perf_event.c 168.7 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4 5 6
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
T
Thomas Gleixner 已提交
21
#include <linux/sysfs.h>
22
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
23
#include <linux/percpu.h>
24
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
25
#include <linux/reboot.h>
26
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
27
#include <linux/device.h>
28
#include <linux/vmalloc.h>
29 30
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
31 32 33
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
34
#include <linux/kernel_stat.h>
35
#include <linux/perf_event.h>
L
Li Zefan 已提交
36
#include <linux/ftrace_event.h>
37
#include <linux/hw_breakpoint.h>
T
Thomas Gleixner 已提交
38

39 40
#include <asm/irq_regs.h>

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
struct remote_function_call {
	struct task_struct *p;
	int (*func)(void *info);
	void *info;
	int ret;
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
		.p = p,
		.func = func,
		.info = info,
		.ret = -ESRCH, /* No such (running) process */
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
		.p = NULL,
		.func = func,
		.info = info,
		.ret = -ENXIO, /* No such CPU */
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

S
Stephane Eranian 已提交
114 115 116 117
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
		       PERF_FLAG_PID_CGROUP)

118 119 120 121 122 123
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
124 125 126 127 128 129 130
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
atomic_t perf_sched_events __read_mostly;
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);

131 132 133
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
134

P
Peter Zijlstra 已提交
135 136 137 138
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

139
/*
140
 * perf event paranoia level:
141 142
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
143
 *   1 - disallow cpu events for unpriv
144
 *   2 - disallow kernel profiling for unpriv
145
 */
146
int sysctl_perf_event_paranoid __read_mostly = 1;
147

148
int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
149 150

/*
151
 * max perf event sample rate
152
 */
P
Peter Zijlstra 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
#define DEFAULT_MAX_SAMPLE_RATE 100000
int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
static int max_samples_per_tick __read_mostly =
	DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);

int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);

	return 0;
}
171

172
static atomic64_t perf_event_id;
173

174 175 176 177
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
178 179 180 181 182
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
183

184
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
185

186
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
187
{
188
	return "pmu";
T
Thomas Gleixner 已提交
189 190
}

191 192 193 194 195
static inline u64 perf_clock(void)
{
	return local_clock();
}

S
Stephane Eranian 已提交
196 197 198 199 200 201 202 203
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

#ifdef CONFIG_CGROUP_PERF

204 205 206 207 208
/*
 * Must ensure cgroup is pinned (css_get) before calling
 * this function. In other words, we cannot call this function
 * if there is no cgroup event for the current CPU context.
 */
S
Stephane Eranian 已提交
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct *task)
{
	return container_of(task_subsys_state(task, perf_subsys_id),
			struct perf_cgroup, css);
}

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

	return !event->cgrp || event->cgrp == cpuctx->cgrp;
}

static inline void perf_get_cgroup(struct perf_event *event)
{
	css_get(&event->cgrp->css);
}

static inline void perf_put_cgroup(struct perf_event *event)
{
	css_put(&event->cgrp->css);
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
	perf_put_cgroup(event);
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
276 277
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
278
	/*
279 280
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
281
	 */
282
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
283 284
		return;

285 286 287 288 289 290
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
291 292 293
}

static inline void
294 295
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
296 297 298 299
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

300 301 302 303 304 305
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
306 307 308 309
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
310
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {

		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		perf_pmu_disable(cpuctx->ctx.pmu);

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
				/* set cgrp before ctxsw in to
				 * allow event_filter_match() to not
				 * have to pass task around
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
		}

		perf_pmu_enable(cpuctx->ctx.pmu);
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

static inline void perf_cgroup_sched_out(struct task_struct *task)
{
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
}

static inline void perf_cgroup_sched_in(struct task_struct *task)
{
	perf_cgroup_switch(task, PERF_CGROUP_SWIN);
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
	struct file *file;
	int ret = 0, fput_needed;

	file = fget_light(fd, &fput_needed);
	if (!file)
		return -EBADF;

	css = cgroup_css_from_dir(file, perf_subsys_id);
407 408 409 410
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	} else {
		/* must be done before we fput() the file */
		perf_get_cgroup(event);
	}
427
out:
S
Stephane Eranian 已提交
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
	fput_light(file, fput_needed);
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

static inline void perf_cgroup_sched_out(struct task_struct *task)
{
}

static inline void perf_cgroup_sched_in(struct task_struct *task)
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
518 519
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

P
Peter Zijlstra 已提交
550
void perf_pmu_disable(struct pmu *pmu)
551
{
P
Peter Zijlstra 已提交
552 553 554
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
555 556
}

P
Peter Zijlstra 已提交
557
void perf_pmu_enable(struct pmu *pmu)
558
{
P
Peter Zijlstra 已提交
559 560 561
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
562 563
}

564 565 566 567 568 569 570
static DEFINE_PER_CPU(struct list_head, rotation_list);

/*
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
 */
P
Peter Zijlstra 已提交
571
static void perf_pmu_rotate_start(struct pmu *pmu)
572
{
P
Peter Zijlstra 已提交
573
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
574
	struct list_head *head = &__get_cpu_var(rotation_list);
575

576
	WARN_ON(!irqs_disabled());
577

578 579
	if (list_empty(&cpuctx->rotation_list))
		list_add(&cpuctx->rotation_list, head);
580 581
}

582
static void get_ctx(struct perf_event_context *ctx)
583
{
584
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
585 586
}

587 588
static void free_ctx(struct rcu_head *head)
{
589
	struct perf_event_context *ctx;
590

591
	ctx = container_of(head, struct perf_event_context, rcu_head);
592 593 594
	kfree(ctx);
}

595
static void put_ctx(struct perf_event_context *ctx)
596
{
597 598 599
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
600 601 602
		if (ctx->task)
			put_task_struct(ctx->task);
		call_rcu(&ctx->rcu_head, free_ctx);
603
	}
604 605
}

606
static void unclone_ctx(struct perf_event_context *ctx)
607 608 609 610 611 612 613
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

636
/*
637
 * If we inherit events we want to return the parent event id
638 639
 * to userspace.
 */
640
static u64 primary_event_id(struct perf_event *event)
641
{
642
	u64 id = event->id;
643

644 645
	if (event->parent)
		id = event->parent->id;
646 647 648 649

	return id;
}

650
/*
651
 * Get the perf_event_context for a task and lock it.
652 653 654
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
655
static struct perf_event_context *
P
Peter Zijlstra 已提交
656
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
657
{
658
	struct perf_event_context *ctx;
659 660

	rcu_read_lock();
P
Peter Zijlstra 已提交
661
retry:
P
Peter Zijlstra 已提交
662
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
663 664 665 666
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
667
		 * perf_event_task_sched_out, though the
668 669 670 671 672 673
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
674
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
675
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
676
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
677 678
			goto retry;
		}
679 680

		if (!atomic_inc_not_zero(&ctx->refcount)) {
681
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
682 683
			ctx = NULL;
		}
684 685 686 687 688 689 690 691 692 693
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
694 695
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
696
{
697
	struct perf_event_context *ctx;
698 699
	unsigned long flags;

P
Peter Zijlstra 已提交
700
	ctx = perf_lock_task_context(task, ctxn, &flags);
701 702
	if (ctx) {
		++ctx->pin_count;
703
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
704 705 706 707
	}
	return ctx;
}

708
static void perf_unpin_context(struct perf_event_context *ctx)
709 710 711
{
	unsigned long flags;

712
	raw_spin_lock_irqsave(&ctx->lock, flags);
713
	--ctx->pin_count;
714
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
715 716
}

717 718 719 720 721 722 723 724 725 726 727
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

728 729 730
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
731 732 733 734

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

735 736 737
	return ctx ? ctx->time : 0;
}

738 739 740 741 742 743 744 745 746 747 748
/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
749 750 751 752 753 754 755 756 757 758 759
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
760
		run_end = perf_event_time(event);
S
Stephane Eranian 已提交
761 762
	else if (ctx->is_active)
		run_end = ctx->time;
763 764 765 766
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
767 768 769 770

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
771
		run_end = perf_event_time(event);
772 773

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
774

775 776
}

777 778 779 780 781 782 783 784 785 786 787 788
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

789 790 791 792 793 794 795 796 797
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

798
/*
799
 * Add a event from the lists for its context.
800 801
 * Must be called with ctx->mutex and ctx->lock held.
 */
802
static void
803
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
804
{
805 806
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
807 808

	/*
809 810 811
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
812
	 */
813
	if (event->group_leader == event) {
814 815
		struct list_head *list;

816 817 818
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

819 820
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
821
	}
P
Peter Zijlstra 已提交
822

S
Stephane Eranian 已提交
823 824 825 826 827 828 829 830 831 832 833
	if (is_cgroup_event(event)) {
		ctx->nr_cgroups++;
		/*
		 * one more event:
		 * - that has cgroup constraint on event->cpu
		 * - that may need work on context switch
		 */
		atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
		jump_label_inc(&perf_sched_events);
	}

834
	list_add_rcu(&event->event_entry, &ctx->event_list);
835
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
836
		perf_pmu_rotate_start(ctx->pmu);
837 838
	ctx->nr_events++;
	if (event->attr.inherit_stat)
839
		ctx->nr_stat++;
840 841
}

842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

914
	event->id_header_size = size;
915 916
}

917 918
static void perf_group_attach(struct perf_event *event)
{
919
	struct perf_event *group_leader = event->group_leader, *pos;
920

P
Peter Zijlstra 已提交
921 922 923 924 925 926
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

927 928 929 930 931 932 933 934 935 936 937
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
938 939 940 941 942

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
943 944
}

945
/*
946
 * Remove a event from the lists for its context.
947
 * Must be called with ctx->mutex and ctx->lock held.
948
 */
949
static void
950
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
951
{
952 953 954 955
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
956
		return;
957 958 959

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

S
Stephane Eranian 已提交
960 961 962 963 964 965
	if (is_cgroup_event(event)) {
		ctx->nr_cgroups--;
		atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
		jump_label_dec(&perf_sched_events);
	}

966 967
	ctx->nr_events--;
	if (event->attr.inherit_stat)
968
		ctx->nr_stat--;
969

970
	list_del_rcu(&event->event_entry);
971

972 973
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
974

975
	update_group_times(event);
976 977 978 979 980 981 982 983 984 985

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
986 987
}

988
static void perf_group_detach(struct perf_event *event)
989 990
{
	struct perf_event *sibling, *tmp;
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1007
		goto out;
1008 1009 1010 1011
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1012

1013
	/*
1014 1015
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1016
	 * to whatever list we are on.
1017
	 */
1018
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1019 1020
		if (list)
			list_move_tail(&sibling->group_entry, list);
1021
		sibling->group_leader = sibling;
1022 1023 1024

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
1025
	}
1026 1027 1028 1029 1030 1031

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1032 1033
}

1034 1035 1036
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1037 1038
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1039 1040
}

1041 1042
static void
event_sched_out(struct perf_event *event,
1043
		  struct perf_cpu_context *cpuctx,
1044
		  struct perf_event_context *ctx)
1045
{
1046
	u64 tstamp = perf_event_time(event);
1047 1048 1049 1050 1051 1052 1053 1054 1055
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1056
		delta = tstamp - event->tstamp_stopped;
1057
		event->tstamp_running += delta;
1058
		event->tstamp_stopped = tstamp;
1059 1060
	}

1061
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1062
		return;
1063

1064 1065 1066 1067
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1068
	}
1069
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1070
	event->pmu->del(event, 0);
1071
	event->oncpu = -1;
1072

1073
	if (!is_software_event(event))
1074 1075
		cpuctx->active_oncpu--;
	ctx->nr_active--;
1076
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1077 1078 1079
		cpuctx->exclusive = 0;
}

1080
static void
1081
group_sched_out(struct perf_event *group_event,
1082
		struct perf_cpu_context *cpuctx,
1083
		struct perf_event_context *ctx)
1084
{
1085
	struct perf_event *event;
1086
	int state = group_event->state;
1087

1088
	event_sched_out(group_event, cpuctx, ctx);
1089 1090 1091 1092

	/*
	 * Schedule out siblings (if any):
	 */
1093 1094
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1095

1096
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1097 1098 1099
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
1100
/*
1101
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1102
 *
1103
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1104 1105
 * remove it from the context list.
 */
1106
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1107
{
1108 1109
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1110
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1111

1112
	raw_spin_lock(&ctx->lock);
1113 1114
	event_sched_out(event, cpuctx, ctx);
	list_del_event(event, ctx);
1115
	raw_spin_unlock(&ctx->lock);
1116 1117

	return 0;
T
Thomas Gleixner 已提交
1118 1119 1120 1121
}


/*
1122
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1123
 *
1124
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1125
 * call when the task is on a CPU.
1126
 *
1127 1128
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1129 1130
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1131
 * When called from perf_event_exit_task, it's OK because the
1132
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1133
 */
1134
static void perf_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
1135
{
1136
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1137 1138
	struct task_struct *task = ctx->task;

1139 1140
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1141 1142
	if (!task) {
		/*
1143
		 * Per cpu events are removed via an smp call and
1144
		 * the removal is always successful.
T
Thomas Gleixner 已提交
1145
		 */
1146
		cpu_function_call(event->cpu, __perf_remove_from_context, event);
T
Thomas Gleixner 已提交
1147 1148 1149 1150
		return;
	}

retry:
1151 1152
	if (!task_function_call(task, __perf_remove_from_context, event))
		return;
T
Thomas Gleixner 已提交
1153

1154
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1155
	/*
1156 1157
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1158
	 */
1159
	if (ctx->is_active) {
1160
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1161 1162 1163 1164
		goto retry;
	}

	/*
1165 1166
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1167
	 */
1168
	list_del_event(event, ctx);
1169
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1170 1171
}

1172
/*
1173
 * Cross CPU call to disable a performance event
1174
 */
1175
static int __perf_event_disable(void *info)
1176
{
1177 1178
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1179
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1180 1181

	/*
1182 1183
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1184 1185 1186
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1187
	 */
1188
	if (ctx->task && cpuctx->task_ctx != ctx)
1189
		return -EINVAL;
1190

1191
	raw_spin_lock(&ctx->lock);
1192 1193

	/*
1194
	 * If the event is on, turn it off.
1195 1196
	 * If it is in error state, leave it in error state.
	 */
1197
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1198
		update_context_time(ctx);
S
Stephane Eranian 已提交
1199
		update_cgrp_time_from_event(event);
1200 1201 1202
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1203
		else
1204 1205
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1206 1207
	}

1208
	raw_spin_unlock(&ctx->lock);
1209 1210

	return 0;
1211 1212 1213
}

/*
1214
 * Disable a event.
1215
 *
1216 1217
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1218
 * remains valid.  This condition is satisifed when called through
1219 1220 1221 1222
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1223
 * is the current context on this CPU and preemption is disabled,
1224
 * hence we can't get into perf_event_task_sched_out for this context.
1225
 */
1226
void perf_event_disable(struct perf_event *event)
1227
{
1228
	struct perf_event_context *ctx = event->ctx;
1229 1230 1231 1232
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1233
		 * Disable the event on the cpu that it's on
1234
		 */
1235
		cpu_function_call(event->cpu, __perf_event_disable, event);
1236 1237 1238
		return;
	}

P
Peter Zijlstra 已提交
1239
retry:
1240 1241
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1242

1243
	raw_spin_lock_irq(&ctx->lock);
1244
	/*
1245
	 * If the event is still active, we need to retry the cross-call.
1246
	 */
1247
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1248
		raw_spin_unlock_irq(&ctx->lock);
1249 1250 1251 1252 1253
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1254 1255 1256 1257 1258 1259 1260
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1261 1262 1263
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1264
	}
1265
	raw_spin_unlock_irq(&ctx->lock);
1266 1267
}

S
Stephane Eranian 已提交
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1303 1304 1305 1306
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);

1307
static int
1308
event_sched_in(struct perf_event *event,
1309
		 struct perf_cpu_context *cpuctx,
1310
		 struct perf_event_context *ctx)
1311
{
1312 1313
	u64 tstamp = perf_event_time(event);

1314
	if (event->state <= PERF_EVENT_STATE_OFF)
1315 1316
		return 0;

1317
	event->state = PERF_EVENT_STATE_ACTIVE;
1318
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1330 1331 1332 1333 1334
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

P
Peter Zijlstra 已提交
1335
	if (event->pmu->add(event, PERF_EF_START)) {
1336 1337
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1338 1339 1340
		return -EAGAIN;
	}

1341
	event->tstamp_running += tstamp - event->tstamp_stopped;
1342

S
Stephane Eranian 已提交
1343
	perf_set_shadow_time(event, ctx, tstamp);
1344

1345
	if (!is_software_event(event))
1346
		cpuctx->active_oncpu++;
1347 1348
	ctx->nr_active++;

1349
	if (event->attr.exclusive)
1350 1351
		cpuctx->exclusive = 1;

1352 1353 1354
	return 0;
}

1355
static int
1356
group_sched_in(struct perf_event *group_event,
1357
	       struct perf_cpu_context *cpuctx,
1358
	       struct perf_event_context *ctx)
1359
{
1360
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1361
	struct pmu *pmu = group_event->pmu;
1362 1363
	u64 now = ctx->time;
	bool simulate = false;
1364

1365
	if (group_event->state == PERF_EVENT_STATE_OFF)
1366 1367
		return 0;

P
Peter Zijlstra 已提交
1368
	pmu->start_txn(pmu);
1369

1370
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1371
		pmu->cancel_txn(pmu);
1372
		return -EAGAIN;
1373
	}
1374 1375 1376 1377

	/*
	 * Schedule in siblings as one group (if any):
	 */
1378
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1379
		if (event_sched_in(event, cpuctx, ctx)) {
1380
			partial_group = event;
1381 1382 1383 1384
			goto group_error;
		}
	}

1385
	if (!pmu->commit_txn(pmu))
1386
		return 0;
1387

1388 1389 1390 1391
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1402
	 */
1403 1404
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1405 1406 1407 1408 1409 1410 1411 1412
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1413
	}
1414
	event_sched_out(group_event, cpuctx, ctx);
1415

P
Peter Zijlstra 已提交
1416
	pmu->cancel_txn(pmu);
1417

1418 1419 1420
	return -EAGAIN;
}

1421
/*
1422
 * Work out whether we can put this event group on the CPU now.
1423
 */
1424
static int group_can_go_on(struct perf_event *event,
1425 1426 1427 1428
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1429
	 * Groups consisting entirely of software events can always go on.
1430
	 */
1431
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1432 1433 1434
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1435
	 * events can go on.
1436 1437 1438 1439 1440
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1441
	 * events on the CPU, it can't go on.
1442
	 */
1443
	if (event->attr.exclusive && cpuctx->active_oncpu)
1444 1445 1446 1447 1448 1449 1450 1451
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

1452 1453
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
1454
{
1455 1456
	u64 tstamp = perf_event_time(event);

1457
	list_add_event(event, ctx);
1458
	perf_group_attach(event);
1459 1460 1461
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
1462 1463
}

S
Stephane Eranian 已提交
1464 1465
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *tsk);
1466

T
Thomas Gleixner 已提交
1467
/*
1468
 * Cross CPU call to install and enable a performance event
1469 1470
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
1471
 */
1472
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
1473
{
1474 1475 1476
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
1477
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1478
	int err;
T
Thomas Gleixner 已提交
1479 1480

	/*
1481 1482 1483
	 * In case we're installing a new context to an already running task,
	 * could also happen before perf_event_task_sched_in() on architectures
	 * which do context switches with IRQs enabled.
T
Thomas Gleixner 已提交
1484
	 */
1485
	if (ctx->task && !cpuctx->task_ctx)
S
Stephane Eranian 已提交
1486
		perf_event_context_sched_in(ctx, ctx->task);
T
Thomas Gleixner 已提交
1487

1488
	raw_spin_lock(&ctx->lock);
1489
	ctx->is_active = 1;
1490
	update_context_time(ctx);
S
Stephane Eranian 已提交
1491 1492 1493 1494 1495 1496
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
1497

1498
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
1499

1500
	if (!event_filter_match(event))
1501 1502
		goto unlock;

1503
	/*
1504
	 * Don't put the event on if it is disabled or if
1505 1506
	 * it is in a group and the group isn't on.
	 */
1507 1508
	if (event->state != PERF_EVENT_STATE_INACTIVE ||
	    (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
1509 1510
		goto unlock;

1511
	/*
1512 1513 1514
	 * An exclusive event can't go on if there are already active
	 * hardware events, and no hardware event can go on if there
	 * is already an exclusive event on.
1515
	 */
1516
	if (!group_can_go_on(event, cpuctx, 1))
1517 1518
		err = -EEXIST;
	else
1519
		err = event_sched_in(event, cpuctx, ctx);
1520

1521 1522
	if (err) {
		/*
1523
		 * This event couldn't go on.  If it is in a group
1524
		 * then we have to pull the whole group off.
1525
		 * If the event group is pinned then put it in error state.
1526
		 */
1527
		if (leader != event)
1528
			group_sched_out(leader, cpuctx, ctx);
1529
		if (leader->attr.pinned) {
1530
			update_group_times(leader);
1531
			leader->state = PERF_EVENT_STATE_ERROR;
1532
		}
1533
	}
T
Thomas Gleixner 已提交
1534

P
Peter Zijlstra 已提交
1535
unlock:
1536
	raw_spin_unlock(&ctx->lock);
1537 1538

	return 0;
T
Thomas Gleixner 已提交
1539 1540 1541
}

/*
1542
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
1543
 *
1544 1545
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
1546
 *
1547
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
1548 1549 1550 1551
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
1552 1553
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
1554 1555 1556 1557
			int cpu)
{
	struct task_struct *task = ctx->task;

1558 1559
	lockdep_assert_held(&ctx->mutex);

1560 1561
	event->ctx = ctx;

T
Thomas Gleixner 已提交
1562 1563
	if (!task) {
		/*
1564
		 * Per cpu events are installed via an smp call and
1565
		 * the install is always successful.
T
Thomas Gleixner 已提交
1566
		 */
1567
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
1568 1569 1570 1571
		return;
	}

retry:
1572 1573
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
1574

1575
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1576
	/*
1577 1578
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1579
	 */
1580
	if (ctx->is_active) {
1581
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1582 1583 1584 1585
		goto retry;
	}

	/*
1586 1587
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1588
	 */
1589
	add_event_to_ctx(event, ctx);
1590
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1591 1592
}

1593
/*
1594
 * Put a event into inactive state and update time fields.
1595 1596 1597 1598 1599 1600
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
1601 1602
static void __perf_event_mark_enabled(struct perf_event *event,
					struct perf_event_context *ctx)
1603
{
1604
	struct perf_event *sub;
1605
	u64 tstamp = perf_event_time(event);
1606

1607
	event->state = PERF_EVENT_STATE_INACTIVE;
1608
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
1609
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1610 1611
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
1612
	}
1613 1614
}

1615
/*
1616
 * Cross CPU call to enable a performance event
1617
 */
1618
static int __perf_event_enable(void *info)
1619
{
1620 1621 1622
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
1623
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1624
	int err;
1625

1626 1627
	if (WARN_ON_ONCE(!ctx->is_active))
		return -EINVAL;
1628

1629
	raw_spin_lock(&ctx->lock);
1630
	update_context_time(ctx);
1631

1632
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1633
		goto unlock;
S
Stephane Eranian 已提交
1634 1635 1636 1637

	/*
	 * set current task's cgroup time reference point
	 */
1638
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
1639

1640
	__perf_event_mark_enabled(event, ctx);
1641

S
Stephane Eranian 已提交
1642 1643 1644
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
1645
		goto unlock;
S
Stephane Eranian 已提交
1646
	}
1647

1648
	/*
1649
	 * If the event is in a group and isn't the group leader,
1650
	 * then don't put it on unless the group is on.
1651
	 */
1652
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1653
		goto unlock;
1654

1655
	if (!group_can_go_on(event, cpuctx, 1)) {
1656
		err = -EEXIST;
1657
	} else {
1658
		if (event == leader)
1659
			err = group_sched_in(event, cpuctx, ctx);
1660
		else
1661
			err = event_sched_in(event, cpuctx, ctx);
1662
	}
1663 1664 1665

	if (err) {
		/*
1666
		 * If this event can't go on and it's part of a
1667 1668
		 * group, then the whole group has to come off.
		 */
1669
		if (leader != event)
1670
			group_sched_out(leader, cpuctx, ctx);
1671
		if (leader->attr.pinned) {
1672
			update_group_times(leader);
1673
			leader->state = PERF_EVENT_STATE_ERROR;
1674
		}
1675 1676
	}

P
Peter Zijlstra 已提交
1677
unlock:
1678
	raw_spin_unlock(&ctx->lock);
1679 1680

	return 0;
1681 1682 1683
}

/*
1684
 * Enable a event.
1685
 *
1686 1687
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1688
 * remains valid.  This condition is satisfied when called through
1689 1690
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
1691
 */
1692
void perf_event_enable(struct perf_event *event)
1693
{
1694
	struct perf_event_context *ctx = event->ctx;
1695 1696 1697 1698
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1699
		 * Enable the event on the cpu that it's on
1700
		 */
1701
		cpu_function_call(event->cpu, __perf_event_enable, event);
1702 1703 1704
		return;
	}

1705
	raw_spin_lock_irq(&ctx->lock);
1706
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1707 1708 1709
		goto out;

	/*
1710 1711
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
1712 1713 1714 1715
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
1716 1717
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
1718

P
Peter Zijlstra 已提交
1719
retry:
1720 1721 1722 1723 1724
	if (!ctx->is_active) {
		__perf_event_mark_enabled(event, ctx);
		goto out;
	}

1725
	raw_spin_unlock_irq(&ctx->lock);
1726 1727 1728

	if (!task_function_call(task, __perf_event_enable, event))
		return;
1729

1730
	raw_spin_lock_irq(&ctx->lock);
1731 1732

	/*
1733
	 * If the context is active and the event is still off,
1734 1735
	 * we need to retry the cross-call.
	 */
1736 1737 1738 1739 1740 1741
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
1742
		goto retry;
1743
	}
1744

P
Peter Zijlstra 已提交
1745
out:
1746
	raw_spin_unlock_irq(&ctx->lock);
1747 1748
}

1749
static int perf_event_refresh(struct perf_event *event, int refresh)
1750
{
1751
	/*
1752
	 * not supported on inherited events
1753
	 */
1754
	if (event->attr.inherit || !is_sampling_event(event))
1755 1756
		return -EINVAL;

1757 1758
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1759 1760

	return 0;
1761 1762
}

1763 1764 1765
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
1766
{
1767
	struct perf_event *event;
1768

1769
	raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1770
	perf_pmu_disable(ctx->pmu);
1771
	ctx->is_active = 0;
1772
	if (likely(!ctx->nr_events))
1773
		goto out;
1774
	update_context_time(ctx);
S
Stephane Eranian 已提交
1775
	update_cgrp_time_from_cpuctx(cpuctx);
1776

1777
	if (!ctx->nr_active)
1778
		goto out;
1779

P
Peter Zijlstra 已提交
1780
	if (event_type & EVENT_PINNED) {
1781 1782
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1783
	}
1784

P
Peter Zijlstra 已提交
1785
	if (event_type & EVENT_FLEXIBLE) {
1786
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1787
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1788 1789
	}
out:
P
Peter Zijlstra 已提交
1790
	perf_pmu_enable(ctx->pmu);
1791
	raw_spin_unlock(&ctx->lock);
1792 1793
}

1794 1795 1796
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1797 1798 1799 1800
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1801
 * in them directly with an fd; we can only enable/disable all
1802
 * events via prctl, or enable/disable all events in a family
1803 1804
 * via ioctl, which will have the same effect on both contexts.
 */
1805 1806
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1807 1808
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1809
		&& ctx1->parent_gen == ctx2->parent_gen
1810
		&& !ctx1->pin_count && !ctx2->pin_count;
1811 1812
}

1813 1814
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1815 1816 1817
{
	u64 value;

1818
	if (!event->attr.inherit_stat)
1819 1820 1821
		return;

	/*
1822
	 * Update the event value, we cannot use perf_event_read()
1823 1824
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1825
	 * we know the event must be on the current CPU, therefore we
1826 1827
	 * don't need to use it.
	 */
1828 1829
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1830 1831
		event->pmu->read(event);
		/* fall-through */
1832

1833 1834
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1835 1836 1837 1838 1839 1840 1841
		break;

	default:
		break;
	}

	/*
1842
	 * In order to keep per-task stats reliable we need to flip the event
1843 1844
	 * values when we flip the contexts.
	 */
1845 1846 1847
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
1848

1849 1850
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1851

1852
	/*
1853
	 * Since we swizzled the values, update the user visible data too.
1854
	 */
1855 1856
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1857 1858 1859 1860 1861
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1862 1863
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1864
{
1865
	struct perf_event *event, *next_event;
1866 1867 1868 1869

	if (!ctx->nr_stat)
		return;

1870 1871
	update_context_time(ctx);

1872 1873
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1874

1875 1876
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1877

1878 1879
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1880

1881
		__perf_event_sync_stat(event, next_event);
1882

1883 1884
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1885 1886 1887
	}
}

1888 1889
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
1890
{
P
Peter Zijlstra 已提交
1891
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1892 1893
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
P
Peter Zijlstra 已提交
1894
	struct perf_cpu_context *cpuctx;
1895
	int do_switch = 1;
T
Thomas Gleixner 已提交
1896

P
Peter Zijlstra 已提交
1897 1898
	if (likely(!ctx))
		return;
1899

P
Peter Zijlstra 已提交
1900 1901
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
1902 1903
		return;

1904 1905
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
P
Peter Zijlstra 已提交
1906
	next_ctx = next->perf_event_ctxp[ctxn];
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
1918 1919
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1920
		if (context_equiv(ctx, next_ctx)) {
1921 1922
			/*
			 * XXX do we need a memory barrier of sorts
1923
			 * wrt to rcu_dereference() of perf_event_ctxp
1924
			 */
P
Peter Zijlstra 已提交
1925 1926
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
1927 1928 1929
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1930

1931
			perf_event_sync_stat(ctx, next_ctx);
1932
		}
1933 1934
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
1935
	}
1936
	rcu_read_unlock();
1937

1938
	if (do_switch) {
1939
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1940 1941
		cpuctx->task_ctx = NULL;
	}
T
Thomas Gleixner 已提交
1942 1943
}

P
Peter Zijlstra 已提交
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
1958 1959
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
1960 1961 1962 1963 1964
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
1965 1966 1967 1968 1969 1970 1971 1972

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
		perf_cgroup_sched_out(task);
P
Peter Zijlstra 已提交
1973 1974
}

1975 1976
static void task_ctx_sched_out(struct perf_event_context *ctx,
			       enum event_type_t event_type)
1977
{
P
Peter Zijlstra 已提交
1978
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1979

1980 1981
	if (!cpuctx->task_ctx)
		return;
1982 1983 1984 1985

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

1986
	ctx_sched_out(ctx, cpuctx, event_type);
1987 1988 1989
	cpuctx->task_ctx = NULL;
}

1990 1991 1992 1993 1994 1995 1996
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1997 1998
}

1999
static void
2000
ctx_pinned_sched_in(struct perf_event_context *ctx,
2001
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2002
{
2003
	struct perf_event *event;
T
Thomas Gleixner 已提交
2004

2005 2006
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2007
			continue;
2008
		if (!event_filter_match(event))
2009 2010
			continue;

S
Stephane Eranian 已提交
2011 2012 2013 2014
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2015
		if (group_can_go_on(event, cpuctx, 1))
2016
			group_sched_in(event, cpuctx, ctx);
2017 2018 2019 2020 2021

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2022 2023 2024
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2025
		}
2026
	}
2027 2028 2029 2030
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2031
		      struct perf_cpu_context *cpuctx)
2032 2033 2034
{
	struct perf_event *event;
	int can_add_hw = 1;
2035

2036 2037 2038
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2039
			continue;
2040 2041
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2042
		 * of events:
2043
		 */
2044
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2045 2046
			continue;

S
Stephane Eranian 已提交
2047 2048 2049 2050
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2051
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2052
			if (group_sched_in(event, cpuctx, ctx))
2053
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2054
		}
T
Thomas Gleixner 已提交
2055
	}
2056 2057 2058 2059 2060
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2061 2062
	     enum event_type_t event_type,
	     struct task_struct *task)
2063
{
S
Stephane Eranian 已提交
2064 2065
	u64 now;

2066 2067 2068 2069 2070
	raw_spin_lock(&ctx->lock);
	ctx->is_active = 1;
	if (likely(!ctx->nr_events))
		goto out;

S
Stephane Eranian 已提交
2071 2072
	now = perf_clock();
	ctx->timestamp = now;
2073
	perf_cgroup_set_timestamp(task, ctx);
2074 2075 2076 2077 2078
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	if (event_type & EVENT_PINNED)
2079
		ctx_pinned_sched_in(ctx, cpuctx);
2080 2081 2082

	/* Then walk through the lower prio flexible groups */
	if (event_type & EVENT_FLEXIBLE)
2083
		ctx_flexible_sched_in(ctx, cpuctx);
2084

P
Peter Zijlstra 已提交
2085
out:
2086
	raw_spin_unlock(&ctx->lock);
2087 2088
}

2089
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2090 2091
			     enum event_type_t event_type,
			     struct task_struct *task)
2092 2093 2094
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2095
	ctx_sched_in(ctx, cpuctx, event_type, task);
2096 2097
}

P
Peter Zijlstra 已提交
2098
static void task_ctx_sched_in(struct perf_event_context *ctx,
2099 2100
			      enum event_type_t event_type)
{
P
Peter Zijlstra 已提交
2101
	struct perf_cpu_context *cpuctx;
2102

2103
	cpuctx = __get_cpu_context(ctx);
2104 2105
	if (cpuctx->task_ctx == ctx)
		return;
P
Peter Zijlstra 已提交
2106

S
Stephane Eranian 已提交
2107
	ctx_sched_in(ctx, cpuctx, event_type, NULL);
2108 2109
	cpuctx->task_ctx = ctx;
}
T
Thomas Gleixner 已提交
2110

S
Stephane Eranian 已提交
2111 2112
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2113
{
P
Peter Zijlstra 已提交
2114
	struct perf_cpu_context *cpuctx;
2115

P
Peter Zijlstra 已提交
2116
	cpuctx = __get_cpu_context(ctx);
2117 2118 2119
	if (cpuctx->task_ctx == ctx)
		return;

P
Peter Zijlstra 已提交
2120
	perf_pmu_disable(ctx->pmu);
2121 2122 2123 2124 2125 2126 2127
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

S
Stephane Eranian 已提交
2128 2129 2130
	ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2131 2132

	cpuctx->task_ctx = ctx;
2133

2134 2135 2136 2137
	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
2138
	perf_pmu_rotate_start(ctx->pmu);
P
Peter Zijlstra 已提交
2139
	perf_pmu_enable(ctx->pmu);
2140 2141
}

P
Peter Zijlstra 已提交
2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2153
void __perf_event_task_sched_in(struct task_struct *task)
P
Peter Zijlstra 已提交
2154 2155 2156 2157 2158 2159 2160 2161 2162
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2163
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2164
	}
S
Stephane Eranian 已提交
2165 2166 2167 2168 2169 2170 2171
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
		perf_cgroup_sched_in(task);
2172 2173
}

2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2201
#define REDUCE_FLS(a, b)		\
2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2241 2242 2243
	if (!divisor)
		return dividend;

2244 2245 2246 2247
	return div64_u64(dividend, divisor);
}

static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
2248
{
2249
	struct hw_perf_event *hwc = &event->hw;
2250
	s64 period, sample_period;
2251 2252
	s64 delta;

2253
	period = perf_calculate_period(event, nsec, count);
2254 2255 2256 2257 2258 2259 2260 2261 2262 2263

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2264

2265
	if (local64_read(&hwc->period_left) > 8*sample_period) {
P
Peter Zijlstra 已提交
2266
		event->pmu->stop(event, PERF_EF_UPDATE);
2267
		local64_set(&hwc->period_left, 0);
P
Peter Zijlstra 已提交
2268
		event->pmu->start(event, PERF_EF_RELOAD);
2269
	}
2270 2271
}

2272
static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
2273
{
2274 2275
	struct perf_event *event;
	struct hw_perf_event *hwc;
2276 2277
	u64 interrupts, now;
	s64 delta;
2278

2279
	raw_spin_lock(&ctx->lock);
2280
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2281
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2282 2283
			continue;

2284
		if (!event_filter_match(event))
2285 2286
			continue;

2287
		hwc = &event->hw;
2288 2289 2290

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
2291

2292
		/*
2293
		 * unthrottle events on the tick
2294
		 */
2295
		if (interrupts == MAX_INTERRUPTS) {
2296
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2297
			event->pmu->start(event, 0);
2298 2299
		}

2300
		if (!event->attr.freq || !event->attr.sample_freq)
2301 2302
			continue;

2303
		event->pmu->read(event);
2304
		now = local64_read(&event->count);
2305 2306
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2307

2308
		if (delta > 0)
2309
			perf_adjust_period(event, period, delta);
2310
	}
2311
	raw_spin_unlock(&ctx->lock);
2312 2313
}

2314
/*
2315
 * Round-robin a context's events:
2316
 */
2317
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
2318
{
2319
	raw_spin_lock(&ctx->lock);
2320

2321 2322 2323 2324 2325 2326
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
2327

2328
	raw_spin_unlock(&ctx->lock);
2329 2330
}

2331
/*
2332 2333 2334
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
2335
 */
2336
static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2337
{
2338
	u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
P
Peter Zijlstra 已提交
2339
	struct perf_event_context *ctx = NULL;
2340
	int rotate = 0, remove = 1;
2341

2342
	if (cpuctx->ctx.nr_events) {
2343
		remove = 0;
2344 2345 2346
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
2347

P
Peter Zijlstra 已提交
2348
	ctx = cpuctx->task_ctx;
2349
	if (ctx && ctx->nr_events) {
2350
		remove = 0;
2351 2352 2353
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
2354

P
Peter Zijlstra 已提交
2355
	perf_pmu_disable(cpuctx->ctx.pmu);
2356
	perf_ctx_adjust_freq(&cpuctx->ctx, interval);
2357
	if (ctx)
2358
		perf_ctx_adjust_freq(ctx, interval);
2359

2360
	if (!rotate)
2361
		goto done;
2362

2363
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2364
	if (ctx)
2365
		task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
2366

2367
	rotate_ctx(&cpuctx->ctx);
2368 2369
	if (ctx)
		rotate_ctx(ctx);
2370

S
Stephane Eranian 已提交
2371
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, current);
2372
	if (ctx)
P
Peter Zijlstra 已提交
2373
		task_ctx_sched_in(ctx, EVENT_FLEXIBLE);
2374 2375

done:
2376 2377 2378
	if (remove)
		list_del_init(&cpuctx->rotation_list);

P
Peter Zijlstra 已提交
2379
	perf_pmu_enable(cpuctx->ctx.pmu);
2380 2381 2382 2383 2384 2385
}

void perf_event_task_tick(void)
{
	struct list_head *head = &__get_cpu_var(rotation_list);
	struct perf_cpu_context *cpuctx, *tmp;
2386

2387 2388 2389 2390 2391 2392 2393
	WARN_ON(!irqs_disabled());

	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
		if (cpuctx->jiffies_interval == 1 ||
				!(jiffies % cpuctx->jiffies_interval))
			perf_rotate_context(cpuctx);
	}
T
Thomas Gleixner 已提交
2394 2395
}

2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

	__perf_event_mark_enabled(event, ctx);

	return 1;
}

2411
/*
2412
 * Enable all of a task's events that have been marked enable-on-exec.
2413 2414
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
2415
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2416
{
2417
	struct perf_event *event;
2418 2419
	unsigned long flags;
	int enabled = 0;
2420
	int ret;
2421 2422

	local_irq_save(flags);
2423
	if (!ctx || !ctx->nr_events)
2424 2425
		goto out;

P
Peter Zijlstra 已提交
2426
	task_ctx_sched_out(ctx, EVENT_ALL);
2427

2428
	raw_spin_lock(&ctx->lock);
2429

2430 2431 2432 2433 2434 2435 2436 2437 2438 2439
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
	}

	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
2440 2441 2442
	}

	/*
2443
	 * Unclone this context if we enabled any event.
2444
	 */
2445 2446
	if (enabled)
		unclone_ctx(ctx);
2447

2448
	raw_spin_unlock(&ctx->lock);
2449

S
Stephane Eranian 已提交
2450
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
2451
out:
2452 2453 2454
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
2455
/*
2456
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
2457
 */
2458
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
2459
{
2460 2461
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2462
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
2463

2464 2465 2466 2467
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
2468 2469
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
2470 2471 2472 2473
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

2474
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
2475
	if (ctx->is_active) {
2476
		update_context_time(ctx);
S
Stephane Eranian 已提交
2477 2478
		update_cgrp_time_from_event(event);
	}
2479
	update_event_times(event);
2480 2481
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
2482
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
2483 2484
}

P
Peter Zijlstra 已提交
2485 2486
static inline u64 perf_event_count(struct perf_event *event)
{
2487
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
2488 2489
}

2490
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
2491 2492
{
	/*
2493 2494
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
2495
	 */
2496 2497 2498 2499
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
2500 2501 2502
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

2503
		raw_spin_lock_irqsave(&ctx->lock, flags);
2504 2505 2506 2507 2508
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
2509
		if (ctx->is_active) {
2510
			update_context_time(ctx);
S
Stephane Eranian 已提交
2511 2512
			update_cgrp_time_from_event(event);
		}
2513
		update_event_times(event);
2514
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
2515 2516
	}

P
Peter Zijlstra 已提交
2517
	return perf_event_count(event);
T
Thomas Gleixner 已提交
2518 2519
}

2520
/*
2521
 * Callchain support
2522
 */
2523 2524 2525 2526 2527 2528

struct callchain_cpus_entries {
	struct rcu_head			rcu_head;
	struct perf_callchain_entry	*cpu_entries[0];
};

2529
static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
2530 2531 2532 2533 2534 2535 2536
static atomic_t nr_callchain_events;
static DEFINE_MUTEX(callchain_mutex);
struct callchain_cpus_entries *callchain_cpus_entries;


__weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
				  struct pt_regs *regs)
2537 2538 2539
{
}

2540 2541
__weak void perf_callchain_user(struct perf_callchain_entry *entry,
				struct pt_regs *regs)
T
Thomas Gleixner 已提交
2542
{
2543
}
T
Thomas Gleixner 已提交
2544

2545 2546 2547 2548
static void release_callchain_buffers_rcu(struct rcu_head *head)
{
	struct callchain_cpus_entries *entries;
	int cpu;
T
Thomas Gleixner 已提交
2549

2550
	entries = container_of(head, struct callchain_cpus_entries, rcu_head);
T
Thomas Gleixner 已提交
2551

2552 2553
	for_each_possible_cpu(cpu)
		kfree(entries->cpu_entries[cpu]);
T
Thomas Gleixner 已提交
2554

2555 2556
	kfree(entries);
}
T
Thomas Gleixner 已提交
2557

2558 2559 2560
static void release_callchain_buffers(void)
{
	struct callchain_cpus_entries *entries;
T
Thomas Gleixner 已提交
2561

2562 2563 2564 2565
	entries = callchain_cpus_entries;
	rcu_assign_pointer(callchain_cpus_entries, NULL);
	call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
}
T
Thomas Gleixner 已提交
2566

2567 2568 2569 2570 2571
static int alloc_callchain_buffers(void)
{
	int cpu;
	int size;
	struct callchain_cpus_entries *entries;
T
Thomas Gleixner 已提交
2572

2573
	/*
2574 2575 2576
	 * We can't use the percpu allocation API for data that can be
	 * accessed from NMI. Use a temporary manual per cpu allocation
	 * until that gets sorted out.
2577
	 */
2578
	size = offsetof(struct callchain_cpus_entries, cpu_entries[nr_cpu_ids]);
2579

2580 2581 2582
	entries = kzalloc(size, GFP_KERNEL);
	if (!entries)
		return -ENOMEM;
2583

2584
	size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
T
Thomas Gleixner 已提交
2585

2586 2587 2588 2589 2590
	for_each_possible_cpu(cpu) {
		entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
							 cpu_to_node(cpu));
		if (!entries->cpu_entries[cpu])
			goto fail;
2591 2592
	}

2593
	rcu_assign_pointer(callchain_cpus_entries, entries);
T
Thomas Gleixner 已提交
2594

2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728
	return 0;

fail:
	for_each_possible_cpu(cpu)
		kfree(entries->cpu_entries[cpu]);
	kfree(entries);

	return -ENOMEM;
}

static int get_callchain_buffers(void)
{
	int err = 0;
	int count;

	mutex_lock(&callchain_mutex);

	count = atomic_inc_return(&nr_callchain_events);
	if (WARN_ON_ONCE(count < 1)) {
		err = -EINVAL;
		goto exit;
	}

	if (count > 1) {
		/* If the allocation failed, give up */
		if (!callchain_cpus_entries)
			err = -ENOMEM;
		goto exit;
	}

	err = alloc_callchain_buffers();
	if (err)
		release_callchain_buffers();
exit:
	mutex_unlock(&callchain_mutex);

	return err;
}

static void put_callchain_buffers(void)
{
	if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
		release_callchain_buffers();
		mutex_unlock(&callchain_mutex);
	}
}

static int get_recursion_context(int *recursion)
{
	int rctx;

	if (in_nmi())
		rctx = 3;
	else if (in_irq())
		rctx = 2;
	else if (in_softirq())
		rctx = 1;
	else
		rctx = 0;

	if (recursion[rctx])
		return -1;

	recursion[rctx]++;
	barrier();

	return rctx;
}

static inline void put_recursion_context(int *recursion, int rctx)
{
	barrier();
	recursion[rctx]--;
}

static struct perf_callchain_entry *get_callchain_entry(int *rctx)
{
	int cpu;
	struct callchain_cpus_entries *entries;

	*rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
	if (*rctx == -1)
		return NULL;

	entries = rcu_dereference(callchain_cpus_entries);
	if (!entries)
		return NULL;

	cpu = smp_processor_id();

	return &entries->cpu_entries[cpu][*rctx];
}

static void
put_callchain_entry(int rctx)
{
	put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
}

static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
{
	int rctx;
	struct perf_callchain_entry *entry;


	entry = get_callchain_entry(&rctx);
	if (rctx == -1)
		return NULL;

	if (!entry)
		goto exit_put;

	entry->nr = 0;

	if (!user_mode(regs)) {
		perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
		perf_callchain_kernel(entry, regs);
		if (current->mm)
			regs = task_pt_regs(current);
		else
			regs = NULL;
	}

	if (regs) {
		perf_callchain_store(entry, PERF_CONTEXT_USER);
		perf_callchain_user(entry, regs);
	}

exit_put:
	put_callchain_entry(rctx);

	return entry;
}

2729
/*
2730
 * Initialize the perf_event context in a task_struct:
2731
 */
2732
static void __perf_event_init_context(struct perf_event_context *ctx)
2733
{
2734
	raw_spin_lock_init(&ctx->lock);
2735
	mutex_init(&ctx->mutex);
2736 2737
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
2738 2739
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
2755
	}
2756 2757 2758
	ctx->pmu = pmu;

	return ctx;
2759 2760
}

2761 2762 2763 2764 2765
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
2766 2767

	rcu_read_lock();
2768
	if (!vpid)
T
Thomas Gleixner 已提交
2769 2770
		task = current;
	else
2771
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
2772 2773 2774 2775 2776 2777 2778 2779
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
2780 2781 2782 2783
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

2784 2785 2786 2787 2788 2789 2790
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

2791 2792 2793
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
2794
static struct perf_event_context *
M
Matt Helsley 已提交
2795
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
2796
{
2797
	struct perf_event_context *ctx;
2798
	struct perf_cpu_context *cpuctx;
2799
	unsigned long flags;
P
Peter Zijlstra 已提交
2800
	int ctxn, err;
T
Thomas Gleixner 已提交
2801

2802
	if (!task) {
2803
		/* Must be root to operate on a CPU event: */
2804
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
2805 2806 2807
			return ERR_PTR(-EACCES);

		/*
2808
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
2809 2810 2811
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
2812
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
2813 2814
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
2815
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
2816
		ctx = &cpuctx->ctx;
2817
		get_ctx(ctx);
2818
		++ctx->pin_count;
T
Thomas Gleixner 已提交
2819 2820 2821 2822

		return ctx;
	}

P
Peter Zijlstra 已提交
2823 2824 2825 2826 2827
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
2828
retry:
P
Peter Zijlstra 已提交
2829
	ctx = perf_lock_task_context(task, ctxn, &flags);
2830
	if (ctx) {
2831
		unclone_ctx(ctx);
2832
		++ctx->pin_count;
2833
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
2834 2835
	}

2836
	if (!ctx) {
2837
		ctx = alloc_perf_context(pmu, task);
2838 2839 2840
		err = -ENOMEM;
		if (!ctx)
			goto errout;
2841

2842
		get_ctx(ctx);
2843

2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
2854 2855
		else {
			++ctx->pin_count;
2856
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2857
		}
2858 2859 2860
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
2861
			put_task_struct(task);
2862
			kfree(ctx);
2863 2864 2865 2866

			if (err == -EAGAIN)
				goto retry;
			goto errout;
2867 2868 2869
		}
	}

T
Thomas Gleixner 已提交
2870
	return ctx;
2871

P
Peter Zijlstra 已提交
2872
errout:
2873
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
2874 2875
}

L
Li Zefan 已提交
2876 2877
static void perf_event_free_filter(struct perf_event *event);

2878
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
2879
{
2880
	struct perf_event *event;
P
Peter Zijlstra 已提交
2881

2882 2883 2884
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
2885
	perf_event_free_filter(event);
2886
	kfree(event);
P
Peter Zijlstra 已提交
2887 2888
}

2889
static void perf_buffer_put(struct perf_buffer *buffer);
2890

2891
static void free_event(struct perf_event *event)
2892
{
2893
	irq_work_sync(&event->pending);
2894

2895
	if (!event->parent) {
2896
		if (event->attach_state & PERF_ATTACH_TASK)
S
Stephane Eranian 已提交
2897
			jump_label_dec(&perf_sched_events);
2898
		if (event->attr.mmap || event->attr.mmap_data)
2899 2900 2901 2902 2903
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
2904 2905
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
2906
	}
2907

2908 2909 2910
	if (event->buffer) {
		perf_buffer_put(event->buffer);
		event->buffer = NULL;
2911 2912
	}

S
Stephane Eranian 已提交
2913 2914 2915
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

2916 2917
	if (event->destroy)
		event->destroy(event);
2918

P
Peter Zijlstra 已提交
2919 2920 2921
	if (event->ctx)
		put_ctx(event->ctx);

2922
	call_rcu(&event->rcu_head, free_event_rcu);
2923 2924
}

2925
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
2926
{
2927
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
2928

2929 2930 2931 2932 2933 2934
	/*
	 * Remove from the PMU, can't get re-enabled since we got
	 * here because the last ref went.
	 */
	perf_event_disable(event);

2935
	WARN_ON_ONCE(ctx->parent_ctx);
2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2949
	raw_spin_lock_irq(&ctx->lock);
2950
	perf_group_detach(event);
2951 2952
	list_del_event(event, ctx);
	raw_spin_unlock_irq(&ctx->lock);
2953
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
2954

2955
	free_event(event);
T
Thomas Gleixner 已提交
2956 2957 2958

	return 0;
}
2959
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
2960

2961 2962 2963 2964
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
2965
{
2966
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
2967
	struct task_struct *owner;
2968

2969
	file->private_data = NULL;
2970

P
Peter Zijlstra 已提交
2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
		mutex_lock(&owner->perf_event_mutex);
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}

3004
	return perf_event_release_kernel(event);
3005 3006
}

3007
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3008
{
3009
	struct perf_event *child;
3010 3011
	u64 total = 0;

3012 3013 3014
	*enabled = 0;
	*running = 0;

3015
	mutex_lock(&event->child_mutex);
3016
	total += perf_event_read(event);
3017 3018 3019 3020 3021 3022
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3023
		total += perf_event_read(child);
3024 3025 3026
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3027
	mutex_unlock(&event->child_mutex);
3028 3029 3030

	return total;
}
3031
EXPORT_SYMBOL_GPL(perf_event_read_value);
3032

3033
static int perf_event_read_group(struct perf_event *event,
3034 3035
				   u64 read_format, char __user *buf)
{
3036
	struct perf_event *leader = event->group_leader, *sub;
3037 3038
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
3039
	u64 values[5];
3040
	u64 count, enabled, running;
3041

3042
	mutex_lock(&ctx->mutex);
3043
	count = perf_event_read_value(leader, &enabled, &running);
3044 3045

	values[n++] = 1 + leader->nr_siblings;
3046 3047 3048 3049
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3050 3051 3052
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3053 3054 3055 3056

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
3057
		goto unlock;
3058

3059
	ret = size;
3060

3061
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3062
		n = 0;
3063

3064
		values[n++] = perf_event_read_value(sub, &enabled, &running);
3065 3066 3067 3068 3069
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

3070
		if (copy_to_user(buf + ret, values, size)) {
3071 3072 3073
			ret = -EFAULT;
			goto unlock;
		}
3074 3075

		ret += size;
3076
	}
3077 3078
unlock:
	mutex_unlock(&ctx->mutex);
3079

3080
	return ret;
3081 3082
}

3083
static int perf_event_read_one(struct perf_event *event,
3084 3085
				 u64 read_format, char __user *buf)
{
3086
	u64 enabled, running;
3087 3088 3089
	u64 values[4];
	int n = 0;

3090 3091 3092 3093 3094
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3095
	if (read_format & PERF_FORMAT_ID)
3096
		values[n++] = primary_event_id(event);
3097 3098 3099 3100 3101 3102 3103

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
3104
/*
3105
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3106 3107
 */
static ssize_t
3108
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3109
{
3110
	u64 read_format = event->attr.read_format;
3111
	int ret;
T
Thomas Gleixner 已提交
3112

3113
	/*
3114
	 * Return end-of-file for a read on a event that is in
3115 3116 3117
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3118
	if (event->state == PERF_EVENT_STATE_ERROR)
3119 3120
		return 0;

3121
	if (count < event->read_size)
3122 3123
		return -ENOSPC;

3124
	WARN_ON_ONCE(event->ctx->parent_ctx);
3125
	if (read_format & PERF_FORMAT_GROUP)
3126
		ret = perf_event_read_group(event, read_format, buf);
3127
	else
3128
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3129

3130
	return ret;
T
Thomas Gleixner 已提交
3131 3132 3133 3134 3135
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3136
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
3137

3138
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
3139 3140 3141 3142
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3143
	struct perf_event *event = file->private_data;
3144
	struct perf_buffer *buffer;
3145
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
3146 3147

	rcu_read_lock();
3148 3149 3150
	buffer = rcu_dereference(event->buffer);
	if (buffer)
		events = atomic_xchg(&buffer->poll, 0);
P
Peter Zijlstra 已提交
3151
	rcu_read_unlock();
T
Thomas Gleixner 已提交
3152

3153
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
3154 3155 3156 3157

	return events;
}

3158
static void perf_event_reset(struct perf_event *event)
3159
{
3160
	(void)perf_event_read(event);
3161
	local64_set(&event->count, 0);
3162
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3163 3164
}

3165
/*
3166 3167 3168 3169
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3170
 */
3171 3172
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3173
{
3174
	struct perf_event *child;
P
Peter Zijlstra 已提交
3175

3176 3177 3178 3179
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3180
		func(child);
3181
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3182 3183
}

3184 3185
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3186
{
3187 3188
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3189

3190 3191
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
3192
	event = event->group_leader;
3193

3194 3195 3196 3197
	perf_event_for_each_child(event, func);
	func(event);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
		perf_event_for_each_child(event, func);
3198
	mutex_unlock(&ctx->mutex);
3199 3200
}

3201
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3202
{
3203
	struct perf_event_context *ctx = event->ctx;
3204 3205 3206
	int ret = 0;
	u64 value;

3207
	if (!is_sampling_event(event))
3208 3209
		return -EINVAL;

3210
	if (copy_from_user(&value, arg, sizeof(value)))
3211 3212 3213 3214 3215
		return -EFAULT;

	if (!value)
		return -EINVAL;

3216
	raw_spin_lock_irq(&ctx->lock);
3217 3218
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3219 3220 3221 3222
			ret = -EINVAL;
			goto unlock;
		}

3223
		event->attr.sample_freq = value;
3224
	} else {
3225 3226
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3227 3228
	}
unlock:
3229
	raw_spin_unlock_irq(&ctx->lock);
3230 3231 3232 3233

	return ret;
}

3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254
static const struct file_operations perf_fops;

static struct perf_event *perf_fget_light(int fd, int *fput_needed)
{
	struct file *file;

	file = fget_light(fd, fput_needed);
	if (!file)
		return ERR_PTR(-EBADF);

	if (file->f_op != &perf_fops) {
		fput_light(file, *fput_needed);
		*fput_needed = 0;
		return ERR_PTR(-EBADF);
	}

	return file->private_data;
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
3255
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3256

3257 3258
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
3259 3260
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
3261
	u32 flags = arg;
3262 3263

	switch (cmd) {
3264 3265
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
3266
		break;
3267 3268
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
3269
		break;
3270 3271
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
3272
		break;
P
Peter Zijlstra 已提交
3273

3274 3275
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
3276

3277 3278
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
3279

3280
	case PERF_EVENT_IOC_SET_OUTPUT:
3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297
	{
		struct perf_event *output_event = NULL;
		int fput_needed = 0;
		int ret;

		if (arg != -1) {
			output_event = perf_fget_light(arg, &fput_needed);
			if (IS_ERR(output_event))
				return PTR_ERR(output_event);
		}

		ret = perf_event_set_output(event, output_event);
		if (output_event)
			fput_light(output_event->filp, fput_needed);

		return ret;
	}
3298

L
Li Zefan 已提交
3299 3300 3301
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

3302
	default:
P
Peter Zijlstra 已提交
3303
		return -ENOTTY;
3304
	}
P
Peter Zijlstra 已提交
3305 3306

	if (flags & PERF_IOC_FLAG_GROUP)
3307
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
3308
	else
3309
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
3310 3311

	return 0;
3312 3313
}

3314
int perf_event_task_enable(void)
3315
{
3316
	struct perf_event *event;
3317

3318 3319 3320 3321
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
3322 3323 3324 3325

	return 0;
}

3326
int perf_event_task_disable(void)
3327
{
3328
	struct perf_event *event;
3329

3330 3331 3332 3333
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
3334 3335 3336 3337

	return 0;
}

3338 3339
#ifndef PERF_EVENT_INDEX_OFFSET
# define PERF_EVENT_INDEX_OFFSET 0
I
Ingo Molnar 已提交
3340 3341
#endif

3342
static int perf_event_index(struct perf_event *event)
3343
{
P
Peter Zijlstra 已提交
3344 3345 3346
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

3347
	if (event->state != PERF_EVENT_STATE_ACTIVE)
3348 3349
		return 0;

3350
	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
3351 3352
}

3353 3354 3355 3356 3357
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
3358
void perf_event_update_userpage(struct perf_event *event)
3359
{
3360
	struct perf_event_mmap_page *userpg;
3361
	struct perf_buffer *buffer;
3362 3363

	rcu_read_lock();
3364 3365
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
3366 3367
		goto unlock;

3368
	userpg = buffer->user_page;
3369

3370 3371 3372 3373 3374
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
3375
	++userpg->lock;
3376
	barrier();
3377
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
3378
	userpg->offset = perf_event_count(event);
3379
	if (event->state == PERF_EVENT_STATE_ACTIVE)
3380
		userpg->offset -= local64_read(&event->hw.prev_count);
3381

3382 3383
	userpg->time_enabled = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
3384

3385 3386
	userpg->time_running = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
3387

3388
	barrier();
3389
	++userpg->lock;
3390
	preempt_enable();
3391
unlock:
3392
	rcu_read_unlock();
3393 3394
}

3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413
static unsigned long perf_data_size(struct perf_buffer *buffer);

static void
perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
{
	long max_size = perf_data_size(buffer);

	if (watermark)
		buffer->watermark = min(max_size, watermark);

	if (!buffer->watermark)
		buffer->watermark = max_size / 2;

	if (flags & PERF_BUFFER_WRITABLE)
		buffer->writable = 1;

	atomic_set(&buffer->refcount, 1);
}

3414
#ifndef CONFIG_PERF_USE_VMALLOC
3415

3416 3417 3418
/*
 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
 */
3419

3420
static struct page *
3421
perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
3422
{
3423
	if (pgoff > buffer->nr_pages)
3424
		return NULL;
3425

3426
	if (pgoff == 0)
3427
		return virt_to_page(buffer->user_page);
3428

3429
	return virt_to_page(buffer->data_pages[pgoff - 1]);
3430 3431
}

3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444
static void *perf_mmap_alloc_page(int cpu)
{
	struct page *page;
	int node;

	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
	page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
	if (!page)
		return NULL;

	return page_address(page);
}

3445
static struct perf_buffer *
3446
perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
3447
{
3448
	struct perf_buffer *buffer;
3449 3450 3451
	unsigned long size;
	int i;

3452
	size = sizeof(struct perf_buffer);
3453 3454
	size += nr_pages * sizeof(void *);

3455 3456
	buffer = kzalloc(size, GFP_KERNEL);
	if (!buffer)
3457 3458
		goto fail;

3459
	buffer->user_page = perf_mmap_alloc_page(cpu);
3460
	if (!buffer->user_page)
3461 3462 3463
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
3464
		buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
3465
		if (!buffer->data_pages[i])
3466 3467 3468
			goto fail_data_pages;
	}

3469
	buffer->nr_pages = nr_pages;
3470

3471 3472
	perf_buffer_init(buffer, watermark, flags);

3473
	return buffer;
3474 3475 3476

fail_data_pages:
	for (i--; i >= 0; i--)
3477
		free_page((unsigned long)buffer->data_pages[i]);
3478

3479
	free_page((unsigned long)buffer->user_page);
3480 3481

fail_user_page:
3482
	kfree(buffer);
3483 3484

fail:
3485
	return NULL;
3486 3487
}

3488 3489
static void perf_mmap_free_page(unsigned long addr)
{
K
Kevin Cernekee 已提交
3490
	struct page *page = virt_to_page((void *)addr);
3491 3492 3493 3494 3495

	page->mapping = NULL;
	__free_page(page);
}

3496
static void perf_buffer_free(struct perf_buffer *buffer)
3497 3498 3499
{
	int i;

3500 3501 3502 3503
	perf_mmap_free_page((unsigned long)buffer->user_page);
	for (i = 0; i < buffer->nr_pages; i++)
		perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
	kfree(buffer);
3504 3505
}

3506
static inline int page_order(struct perf_buffer *buffer)
3507 3508 3509 3510
{
	return 0;
}

3511 3512 3513 3514 3515 3516 3517 3518
#else

/*
 * Back perf_mmap() with vmalloc memory.
 *
 * Required for architectures that have d-cache aliasing issues.
 */

3519
static inline int page_order(struct perf_buffer *buffer)
3520
{
3521
	return buffer->page_order;
3522 3523
}

3524
static struct page *
3525
perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
3526
{
3527
	if (pgoff > (1UL << page_order(buffer)))
3528 3529
		return NULL;

3530
	return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
3531 3532 3533 3534 3535 3536 3537 3538 3539
}

static void perf_mmap_unmark_page(void *addr)
{
	struct page *page = vmalloc_to_page(addr);

	page->mapping = NULL;
}

3540
static void perf_buffer_free_work(struct work_struct *work)
3541
{
3542
	struct perf_buffer *buffer;
3543 3544 3545
	void *base;
	int i, nr;

3546 3547
	buffer = container_of(work, struct perf_buffer, work);
	nr = 1 << page_order(buffer);
3548

3549
	base = buffer->user_page;
3550 3551 3552 3553
	for (i = 0; i < nr + 1; i++)
		perf_mmap_unmark_page(base + (i * PAGE_SIZE));

	vfree(base);
3554
	kfree(buffer);
3555 3556
}

3557
static void perf_buffer_free(struct perf_buffer *buffer)
3558
{
3559
	schedule_work(&buffer->work);
3560 3561
}

3562
static struct perf_buffer *
3563
perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
3564
{
3565
	struct perf_buffer *buffer;
3566 3567 3568
	unsigned long size;
	void *all_buf;

3569
	size = sizeof(struct perf_buffer);
3570 3571
	size += sizeof(void *);

3572 3573
	buffer = kzalloc(size, GFP_KERNEL);
	if (!buffer)
3574 3575
		goto fail;

3576
	INIT_WORK(&buffer->work, perf_buffer_free_work);
3577 3578 3579 3580 3581

	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
	if (!all_buf)
		goto fail_all_buf;

3582 3583 3584 3585
	buffer->user_page = all_buf;
	buffer->data_pages[0] = all_buf + PAGE_SIZE;
	buffer->page_order = ilog2(nr_pages);
	buffer->nr_pages = 1;
3586

3587 3588
	perf_buffer_init(buffer, watermark, flags);

3589
	return buffer;
3590 3591

fail_all_buf:
3592
	kfree(buffer);
3593 3594 3595 3596 3597 3598 3599

fail:
	return NULL;
}

#endif

3600
static unsigned long perf_data_size(struct perf_buffer *buffer)
3601
{
3602
	return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
3603 3604
}

3605 3606 3607
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
3608
	struct perf_buffer *buffer;
3609 3610 3611 3612 3613 3614 3615 3616 3617
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
3618 3619
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
3620 3621 3622 3623 3624
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

3625
	vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

3640
static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
3641
{
3642
	struct perf_buffer *buffer;
3643

3644 3645
	buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
	perf_buffer_free(buffer);
3646 3647
}

3648
static struct perf_buffer *perf_buffer_get(struct perf_event *event)
3649
{
3650
	struct perf_buffer *buffer;
3651

3652
	rcu_read_lock();
3653 3654 3655 3656
	buffer = rcu_dereference(event->buffer);
	if (buffer) {
		if (!atomic_inc_not_zero(&buffer->refcount))
			buffer = NULL;
3657 3658 3659
	}
	rcu_read_unlock();

3660
	return buffer;
3661 3662
}

3663
static void perf_buffer_put(struct perf_buffer *buffer)
3664
{
3665
	if (!atomic_dec_and_test(&buffer->refcount))
3666
		return;
3667

3668
	call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
3669 3670 3671 3672
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
3673
	struct perf_event *event = vma->vm_file->private_data;
3674

3675
	atomic_inc(&event->mmap_count);
3676 3677 3678 3679
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
3680
	struct perf_event *event = vma->vm_file->private_data;
3681

3682
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3683
		unsigned long size = perf_data_size(event->buffer);
3684
		struct user_struct *user = event->mmap_user;
3685
		struct perf_buffer *buffer = event->buffer;
3686

3687
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3688
		vma->vm_mm->locked_vm -= event->mmap_locked;
3689
		rcu_assign_pointer(event->buffer, NULL);
3690
		mutex_unlock(&event->mmap_mutex);
3691

3692
		perf_buffer_put(buffer);
3693
		free_uid(user);
3694
	}
3695 3696
}

3697
static const struct vm_operations_struct perf_mmap_vmops = {
3698 3699 3700 3701
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
3702 3703 3704 3705
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
3706
	struct perf_event *event = file->private_data;
3707
	unsigned long user_locked, user_lock_limit;
3708
	struct user_struct *user = current_user();
3709
	unsigned long locked, lock_limit;
3710
	struct perf_buffer *buffer;
3711 3712
	unsigned long vma_size;
	unsigned long nr_pages;
3713
	long user_extra, extra;
3714
	int ret = 0, flags = 0;
3715

3716 3717 3718 3719 3720 3721 3722 3723
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
	 * same buffer.
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

3724
	if (!(vma->vm_flags & VM_SHARED))
3725
		return -EINVAL;
3726 3727 3728 3729

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

3730
	/*
3731
	 * If we have buffer pages ensure they're a power-of-two number, so we
3732 3733 3734
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
3735 3736
		return -EINVAL;

3737
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
3738 3739
		return -EINVAL;

3740 3741
	if (vma->vm_pgoff != 0)
		return -EINVAL;
3742

3743 3744
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
3745 3746 3747
	if (event->buffer) {
		if (event->buffer->nr_pages == nr_pages)
			atomic_inc(&event->buffer->refcount);
3748
		else
3749 3750 3751 3752
			ret = -EINVAL;
		goto unlock;
	}

3753
	user_extra = nr_pages + 1;
3754
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
3755 3756 3757 3758 3759 3760

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

3761
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3762

3763 3764 3765
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
3766

3767
	lock_limit = rlimit(RLIMIT_MEMLOCK);
3768
	lock_limit >>= PAGE_SHIFT;
3769
	locked = vma->vm_mm->locked_vm + extra;
3770

3771 3772
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
3773 3774 3775
		ret = -EPERM;
		goto unlock;
	}
3776

3777
	WARN_ON(event->buffer);
3778

3779 3780 3781 3782 3783
	if (vma->vm_flags & VM_WRITE)
		flags |= PERF_BUFFER_WRITABLE;

	buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
				   event->cpu, flags);
3784
	if (!buffer) {
3785
		ret = -ENOMEM;
3786
		goto unlock;
3787
	}
3788
	rcu_assign_pointer(event->buffer, buffer);
3789

3790 3791 3792 3793 3794
	atomic_long_add(user_extra, &user->locked_vm);
	event->mmap_locked = extra;
	event->mmap_user = get_current_user();
	vma->vm_mm->locked_vm += event->mmap_locked;

3795
unlock:
3796 3797
	if (!ret)
		atomic_inc(&event->mmap_count);
3798
	mutex_unlock(&event->mmap_mutex);
3799 3800 3801

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
3802 3803

	return ret;
3804 3805
}

P
Peter Zijlstra 已提交
3806 3807 3808
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
3809
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
3810 3811 3812
	int retval;

	mutex_lock(&inode->i_mutex);
3813
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
3814 3815 3816 3817 3818 3819 3820 3821
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
3822
static const struct file_operations perf_fops = {
3823
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
3824 3825 3826
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
3827 3828
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
3829
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
3830
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
3831 3832
};

3833
/*
3834
 * Perf event wakeup
3835 3836 3837 3838 3839
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

3840
void perf_event_wakeup(struct perf_event *event)
3841
{
3842
	wake_up_all(&event->waitq);
3843

3844 3845 3846
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
3847
	}
3848 3849
}

3850
static void perf_pending_event(struct irq_work *entry)
3851
{
3852 3853
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
3854

3855 3856 3857
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
3858 3859
	}

3860 3861 3862
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
3863 3864 3865
	}
}

3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

3887 3888 3889
/*
 * Output
 */
3890
static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3891
			      unsigned long offset, unsigned long head)
3892 3893 3894
{
	unsigned long mask;

3895
	if (!buffer->writable)
3896 3897
		return true;

3898
	mask = perf_data_size(buffer) - 1;
3899 3900 3901 3902 3903 3904 3905 3906 3907 3908

	offset = (offset - tail) & mask;
	head   = (head   - tail) & mask;

	if ((int)(head - offset) < 0)
		return false;

	return true;
}

3909
static void perf_output_wakeup(struct perf_output_handle *handle)
3910
{
3911
	atomic_set(&handle->buffer->poll, POLL_IN);
3912

3913
	if (handle->nmi) {
3914
		handle->event->pending_wakeup = 1;
3915
		irq_work_queue(&handle->event->pending);
3916
	} else
3917
		perf_event_wakeup(handle->event);
3918 3919
}

3920
/*
3921
 * We need to ensure a later event_id doesn't publish a head when a former
3922
 * event isn't done writing. However since we need to deal with NMIs we
3923 3924 3925
 * cannot fully serialize things.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
3926
 * event completes.
3927
 */
3928
static void perf_output_get_handle(struct perf_output_handle *handle)
3929
{
3930
	struct perf_buffer *buffer = handle->buffer;
3931

3932
	preempt_disable();
3933 3934
	local_inc(&buffer->nest);
	handle->wakeup = local_read(&buffer->wakeup);
3935 3936
}

3937
static void perf_output_put_handle(struct perf_output_handle *handle)
3938
{
3939
	struct perf_buffer *buffer = handle->buffer;
3940
	unsigned long head;
3941 3942

again:
3943
	head = local_read(&buffer->head);
3944 3945

	/*
3946
	 * IRQ/NMI can happen here, which means we can miss a head update.
3947 3948
	 */

3949
	if (!local_dec_and_test(&buffer->nest))
3950
		goto out;
3951 3952

	/*
3953
	 * Publish the known good head. Rely on the full barrier implied
3954
	 * by atomic_dec_and_test() order the buffer->head read and this
3955
	 * write.
3956
	 */
3957
	buffer->user_page->data_head = head;
3958

3959 3960
	/*
	 * Now check if we missed an update, rely on the (compiler)
3961
	 * barrier in atomic_dec_and_test() to re-read buffer->head.
3962
	 */
3963 3964
	if (unlikely(head != local_read(&buffer->head))) {
		local_inc(&buffer->nest);
3965 3966 3967
		goto again;
	}

3968
	if (handle->wakeup != local_read(&buffer->wakeup))
3969
		perf_output_wakeup(handle);
3970

P
Peter Zijlstra 已提交
3971
out:
3972
	preempt_enable();
3973 3974
}

3975
__always_inline void perf_output_copy(struct perf_output_handle *handle,
3976
		      const void *buf, unsigned int len)
3977
{
3978
	do {
3979
		unsigned long size = min_t(unsigned long, handle->size, len);
3980 3981 3982 3983 3984

		memcpy(handle->addr, buf, size);

		len -= size;
		handle->addr += size;
3985
		buf += size;
3986 3987
		handle->size -= size;
		if (!handle->size) {
3988
			struct perf_buffer *buffer = handle->buffer;
3989

3990
			handle->page++;
3991 3992 3993
			handle->page &= buffer->nr_pages - 1;
			handle->addr = buffer->data_pages[handle->page];
			handle->size = PAGE_SIZE << page_order(buffer);
3994 3995
		}
	} while (len);
3996 3997
}

3998 3999 4000
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
		data->time = perf_clock();

	if (sample_type & PERF_SAMPLE_ID)
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064
static void perf_event_header__init_id(struct perf_event_header *header,
				       struct perf_sample_data *data,
				       struct perf_event *event)
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
}

static void perf_event__output_id_sample(struct perf_event *event,
					 struct perf_output_handle *handle,
					 struct perf_sample_data *sample)
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

4065
int perf_output_begin(struct perf_output_handle *handle,
4066
		      struct perf_event *event, unsigned int size,
4067
		      int nmi, int sample)
4068
{
4069
	struct perf_buffer *buffer;
4070
	unsigned long tail, offset, head;
4071
	int have_lost;
4072
	struct perf_sample_data sample_data;
4073 4074 4075 4076 4077
	struct {
		struct perf_event_header header;
		u64			 id;
		u64			 lost;
	} lost_event;
4078

4079
	rcu_read_lock();
4080
	/*
4081
	 * For inherited events we send all the output towards the parent.
4082
	 */
4083 4084
	if (event->parent)
		event = event->parent;
4085

4086 4087
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
4088 4089
		goto out;

4090
	handle->buffer	= buffer;
4091
	handle->event	= event;
4092 4093
	handle->nmi	= nmi;
	handle->sample	= sample;
4094

4095
	if (!buffer->nr_pages)
4096
		goto out;
4097

4098
	have_lost = local_read(&buffer->lost);
4099 4100 4101 4102 4103 4104
	if (have_lost) {
		lost_event.header.size = sizeof(lost_event);
		perf_event_header__init_id(&lost_event.header, &sample_data,
					   event);
		size += lost_event.header.size;
	}
4105

4106
	perf_output_get_handle(handle);
4107

4108
	do {
4109 4110 4111 4112 4113
		/*
		 * Userspace could choose to issue a mb() before updating the
		 * tail pointer. So that all reads will be completed before the
		 * write is issued.
		 */
4114
		tail = ACCESS_ONCE(buffer->user_page->data_tail);
4115
		smp_rmb();
4116
		offset = head = local_read(&buffer->head);
P
Peter Zijlstra 已提交
4117
		head += size;
4118
		if (unlikely(!perf_output_space(buffer, tail, offset, head)))
4119
			goto fail;
4120
	} while (local_cmpxchg(&buffer->head, offset, head) != offset);
4121

4122 4123
	if (head - local_read(&buffer->wakeup) > buffer->watermark)
		local_add(buffer->watermark, &buffer->wakeup);
4124

4125 4126 4127 4128
	handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
	handle->page &= buffer->nr_pages - 1;
	handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
	handle->addr = buffer->data_pages[handle->page];
4129
	handle->addr += handle->size;
4130
	handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
4131

4132
	if (have_lost) {
4133
		lost_event.header.type = PERF_RECORD_LOST;
4134
		lost_event.header.misc = 0;
4135
		lost_event.id          = event->id;
4136
		lost_event.lost        = local_xchg(&buffer->lost, 0);
4137 4138

		perf_output_put(handle, lost_event);
4139
		perf_event__output_id_sample(event, handle, &sample_data);
4140 4141
	}

4142
	return 0;
4143

4144
fail:
4145
	local_inc(&buffer->lost);
4146
	perf_output_put_handle(handle);
4147 4148
out:
	rcu_read_unlock();
4149

4150 4151
	return -ENOSPC;
}
4152

4153
void perf_output_end(struct perf_output_handle *handle)
4154
{
4155
	struct perf_event *event = handle->event;
4156
	struct perf_buffer *buffer = handle->buffer;
4157

4158
	int wakeup_events = event->attr.wakeup_events;
P
Peter Zijlstra 已提交
4159

4160
	if (handle->sample && wakeup_events) {
4161
		int events = local_inc_return(&buffer->events);
P
Peter Zijlstra 已提交
4162
		if (events >= wakeup_events) {
4163 4164
			local_sub(wakeup_events, &buffer->events);
			local_inc(&buffer->wakeup);
P
Peter Zijlstra 已提交
4165
		}
4166 4167
	}

4168
	perf_output_put_handle(handle);
4169
	rcu_read_unlock();
4170 4171
}

4172
static void perf_output_read_one(struct perf_output_handle *handle,
4173 4174
				 struct perf_event *event,
				 u64 enabled, u64 running)
4175
{
4176
	u64 read_format = event->attr.read_format;
4177 4178 4179
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
4180
	values[n++] = perf_event_count(event);
4181
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4182
		values[n++] = enabled +
4183
			atomic64_read(&event->child_total_time_enabled);
4184 4185
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4186
		values[n++] = running +
4187
			atomic64_read(&event->child_total_time_running);
4188 4189
	}
	if (read_format & PERF_FORMAT_ID)
4190
		values[n++] = primary_event_id(event);
4191 4192 4193 4194 4195

	perf_output_copy(handle, values, n * sizeof(u64));
}

/*
4196
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4197 4198
 */
static void perf_output_read_group(struct perf_output_handle *handle,
4199 4200
			    struct perf_event *event,
			    u64 enabled, u64 running)
4201
{
4202 4203
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
4204 4205 4206 4207 4208 4209
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4210
		values[n++] = enabled;
4211 4212

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4213
		values[n++] = running;
4214

4215
	if (leader != event)
4216 4217
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
4218
	values[n++] = perf_event_count(leader);
4219
	if (read_format & PERF_FORMAT_ID)
4220
		values[n++] = primary_event_id(leader);
4221 4222 4223

	perf_output_copy(handle, values, n * sizeof(u64));

4224
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4225 4226
		n = 0;

4227
		if (sub != event)
4228 4229
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
4230
		values[n++] = perf_event_count(sub);
4231
		if (read_format & PERF_FORMAT_ID)
4232
			values[n++] = primary_event_id(sub);
4233 4234 4235 4236 4237

		perf_output_copy(handle, values, n * sizeof(u64));
	}
}

4238 4239 4240
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

4241
static void perf_output_read(struct perf_output_handle *handle,
4242
			     struct perf_event *event)
4243
{
4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262
	u64 enabled = 0, running = 0, now, ctx_time;
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
	if (read_format & PERF_FORMAT_TOTAL_TIMES) {
		now = perf_clock();
		ctx_time = event->shadow_ctx_time + now;
		enabled = ctx_time - event->tstamp_enabled;
		running = ctx_time - event->tstamp_running;
	}

4263
	if (event->attr.read_format & PERF_FORMAT_GROUP)
4264
		perf_output_read_group(handle, event, enabled, running);
4265
	else
4266
		perf_output_read_one(handle, event, enabled, running);
4267 4268
}

4269 4270 4271
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
4272
			struct perf_event *event)
4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
4303
		perf_output_read(handle, event);
4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

			perf_output_copy(handle, data->callchain, size);
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
			perf_output_copy(handle, data->raw->data,
					 data->raw->size);
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
4341
			 struct perf_event *event,
4342
			 struct pt_regs *regs)
4343
{
4344
	u64 sample_type = event->attr.sample_type;
4345

4346
	header->type = PERF_RECORD_SAMPLE;
4347
	header->size = sizeof(*header) + event->header_size;
4348 4349 4350

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
4351

4352
	__perf_event_header__init_id(header, data, event);
4353

4354
	if (sample_type & PERF_SAMPLE_IP)
4355 4356
		data->ip = perf_instruction_pointer(regs);

4357
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4358
		int size = 1;
4359

4360 4361 4362 4363 4364 4365
		data->callchain = perf_callchain(regs);

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
4366 4367
	}

4368
	if (sample_type & PERF_SAMPLE_RAW) {
4369 4370 4371 4372 4373 4374 4375 4376
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
4377
		header->size += size;
4378
	}
4379
}
4380

4381
static void perf_event_output(struct perf_event *event, int nmi,
4382 4383 4384 4385 4386
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
4387

4388 4389 4390
	/* protect the callchain buffers */
	rcu_read_lock();

4391
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
4392

4393
	if (perf_output_begin(&handle, event, header.size, nmi, 1))
4394
		goto exit;
4395

4396
	perf_output_sample(&handle, &header, data, event);
4397

4398
	perf_output_end(&handle);
4399 4400 4401

exit:
	rcu_read_unlock();
4402 4403
}

4404
/*
4405
 * read event_id
4406 4407 4408 4409 4410 4411 4412 4413 4414 4415
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
4416
perf_event_read_event(struct perf_event *event,
4417 4418 4419
			struct task_struct *task)
{
	struct perf_output_handle handle;
4420
	struct perf_sample_data sample;
4421
	struct perf_read_event read_event = {
4422
		.header = {
4423
			.type = PERF_RECORD_READ,
4424
			.misc = 0,
4425
			.size = sizeof(read_event) + event->read_size,
4426
		},
4427 4428
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
4429
	};
4430
	int ret;
4431

4432
	perf_event_header__init_id(&read_event.header, &sample, event);
4433
	ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
4434 4435 4436
	if (ret)
		return;

4437
	perf_output_put(&handle, read_event);
4438
	perf_output_read(&handle, event);
4439
	perf_event__output_id_sample(event, &handle, &sample);
4440

4441 4442 4443
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
4444
/*
P
Peter Zijlstra 已提交
4445 4446
 * task tracking -- fork/exit
 *
4447
 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
4448 4449
 */

P
Peter Zijlstra 已提交
4450
struct perf_task_event {
4451
	struct task_struct		*task;
4452
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
4453 4454 4455 4456 4457 4458

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
4459 4460
		u32				tid;
		u32				ptid;
4461
		u64				time;
4462
	} event_id;
P
Peter Zijlstra 已提交
4463 4464
};

4465
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
4466
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4467 4468
{
	struct perf_output_handle handle;
4469
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
4470
	struct task_struct *task = task_event->task;
4471
	int ret, size = task_event->event_id.header.size;
4472

4473
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
4474

4475 4476
	ret = perf_output_begin(&handle, event,
				task_event->event_id.header.size, 0, 0);
4477
	if (ret)
4478
		goto out;
P
Peter Zijlstra 已提交
4479

4480 4481
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
4482

4483 4484
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
4485

4486
	perf_output_put(&handle, task_event->event_id);
4487

4488 4489
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
4490
	perf_output_end(&handle);
4491 4492
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
4493 4494
}

4495
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
4496
{
P
Peter Zijlstra 已提交
4497
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4498 4499
		return 0;

4500
	if (!event_filter_match(event))
4501 4502
		return 0;

4503 4504
	if (event->attr.comm || event->attr.mmap ||
	    event->attr.mmap_data || event->attr.task)
P
Peter Zijlstra 已提交
4505 4506 4507 4508 4509
		return 1;

	return 0;
}

4510
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
4511
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4512
{
4513
	struct perf_event *event;
P
Peter Zijlstra 已提交
4514

4515 4516 4517
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
4518 4519 4520
	}
}

4521
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4522 4523
{
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
4524
	struct perf_event_context *ctx;
P
Peter Zijlstra 已提交
4525
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4526
	int ctxn;
P
Peter Zijlstra 已提交
4527

4528
	rcu_read_lock();
P
Peter Zijlstra 已提交
4529
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4530
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4531 4532
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4533
		perf_event_task_ctx(&cpuctx->ctx, task_event);
P
Peter Zijlstra 已提交
4534 4535 4536 4537 4538

		ctx = task_event->task_ctx;
		if (!ctx) {
			ctxn = pmu->task_ctx_nr;
			if (ctxn < 0)
4539
				goto next;
P
Peter Zijlstra 已提交
4540 4541 4542 4543
			ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		}
		if (ctx)
			perf_event_task_ctx(ctx, task_event);
4544 4545
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4546
	}
P
Peter Zijlstra 已提交
4547 4548 4549
	rcu_read_unlock();
}

4550 4551
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
4552
			      int new)
P
Peter Zijlstra 已提交
4553
{
P
Peter Zijlstra 已提交
4554
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
4555

4556 4557 4558
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
4559 4560
		return;

P
Peter Zijlstra 已提交
4561
	task_event = (struct perf_task_event){
4562 4563
		.task	  = task,
		.task_ctx = task_ctx,
4564
		.event_id    = {
P
Peter Zijlstra 已提交
4565
			.header = {
4566
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4567
				.misc = 0,
4568
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
4569
			},
4570 4571
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
4572 4573
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
4574
			.time = perf_clock(),
P
Peter Zijlstra 已提交
4575 4576 4577
		},
	};

4578
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
4579 4580
}

4581
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
4582
{
4583
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
4584 4585
}

4586 4587 4588 4589 4590
/*
 * comm tracking
 */

struct perf_comm_event {
4591 4592
	struct task_struct	*task;
	char			*comm;
4593 4594 4595 4596 4597 4598 4599
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
4600
	} event_id;
4601 4602
};

4603
static void perf_event_comm_output(struct perf_event *event,
4604 4605 4606
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
4607
	struct perf_sample_data sample;
4608
	int size = comm_event->event_id.header.size;
4609 4610 4611 4612 4613
	int ret;

	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
				comm_event->event_id.header.size, 0, 0);
4614 4615

	if (ret)
4616
		goto out;
4617

4618 4619
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4620

4621
	perf_output_put(&handle, comm_event->event_id);
4622 4623
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
4624 4625 4626

	perf_event__output_id_sample(event, &handle, &sample);

4627
	perf_output_end(&handle);
4628 4629
out:
	comm_event->event_id.header.size = size;
4630 4631
}

4632
static int perf_event_comm_match(struct perf_event *event)
4633
{
P
Peter Zijlstra 已提交
4634
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4635 4636
		return 0;

4637
	if (!event_filter_match(event))
4638 4639
		return 0;

4640
	if (event->attr.comm)
4641 4642 4643 4644 4645
		return 1;

	return 0;
}

4646
static void perf_event_comm_ctx(struct perf_event_context *ctx,
4647 4648
				  struct perf_comm_event *comm_event)
{
4649
	struct perf_event *event;
4650

4651 4652 4653
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
4654 4655 4656
	}
}

4657
static void perf_event_comm_event(struct perf_comm_event *comm_event)
4658 4659
{
	struct perf_cpu_context *cpuctx;
4660
	struct perf_event_context *ctx;
4661
	char comm[TASK_COMM_LEN];
4662
	unsigned int size;
P
Peter Zijlstra 已提交
4663
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4664
	int ctxn;
4665

4666
	memset(comm, 0, sizeof(comm));
4667
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
4668
	size = ALIGN(strlen(comm)+1, sizeof(u64));
4669 4670 4671 4672

	comm_event->comm = comm;
	comm_event->comm_size = size;

4673
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4674
	rcu_read_lock();
P
Peter Zijlstra 已提交
4675
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4676
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4677 4678
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4679
		perf_event_comm_ctx(&cpuctx->ctx, comm_event);
P
Peter Zijlstra 已提交
4680 4681 4682

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
4683
			goto next;
P
Peter Zijlstra 已提交
4684 4685 4686 4687

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
			perf_event_comm_ctx(ctx, comm_event);
4688 4689
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4690
	}
4691
	rcu_read_unlock();
4692 4693
}

4694
void perf_event_comm(struct task_struct *task)
4695
{
4696
	struct perf_comm_event comm_event;
P
Peter Zijlstra 已提交
4697 4698
	struct perf_event_context *ctx;
	int ctxn;
4699

P
Peter Zijlstra 已提交
4700 4701 4702 4703
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
4704

P
Peter Zijlstra 已提交
4705 4706
		perf_event_enable_on_exec(ctx);
	}
4707

4708
	if (!atomic_read(&nr_comm_events))
4709
		return;
4710

4711
	comm_event = (struct perf_comm_event){
4712
		.task	= task,
4713 4714
		/* .comm      */
		/* .comm_size */
4715
		.event_id  = {
4716
			.header = {
4717
				.type = PERF_RECORD_COMM,
4718 4719 4720 4721 4722
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
4723 4724 4725
		},
	};

4726
	perf_event_comm_event(&comm_event);
4727 4728
}

4729 4730 4731 4732 4733
/*
 * mmap tracking
 */

struct perf_mmap_event {
4734 4735 4736 4737
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
4738 4739 4740 4741 4742 4743 4744 4745 4746

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
4747
	} event_id;
4748 4749
};

4750
static void perf_event_mmap_output(struct perf_event *event,
4751 4752 4753
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
4754
	struct perf_sample_data sample;
4755
	int size = mmap_event->event_id.header.size;
4756
	int ret;
4757

4758 4759 4760
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
				mmap_event->event_id.header.size, 0, 0);
4761
	if (ret)
4762
		goto out;
4763

4764 4765
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
4766

4767
	perf_output_put(&handle, mmap_event->event_id);
4768 4769
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
4770 4771 4772

	perf_event__output_id_sample(event, &handle, &sample);

4773
	perf_output_end(&handle);
4774 4775
out:
	mmap_event->event_id.header.size = size;
4776 4777
}

4778
static int perf_event_mmap_match(struct perf_event *event,
4779 4780
				   struct perf_mmap_event *mmap_event,
				   int executable)
4781
{
P
Peter Zijlstra 已提交
4782
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4783 4784
		return 0;

4785
	if (!event_filter_match(event))
4786 4787
		return 0;

4788 4789
	if ((!executable && event->attr.mmap_data) ||
	    (executable && event->attr.mmap))
4790 4791 4792 4793 4794
		return 1;

	return 0;
}

4795
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4796 4797
				  struct perf_mmap_event *mmap_event,
				  int executable)
4798
{
4799
	struct perf_event *event;
4800

4801
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4802
		if (perf_event_mmap_match(event, mmap_event, executable))
4803
			perf_event_mmap_output(event, mmap_event);
4804 4805 4806
	}
}

4807
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4808 4809
{
	struct perf_cpu_context *cpuctx;
4810
	struct perf_event_context *ctx;
4811 4812
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
4813 4814 4815
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
4816
	const char *name;
P
Peter Zijlstra 已提交
4817
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4818
	int ctxn;
4819

4820 4821
	memset(tmp, 0, sizeof(tmp));

4822
	if (file) {
4823 4824 4825 4826 4827 4828
		/*
		 * d_path works from the end of the buffer backwards, so we
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4829 4830 4831 4832
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
4833
		name = d_path(&file->f_path, buf, PATH_MAX);
4834 4835 4836 4837 4838
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
4839 4840 4841
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
4842
			goto got_name;
4843
		}
4844 4845 4846 4847

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
4848 4849 4850 4851 4852 4853 4854 4855
		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
				vma->vm_end >= vma->vm_mm->brk) {
			name = strncpy(tmp, "[heap]", sizeof(tmp));
			goto got_name;
		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
				vma->vm_end >= vma->vm_mm->start_stack) {
			name = strncpy(tmp, "[stack]", sizeof(tmp));
			goto got_name;
4856 4857
		}

4858 4859 4860 4861 4862
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
4863
	size = ALIGN(strlen(name)+1, sizeof(u64));
4864 4865 4866 4867

	mmap_event->file_name = name;
	mmap_event->file_size = size;

4868
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4869

4870
	rcu_read_lock();
P
Peter Zijlstra 已提交
4871
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4872
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4873 4874
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4875 4876
		perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
P
Peter Zijlstra 已提交
4877 4878 4879

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
4880
			goto next;
P
Peter Zijlstra 已提交
4881 4882 4883 4884 4885 4886

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx) {
			perf_event_mmap_ctx(ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
		}
4887 4888
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4889
	}
4890 4891
	rcu_read_unlock();

4892 4893 4894
	kfree(buf);
}

4895
void perf_event_mmap(struct vm_area_struct *vma)
4896
{
4897 4898
	struct perf_mmap_event mmap_event;

4899
	if (!atomic_read(&nr_mmap_events))
4900 4901 4902
		return;

	mmap_event = (struct perf_mmap_event){
4903
		.vma	= vma,
4904 4905
		/* .file_name */
		/* .file_size */
4906
		.event_id  = {
4907
			.header = {
4908
				.type = PERF_RECORD_MMAP,
4909
				.misc = PERF_RECORD_MISC_USER,
4910 4911 4912 4913
				/* .size */
			},
			/* .pid */
			/* .tid */
4914 4915
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
4916
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4917 4918 4919
		},
	};

4920
	perf_event_mmap_event(&mmap_event);
4921 4922
}

4923 4924 4925 4926
/*
 * IRQ throttle logging
 */

4927
static void perf_log_throttle(struct perf_event *event, int enable)
4928 4929
{
	struct perf_output_handle handle;
4930
	struct perf_sample_data sample;
4931 4932 4933 4934 4935
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
4936
		u64				id;
4937
		u64				stream_id;
4938 4939
	} throttle_event = {
		.header = {
4940
			.type = PERF_RECORD_THROTTLE,
4941 4942 4943
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
4944
		.time		= perf_clock(),
4945 4946
		.id		= primary_event_id(event),
		.stream_id	= event->id,
4947 4948
	};

4949
	if (enable)
4950
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4951

4952 4953 4954 4955
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
				throttle_event.header.size, 1, 0);
4956 4957 4958 4959
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
4960
	perf_event__output_id_sample(event, &handle, &sample);
4961 4962 4963
	perf_output_end(&handle);
}

4964
/*
4965
 * Generic event overflow handling, sampling.
4966 4967
 */

4968
static int __perf_event_overflow(struct perf_event *event, int nmi,
4969 4970
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
4971
{
4972 4973
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
4974 4975
	int ret = 0;

4976 4977 4978 4979 4980 4981 4982
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

P
Peter Zijlstra 已提交
4983 4984 4985 4986
	if (unlikely(hwc->interrupts >= max_samples_per_tick)) {
		if (throttle) {
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
4987 4988
			ret = 1;
		}
P
Peter Zijlstra 已提交
4989 4990
	} else
		hwc->interrupts++;
4991

4992
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
4993
		u64 now = perf_clock();
4994
		s64 delta = now - hwc->freq_time_stamp;
4995

4996
		hwc->freq_time_stamp = now;
4997

4998 4999
		if (delta > 0 && delta < 2*TICK_NSEC)
			perf_adjust_period(event, delta, hwc->last_period);
5000 5001
	}

5002 5003
	/*
	 * XXX event_limit might not quite work as expected on inherited
5004
	 * events
5005 5006
	 */

5007 5008
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
5009
		ret = 1;
5010
		event->pending_kill = POLL_HUP;
5011
		if (nmi) {
5012
			event->pending_disable = 1;
5013
			irq_work_queue(&event->pending);
5014
		} else
5015
			perf_event_disable(event);
5016 5017
	}

5018 5019 5020 5021 5022
	if (event->overflow_handler)
		event->overflow_handler(event, nmi, data, regs);
	else
		perf_event_output(event, nmi, data, regs);

5023
	return ret;
5024 5025
}

5026
int perf_event_overflow(struct perf_event *event, int nmi,
5027 5028
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
5029
{
5030
	return __perf_event_overflow(event, nmi, 1, data, regs);
5031 5032
}

5033
/*
5034
 * Generic software event infrastructure
5035 5036
 */

5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

5048
/*
5049 5050
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
5051 5052 5053 5054
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

5055
static u64 perf_swevent_set_period(struct perf_event *event)
5056
{
5057
	struct hw_perf_event *hwc = &event->hw;
5058 5059 5060 5061 5062
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
5063 5064

again:
5065
	old = val = local64_read(&hwc->period_left);
5066 5067
	if (val < 0)
		return 0;
5068

5069 5070 5071
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
5072
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5073
		goto again;
5074

5075
	return nr;
5076 5077
}

5078
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5079 5080
				    int nmi, struct perf_sample_data *data,
				    struct pt_regs *regs)
5081
{
5082
	struct hw_perf_event *hwc = &event->hw;
5083
	int throttle = 0;
5084

5085
	data->period = event->hw.last_period;
5086 5087
	if (!overflow)
		overflow = perf_swevent_set_period(event);
5088

5089 5090
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
5091

5092
	for (; overflow; overflow--) {
5093
		if (__perf_event_overflow(event, nmi, throttle,
5094
					    data, regs)) {
5095 5096 5097 5098 5099 5100
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
5101
		throttle = 1;
5102
	}
5103 5104
}

P
Peter Zijlstra 已提交
5105
static void perf_swevent_event(struct perf_event *event, u64 nr,
5106 5107
			       int nmi, struct perf_sample_data *data,
			       struct pt_regs *regs)
5108
{
5109
	struct hw_perf_event *hwc = &event->hw;
5110

5111
	local64_add(nr, &event->count);
5112

5113 5114 5115
	if (!regs)
		return;

5116
	if (!is_sampling_event(event))
5117
		return;
5118

5119 5120 5121
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
		return perf_swevent_overflow(event, 1, nmi, data, regs);

5122
	if (local64_add_negative(nr, &hwc->period_left))
5123
		return;
5124

5125
	perf_swevent_overflow(event, 0, nmi, data, regs);
5126 5127
}

5128 5129 5130
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
5131 5132 5133
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

5145
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
5146
				enum perf_type_id type,
L
Li Zefan 已提交
5147 5148 5149
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
5150
{
5151
	if (event->attr.type != type)
5152
		return 0;
5153

5154
	if (event->attr.config != event_id)
5155 5156
		return 0;

5157 5158
	if (perf_exclude_event(event, regs))
		return 0;
5159 5160 5161 5162

	return 1;
}

5163 5164 5165 5166 5167 5168 5169
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

5170 5171
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5172
{
5173 5174 5175 5176
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
5177

5178 5179
/* For the read side: events when they trigger */
static inline struct hlist_head *
5180
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5181 5182
{
	struct swevent_hlist *hlist;
5183

5184
	hlist = rcu_dereference(swhash->swevent_hlist);
5185 5186 5187
	if (!hlist)
		return NULL;

5188 5189 5190 5191 5192
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
5193
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5194 5195 5196 5197 5198 5199 5200 5201 5202 5203
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
5204
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
5205 5206 5207 5208 5209
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
5210 5211 5212 5213 5214 5215
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
				    u64 nr, int nmi,
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
5216
{
5217
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5218
	struct perf_event *event;
5219 5220
	struct hlist_node *node;
	struct hlist_head *head;
5221

5222
	rcu_read_lock();
5223
	head = find_swevent_head_rcu(swhash, type, event_id);
5224 5225 5226 5227
	if (!head)
		goto end;

	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
L
Li Zefan 已提交
5228
		if (perf_swevent_match(event, type, event_id, data, regs))
P
Peter Zijlstra 已提交
5229
			perf_swevent_event(event, nr, nmi, data, regs);
5230
	}
5231 5232
end:
	rcu_read_unlock();
5233 5234
}

5235
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
5236
{
5237
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
P
Peter Zijlstra 已提交
5238

5239
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
5240
}
I
Ingo Molnar 已提交
5241
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
5242

5243
inline void perf_swevent_put_recursion_context(int rctx)
5244
{
5245
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5246

5247
	put_recursion_context(swhash->recursion, rctx);
5248
}
5249

5250
void __perf_sw_event(u32 event_id, u64 nr, int nmi,
5251
			    struct pt_regs *regs, u64 addr)
5252
{
5253
	struct perf_sample_data data;
5254 5255
	int rctx;

5256
	preempt_disable_notrace();
5257 5258 5259
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
5260

5261
	perf_sample_data_init(&data, addr);
5262

5263
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
5264 5265

	perf_swevent_put_recursion_context(rctx);
5266
	preempt_enable_notrace();
5267 5268
}

5269
static void perf_swevent_read(struct perf_event *event)
5270 5271 5272
{
}

P
Peter Zijlstra 已提交
5273
static int perf_swevent_add(struct perf_event *event, int flags)
5274
{
5275
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5276
	struct hw_perf_event *hwc = &event->hw;
5277 5278
	struct hlist_head *head;

5279
	if (is_sampling_event(event)) {
5280
		hwc->last_period = hwc->sample_period;
5281
		perf_swevent_set_period(event);
5282
	}
5283

P
Peter Zijlstra 已提交
5284 5285
	hwc->state = !(flags & PERF_EF_START);

5286
	head = find_swevent_head(swhash, event);
5287 5288 5289 5290 5291
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

5292 5293 5294
	return 0;
}

P
Peter Zijlstra 已提交
5295
static void perf_swevent_del(struct perf_event *event, int flags)
5296
{
5297
	hlist_del_rcu(&event->hlist_entry);
5298 5299
}

P
Peter Zijlstra 已提交
5300
static void perf_swevent_start(struct perf_event *event, int flags)
5301
{
P
Peter Zijlstra 已提交
5302
	event->hw.state = 0;
5303
}
I
Ingo Molnar 已提交
5304

P
Peter Zijlstra 已提交
5305
static void perf_swevent_stop(struct perf_event *event, int flags)
5306
{
P
Peter Zijlstra 已提交
5307
	event->hw.state = PERF_HES_STOPPED;
5308 5309
}

5310 5311
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
5312
swevent_hlist_deref(struct swevent_htable *swhash)
5313
{
5314 5315
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
5316 5317
}

5318 5319 5320 5321 5322 5323 5324 5325
static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
{
	struct swevent_hlist *hlist;

	hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
	kfree(hlist);
}

5326
static void swevent_hlist_release(struct swevent_htable *swhash)
5327
{
5328
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5329

5330
	if (!hlist)
5331 5332
		return;

5333
	rcu_assign_pointer(swhash->swevent_hlist, NULL);
5334 5335 5336 5337 5338
	call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
5339
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5340

5341
	mutex_lock(&swhash->hlist_mutex);
5342

5343 5344
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
5345

5346
	mutex_unlock(&swhash->hlist_mutex);
5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	if (event->cpu != -1) {
		swevent_hlist_put_cpu(event, event->cpu);
		return;
	}

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
5364
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5365 5366
	int err = 0;

5367
	mutex_lock(&swhash->hlist_mutex);
5368

5369
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5370 5371 5372 5373 5374 5375 5376
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
5377
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5378
	}
5379
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
5380
exit:
5381
	mutex_unlock(&swhash->hlist_mutex);
5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	if (event->cpu != -1)
		return swevent_hlist_get_cpu(event, event->cpu);

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
5405
fail:
5406 5407 5408 5409 5410 5411 5412 5413 5414 5415
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

5416
atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
5417

5418 5419 5420
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
5421

5422 5423
	WARN_ON(event->parent);

P
Peter Zijlstra 已提交
5424
	jump_label_dec(&perf_swevent_enabled[event_id]);
5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
	int event_id = event->attr.config;

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

5444
	if (event_id >= PERF_COUNT_SW_MAX)
5445 5446 5447 5448 5449 5450 5451 5452 5453
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

P
Peter Zijlstra 已提交
5454
		jump_label_inc(&perf_swevent_enabled[event_id]);
5455 5456 5457 5458 5459 5460 5461
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
5462
	.task_ctx_nr	= perf_sw_context,
5463

5464
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
5465 5466 5467 5468
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5469 5470 5471
	.read		= perf_swevent_read,
};

5472 5473
#ifdef CONFIG_EVENT_TRACING

5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
5488 5489 5490 5491
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
5492 5493 5494 5495 5496 5497 5498 5499 5500
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5501
		   struct pt_regs *regs, struct hlist_head *head, int rctx)
5502 5503
{
	struct perf_sample_data data;
5504 5505 5506
	struct perf_event *event;
	struct hlist_node *node;

5507 5508 5509 5510 5511 5512 5513 5514
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

	perf_sample_data_init(&data, addr);
	data.raw = &raw;

5515 5516
	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
		if (perf_tp_event_match(event, &data, regs))
P
Peter Zijlstra 已提交
5517
			perf_swevent_event(event, count, 1, &data, regs);
5518
	}
5519 5520

	perf_swevent_put_recursion_context(rctx);
5521 5522 5523
}
EXPORT_SYMBOL_GPL(perf_tp_event);

5524
static void tp_perf_event_destroy(struct perf_event *event)
5525
{
5526
	perf_trace_destroy(event);
5527 5528
}

5529
static int perf_tp_event_init(struct perf_event *event)
5530
{
5531 5532
	int err;

5533 5534 5535
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

5536 5537
	err = perf_trace_init(event);
	if (err)
5538
		return err;
5539

5540
	event->destroy = tp_perf_event_destroy;
5541

5542 5543 5544 5545
	return 0;
}

static struct pmu perf_tracepoint = {
5546 5547
	.task_ctx_nr	= perf_sw_context,

5548
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
5549 5550 5551 5552
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5553 5554 5555 5556 5557
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
5558
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5559
}
L
Li Zefan 已提交
5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

5584
#else
L
Li Zefan 已提交
5585

5586
static inline void perf_tp_register(void)
5587 5588
{
}
L
Li Zefan 已提交
5589 5590 5591 5592 5593 5594 5595 5596 5597 5598

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

5599
#endif /* CONFIG_EVENT_TRACING */
5600

5601
#ifdef CONFIG_HAVE_HW_BREAKPOINT
5602
void perf_bp_event(struct perf_event *bp, void *data)
5603
{
5604 5605 5606
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

5607
	perf_sample_data_init(&sample, bp->attr.bp_addr);
5608

P
Peter Zijlstra 已提交
5609 5610
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
		perf_swevent_event(bp, 1, 1, &sample, regs);
5611 5612 5613
}
#endif

5614 5615 5616
/*
 * hrtimer based swevent callback
 */
5617

5618
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5619
{
5620 5621 5622 5623 5624
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
5625

5626
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
5627 5628 5629 5630

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

5631
	event->pmu->read(event);
5632

5633 5634 5635 5636 5637 5638 5639 5640 5641
	perf_sample_data_init(&data, 0);
	data.period = event->hw.last_period;
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
		if (!(event->attr.exclude_idle && current->pid == 0))
			if (perf_event_overflow(event, 0, &data, regs))
				ret = HRTIMER_NORESTART;
	}
5642

5643 5644
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5645

5646
	return ret;
5647 5648
}

5649
static void perf_swevent_start_hrtimer(struct perf_event *event)
5650
{
5651
	struct hw_perf_event *hwc = &event->hw;
5652 5653 5654 5655
	s64 period;

	if (!is_sampling_event(event))
		return;
5656

5657 5658 5659 5660
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
5661

5662 5663 5664 5665 5666
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
5667
				ns_to_ktime(period), 0,
5668
				HRTIMER_MODE_REL_PINNED, 0);
5669
}
5670 5671

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5672
{
5673 5674
	struct hw_perf_event *hwc = &event->hw;

5675
	if (is_sampling_event(event)) {
5676
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
5677
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
5678 5679 5680

		hrtimer_cancel(&hwc->hrtimer);
	}
5681 5682
}

P
Peter Zijlstra 已提交
5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
		event->attr.freq = 0;
	}
}

5707 5708 5709 5710 5711
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
5712
{
5713 5714 5715
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
5716
	now = local_clock();
5717 5718
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
5719 5720
}

P
Peter Zijlstra 已提交
5721
static void cpu_clock_event_start(struct perf_event *event, int flags)
5722
{
P
Peter Zijlstra 已提交
5723
	local64_set(&event->hw.prev_count, local_clock());
5724 5725 5726
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5727
static void cpu_clock_event_stop(struct perf_event *event, int flags)
5728
{
5729 5730 5731
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
5732

P
Peter Zijlstra 已提交
5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

5746 5747 5748 5749
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
5750

5751 5752 5753 5754 5755 5756 5757 5758
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

P
Peter Zijlstra 已提交
5759 5760
	perf_swevent_init_hrtimer(event);

5761
	return 0;
5762 5763
}

5764
static struct pmu perf_cpu_clock = {
5765 5766
	.task_ctx_nr	= perf_sw_context,

5767
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
5768 5769 5770 5771
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
5772 5773 5774 5775 5776 5777 5778 5779
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
5780
{
5781 5782
	u64 prev;
	s64 delta;
5783

5784 5785 5786 5787
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
5788

P
Peter Zijlstra 已提交
5789
static void task_clock_event_start(struct perf_event *event, int flags)
5790
{
P
Peter Zijlstra 已提交
5791
	local64_set(&event->hw.prev_count, event->ctx->time);
5792 5793 5794
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5795
static void task_clock_event_stop(struct perf_event *event, int flags)
5796 5797 5798
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
5799 5800 5801 5802 5803 5804
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
5805

P
Peter Zijlstra 已提交
5806 5807 5808 5809 5810 5811
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
5812 5813 5814 5815
}

static void task_clock_event_read(struct perf_event *event)
{
5816 5817 5818
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
5819 5820 5821 5822 5823

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
5824
{
5825 5826 5827 5828 5829 5830
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

P
Peter Zijlstra 已提交
5831 5832
	perf_swevent_init_hrtimer(event);

5833
	return 0;
L
Li Zefan 已提交
5834 5835
}

5836
static struct pmu perf_task_clock = {
5837 5838
	.task_ctx_nr	= perf_sw_context,

5839
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
5840 5841 5842 5843
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
5844 5845
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
5846

P
Peter Zijlstra 已提交
5847
static void perf_pmu_nop_void(struct pmu *pmu)
5848 5849
{
}
L
Li Zefan 已提交
5850

P
Peter Zijlstra 已提交
5851
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
5852
{
P
Peter Zijlstra 已提交
5853
	return 0;
L
Li Zefan 已提交
5854 5855
}

P
Peter Zijlstra 已提交
5856
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
5857
{
P
Peter Zijlstra 已提交
5858
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
5859 5860
}

P
Peter Zijlstra 已提交
5861 5862 5863 5864 5865
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
5866

P
Peter Zijlstra 已提交
5867
static void perf_pmu_cancel_txn(struct pmu *pmu)
5868
{
P
Peter Zijlstra 已提交
5869
	perf_pmu_enable(pmu);
5870 5871
}

P
Peter Zijlstra 已提交
5872 5873 5874 5875 5876
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
static void *find_pmu_context(int ctxn)
5877
{
P
Peter Zijlstra 已提交
5878
	struct pmu *pmu;
5879

P
Peter Zijlstra 已提交
5880 5881
	if (ctxn < 0)
		return NULL;
5882

P
Peter Zijlstra 已提交
5883 5884 5885 5886
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
5887

P
Peter Zijlstra 已提交
5888
	return NULL;
5889 5890
}

5891
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5892
{
5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

		if (cpuctx->active_pmu == old_pmu)
			cpuctx->active_pmu = pmu;
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
5908

P
Peter Zijlstra 已提交
5909
	mutex_lock(&pmus_lock);
5910
	/*
P
Peter Zijlstra 已提交
5911
	 * Like a real lame refcount.
5912
	 */
5913 5914 5915
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
5916
			goto out;
5917
		}
P
Peter Zijlstra 已提交
5918
	}
5919

5920
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
5921 5922
out:
	mutex_unlock(&pmus_lock);
5923
}
P
Peter Zijlstra 已提交
5924
static struct idr pmu_idr;
5925

P
Peter Zijlstra 已提交
5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}

static struct device_attribute pmu_dev_attrs[] = {
       __ATTR_RO(type),
       __ATTR_NULL,
};

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
	.dev_attrs	= pmu_dev_attrs,
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

5978 5979
static struct lock_class_key cpuctx_mutex;

P
Peter Zijlstra 已提交
5980
int perf_pmu_register(struct pmu *pmu, char *name, int type)
5981
{
P
Peter Zijlstra 已提交
5982
	int cpu, ret;
5983

5984
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
5985 5986 5987 5988
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
5989

P
Peter Zijlstra 已提交
5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
		int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
		if (!err)
			goto free_pdc;

		err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
		if (err) {
			ret = err;
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
6008 6009 6010 6011 6012 6013
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
6014
skip_type:
P
Peter Zijlstra 已提交
6015 6016 6017
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
6018

P
Peter Zijlstra 已提交
6019 6020
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
6021
		goto free_dev;
6022

P
Peter Zijlstra 已提交
6023 6024 6025 6026
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6027
		__perf_event_init_context(&cpuctx->ctx);
6028
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6029
		cpuctx->ctx.type = cpu_context;
P
Peter Zijlstra 已提交
6030
		cpuctx->ctx.pmu = pmu;
6031 6032
		cpuctx->jiffies_interval = 1;
		INIT_LIST_HEAD(&cpuctx->rotation_list);
6033
		cpuctx->active_pmu = pmu;
P
Peter Zijlstra 已提交
6034
	}
6035

P
Peter Zijlstra 已提交
6036
got_cpu_context:
P
Peter Zijlstra 已提交
6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
6051
		}
6052
	}
6053

P
Peter Zijlstra 已提交
6054 6055 6056 6057 6058
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

6059
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
6060 6061
	ret = 0;
unlock:
6062 6063
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
6064
	return ret;
P
Peter Zijlstra 已提交
6065

P
Peter Zijlstra 已提交
6066 6067 6068 6069
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
6070 6071 6072 6073
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
6074 6075 6076
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
6077 6078
}

6079
void perf_pmu_unregister(struct pmu *pmu)
6080
{
6081 6082 6083
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
6084

6085
	/*
P
Peter Zijlstra 已提交
6086 6087
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
6088
	 */
6089
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
6090
	synchronize_rcu();
6091

P
Peter Zijlstra 已提交
6092
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
6093 6094
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
6095 6096
	device_del(pmu->dev);
	put_device(pmu->dev);
6097
	free_pmu_context(pmu);
6098
}
6099

6100 6101 6102 6103
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
6104
	int ret;
6105 6106

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
6107 6108 6109 6110

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
6111 6112 6113 6114
	if (pmu) {
		ret = pmu->event_init(event);
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6115
		goto unlock;
6116
	}
P
Peter Zijlstra 已提交
6117

6118
	list_for_each_entry_rcu(pmu, &pmus, entry) {
6119
		ret = pmu->event_init(event);
6120
		if (!ret)
P
Peter Zijlstra 已提交
6121
			goto unlock;
6122

6123 6124
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6125
			goto unlock;
6126
		}
6127
	}
P
Peter Zijlstra 已提交
6128 6129
	pmu = ERR_PTR(-ENOENT);
unlock:
6130
	srcu_read_unlock(&pmus_srcu, idx);
6131

6132
	return pmu;
6133 6134
}

T
Thomas Gleixner 已提交
6135
/*
6136
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
6137
 */
6138
static struct perf_event *
6139
perf_event_alloc(struct perf_event_attr *attr, int cpu,
6140 6141 6142 6143
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
		 perf_overflow_handler_t overflow_handler)
T
Thomas Gleixner 已提交
6144
{
P
Peter Zijlstra 已提交
6145
	struct pmu *pmu;
6146 6147
	struct perf_event *event;
	struct hw_perf_event *hwc;
6148
	long err;
T
Thomas Gleixner 已提交
6149

6150 6151 6152 6153 6154
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

6155
	event = kzalloc(sizeof(*event), GFP_KERNEL);
6156
	if (!event)
6157
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
6158

6159
	/*
6160
	 * Single events are their own group leaders, with an
6161 6162 6163
	 * empty sibling list:
	 */
	if (!group_leader)
6164
		group_leader = event;
6165

6166 6167
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
6168

6169 6170 6171 6172
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
	init_waitqueue_head(&event->waitq);
6173
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
6174

6175
	mutex_init(&event->mmap_mutex);
6176

6177 6178 6179 6180 6181
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
6182

6183
	event->parent		= parent_event;
6184

6185 6186
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
6187

6188
	event->state		= PERF_EVENT_STATE_INACTIVE;
6189

6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
		if (attr->type == PERF_TYPE_BREAKPOINT)
			event->hw.bp_target = task;
#endif
	}

6201 6202
	if (!overflow_handler && parent_event)
		overflow_handler = parent_event->overflow_handler;
6203

6204
	event->overflow_handler	= overflow_handler;
6205

6206
	if (attr->disabled)
6207
		event->state = PERF_EVENT_STATE_OFF;
6208

6209
	pmu = NULL;
6210

6211
	hwc = &event->hw;
6212
	hwc->sample_period = attr->sample_period;
6213
	if (attr->freq && attr->sample_freq)
6214
		hwc->sample_period = 1;
6215
	hwc->last_period = hwc->sample_period;
6216

6217
	local64_set(&hwc->period_left, hwc->sample_period);
6218

6219
	/*
6220
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
6221
	 */
6222
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6223 6224
		goto done;

6225
	pmu = perf_init_event(event);
6226

6227 6228
done:
	err = 0;
6229
	if (!pmu)
6230
		err = -EINVAL;
6231 6232
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
6233

6234
	if (err) {
6235 6236 6237
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
6238
		return ERR_PTR(err);
I
Ingo Molnar 已提交
6239
	}
6240

6241
	event->pmu = pmu;
T
Thomas Gleixner 已提交
6242

6243
	if (!event->parent) {
6244
		if (event->attach_state & PERF_ATTACH_TASK)
S
Stephane Eranian 已提交
6245
			jump_label_inc(&perf_sched_events);
6246
		if (event->attr.mmap || event->attr.mmap_data)
6247 6248 6249 6250 6251
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
6252 6253 6254 6255 6256 6257 6258
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
			if (err) {
				free_event(event);
				return ERR_PTR(err);
			}
		}
6259
	}
6260

6261
	return event;
T
Thomas Gleixner 已提交
6262 6263
}

6264 6265
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
6266 6267
{
	u32 size;
6268
	int ret;
6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
6293 6294 6295
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
6296 6297
	 */
	if (size > sizeof(*attr)) {
6298 6299 6300
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
6301

6302 6303
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
6304

6305
		for (; addr < end; addr++) {
6306 6307 6308 6309 6310 6311
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
6312
		size = sizeof(*attr);
6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * If the type exists, the corresponding creation will verify
	 * the attr->config.
	 */
	if (attr->type >= PERF_TYPE_MAX)
		return -EINVAL;

6326
	if (attr->__reserved_1)
6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

6344 6345
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6346
{
6347
	struct perf_buffer *buffer = NULL, *old_buffer = NULL;
6348 6349
	int ret = -EINVAL;

6350
	if (!output_event)
6351 6352
		goto set;

6353 6354
	/* don't allow circular references */
	if (event == output_event)
6355 6356
		goto out;

6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
	 * If its not a per-cpu buffer, it must be the same task.
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

6369
set:
6370
	mutex_lock(&event->mmap_mutex);
6371 6372 6373
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
6374

6375 6376
	if (output_event) {
		/* get the buffer we want to redirect to */
6377 6378
		buffer = perf_buffer_get(output_event);
		if (!buffer)
6379
			goto unlock;
6380 6381
	}

6382 6383
	old_buffer = event->buffer;
	rcu_assign_pointer(event->buffer, buffer);
6384
	ret = 0;
6385 6386 6387
unlock:
	mutex_unlock(&event->mmap_mutex);

6388 6389
	if (old_buffer)
		perf_buffer_put(old_buffer);
6390 6391 6392 6393
out:
	return ret;
}

T
Thomas Gleixner 已提交
6394
/**
6395
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
6396
 *
6397
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
6398
 * @pid:		target pid
I
Ingo Molnar 已提交
6399
 * @cpu:		target cpu
6400
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
6401
 */
6402 6403
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
6404
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
6405
{
6406 6407
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
6408 6409 6410
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
6411
	struct file *group_file = NULL;
M
Matt Helsley 已提交
6412
	struct task_struct *task = NULL;
6413
	struct pmu *pmu;
6414
	int event_fd;
6415
	int move_group = 0;
6416
	int fput_needed = 0;
6417
	int err;
T
Thomas Gleixner 已提交
6418

6419
	/* for future expandability... */
S
Stephane Eranian 已提交
6420
	if (flags & ~PERF_FLAG_ALL)
6421 6422
		return -EINVAL;

6423 6424 6425
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
6426

6427 6428 6429 6430 6431
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

6432
	if (attr.freq) {
6433
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
6434 6435 6436
			return -EINVAL;
	}

S
Stephane Eranian 已提交
6437 6438 6439 6440 6441 6442 6443 6444 6445
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

6446 6447 6448 6449
	event_fd = get_unused_fd_flags(O_RDWR);
	if (event_fd < 0)
		return event_fd;

6450 6451 6452 6453
	if (group_fd != -1) {
		group_leader = perf_fget_light(group_fd, &fput_needed);
		if (IS_ERR(group_leader)) {
			err = PTR_ERR(group_leader);
6454
			goto err_fd;
6455 6456 6457 6458 6459 6460 6461 6462
		}
		group_file = group_leader->filp;
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
6463
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6464 6465 6466 6467 6468 6469 6470
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

6471
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, NULL);
6472 6473
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
6474
		goto err_task;
6475 6476
	}

S
Stephane Eranian 已提交
6477 6478 6479 6480 6481 6482
	if (flags & PERF_FLAG_PID_CGROUP) {
		err = perf_cgroup_connect(pid, event, &attr, group_leader);
		if (err)
			goto err_alloc;
	}

6483 6484 6485 6486 6487
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
6511 6512 6513 6514

	/*
	 * Get the target context (task or percpu):
	 */
M
Matt Helsley 已提交
6515
	ctx = find_get_context(pmu, task, cpu);
6516 6517
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6518
		goto err_alloc;
6519 6520
	}

I
Ingo Molnar 已提交
6521
	/*
6522
	 * Look up the group leader (we will attach this event to it):
6523
	 */
6524
	if (group_leader) {
6525
		err = -EINVAL;
6526 6527

		/*
I
Ingo Molnar 已提交
6528 6529 6530 6531
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
6532
			goto err_context;
I
Ingo Molnar 已提交
6533 6534 6535
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
6536
		 */
6537 6538 6539 6540 6541 6542 6543 6544
		if (move_group) {
			if (group_leader->ctx->type != ctx->type)
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

6545 6546 6547
		/*
		 * Only a group leader can be exclusive or pinned
		 */
6548
		if (attr.exclusive || attr.pinned)
6549
			goto err_context;
6550 6551 6552 6553 6554
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
6555
			goto err_context;
6556
	}
T
Thomas Gleixner 已提交
6557

6558 6559 6560
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
6561
		goto err_context;
6562
	}
6563

6564 6565 6566 6567
	if (move_group) {
		struct perf_event_context *gctx = group_leader->ctx;

		mutex_lock(&gctx->mutex);
6568
		perf_remove_from_context(group_leader);
6569 6570
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
6571
			perf_remove_from_context(sibling);
6572 6573 6574 6575
			put_ctx(gctx);
		}
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
6576
	}
6577

6578
	event->filp = event_file;
6579
	WARN_ON_ONCE(ctx->parent_ctx);
6580
	mutex_lock(&ctx->mutex);
6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591

	if (move_group) {
		perf_install_in_context(ctx, group_leader, cpu);
		get_ctx(ctx);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
			perf_install_in_context(ctx, sibling, cpu);
			get_ctx(ctx);
		}
	}

6592
	perf_install_in_context(ctx, event, cpu);
6593
	++ctx->generation;
6594
	perf_unpin_context(ctx);
6595
	mutex_unlock(&ctx->mutex);
6596

6597
	event->owner = current;
P
Peter Zijlstra 已提交
6598

6599 6600 6601
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
6602

6603 6604 6605 6606
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
6607
	perf_event__id_header_size(event);
6608

6609 6610 6611 6612 6613 6614
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
6615 6616 6617
	fput_light(group_file, fput_needed);
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
6618

6619
err_context:
6620
	perf_unpin_context(ctx);
6621
	put_ctx(ctx);
6622
err_alloc:
6623
	free_event(event);
P
Peter Zijlstra 已提交
6624 6625 6626
err_task:
	if (task)
		put_task_struct(task);
6627
err_group_fd:
6628
	fput_light(group_file, fput_needed);
6629 6630
err_fd:
	put_unused_fd(event_fd);
6631
	return err;
T
Thomas Gleixner 已提交
6632 6633
}

6634 6635 6636 6637 6638
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
6639
 * @task: task to profile (NULL for percpu)
6640 6641 6642
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
6643
				 struct task_struct *task,
6644
				 perf_overflow_handler_t overflow_handler)
6645 6646
{
	struct perf_event_context *ctx;
6647
	struct perf_event *event;
6648
	int err;
6649

6650 6651 6652
	/*
	 * Get the target context (task or percpu):
	 */
6653

6654
	event = perf_event_alloc(attr, cpu, task, NULL, NULL, overflow_handler);
6655 6656 6657 6658
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
6659

M
Matt Helsley 已提交
6660
	ctx = find_get_context(event->pmu, task, cpu);
6661 6662
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6663
		goto err_free;
6664
	}
6665 6666 6667 6668 6669 6670

	event->filp = NULL;
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
6671
	perf_unpin_context(ctx);
6672 6673 6674 6675
	mutex_unlock(&ctx->mutex);

	return event;

6676 6677 6678
err_free:
	free_event(event);
err:
6679
	return ERR_PTR(err);
6680
}
6681
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6682

6683
static void sync_child_event(struct perf_event *child_event,
6684
			       struct task_struct *child)
6685
{
6686
	struct perf_event *parent_event = child_event->parent;
6687
	u64 child_val;
6688

6689 6690
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
6691

P
Peter Zijlstra 已提交
6692
	child_val = perf_event_count(child_event);
6693 6694 6695 6696

	/*
	 * Add back the child's count to the parent's count:
	 */
6697
	atomic64_add(child_val, &parent_event->child_count);
6698 6699 6700 6701
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
6702 6703

	/*
6704
	 * Remove this event from the parent's list
6705
	 */
6706 6707 6708 6709
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
6710 6711

	/*
6712
	 * Release the parent event, if this was the last
6713 6714
	 * reference to it.
	 */
6715
	fput(parent_event->filp);
6716 6717
}

6718
static void
6719 6720
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
6721
			 struct task_struct *child)
6722
{
6723
	struct perf_event *parent_event;
6724

6725
	perf_remove_from_context(child_event);
6726

6727
	parent_event = child_event->parent;
6728
	/*
6729
	 * It can happen that parent exits first, and has events
6730
	 * that are still around due to the child reference. These
6731
	 * events need to be zapped - but otherwise linger.
6732
	 */
6733 6734 6735
	if (parent_event) {
		sync_child_event(child_event, child);
		free_event(child_event);
6736
	}
6737 6738
}

P
Peter Zijlstra 已提交
6739
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6740
{
6741 6742
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
6743
	unsigned long flags;
6744

P
Peter Zijlstra 已提交
6745
	if (likely(!child->perf_event_ctxp[ctxn])) {
6746
		perf_event_task(child, NULL, 0);
6747
		return;
P
Peter Zijlstra 已提交
6748
	}
6749

6750
	local_irq_save(flags);
6751 6752 6753 6754 6755 6756
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
6757
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6758
	task_ctx_sched_out(child_ctx, EVENT_ALL);
6759 6760 6761

	/*
	 * Take the context lock here so that if find_get_context is
6762
	 * reading child->perf_event_ctxp, we wait until it has
6763 6764
	 * incremented the context's refcount before we do put_ctx below.
	 */
6765
	raw_spin_lock(&child_ctx->lock);
P
Peter Zijlstra 已提交
6766
	child->perf_event_ctxp[ctxn] = NULL;
6767 6768 6769
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
6770
	 * the events from it.
6771 6772
	 */
	unclone_ctx(child_ctx);
6773
	update_context_time(child_ctx);
6774
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6775 6776

	/*
6777 6778 6779
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
6780
	 */
6781
	perf_event_task(child, child_ctx, 0);
6782

6783 6784 6785
	/*
	 * We can recurse on the same lock type through:
	 *
6786 6787 6788
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       fput(parent_event->filp)
6789 6790 6791 6792 6793
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
6794
	mutex_lock(&child_ctx->mutex);
6795

6796
again:
6797 6798 6799 6800 6801
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6802
				 group_entry)
6803
		__perf_event_exit_task(child_event, child_ctx, child);
6804 6805

	/*
6806
	 * If the last event was a group event, it will have appended all
6807 6808 6809
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
6810 6811
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
6812
		goto again;
6813 6814 6815 6816

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
6817 6818
}

P
Peter Zijlstra 已提交
6819 6820 6821 6822 6823
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
6824
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
6825 6826
	int ctxn;

P
Peter Zijlstra 已提交
6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
6842 6843 6844 6845
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

	fput(parent->filp);

6860
	perf_group_detach(event);
6861 6862 6863 6864
	list_del_event(event, ctx);
	free_event(event);
}

6865 6866
/*
 * free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
6867
 * perf_event_init_task below, used by fork() in case of fail.
6868
 */
6869
void perf_event_free_task(struct task_struct *task)
6870
{
P
Peter Zijlstra 已提交
6871
	struct perf_event_context *ctx;
6872
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
6873
	int ctxn;
6874

P
Peter Zijlstra 已提交
6875 6876 6877 6878
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
6879

P
Peter Zijlstra 已提交
6880
		mutex_lock(&ctx->mutex);
6881
again:
P
Peter Zijlstra 已提交
6882 6883 6884
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
6885

P
Peter Zijlstra 已提交
6886 6887 6888
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
6889

P
Peter Zijlstra 已提交
6890 6891 6892
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
6893

P
Peter Zijlstra 已提交
6894
		mutex_unlock(&ctx->mutex);
6895

P
Peter Zijlstra 已提交
6896 6897
		put_ctx(ctx);
	}
6898 6899
}

6900 6901 6902 6903 6904 6905 6906 6907
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *child_event;
6920
	unsigned long flags;
P
Peter Zijlstra 已提交
6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
6933
					   child,
P
Peter Zijlstra 已提交
6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962
					   group_leader, parent_event,
					   NULL);
	if (IS_ERR(child_event))
		return child_event;
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;

6963 6964 6965 6966
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
6967
	perf_event__id_header_size(child_event);
6968

P
Peter Zijlstra 已提交
6969 6970 6971
	/*
	 * Link it up in the child's context:
	 */
6972
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6973
	add_event_to_ctx(child_event, child_ctx);
6974
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015

	/*
	 * Get a reference to the parent filp - we will fput it
	 * when the child event exits. This is safe to do because
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
	atomic_long_inc(&parent_event->filp->f_count);

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
7016 7017 7018 7019 7020
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
7021
		   struct task_struct *child, int ctxn,
7022 7023 7024
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
7025
	struct perf_event_context *child_ctx;
7026 7027 7028 7029

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
7030 7031
	}

7032
	child_ctx = child->perf_event_ctxp[ctxn];
7033 7034 7035 7036 7037 7038 7039
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
7040

7041
		child_ctx = alloc_perf_context(event->pmu, child);
7042 7043
		if (!child_ctx)
			return -ENOMEM;
7044

P
Peter Zijlstra 已提交
7045
		child->perf_event_ctxp[ctxn] = child_ctx;
7046 7047 7048 7049 7050 7051 7052 7053 7054
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
7055 7056
}

7057
/*
7058
 * Initialize the perf_event context in task_struct
7059
 */
P
Peter Zijlstra 已提交
7060
int perf_event_init_context(struct task_struct *child, int ctxn)
7061
{
7062
	struct perf_event_context *child_ctx, *parent_ctx;
7063 7064
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
7065
	struct task_struct *parent = current;
7066
	int inherited_all = 1;
7067
	unsigned long flags;
7068
	int ret = 0;
7069

P
Peter Zijlstra 已提交
7070
	if (likely(!parent->perf_event_ctxp[ctxn]))
7071 7072
		return 0;

7073
	/*
7074 7075
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
7076
	 */
P
Peter Zijlstra 已提交
7077
	parent_ctx = perf_pin_task_context(parent, ctxn);
7078

7079 7080 7081 7082 7083 7084 7085
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

7086 7087 7088 7089
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
7090
	mutex_lock(&parent_ctx->mutex);
7091 7092 7093 7094 7095

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
7096
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
7097 7098
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7099 7100 7101
		if (ret)
			break;
	}
7102

7103 7104 7105 7106 7107 7108 7109 7110 7111
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

7112
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
7113 7114
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7115
		if (ret)
7116
			break;
7117 7118
	}

7119 7120 7121
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
7122
	child_ctx = child->perf_event_ctxp[ctxn];
7123

7124
	if (child_ctx && inherited_all) {
7125 7126 7127
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
7128 7129 7130
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
7131
		 */
P
Peter Zijlstra 已提交
7132
		cloned_ctx = parent_ctx->parent_ctx;
7133 7134
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
7135
			child_ctx->parent_gen = parent_ctx->parent_gen;
7136 7137 7138 7139 7140
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
7141 7142
	}

P
Peter Zijlstra 已提交
7143
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7144
	mutex_unlock(&parent_ctx->mutex);
7145

7146
	perf_unpin_context(parent_ctx);
7147
	put_ctx(parent_ctx);
7148

7149
	return ret;
7150 7151
}

P
Peter Zijlstra 已提交
7152 7153 7154 7155 7156 7157 7158
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

7159 7160 7161 7162
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
7163 7164 7165 7166 7167 7168 7169 7170 7171
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
		if (ret)
			return ret;
	}

	return 0;
}

7172 7173
static void __init perf_event_init_all_cpus(void)
{
7174
	struct swevent_htable *swhash;
7175 7176 7177
	int cpu;

	for_each_possible_cpu(cpu) {
7178 7179
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
7180
		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7181 7182 7183
	}
}

7184
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
7185
{
P
Peter Zijlstra 已提交
7186
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
7187

7188 7189
	mutex_lock(&swhash->hlist_mutex);
	if (swhash->hlist_refcount > 0) {
7190 7191
		struct swevent_hlist *hlist;

7192 7193 7194
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7195
	}
7196
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
7197 7198
}

P
Peter Zijlstra 已提交
7199
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7200
static void perf_pmu_rotate_stop(struct pmu *pmu)
T
Thomas Gleixner 已提交
7201
{
7202 7203 7204 7205 7206 7207 7208
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	WARN_ON(!irqs_disabled());

	list_del_init(&cpuctx->rotation_list);
}

P
Peter Zijlstra 已提交
7209
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
7210
{
P
Peter Zijlstra 已提交
7211
	struct perf_event_context *ctx = __info;
7212
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
7213

P
Peter Zijlstra 已提交
7214
	perf_pmu_rotate_stop(ctx->pmu);
7215

7216
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7217
		__perf_remove_from_context(event);
7218
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7219
		__perf_remove_from_context(event);
T
Thomas Gleixner 已提交
7220
}
P
Peter Zijlstra 已提交
7221 7222 7223 7224 7225 7226 7227 7228 7229

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7230
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
7231 7232 7233 7234 7235 7236 7237 7238

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

7239
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
7240
{
7241
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7242

7243 7244 7245
	mutex_lock(&swhash->hlist_mutex);
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
7246

P
Peter Zijlstra 已提交
7247
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
7248 7249
}
#else
7250
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
7251 7252
#endif

P
Peter Zijlstra 已提交
7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

T
Thomas Gleixner 已提交
7273 7274 7275 7276 7277
static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

P
Peter Zijlstra 已提交
7278
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
7279 7280

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
7281
	case CPU_DOWN_FAILED:
7282
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
7283 7284
		break;

P
Peter Zijlstra 已提交
7285
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
7286
	case CPU_DOWN_PREPARE:
7287
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
7288 7289 7290 7291 7292 7293 7294 7295 7296
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

7297
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
7298
{
7299 7300
	int ret;

P
Peter Zijlstra 已提交
7301 7302
	idr_init(&pmu_idr);

7303
	perf_event_init_all_cpus();
7304
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
7305 7306 7307
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
7308 7309
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
7310
	register_reboot_notifier(&perf_reboot_notifier);
7311 7312 7313

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
T
Thomas Gleixner 已提交
7314
}
P
Peter Zijlstra 已提交
7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342

static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431

#ifdef CONFIG_CGROUP_PERF
static struct cgroup_subsys_state *perf_cgroup_create(
	struct cgroup_subsys *ss, struct cgroup *cont)
{
	struct perf_cgroup *jc;
	struct perf_cgroup_info *t;
	int c;

	jc = kmalloc(sizeof(*jc), GFP_KERNEL);
	if (!jc)
		return ERR_PTR(-ENOMEM);

	memset(jc, 0, sizeof(*jc));

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	for_each_possible_cpu(c) {
		t = per_cpu_ptr(jc->info, c);
		t->time = 0;
		t->timestamp = 0;
	}
	return &jc->css;
}

static void perf_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
	struct perf_cgroup *jc;
	jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
			  struct perf_cgroup, css);
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

static void perf_cgroup_move(struct task_struct *task)
{
	task_function_call(task, __perf_cgroup_move, task);
}

static void perf_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		struct cgroup *old_cgrp, struct task_struct *task,
		bool threadgroup)
{
	perf_cgroup_move(task);
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &task->thread_group, thread_group) {
			perf_cgroup_move(c);
		}
		rcu_read_unlock();
	}
}

static void perf_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
		struct cgroup *old_cgrp, struct task_struct *task)
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	perf_cgroup_move(task);
}

struct cgroup_subsys perf_subsys = {
	.name = "perf_event",
	.subsys_id = perf_subsys_id,
	.create = perf_cgroup_create,
	.destroy = perf_cgroup_destroy,
	.exit = perf_cgroup_exit,
	.attach = perf_cgroup_attach,
};
#endif /* CONFIG_CGROUP_PERF */