wakeup);
P
Peter Zijlstra 已提交
3430
		}
3431 3432
	}

3433
	perf_output_put_handle(handle);
3434
	rcu_read_unlock();
3435 3436
}

3437
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3438 3439
{
	/*
3440
	 * only top level events have the pid namespace they were created in
3441
	 */
3442 3443
	if (event->parent)
		event = event->parent;
3444

3445
	return task_tgid_nr_ns(p, event->ns);
3446 3447
}

3448
static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3449 3450
{
	/*
3451
	 * only top level events have the pid namespace they were created in
3452
	 */
3453 3454
	if (event->parent)
		event = event->parent;
3455

3456
	return task_pid_nr_ns(p, event->ns);
3457 3458
}

3459
static void perf_output_read_one(struct perf_output_handle *handle,
3460
				 struct perf_event *event)
3461
{
3462
	u64 read_format = event->attr.read_format;
3463 3464 3465
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
3466
	values[n++] = perf_event_count(event);
3467
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3468 3469
		values[n++] = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
3470 3471
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3472 3473
		values[n++] = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
3474 3475
	}
	if (read_format & PERF_FORMAT_ID)
3476
		values[n++] = primary_event_id(event);
3477 3478 3479 3480 3481

	perf_output_copy(handle, values, n * sizeof(u64));
}

/*
3482
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3483 3484
 */
static void perf_output_read_group(struct perf_output_handle *handle,
3485
			    struct perf_event *event)
3486
{
3487 3488
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = leader->total_time_enabled;

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = leader->total_time_running;

3500
	if (leader != event)
3501 3502
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
3503
	values[n++] = perf_event_count(leader);
3504
	if (read_format & PERF_FORMAT_ID)
3505
		values[n++] = primary_event_id(leader);
3506 3507 3508

	perf_output_copy(handle, values, n * sizeof(u64));

3509
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3510 3511
		n = 0;

3512
		if (sub != event)
3513 3514
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
3515
		values[n++] = perf_event_count(sub);
3516
		if (read_format & PERF_FORMAT_ID)
3517
			values[n++] = primary_event_id(sub);
3518 3519 3520 3521 3522 3523

		perf_output_copy(handle, values, n * sizeof(u64));
	}
}

static void perf_output_read(struct perf_output_handle *handle,
3524
			     struct perf_event *event)
3525
{
3526 3527
	if (event->attr.read_format & PERF_FORMAT_GROUP)
		perf_output_read_group(handle, event);
3528
	else
3529
		perf_output_read_one(handle, event);
3530 3531
}

3532 3533 3534
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
3535
			struct perf_event *event)
3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
3566
		perf_output_read(handle, event);
3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

			perf_output_copy(handle, data->callchain, size);
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
			perf_output_copy(handle, data->raw->data,
					 data->raw->size);
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
3604
			 struct perf_event *event,
3605
			 struct pt_regs *regs)
3606
{
3607
	u64 sample_type = event->attr.sample_type;
3608

3609
	data->type = sample_type;
3610

3611
	header->type = PERF_RECORD_SAMPLE;
3612 3613 3614 3615
	header->size = sizeof(*header);

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
3616

3617
	if (sample_type & PERF_SAMPLE_IP) {
3618 3619 3620
		data->ip = perf_instruction_pointer(regs);

		header->size += sizeof(data->ip);
3621
	}
3622

3623
	if (sample_type & PERF_SAMPLE_TID) {
3624
		/* namespace issues */
3625 3626
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
3627

3628
		header->size += sizeof(data->tid_entry);
3629 3630
	}

3631
	if (sample_type & PERF_SAMPLE_TIME) {
P
Peter Zijlstra 已提交
3632
		data->time = perf_clock();
3633

3634
		header->size += sizeof(data->time);
3635 3636
	}

3637
	if (sample_type & PERF_SAMPLE_ADDR)
3638
		header->size += sizeof(data->addr);
3639

3640
	if (sample_type & PERF_SAMPLE_ID) {
3641
		data->id = primary_event_id(event);
3642

3643 3644 3645 3646
		header->size += sizeof(data->id);
	}

	if (sample_type & PERF_SAMPLE_STREAM_ID) {
3647
		data->stream_id = event->id;
3648 3649 3650

		header->size += sizeof(data->stream_id);
	}
3651

3652
	if (sample_type & PERF_SAMPLE_CPU) {
3653 3654
		data->cpu_entry.cpu		= raw_smp_processor_id();
		data->cpu_entry.reserved	= 0;
3655

3656
		header->size += sizeof(data->cpu_entry);
3657 3658
	}

3659
	if (sample_type & PERF_SAMPLE_PERIOD)
3660
		header->size += sizeof(data->period);
3661

3662
	if (sample_type & PERF_SAMPLE_READ)
3663
		header->size += perf_event_read_size(event);
3664

3665
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3666
		int size = 1;
3667

3668 3669 3670 3671 3672 3673
		data->callchain = perf_callchain(regs);

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
3674 3675
	}

3676
	if (sample_type & PERF_SAMPLE_RAW) {
3677 3678 3679 3680 3681 3682 3683 3684
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
3685
		header->size += size;
3686
	}
3687
}
3688

3689
static void perf_event_output(struct perf_event *event, int nmi,
3690 3691 3692 3693 3694
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
3695

3696 3697 3698
	/* protect the callchain buffers */
	rcu_read_lock();

3699
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
3700

3701
	if (perf_output_begin(&handle, event, header.size, nmi, 1))
3702
		goto exit;
3703

3704
	perf_output_sample(&handle, &header, data, event);
3705

3706
	perf_output_end(&handle);
3707 3708 3709

exit:
	rcu_read_unlock();
3710 3711
}

3712
/*
3713
 * read event_id
3714 3715 3716 3717 3718 3719 3720 3721 3722 3723
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
3724
perf_event_read_event(struct perf_event *event,
3725 3726 3727
			struct task_struct *task)
{
	struct perf_output_handle handle;
3728
	struct perf_read_event read_event = {
3729
		.header = {
3730
			.type = PERF_RECORD_READ,
3731
			.misc = 0,
3732
			.size = sizeof(read_event) + perf_event_read_size(event),
3733
		},
3734 3735
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
3736
	};
3737
	int ret;
3738

3739
	ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3740 3741 3742
	if (ret)
		return;

3743
	perf_output_put(&handle, read_event);
3744
	perf_output_read(&handle, event);
3745

3746 3747 3748
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
3749
/*
P
Peter Zijlstra 已提交
3750 3751
 * task tracking -- fork/exit
 *
3752
 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
3753 3754
 */

P
Peter Zijlstra 已提交
3755
struct perf_task_event {
3756
	struct task_struct		*task;
3757
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
3758 3759 3760 3761 3762 3763

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
3764 3765
		u32				tid;
		u32				ptid;
3766
		u64				time;
3767
	} event_id;
P
Peter Zijlstra 已提交
3768 3769
};

3770
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
3771
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3772 3773
{
	struct perf_output_handle handle;
P
Peter Zijlstra 已提交
3774
	struct task_struct *task = task_event->task;
3775 3776
	int size, ret;

3777 3778
	size  = task_event->event_id.header.size;
	ret = perf_output_begin(&handle, event, size, 0, 0);
P
Peter Zijlstra 已提交
3779

3780
	if (ret)
P
Peter Zijlstra 已提交
3781 3782
		return;

3783 3784
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
3785

3786 3787
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
3788

3789
	perf_output_put(&handle, task_event->event_id);
3790

P
Peter Zijlstra 已提交
3791 3792 3793
	perf_output_end(&handle);
}

3794
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
3795
{
P
Peter Zijlstra 已提交
3796
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3797 3798
		return 0;

3799 3800 3801
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3802 3803
	if (event->attr.comm || event->attr.mmap ||
	    event->attr.mmap_data || event->attr.task)
P
Peter Zijlstra 已提交
3804 3805 3806 3807 3808
		return 1;

	return 0;
}

3809
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
3810
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3811
{
3812
	struct perf_event *event;
P
Peter Zijlstra 已提交
3813

3814 3815 3816
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
3817 3818 3819
	}
}

3820
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3821
{
P
Peter Zijlstra 已提交
3822
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
3823
	struct perf_event_context *ctx;
P
Peter Zijlstra 已提交
3824
	struct pmu *pmu;
P
Peter Zijlstra 已提交
3825
	int ctxn;
P
Peter Zijlstra 已提交
3826

P
Peter Zijlstra 已提交
3827
	rcu_read_lock();
P
Peter Zijlstra 已提交
3828 3829 3830
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
		perf_event_task_ctx(&cpuctx->ctx, task_event);
P
Peter Zijlstra 已提交
3831 3832 3833 3834 3835 3836 3837 3838 3839 3840

		ctx = task_event->task_ctx;
		if (!ctx) {
			ctxn = pmu->task_ctx_nr;
			if (ctxn < 0)
				continue;
			ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		}
		if (ctx)
			perf_event_task_ctx(ctx, task_event);
P
Peter Zijlstra 已提交
3841
	}
P
Peter Zijlstra 已提交
3842
	rcu_read_unlock();
P
Peter Zijlstra 已提交
3843 3844
}

3845 3846
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
3847
			      int new)
P
Peter Zijlstra 已提交
3848
{
P
Peter Zijlstra 已提交
3849
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
3850

3851 3852 3853
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
3854 3855
		return;

P
Peter Zijlstra 已提交
3856
	task_event = (struct perf_task_event){
3857 3858
		.task	  = task,
		.task_ctx = task_ctx,
3859
		.event_id    = {
P
Peter Zijlstra 已提交
3860
			.header = {
3861
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3862
				.misc = 0,
3863
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
3864
			},
3865 3866
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
3867 3868
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
3869
			.time = perf_clock(),
P
Peter Zijlstra 已提交
3870 3871 3872
		},
	};

3873
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
3874 3875
}

3876
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
3877
{
3878
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
3879 3880
}

3881 3882 3883 3884 3885
/*
 * comm tracking
 */

struct perf_comm_event {
3886 3887
	struct task_struct	*task;
	char			*comm;
3888 3889 3890 3891 3892 3893 3894
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
3895
	} event_id;
3896 3897
};

3898
static void perf_event_comm_output(struct perf_event *event,
3899 3900 3901
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
3902 3903
	int size = comm_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3904 3905 3906 3907

	if (ret)
		return;

3908 3909
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3910

3911
	perf_output_put(&handle, comm_event->event_id);
3912 3913 3914 3915 3916
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
	perf_output_end(&handle);
}

3917
static int perf_event_comm_match(struct perf_event *event)
3918
{
P
Peter Zijlstra 已提交
3919
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3920 3921
		return 0;

3922 3923 3924
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3925
	if (event->attr.comm)
3926 3927 3928 3929 3930
		return 1;

	return 0;
}

3931
static void perf_event_comm_ctx(struct perf_event_context *ctx,
3932 3933
				  struct perf_comm_event *comm_event)
{
3934
	struct perf_event *event;
3935

3936 3937 3938
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
3939 3940 3941
	}
}

3942
static void perf_event_comm_event(struct perf_comm_event *comm_event)
3943 3944
{
	struct perf_cpu_context *cpuctx;
3945
	struct perf_event_context *ctx;
P
Peter Zijlstra 已提交
3946
	char comm[TASK_COMM_LEN];
3947
	unsigned int size;
P
Peter Zijlstra 已提交
3948
	struct pmu *pmu;
P
Peter Zijlstra 已提交
3949
	int ctxn;
3950

3951
	memset(comm, 0, sizeof(comm));
3952
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
3953
	size = ALIGN(strlen(comm)+1, sizeof(u64));
3954 3955 3956 3957

	comm_event->comm = comm;
	comm_event->comm_size = size;

3958
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3959

P
Peter Zijlstra 已提交
3960
	rcu_read_lock();
P
Peter Zijlstra 已提交
3961 3962 3963
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
		perf_event_comm_ctx(&cpuctx->ctx, comm_event);
P
Peter Zijlstra 已提交
3964 3965 3966 3967 3968 3969 3970 3971

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			continue;

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
			perf_event_comm_ctx(ctx, comm_event);
P
Peter Zijlstra 已提交
3972
	}
P
Peter Zijlstra 已提交
3973
	rcu_read_unlock();
3974 3975
}

3976
void perf_event_comm(struct task_struct *task)
3977
{
3978
	struct perf_comm_event comm_event;
P
Peter Zijlstra 已提交
3979 3980
	struct perf_event_context *ctx;
	int ctxn;
3981

P
Peter Zijlstra 已提交
3982 3983 3984 3985 3986 3987 3988
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;

		perf_event_enable_on_exec(ctx);
	}
3989

3990
	if (!atomic_read(&nr_comm_events))
3991
		return;
3992

3993
	comm_event = (struct perf_comm_event){
3994
		.task	= task,
3995 3996
		/* .comm      */
		/* .comm_size */
3997
		.event_id  = {
3998
			.header = {
3999
				.type = PERF_RECORD_COMM,
4000 4001 4002 4003 4004
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
4005 4006 4007
		},
	};

4008
	perf_event_comm_event(&comm_event);
4009 4010
}

4011 4012 4013 4014 4015
/*
 * mmap tracking
 */

struct perf_mmap_event {
4016 4017 4018 4019
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
4020 4021 4022 4023 4024 4025 4026 4027 4028

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
4029
	} event_id;
4030 4031
};

4032
static void perf_event_mmap_output(struct perf_event *event,
4033 4034 4035
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
4036 4037
	int size = mmap_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
4038 4039 4040 4041

	if (ret)
		return;

4042 4043
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
4044

4045
	perf_output_put(&handle, mmap_event->event_id);
4046 4047
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
4048
	perf_output_end(&handle);
4049 4050
}

4051
static int perf_event_mmap_match(struct perf_event *event,
4052 4053
				   struct perf_mmap_event *mmap_event,
				   int executable)
4054
{
P
Peter Zijlstra 已提交
4055
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4056 4057
		return 0;

4058 4059 4060
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

4061 4062
	if ((!executable && event->attr.mmap_data) ||
	    (executable && event->attr.mmap))
4063 4064 4065 4066 4067
		return 1;

	return 0;
}

4068
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4069 4070
				  struct perf_mmap_event *mmap_event,
				  int executable)
4071
{
4072
	struct perf_event *event;
4073

4074
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4075
		if (perf_event_mmap_match(event, mmap_event, executable))
4076
			perf_event_mmap_output(event, mmap_event);
4077 4078 4079
	}
}

4080
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4081 4082
{
	struct perf_cpu_context *cpuctx;
4083
	struct perf_event_context *ctx;
4084 4085
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
4086 4087 4088
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
4089
	const char *name;
P
Peter Zijlstra 已提交
4090
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4091
	int ctxn;
4092

4093 4094
	memset(tmp, 0, sizeof(tmp));

4095
	if (file) {
4096 4097 4098 4099 4100 4101
		/*
		 * d_path works from the end of the buffer backwards, so we
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4102 4103 4104 4105
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
4106
		name = d_path(&file->f_path, buf, PATH_MAX);
4107 4108 4109 4110 4111
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
4112 4113 4114
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
4115
			goto got_name;
4116
		}
4117 4118 4119 4120

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
4121 4122 4123 4124 4125 4126 4127 4128
		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
				vma->vm_end >= vma->vm_mm->brk) {
			name = strncpy(tmp, "[heap]", sizeof(tmp));
			goto got_name;
		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
				vma->vm_end >= vma->vm_mm->start_stack) {
			name = strncpy(tmp, "[stack]", sizeof(tmp));
			goto got_name;
4129 4130
		}

4131 4132 4133 4134 4135
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
4136
	size = ALIGN(strlen(name)+1, sizeof(u64));
4137 4138 4139 4140

	mmap_event->file_name = name;
	mmap_event->file_size = size;

4141
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4142

P
Peter Zijlstra 已提交
4143
	rcu_read_lock();
P
Peter Zijlstra 已提交
4144 4145 4146 4147
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
		perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
P
Peter Zijlstra 已提交
4148 4149 4150 4151 4152 4153 4154 4155 4156 4157

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			continue;

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx) {
			perf_event_mmap_ctx(ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
		}
P
Peter Zijlstra 已提交
4158
	}
P
Peter Zijlstra 已提交
4159
	rcu_read_unlock();
4160

4161 4162 4163
	kfree(buf);
}

4164
void perf_event_mmap(struct vm_area_struct *vma)
4165
{
4166 4167
	struct perf_mmap_event mmap_event;

4168
	if (!atomic_read(&nr_mmap_events))
4169 4170 4171
		return;

	mmap_event = (struct perf_mmap_event){
4172
		.vma	= vma,
4173 4174
		/* .file_name */
		/* .file_size */
4175
		.event_id  = {
4176
			.header = {
4177
				.type = PERF_RECORD_MMAP,
4178
				.misc = PERF_RECORD_MISC_USER,
4179 4180 4181 4182
				/* .size */
			},
			/* .pid */
			/* .tid */
4183 4184
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
4185
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4186 4187 4188
		},
	};

4189
	perf_event_mmap_event(&mmap_event);
4190 4191
}

4192 4193 4194 4195
/*
 * IRQ throttle logging
 */

4196
static void perf_log_throttle(struct perf_event *event, int enable)
4197 4198 4199 4200 4201 4202 4203
{
	struct perf_output_handle handle;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
4204
		u64				id;
4205
		u64				stream_id;
4206 4207
	} throttle_event = {
		.header = {
4208
			.type = PERF_RECORD_THROTTLE,
4209 4210 4211
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
4212
		.time		= perf_clock(),
4213 4214
		.id		= primary_event_id(event),
		.stream_id	= event->id,
4215 4216
	};

4217
	if (enable)
4218
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4219

4220
	ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
4221 4222 4223 4224 4225 4226 4227
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
	perf_output_end(&handle);
}

4228
/*
4229
 * Generic event overflow handling, sampling.
4230 4231
 */

4232
static int __perf_event_overflow(struct perf_event *event, int nmi,
4233 4234
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
4235
{
4236 4237
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
4238 4239
	int ret = 0;

4240
	if (!throttle) {
4241
		hwc->interrupts++;
4242
	} else {
4243 4244
		if (hwc->interrupts != MAX_INTERRUPTS) {
			hwc->interrupts++;
4245
			if (HZ * hwc->interrupts >
4246
					(u64)sysctl_perf_event_sample_rate) {
4247
				hwc->interrupts = MAX_INTERRUPTS;
4248
				perf_log_throttle(event, 0);
4249 4250 4251 4252
				ret = 1;
			}
		} else {
			/*
4253
			 * Keep re-disabling events even though on the previous
4254
			 * pass we disabled it - just in case we raced with a
4255
			 * sched-in and the event got enabled again:
4256
			 */
4257 4258 4259
			ret = 1;
		}
	}
4260

4261
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
4262
		u64 now = perf_clock();
4263
		s64 delta = now - hwc->freq_time_stamp;
4264

4265
		hwc->freq_time_stamp = now;
4266

4267 4268
		if (delta > 0 && delta < 2*TICK_NSEC)
			perf_adjust_period(event, delta, hwc->last_period);
4269 4270
	}

4271 4272
	/*
	 * XXX event_limit might not quite work as expected on inherited
4273
	 * events
4274 4275
	 */

4276 4277
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
4278
		ret = 1;
4279
		event->pending_kill = POLL_HUP;
4280
		if (nmi) {
4281 4282 4283
			event->pending_disable = 1;
			perf_pending_queue(&event->pending,
					   perf_pending_event);
4284
		} else
4285
			perf_event_disable(event);
4286 4287
	}

4288 4289 4290 4291 4292
	if (event->overflow_handler)
		event->overflow_handler(event, nmi, data, regs);
	else
		perf_event_output(event, nmi, data, regs);

4293
	return ret;
4294 4295
}

4296
int perf_event_overflow(struct perf_event *event, int nmi,
4297 4298
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
4299
{
4300
	return __perf_event_overflow(event, nmi, 1, data, regs);
4301 4302
}

4303
/*
4304
 * Generic software event infrastructure
4305 4306
 */

4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

4318
/*
4319 4320
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
4321 4322 4323 4324
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

4325
static u64 perf_swevent_set_period(struct perf_event *event)
4326
{
4327
	struct hw_perf_event *hwc = &event->hw;
4328 4329 4330 4331 4332
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
4333 4334

again:
4335
	old = val = local64_read(&hwc->period_left);
4336 4337
	if (val < 0)
		return 0;
4338

4339 4340 4341
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
4342
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4343
		goto again;
4344

4345
	return nr;
4346 4347
}

4348
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4349 4350
				    int nmi, struct perf_sample_data *data,
				    struct pt_regs *regs)
4351
{
4352
	struct hw_perf_event *hwc = &event->hw;
4353
	int throttle = 0;
4354

4355
	data->period = event->hw.last_period;
4356 4357
	if (!overflow)
		overflow = perf_swevent_set_period(event);
4358

4359 4360
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
4361

4362
	for (; overflow; overflow--) {
4363
		if (__perf_event_overflow(event, nmi, throttle,
4364
					    data, regs)) {
4365 4366 4367 4368 4369 4370
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
4371
		throttle = 1;
4372
	}
4373 4374
}

P
Peter Zijlstra 已提交
4375
static void perf_swevent_event(struct perf_event *event, u64 nr,
4376 4377
			       int nmi, struct perf_sample_data *data,
			       struct pt_regs *regs)
4378
{
4379
	struct hw_perf_event *hwc = &event->hw;
4380

4381
	local64_add(nr, &event->count);
4382

4383 4384 4385
	if (!regs)
		return;

4386 4387
	if (!hwc->sample_period)
		return;
4388

4389 4390 4391
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
		return perf_swevent_overflow(event, 1, nmi, data, regs);

4392
	if (local64_add_negative(nr, &hwc->period_left))
4393
		return;
4394

4395
	perf_swevent_overflow(event, 0, nmi, data, regs);
4396 4397
}

4398 4399 4400
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
4401 4402 4403
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

4415
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
4416
				enum perf_type_id type,
L
Li Zefan 已提交
4417 4418 4419
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
4420
{
4421
	if (event->attr.type != type)
4422
		return 0;
4423

4424
	if (event->attr.config != event_id)
4425 4426
		return 0;

4427 4428
	if (perf_exclude_event(event, regs))
		return 0;
4429 4430 4431 4432

	return 1;
}

4433 4434 4435 4436 4437 4438 4439
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

4440 4441
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4442
{
4443 4444 4445 4446
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
4447

4448 4449
/* For the read side: events when they trigger */
static inline struct hlist_head *
4450
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4451 4452
{
	struct swevent_hlist *hlist;
4453

4454
	hlist = rcu_dereference(swhash->swevent_hlist);
4455 4456 4457
	if (!hlist)
		return NULL;

4458 4459 4460 4461 4462
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
4463
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4464 4465 4466 4467 4468 4469 4470 4471 4472 4473
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
4474
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
4475 4476 4477 4478 4479
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
4480 4481 4482 4483 4484 4485
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
				    u64 nr, int nmi,
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
4486
{
4487
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4488
	struct perf_event *event;
4489 4490
	struct hlist_node *node;
	struct hlist_head *head;
4491

4492
	rcu_read_lock();
4493
	head = find_swevent_head_rcu(swhash, type, event_id);
4494 4495 4496 4497
	if (!head)
		goto end;

	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
L
Li Zefan 已提交
4498
		if (perf_swevent_match(event, type, event_id, data, regs))
P
Peter Zijlstra 已提交
4499
			perf_swevent_event(event, nr, nmi, data, regs);
4500
	}
4501 4502
end:
	rcu_read_unlock();
4503 4504
}

4505
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
4506
{
4507
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4508

4509
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
4510
}
I
Ingo Molnar 已提交
4511
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
4512

4513
void inline perf_swevent_put_recursion_context(int rctx)
4514
{
4515
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4516

4517
	put_recursion_context(swhash->recursion, rctx);
4518
}
4519

4520
void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4521
			    struct pt_regs *regs, u64 addr)
4522
{
4523
	struct perf_sample_data data;
4524 4525
	int rctx;

4526
	preempt_disable_notrace();
4527 4528 4529
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
4530

4531
	perf_sample_data_init(&data, addr);
4532

4533
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4534 4535

	perf_swevent_put_recursion_context(rctx);
4536
	preempt_enable_notrace();
4537 4538
}

4539
static void perf_swevent_read(struct perf_event *event)
4540 4541 4542
{
}

P
Peter Zijlstra 已提交
4543
static int perf_swevent_add(struct perf_event *event, int flags)
4544
{
4545
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4546
	struct hw_perf_event *hwc = &event->hw;
4547 4548
	struct hlist_head *head;

4549 4550
	if (hwc->sample_period) {
		hwc->last_period = hwc->sample_period;
4551
		perf_swevent_set_period(event);
4552
	}
4553

P
Peter Zijlstra 已提交
4554 4555
	hwc->state = !(flags & PERF_EF_START);

4556
	head = find_swevent_head(swhash, event);
4557 4558 4559 4560 4561
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

4562 4563 4564
	return 0;
}

P
Peter Zijlstra 已提交
4565
static void perf_swevent_del(struct perf_event *event, int flags)
4566
{
4567
	hlist_del_rcu(&event->hlist_entry);
4568 4569
}

P
Peter Zijlstra 已提交
4570
static void perf_swevent_start(struct perf_event *event, int flags)
P
Peter Zijlstra 已提交
4571
{
P
Peter Zijlstra 已提交
4572
	event->hw.state = 0;
P
Peter Zijlstra 已提交
4573 4574
}

P
Peter Zijlstra 已提交
4575
static void perf_swevent_stop(struct perf_event *event, int flags)
P
Peter Zijlstra 已提交
4576
{
P
Peter Zijlstra 已提交
4577
	event->hw.state = PERF_HES_STOPPED;
P
Peter Zijlstra 已提交
4578 4579
}

4580 4581
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
4582
swevent_hlist_deref(struct swevent_htable *swhash)
4583
{
4584 4585
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
4586 4587
}

4588 4589 4590 4591 4592 4593 4594 4595
static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
{
	struct swevent_hlist *hlist;

	hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
	kfree(hlist);
}

4596
static void swevent_hlist_release(struct swevent_htable *swhash)
4597
{
4598
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4599

4600
	if (!hlist)
4601 4602
		return;

4603
	rcu_assign_pointer(swhash->swevent_hlist, NULL);
4604 4605 4606 4607 4608
	call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
4609
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4610

4611
	mutex_lock(&swhash->hlist_mutex);
4612

4613 4614
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
4615

4616
	mutex_unlock(&swhash->hlist_mutex);
4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	if (event->cpu != -1) {
		swevent_hlist_put_cpu(event, event->cpu);
		return;
	}

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
4634
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4635 4636
	int err = 0;

4637
	mutex_lock(&swhash->hlist_mutex);
4638

4639
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4640 4641 4642 4643 4644 4645 4646
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
4647
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
4648
	}
4649
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
4650
exit:
4651
	mutex_unlock(&swhash->hlist_mutex);
4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	if (event->cpu != -1)
		return swevent_hlist_get_cpu(event, event->cpu);

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
4675
fail:
4676 4677 4678 4679 4680 4681 4682 4683 4684 4685
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

4686
atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4687

4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;

	WARN_ON(event->parent);

	atomic_dec(&perf_swevent_enabled[event_id]);
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
	int event_id = event->attr.config;

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

	if (event_id > PERF_COUNT_SW_MAX)
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

		atomic_inc(&perf_swevent_enabled[event_id]);
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
4732 4733
	.task_ctx_nr	= perf_sw_context,

4734
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
4735 4736 4737 4738
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
4739 4740 4741
	.read		= perf_swevent_read,
};

4742 4743
#ifdef CONFIG_EVENT_TRACING

4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
4758 4759 4760 4761
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
4762 4763 4764 4765 4766 4767 4768 4769 4770
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4771
		   struct pt_regs *regs, struct hlist_head *head, int rctx)
4772 4773
{
	struct perf_sample_data data;
4774 4775 4776
	struct perf_event *event;
	struct hlist_node *node;

4777 4778 4779 4780 4781 4782 4783 4784
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

	perf_sample_data_init(&data, addr);
	data.raw = &raw;

4785 4786
	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
		if (perf_tp_event_match(event, &data, regs))
P
Peter Zijlstra 已提交
4787
			perf_swevent_event(event, count, 1, &data, regs);
4788
	}
4789 4790

	perf_swevent_put_recursion_context(rctx);
4791 4792 4793
}
EXPORT_SYMBOL_GPL(perf_tp_event);

4794
static void tp_perf_event_destroy(struct perf_event *event)
4795
{
4796
	perf_trace_destroy(event);
4797 4798
}

4799
static int perf_tp_event_init(struct perf_event *event)
4800
{
4801 4802
	int err;

4803 4804 4805
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

4806 4807 4808 4809
	/*
	 * Raw tracepoint data is a severe data leak, only allow root to
	 * have these.
	 */
4810
	if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4811
			perf_paranoid_tracepoint_raw() &&
4812
			!capable(CAP_SYS_ADMIN))
4813
		return -EPERM;
4814

4815 4816
	err = perf_trace_init(event);
	if (err)
4817
		return err;
4818

4819
	event->destroy = tp_perf_event_destroy;
4820

4821 4822 4823 4824
	return 0;
}

static struct pmu perf_tracepoint = {
4825 4826
	.task_ctx_nr	= perf_sw_context,

4827
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
4828 4829 4830 4831
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
4832 4833 4834 4835 4836 4837
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
	perf_pmu_register(&perf_tracepoint);
4838
}
L
Li Zefan 已提交
4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

4863
#else
L
Li Zefan 已提交
4864

4865
static inline void perf_tp_register(void)
4866 4867
{
}
L
Li Zefan 已提交
4868 4869 4870 4871 4872 4873 4874 4875 4876 4877

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

4878
#endif /* CONFIG_EVENT_TRACING */
4879

4880
#ifdef CONFIG_HAVE_HW_BREAKPOINT
4881
void perf_bp_event(struct perf_event *bp, void *data)
4882
{
4883 4884 4885 4886 4887
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

	perf_sample_data_init(&sample, bp->attr.bp_addr);

P
Peter Zijlstra 已提交
4888 4889
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
		perf_swevent_event(bp, 1, 1, &sample, regs);
4890
}
4891 4892 4893 4894 4895
#endif

/*
 * hrtimer based swevent callback
 */
4896

4897
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4898
{
4899 4900 4901 4902 4903
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
4904

4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
	event->pmu->read(event);

	perf_sample_data_init(&data, 0);
	data.period = event->hw.last_period;
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
		if (!(event->attr.exclude_idle && current->pid == 0))
			if (perf_event_overflow(event, 0, &data, regs))
				ret = HRTIMER_NORESTART;
	}
4917

4918 4919
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4920

4921
	return ret;
4922 4923
}

4924
static void perf_swevent_start_hrtimer(struct perf_event *event)
4925
{
4926
	struct hw_perf_event *hwc = &event->hw;
4927

4928 4929 4930
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;
	if (hwc->sample_period) {
P
Peter Zijlstra 已提交
4931
		s64 period = local64_read(&hwc->period_left);
4932

P
Peter Zijlstra 已提交
4933 4934
		if (period) {
			if (period < 0)
4935
				period = 10000;
P
Peter Zijlstra 已提交
4936 4937

			local64_set(&hwc->period_left, 0);
4938 4939 4940 4941 4942
		} else {
			period = max_t(u64, 10000, hwc->sample_period);
		}
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(period), 0,
4943
				HRTIMER_MODE_REL_PINNED, 0);
4944
	}
4945
}
4946 4947

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4948
{
4949 4950 4951 4952
	struct hw_perf_event *hwc = &event->hw;

	if (hwc->sample_period) {
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
4953
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
4954 4955 4956

		hrtimer_cancel(&hwc->hrtimer);
	}
4957 4958
}

4959 4960 4961 4962 4963
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
4964
{
4965 4966 4967
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
4968
	now = local_clock();
4969 4970
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
4971 4972
}

P
Peter Zijlstra 已提交
4973
static void cpu_clock_event_start(struct perf_event *event, int flags)
4974
{
P
Peter Zijlstra 已提交
4975
	local64_set(&event->hw.prev_count, local_clock());
4976 4977 4978
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
4979
static void cpu_clock_event_stop(struct perf_event *event, int flags)
4980
{
4981 4982 4983
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
4984

P
Peter Zijlstra 已提交
4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

4998 4999 5000 5001
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
5002

5003 5004 5005 5006 5007 5008 5009 5010 5011
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

	return 0;
5012 5013
}

5014
static struct pmu perf_cpu_clock = {
5015 5016
	.task_ctx_nr	= perf_sw_context,

5017
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
5018 5019 5020 5021
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
5022 5023 5024 5025 5026 5027 5028 5029
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
5030
{
5031 5032
	u64 prev;
	s64 delta;
5033

5034 5035 5036 5037
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
5038

P
Peter Zijlstra 已提交
5039
static void task_clock_event_start(struct perf_event *event, int flags)
5040
{
P
Peter Zijlstra 已提交
5041
	local64_set(&event->hw.prev_count, event->ctx->time);
5042 5043 5044
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5045
static void task_clock_event_stop(struct perf_event *event, int flags)
5046 5047 5048
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
5049 5050 5051 5052 5053 5054
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
5055

P
Peter Zijlstra 已提交
5056 5057 5058 5059 5060 5061
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091
}

static void task_clock_event_read(struct perf_event *event)
{
	u64 time;

	if (!in_nmi()) {
		update_context_time(event->ctx);
		time = event->ctx->time;
	} else {
		u64 now = perf_clock();
		u64 delta = now - event->ctx->timestamp;
		time = event->ctx->time + delta;
	}

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

	return 0;
}

static struct pmu perf_task_clock = {
5092 5093
	.task_ctx_nr	= perf_sw_context,

5094
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
5095 5096 5097 5098
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
5099 5100 5101
	.read		= task_clock_event_read,
};

P
Peter Zijlstra 已提交
5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126
static void perf_pmu_nop_void(struct pmu *pmu)
{
}

static int perf_pmu_nop_int(struct pmu *pmu)
{
	return 0;
}

static void perf_pmu_start_txn(struct pmu *pmu)
{
	perf_pmu_disable(pmu);
}

static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}

static void perf_pmu_cancel_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
}

P
Peter Zijlstra 已提交
5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
static void *find_pmu_context(int ctxn)
{
	struct pmu *pmu;

	if (ctxn < 0)
		return NULL;

	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}

	return NULL;
}

static void free_pmu_context(void * __percpu cpu_context)
{
	struct pmu *pmu;

	mutex_lock(&pmus_lock);
	/*
	 * Like a real lame refcount.
	 */
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->pmu_cpu_context == cpu_context)
			goto out;
	}

	free_percpu(cpu_context);
out:
	mutex_unlock(&pmus_lock);
}

5164 5165
int perf_pmu_register(struct pmu *pmu)
{
P
Peter Zijlstra 已提交
5166
	int cpu, ret;
P
Peter Zijlstra 已提交
5167

5168
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
5169 5170 5171 5172
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
P
Peter Zijlstra 已提交
5173

P
Peter Zijlstra 已提交
5174 5175 5176 5177
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;

P
Peter Zijlstra 已提交
5178 5179 5180 5181 5182 5183 5184 5185
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
		goto free_pdc;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5186
		__perf_event_init_context(&cpuctx->ctx);
P
Peter Zijlstra 已提交
5187 5188 5189 5190 5191 5192
		cpuctx->ctx.pmu = pmu;
		cpuctx->timer_interval = TICK_NSEC;
		hrtimer_init(&cpuctx->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
		cpuctx->timer.function = perf_event_context_tick;
	}

P
Peter Zijlstra 已提交
5193
got_cpu_context:
P
Peter Zijlstra 已提交
5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
		}
	}

	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

5216
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
5217 5218
	ret = 0;
unlock:
5219 5220
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
5221
	return ret;
P
Peter Zijlstra 已提交
5222 5223 5224 5225

free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
5226 5227 5228 5229 5230 5231 5232 5233
}

void perf_pmu_unregister(struct pmu *pmu)
{
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
5234
	/*
P
Peter Zijlstra 已提交
5235 5236
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
P
Peter Zijlstra 已提交
5237
	 */
5238
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
5239
	synchronize_rcu();
P
Peter Zijlstra 已提交
5240 5241

	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
5242
	free_pmu_context(pmu->pmu_cpu_context);
5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253
}

struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		int ret = pmu->event_init(event);
		if (!ret)
P
Peter Zijlstra 已提交
5254 5255
			goto unlock;

5256 5257
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
5258
			goto unlock;
5259
		}
5260
	}
P
Peter Zijlstra 已提交
5261 5262
	pmu = ERR_PTR(-ENOENT);
unlock:
5263
	srcu_read_unlock(&pmus_srcu, idx);
5264

5265
	return pmu;
5266 5267
}

T
Thomas Gleixner 已提交
5268
/*
5269
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
5270
 */
5271
static struct perf_event *
5272
perf_event_alloc(struct perf_event_attr *attr, int cpu,
5273 5274
		   struct perf_event *group_leader,
		   struct perf_event *parent_event,
5275
		   perf_overflow_handler_t overflow_handler)
T
Thomas Gleixner 已提交
5276
{
P
Peter Zijlstra 已提交
5277
	struct pmu *pmu;
5278 5279
	struct perf_event *event;
	struct hw_perf_event *hwc;
5280
	long err;
T
Thomas Gleixner 已提交
5281

5282
	event = kzalloc(sizeof(*event), GFP_KERNEL);
5283
	if (!event)
5284
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
5285

5286
	/*
5287
	 * Single events are their own group leaders, with an
5288 5289 5290
	 * empty sibling list:
	 */
	if (!group_leader)
5291
		group_leader = event;
5292

5293 5294
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
5295

5296 5297 5298 5299
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
	init_waitqueue_head(&event->waitq);
T
Thomas Gleixner 已提交
5300

5301
	mutex_init(&event->mmap_mutex);
5302

5303 5304 5305 5306 5307
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
5308

5309
	event->parent		= parent_event;
5310

5311 5312
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
5313

5314
	event->state		= PERF_EVENT_STATE_INACTIVE;
5315

5316 5317
	if (!overflow_handler && parent_event)
		overflow_handler = parent_event->overflow_handler;
5318
	
5319
	event->overflow_handler	= overflow_handler;
5320

5321
	if (attr->disabled)
5322
		event->state = PERF_EVENT_STATE_OFF;
5323

5324
	pmu = NULL;
5325

5326
	hwc = &event->hw;
5327
	hwc->sample_period = attr->sample_period;
5328
	if (attr->freq && attr->sample_freq)
5329
		hwc->sample_period = 1;
5330
	hwc->last_period = hwc->sample_period;
5331

5332
	local64_set(&hwc->period_left, hwc->sample_period);
5333

5334
	/*
5335
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
5336
	 */
5337
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5338 5339
		goto done;

5340
	pmu = perf_init_event(event);
5341

5342 5343
done:
	err = 0;
5344
	if (!pmu)
5345
		err = -EINVAL;
5346 5347
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
5348

5349
	if (err) {
5350 5351 5352
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
5353
		return ERR_PTR(err);
I
Ingo Molnar 已提交
5354
	}
5355

5356
	event->pmu = pmu;
T
Thomas Gleixner 已提交
5357

5358 5359
	if (!event->parent) {
		atomic_inc(&nr_events);
5360
		if (event->attr.mmap || event->attr.mmap_data)
5361 5362 5363 5364 5365
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
5366 5367 5368 5369 5370 5371 5372
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
			if (err) {
				free_event(event);
				return ERR_PTR(err);
			}
		}
5373
	}
5374

5375
	return event;
T
Thomas Gleixner 已提交
5376 5377
}

5378 5379
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
5380 5381
{
	u32 size;
5382
	int ret;
5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
5407 5408 5409
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
5410 5411
	 */
	if (size > sizeof(*attr)) {
5412 5413 5414
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
5415

5416 5417
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
5418

5419
		for (; addr < end; addr++) {
5420 5421 5422 5423 5424 5425
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
5426
		size = sizeof(*attr);
5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * If the type exists, the corresponding creation will verify
	 * the attr->config.
	 */
	if (attr->type >= PERF_TYPE_MAX)
		return -EINVAL;

5440
	if (attr->__reserved_1)
5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

5458 5459
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5460
{
5461
	struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5462 5463
	int ret = -EINVAL;

5464
	if (!output_event)
5465 5466
		goto set;

5467 5468
	/* don't allow circular references */
	if (event == output_event)
5469 5470
		goto out;

5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
	 * If its not a per-cpu buffer, it must be the same task.
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

5483
set:
5484
	mutex_lock(&event->mmap_mutex);
5485 5486 5487
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
5488

5489 5490
	if (output_event) {
		/* get the buffer we want to redirect to */
5491 5492
		buffer = perf_buffer_get(output_event);
		if (!buffer)
5493
			goto unlock;
5494 5495
	}

5496 5497
	old_buffer = event->buffer;
	rcu_assign_pointer(event->buffer, buffer);
5498
	ret = 0;
5499 5500 5501
unlock:
	mutex_unlock(&event->mmap_mutex);

5502 5503
	if (old_buffer)
		perf_buffer_put(old_buffer);
5504 5505 5506 5507
out:
	return ret;
}

T
Thomas Gleixner 已提交
5508
/**
5509
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
5510
 *
5511
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
5512
 * @pid:		target pid
I
Ingo Molnar 已提交
5513
 * @cpu:		target cpu
5514
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
5515
 */
5516 5517
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
5518
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
5519
{
5520
	struct perf_event *event, *group_leader = NULL, *output_event = NULL;
5521 5522 5523
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
5524
	struct file *group_file = NULL;
M
Matt Helsley 已提交
5525
	struct task_struct *task = NULL;
5526
	struct pmu *pmu;
5527
	int event_fd;
5528
	int fput_needed = 0;
5529
	int err;
T
Thomas Gleixner 已提交
5530

5531
	/* for future expandability... */
5532
	if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5533 5534
		return -EINVAL;

5535 5536 5537
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
5538

5539 5540 5541 5542 5543
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

5544
	if (attr.freq) {
5545
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
5546 5547 5548
			return -EINVAL;
	}

5549 5550 5551 5552
	event_fd = get_unused_fd_flags(O_RDWR);
	if (event_fd < 0)
		return event_fd;

5553 5554 5555 5556 5557 5558
	event = perf_event_alloc(&attr, cpu, group_leader, NULL, NULL);
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err_fd;
	}

5559 5560 5561 5562
	if (group_fd != -1) {
		group_leader = perf_fget_light(group_fd, &fput_needed);
		if (IS_ERR(group_leader)) {
			err = PTR_ERR(group_leader);
5563
			goto err_alloc;
5564 5565 5566 5567 5568 5569 5570 5571
		}
		group_file = group_leader->filp;
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

5572 5573 5574 5575 5576 5577 5578 5579
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
	if ((pmu->task_ctx_nr == perf_sw_context) && group_leader)
		pmu = group_leader->pmu;

M
Matt Helsley 已提交
5580 5581 5582
	if (pid != -1)
		task = find_lively_task_by_vpid(pid);

5583 5584 5585
	/*
	 * Get the target context (task or percpu):
	 */
M
Matt Helsley 已提交
5586
	ctx = find_get_context(pmu, task, cpu);
5587 5588 5589 5590 5591
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
		goto err_group_fd;
	}

I
Ingo Molnar 已提交
5592
	/*
5593
	 * Look up the group leader (we will attach this event to it):
5594
	 */
5595
	if (group_leader) {
5596
		err = -EINVAL;
5597 5598

		/*
I
Ingo Molnar 已提交
5599 5600 5601 5602
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
5603
			goto err_context;
I
Ingo Molnar 已提交
5604 5605 5606
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
5607
		 */
I
Ingo Molnar 已提交
5608
		if (group_leader->ctx != ctx)
5609
			goto err_context;
5610 5611 5612
		/*
		 * Only a group leader can be exclusive or pinned
		 */
5613
		if (attr.exclusive || attr.pinned)
5614
			goto err_context;
5615 5616 5617 5618 5619
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
5620
			goto err_context;
5621
	}
T
Thomas Gleixner 已提交
5622

5623 5624 5625
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
5626
		goto err_context;
5627
	}
5628

5629
	event->filp = event_file;
5630
	WARN_ON_ONCE(ctx->parent_ctx);
5631
	mutex_lock(&ctx->mutex);
5632
	perf_install_in_context(ctx, event, cpu);
5633
	++ctx->generation;
5634
	mutex_unlock(&ctx->mutex);
5635

5636
	event->owner = current;
5637
	get_task_struct(current);
5638 5639 5640
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
5641

5642 5643 5644 5645 5646 5647
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
5648 5649 5650
	fput_light(group_file, fput_needed);
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
5651

5652
err_context:
5653
	put_ctx(ctx);
5654 5655
err_group_fd:
	fput_light(group_file, fput_needed);
5656 5657
err_alloc:
	free_event(event);
5658 5659
err_fd:
	put_unused_fd(event_fd);
5660
	return err;
T
Thomas Gleixner 已提交
5661 5662
}

5663 5664 5665 5666 5667
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
5668
 * @task: task to profile (NULL for percpu)
5669 5670 5671
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
5672
				 struct task_struct *task,
5673
				 perf_overflow_handler_t overflow_handler)
5674 5675
{
	struct perf_event_context *ctx;
5676
	struct perf_event *event;
5677 5678 5679 5680 5681 5682
	int err;

	/*
	 * Get the target context (task or percpu):
	 */

5683 5684 5685 5686 5687 5688
	event = perf_event_alloc(attr, cpu, NULL, NULL, overflow_handler);
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}

M
Matt Helsley 已提交
5689
	ctx = find_get_context(event->pmu, task, cpu);
5690 5691
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
5692
		goto err_free;
5693
	}
5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709

	event->filp = NULL;
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
	mutex_unlock(&ctx->mutex);

	event->owner = current;
	get_task_struct(current);
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);

	return event;

5710 5711 5712
err_free:
	free_event(event);
err:
5713
	return ERR_PTR(err);
5714 5715 5716
}
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);

5717
static void sync_child_event(struct perf_event *child_event,
5718
			       struct task_struct *child)
5719
{
5720
	struct perf_event *parent_event = child_event->parent;
5721
	u64 child_val;
5722

5723 5724
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
5725

P
Peter Zijlstra 已提交
5726
	child_val = perf_event_count(child_event);
5727 5728 5729 5730

	/*
	 * Add back the child's count to the parent's count:
	 */
5731
	atomic64_add(child_val, &parent_event->child_count);
5732 5733 5734 5735
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
5736 5737

	/*
5738
	 * Remove this event from the parent's list
5739
	 */
5740 5741 5742 5743
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
5744 5745

	/*
5746
	 * Release the parent event, if this was the last
5747 5748
	 * reference to it.
	 */
5749
	fput(parent_event->filp);
5750 5751
}

5752
static void
5753 5754
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
5755
			 struct task_struct *child)
5756
{
5757
	struct perf_event *parent_event;
5758

5759
	perf_event_remove_from_context(child_event);
5760

5761
	parent_event = child_event->parent;
5762
	/*
5763
	 * It can happen that parent exits first, and has events
5764
	 * that are still around due to the child reference. These
5765
	 * events need to be zapped - but otherwise linger.
5766
	 */
5767 5768 5769
	if (parent_event) {
		sync_child_event(child_event, child);
		free_event(child_event);
5770
	}
5771 5772
}

P
Peter Zijlstra 已提交
5773
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
5774
{
5775 5776
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
5777
	unsigned long flags;
5778

P
Peter Zijlstra 已提交
5779
	if (likely(!child->perf_event_ctxp[ctxn])) {
5780
		perf_event_task(child, NULL, 0);
5781
		return;
P
Peter Zijlstra 已提交
5782
	}
5783

5784
	local_irq_save(flags);
5785 5786 5787 5788 5789 5790
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
P
Peter Zijlstra 已提交
5791
	child_ctx = child->perf_event_ctxp[ctxn];
5792
	__perf_event_task_sched_out(child_ctx);
5793 5794 5795

	/*
	 * Take the context lock here so that if find_get_context is
5796
	 * reading child->perf_event_ctxp, we wait until it has
5797 5798
	 * incremented the context's refcount before we do put_ctx below.
	 */
5799
	raw_spin_lock(&child_ctx->lock);
P
Peter Zijlstra 已提交
5800
	child->perf_event_ctxp[ctxn] = NULL;
5801 5802 5803
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
5804
	 * the events from it.
5805 5806
	 */
	unclone_ctx(child_ctx);
5807
	update_context_time(child_ctx);
5808
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
5809 5810

	/*
5811 5812 5813
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
5814
	 */
5815
	perf_event_task(child, child_ctx, 0);
5816

5817 5818 5819
	/*
	 * We can recurse on the same lock type through:
	 *
5820 5821 5822
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       fput(parent_event->filp)
5823 5824 5825 5826 5827
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
5828
	mutex_lock(&child_ctx->mutex);
5829

5830
again:
5831 5832 5833 5834 5835
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5836
				 group_entry)
5837
		__perf_event_exit_task(child_event, child_ctx, child);
5838 5839

	/*
5840
	 * If the last event was a group event, it will have appended all
5841 5842 5843
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
5844 5845
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
5846
		goto again;
5847 5848 5849 5850

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
5851 5852
}

P
Peter Zijlstra 已提交
5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

	fput(parent->filp);

5878
	perf_group_detach(event);
5879 5880 5881 5882
	list_del_event(event, ctx);
	free_event(event);
}

5883 5884
/*
 * free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
5885
 * perf_event_init_task below, used by fork() in case of fail.
5886
 */
5887
void perf_event_free_task(struct task_struct *task)
5888
{
P
Peter Zijlstra 已提交
5889
	struct perf_event_context *ctx;
5890
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
5891
	int ctxn;
5892

P
Peter Zijlstra 已提交
5893 5894 5895 5896
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
5897

P
Peter Zijlstra 已提交
5898
		mutex_lock(&ctx->mutex);
5899
again:
P
Peter Zijlstra 已提交
5900 5901 5902
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
5903

P
Peter Zijlstra 已提交
5904 5905 5906
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
5907

P
Peter Zijlstra 已提交
5908 5909 5910
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
5911

P
Peter Zijlstra 已提交
5912
		mutex_unlock(&ctx->mutex);
5913

P
Peter Zijlstra 已提交
5914 5915
		put_ctx(ctx);
	}
5916 5917
}

5918 5919 5920 5921 5922 5923 5924 5925
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *child_event;
5938
	unsigned long flags;
P
Peter Zijlstra 已提交
5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
					   group_leader, parent_event,
					   NULL);
	if (IS_ERR(child_event))
		return child_event;
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;

	/*
	 * Link it up in the child's context:
	 */
5983
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
5984
	add_event_to_ctx(child_event, child_ctx);
5985
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028

	/*
	 * Get a reference to the parent filp - we will fput it
	 * when the child event exits. This is safe to do because
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
	atomic_long_inc(&parent_event->filp->f_count);

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
}

6029 6030 6031
static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
6032
		   struct task_struct *child, int ctxn,
6033 6034 6035
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
6036
	struct perf_event_context *child_ctx;
6037 6038 6039 6040

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
6041 6042
	}

P
Peter Zijlstra 已提交
6043
       	child_ctx = child->perf_event_ctxp[ctxn];
6044 6045 6046 6047 6048 6049 6050
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
6051

6052
		child_ctx = alloc_perf_context(event->pmu, child);
6053 6054
		if (!child_ctx)
			return -ENOMEM;
6055

P
Peter Zijlstra 已提交
6056
		child->perf_event_ctxp[ctxn] = child_ctx;
6057 6058 6059 6060 6061 6062 6063 6064 6065
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
6066 6067
}

6068
/*
6069
 * Initialize the perf_event context in task_struct
6070
 */
P
Peter Zijlstra 已提交
6071
int perf_event_init_context(struct task_struct *child, int ctxn)
6072
{
6073
	struct perf_event_context *child_ctx, *parent_ctx;
6074 6075
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
6076
	struct task_struct *parent = current;
6077
	int inherited_all = 1;
6078
	int ret = 0;
6079

P
Peter Zijlstra 已提交
6080
	child->perf_event_ctxp[ctxn] = NULL;
6081

6082 6083
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);
6084

P
Peter Zijlstra 已提交
6085
	if (likely(!parent->perf_event_ctxp[ctxn]))
6086 6087
		return 0;

6088
	/*
6089 6090
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
6091
	 */
P
Peter Zijlstra 已提交
6092
	parent_ctx = perf_pin_task_context(parent, ctxn);
6093

6094 6095 6096 6097 6098 6099 6100
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

6101 6102 6103 6104
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
6105
	mutex_lock(&parent_ctx->mutex);
6106 6107 6108 6109 6110

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
6111
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
6112 6113
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
6114 6115 6116
		if (ret)
			break;
	}
6117

6118
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
6119 6120
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
6121
		if (ret)
6122
			break;
6123 6124
	}

P
Peter Zijlstra 已提交
6125
	child_ctx = child->perf_event_ctxp[ctxn];
6126

6127
	if (child_ctx && inherited_all) {
6128 6129 6130
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
6131 6132
		 * Note that if the parent is a clone, it could get
		 * uncloned at any point, but that doesn't matter
6133
		 * because the list of events and the generation
6134
		 * count can't have changed since we took the mutex.
6135
		 */
6136 6137 6138
		cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
6139
			child_ctx->parent_gen = parent_ctx->parent_gen;
6140 6141 6142 6143 6144
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
6145 6146
	}

6147
	mutex_unlock(&parent_ctx->mutex);
6148

6149
	perf_unpin_context(parent_ctx);
6150

6151
	return ret;
6152 6153
}

P
Peter Zijlstra 已提交
6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
		if (ret)
			return ret;
	}

	return 0;
}

6170 6171
static void __init perf_event_init_all_cpus(void)
{
6172 6173
	struct swevent_htable *swhash;
	int cpu;
6174 6175

	for_each_possible_cpu(cpu) {
6176 6177
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
6178 6179 6180
	}
}

6181
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
6182
{
P
Peter Zijlstra 已提交
6183
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6184 6185 6186

	mutex_lock(&swhash->hlist_mutex);
	if (swhash->hlist_refcount > 0) {
6187 6188
		struct swevent_hlist *hlist;

6189 6190 6191
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6192
	}
6193
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
6194 6195 6196
}

#ifdef CONFIG_HOTPLUG_CPU
P
Peter Zijlstra 已提交
6197
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
6198
{
P
Peter Zijlstra 已提交
6199
	struct perf_event_context *ctx = __info;
6200
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
6201

P
Peter Zijlstra 已提交
6202
	perf_pmu_rotate_stop(ctx->pmu);
6203

6204 6205 6206
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
		__perf_event_remove_from_context(event);
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6207
		__perf_event_remove_from_context(event);
T
Thomas Gleixner 已提交
6208
}
P
Peter Zijlstra 已提交
6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		ctx = &this_cpu_ptr(pmu->pmu_cpu_context)->ctx;

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);

}

6228
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
6229
{
6230
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6231

6232 6233 6234
	mutex_lock(&swhash->hlist_mutex);
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
6235

P
Peter Zijlstra 已提交
6236
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
6237 6238
}
#else
6239
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
6240 6241 6242 6243 6244 6245 6246
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

P
Peter Zijlstra 已提交
6247
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
6248 6249

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
6250
	case CPU_DOWN_FAILED:
6251
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
6252 6253
		break;

P
Peter Zijlstra 已提交
6254
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
6255
	case CPU_DOWN_PREPARE:
6256
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
6257 6258 6259 6260 6261 6262 6263 6264 6265
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

6266
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
6267
{
6268
	perf_event_init_all_cpus();
6269 6270 6271 6272 6273 6274
	init_srcu_struct(&pmus_srcu);
	perf_pmu_register(&perf_swevent);
	perf_pmu_register(&perf_cpu_clock);
	perf_pmu_register(&perf_task_clock);
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
T
Thomas Gleixner 已提交
6275
}