perf_event.c 120.1 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4 5 6
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
16
#include <linux/file.h>
T
Thomas Gleixner 已提交
17 18
#include <linux/poll.h>
#include <linux/sysfs.h>
19
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
20
#include <linux/percpu.h>
21
#include <linux/ptrace.h>
22
#include <linux/vmstat.h>
23
#include <linux/vmalloc.h>
24 25
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
26 27 28
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
29
#include <linux/kernel_stat.h>
30
#include <linux/perf_event.h>
L
Li Zefan 已提交
31
#include <linux/ftrace_event.h>
32
#include <linux/hw_breakpoint.h>
T
Thomas Gleixner 已提交
33

34 35
#include <asm/irq_regs.h>

T
Thomas Gleixner 已提交
36
/*
37
 * Each CPU has a list of per CPU events:
T
Thomas Gleixner 已提交
38 39 40
 */
DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);

41
int perf_max_events __read_mostly = 1;
T
Thomas Gleixner 已提交
42 43 44
static int perf_reserved_percpu __read_mostly;
static int perf_overcommit __read_mostly = 1;

45 46 47 48
static atomic_t nr_events __read_mostly;
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
49

50
/*
51
 * perf event paranoia level:
52 53
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
54
 *   1 - disallow cpu events for unpriv
55
 *   2 - disallow kernel profiling for unpriv
56
 */
57
int sysctl_perf_event_paranoid __read_mostly = 1;
58

59 60
static inline bool perf_paranoid_tracepoint_raw(void)
{
61
	return sysctl_perf_event_paranoid > -1;
62 63
}

64 65
static inline bool perf_paranoid_cpu(void)
{
66
	return sysctl_perf_event_paranoid > 0;
67 68 69 70
}

static inline bool perf_paranoid_kernel(void)
{
71
	return sysctl_perf_event_paranoid > 1;
72 73
}

74
int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
75 76

/*
77
 * max perf event sample rate
78
 */
79
int sysctl_perf_event_sample_rate __read_mostly = 100000;
80

81
static atomic64_t perf_event_id;
82

T
Thomas Gleixner 已提交
83
/*
84
 * Lock for (sysadmin-configurable) event reservations:
T
Thomas Gleixner 已提交
85
 */
86
static DEFINE_SPINLOCK(perf_resource_lock);
T
Thomas Gleixner 已提交
87 88 89 90

/*
 * Architecture provided APIs - weak aliases:
 */
91
extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
T
Thomas Gleixner 已提交
92
{
93
	return NULL;
T
Thomas Gleixner 已提交
94 95
}

96 97 98
void __weak hw_perf_disable(void)		{ barrier(); }
void __weak hw_perf_enable(void)		{ barrier(); }

99 100
void __weak hw_perf_event_setup(int cpu)	{ barrier(); }
void __weak hw_perf_event_setup_online(int cpu)	{ barrier(); }
101 102

int __weak
103
hw_perf_group_sched_in(struct perf_event *group_leader,
104
	       struct perf_cpu_context *cpuctx,
105
	       struct perf_event_context *ctx, int cpu)
106 107 108
{
	return 0;
}
T
Thomas Gleixner 已提交
109

110
void __weak perf_event_print_debug(void)	{ }
111

112
static DEFINE_PER_CPU(int, perf_disable_count);
113 114 115

void __perf_disable(void)
{
116
	__get_cpu_var(perf_disable_count)++;
117 118 119 120
}

bool __perf_enable(void)
{
121
	return !--__get_cpu_var(perf_disable_count);
122 123 124 125 126 127 128 129 130 131 132 133 134 135
}

void perf_disable(void)
{
	__perf_disable();
	hw_perf_disable();
}

void perf_enable(void)
{
	if (__perf_enable())
		hw_perf_enable();
}

136
static void get_ctx(struct perf_event_context *ctx)
137
{
138
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
139 140
}

141 142
static void free_ctx(struct rcu_head *head)
{
143
	struct perf_event_context *ctx;
144

145
	ctx = container_of(head, struct perf_event_context, rcu_head);
146 147 148
	kfree(ctx);
}

149
static void put_ctx(struct perf_event_context *ctx)
150
{
151 152 153
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
154 155 156
		if (ctx->task)
			put_task_struct(ctx->task);
		call_rcu(&ctx->rcu_head, free_ctx);
157
	}
158 159
}

160
static void unclone_ctx(struct perf_event_context *ctx)
161 162 163 164 165 166 167
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

168
/*
169
 * If we inherit events we want to return the parent event id
170 171
 * to userspace.
 */
172
static u64 primary_event_id(struct perf_event *event)
173
{
174
	u64 id = event->id;
175

176 177
	if (event->parent)
		id = event->parent->id;
178 179 180 181

	return id;
}

182
/*
183
 * Get the perf_event_context for a task and lock it.
184 185 186
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
187
static struct perf_event_context *
188
perf_lock_task_context(struct task_struct *task, unsigned long *flags)
189
{
190
	struct perf_event_context *ctx;
191 192 193

	rcu_read_lock();
 retry:
194
	ctx = rcu_dereference(task->perf_event_ctxp);
195 196 197 198
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
199
		 * perf_event_task_sched_out, though the
200 201 202 203 204 205 206
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
		spin_lock_irqsave(&ctx->lock, *flags);
207
		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
208 209 210
			spin_unlock_irqrestore(&ctx->lock, *flags);
			goto retry;
		}
211 212 213 214 215

		if (!atomic_inc_not_zero(&ctx->refcount)) {
			spin_unlock_irqrestore(&ctx->lock, *flags);
			ctx = NULL;
		}
216 217 218 219 220 221 222 223 224 225
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
226
static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
227
{
228
	struct perf_event_context *ctx;
229 230 231 232 233 234 235 236 237 238
	unsigned long flags;

	ctx = perf_lock_task_context(task, &flags);
	if (ctx) {
		++ctx->pin_count;
		spin_unlock_irqrestore(&ctx->lock, flags);
	}
	return ctx;
}

239
static void perf_unpin_context(struct perf_event_context *ctx)
240 241 242 243 244 245 246 247 248
{
	unsigned long flags;

	spin_lock_irqsave(&ctx->lock, flags);
	--ctx->pin_count;
	spin_unlock_irqrestore(&ctx->lock, flags);
	put_ctx(ctx);
}

249
/*
250
 * Add a event from the lists for its context.
251 252
 * Must be called with ctx->mutex and ctx->lock held.
 */
253
static void
254
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
255
{
256
	struct perf_event *group_leader = event->group_leader;
257 258

	/*
259 260
	 * Depending on whether it is a standalone or sibling event,
	 * add it straight to the context's event list, or to the group
261 262
	 * leader's sibling list:
	 */
263 264
	if (group_leader == event)
		list_add_tail(&event->group_entry, &ctx->group_list);
P
Peter Zijlstra 已提交
265
	else {
266
		list_add_tail(&event->group_entry, &group_leader->sibling_list);
P
Peter Zijlstra 已提交
267 268
		group_leader->nr_siblings++;
	}
P
Peter Zijlstra 已提交
269

270 271 272
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
273
		ctx->nr_stat++;
274 275
}

276
/*
277
 * Remove a event from the lists for its context.
278
 * Must be called with ctx->mutex and ctx->lock held.
279
 */
280
static void
281
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
282
{
283
	struct perf_event *sibling, *tmp;
284

285
	if (list_empty(&event->group_entry))
286
		return;
287 288
	ctx->nr_events--;
	if (event->attr.inherit_stat)
289
		ctx->nr_stat--;
290

291 292
	list_del_init(&event->group_entry);
	list_del_rcu(&event->event_entry);
293

294 295
	if (event->group_leader != event)
		event->group_leader->nr_siblings--;
P
Peter Zijlstra 已提交
296

297
	/*
298 299
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
300 301
	 * to the context list directly:
	 */
302
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
303

304
		list_move_tail(&sibling->group_entry, &ctx->group_list);
305 306 307 308
		sibling->group_leader = sibling;
	}
}

309
static void
310
event_sched_out(struct perf_event *event,
311
		  struct perf_cpu_context *cpuctx,
312
		  struct perf_event_context *ctx)
313
{
314
	if (event->state != PERF_EVENT_STATE_ACTIVE)
315 316
		return;

317 318 319 320
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
321
	}
322 323 324
	event->tstamp_stopped = ctx->time;
	event->pmu->disable(event);
	event->oncpu = -1;
325

326
	if (!is_software_event(event))
327 328
		cpuctx->active_oncpu--;
	ctx->nr_active--;
329
	if (event->attr.exclusive || !cpuctx->active_oncpu)
330 331 332
		cpuctx->exclusive = 0;
}

333
static void
334
group_sched_out(struct perf_event *group_event,
335
		struct perf_cpu_context *cpuctx,
336
		struct perf_event_context *ctx)
337
{
338
	struct perf_event *event;
339

340
	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
341 342
		return;

343
	event_sched_out(group_event, cpuctx, ctx);
344 345 346 347

	/*
	 * Schedule out siblings (if any):
	 */
348 349
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
350

351
	if (group_event->attr.exclusive)
352 353 354
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
355
/*
356
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
357
 *
358
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
359 360
 * remove it from the context list.
 */
361
static void __perf_event_remove_from_context(void *info)
T
Thomas Gleixner 已提交
362 363
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
364 365
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
366 367 368 369 370 371

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
372
	if (ctx->task && cpuctx->task_ctx != ctx)
T
Thomas Gleixner 已提交
373 374
		return;

375
	spin_lock(&ctx->lock);
376 377
	/*
	 * Protect the list operation against NMI by disabling the
378
	 * events on a global level.
379 380
	 */
	perf_disable();
T
Thomas Gleixner 已提交
381

382
	event_sched_out(event, cpuctx, ctx);
383

384
	list_del_event(event, ctx);
T
Thomas Gleixner 已提交
385 386 387

	if (!ctx->task) {
		/*
388
		 * Allow more per task events with respect to the
T
Thomas Gleixner 已提交
389 390 391
		 * reservation:
		 */
		cpuctx->max_pertask =
392 393
			min(perf_max_events - ctx->nr_events,
			    perf_max_events - perf_reserved_percpu);
T
Thomas Gleixner 已提交
394 395
	}

396
	perf_enable();
397
	spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
398 399 400 401
}


/*
402
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
403
 *
404
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
405
 *
406
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
407
 * call when the task is on a CPU.
408
 *
409 410
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
411 412
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
413
 * When called from perf_event_exit_task, it's OK because the
414
 * context has been detached from its task.
T
Thomas Gleixner 已提交
415
 */
416
static void perf_event_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
417
{
418
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
419 420 421 422
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
423
		 * Per cpu events are removed via an smp call and
T
Thomas Gleixner 已提交
424 425
		 * the removal is always sucessful.
		 */
426 427 428
		smp_call_function_single(event->cpu,
					 __perf_event_remove_from_context,
					 event, 1);
T
Thomas Gleixner 已提交
429 430 431 432
		return;
	}

retry:
433 434
	task_oncpu_function_call(task, __perf_event_remove_from_context,
				 event);
T
Thomas Gleixner 已提交
435 436 437 438 439

	spin_lock_irq(&ctx->lock);
	/*
	 * If the context is active we need to retry the smp call.
	 */
440
	if (ctx->nr_active && !list_empty(&event->group_entry)) {
T
Thomas Gleixner 已提交
441 442 443 444 445 446
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
447
	 * can remove the event safely, if the call above did not
T
Thomas Gleixner 已提交
448 449
	 * succeed.
	 */
450 451
	if (!list_empty(&event->group_entry)) {
		list_del_event(event, ctx);
T
Thomas Gleixner 已提交
452 453 454 455
	}
	spin_unlock_irq(&ctx->lock);
}

456
static inline u64 perf_clock(void)
457
{
458
	return cpu_clock(smp_processor_id());
459 460 461 462 463
}

/*
 * Update the record of the current time in a context.
 */
464
static void update_context_time(struct perf_event_context *ctx)
465
{
466 467 468 469
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
470 471 472
}

/*
473
 * Update the total_time_enabled and total_time_running fields for a event.
474
 */
475
static void update_event_times(struct perf_event *event)
476
{
477
	struct perf_event_context *ctx = event->ctx;
478 479
	u64 run_end;

480 481
	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
482 483
		return;

484
	event->total_time_enabled = ctx->time - event->tstamp_enabled;
485

486 487
	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
488 489 490
	else
		run_end = ctx->time;

491
	event->total_time_running = run_end - event->tstamp_running;
492 493 494
}

/*
495
 * Update total_time_enabled and total_time_running for all events in a group.
496
 */
497
static void update_group_times(struct perf_event *leader)
498
{
499
	struct perf_event *event;
500

501 502 503
	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
504 505
}

506
/*
507
 * Cross CPU call to disable a performance event
508
 */
509
static void __perf_event_disable(void *info)
510
{
511
	struct perf_event *event = info;
512
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
513
	struct perf_event_context *ctx = event->ctx;
514 515

	/*
516 517
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
518
	 */
519
	if (ctx->task && cpuctx->task_ctx != ctx)
520 521
		return;

522
	spin_lock(&ctx->lock);
523 524

	/*
525
	 * If the event is on, turn it off.
526 527
	 * If it is in error state, leave it in error state.
	 */
528
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
529
		update_context_time(ctx);
530 531 532
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
533
		else
534 535
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
536 537
	}

538
	spin_unlock(&ctx->lock);
539 540 541
}

/*
542
 * Disable a event.
543
 *
544 545
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
546
 * remains valid.  This condition is satisifed when called through
547 548 549 550
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
551
 * is the current context on this CPU and preemption is disabled,
552
 * hence we can't get into perf_event_task_sched_out for this context.
553
 */
554
static void perf_event_disable(struct perf_event *event)
555
{
556
	struct perf_event_context *ctx = event->ctx;
557 558 559 560
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
561
		 * Disable the event on the cpu that it's on
562
		 */
563 564
		smp_call_function_single(event->cpu, __perf_event_disable,
					 event, 1);
565 566 567 568
		return;
	}

 retry:
569
	task_oncpu_function_call(task, __perf_event_disable, event);
570 571 572

	spin_lock_irq(&ctx->lock);
	/*
573
	 * If the event is still active, we need to retry the cross-call.
574
	 */
575
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
576 577 578 579 580 581 582 583
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
584 585 586
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
587
	}
588 589 590 591

	spin_unlock_irq(&ctx->lock);
}

592
static int
593
event_sched_in(struct perf_event *event,
594
		 struct perf_cpu_context *cpuctx,
595
		 struct perf_event_context *ctx,
596 597
		 int cpu)
{
598
	if (event->state <= PERF_EVENT_STATE_OFF)
599 600
		return 0;

601 602
	event->state = PERF_EVENT_STATE_ACTIVE;
	event->oncpu = cpu;	/* TODO: put 'cpu' into cpuctx->cpu */
603 604 605 606 607
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

608 609 610
	if (event->pmu->enable(event)) {
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
611 612 613
		return -EAGAIN;
	}

614
	event->tstamp_running += ctx->time - event->tstamp_stopped;
615

616
	if (!is_software_event(event))
617
		cpuctx->active_oncpu++;
618 619
	ctx->nr_active++;

620
	if (event->attr.exclusive)
621 622
		cpuctx->exclusive = 1;

623 624 625
	return 0;
}

626
static int
627
group_sched_in(struct perf_event *group_event,
628
	       struct perf_cpu_context *cpuctx,
629
	       struct perf_event_context *ctx,
630 631
	       int cpu)
{
632
	struct perf_event *event, *partial_group;
633 634
	int ret;

635
	if (group_event->state == PERF_EVENT_STATE_OFF)
636 637
		return 0;

638
	ret = hw_perf_group_sched_in(group_event, cpuctx, ctx, cpu);
639 640 641
	if (ret)
		return ret < 0 ? ret : 0;

642
	if (event_sched_in(group_event, cpuctx, ctx, cpu))
643 644 645 646 647
		return -EAGAIN;

	/*
	 * Schedule in siblings as one group (if any):
	 */
648 649 650
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event_sched_in(event, cpuctx, ctx, cpu)) {
			partial_group = event;
651 652 653 654 655 656 657 658 659 660 661
			goto group_error;
		}
	}

	return 0;

group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
662 663
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
664
			break;
665
		event_sched_out(event, cpuctx, ctx);
666
	}
667
	event_sched_out(group_event, cpuctx, ctx);
668 669 670 671

	return -EAGAIN;
}

672
/*
673 674
 * Return 1 for a group consisting entirely of software events,
 * 0 if the group contains any hardware events.
675
 */
676
static int is_software_only_group(struct perf_event *leader)
677
{
678
	struct perf_event *event;
679

680
	if (!is_software_event(leader))
681
		return 0;
P
Peter Zijlstra 已提交
682

683 684
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		if (!is_software_event(event))
685
			return 0;
P
Peter Zijlstra 已提交
686

687 688 689 690
	return 1;
}

/*
691
 * Work out whether we can put this event group on the CPU now.
692
 */
693
static int group_can_go_on(struct perf_event *event,
694 695 696 697
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
698
	 * Groups consisting entirely of software events can always go on.
699
	 */
700
	if (is_software_only_group(event))
701 702 703
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
704
	 * events can go on.
705 706 707 708 709
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
710
	 * events on the CPU, it can't go on.
711
	 */
712
	if (event->attr.exclusive && cpuctx->active_oncpu)
713 714 715 716 717 718 719 720
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

721 722
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
723
{
724 725 726 727
	list_add_event(event, ctx);
	event->tstamp_enabled = ctx->time;
	event->tstamp_running = ctx->time;
	event->tstamp_stopped = ctx->time;
728 729
}

T
Thomas Gleixner 已提交
730
/*
731
 * Cross CPU call to install and enable a performance event
732 733
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
734 735 736 737
 */
static void __perf_install_in_context(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
738 739 740
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
T
Thomas Gleixner 已提交
741
	int cpu = smp_processor_id();
742
	int err;
T
Thomas Gleixner 已提交
743 744 745 746 747

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
748
	 * Or possibly this is the right context but it isn't
749
	 * on this cpu because it had no events.
T
Thomas Gleixner 已提交
750
	 */
751
	if (ctx->task && cpuctx->task_ctx != ctx) {
752
		if (cpuctx->task_ctx || ctx->task != current)
753 754 755
			return;
		cpuctx->task_ctx = ctx;
	}
T
Thomas Gleixner 已提交
756

757
	spin_lock(&ctx->lock);
758
	ctx->is_active = 1;
759
	update_context_time(ctx);
T
Thomas Gleixner 已提交
760 761 762

	/*
	 * Protect the list operation against NMI by disabling the
763
	 * events on a global level. NOP for non NMI based events.
T
Thomas Gleixner 已提交
764
	 */
765
	perf_disable();
T
Thomas Gleixner 已提交
766

767
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
768

769
	/*
770
	 * Don't put the event on if it is disabled or if
771 772
	 * it is in a group and the group isn't on.
	 */
773 774
	if (event->state != PERF_EVENT_STATE_INACTIVE ||
	    (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
775 776
		goto unlock;

777
	/*
778 779 780
	 * An exclusive event can't go on if there are already active
	 * hardware events, and no hardware event can go on if there
	 * is already an exclusive event on.
781
	 */
782
	if (!group_can_go_on(event, cpuctx, 1))
783 784
		err = -EEXIST;
	else
785
		err = event_sched_in(event, cpuctx, ctx, cpu);
786

787 788
	if (err) {
		/*
789
		 * This event couldn't go on.  If it is in a group
790
		 * then we have to pull the whole group off.
791
		 * If the event group is pinned then put it in error state.
792
		 */
793
		if (leader != event)
794
			group_sched_out(leader, cpuctx, ctx);
795
		if (leader->attr.pinned) {
796
			update_group_times(leader);
797
			leader->state = PERF_EVENT_STATE_ERROR;
798
		}
799
	}
T
Thomas Gleixner 已提交
800

801
	if (!err && !ctx->task && cpuctx->max_pertask)
T
Thomas Gleixner 已提交
802 803
		cpuctx->max_pertask--;

804
 unlock:
805
	perf_enable();
806

807
	spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
808 809 810
}

/*
811
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
812
 *
813 814
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
815
 *
816
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
817 818
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
819 820
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
821 822
 */
static void
823 824
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
825 826 827 828 829 830
			int cpu)
{
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
831
		 * Per cpu events are installed via an smp call and
T
Thomas Gleixner 已提交
832 833 834
		 * the install is always sucessful.
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
835
					 event, 1);
T
Thomas Gleixner 已提交
836 837 838 839 840
		return;
	}

retry:
	task_oncpu_function_call(task, __perf_install_in_context,
841
				 event);
T
Thomas Gleixner 已提交
842 843 844 845 846

	spin_lock_irq(&ctx->lock);
	/*
	 * we need to retry the smp call.
	 */
847
	if (ctx->is_active && list_empty(&event->group_entry)) {
T
Thomas Gleixner 已提交
848 849 850 851 852 853
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
854
	 * can add the event safely, if it the call above did not
T
Thomas Gleixner 已提交
855 856
	 * succeed.
	 */
857 858
	if (list_empty(&event->group_entry))
		add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
859 860 861
	spin_unlock_irq(&ctx->lock);
}

862
/*
863
 * Put a event into inactive state and update time fields.
864 865 866 867 868 869
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
870 871
static void __perf_event_mark_enabled(struct perf_event *event,
					struct perf_event_context *ctx)
872
{
873
	struct perf_event *sub;
874

875 876 877 878
	event->state = PERF_EVENT_STATE_INACTIVE;
	event->tstamp_enabled = ctx->time - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry)
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
879 880 881 882
			sub->tstamp_enabled =
				ctx->time - sub->total_time_enabled;
}

883
/*
884
 * Cross CPU call to enable a performance event
885
 */
886
static void __perf_event_enable(void *info)
887
{
888
	struct perf_event *event = info;
889
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
890 891
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
892
	int err;
893

894
	/*
895 896
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
897
	 */
898
	if (ctx->task && cpuctx->task_ctx != ctx) {
899
		if (cpuctx->task_ctx || ctx->task != current)
900 901 902
			return;
		cpuctx->task_ctx = ctx;
	}
903

904
	spin_lock(&ctx->lock);
905
	ctx->is_active = 1;
906
	update_context_time(ctx);
907

908
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
909
		goto unlock;
910
	__perf_event_mark_enabled(event, ctx);
911 912

	/*
913
	 * If the event is in a group and isn't the group leader,
914
	 * then don't put it on unless the group is on.
915
	 */
916
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
917
		goto unlock;
918

919
	if (!group_can_go_on(event, cpuctx, 1)) {
920
		err = -EEXIST;
921
	} else {
922
		perf_disable();
923 924
		if (event == leader)
			err = group_sched_in(event, cpuctx, ctx,
925 926
					     smp_processor_id());
		else
927
			err = event_sched_in(event, cpuctx, ctx,
928
					       smp_processor_id());
929
		perf_enable();
930
	}
931 932 933

	if (err) {
		/*
934
		 * If this event can't go on and it's part of a
935 936
		 * group, then the whole group has to come off.
		 */
937
		if (leader != event)
938
			group_sched_out(leader, cpuctx, ctx);
939
		if (leader->attr.pinned) {
940
			update_group_times(leader);
941
			leader->state = PERF_EVENT_STATE_ERROR;
942
		}
943 944 945
	}

 unlock:
946
	spin_unlock(&ctx->lock);
947 948 949
}

/*
950
 * Enable a event.
951
 *
952 953
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
954
 * remains valid.  This condition is satisfied when called through
955 956
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
957
 */
958
static void perf_event_enable(struct perf_event *event)
959
{
960
	struct perf_event_context *ctx = event->ctx;
961 962 963 964
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
965
		 * Enable the event on the cpu that it's on
966
		 */
967 968
		smp_call_function_single(event->cpu, __perf_event_enable,
					 event, 1);
969 970 971 972
		return;
	}

	spin_lock_irq(&ctx->lock);
973
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
974 975 976
		goto out;

	/*
977 978
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
979 980 981 982
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
983 984
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
985 986 987

 retry:
	spin_unlock_irq(&ctx->lock);
988
	task_oncpu_function_call(task, __perf_event_enable, event);
989 990 991 992

	spin_lock_irq(&ctx->lock);

	/*
993
	 * If the context is active and the event is still off,
994 995
	 * we need to retry the cross-call.
	 */
996
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
997 998 999 1000 1001 1002
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1003 1004
	if (event->state == PERF_EVENT_STATE_OFF)
		__perf_event_mark_enabled(event, ctx);
1005

1006 1007 1008 1009
 out:
	spin_unlock_irq(&ctx->lock);
}

1010
static int perf_event_refresh(struct perf_event *event, int refresh)
1011
{
1012
	/*
1013
	 * not supported on inherited events
1014
	 */
1015
	if (event->attr.inherit)
1016 1017
		return -EINVAL;

1018 1019
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1020 1021

	return 0;
1022 1023
}

1024
void __perf_event_sched_out(struct perf_event_context *ctx,
1025 1026
			      struct perf_cpu_context *cpuctx)
{
1027
	struct perf_event *event;
1028

1029 1030
	spin_lock(&ctx->lock);
	ctx->is_active = 0;
1031
	if (likely(!ctx->nr_events))
1032
		goto out;
1033
	update_context_time(ctx);
1034

1035
	perf_disable();
1036 1037 1038 1039
	if (ctx->nr_active)
		list_for_each_entry(event, &ctx->group_list, group_entry)
			group_sched_out(event, cpuctx, ctx);

1040
	perf_enable();
1041
 out:
1042 1043 1044
	spin_unlock(&ctx->lock);
}

1045 1046 1047
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1048 1049 1050 1051
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1052
 * in them directly with an fd; we can only enable/disable all
1053
 * events via prctl, or enable/disable all events in a family
1054 1055
 * via ioctl, which will have the same effect on both contexts.
 */
1056 1057
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1058 1059
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1060
		&& ctx1->parent_gen == ctx2->parent_gen
1061
		&& !ctx1->pin_count && !ctx2->pin_count;
1062 1063
}

1064 1065
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1066 1067 1068
{
	u64 value;

1069
	if (!event->attr.inherit_stat)
1070 1071 1072
		return;

	/*
1073
	 * Update the event value, we cannot use perf_event_read()
1074 1075
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1076
	 * we know the event must be on the current CPU, therefore we
1077 1078
	 * don't need to use it.
	 */
1079 1080
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1081 1082
		event->pmu->read(event);
		/* fall-through */
1083

1084 1085
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1086 1087 1088 1089 1090 1091 1092
		break;

	default:
		break;
	}

	/*
1093
	 * In order to keep per-task stats reliable we need to flip the event
1094 1095
	 * values when we flip the contexts.
	 */
1096 1097 1098
	value = atomic64_read(&next_event->count);
	value = atomic64_xchg(&event->count, value);
	atomic64_set(&next_event->count, value);
1099

1100 1101
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1102

1103
	/*
1104
	 * Since we swizzled the values, update the user visible data too.
1105
	 */
1106 1107
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1108 1109 1110 1111 1112
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1113 1114
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1115
{
1116
	struct perf_event *event, *next_event;
1117 1118 1119 1120

	if (!ctx->nr_stat)
		return;

1121 1122
	update_context_time(ctx);

1123 1124
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1125

1126 1127
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1128

1129 1130
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1131

1132
		__perf_event_sync_stat(event, next_event);
1133

1134 1135
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1136 1137 1138
	}
}

T
Thomas Gleixner 已提交
1139
/*
1140
 * Called from scheduler to remove the events of the current task,
T
Thomas Gleixner 已提交
1141 1142
 * with interrupts disabled.
 *
1143
 * We stop each event and update the event value in event->count.
T
Thomas Gleixner 已提交
1144
 *
I
Ingo Molnar 已提交
1145
 * This does not protect us against NMI, but disable()
1146 1147 1148
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
T
Thomas Gleixner 已提交
1149
 */
1150
void perf_event_task_sched_out(struct task_struct *task,
1151
				 struct task_struct *next, int cpu)
T
Thomas Gleixner 已提交
1152 1153
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1154 1155 1156
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
1157
	struct pt_regs *regs;
1158
	int do_switch = 1;
T
Thomas Gleixner 已提交
1159

1160
	regs = task_pt_regs(task);
1161
	perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1162

1163
	if (likely(!ctx || !cpuctx->task_ctx))
T
Thomas Gleixner 已提交
1164 1165
		return;

1166 1167
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
1168
	next_ctx = next->perf_event_ctxp;
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
		spin_lock(&ctx->lock);
		spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
		if (context_equiv(ctx, next_ctx)) {
1183 1184
			/*
			 * XXX do we need a memory barrier of sorts
1185
			 * wrt to rcu_dereference() of perf_event_ctxp
1186
			 */
1187 1188
			task->perf_event_ctxp = next_ctx;
			next->perf_event_ctxp = ctx;
1189 1190 1191
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1192

1193
			perf_event_sync_stat(ctx, next_ctx);
1194 1195 1196
		}
		spin_unlock(&next_ctx->lock);
		spin_unlock(&ctx->lock);
1197
	}
1198
	rcu_read_unlock();
1199

1200
	if (do_switch) {
1201
		__perf_event_sched_out(ctx, cpuctx);
1202 1203
		cpuctx->task_ctx = NULL;
	}
T
Thomas Gleixner 已提交
1204 1205
}

1206 1207 1208
/*
 * Called with IRQs disabled
 */
1209
static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1210 1211 1212
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);

1213 1214
	if (!cpuctx->task_ctx)
		return;
1215 1216 1217 1218

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

1219
	__perf_event_sched_out(ctx, cpuctx);
1220 1221 1222
	cpuctx->task_ctx = NULL;
}

1223 1224 1225
/*
 * Called with IRQs disabled
 */
1226
static void perf_event_cpu_sched_out(struct perf_cpu_context *cpuctx)
1227
{
1228
	__perf_event_sched_out(&cpuctx->ctx, cpuctx);
1229 1230
}

1231
static void
1232
__perf_event_sched_in(struct perf_event_context *ctx,
1233
			struct perf_cpu_context *cpuctx, int cpu)
T
Thomas Gleixner 已提交
1234
{
1235
	struct perf_event *event;
1236
	int can_add_hw = 1;
T
Thomas Gleixner 已提交
1237

1238 1239
	spin_lock(&ctx->lock);
	ctx->is_active = 1;
1240
	if (likely(!ctx->nr_events))
1241
		goto out;
T
Thomas Gleixner 已提交
1242

1243
	ctx->timestamp = perf_clock();
1244

1245
	perf_disable();
1246 1247 1248 1249 1250

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
1251 1252 1253
	list_for_each_entry(event, &ctx->group_list, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF ||
		    !event->attr.pinned)
1254
			continue;
1255
		if (event->cpu != -1 && event->cpu != cpu)
1256 1257
			continue;

1258 1259
		if (group_can_go_on(event, cpuctx, 1))
			group_sched_in(event, cpuctx, ctx, cpu);
1260 1261 1262 1263 1264

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
1265 1266 1267
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
1268
		}
1269 1270
	}

1271
	list_for_each_entry(event, &ctx->group_list, group_entry) {
1272
		/*
1273 1274
		 * Ignore events in OFF or ERROR state, and
		 * ignore pinned events since we did them already.
1275
		 */
1276 1277
		if (event->state <= PERF_EVENT_STATE_OFF ||
		    event->attr.pinned)
1278 1279
			continue;

1280 1281
		/*
		 * Listen to the 'cpu' scheduling filter constraint
1282
		 * of events:
1283
		 */
1284
		if (event->cpu != -1 && event->cpu != cpu)
T
Thomas Gleixner 已提交
1285 1286
			continue;

1287 1288
		if (group_can_go_on(event, cpuctx, can_add_hw))
			if (group_sched_in(event, cpuctx, ctx, cpu))
1289
				can_add_hw = 0;
T
Thomas Gleixner 已提交
1290
	}
1291
	perf_enable();
1292
 out:
T
Thomas Gleixner 已提交
1293
	spin_unlock(&ctx->lock);
1294 1295 1296
}

/*
1297
 * Called from scheduler to add the events of the current task
1298 1299
 * with interrupts disabled.
 *
1300
 * We restore the event value and then enable it.
1301 1302
 *
 * This does not protect us against NMI, but enable()
1303 1304 1305
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
1306
 */
1307
void perf_event_task_sched_in(struct task_struct *task, int cpu)
1308 1309
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1310
	struct perf_event_context *ctx = task->perf_event_ctxp;
1311

1312 1313
	if (likely(!ctx))
		return;
1314 1315
	if (cpuctx->task_ctx == ctx)
		return;
1316
	__perf_event_sched_in(ctx, cpuctx, cpu);
T
Thomas Gleixner 已提交
1317 1318 1319
	cpuctx->task_ctx = ctx;
}

1320
static void perf_event_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1321
{
1322
	struct perf_event_context *ctx = &cpuctx->ctx;
1323

1324
	__perf_event_sched_in(ctx, cpuctx, cpu);
1325 1326
}

1327 1328
#define MAX_INTERRUPTS (~0ULL)

1329
static void perf_log_throttle(struct perf_event *event, int enable);
1330

1331
static void perf_adjust_period(struct perf_event *event, u64 events)
1332
{
1333
	struct hw_perf_event *hwc = &event->hw;
1334 1335 1336 1337
	u64 period, sample_period;
	s64 delta;

	events *= hwc->sample_period;
1338
	period = div64_u64(events, event->attr.sample_freq);
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
}

1351
static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1352
{
1353 1354
	struct perf_event *event;
	struct hw_perf_event *hwc;
1355
	u64 interrupts, freq;
1356 1357

	spin_lock(&ctx->lock);
1358
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1359
		if (event->state != PERF_EVENT_STATE_ACTIVE)
1360 1361
			continue;

1362
		hwc = &event->hw;
1363 1364 1365

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
1366

1367
		/*
1368
		 * unthrottle events on the tick
1369
		 */
1370
		if (interrupts == MAX_INTERRUPTS) {
1371 1372 1373
			perf_log_throttle(event, 1);
			event->pmu->unthrottle(event);
			interrupts = 2*sysctl_perf_event_sample_rate/HZ;
1374 1375
		}

1376
		if (!event->attr.freq || !event->attr.sample_freq)
1377 1378
			continue;

1379 1380 1381
		/*
		 * if the specified freq < HZ then we need to skip ticks
		 */
1382 1383
		if (event->attr.sample_freq < HZ) {
			freq = event->attr.sample_freq;
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396

			hwc->freq_count += freq;
			hwc->freq_interrupts += interrupts;

			if (hwc->freq_count < HZ)
				continue;

			interrupts = hwc->freq_interrupts;
			hwc->freq_interrupts = 0;
			hwc->freq_count -= HZ;
		} else
			freq = HZ;

1397
		perf_adjust_period(event, freq * interrupts);
1398

1399 1400 1401 1402 1403 1404 1405
		/*
		 * In order to avoid being stalled by an (accidental) huge
		 * sample period, force reset the sample period if we didn't
		 * get any events in this freq period.
		 */
		if (!interrupts) {
			perf_disable();
1406
			event->pmu->disable(event);
1407
			atomic64_set(&hwc->period_left, 0);
1408
			event->pmu->enable(event);
1409 1410
			perf_enable();
		}
1411 1412 1413 1414
	}
	spin_unlock(&ctx->lock);
}

1415
/*
1416
 * Round-robin a context's events:
1417
 */
1418
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
1419
{
1420
	struct perf_event *event;
T
Thomas Gleixner 已提交
1421

1422
	if (!ctx->nr_events)
T
Thomas Gleixner 已提交
1423 1424 1425 1426
		return;

	spin_lock(&ctx->lock);
	/*
1427
	 * Rotate the first entry last (works just fine for group events too):
T
Thomas Gleixner 已提交
1428
	 */
1429
	perf_disable();
1430 1431
	list_for_each_entry(event, &ctx->group_list, group_entry) {
		list_move_tail(&event->group_entry, &ctx->group_list);
T
Thomas Gleixner 已提交
1432 1433
		break;
	}
1434
	perf_enable();
T
Thomas Gleixner 已提交
1435 1436

	spin_unlock(&ctx->lock);
1437 1438
}

1439
void perf_event_task_tick(struct task_struct *curr, int cpu)
1440
{
1441
	struct perf_cpu_context *cpuctx;
1442
	struct perf_event_context *ctx;
1443

1444
	if (!atomic_read(&nr_events))
1445 1446 1447
		return;

	cpuctx = &per_cpu(perf_cpu_context, cpu);
1448
	ctx = curr->perf_event_ctxp;
1449

1450
	perf_ctx_adjust_freq(&cpuctx->ctx);
1451
	if (ctx)
1452
		perf_ctx_adjust_freq(ctx);
1453

1454
	perf_event_cpu_sched_out(cpuctx);
1455
	if (ctx)
1456
		__perf_event_task_sched_out(ctx);
T
Thomas Gleixner 已提交
1457

1458
	rotate_ctx(&cpuctx->ctx);
1459 1460
	if (ctx)
		rotate_ctx(ctx);
1461

1462
	perf_event_cpu_sched_in(cpuctx, cpu);
1463
	if (ctx)
1464
		perf_event_task_sched_in(curr, cpu);
T
Thomas Gleixner 已提交
1465 1466
}

1467
/*
1468
 * Enable all of a task's events that have been marked enable-on-exec.
1469 1470
 * This expects task == current.
 */
1471
static void perf_event_enable_on_exec(struct task_struct *task)
1472
{
1473 1474
	struct perf_event_context *ctx;
	struct perf_event *event;
1475 1476 1477 1478
	unsigned long flags;
	int enabled = 0;

	local_irq_save(flags);
1479 1480
	ctx = task->perf_event_ctxp;
	if (!ctx || !ctx->nr_events)
1481 1482
		goto out;

1483
	__perf_event_task_sched_out(ctx);
1484 1485 1486

	spin_lock(&ctx->lock);

1487 1488
	list_for_each_entry(event, &ctx->group_list, group_entry) {
		if (!event->attr.enable_on_exec)
1489
			continue;
1490 1491
		event->attr.enable_on_exec = 0;
		if (event->state >= PERF_EVENT_STATE_INACTIVE)
1492
			continue;
1493
		__perf_event_mark_enabled(event, ctx);
1494 1495 1496 1497
		enabled = 1;
	}

	/*
1498
	 * Unclone this context if we enabled any event.
1499
	 */
1500 1501
	if (enabled)
		unclone_ctx(ctx);
1502 1503 1504

	spin_unlock(&ctx->lock);

1505
	perf_event_task_sched_in(task, smp_processor_id());
1506 1507 1508 1509
 out:
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
1510
/*
1511
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
1512
 */
1513
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
1514
{
1515
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1516 1517
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
I
Ingo Molnar 已提交
1518

1519 1520 1521 1522
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
1523 1524
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
1525 1526 1527 1528
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

P
Peter Zijlstra 已提交
1529
	spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1530
	update_context_time(ctx);
1531
	update_event_times(event);
P
Peter Zijlstra 已提交
1532 1533
	spin_unlock(&ctx->lock);

P
Peter Zijlstra 已提交
1534
	event->pmu->read(event);
T
Thomas Gleixner 已提交
1535 1536
}

1537
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
1538 1539
{
	/*
1540 1541
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
1542
	 */
1543 1544 1545 1546
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
1547 1548 1549 1550 1551
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

		spin_lock_irqsave(&ctx->lock, flags);
		update_context_time(ctx);
1552
		update_event_times(event);
P
Peter Zijlstra 已提交
1553
		spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1554 1555
	}

1556
	return atomic64_read(&event->count);
T
Thomas Gleixner 已提交
1557 1558
}

1559
/*
1560
 * Initialize the perf_event context in a task_struct:
1561 1562
 */
static void
1563
__perf_event_init_context(struct perf_event_context *ctx,
1564 1565 1566 1567 1568
			    struct task_struct *task)
{
	memset(ctx, 0, sizeof(*ctx));
	spin_lock_init(&ctx->lock);
	mutex_init(&ctx->mutex);
1569
	INIT_LIST_HEAD(&ctx->group_list);
1570 1571 1572 1573 1574
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
	ctx->task = task;
}

1575
static struct perf_event_context *find_get_context(pid_t pid, int cpu)
T
Thomas Gleixner 已提交
1576
{
1577
	struct perf_event_context *ctx;
1578
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
1579
	struct task_struct *task;
1580
	unsigned long flags;
1581
	int err;
T
Thomas Gleixner 已提交
1582 1583

	/*
1584
	 * If cpu is not a wildcard then this is a percpu event:
T
Thomas Gleixner 已提交
1585 1586
	 */
	if (cpu != -1) {
1587
		/* Must be root to operate on a CPU event: */
1588
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
1589 1590 1591 1592 1593 1594
			return ERR_PTR(-EACCES);

		if (cpu < 0 || cpu > num_possible_cpus())
			return ERR_PTR(-EINVAL);

		/*
1595
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
1596 1597 1598 1599 1600 1601 1602 1603
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
		if (!cpu_isset(cpu, cpu_online_map))
			return ERR_PTR(-ENODEV);

		cpuctx = &per_cpu(perf_cpu_context, cpu);
		ctx = &cpuctx->ctx;
1604
		get_ctx(ctx);
T
Thomas Gleixner 已提交
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

1621
	/*
1622
	 * Can't attach events to a dying task.
1623 1624 1625 1626 1627
	 */
	err = -ESRCH;
	if (task->flags & PF_EXITING)
		goto errout;

T
Thomas Gleixner 已提交
1628
	/* Reuse ptrace permission checks for now. */
1629 1630 1631 1632 1633
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

 retry:
1634
	ctx = perf_lock_task_context(task, &flags);
1635
	if (ctx) {
1636
		unclone_ctx(ctx);
1637
		spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1638 1639
	}

1640
	if (!ctx) {
1641
		ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1642 1643 1644
		err = -ENOMEM;
		if (!ctx)
			goto errout;
1645
		__perf_event_init_context(ctx, task);
1646
		get_ctx(ctx);
1647
		if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1648 1649 1650 1651 1652
			/*
			 * We raced with some other task; use
			 * the context they set.
			 */
			kfree(ctx);
1653
			goto retry;
1654
		}
1655
		get_task_struct(task);
1656 1657
	}

1658
	put_task_struct(task);
T
Thomas Gleixner 已提交
1659
	return ctx;
1660 1661 1662 1663

 errout:
	put_task_struct(task);
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
1664 1665
}

L
Li Zefan 已提交
1666 1667
static void perf_event_free_filter(struct perf_event *event);

1668
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
1669
{
1670
	struct perf_event *event;
P
Peter Zijlstra 已提交
1671

1672 1673 1674
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
1675
	perf_event_free_filter(event);
1676
	kfree(event);
P
Peter Zijlstra 已提交
1677 1678
}

1679
static void perf_pending_sync(struct perf_event *event);
1680

1681
static void free_event(struct perf_event *event)
1682
{
1683
	perf_pending_sync(event);
1684

1685 1686 1687 1688 1689 1690 1691 1692
	if (!event->parent) {
		atomic_dec(&nr_events);
		if (event->attr.mmap)
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
1693
	}
1694

1695 1696 1697
	if (event->output) {
		fput(event->output->filp);
		event->output = NULL;
1698 1699
	}

1700 1701
	if (event->destroy)
		event->destroy(event);
1702

1703 1704
	put_ctx(event->ctx);
	call_rcu(&event->rcu_head, free_event_rcu);
1705 1706
}

T
Thomas Gleixner 已提交
1707 1708 1709 1710 1711
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
{
1712 1713
	struct perf_event *event = file->private_data;
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1714 1715 1716

	file->private_data = NULL;

1717
	WARN_ON_ONCE(ctx->parent_ctx);
1718
	mutex_lock(&ctx->mutex);
1719
	perf_event_remove_from_context(event);
1720
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
1721

1722 1723 1724 1725
	mutex_lock(&event->owner->perf_event_mutex);
	list_del_init(&event->owner_entry);
	mutex_unlock(&event->owner->perf_event_mutex);
	put_task_struct(event->owner);
1726

1727
	free_event(event);
T
Thomas Gleixner 已提交
1728 1729 1730 1731

	return 0;
}

1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
int perf_event_release_kernel(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_event_remove_from_context(event);
	mutex_unlock(&ctx->mutex);

	mutex_lock(&event->owner->perf_event_mutex);
	list_del_init(&event->owner_entry);
	mutex_unlock(&event->owner->perf_event_mutex);
	put_task_struct(event->owner);

	free_event(event);

	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

1752
static int perf_event_read_size(struct perf_event *event)
1753 1754 1755 1756 1757
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

1758
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1759 1760
		size += sizeof(u64);

1761
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1762 1763
		size += sizeof(u64);

1764
	if (event->attr.read_format & PERF_FORMAT_ID)
1765 1766
		entry += sizeof(u64);

1767 1768
	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
1769 1770 1771 1772 1773 1774 1775 1776
		size += sizeof(u64);
	}

	size += entry * nr;

	return size;
}

1777
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
1778
{
1779
	struct perf_event *child;
1780 1781
	u64 total = 0;

1782 1783 1784
	*enabled = 0;
	*running = 0;

1785
	total += perf_event_read(event);
1786 1787 1788 1789 1790 1791
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
1792
		total += perf_event_read(child);
1793 1794 1795
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
1796 1797 1798

	return total;
}
1799
EXPORT_SYMBOL_GPL(perf_event_read_value);
1800

1801
static int perf_event_read_group(struct perf_event *event,
1802 1803
				   u64 read_format, char __user *buf)
{
1804
	struct perf_event *leader = event->group_leader, *sub;
1805 1806
	int n = 0, size = 0, ret = 0;
	u64 values[5];
1807
	u64 count, enabled, running;
1808

1809
	count = perf_event_read_value(leader, &enabled, &running);
1810 1811

	values[n++] = 1 + leader->nr_siblings;
1812 1813 1814 1815
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
1816 1817 1818
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
1819 1820 1821 1822 1823 1824

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
		return -EFAULT;

1825
	ret += size;
1826

1827
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1828
		n = 0;
1829

1830
		values[n++] = perf_event_read_value(sub, &enabled, &running);
1831 1832 1833 1834 1835 1836 1837 1838 1839
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

		if (copy_to_user(buf + size, values, size))
			return -EFAULT;

		ret += size;
1840 1841
	}

1842
	return ret;
1843 1844
}

1845
static int perf_event_read_one(struct perf_event *event,
1846 1847
				 u64 read_format, char __user *buf)
{
1848
	u64 enabled, running;
1849 1850 1851
	u64 values[4];
	int n = 0;

1852 1853 1854 1855 1856
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
1857
	if (read_format & PERF_FORMAT_ID)
1858
		values[n++] = primary_event_id(event);
1859 1860 1861 1862 1863 1864 1865

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
1866
/*
1867
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
1868 1869
 */
static ssize_t
1870
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
1871
{
1872
	u64 read_format = event->attr.read_format;
1873
	int ret;
T
Thomas Gleixner 已提交
1874

1875
	/*
1876
	 * Return end-of-file for a read on a event that is in
1877 1878 1879
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
1880
	if (event->state == PERF_EVENT_STATE_ERROR)
1881 1882
		return 0;

1883
	if (count < perf_event_read_size(event))
1884 1885
		return -ENOSPC;

1886 1887
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
1888
	if (read_format & PERF_FORMAT_GROUP)
1889
		ret = perf_event_read_group(event, read_format, buf);
1890
	else
1891 1892
		ret = perf_event_read_one(event, read_format, buf);
	mutex_unlock(&event->child_mutex);
T
Thomas Gleixner 已提交
1893

1894
	return ret;
T
Thomas Gleixner 已提交
1895 1896 1897 1898 1899
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
1900
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
1901

1902
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
1903 1904 1905 1906
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
1907
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
1908
	struct perf_mmap_data *data;
1909
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
1910 1911

	rcu_read_lock();
1912
	data = rcu_dereference(event->data);
P
Peter Zijlstra 已提交
1913
	if (data)
1914
		events = atomic_xchg(&data->poll, 0);
P
Peter Zijlstra 已提交
1915
	rcu_read_unlock();
T
Thomas Gleixner 已提交
1916

1917
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
1918 1919 1920 1921

	return events;
}

1922
static void perf_event_reset(struct perf_event *event)
1923
{
1924 1925 1926
	(void)perf_event_read(event);
	atomic64_set(&event->count, 0);
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
1927 1928
}

1929
/*
1930 1931 1932 1933
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
1934
 */
1935 1936
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
1937
{
1938
	struct perf_event *child;
P
Peter Zijlstra 已提交
1939

1940 1941 1942 1943
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
1944
		func(child);
1945
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
1946 1947
}

1948 1949
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
1950
{
1951 1952
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
1953

1954 1955
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
1956
	event = event->group_leader;
1957

1958 1959 1960 1961
	perf_event_for_each_child(event, func);
	func(event);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
		perf_event_for_each_child(event, func);
1962
	mutex_unlock(&ctx->mutex);
1963 1964
}

1965
static int perf_event_period(struct perf_event *event, u64 __user *arg)
1966
{
1967
	struct perf_event_context *ctx = event->ctx;
1968 1969 1970 1971
	unsigned long size;
	int ret = 0;
	u64 value;

1972
	if (!event->attr.sample_period)
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
		return -EINVAL;

	size = copy_from_user(&value, arg, sizeof(value));
	if (size != sizeof(value))
		return -EFAULT;

	if (!value)
		return -EINVAL;

	spin_lock_irq(&ctx->lock);
1983 1984
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
1985 1986 1987 1988
			ret = -EINVAL;
			goto unlock;
		}

1989
		event->attr.sample_freq = value;
1990
	} else {
1991 1992
		event->attr.sample_period = value;
		event->hw.sample_period = value;
1993 1994 1995 1996 1997 1998 1999
	}
unlock:
	spin_unlock_irq(&ctx->lock);

	return ret;
}

L
Li Zefan 已提交
2000 2001
static int perf_event_set_output(struct perf_event *event, int output_fd);
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2002

2003 2004
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
2005 2006
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
2007
	u32 flags = arg;
2008 2009

	switch (cmd) {
2010 2011
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
2012
		break;
2013 2014
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
2015
		break;
2016 2017
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
2018
		break;
P
Peter Zijlstra 已提交
2019

2020 2021
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
2022

2023 2024
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
2025

2026 2027
	case PERF_EVENT_IOC_SET_OUTPUT:
		return perf_event_set_output(event, arg);
2028

L
Li Zefan 已提交
2029 2030 2031
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

2032
	default:
P
Peter Zijlstra 已提交
2033
		return -ENOTTY;
2034
	}
P
Peter Zijlstra 已提交
2035 2036

	if (flags & PERF_IOC_FLAG_GROUP)
2037
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
2038
	else
2039
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
2040 2041

	return 0;
2042 2043
}

2044
int perf_event_task_enable(void)
2045
{
2046
	struct perf_event *event;
2047

2048 2049 2050 2051
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
2052 2053 2054 2055

	return 0;
}

2056
int perf_event_task_disable(void)
2057
{
2058
	struct perf_event *event;
2059

2060 2061 2062 2063
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
2064 2065 2066 2067

	return 0;
}

2068 2069
#ifndef PERF_EVENT_INDEX_OFFSET
# define PERF_EVENT_INDEX_OFFSET 0
I
Ingo Molnar 已提交
2070 2071
#endif

2072
static int perf_event_index(struct perf_event *event)
2073
{
2074
	if (event->state != PERF_EVENT_STATE_ACTIVE)
2075 2076
		return 0;

2077
	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2078 2079
}

2080 2081 2082 2083 2084
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
2085
void perf_event_update_userpage(struct perf_event *event)
2086
{
2087
	struct perf_event_mmap_page *userpg;
2088
	struct perf_mmap_data *data;
2089 2090

	rcu_read_lock();
2091
	data = rcu_dereference(event->data);
2092 2093 2094 2095
	if (!data)
		goto unlock;

	userpg = data->user_page;
2096

2097 2098 2099 2100 2101
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
2102
	++userpg->lock;
2103
	barrier();
2104 2105 2106 2107
	userpg->index = perf_event_index(event);
	userpg->offset = atomic64_read(&event->count);
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		userpg->offset -= atomic64_read(&event->hw.prev_count);
2108

2109 2110
	userpg->time_enabled = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
2111

2112 2113
	userpg->time_running = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
2114

2115
	barrier();
2116
	++userpg->lock;
2117
	preempt_enable();
2118
unlock:
2119
	rcu_read_unlock();
2120 2121
}

2122
static unsigned long perf_data_size(struct perf_mmap_data *data)
2123
{
2124 2125
	return data->nr_pages << (PAGE_SHIFT + data->data_order);
}
2126

2127
#ifndef CONFIG_PERF_USE_VMALLOC
2128

2129 2130 2131
/*
 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
 */
2132

2133 2134 2135 2136 2137
static struct page *
perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
{
	if (pgoff > data->nr_pages)
		return NULL;
2138

2139 2140
	if (pgoff == 0)
		return virt_to_page(data->user_page);
2141

2142
	return virt_to_page(data->data_pages[pgoff - 1]);
2143 2144
}

2145 2146
static struct perf_mmap_data *
perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2147 2148 2149 2150 2151
{
	struct perf_mmap_data *data;
	unsigned long size;
	int i;

2152
	WARN_ON(atomic_read(&event->mmap_count));
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170

	size = sizeof(struct perf_mmap_data);
	size += nr_pages * sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
	if (!data->user_page)
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
		data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
		if (!data->data_pages[i])
			goto fail_data_pages;
	}

2171
	data->data_order = 0;
2172 2173
	data->nr_pages = nr_pages;

2174
	return data;
2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185

fail_data_pages:
	for (i--; i >= 0; i--)
		free_page((unsigned long)data->data_pages[i]);

	free_page((unsigned long)data->user_page);

fail_user_page:
	kfree(data);

fail:
2186
	return NULL;
2187 2188
}

2189 2190
static void perf_mmap_free_page(unsigned long addr)
{
K
Kevin Cernekee 已提交
2191
	struct page *page = virt_to_page((void *)addr);
2192 2193 2194 2195 2196

	page->mapping = NULL;
	__free_page(page);
}

2197
static void perf_mmap_data_free(struct perf_mmap_data *data)
2198 2199 2200
{
	int i;

2201
	perf_mmap_free_page((unsigned long)data->user_page);
2202
	for (i = 0; i < data->nr_pages; i++)
2203
		perf_mmap_free_page((unsigned long)data->data_pages[i]);
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258
}

#else

/*
 * Back perf_mmap() with vmalloc memory.
 *
 * Required for architectures that have d-cache aliasing issues.
 */

static struct page *
perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
{
	if (pgoff > (1UL << data->data_order))
		return NULL;

	return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
}

static void perf_mmap_unmark_page(void *addr)
{
	struct page *page = vmalloc_to_page(addr);

	page->mapping = NULL;
}

static void perf_mmap_data_free_work(struct work_struct *work)
{
	struct perf_mmap_data *data;
	void *base;
	int i, nr;

	data = container_of(work, struct perf_mmap_data, work);
	nr = 1 << data->data_order;

	base = data->user_page;
	for (i = 0; i < nr + 1; i++)
		perf_mmap_unmark_page(base + (i * PAGE_SIZE));

	vfree(base);
}

static void perf_mmap_data_free(struct perf_mmap_data *data)
{
	schedule_work(&data->work);
}

static struct perf_mmap_data *
perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
{
	struct perf_mmap_data *data;
	unsigned long size;
	void *all_buf;

	WARN_ON(atomic_read(&event->mmap_count));
2259

2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
	size = sizeof(struct perf_mmap_data);
	size += sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	INIT_WORK(&data->work, perf_mmap_data_free_work);

	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
	if (!all_buf)
		goto fail_all_buf;

	data->user_page = all_buf;
	data->data_pages[0] = all_buf + PAGE_SIZE;
	data->data_order = ilog2(nr_pages);
	data->nr_pages = 1;

	return data;

fail_all_buf:
	kfree(data);

fail:
	return NULL;
}

#endif

static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
	struct perf_mmap_data *data;
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
	data = rcu_dereference(event->data);
	if (!data)
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

	vmf->page = perf_mmap_to_page(data, vmf->pgoff);
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

static void
perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
{
	long max_size = perf_data_size(data);

	atomic_set(&data->lock, -1);

	if (event->attr.watermark) {
		data->watermark = min_t(long, max_size,
					event->attr.wakeup_watermark);
	}

	if (!data->watermark)
		data->watermark = max_t(long, PAGE_SIZE, max_size / 2);


	rcu_assign_pointer(event->data, data);
}

static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
{
	struct perf_mmap_data *data;

	data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
	perf_mmap_data_free(data);
2349 2350 2351
	kfree(data);
}

2352
static void perf_mmap_data_release(struct perf_event *event)
2353
{
2354
	struct perf_mmap_data *data = event->data;
2355

2356
	WARN_ON(atomic_read(&event->mmap_count));
2357

2358
	rcu_assign_pointer(event->data, NULL);
2359
	call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2360 2361 2362 2363
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
2364
	struct perf_event *event = vma->vm_file->private_data;
2365

2366
	atomic_inc(&event->mmap_count);
2367 2368 2369 2370
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
2371
	struct perf_event *event = vma->vm_file->private_data;
2372

2373 2374
	WARN_ON_ONCE(event->ctx->parent_ctx);
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2375
		unsigned long size = perf_data_size(event->data);
2376 2377
		struct user_struct *user = current_user();

2378
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2379
		vma->vm_mm->locked_vm -= event->data->nr_locked;
2380
		perf_mmap_data_release(event);
2381
		mutex_unlock(&event->mmap_mutex);
2382
	}
2383 2384
}

2385
static const struct vm_operations_struct perf_mmap_vmops = {
2386 2387 2388 2389
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
2390 2391 2392 2393
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
2394
	struct perf_event *event = file->private_data;
2395
	unsigned long user_locked, user_lock_limit;
2396
	struct user_struct *user = current_user();
2397
	unsigned long locked, lock_limit;
2398
	struct perf_mmap_data *data;
2399 2400
	unsigned long vma_size;
	unsigned long nr_pages;
2401
	long user_extra, extra;
2402
	int ret = 0;
2403

2404
	if (!(vma->vm_flags & VM_SHARED))
2405
		return -EINVAL;
2406 2407 2408 2409

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

2410 2411 2412 2413 2414
	/*
	 * If we have data pages ensure they're a power-of-two number, so we
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
2415 2416
		return -EINVAL;

2417
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
2418 2419
		return -EINVAL;

2420 2421
	if (vma->vm_pgoff != 0)
		return -EINVAL;
2422

2423 2424 2425
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
	if (event->output) {
2426 2427 2428 2429
		ret = -EINVAL;
		goto unlock;
	}

2430 2431
	if (atomic_inc_not_zero(&event->mmap_count)) {
		if (nr_pages != event->data->nr_pages)
2432 2433 2434 2435
			ret = -EINVAL;
		goto unlock;
	}

2436
	user_extra = nr_pages + 1;
2437
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
2438 2439 2440 2441 2442 2443

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

2444
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2445

2446 2447 2448
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
2449 2450 2451

	lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
	lock_limit >>= PAGE_SHIFT;
2452
	locked = vma->vm_mm->locked_vm + extra;
2453

2454 2455
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
2456 2457 2458
		ret = -EPERM;
		goto unlock;
	}
2459

2460
	WARN_ON(event->data);
2461 2462 2463 2464

	data = perf_mmap_data_alloc(event, nr_pages);
	ret = -ENOMEM;
	if (!data)
2465 2466
		goto unlock;

2467 2468 2469
	ret = 0;
	perf_mmap_data_init(event, data);

2470
	atomic_set(&event->mmap_count, 1);
2471
	atomic_long_add(user_extra, &user->locked_vm);
2472
	vma->vm_mm->locked_vm += extra;
2473
	event->data->nr_locked = extra;
2474
	if (vma->vm_flags & VM_WRITE)
2475
		event->data->writable = 1;
2476

2477
unlock:
2478
	mutex_unlock(&event->mmap_mutex);
2479 2480 2481

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
2482 2483

	return ret;
2484 2485
}

P
Peter Zijlstra 已提交
2486 2487 2488
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
2489
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
2490 2491 2492
	int retval;

	mutex_lock(&inode->i_mutex);
2493
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
2494 2495 2496 2497 2498 2499 2500 2501
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
2502 2503 2504 2505
static const struct file_operations perf_fops = {
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
2506 2507
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
2508
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
2509
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
2510 2511
};

2512
/*
2513
 * Perf event wakeup
2514 2515 2516 2517 2518
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

2519
void perf_event_wakeup(struct perf_event *event)
2520
{
2521
	wake_up_all(&event->waitq);
2522

2523 2524 2525
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
2526
	}
2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537
}

/*
 * Pending wakeups
 *
 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
 *
 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
 * single linked list and use cmpxchg() to add entries lockless.
 */

2538
static void perf_pending_event(struct perf_pending_entry *entry)
2539
{
2540 2541
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
2542

2543 2544 2545
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
2546 2547
	}

2548 2549 2550
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
2551 2552 2553
	}
}

2554
#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2555

2556
static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2557 2558 2559
	PENDING_TAIL,
};

2560 2561
static void perf_pending_queue(struct perf_pending_entry *entry,
			       void (*func)(struct perf_pending_entry *))
2562
{
2563
	struct perf_pending_entry **head;
2564

2565
	if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2566 2567
		return;

2568 2569 2570
	entry->func = func;

	head = &get_cpu_var(perf_pending_head);
2571 2572

	do {
2573 2574
		entry->next = *head;
	} while (cmpxchg(head, entry->next, entry) != entry->next);
2575

2576
	set_perf_event_pending();
2577

2578
	put_cpu_var(perf_pending_head);
2579 2580 2581 2582
}

static int __perf_pending_run(void)
{
2583
	struct perf_pending_entry *list;
2584 2585
	int nr = 0;

2586
	list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2587
	while (list != PENDING_TAIL) {
2588 2589
		void (*func)(struct perf_pending_entry *);
		struct perf_pending_entry *entry = list;
2590 2591 2592

		list = list->next;

2593 2594
		func = entry->func;
		entry->next = NULL;
2595 2596 2597 2598 2599 2600 2601
		/*
		 * Ensure we observe the unqueue before we issue the wakeup,
		 * so that we won't be waiting forever.
		 * -- see perf_not_pending().
		 */
		smp_wmb();

2602
		func(entry);
2603 2604 2605 2606 2607 2608
		nr++;
	}

	return nr;
}

2609
static inline int perf_not_pending(struct perf_event *event)
2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
{
	/*
	 * If we flush on whatever cpu we run, there is a chance we don't
	 * need to wait.
	 */
	get_cpu();
	__perf_pending_run();
	put_cpu();

	/*
	 * Ensure we see the proper queue state before going to sleep
	 * so that we do not miss the wakeup. -- see perf_pending_handle()
	 */
	smp_rmb();
2624
	return event->pending.next == NULL;
2625 2626
}

2627
static void perf_pending_sync(struct perf_event *event)
2628
{
2629
	wait_event(event->waitq, perf_not_pending(event));
2630 2631
}

2632
void perf_event_do_pending(void)
2633 2634 2635 2636
{
	__perf_pending_run();
}

2637 2638 2639 2640
/*
 * Callchain support -- arch specific
 */

2641
__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2642 2643 2644 2645
{
	return NULL;
}

2646 2647 2648
/*
 * Output
 */
2649 2650
static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
			      unsigned long offset, unsigned long head)
2651 2652 2653 2654 2655 2656
{
	unsigned long mask;

	if (!data->writable)
		return true;

2657
	mask = perf_data_size(data) - 1;
2658 2659 2660 2661 2662 2663 2664 2665 2666 2667

	offset = (offset - tail) & mask;
	head   = (head   - tail) & mask;

	if ((int)(head - offset) < 0)
		return false;

	return true;
}

2668
static void perf_output_wakeup(struct perf_output_handle *handle)
2669
{
2670 2671
	atomic_set(&handle->data->poll, POLL_IN);

2672
	if (handle->nmi) {
2673 2674 2675
		handle->event->pending_wakeup = 1;
		perf_pending_queue(&handle->event->pending,
				   perf_pending_event);
2676
	} else
2677
		perf_event_wakeup(handle->event);
2678 2679
}

2680 2681 2682
/*
 * Curious locking construct.
 *
2683 2684
 * We need to ensure a later event_id doesn't publish a head when a former
 * event_id isn't done writing. However since we need to deal with NMIs we
2685 2686 2687 2688 2689 2690
 * cannot fully serialize things.
 *
 * What we do is serialize between CPUs so we only have to deal with NMI
 * nesting on a single CPU.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
2691
 * event_id completes.
2692 2693 2694 2695
 */
static void perf_output_lock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
2696
	int cur, cpu = get_cpu();
2697 2698 2699

	handle->locked = 0;

2700 2701 2702 2703 2704 2705 2706 2707
	for (;;) {
		cur = atomic_cmpxchg(&data->lock, -1, cpu);
		if (cur == -1) {
			handle->locked = 1;
			break;
		}
		if (cur == cpu)
			break;
2708 2709

		cpu_relax();
2710
	}
2711 2712 2713 2714 2715
}

static void perf_output_unlock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
2716 2717
	unsigned long head;
	int cpu;
2718

2719
	data->done_head = data->head;
2720 2721 2722 2723 2724 2725 2726 2727 2728 2729

	if (!handle->locked)
		goto out;

again:
	/*
	 * The xchg implies a full barrier that ensures all writes are done
	 * before we publish the new head, matched by a rmb() in userspace when
	 * reading this position.
	 */
2730
	while ((head = atomic_long_xchg(&data->done_head, 0)))
2731 2732 2733
		data->user_page->data_head = head;

	/*
2734
	 * NMI can happen here, which means we can miss a done_head update.
2735 2736
	 */

2737
	cpu = atomic_xchg(&data->lock, -1);
2738 2739 2740 2741 2742
	WARN_ON_ONCE(cpu != smp_processor_id());

	/*
	 * Therefore we have to validate we did not indeed do so.
	 */
2743
	if (unlikely(atomic_long_read(&data->done_head))) {
2744 2745 2746
		/*
		 * Since we had it locked, we can lock it again.
		 */
2747
		while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2748 2749 2750 2751 2752
			cpu_relax();

		goto again;
	}

2753
	if (atomic_xchg(&data->wakeup, 0))
2754 2755
		perf_output_wakeup(handle);
out:
2756
	put_cpu();
2757 2758
}

2759 2760
void perf_output_copy(struct perf_output_handle *handle,
		      const void *buf, unsigned int len)
2761 2762
{
	unsigned int pages_mask;
2763
	unsigned long offset;
2764 2765 2766 2767 2768 2769 2770 2771
	unsigned int size;
	void **pages;

	offset		= handle->offset;
	pages_mask	= handle->data->nr_pages - 1;
	pages		= handle->data->data_pages;

	do {
2772 2773
		unsigned long page_offset;
		unsigned long page_size;
2774 2775 2776
		int nr;

		nr	    = (offset >> PAGE_SHIFT) & pages_mask;
2777 2778 2779
		page_size   = 1UL << (handle->data->data_order + PAGE_SHIFT);
		page_offset = offset & (page_size - 1);
		size	    = min_t(unsigned int, page_size - page_offset, len);
2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796

		memcpy(pages[nr] + page_offset, buf, size);

		len	    -= size;
		buf	    += size;
		offset	    += size;
	} while (len);

	handle->offset = offset;

	/*
	 * Check we didn't copy past our reservation window, taking the
	 * possible unsigned int wrap into account.
	 */
	WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
}

2797
int perf_output_begin(struct perf_output_handle *handle,
2798
		      struct perf_event *event, unsigned int size,
2799
		      int nmi, int sample)
2800
{
2801
	struct perf_event *output_event;
2802
	struct perf_mmap_data *data;
2803
	unsigned long tail, offset, head;
2804 2805 2806 2807 2808 2809
	int have_lost;
	struct {
		struct perf_event_header header;
		u64			 id;
		u64			 lost;
	} lost_event;
2810

2811
	rcu_read_lock();
2812
	/*
2813
	 * For inherited events we send all the output towards the parent.
2814
	 */
2815 2816
	if (event->parent)
		event = event->parent;
2817

2818 2819 2820
	output_event = rcu_dereference(event->output);
	if (output_event)
		event = output_event;
2821

2822
	data = rcu_dereference(event->data);
2823 2824 2825
	if (!data)
		goto out;

2826
	handle->data	= data;
2827
	handle->event	= event;
2828 2829
	handle->nmi	= nmi;
	handle->sample	= sample;
2830

2831
	if (!data->nr_pages)
2832
		goto fail;
2833

2834 2835 2836 2837
	have_lost = atomic_read(&data->lost);
	if (have_lost)
		size += sizeof(lost_event);

2838 2839
	perf_output_lock(handle);

2840
	do {
2841 2842 2843 2844 2845 2846 2847
		/*
		 * Userspace could choose to issue a mb() before updating the
		 * tail pointer. So that all reads will be completed before the
		 * write is issued.
		 */
		tail = ACCESS_ONCE(data->user_page->data_tail);
		smp_rmb();
2848
		offset = head = atomic_long_read(&data->head);
P
Peter Zijlstra 已提交
2849
		head += size;
2850
		if (unlikely(!perf_output_space(data, tail, offset, head)))
2851
			goto fail;
2852
	} while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2853

2854
	handle->offset	= offset;
2855
	handle->head	= head;
2856

2857
	if (head - tail > data->watermark)
2858
		atomic_set(&data->wakeup, 1);
2859

2860
	if (have_lost) {
2861
		lost_event.header.type = PERF_RECORD_LOST;
2862 2863
		lost_event.header.misc = 0;
		lost_event.header.size = sizeof(lost_event);
2864
		lost_event.id          = event->id;
2865 2866 2867 2868 2869
		lost_event.lost        = atomic_xchg(&data->lost, 0);

		perf_output_put(handle, lost_event);
	}

2870
	return 0;
2871

2872
fail:
2873 2874
	atomic_inc(&data->lost);
	perf_output_unlock(handle);
2875 2876
out:
	rcu_read_unlock();
2877

2878 2879
	return -ENOSPC;
}
2880

2881
void perf_output_end(struct perf_output_handle *handle)
2882
{
2883
	struct perf_event *event = handle->event;
2884 2885
	struct perf_mmap_data *data = handle->data;

2886
	int wakeup_events = event->attr.wakeup_events;
P
Peter Zijlstra 已提交
2887

2888
	if (handle->sample && wakeup_events) {
2889
		int events = atomic_inc_return(&data->events);
P
Peter Zijlstra 已提交
2890
		if (events >= wakeup_events) {
2891
			atomic_sub(wakeup_events, &data->events);
2892
			atomic_set(&data->wakeup, 1);
P
Peter Zijlstra 已提交
2893
		}
2894 2895 2896
	}

	perf_output_unlock(handle);
2897
	rcu_read_unlock();
2898 2899
}

2900
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
2901 2902
{
	/*
2903
	 * only top level events have the pid namespace they were created in
2904
	 */
2905 2906
	if (event->parent)
		event = event->parent;
2907

2908
	return task_tgid_nr_ns(p, event->ns);
2909 2910
}

2911
static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
2912 2913
{
	/*
2914
	 * only top level events have the pid namespace they were created in
2915
	 */
2916 2917
	if (event->parent)
		event = event->parent;
2918

2919
	return task_pid_nr_ns(p, event->ns);
2920 2921
}

2922
static void perf_output_read_one(struct perf_output_handle *handle,
2923
				 struct perf_event *event)
2924
{
2925
	u64 read_format = event->attr.read_format;
2926 2927 2928
	u64 values[4];
	int n = 0;

2929
	values[n++] = atomic64_read(&event->count);
2930
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2931 2932
		values[n++] = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
2933 2934
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2935 2936
		values[n++] = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
2937 2938
	}
	if (read_format & PERF_FORMAT_ID)
2939
		values[n++] = primary_event_id(event);
2940 2941 2942 2943 2944

	perf_output_copy(handle, values, n * sizeof(u64));
}

/*
2945
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
2946 2947
 */
static void perf_output_read_group(struct perf_output_handle *handle,
2948
			    struct perf_event *event)
2949
{
2950 2951
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = leader->total_time_enabled;

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = leader->total_time_running;

2963
	if (leader != event)
2964 2965 2966 2967
		leader->pmu->read(leader);

	values[n++] = atomic64_read(&leader->count);
	if (read_format & PERF_FORMAT_ID)
2968
		values[n++] = primary_event_id(leader);
2969 2970 2971

	perf_output_copy(handle, values, n * sizeof(u64));

2972
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2973 2974
		n = 0;

2975
		if (sub != event)
2976 2977 2978 2979
			sub->pmu->read(sub);

		values[n++] = atomic64_read(&sub->count);
		if (read_format & PERF_FORMAT_ID)
2980
			values[n++] = primary_event_id(sub);
2981 2982 2983 2984 2985 2986

		perf_output_copy(handle, values, n * sizeof(u64));
	}
}

static void perf_output_read(struct perf_output_handle *handle,
2987
			     struct perf_event *event)
2988
{
2989 2990
	if (event->attr.read_format & PERF_FORMAT_GROUP)
		perf_output_read_group(handle, event);
2991
	else
2992
		perf_output_read_one(handle, event);
2993 2994
}

2995 2996 2997
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
2998
			struct perf_event *event)
2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
3029
		perf_output_read(handle, event);
3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

			perf_output_copy(handle, data->callchain, size);
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
			perf_output_copy(handle, data->raw->data,
					 data->raw->size);
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
3067
			 struct perf_event *event,
3068
			 struct pt_regs *regs)
3069
{
3070
	u64 sample_type = event->attr.sample_type;
3071

3072
	data->type = sample_type;
3073

3074
	header->type = PERF_RECORD_SAMPLE;
3075 3076 3077 3078
	header->size = sizeof(*header);

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
3079

3080
	if (sample_type & PERF_SAMPLE_IP) {
3081 3082 3083
		data->ip = perf_instruction_pointer(regs);

		header->size += sizeof(data->ip);
3084
	}
3085

3086
	if (sample_type & PERF_SAMPLE_TID) {
3087
		/* namespace issues */
3088 3089
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
3090

3091
		header->size += sizeof(data->tid_entry);
3092 3093
	}

3094
	if (sample_type & PERF_SAMPLE_TIME) {
P
Peter Zijlstra 已提交
3095
		data->time = perf_clock();
3096

3097
		header->size += sizeof(data->time);
3098 3099
	}

3100
	if (sample_type & PERF_SAMPLE_ADDR)
3101
		header->size += sizeof(data->addr);
3102

3103
	if (sample_type & PERF_SAMPLE_ID) {
3104
		data->id = primary_event_id(event);
3105

3106 3107 3108 3109
		header->size += sizeof(data->id);
	}

	if (sample_type & PERF_SAMPLE_STREAM_ID) {
3110
		data->stream_id = event->id;
3111 3112 3113

		header->size += sizeof(data->stream_id);
	}
3114

3115
	if (sample_type & PERF_SAMPLE_CPU) {
3116 3117
		data->cpu_entry.cpu		= raw_smp_processor_id();
		data->cpu_entry.reserved	= 0;
3118

3119
		header->size += sizeof(data->cpu_entry);
3120 3121
	}

3122
	if (sample_type & PERF_SAMPLE_PERIOD)
3123
		header->size += sizeof(data->period);
3124

3125
	if (sample_type & PERF_SAMPLE_READ)
3126
		header->size += perf_event_read_size(event);
3127

3128
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3129
		int size = 1;
3130

3131 3132 3133 3134 3135 3136
		data->callchain = perf_callchain(regs);

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
3137 3138
	}

3139
	if (sample_type & PERF_SAMPLE_RAW) {
3140 3141 3142 3143 3144 3145 3146 3147
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
3148
		header->size += size;
3149
	}
3150
}
3151

3152
static void perf_event_output(struct perf_event *event, int nmi,
3153 3154 3155 3156 3157
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
3158

3159
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
3160

3161
	if (perf_output_begin(&handle, event, header.size, nmi, 1))
3162
		return;
3163

3164
	perf_output_sample(&handle, &header, data, event);
3165

3166
	perf_output_end(&handle);
3167 3168
}

3169
/*
3170
 * read event_id
3171 3172 3173 3174 3175 3176 3177 3178 3179 3180
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
3181
perf_event_read_event(struct perf_event *event,
3182 3183 3184
			struct task_struct *task)
{
	struct perf_output_handle handle;
3185
	struct perf_read_event read_event = {
3186
		.header = {
3187
			.type = PERF_RECORD_READ,
3188
			.misc = 0,
3189
			.size = sizeof(read_event) + perf_event_read_size(event),
3190
		},
3191 3192
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
3193
	};
3194
	int ret;
3195

3196
	ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3197 3198 3199
	if (ret)
		return;

3200
	perf_output_put(&handle, read_event);
3201
	perf_output_read(&handle, event);
3202

3203 3204 3205
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
3206
/*
P
Peter Zijlstra 已提交
3207 3208 3209
 * task tracking -- fork/exit
 *
 * enabled by: attr.comm | attr.mmap | attr.task
P
Peter Zijlstra 已提交
3210 3211
 */

P
Peter Zijlstra 已提交
3212
struct perf_task_event {
3213
	struct task_struct		*task;
3214
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
3215 3216 3217 3218 3219 3220

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
3221 3222
		u32				tid;
		u32				ptid;
3223
		u64				time;
3224
	} event_id;
P
Peter Zijlstra 已提交
3225 3226
};

3227
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
3228
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3229 3230
{
	struct perf_output_handle handle;
3231
	int size;
P
Peter Zijlstra 已提交
3232
	struct task_struct *task = task_event->task;
3233 3234
	int ret;

3235 3236
	size  = task_event->event_id.header.size;
	ret = perf_output_begin(&handle, event, size, 0, 0);
P
Peter Zijlstra 已提交
3237 3238 3239 3240

	if (ret)
		return;

3241 3242
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
3243

3244 3245
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
3246

3247
	task_event->event_id.time = perf_clock();
3248

3249
	perf_output_put(&handle, task_event->event_id);
3250

P
Peter Zijlstra 已提交
3251 3252 3253
	perf_output_end(&handle);
}

3254
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
3255
{
3256
	if (event->attr.comm || event->attr.mmap || event->attr.task)
P
Peter Zijlstra 已提交
3257 3258 3259 3260 3261
		return 1;

	return 0;
}

3262
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
3263
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3264
{
3265
	struct perf_event *event;
P
Peter Zijlstra 已提交
3266

3267 3268 3269
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
3270 3271 3272
	}
}

3273
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3274 3275
{
	struct perf_cpu_context *cpuctx;
3276
	struct perf_event_context *ctx = task_event->task_ctx;
P
Peter Zijlstra 已提交
3277

3278
	rcu_read_lock();
P
Peter Zijlstra 已提交
3279
	cpuctx = &get_cpu_var(perf_cpu_context);
3280
	perf_event_task_ctx(&cpuctx->ctx, task_event);
P
Peter Zijlstra 已提交
3281 3282
	put_cpu_var(perf_cpu_context);

3283
	if (!ctx)
3284
		ctx = rcu_dereference(task_event->task->perf_event_ctxp);
P
Peter Zijlstra 已提交
3285
	if (ctx)
3286
		perf_event_task_ctx(ctx, task_event);
P
Peter Zijlstra 已提交
3287 3288 3289
	rcu_read_unlock();
}

3290 3291
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
3292
			      int new)
P
Peter Zijlstra 已提交
3293
{
P
Peter Zijlstra 已提交
3294
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
3295

3296 3297 3298
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
3299 3300
		return;

P
Peter Zijlstra 已提交
3301
	task_event = (struct perf_task_event){
3302 3303
		.task	  = task,
		.task_ctx = task_ctx,
3304
		.event_id    = {
P
Peter Zijlstra 已提交
3305
			.header = {
3306
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3307
				.misc = 0,
3308
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
3309
			},
3310 3311
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
3312 3313
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
3314 3315 3316
		},
	};

3317
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
3318 3319
}

3320
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
3321
{
3322
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
3323 3324
}

3325 3326 3327 3328 3329
/*
 * comm tracking
 */

struct perf_comm_event {
3330 3331
	struct task_struct	*task;
	char			*comm;
3332 3333 3334 3335 3336 3337 3338
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
3339
	} event_id;
3340 3341
};

3342
static void perf_event_comm_output(struct perf_event *event,
3343 3344 3345
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
3346 3347
	int size = comm_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3348 3349 3350 3351

	if (ret)
		return;

3352 3353
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3354

3355
	perf_output_put(&handle, comm_event->event_id);
3356 3357 3358 3359 3360
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
	perf_output_end(&handle);
}

3361
static int perf_event_comm_match(struct perf_event *event)
3362
{
3363
	if (event->attr.comm)
3364 3365 3366 3367 3368
		return 1;

	return 0;
}

3369
static void perf_event_comm_ctx(struct perf_event_context *ctx,
3370 3371
				  struct perf_comm_event *comm_event)
{
3372
	struct perf_event *event;
3373

3374 3375 3376
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
3377 3378 3379
	}
}

3380
static void perf_event_comm_event(struct perf_comm_event *comm_event)
3381 3382
{
	struct perf_cpu_context *cpuctx;
3383
	struct perf_event_context *ctx;
3384
	unsigned int size;
3385
	char comm[TASK_COMM_LEN];
3386

3387 3388
	memset(comm, 0, sizeof(comm));
	strncpy(comm, comm_event->task->comm, sizeof(comm));
3389
	size = ALIGN(strlen(comm)+1, sizeof(u64));
3390 3391 3392 3393

	comm_event->comm = comm;
	comm_event->comm_size = size;

3394
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3395

3396
	rcu_read_lock();
3397
	cpuctx = &get_cpu_var(perf_cpu_context);
3398
	perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3399
	put_cpu_var(perf_cpu_context);
3400 3401 3402 3403 3404

	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
3405
	ctx = rcu_dereference(current->perf_event_ctxp);
3406
	if (ctx)
3407
		perf_event_comm_ctx(ctx, comm_event);
3408
	rcu_read_unlock();
3409 3410
}

3411
void perf_event_comm(struct task_struct *task)
3412
{
3413 3414
	struct perf_comm_event comm_event;

3415 3416
	if (task->perf_event_ctxp)
		perf_event_enable_on_exec(task);
3417

3418
	if (!atomic_read(&nr_comm_events))
3419
		return;
3420

3421
	comm_event = (struct perf_comm_event){
3422
		.task	= task,
3423 3424
		/* .comm      */
		/* .comm_size */
3425
		.event_id  = {
3426
			.header = {
3427
				.type = PERF_RECORD_COMM,
3428 3429 3430 3431 3432
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
3433 3434 3435
		},
	};

3436
	perf_event_comm_event(&comm_event);
3437 3438
}

3439 3440 3441 3442 3443
/*
 * mmap tracking
 */

struct perf_mmap_event {
3444 3445 3446 3447
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
3448 3449 3450 3451 3452 3453 3454 3455 3456

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
3457
	} event_id;
3458 3459
};

3460
static void perf_event_mmap_output(struct perf_event *event,
3461 3462 3463
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
3464 3465
	int size = mmap_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3466 3467 3468 3469

	if (ret)
		return;

3470 3471
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
3472

3473
	perf_output_put(&handle, mmap_event->event_id);
3474 3475
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
3476
	perf_output_end(&handle);
3477 3478
}

3479
static int perf_event_mmap_match(struct perf_event *event,
3480 3481
				   struct perf_mmap_event *mmap_event)
{
3482
	if (event->attr.mmap)
3483 3484 3485 3486 3487
		return 1;

	return 0;
}

3488
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3489 3490
				  struct perf_mmap_event *mmap_event)
{
3491
	struct perf_event *event;
3492

3493 3494 3495
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_mmap_match(event, mmap_event))
			perf_event_mmap_output(event, mmap_event);
3496 3497 3498
	}
}

3499
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3500 3501
{
	struct perf_cpu_context *cpuctx;
3502
	struct perf_event_context *ctx;
3503 3504
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
3505 3506 3507
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
3508
	const char *name;
3509

3510 3511
	memset(tmp, 0, sizeof(tmp));

3512
	if (file) {
3513 3514 3515 3516 3517 3518
		/*
		 * d_path works from the end of the buffer backwards, so we
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3519 3520 3521 3522
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
3523
		name = d_path(&file->f_path, buf, PATH_MAX);
3524 3525 3526 3527 3528
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
3529 3530 3531
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
3532
			goto got_name;
3533
		}
3534 3535 3536 3537 3538 3539

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
		}

3540 3541 3542 3543 3544
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
3545
	size = ALIGN(strlen(name)+1, sizeof(u64));
3546 3547 3548 3549

	mmap_event->file_name = name;
	mmap_event->file_size = size;

3550
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3551

3552
	rcu_read_lock();
3553
	cpuctx = &get_cpu_var(perf_cpu_context);
3554
	perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
3555 3556
	put_cpu_var(perf_cpu_context);

3557 3558 3559 3560
	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
3561
	ctx = rcu_dereference(current->perf_event_ctxp);
3562
	if (ctx)
3563
		perf_event_mmap_ctx(ctx, mmap_event);
3564 3565
	rcu_read_unlock();

3566 3567 3568
	kfree(buf);
}

3569
void __perf_event_mmap(struct vm_area_struct *vma)
3570
{
3571 3572
	struct perf_mmap_event mmap_event;

3573
	if (!atomic_read(&nr_mmap_events))
3574 3575 3576
		return;

	mmap_event = (struct perf_mmap_event){
3577
		.vma	= vma,
3578 3579
		/* .file_name */
		/* .file_size */
3580
		.event_id  = {
3581
			.header = {
3582
				.type = PERF_RECORD_MMAP,
3583 3584 3585 3586 3587
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
3588 3589 3590
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
			.pgoff  = vma->vm_pgoff,
3591 3592 3593
		},
	};

3594
	perf_event_mmap_event(&mmap_event);
3595 3596
}

3597 3598 3599 3600
/*
 * IRQ throttle logging
 */

3601
static void perf_log_throttle(struct perf_event *event, int enable)
3602 3603 3604 3605 3606 3607 3608
{
	struct perf_output_handle handle;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
3609
		u64				id;
3610
		u64				stream_id;
3611 3612
	} throttle_event = {
		.header = {
3613
			.type = PERF_RECORD_THROTTLE,
3614 3615 3616
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
3617
		.time		= perf_clock(),
3618 3619
		.id		= primary_event_id(event),
		.stream_id	= event->id,
3620 3621
	};

3622
	if (enable)
3623
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3624

3625
	ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3626 3627 3628 3629 3630 3631 3632
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
	perf_output_end(&handle);
}

3633
/*
3634
 * Generic event overflow handling, sampling.
3635 3636
 */

3637
static int __perf_event_overflow(struct perf_event *event, int nmi,
3638 3639
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
3640
{
3641 3642
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
3643 3644
	int ret = 0;

3645
	throttle = (throttle && event->pmu->unthrottle != NULL);
3646

3647
	if (!throttle) {
3648
		hwc->interrupts++;
3649
	} else {
3650 3651
		if (hwc->interrupts != MAX_INTERRUPTS) {
			hwc->interrupts++;
3652
			if (HZ * hwc->interrupts >
3653
					(u64)sysctl_perf_event_sample_rate) {
3654
				hwc->interrupts = MAX_INTERRUPTS;
3655
				perf_log_throttle(event, 0);
3656 3657 3658 3659
				ret = 1;
			}
		} else {
			/*
3660
			 * Keep re-disabling events even though on the previous
3661
			 * pass we disabled it - just in case we raced with a
3662
			 * sched-in and the event got enabled again:
3663
			 */
3664 3665 3666
			ret = 1;
		}
	}
3667

3668
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
3669
		u64 now = perf_clock();
3670 3671 3672 3673 3674
		s64 delta = now - hwc->freq_stamp;

		hwc->freq_stamp = now;

		if (delta > 0 && delta < TICK_NSEC)
3675
			perf_adjust_period(event, NSEC_PER_SEC / (int)delta);
3676 3677
	}

3678 3679
	/*
	 * XXX event_limit might not quite work as expected on inherited
3680
	 * events
3681 3682
	 */

3683 3684
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
3685
		ret = 1;
3686
		event->pending_kill = POLL_HUP;
3687
		if (nmi) {
3688 3689 3690
			event->pending_disable = 1;
			perf_pending_queue(&event->pending,
					   perf_pending_event);
3691
		} else
3692
			perf_event_disable(event);
3693 3694
	}

3695 3696 3697 3698 3699
	if (event->overflow_handler)
		event->overflow_handler(event, nmi, data, regs);
	else
		perf_event_output(event, nmi, data, regs);

3700
	return ret;
3701 3702
}

3703
int perf_event_overflow(struct perf_event *event, int nmi,
3704 3705
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
3706
{
3707
	return __perf_event_overflow(event, nmi, 1, data, regs);
3708 3709
}

3710
/*
3711
 * Generic software event infrastructure
3712 3713
 */

3714
/*
3715 3716
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
3717 3718 3719 3720
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

3721
static u64 perf_swevent_set_period(struct perf_event *event)
3722
{
3723
	struct hw_perf_event *hwc = &event->hw;
3724 3725 3726 3727 3728
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
3729 3730

again:
3731 3732 3733
	old = val = atomic64_read(&hwc->period_left);
	if (val < 0)
		return 0;
3734

3735 3736 3737 3738 3739
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
	if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
		goto again;
3740

3741
	return nr;
3742 3743
}

3744
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
3745 3746
				    int nmi, struct perf_sample_data *data,
				    struct pt_regs *regs)
3747
{
3748
	struct hw_perf_event *hwc = &event->hw;
3749
	int throttle = 0;
3750

3751
	data->period = event->hw.last_period;
3752 3753
	if (!overflow)
		overflow = perf_swevent_set_period(event);
3754

3755 3756
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
3757

3758
	for (; overflow; overflow--) {
3759
		if (__perf_event_overflow(event, nmi, throttle,
3760
					    data, regs)) {
3761 3762 3763 3764 3765 3766
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
3767
		throttle = 1;
3768
	}
3769 3770
}

3771
static void perf_swevent_unthrottle(struct perf_event *event)
3772 3773
{
	/*
3774
	 * Nothing to do, we already reset hwc->interrupts.
3775
	 */
3776
}
3777

3778
static void perf_swevent_add(struct perf_event *event, u64 nr,
3779 3780
			       int nmi, struct perf_sample_data *data,
			       struct pt_regs *regs)
3781
{
3782
	struct hw_perf_event *hwc = &event->hw;
3783

3784
	atomic64_add(nr, &event->count);
3785

3786 3787 3788
	if (!regs)
		return;

3789 3790
	if (!hwc->sample_period)
		return;
3791

3792 3793 3794 3795
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
		return perf_swevent_overflow(event, 1, nmi, data, regs);

	if (atomic64_add_negative(nr, &hwc->period_left))
3796
		return;
3797

3798
	perf_swevent_overflow(event, 0, nmi, data, regs);
3799 3800
}

3801
static int perf_swevent_is_counting(struct perf_event *event)
3802
{
3803
	/*
3804
	 * The event is active, we're good!
3805
	 */
3806
	if (event->state == PERF_EVENT_STATE_ACTIVE)
3807 3808
		return 1;

3809
	/*
3810
	 * The event is off/error, not counting.
3811
	 */
3812
	if (event->state != PERF_EVENT_STATE_INACTIVE)
3813 3814 3815
		return 0;

	/*
3816
	 * The event is inactive, if the context is active
3817 3818
	 * we're part of a group that didn't make it on the 'pmu',
	 * not counting.
3819
	 */
3820
	if (event->ctx->is_active)
3821 3822 3823 3824 3825 3826 3827 3828
		return 0;

	/*
	 * We're inactive and the context is too, this means the
	 * task is scheduled out, we're counting events that happen
	 * to us, like migration events.
	 */
	return 1;
3829 3830
}

L
Li Zefan 已提交
3831 3832 3833
static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data);

3834
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
3835
				enum perf_type_id type,
L
Li Zefan 已提交
3836 3837 3838
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
3839
{
3840
	if (!perf_swevent_is_counting(event))
3841 3842
		return 0;

3843
	if (event->attr.type != type)
3844
		return 0;
3845
	if (event->attr.config != event_id)
3846 3847
		return 0;

3848
	if (regs) {
3849
		if (event->attr.exclude_user && user_mode(regs))
3850
			return 0;
3851

3852
		if (event->attr.exclude_kernel && !user_mode(regs))
3853 3854
			return 0;
	}
3855

L
Li Zefan 已提交
3856 3857 3858 3859
	if (event->attr.type == PERF_TYPE_TRACEPOINT &&
	    !perf_tp_event_match(event, data))
		return 0;

3860 3861 3862
	return 1;
}

3863
static void perf_swevent_ctx_event(struct perf_event_context *ctx,
3864
				     enum perf_type_id type,
3865
				     u32 event_id, u64 nr, int nmi,
3866 3867
				     struct perf_sample_data *data,
				     struct pt_regs *regs)
3868
{
3869
	struct perf_event *event;
3870

3871
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
L
Li Zefan 已提交
3872
		if (perf_swevent_match(event, type, event_id, data, regs))
3873
			perf_swevent_add(event, nr, nmi, data, regs);
3874 3875 3876
	}
}

3877
static int *perf_swevent_recursion_context(struct perf_cpu_context *cpuctx)
P
Peter Zijlstra 已提交
3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890
{
	if (in_nmi())
		return &cpuctx->recursion[3];

	if (in_irq())
		return &cpuctx->recursion[2];

	if (in_softirq())
		return &cpuctx->recursion[1];

	return &cpuctx->recursion[0];
}

3891
static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
3892
				    u64 nr, int nmi,
3893 3894
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
3895 3896
{
	struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
3897 3898
	int *recursion = perf_swevent_recursion_context(cpuctx);
	struct perf_event_context *ctx;
P
Peter Zijlstra 已提交
3899 3900 3901 3902 3903 3904

	if (*recursion)
		goto out;

	(*recursion)++;
	barrier();
3905

3906
	rcu_read_lock();
3907
	perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
3908
				 nr, nmi, data, regs);
3909 3910 3911 3912
	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
3913
	ctx = rcu_dereference(current->perf_event_ctxp);
3914
	if (ctx)
3915
		perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
3916
	rcu_read_unlock();
3917

P
Peter Zijlstra 已提交
3918 3919 3920 3921
	barrier();
	(*recursion)--;

out:
3922 3923 3924
	put_cpu_var(perf_cpu_context);
}

3925
void __perf_sw_event(u32 event_id, u64 nr, int nmi,
3926
			    struct pt_regs *regs, u64 addr)
3927
{
3928 3929 3930 3931
	struct perf_sample_data data = {
		.addr = addr,
	};

3932
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi,
3933
				&data, regs);
3934 3935
}

3936
static void perf_swevent_read(struct perf_event *event)
3937 3938 3939
{
}

3940
static int perf_swevent_enable(struct perf_event *event)
3941
{
3942
	struct hw_perf_event *hwc = &event->hw;
3943 3944 3945

	if (hwc->sample_period) {
		hwc->last_period = hwc->sample_period;
3946
		perf_swevent_set_period(event);
3947
	}
3948 3949 3950
	return 0;
}

3951
static void perf_swevent_disable(struct perf_event *event)
3952 3953 3954
{
}

3955
static const struct pmu perf_ops_generic = {
3956 3957 3958 3959
	.enable		= perf_swevent_enable,
	.disable	= perf_swevent_disable,
	.read		= perf_swevent_read,
	.unthrottle	= perf_swevent_unthrottle,
3960 3961
};

3962
/*
3963
 * hrtimer based swevent callback
3964 3965
 */

3966
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
3967 3968 3969
{
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
3970
	struct pt_regs *regs;
3971
	struct perf_event *event;
3972 3973
	u64 period;

3974 3975
	event	= container_of(hrtimer, struct perf_event, hw.hrtimer);
	event->pmu->read(event);
3976 3977

	data.addr = 0;
3978
	regs = get_irq_regs();
3979 3980 3981 3982
	/*
	 * In case we exclude kernel IPs or are somehow not in interrupt
	 * context, provide the next best thing, the user IP.
	 */
3983 3984
	if ((event->attr.exclude_kernel || !regs) &&
			!event->attr.exclude_user)
3985
		regs = task_pt_regs(current);
3986

3987
	if (regs) {
3988 3989 3990
		if (!(event->attr.exclude_idle && current->pid == 0))
			if (perf_event_overflow(event, 0, &data, regs))
				ret = HRTIMER_NORESTART;
3991 3992
	}

3993
	period = max_t(u64, 10000, event->hw.sample_period);
3994 3995 3996 3997 3998
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));

	return ret;
}

3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034
static void perf_swevent_start_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;
	if (hwc->sample_period) {
		u64 period;

		if (hwc->remaining) {
			if (hwc->remaining < 0)
				period = 10000;
			else
				period = hwc->remaining;
			hwc->remaining = 0;
		} else {
			period = max_t(u64, 10000, hwc->sample_period);
		}
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(period), 0,
				HRTIMER_MODE_REL, 0);
	}
}

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (hwc->sample_period) {
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
		hwc->remaining = ktime_to_ns(remaining);

		hrtimer_cancel(&hwc->hrtimer);
	}
}

4035
/*
4036
 * Software event: cpu wall time clock
4037 4038
 */

4039
static void cpu_clock_perf_event_update(struct perf_event *event)
4040 4041 4042 4043 4044 4045
{
	int cpu = raw_smp_processor_id();
	s64 prev;
	u64 now;

	now = cpu_clock(cpu);
4046 4047 4048
	prev = atomic64_read(&event->hw.prev_count);
	atomic64_set(&event->hw.prev_count, now);
	atomic64_add(now - prev, &event->count);
4049 4050
}

4051
static int cpu_clock_perf_event_enable(struct perf_event *event)
4052
{
4053
	struct hw_perf_event *hwc = &event->hw;
4054 4055 4056
	int cpu = raw_smp_processor_id();

	atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4057
	perf_swevent_start_hrtimer(event);
4058 4059 4060 4061

	return 0;
}

4062
static void cpu_clock_perf_event_disable(struct perf_event *event)
4063
{
4064
	perf_swevent_cancel_hrtimer(event);
4065
	cpu_clock_perf_event_update(event);
4066 4067
}

4068
static void cpu_clock_perf_event_read(struct perf_event *event)
4069
{
4070
	cpu_clock_perf_event_update(event);
4071 4072
}

4073
static const struct pmu perf_ops_cpu_clock = {
4074 4075 4076
	.enable		= cpu_clock_perf_event_enable,
	.disable	= cpu_clock_perf_event_disable,
	.read		= cpu_clock_perf_event_read,
4077 4078
};

4079
/*
4080
 * Software event: task time clock
4081 4082
 */

4083
static void task_clock_perf_event_update(struct perf_event *event, u64 now)
I
Ingo Molnar 已提交
4084
{
4085
	u64 prev;
I
Ingo Molnar 已提交
4086 4087
	s64 delta;

4088
	prev = atomic64_xchg(&event->hw.prev_count, now);
I
Ingo Molnar 已提交
4089
	delta = now - prev;
4090
	atomic64_add(delta, &event->count);
4091 4092
}

4093
static int task_clock_perf_event_enable(struct perf_event *event)
I
Ingo Molnar 已提交
4094
{
4095
	struct hw_perf_event *hwc = &event->hw;
4096 4097
	u64 now;

4098
	now = event->ctx->time;
4099

4100
	atomic64_set(&hwc->prev_count, now);
4101 4102

	perf_swevent_start_hrtimer(event);
4103 4104

	return 0;
I
Ingo Molnar 已提交
4105 4106
}

4107
static void task_clock_perf_event_disable(struct perf_event *event)
4108
{
4109
	perf_swevent_cancel_hrtimer(event);
4110
	task_clock_perf_event_update(event, event->ctx->time);
4111

4112
}
I
Ingo Molnar 已提交
4113

4114
static void task_clock_perf_event_read(struct perf_event *event)
4115
{
4116 4117 4118
	u64 time;

	if (!in_nmi()) {
4119 4120
		update_context_time(event->ctx);
		time = event->ctx->time;
4121 4122
	} else {
		u64 now = perf_clock();
4123 4124
		u64 delta = now - event->ctx->timestamp;
		time = event->ctx->time + delta;
4125 4126
	}

4127
	task_clock_perf_event_update(event, time);
4128 4129
}

4130
static const struct pmu perf_ops_task_clock = {
4131 4132 4133
	.enable		= task_clock_perf_event_enable,
	.disable	= task_clock_perf_event_disable,
	.read		= task_clock_perf_event_read,
4134 4135
};

4136
#ifdef CONFIG_EVENT_PROFILE
L
Li Zefan 已提交
4137

4138
void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4139
			  int entry_size)
4140
{
4141
	struct perf_raw_record raw = {
4142
		.size = entry_size,
4143
		.data = record,
4144 4145
	};

4146
	struct perf_sample_data data = {
4147
		.addr = addr,
4148
		.raw = &raw,
4149
	};
4150

4151 4152 4153 4154
	struct pt_regs *regs = get_irq_regs();

	if (!regs)
		regs = task_pt_regs(current);
4155

4156
	do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
4157
				&data, regs);
4158
}
4159
EXPORT_SYMBOL_GPL(perf_tp_event);
4160

L
Li Zefan 已提交
4161 4162 4163 4164 4165 4166 4167 4168 4169
static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}
4170

4171
static void tp_perf_event_destroy(struct perf_event *event)
4172
{
4173
	ftrace_profile_disable(event->attr.config);
4174 4175
}

4176
static const struct pmu *tp_perf_event_init(struct perf_event *event)
4177
{
4178 4179 4180 4181
	/*
	 * Raw tracepoint data is a severe data leak, only allow root to
	 * have these.
	 */
4182
	if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4183
			perf_paranoid_tracepoint_raw() &&
4184 4185 4186
			!capable(CAP_SYS_ADMIN))
		return ERR_PTR(-EPERM);

4187
	if (ftrace_profile_enable(event->attr.config))
4188 4189
		return NULL;

4190
	event->destroy = tp_perf_event_destroy;
4191 4192 4193

	return &perf_ops_generic;
}
L
Li Zefan 已提交
4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

4218
#else
L
Li Zefan 已提交
4219 4220 4221 4222 4223 4224 4225

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	return 1;
}

4226
static const struct pmu *tp_perf_event_init(struct perf_event *event)
4227 4228 4229
{
	return NULL;
}
L
Li Zefan 已提交
4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

#endif /* CONFIG_EVENT_PROFILE */
4241

4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286
#ifdef CONFIG_HAVE_HW_BREAKPOINT
static void bp_perf_event_destroy(struct perf_event *event)
{
	release_bp_slot(event);
}

static const struct pmu *bp_perf_event_init(struct perf_event *bp)
{
	int err;
	/*
	 * The breakpoint is already filled if we haven't created the counter
	 * through perf syscall
	 * FIXME: manage to get trigerred to NULL if it comes from syscalls
	 */
	if (!bp->callback)
		err = register_perf_hw_breakpoint(bp);
	else
		err = __register_perf_hw_breakpoint(bp);
	if (err)
		return ERR_PTR(err);

	bp->destroy = bp_perf_event_destroy;

	return &perf_ops_bp;
}

void perf_bp_event(struct perf_event *bp, void *regs)
{
	/* TODO */
}
#else
static void bp_perf_event_destroy(struct perf_event *event)
{
}

static const struct pmu *bp_perf_event_init(struct perf_event *bp)
{
	return NULL;
}

void perf_bp_event(struct perf_event *bp, void *regs)
{
}
#endif

4287
atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4288

4289
static void sw_perf_event_destroy(struct perf_event *event)
4290
{
4291
	u64 event_id = event->attr.config;
4292

4293
	WARN_ON(event->parent);
4294

4295
	atomic_dec(&perf_swevent_enabled[event_id]);
4296 4297
}

4298
static const struct pmu *sw_perf_event_init(struct perf_event *event)
4299
{
4300
	const struct pmu *pmu = NULL;
4301
	u64 event_id = event->attr.config;
4302

4303
	/*
4304
	 * Software events (currently) can't in general distinguish
4305 4306 4307 4308 4309
	 * between user, kernel and hypervisor events.
	 * However, context switches and cpu migrations are considered
	 * to be kernel events, and page faults are never hypervisor
	 * events.
	 */
4310
	switch (event_id) {
4311
	case PERF_COUNT_SW_CPU_CLOCK:
4312
		pmu = &perf_ops_cpu_clock;
4313

4314
		break;
4315
	case PERF_COUNT_SW_TASK_CLOCK:
4316
		/*
4317 4318
		 * If the user instantiates this as a per-cpu event,
		 * use the cpu_clock event instead.
4319
		 */
4320
		if (event->ctx->task)
4321
			pmu = &perf_ops_task_clock;
4322
		else
4323
			pmu = &perf_ops_cpu_clock;
4324

4325
		break;
4326 4327 4328 4329 4330
	case PERF_COUNT_SW_PAGE_FAULTS:
	case PERF_COUNT_SW_PAGE_FAULTS_MIN:
	case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
	case PERF_COUNT_SW_CONTEXT_SWITCHES:
	case PERF_COUNT_SW_CPU_MIGRATIONS:
4331 4332
	case PERF_COUNT_SW_ALIGNMENT_FAULTS:
	case PERF_COUNT_SW_EMULATION_FAULTS:
4333 4334 4335
		if (!event->parent) {
			atomic_inc(&perf_swevent_enabled[event_id]);
			event->destroy = sw_perf_event_destroy;
4336
		}
4337
		pmu = &perf_ops_generic;
4338
		break;
4339
	}
4340

4341
	return pmu;
4342 4343
}

T
Thomas Gleixner 已提交
4344
/*
4345
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
4346
 */
4347 4348
static struct perf_event *
perf_event_alloc(struct perf_event_attr *attr,
4349
		   int cpu,
4350 4351 4352
		   struct perf_event_context *ctx,
		   struct perf_event *group_leader,
		   struct perf_event *parent_event,
4353
		   perf_callback_t callback,
4354
		   gfp_t gfpflags)
T
Thomas Gleixner 已提交
4355
{
4356
	const struct pmu *pmu;
4357 4358
	struct perf_event *event;
	struct hw_perf_event *hwc;
4359
	long err;
T
Thomas Gleixner 已提交
4360

4361 4362
	event = kzalloc(sizeof(*event), gfpflags);
	if (!event)
4363
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
4364

4365
	/*
4366
	 * Single events are their own group leaders, with an
4367 4368 4369
	 * empty sibling list:
	 */
	if (!group_leader)
4370
		group_leader = event;
4371

4372 4373
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
4374

4375 4376 4377 4378
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
	init_waitqueue_head(&event->waitq);
T
Thomas Gleixner 已提交
4379

4380
	mutex_init(&event->mmap_mutex);
4381

4382 4383 4384 4385 4386 4387
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->ctx		= ctx;
	event->oncpu		= -1;
4388

4389
	event->parent		= parent_event;
4390

4391 4392
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
4393

4394
	event->state		= PERF_EVENT_STATE_INACTIVE;
4395

4396 4397 4398 4399 4400
	if (!callback && parent_event)
		callback = parent_event->callback;
	
	event->callback	= callback;

4401
	if (attr->disabled)
4402
		event->state = PERF_EVENT_STATE_OFF;
4403

4404
	pmu = NULL;
4405

4406
	hwc = &event->hw;
4407
	hwc->sample_period = attr->sample_period;
4408
	if (attr->freq && attr->sample_freq)
4409
		hwc->sample_period = 1;
4410
	hwc->last_period = hwc->sample_period;
4411 4412

	atomic64_set(&hwc->period_left, hwc->sample_period);
4413

4414
	/*
4415
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
4416
	 */
4417
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4418 4419
		goto done;

4420
	switch (attr->type) {
4421
	case PERF_TYPE_RAW:
4422
	case PERF_TYPE_HARDWARE:
4423
	case PERF_TYPE_HW_CACHE:
4424
		pmu = hw_perf_event_init(event);
4425 4426 4427
		break;

	case PERF_TYPE_SOFTWARE:
4428
		pmu = sw_perf_event_init(event);
4429 4430 4431
		break;

	case PERF_TYPE_TRACEPOINT:
4432
		pmu = tp_perf_event_init(event);
4433
		break;
4434

4435 4436 4437 4438 4439
	case PERF_TYPE_BREAKPOINT:
		pmu = bp_perf_event_init(event);
		break;


4440 4441
	default:
		break;
4442
	}
4443 4444
done:
	err = 0;
4445
	if (!pmu)
4446
		err = -EINVAL;
4447 4448
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
4449

4450
	if (err) {
4451 4452 4453
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
4454
		return ERR_PTR(err);
I
Ingo Molnar 已提交
4455
	}
4456

4457
	event->pmu = pmu;
T
Thomas Gleixner 已提交
4458

4459 4460 4461 4462 4463 4464 4465 4466
	if (!event->parent) {
		atomic_inc(&nr_events);
		if (event->attr.mmap)
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
4467
	}
4468

4469
	return event;
T
Thomas Gleixner 已提交
4470 4471
}

4472 4473
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
4474 4475
{
	u32 size;
4476
	int ret;
4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
4501 4502 4503
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
4504 4505
	 */
	if (size > sizeof(*attr)) {
4506 4507 4508
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
4509

4510 4511
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
4512

4513
		for (; addr < end; addr++) {
4514 4515 4516 4517 4518 4519
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
4520
		size = sizeof(*attr);
4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * If the type exists, the corresponding creation will verify
	 * the attr->config.
	 */
	if (attr->type >= PERF_TYPE_MAX)
		return -EINVAL;

	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

L
Li Zefan 已提交
4552
static int perf_event_set_output(struct perf_event *event, int output_fd)
4553
{
4554
	struct perf_event *output_event = NULL;
4555
	struct file *output_file = NULL;
4556
	struct perf_event *old_output;
4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569
	int fput_needed = 0;
	int ret = -EINVAL;

	if (!output_fd)
		goto set;

	output_file = fget_light(output_fd, &fput_needed);
	if (!output_file)
		return -EBADF;

	if (output_file->f_op != &perf_fops)
		goto out;

4570
	output_event = output_file->private_data;
4571 4572

	/* Don't chain output fds */
4573
	if (output_event->output)
4574 4575 4576
		goto out;

	/* Don't set an output fd when we already have an output channel */
4577
	if (event->data)
4578 4579 4580 4581 4582
		goto out;

	atomic_long_inc(&output_file->f_count);

set:
4583 4584 4585 4586
	mutex_lock(&event->mmap_mutex);
	old_output = event->output;
	rcu_assign_pointer(event->output, output_event);
	mutex_unlock(&event->mmap_mutex);
4587 4588 4589 4590

	if (old_output) {
		/*
		 * we need to make sure no existing perf_output_*()
4591
		 * is still referencing this event.
4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602
		 */
		synchronize_rcu();
		fput(old_output->filp);
	}

	ret = 0;
out:
	fput_light(output_file, fput_needed);
	return ret;
}

T
Thomas Gleixner 已提交
4603
/**
4604
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
4605
 *
4606
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
4607
 * @pid:		target pid
I
Ingo Molnar 已提交
4608
 * @cpu:		target cpu
4609
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
4610
 */
4611 4612
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
4613
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
4614
{
4615 4616 4617 4618
	struct perf_event *event, *group_leader;
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
4619 4620
	struct file *group_file = NULL;
	int fput_needed = 0;
4621
	int fput_needed2 = 0;
4622
	int err;
T
Thomas Gleixner 已提交
4623

4624
	/* for future expandability... */
4625
	if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4626 4627
		return -EINVAL;

4628 4629 4630
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
4631

4632 4633 4634 4635 4636
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

4637
	if (attr.freq) {
4638
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
4639 4640 4641
			return -EINVAL;
	}

4642
	/*
I
Ingo Molnar 已提交
4643 4644 4645 4646 4647 4648 4649
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pid, cpu);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	/*
4650
	 * Look up the group leader (we will attach this event to it):
4651 4652
	 */
	group_leader = NULL;
4653
	if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4654
		err = -EINVAL;
4655 4656
		group_file = fget_light(group_fd, &fput_needed);
		if (!group_file)
I
Ingo Molnar 已提交
4657
			goto err_put_context;
4658
		if (group_file->f_op != &perf_fops)
I
Ingo Molnar 已提交
4659
			goto err_put_context;
4660 4661 4662

		group_leader = group_file->private_data;
		/*
I
Ingo Molnar 已提交
4663 4664 4665 4666 4667 4668 4669 4670
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
			goto err_put_context;
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
4671
		 */
I
Ingo Molnar 已提交
4672 4673
		if (group_leader->ctx != ctx)
			goto err_put_context;
4674 4675 4676
		/*
		 * Only a group leader can be exclusive or pinned
		 */
4677
		if (attr.exclusive || attr.pinned)
4678
			goto err_put_context;
4679 4680
	}

4681
	event = perf_event_alloc(&attr, cpu, ctx, group_leader,
4682
				     NULL, NULL, GFP_KERNEL);
4683 4684
	err = PTR_ERR(event);
	if (IS_ERR(event))
T
Thomas Gleixner 已提交
4685 4686
		goto err_put_context;

4687
	err = anon_inode_getfd("[perf_event]", &perf_fops, event, 0);
4688
	if (err < 0)
4689 4690
		goto err_free_put_context;

4691 4692
	event_file = fget_light(err, &fput_needed2);
	if (!event_file)
4693 4694
		goto err_free_put_context;

4695
	if (flags & PERF_FLAG_FD_OUTPUT) {
4696
		err = perf_event_set_output(event, group_fd);
4697 4698
		if (err)
			goto err_fput_free_put_context;
4699 4700
	}

4701
	event->filp = event_file;
4702
	WARN_ON_ONCE(ctx->parent_ctx);
4703
	mutex_lock(&ctx->mutex);
4704
	perf_install_in_context(ctx, event, cpu);
4705
	++ctx->generation;
4706
	mutex_unlock(&ctx->mutex);
4707

4708
	event->owner = current;
4709
	get_task_struct(current);
4710 4711 4712
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
4713

4714
err_fput_free_put_context:
4715
	fput_light(event_file, fput_needed2);
T
Thomas Gleixner 已提交
4716

4717
err_free_put_context:
4718
	if (err < 0)
4719
		kfree(event);
T
Thomas Gleixner 已提交
4720 4721

err_put_context:
4722 4723 4724 4725
	if (err < 0)
		put_ctx(ctx);

	fput_light(group_file, fput_needed);
T
Thomas Gleixner 已提交
4726

4727
	return err;
T
Thomas Gleixner 已提交
4728 4729
}

4730 4731 4732 4733 4734 4735 4736 4737 4738
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
 * @pid: task to profile
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
4739
				 pid_t pid, perf_callback_t callback)
4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750
{
	struct perf_event *event;
	struct perf_event_context *ctx;
	int err;

	/*
	 * Get the target context (task or percpu):
	 */

	ctx = find_get_context(pid, cpu);
	if (IS_ERR(ctx))
4751
		return NULL;
4752 4753

	event = perf_event_alloc(attr, cpu, ctx, NULL,
4754
				     NULL, callback, GFP_KERNEL);
4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781
	err = PTR_ERR(event);
	if (IS_ERR(event))
		goto err_put_context;

	event->filp = NULL;
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
	mutex_unlock(&ctx->mutex);

	event->owner = current;
	get_task_struct(current);
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);

	return event;

err_put_context:
	if (err < 0)
		put_ctx(ctx);

	return NULL;
}
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);

4782
/*
4783
 * inherit a event from parent task to child task:
4784
 */
4785 4786
static struct perf_event *
inherit_event(struct perf_event *parent_event,
4787
	      struct task_struct *parent,
4788
	      struct perf_event_context *parent_ctx,
4789
	      struct task_struct *child,
4790 4791
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
4792
{
4793
	struct perf_event *child_event;
4794

4795
	/*
4796 4797
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
4798 4799 4800
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
4801 4802
	if (parent_event->parent)
		parent_event = parent_event->parent;
4803

4804 4805 4806
	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu, child_ctx,
					   group_leader, parent_event,
4807
					   NULL, GFP_KERNEL);
4808 4809
	if (IS_ERR(child_event))
		return child_event;
4810
	get_ctx(child_ctx);
4811

4812
	/*
4813
	 * Make the child state follow the state of the parent event,
4814
	 * not its attr.disabled bit.  We hold the parent's mutex,
4815
	 * so we won't race with perf_event_{en, dis}able_family.
4816
	 */
4817 4818
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
4819
	else
4820
		child_event->state = PERF_EVENT_STATE_OFF;
4821

4822 4823
	if (parent_event->attr.freq)
		child_event->hw.sample_period = parent_event->hw.sample_period;
4824

4825 4826
	child_event->overflow_handler = parent_event->overflow_handler;

4827 4828 4829
	/*
	 * Link it up in the child's context:
	 */
4830
	add_event_to_ctx(child_event, child_ctx);
4831 4832 4833

	/*
	 * Get a reference to the parent filp - we will fput it
4834
	 * when the child event exits. This is safe to do because
4835 4836 4837
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
4838
	atomic_long_inc(&parent_event->filp->f_count);
4839

4840
	/*
4841
	 * Link this into the parent event's child list
4842
	 */
4843 4844 4845 4846
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
4847

4848
	return child_event;
4849 4850
}

4851
static int inherit_group(struct perf_event *parent_event,
4852
	      struct task_struct *parent,
4853
	      struct perf_event_context *parent_ctx,
4854
	      struct task_struct *child,
4855
	      struct perf_event_context *child_ctx)
4856
{
4857 4858 4859
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;
4860

4861
	leader = inherit_event(parent_event, parent, parent_ctx,
4862
				 child, NULL, child_ctx);
4863 4864
	if (IS_ERR(leader))
		return PTR_ERR(leader);
4865 4866
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
4867 4868 4869
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
4870
	}
4871 4872 4873
	return 0;
}

4874
static void sync_child_event(struct perf_event *child_event,
4875
			       struct task_struct *child)
4876
{
4877
	struct perf_event *parent_event = child_event->parent;
4878
	u64 child_val;
4879

4880 4881
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
4882

4883
	child_val = atomic64_read(&child_event->count);
4884 4885 4886 4887

	/*
	 * Add back the child's count to the parent's count:
	 */
4888 4889 4890 4891 4892
	atomic64_add(child_val, &parent_event->count);
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
4893 4894

	/*
4895
	 * Remove this event from the parent's list
4896
	 */
4897 4898 4899 4900
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
4901 4902

	/*
4903
	 * Release the parent event, if this was the last
4904 4905
	 * reference to it.
	 */
4906
	fput(parent_event->filp);
4907 4908
}

4909
static void
4910 4911
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
4912
			 struct task_struct *child)
4913
{
4914
	struct perf_event *parent_event;
4915

4916 4917
	update_event_times(child_event);
	perf_event_remove_from_context(child_event);
4918

4919
	parent_event = child_event->parent;
4920
	/*
4921
	 * It can happen that parent exits first, and has events
4922
	 * that are still around due to the child reference. These
4923
	 * events need to be zapped - but otherwise linger.
4924
	 */
4925 4926 4927
	if (parent_event) {
		sync_child_event(child_event, child);
		free_event(child_event);
4928
	}
4929 4930 4931
}

/*
4932
 * When a child task exits, feed back event values to parent events.
4933
 */
4934
void perf_event_exit_task(struct task_struct *child)
4935
{
4936 4937
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
4938
	unsigned long flags;
4939

4940 4941
	if (likely(!child->perf_event_ctxp)) {
		perf_event_task(child, NULL, 0);
4942
		return;
P
Peter Zijlstra 已提交
4943
	}
4944

4945
	local_irq_save(flags);
4946 4947 4948 4949 4950 4951
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
4952 4953
	child_ctx = child->perf_event_ctxp;
	__perf_event_task_sched_out(child_ctx);
4954 4955 4956

	/*
	 * Take the context lock here so that if find_get_context is
4957
	 * reading child->perf_event_ctxp, we wait until it has
4958 4959 4960
	 * incremented the context's refcount before we do put_ctx below.
	 */
	spin_lock(&child_ctx->lock);
4961
	child->perf_event_ctxp = NULL;
4962 4963 4964
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
4965
	 * the events from it.
4966 4967
	 */
	unclone_ctx(child_ctx);
P
Peter Zijlstra 已提交
4968 4969 4970
	spin_unlock_irqrestore(&child_ctx->lock, flags);

	/*
4971 4972 4973
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
4974
	 */
4975
	perf_event_task(child, child_ctx, 0);
4976

4977 4978 4979
	/*
	 * We can recurse on the same lock type through:
	 *
4980 4981 4982
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       fput(parent_event->filp)
4983 4984 4985 4986 4987 4988
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
	mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
4989

4990
again:
4991
	list_for_each_entry_safe(child_event, tmp, &child_ctx->group_list,
4992
				 group_entry)
4993
		__perf_event_exit_task(child_event, child_ctx, child);
4994 4995

	/*
4996
	 * If the last event was a group event, it will have appended all
4997 4998 4999
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
5000
	if (!list_empty(&child_ctx->group_list))
5001
		goto again;
5002 5003 5004 5005

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
5006 5007
}

5008 5009 5010 5011
/*
 * free an unexposed, unused context as created by inheritance by
 * init_task below, used by fork() in case of fail.
 */
5012
void perf_event_free_task(struct task_struct *task)
5013
{
5014 5015
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event *event, *tmp;
5016 5017 5018 5019 5020 5021

	if (!ctx)
		return;

	mutex_lock(&ctx->mutex);
again:
5022 5023
	list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) {
		struct perf_event *parent = event->parent;
5024 5025 5026 5027 5028

		if (WARN_ON_ONCE(!parent))
			continue;

		mutex_lock(&parent->child_mutex);
5029
		list_del_init(&event->child_list);
5030 5031 5032 5033
		mutex_unlock(&parent->child_mutex);

		fput(parent->filp);

5034 5035
		list_del_event(event, ctx);
		free_event(event);
5036 5037
	}

5038
	if (!list_empty(&ctx->group_list))
5039 5040 5041 5042 5043 5044 5045
		goto again;

	mutex_unlock(&ctx->mutex);

	put_ctx(ctx);
}

5046
/*
5047
 * Initialize the perf_event context in task_struct
5048
 */
5049
int perf_event_init_task(struct task_struct *child)
5050
{
5051 5052 5053
	struct perf_event_context *child_ctx, *parent_ctx;
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
5054
	struct task_struct *parent = current;
5055
	int inherited_all = 1;
5056
	int ret = 0;
5057

5058
	child->perf_event_ctxp = NULL;
5059

5060 5061
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);
5062

5063
	if (likely(!parent->perf_event_ctxp))
5064 5065
		return 0;

5066 5067
	/*
	 * This is executed from the parent task context, so inherit
5068
	 * events that have been marked for cloning.
5069
	 * First allocate and initialize a context for the child.
5070 5071
	 */

5072
	child_ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
5073
	if (!child_ctx)
5074
		return -ENOMEM;
5075

5076 5077
	__perf_event_init_context(child_ctx, child);
	child->perf_event_ctxp = child_ctx;
5078
	get_task_struct(child);
5079

5080
	/*
5081 5082
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
5083
	 */
5084 5085
	parent_ctx = perf_pin_task_context(parent);

5086 5087 5088 5089 5090 5091 5092
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

5093 5094 5095 5096
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
5097
	mutex_lock(&parent_ctx->mutex);
5098 5099 5100 5101 5102

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
5103
	list_for_each_entry(event, &parent_ctx->group_list, group_entry) {
5104

5105
		if (!event->attr.inherit) {
5106
			inherited_all = 0;
5107
			continue;
5108
		}
5109

5110
		ret = inherit_group(event, parent, parent_ctx,
5111 5112
					     child, child_ctx);
		if (ret) {
5113
			inherited_all = 0;
5114
			break;
5115 5116 5117 5118 5119 5120 5121
		}
	}

	if (inherited_all) {
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
5122 5123
		 * Note that if the parent is a clone, it could get
		 * uncloned at any point, but that doesn't matter
5124
		 * because the list of events and the generation
5125
		 * count can't have changed since we took the mutex.
5126
		 */
5127 5128 5129
		cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
5130
			child_ctx->parent_gen = parent_ctx->parent_gen;
5131 5132 5133 5134 5135
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
5136 5137
	}

5138
	mutex_unlock(&parent_ctx->mutex);
5139

5140
	perf_unpin_context(parent_ctx);
5141

5142
	return ret;
5143 5144
}

5145
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
5146
{
5147
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
5148

5149
	cpuctx = &per_cpu(perf_cpu_context, cpu);
5150
	__perf_event_init_context(&cpuctx->ctx, NULL);
T
Thomas Gleixner 已提交
5151

5152
	spin_lock(&perf_resource_lock);
5153
	cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5154
	spin_unlock(&perf_resource_lock);
5155

5156
	hw_perf_event_setup(cpu);
T
Thomas Gleixner 已提交
5157 5158 5159
}

#ifdef CONFIG_HOTPLUG_CPU
5160
static void __perf_event_exit_cpu(void *info)
T
Thomas Gleixner 已提交
5161 5162
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5163 5164
	struct perf_event_context *ctx = &cpuctx->ctx;
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
5165

5166 5167
	list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry)
		__perf_event_remove_from_context(event);
T
Thomas Gleixner 已提交
5168
}
5169
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
5170
{
5171
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5172
	struct perf_event_context *ctx = &cpuctx->ctx;
5173 5174

	mutex_lock(&ctx->mutex);
5175
	smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5176
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
5177 5178
}
#else
5179
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

	switch (action) {

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
5191
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
5192 5193
		break;

5194 5195
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
5196
		hw_perf_event_setup_online(cpu);
5197 5198
		break;

T
Thomas Gleixner 已提交
5199 5200
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
5201
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
5202 5203 5204 5205 5206 5207 5208 5209 5210
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

5211 5212 5213
/*
 * This has to have a higher priority than migration_notifier in sched.c.
 */
T
Thomas Gleixner 已提交
5214 5215
static struct notifier_block __cpuinitdata perf_cpu_nb = {
	.notifier_call		= perf_cpu_notify,
5216
	.priority		= 20,
T
Thomas Gleixner 已提交
5217 5218
};

5219
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
5220 5221 5222
{
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
			(void *)(long)smp_processor_id());
5223 5224
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
			(void *)(long)smp_processor_id());
T
Thomas Gleixner 已提交
5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244
	register_cpu_notifier(&perf_cpu_nb);
}

static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_reserved_percpu);
}

static ssize_t
perf_set_reserve_percpu(struct sysdev_class *class,
			const char *buf,
			size_t count)
{
	struct perf_cpu_context *cpuctx;
	unsigned long val;
	int err, cpu, mpt;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
5245
	if (val > perf_max_events)
T
Thomas Gleixner 已提交
5246 5247
		return -EINVAL;

5248
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5249 5250 5251 5252
	perf_reserved_percpu = val;
	for_each_online_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
		spin_lock_irq(&cpuctx->ctx.lock);
5253 5254
		mpt = min(perf_max_events - cpuctx->ctx.nr_events,
			  perf_max_events - perf_reserved_percpu);
T
Thomas Gleixner 已提交
5255 5256 5257
		cpuctx->max_pertask = mpt;
		spin_unlock_irq(&cpuctx->ctx.lock);
	}
5258
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279

	return count;
}

static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_overcommit);
}

static ssize_t
perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
{
	unsigned long val;
	int err;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > 1)
		return -EINVAL;

5280
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5281
	perf_overcommit = val;
5282
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308

	return count;
}

static SYSDEV_CLASS_ATTR(
				reserve_percpu,
				0644,
				perf_show_reserve_percpu,
				perf_set_reserve_percpu
			);

static SYSDEV_CLASS_ATTR(
				overcommit,
				0644,
				perf_show_overcommit,
				perf_set_overcommit
			);

static struct attribute *perfclass_attrs[] = {
	&attr_reserve_percpu.attr,
	&attr_overcommit.attr,
	NULL
};

static struct attribute_group perfclass_attr_group = {
	.attrs			= perfclass_attrs,
5309
	.name			= "perf_events",
T
Thomas Gleixner 已提交
5310 5311
};

5312
static int __init perf_event_sysfs_init(void)
T
Thomas Gleixner 已提交
5313 5314 5315 5316
{
	return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
				  &perfclass_attr_group);
}
5317
device_initcall(perf_event_sysfs_init);