perf_event.c 126.0 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4 5 6
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
16
#include <linux/file.h>
T
Thomas Gleixner 已提交
17 18
#include <linux/poll.h>
#include <linux/sysfs.h>
19
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
20
#include <linux/percpu.h>
21
#include <linux/ptrace.h>
22
#include <linux/vmstat.h>
23
#include <linux/vmalloc.h>
24 25
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
26 27 28
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
29
#include <linux/kernel_stat.h>
30
#include <linux/perf_event.h>
L
Li Zefan 已提交
31
#include <linux/ftrace_event.h>
32
#include <linux/hw_breakpoint.h>
T
Thomas Gleixner 已提交
33

34 35
#include <asm/irq_regs.h>

T
Thomas Gleixner 已提交
36
/*
37
 * Each CPU has a list of per CPU events:
T
Thomas Gleixner 已提交
38
 */
39
static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
T
Thomas Gleixner 已提交
40

41
int perf_max_events __read_mostly = 1;
T
Thomas Gleixner 已提交
42 43 44
static int perf_reserved_percpu __read_mostly;
static int perf_overcommit __read_mostly = 1;

45 46 47 48
static atomic_t nr_events __read_mostly;
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
49

50
/*
51
 * perf event paranoia level:
52 53
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
54
 *   1 - disallow cpu events for unpriv
55
 *   2 - disallow kernel profiling for unpriv
56
 */
57
int sysctl_perf_event_paranoid __read_mostly = 1;
58

59
int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
60 61

/*
62
 * max perf event sample rate
63
 */
64
int sysctl_perf_event_sample_rate __read_mostly = 100000;
65

66
static atomic64_t perf_event_id;
67

T
Thomas Gleixner 已提交
68
/*
69
 * Lock for (sysadmin-configurable) event reservations:
T
Thomas Gleixner 已提交
70
 */
71
static DEFINE_SPINLOCK(perf_resource_lock);
T
Thomas Gleixner 已提交
72 73 74 75

/*
 * Architecture provided APIs - weak aliases:
 */
76
extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
T
Thomas Gleixner 已提交
77
{
78
	return NULL;
T
Thomas Gleixner 已提交
79 80
}

81 82 83
void __weak hw_perf_disable(void)		{ barrier(); }
void __weak hw_perf_enable(void)		{ barrier(); }

84
int __weak
85
hw_perf_group_sched_in(struct perf_event *group_leader,
86
	       struct perf_cpu_context *cpuctx,
87
	       struct perf_event_context *ctx)
88 89 90
{
	return 0;
}
T
Thomas Gleixner 已提交
91

92
void __weak perf_event_print_debug(void)	{ }
93

94
static DEFINE_PER_CPU(int, perf_disable_count);
95 96 97

void perf_disable(void)
{
P
Peter Zijlstra 已提交
98 99
	if (!__get_cpu_var(perf_disable_count)++)
		hw_perf_disable();
100 101 102 103
}

void perf_enable(void)
{
P
Peter Zijlstra 已提交
104
	if (!--__get_cpu_var(perf_disable_count))
105 106 107
		hw_perf_enable();
}

108
static void get_ctx(struct perf_event_context *ctx)
109
{
110
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
111 112
}

113 114
static void free_ctx(struct rcu_head *head)
{
115
	struct perf_event_context *ctx;
116

117
	ctx = container_of(head, struct perf_event_context, rcu_head);
118 119 120
	kfree(ctx);
}

121
static void put_ctx(struct perf_event_context *ctx)
122
{
123 124 125
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
126 127 128
		if (ctx->task)
			put_task_struct(ctx->task);
		call_rcu(&ctx->rcu_head, free_ctx);
129
	}
130 131
}

132
static void unclone_ctx(struct perf_event_context *ctx)
133 134 135 136 137 138 139
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

140
/*
141
 * If we inherit events we want to return the parent event id
142 143
 * to userspace.
 */
144
static u64 primary_event_id(struct perf_event *event)
145
{
146
	u64 id = event->id;
147

148 149
	if (event->parent)
		id = event->parent->id;
150 151 152 153

	return id;
}

154
/*
155
 * Get the perf_event_context for a task and lock it.
156 157 158
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
159
static struct perf_event_context *
160
perf_lock_task_context(struct task_struct *task, unsigned long *flags)
161
{
162
	struct perf_event_context *ctx;
163 164 165

	rcu_read_lock();
 retry:
166
	ctx = rcu_dereference(task->perf_event_ctxp);
167 168 169 170
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
171
		 * perf_event_task_sched_out, though the
172 173 174 175 176 177
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
178
		raw_spin_lock_irqsave(&ctx->lock, *flags);
179
		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
180
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
181 182
			goto retry;
		}
183 184

		if (!atomic_inc_not_zero(&ctx->refcount)) {
185
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
186 187
			ctx = NULL;
		}
188 189 190 191 192 193 194 195 196 197
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
198
static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
199
{
200
	struct perf_event_context *ctx;
201 202 203 204 205
	unsigned long flags;

	ctx = perf_lock_task_context(task, &flags);
	if (ctx) {
		++ctx->pin_count;
206
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
207 208 209 210
	}
	return ctx;
}

211
static void perf_unpin_context(struct perf_event_context *ctx)
212 213 214
{
	unsigned long flags;

215
	raw_spin_lock_irqsave(&ctx->lock, flags);
216
	--ctx->pin_count;
217
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
218 219 220
	put_ctx(ctx);
}

221 222
static inline u64 perf_clock(void)
{
223
	return cpu_clock(raw_smp_processor_id());
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
}

/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;

249 250 251 252 253 254
	if (ctx->is_active)
		run_end = ctx->time;
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
255 256 257 258 259 260 261 262 263

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
		run_end = ctx->time;

	event->total_time_running = run_end - event->tstamp_running;
}

264 265 266 267 268 269 270 271 272
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

273
/*
274
 * Add a event from the lists for its context.
275 276
 * Must be called with ctx->mutex and ctx->lock held.
 */
277
static void
278
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
279
{
280
	struct perf_event *group_leader = event->group_leader;
281 282

	/*
283 284
	 * Depending on whether it is a standalone or sibling event,
	 * add it straight to the context's event list, or to the group
285 286
	 * leader's sibling list:
	 */
287 288 289
	if (group_leader == event) {
		struct list_head *list;

290 291 292
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

293 294 295
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
	} else {
296 297 298 299
		if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
		    !is_software_event(event))
			group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

300
		list_add_tail(&event->group_entry, &group_leader->sibling_list);
P
Peter Zijlstra 已提交
301 302
		group_leader->nr_siblings++;
	}
P
Peter Zijlstra 已提交
303

304 305 306
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
307
		ctx->nr_stat++;
308 309
}

310
/*
311
 * Remove a event from the lists for its context.
312
 * Must be called with ctx->mutex and ctx->lock held.
313
 */
314
static void
315
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
316
{
317
	struct perf_event *sibling, *tmp;
318

319
	if (list_empty(&event->group_entry))
320
		return;
321 322
	ctx->nr_events--;
	if (event->attr.inherit_stat)
323
		ctx->nr_stat--;
324

325 326
	list_del_init(&event->group_entry);
	list_del_rcu(&event->event_entry);
327

328 329
	if (event->group_leader != event)
		event->group_leader->nr_siblings--;
P
Peter Zijlstra 已提交
330

331
	update_event_times(event);
332 333 334 335 336 337 338 339 340 341

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
342

343
	/*
344 345
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
346 347
	 * to the context list directly:
	 */
348
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
349
		struct list_head *list;
350

351 352
		list = ctx_group_list(event, ctx);
		list_move_tail(&sibling->group_entry, list);
353
		sibling->group_leader = sibling;
354 355 356

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
357 358 359
	}
}

360
static void
361
event_sched_out(struct perf_event *event,
362
		  struct perf_cpu_context *cpuctx,
363
		  struct perf_event_context *ctx)
364
{
365
	if (event->state != PERF_EVENT_STATE_ACTIVE)
366 367
		return;

368 369 370 371
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
372
	}
373 374 375
	event->tstamp_stopped = ctx->time;
	event->pmu->disable(event);
	event->oncpu = -1;
376

377
	if (!is_software_event(event))
378 379
		cpuctx->active_oncpu--;
	ctx->nr_active--;
380
	if (event->attr.exclusive || !cpuctx->active_oncpu)
381 382 383
		cpuctx->exclusive = 0;
}

384
static void
385
group_sched_out(struct perf_event *group_event,
386
		struct perf_cpu_context *cpuctx,
387
		struct perf_event_context *ctx)
388
{
389
	struct perf_event *event;
390

391
	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
392 393
		return;

394
	event_sched_out(group_event, cpuctx, ctx);
395 396 397 398

	/*
	 * Schedule out siblings (if any):
	 */
399 400
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
401

402
	if (group_event->attr.exclusive)
403 404 405
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
406
/*
407
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
408
 *
409
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
410 411
 * remove it from the context list.
 */
412
static void __perf_event_remove_from_context(void *info)
T
Thomas Gleixner 已提交
413 414
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
415 416
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
417 418 419 420 421 422

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
423
	if (ctx->task && cpuctx->task_ctx != ctx)
T
Thomas Gleixner 已提交
424 425
		return;

426
	raw_spin_lock(&ctx->lock);
427 428
	/*
	 * Protect the list operation against NMI by disabling the
429
	 * events on a global level.
430 431
	 */
	perf_disable();
T
Thomas Gleixner 已提交
432

433
	event_sched_out(event, cpuctx, ctx);
434

435
	list_del_event(event, ctx);
T
Thomas Gleixner 已提交
436 437 438

	if (!ctx->task) {
		/*
439
		 * Allow more per task events with respect to the
T
Thomas Gleixner 已提交
440 441 442
		 * reservation:
		 */
		cpuctx->max_pertask =
443 444
			min(perf_max_events - ctx->nr_events,
			    perf_max_events - perf_reserved_percpu);
T
Thomas Gleixner 已提交
445 446
	}

447
	perf_enable();
448
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
449 450 451 452
}


/*
453
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
454
 *
455
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
456
 *
457
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
458
 * call when the task is on a CPU.
459
 *
460 461
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
462 463
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
464
 * When called from perf_event_exit_task, it's OK because the
465
 * context has been detached from its task.
T
Thomas Gleixner 已提交
466
 */
467
static void perf_event_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
468
{
469
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
470 471 472 473
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
474
		 * Per cpu events are removed via an smp call and
475
		 * the removal is always successful.
T
Thomas Gleixner 已提交
476
		 */
477 478 479
		smp_call_function_single(event->cpu,
					 __perf_event_remove_from_context,
					 event, 1);
T
Thomas Gleixner 已提交
480 481 482 483
		return;
	}

retry:
484 485
	task_oncpu_function_call(task, __perf_event_remove_from_context,
				 event);
T
Thomas Gleixner 已提交
486

487
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
488 489 490
	/*
	 * If the context is active we need to retry the smp call.
	 */
491
	if (ctx->nr_active && !list_empty(&event->group_entry)) {
492
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
493 494 495 496 497
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
498
	 * can remove the event safely, if the call above did not
T
Thomas Gleixner 已提交
499 500
	 * succeed.
	 */
P
Peter Zijlstra 已提交
501
	if (!list_empty(&event->group_entry))
502
		list_del_event(event, ctx);
503
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
504 505
}

506
/*
507
 * Update total_time_enabled and total_time_running for all events in a group.
508
 */
509
static void update_group_times(struct perf_event *leader)
510
{
511
	struct perf_event *event;
512

513 514 515
	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
516 517
}

518
/*
519
 * Cross CPU call to disable a performance event
520
 */
521
static void __perf_event_disable(void *info)
522
{
523
	struct perf_event *event = info;
524
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
525
	struct perf_event_context *ctx = event->ctx;
526 527

	/*
528 529
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
530
	 */
531
	if (ctx->task && cpuctx->task_ctx != ctx)
532 533
		return;

534
	raw_spin_lock(&ctx->lock);
535 536

	/*
537
	 * If the event is on, turn it off.
538 539
	 * If it is in error state, leave it in error state.
	 */
540
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
541
		update_context_time(ctx);
542 543 544
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
545
		else
546 547
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
548 549
	}

550
	raw_spin_unlock(&ctx->lock);
551 552 553
}

/*
554
 * Disable a event.
555
 *
556 557
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
558
 * remains valid.  This condition is satisifed when called through
559 560 561 562
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
563
 * is the current context on this CPU and preemption is disabled,
564
 * hence we can't get into perf_event_task_sched_out for this context.
565
 */
566
void perf_event_disable(struct perf_event *event)
567
{
568
	struct perf_event_context *ctx = event->ctx;
569 570 571 572
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
573
		 * Disable the event on the cpu that it's on
574
		 */
575 576
		smp_call_function_single(event->cpu, __perf_event_disable,
					 event, 1);
577 578 579 580
		return;
	}

 retry:
581
	task_oncpu_function_call(task, __perf_event_disable, event);
582

583
	raw_spin_lock_irq(&ctx->lock);
584
	/*
585
	 * If the event is still active, we need to retry the cross-call.
586
	 */
587
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
588
		raw_spin_unlock_irq(&ctx->lock);
589 590 591 592 593 594 595
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
596 597 598
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
599
	}
600

601
	raw_spin_unlock_irq(&ctx->lock);
602 603
}

604
static int
605
event_sched_in(struct perf_event *event,
606
		 struct perf_cpu_context *cpuctx,
607
		 struct perf_event_context *ctx)
608
{
609
	if (event->state <= PERF_EVENT_STATE_OFF)
610 611
		return 0;

612
	event->state = PERF_EVENT_STATE_ACTIVE;
613
	event->oncpu = smp_processor_id();
614 615 616 617 618
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

619 620 621
	if (event->pmu->enable(event)) {
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
622 623 624
		return -EAGAIN;
	}

625
	event->tstamp_running += ctx->time - event->tstamp_stopped;
626

627
	if (!is_software_event(event))
628
		cpuctx->active_oncpu++;
629 630
	ctx->nr_active++;

631
	if (event->attr.exclusive)
632 633
		cpuctx->exclusive = 1;

634 635 636
	return 0;
}

637
static int
638
group_sched_in(struct perf_event *group_event,
639
	       struct perf_cpu_context *cpuctx,
640
	       struct perf_event_context *ctx)
641
{
642
	struct perf_event *event, *partial_group;
643 644
	int ret;

645
	if (group_event->state == PERF_EVENT_STATE_OFF)
646 647
		return 0;

648
	ret = hw_perf_group_sched_in(group_event, cpuctx, ctx);
649 650 651
	if (ret)
		return ret < 0 ? ret : 0;

652
	if (event_sched_in(group_event, cpuctx, ctx))
653 654 655 656 657
		return -EAGAIN;

	/*
	 * Schedule in siblings as one group (if any):
	 */
658
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
659
		if (event_sched_in(event, cpuctx, ctx)) {
660
			partial_group = event;
661 662 663 664 665 666 667 668 669 670 671
			goto group_error;
		}
	}

	return 0;

group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
672 673
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
674
			break;
675
		event_sched_out(event, cpuctx, ctx);
676
	}
677
	event_sched_out(group_event, cpuctx, ctx);
678 679 680 681

	return -EAGAIN;
}

682
/*
683
 * Work out whether we can put this event group on the CPU now.
684
 */
685
static int group_can_go_on(struct perf_event *event,
686 687 688 689
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
690
	 * Groups consisting entirely of software events can always go on.
691
	 */
692
	if (event->group_flags & PERF_GROUP_SOFTWARE)
693 694 695
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
696
	 * events can go on.
697 698 699 700 701
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
702
	 * events on the CPU, it can't go on.
703
	 */
704
	if (event->attr.exclusive && cpuctx->active_oncpu)
705 706 707 708 709 710 711 712
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

713 714
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
715
{
716 717 718 719
	list_add_event(event, ctx);
	event->tstamp_enabled = ctx->time;
	event->tstamp_running = ctx->time;
	event->tstamp_stopped = ctx->time;
720 721
}

T
Thomas Gleixner 已提交
722
/*
723
 * Cross CPU call to install and enable a performance event
724 725
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
726 727 728 729
 */
static void __perf_install_in_context(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
730 731 732
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
733
	int err;
T
Thomas Gleixner 已提交
734 735 736 737 738

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
739
	 * Or possibly this is the right context but it isn't
740
	 * on this cpu because it had no events.
T
Thomas Gleixner 已提交
741
	 */
742
	if (ctx->task && cpuctx->task_ctx != ctx) {
743
		if (cpuctx->task_ctx || ctx->task != current)
744 745 746
			return;
		cpuctx->task_ctx = ctx;
	}
T
Thomas Gleixner 已提交
747

748
	raw_spin_lock(&ctx->lock);
749
	ctx->is_active = 1;
750
	update_context_time(ctx);
T
Thomas Gleixner 已提交
751 752 753

	/*
	 * Protect the list operation against NMI by disabling the
754
	 * events on a global level. NOP for non NMI based events.
T
Thomas Gleixner 已提交
755
	 */
756
	perf_disable();
T
Thomas Gleixner 已提交
757

758
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
759

760 761 762
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

763
	/*
764
	 * Don't put the event on if it is disabled or if
765 766
	 * it is in a group and the group isn't on.
	 */
767 768
	if (event->state != PERF_EVENT_STATE_INACTIVE ||
	    (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
769 770
		goto unlock;

771
	/*
772 773 774
	 * An exclusive event can't go on if there are already active
	 * hardware events, and no hardware event can go on if there
	 * is already an exclusive event on.
775
	 */
776
	if (!group_can_go_on(event, cpuctx, 1))
777 778
		err = -EEXIST;
	else
779
		err = event_sched_in(event, cpuctx, ctx);
780

781 782
	if (err) {
		/*
783
		 * This event couldn't go on.  If it is in a group
784
		 * then we have to pull the whole group off.
785
		 * If the event group is pinned then put it in error state.
786
		 */
787
		if (leader != event)
788
			group_sched_out(leader, cpuctx, ctx);
789
		if (leader->attr.pinned) {
790
			update_group_times(leader);
791
			leader->state = PERF_EVENT_STATE_ERROR;
792
		}
793
	}
T
Thomas Gleixner 已提交
794

795
	if (!err && !ctx->task && cpuctx->max_pertask)
T
Thomas Gleixner 已提交
796 797
		cpuctx->max_pertask--;

798
 unlock:
799
	perf_enable();
800

801
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
802 803 804
}

/*
805
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
806
 *
807 808
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
809
 *
810
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
811 812
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
813 814
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
815 816
 */
static void
817 818
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
819 820 821 822 823 824
			int cpu)
{
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
825
		 * Per cpu events are installed via an smp call and
826
		 * the install is always successful.
T
Thomas Gleixner 已提交
827 828
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
829
					 event, 1);
T
Thomas Gleixner 已提交
830 831 832 833 834
		return;
	}

retry:
	task_oncpu_function_call(task, __perf_install_in_context,
835
				 event);
T
Thomas Gleixner 已提交
836

837
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
838 839 840
	/*
	 * we need to retry the smp call.
	 */
841
	if (ctx->is_active && list_empty(&event->group_entry)) {
842
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
843 844 845 846 847
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
848
	 * can add the event safely, if it the call above did not
T
Thomas Gleixner 已提交
849 850
	 * succeed.
	 */
851 852
	if (list_empty(&event->group_entry))
		add_event_to_ctx(event, ctx);
853
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
854 855
}

856
/*
857
 * Put a event into inactive state and update time fields.
858 859 860 861 862 863
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
864 865
static void __perf_event_mark_enabled(struct perf_event *event,
					struct perf_event_context *ctx)
866
{
867
	struct perf_event *sub;
868

869 870 871 872
	event->state = PERF_EVENT_STATE_INACTIVE;
	event->tstamp_enabled = ctx->time - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry)
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
873 874 875 876
			sub->tstamp_enabled =
				ctx->time - sub->total_time_enabled;
}

877
/*
878
 * Cross CPU call to enable a performance event
879
 */
880
static void __perf_event_enable(void *info)
881
{
882
	struct perf_event *event = info;
883
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
884 885
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
886
	int err;
887

888
	/*
889 890
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
891
	 */
892
	if (ctx->task && cpuctx->task_ctx != ctx) {
893
		if (cpuctx->task_ctx || ctx->task != current)
894 895 896
			return;
		cpuctx->task_ctx = ctx;
	}
897

898
	raw_spin_lock(&ctx->lock);
899
	ctx->is_active = 1;
900
	update_context_time(ctx);
901

902
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
903
		goto unlock;
904
	__perf_event_mark_enabled(event, ctx);
905

906 907 908
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

909
	/*
910
	 * If the event is in a group and isn't the group leader,
911
	 * then don't put it on unless the group is on.
912
	 */
913
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
914
		goto unlock;
915

916
	if (!group_can_go_on(event, cpuctx, 1)) {
917
		err = -EEXIST;
918
	} else {
919
		perf_disable();
920
		if (event == leader)
921
			err = group_sched_in(event, cpuctx, ctx);
922
		else
923
			err = event_sched_in(event, cpuctx, ctx);
924
		perf_enable();
925
	}
926 927 928

	if (err) {
		/*
929
		 * If this event can't go on and it's part of a
930 931
		 * group, then the whole group has to come off.
		 */
932
		if (leader != event)
933
			group_sched_out(leader, cpuctx, ctx);
934
		if (leader->attr.pinned) {
935
			update_group_times(leader);
936
			leader->state = PERF_EVENT_STATE_ERROR;
937
		}
938 939 940
	}

 unlock:
941
	raw_spin_unlock(&ctx->lock);
942 943 944
}

/*
945
 * Enable a event.
946
 *
947 948
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
949
 * remains valid.  This condition is satisfied when called through
950 951
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
952
 */
953
void perf_event_enable(struct perf_event *event)
954
{
955
	struct perf_event_context *ctx = event->ctx;
956 957 958 959
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
960
		 * Enable the event on the cpu that it's on
961
		 */
962 963
		smp_call_function_single(event->cpu, __perf_event_enable,
					 event, 1);
964 965 966
		return;
	}

967
	raw_spin_lock_irq(&ctx->lock);
968
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
969 970 971
		goto out;

	/*
972 973
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
974 975 976 977
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
978 979
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
980 981

 retry:
982
	raw_spin_unlock_irq(&ctx->lock);
983
	task_oncpu_function_call(task, __perf_event_enable, event);
984

985
	raw_spin_lock_irq(&ctx->lock);
986 987

	/*
988
	 * If the context is active and the event is still off,
989 990
	 * we need to retry the cross-call.
	 */
991
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
992 993 994 995 996 997
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
998 999
	if (event->state == PERF_EVENT_STATE_OFF)
		__perf_event_mark_enabled(event, ctx);
1000

1001
 out:
1002
	raw_spin_unlock_irq(&ctx->lock);
1003 1004
}

1005
static int perf_event_refresh(struct perf_event *event, int refresh)
1006
{
1007
	/*
1008
	 * not supported on inherited events
1009
	 */
1010
	if (event->attr.inherit)
1011 1012
		return -EINVAL;

1013 1014
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1015 1016

	return 0;
1017 1018
}

1019 1020 1021 1022 1023 1024 1025 1026 1027
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
1028
{
1029
	struct perf_event *event;
1030

1031
	raw_spin_lock(&ctx->lock);
1032
	ctx->is_active = 0;
1033
	if (likely(!ctx->nr_events))
1034
		goto out;
1035
	update_context_time(ctx);
1036

1037
	perf_disable();
1038 1039 1040 1041
	if (!ctx->nr_active)
		goto out_enable;

	if (event_type & EVENT_PINNED)
1042 1043 1044
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);

1045
	if (event_type & EVENT_FLEXIBLE)
1046
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1047
			group_sched_out(event, cpuctx, ctx);
1048 1049

 out_enable:
1050
	perf_enable();
1051
 out:
1052
	raw_spin_unlock(&ctx->lock);
1053 1054
}

1055 1056 1057
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1058 1059 1060 1061
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1062
 * in them directly with an fd; we can only enable/disable all
1063
 * events via prctl, or enable/disable all events in a family
1064 1065
 * via ioctl, which will have the same effect on both contexts.
 */
1066 1067
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1068 1069
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1070
		&& ctx1->parent_gen == ctx2->parent_gen
1071
		&& !ctx1->pin_count && !ctx2->pin_count;
1072 1073
}

1074 1075
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1076 1077 1078
{
	u64 value;

1079
	if (!event->attr.inherit_stat)
1080 1081 1082
		return;

	/*
1083
	 * Update the event value, we cannot use perf_event_read()
1084 1085
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1086
	 * we know the event must be on the current CPU, therefore we
1087 1088
	 * don't need to use it.
	 */
1089 1090
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1091 1092
		event->pmu->read(event);
		/* fall-through */
1093

1094 1095
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1096 1097 1098 1099 1100 1101 1102
		break;

	default:
		break;
	}

	/*
1103
	 * In order to keep per-task stats reliable we need to flip the event
1104 1105
	 * values when we flip the contexts.
	 */
1106 1107 1108
	value = atomic64_read(&next_event->count);
	value = atomic64_xchg(&event->count, value);
	atomic64_set(&next_event->count, value);
1109

1110 1111
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1112

1113
	/*
1114
	 * Since we swizzled the values, update the user visible data too.
1115
	 */
1116 1117
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1118 1119 1120 1121 1122
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1123 1124
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1125
{
1126
	struct perf_event *event, *next_event;
1127 1128 1129 1130

	if (!ctx->nr_stat)
		return;

1131 1132
	update_context_time(ctx);

1133 1134
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1135

1136 1137
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1138

1139 1140
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1141

1142
		__perf_event_sync_stat(event, next_event);
1143

1144 1145
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1146 1147 1148
	}
}

T
Thomas Gleixner 已提交
1149
/*
1150
 * Called from scheduler to remove the events of the current task,
T
Thomas Gleixner 已提交
1151 1152
 * with interrupts disabled.
 *
1153
 * We stop each event and update the event value in event->count.
T
Thomas Gleixner 已提交
1154
 *
I
Ingo Molnar 已提交
1155
 * This does not protect us against NMI, but disable()
1156 1157 1158
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
T
Thomas Gleixner 已提交
1159
 */
1160
void perf_event_task_sched_out(struct task_struct *task,
1161
				 struct task_struct *next)
T
Thomas Gleixner 已提交
1162
{
1163
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1164 1165 1166
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
1167
	int do_switch = 1;
T
Thomas Gleixner 已提交
1168

1169
	perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1170

1171
	if (likely(!ctx || !cpuctx->task_ctx))
T
Thomas Gleixner 已提交
1172 1173
		return;

1174 1175
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
1176
	next_ctx = next->perf_event_ctxp;
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
1188 1189
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1190
		if (context_equiv(ctx, next_ctx)) {
1191 1192
			/*
			 * XXX do we need a memory barrier of sorts
1193
			 * wrt to rcu_dereference() of perf_event_ctxp
1194
			 */
1195 1196
			task->perf_event_ctxp = next_ctx;
			next->perf_event_ctxp = ctx;
1197 1198 1199
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1200

1201
			perf_event_sync_stat(ctx, next_ctx);
1202
		}
1203 1204
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
1205
	}
1206
	rcu_read_unlock();
1207

1208
	if (do_switch) {
1209
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1210 1211
		cpuctx->task_ctx = NULL;
	}
T
Thomas Gleixner 已提交
1212 1213
}

1214 1215
static void task_ctx_sched_out(struct perf_event_context *ctx,
			       enum event_type_t event_type)
1216 1217 1218
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);

1219 1220
	if (!cpuctx->task_ctx)
		return;
1221 1222 1223 1224

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

1225
	ctx_sched_out(ctx, cpuctx, event_type);
1226 1227 1228
	cpuctx->task_ctx = NULL;
}

1229 1230 1231
/*
 * Called with IRQs disabled
 */
1232
static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1233
{
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
	task_ctx_sched_out(ctx, EVENT_ALL);
}

/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1244 1245
}

1246
static void
1247
ctx_pinned_sched_in(struct perf_event_context *ctx,
1248
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
1249
{
1250
	struct perf_event *event;
T
Thomas Gleixner 已提交
1251

1252 1253
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
1254
			continue;
1255
		if (event->cpu != -1 && event->cpu != smp_processor_id())
1256 1257
			continue;

1258
		if (group_can_go_on(event, cpuctx, 1))
1259
			group_sched_in(event, cpuctx, ctx);
1260 1261 1262 1263 1264

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
1265 1266 1267
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
1268
		}
1269
	}
1270 1271 1272 1273
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
1274
		      struct perf_cpu_context *cpuctx)
1275 1276 1277
{
	struct perf_event *event;
	int can_add_hw = 1;
1278

1279 1280 1281
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
1282
			continue;
1283 1284
		/*
		 * Listen to the 'cpu' scheduling filter constraint
1285
		 * of events:
1286
		 */
1287
		if (event->cpu != -1 && event->cpu != smp_processor_id())
T
Thomas Gleixner 已提交
1288 1289
			continue;

1290
		if (group_can_go_on(event, cpuctx, can_add_hw))
1291
			if (group_sched_in(event, cpuctx, ctx))
1292
				can_add_hw = 0;
T
Thomas Gleixner 已提交
1293
	}
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type)
{
	raw_spin_lock(&ctx->lock);
	ctx->is_active = 1;
	if (likely(!ctx->nr_events))
		goto out;

	ctx->timestamp = perf_clock();

	perf_disable();

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	if (event_type & EVENT_PINNED)
1315
		ctx_pinned_sched_in(ctx, cpuctx);
1316 1317 1318

	/* Then walk through the lower prio flexible groups */
	if (event_type & EVENT_FLEXIBLE)
1319
		ctx_flexible_sched_in(ctx, cpuctx);
1320

1321
	perf_enable();
1322
 out:
1323
	raw_spin_unlock(&ctx->lock);
1324 1325
}

1326 1327 1328 1329 1330 1331 1332 1333
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
			     enum event_type_t event_type)
{
	struct perf_event_context *ctx = &cpuctx->ctx;

	ctx_sched_in(ctx, cpuctx, event_type);
}

1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
static void task_ctx_sched_in(struct task_struct *task,
			      enum event_type_t event_type)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_event_context *ctx = task->perf_event_ctxp;

	if (likely(!ctx))
		return;
	if (cpuctx->task_ctx == ctx)
		return;
	ctx_sched_in(ctx, cpuctx, event_type);
	cpuctx->task_ctx = ctx;
}
1347
/*
1348
 * Called from scheduler to add the events of the current task
1349 1350
 * with interrupts disabled.
 *
1351
 * We restore the event value and then enable it.
1352 1353
 *
 * This does not protect us against NMI, but enable()
1354 1355 1356
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
1357
 */
1358
void perf_event_task_sched_in(struct task_struct *task)
1359
{
1360 1361
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_event_context *ctx = task->perf_event_ctxp;
T
Thomas Gleixner 已提交
1362

1363 1364
	if (likely(!ctx))
		return;
1365

1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
	if (cpuctx->task_ctx == ctx)
		return;

	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

	ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
	ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);

	cpuctx->task_ctx = ctx;
1381 1382
}

1383 1384
#define MAX_INTERRUPTS (~0ULL)

1385
static void perf_log_throttle(struct perf_event *event, int enable);
1386

1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
#define REDUCE_FLS(a, b) 		\
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

	return div64_u64(dividend, divisor);
}

1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
static void perf_event_stop(struct perf_event *event)
{
	if (!event->pmu->stop)
		return event->pmu->disable(event);

	return event->pmu->stop(event);
}

static int perf_event_start(struct perf_event *event)
{
	if (!event->pmu->start)
		return event->pmu->enable(event);

	return event->pmu->start(event);
}

1473
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1474
{
1475
	struct hw_perf_event *hwc = &event->hw;
1476 1477 1478
	u64 period, sample_period;
	s64 delta;

1479
	period = perf_calculate_period(event, nsec, count);
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
1490 1491 1492

	if (atomic64_read(&hwc->period_left) > 8*sample_period) {
		perf_disable();
1493
		perf_event_stop(event);
1494
		atomic64_set(&hwc->period_left, 0);
1495
		perf_event_start(event);
1496 1497
		perf_enable();
	}
1498 1499
}

1500
static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1501
{
1502 1503
	struct perf_event *event;
	struct hw_perf_event *hwc;
1504 1505
	u64 interrupts, now;
	s64 delta;
1506

1507
	raw_spin_lock(&ctx->lock);
1508
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1509
		if (event->state != PERF_EVENT_STATE_ACTIVE)
1510 1511
			continue;

1512 1513 1514
		if (event->cpu != -1 && event->cpu != smp_processor_id())
			continue;

1515
		hwc = &event->hw;
1516 1517 1518

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
1519

1520
		/*
1521
		 * unthrottle events on the tick
1522
		 */
1523
		if (interrupts == MAX_INTERRUPTS) {
1524
			perf_log_throttle(event, 1);
1525
			perf_disable();
1526
			event->pmu->unthrottle(event);
1527
			perf_enable();
1528 1529
		}

1530
		if (!event->attr.freq || !event->attr.sample_freq)
1531 1532
			continue;

1533
		perf_disable();
1534 1535 1536 1537
		event->pmu->read(event);
		now = atomic64_read(&event->count);
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
1538

1539 1540
		if (delta > 0)
			perf_adjust_period(event, TICK_NSEC, delta);
1541
		perf_enable();
1542
	}
1543
	raw_spin_unlock(&ctx->lock);
1544 1545
}

1546
/*
1547
 * Round-robin a context's events:
1548
 */
1549
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
1550
{
1551
	raw_spin_lock(&ctx->lock);
1552 1553 1554 1555

	/* Rotate the first entry last of non-pinned groups */
	list_rotate_left(&ctx->flexible_groups);

1556
	raw_spin_unlock(&ctx->lock);
1557 1558
}

1559
void perf_event_task_tick(struct task_struct *curr)
1560
{
1561
	struct perf_cpu_context *cpuctx;
1562
	struct perf_event_context *ctx;
1563
	int rotate = 0;
1564

1565
	if (!atomic_read(&nr_events))
1566 1567
		return;

1568
	cpuctx = &__get_cpu_var(perf_cpu_context);
1569 1570 1571
	if (cpuctx->ctx.nr_events &&
	    cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
		rotate = 1;
1572

1573 1574 1575
	ctx = curr->perf_event_ctxp;
	if (ctx && ctx->nr_events && ctx->nr_events != ctx->nr_active)
		rotate = 1;
1576

1577
	perf_ctx_adjust_freq(&cpuctx->ctx);
1578
	if (ctx)
1579
		perf_ctx_adjust_freq(ctx);
1580

1581 1582 1583 1584
	if (!rotate)
		return;

	perf_disable();
1585
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1586
	if (ctx)
1587
		task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
1588

1589
	rotate_ctx(&cpuctx->ctx);
1590 1591
	if (ctx)
		rotate_ctx(ctx);
1592

1593
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1594
	if (ctx)
1595
		task_ctx_sched_in(curr, EVENT_FLEXIBLE);
1596
	perf_enable();
T
Thomas Gleixner 已提交
1597 1598
}

1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

	__perf_event_mark_enabled(event, ctx);

	return 1;
}

1614
/*
1615
 * Enable all of a task's events that have been marked enable-on-exec.
1616 1617
 * This expects task == current.
 */
1618
static void perf_event_enable_on_exec(struct task_struct *task)
1619
{
1620 1621
	struct perf_event_context *ctx;
	struct perf_event *event;
1622 1623
	unsigned long flags;
	int enabled = 0;
1624
	int ret;
1625 1626

	local_irq_save(flags);
1627 1628
	ctx = task->perf_event_ctxp;
	if (!ctx || !ctx->nr_events)
1629 1630
		goto out;

1631
	__perf_event_task_sched_out(ctx);
1632

1633
	raw_spin_lock(&ctx->lock);
1634

1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
	}

	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
1645 1646 1647
	}

	/*
1648
	 * Unclone this context if we enabled any event.
1649
	 */
1650 1651
	if (enabled)
		unclone_ctx(ctx);
1652

1653
	raw_spin_unlock(&ctx->lock);
1654

1655
	perf_event_task_sched_in(task);
1656 1657 1658 1659
 out:
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
1660
/*
1661
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
1662
 */
1663
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
1664
{
1665
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1666 1667
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
I
Ingo Molnar 已提交
1668

1669 1670 1671 1672
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
1673 1674
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
1675 1676 1677 1678
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

1679
	raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1680
	update_context_time(ctx);
1681
	update_event_times(event);
1682
	raw_spin_unlock(&ctx->lock);
P
Peter Zijlstra 已提交
1683

P
Peter Zijlstra 已提交
1684
	event->pmu->read(event);
T
Thomas Gleixner 已提交
1685 1686
}

1687
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
1688 1689
{
	/*
1690 1691
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
1692
	 */
1693 1694 1695 1696
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
1697 1698 1699
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

1700
		raw_spin_lock_irqsave(&ctx->lock, flags);
P
Peter Zijlstra 已提交
1701
		update_context_time(ctx);
1702
		update_event_times(event);
1703
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1704 1705
	}

1706
	return atomic64_read(&event->count);
T
Thomas Gleixner 已提交
1707 1708
}

1709
/*
1710
 * Initialize the perf_event context in a task_struct:
1711 1712
 */
static void
1713
__perf_event_init_context(struct perf_event_context *ctx,
1714 1715
			    struct task_struct *task)
{
1716
	raw_spin_lock_init(&ctx->lock);
1717
	mutex_init(&ctx->mutex);
1718 1719
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
1720 1721 1722 1723 1724
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
	ctx->task = task;
}

1725
static struct perf_event_context *find_get_context(pid_t pid, int cpu)
T
Thomas Gleixner 已提交
1726
{
1727
	struct perf_event_context *ctx;
1728
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
1729
	struct task_struct *task;
1730
	unsigned long flags;
1731
	int err;
T
Thomas Gleixner 已提交
1732

1733
	if (pid == -1 && cpu != -1) {
1734
		/* Must be root to operate on a CPU event: */
1735
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
1736 1737
			return ERR_PTR(-EACCES);

1738
		if (cpu < 0 || cpu >= nr_cpumask_bits)
T
Thomas Gleixner 已提交
1739 1740 1741
			return ERR_PTR(-EINVAL);

		/*
1742
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
1743 1744 1745
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
1746
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
1747 1748 1749 1750
			return ERR_PTR(-ENODEV);

		cpuctx = &per_cpu(perf_cpu_context, cpu);
		ctx = &cpuctx->ctx;
1751
		get_ctx(ctx);
T
Thomas Gleixner 已提交
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

1768
	/*
1769
	 * Can't attach events to a dying task.
1770 1771 1772 1773 1774
	 */
	err = -ESRCH;
	if (task->flags & PF_EXITING)
		goto errout;

T
Thomas Gleixner 已提交
1775
	/* Reuse ptrace permission checks for now. */
1776 1777 1778 1779 1780
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

 retry:
1781
	ctx = perf_lock_task_context(task, &flags);
1782
	if (ctx) {
1783
		unclone_ctx(ctx);
1784
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1785 1786
	}

1787
	if (!ctx) {
1788
		ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1789 1790 1791
		err = -ENOMEM;
		if (!ctx)
			goto errout;
1792
		__perf_event_init_context(ctx, task);
1793
		get_ctx(ctx);
1794
		if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1795 1796 1797 1798 1799
			/*
			 * We raced with some other task; use
			 * the context they set.
			 */
			kfree(ctx);
1800
			goto retry;
1801
		}
1802
		get_task_struct(task);
1803 1804
	}

1805
	put_task_struct(task);
T
Thomas Gleixner 已提交
1806
	return ctx;
1807 1808 1809 1810

 errout:
	put_task_struct(task);
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
1811 1812
}

L
Li Zefan 已提交
1813 1814
static void perf_event_free_filter(struct perf_event *event);

1815
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
1816
{
1817
	struct perf_event *event;
P
Peter Zijlstra 已提交
1818

1819 1820 1821
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
1822
	perf_event_free_filter(event);
1823
	kfree(event);
P
Peter Zijlstra 已提交
1824 1825
}

1826
static void perf_pending_sync(struct perf_event *event);
1827

1828
static void free_event(struct perf_event *event)
1829
{
1830
	perf_pending_sync(event);
1831

1832 1833 1834 1835 1836 1837 1838 1839
	if (!event->parent) {
		atomic_dec(&nr_events);
		if (event->attr.mmap)
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
1840
	}
1841

1842 1843 1844
	if (event->output) {
		fput(event->output->filp);
		event->output = NULL;
1845 1846
	}

1847 1848
	if (event->destroy)
		event->destroy(event);
1849

1850 1851
	put_ctx(event->ctx);
	call_rcu(&event->rcu_head, free_event_rcu);
1852 1853
}

1854
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
1855
{
1856
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1857

1858
	WARN_ON_ONCE(ctx->parent_ctx);
1859
	mutex_lock(&ctx->mutex);
1860
	perf_event_remove_from_context(event);
1861
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
1862

1863 1864 1865 1866
	mutex_lock(&event->owner->perf_event_mutex);
	list_del_init(&event->owner_entry);
	mutex_unlock(&event->owner->perf_event_mutex);
	put_task_struct(event->owner);
1867

1868
	free_event(event);
T
Thomas Gleixner 已提交
1869 1870 1871

	return 0;
}
1872
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
1873

1874 1875 1876 1877
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
1878
{
1879
	struct perf_event *event = file->private_data;
1880

1881
	file->private_data = NULL;
1882

1883
	return perf_event_release_kernel(event);
1884 1885
}

1886
static int perf_event_read_size(struct perf_event *event)
1887 1888 1889 1890 1891
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

1892
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1893 1894
		size += sizeof(u64);

1895
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1896 1897
		size += sizeof(u64);

1898
	if (event->attr.read_format & PERF_FORMAT_ID)
1899 1900
		entry += sizeof(u64);

1901 1902
	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
1903 1904 1905 1906 1907 1908 1909 1910
		size += sizeof(u64);
	}

	size += entry * nr;

	return size;
}

1911
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
1912
{
1913
	struct perf_event *child;
1914 1915
	u64 total = 0;

1916 1917 1918
	*enabled = 0;
	*running = 0;

1919
	mutex_lock(&event->child_mutex);
1920
	total += perf_event_read(event);
1921 1922 1923 1924 1925 1926
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
1927
		total += perf_event_read(child);
1928 1929 1930
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
1931
	mutex_unlock(&event->child_mutex);
1932 1933 1934

	return total;
}
1935
EXPORT_SYMBOL_GPL(perf_event_read_value);
1936

1937
static int perf_event_read_group(struct perf_event *event,
1938 1939
				   u64 read_format, char __user *buf)
{
1940
	struct perf_event *leader = event->group_leader, *sub;
1941 1942
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
1943
	u64 values[5];
1944
	u64 count, enabled, running;
1945

1946
	mutex_lock(&ctx->mutex);
1947
	count = perf_event_read_value(leader, &enabled, &running);
1948 1949

	values[n++] = 1 + leader->nr_siblings;
1950 1951 1952 1953
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
1954 1955 1956
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
1957 1958 1959 1960

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
1961
		goto unlock;
1962

1963
	ret = size;
1964

1965
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1966
		n = 0;
1967

1968
		values[n++] = perf_event_read_value(sub, &enabled, &running);
1969 1970 1971 1972 1973
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

1974
		if (copy_to_user(buf + ret, values, size)) {
1975 1976 1977
			ret = -EFAULT;
			goto unlock;
		}
1978 1979

		ret += size;
1980
	}
1981 1982
unlock:
	mutex_unlock(&ctx->mutex);
1983

1984
	return ret;
1985 1986
}

1987
static int perf_event_read_one(struct perf_event *event,
1988 1989
				 u64 read_format, char __user *buf)
{
1990
	u64 enabled, running;
1991 1992 1993
	u64 values[4];
	int n = 0;

1994 1995 1996 1997 1998
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
1999
	if (read_format & PERF_FORMAT_ID)
2000
		values[n++] = primary_event_id(event);
2001 2002 2003 2004 2005 2006 2007

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
2008
/*
2009
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
2010 2011
 */
static ssize_t
2012
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
2013
{
2014
	u64 read_format = event->attr.read_format;
2015
	int ret;
T
Thomas Gleixner 已提交
2016

2017
	/*
2018
	 * Return end-of-file for a read on a event that is in
2019 2020 2021
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
2022
	if (event->state == PERF_EVENT_STATE_ERROR)
2023 2024
		return 0;

2025
	if (count < perf_event_read_size(event))
2026 2027
		return -ENOSPC;

2028
	WARN_ON_ONCE(event->ctx->parent_ctx);
2029
	if (read_format & PERF_FORMAT_GROUP)
2030
		ret = perf_event_read_group(event, read_format, buf);
2031
	else
2032
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
2033

2034
	return ret;
T
Thomas Gleixner 已提交
2035 2036 2037 2038 2039
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
2040
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
2041

2042
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
2043 2044 2045 2046
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
2047
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
2048
	struct perf_mmap_data *data;
2049
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
2050 2051

	rcu_read_lock();
2052
	data = rcu_dereference(event->data);
P
Peter Zijlstra 已提交
2053
	if (data)
2054
		events = atomic_xchg(&data->poll, 0);
P
Peter Zijlstra 已提交
2055
	rcu_read_unlock();
T
Thomas Gleixner 已提交
2056

2057
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
2058 2059 2060 2061

	return events;
}

2062
static void perf_event_reset(struct perf_event *event)
2063
{
2064 2065 2066
	(void)perf_event_read(event);
	atomic64_set(&event->count, 0);
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
2067 2068
}

2069
/*
2070 2071 2072 2073
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
2074
 */
2075 2076
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
2077
{
2078
	struct perf_event *child;
P
Peter Zijlstra 已提交
2079

2080 2081 2082 2083
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
2084
		func(child);
2085
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
2086 2087
}

2088 2089
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
2090
{
2091 2092
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
2093

2094 2095
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
2096
	event = event->group_leader;
2097

2098 2099 2100 2101
	perf_event_for_each_child(event, func);
	func(event);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
		perf_event_for_each_child(event, func);
2102
	mutex_unlock(&ctx->mutex);
2103 2104
}

2105
static int perf_event_period(struct perf_event *event, u64 __user *arg)
2106
{
2107
	struct perf_event_context *ctx = event->ctx;
2108 2109 2110 2111
	unsigned long size;
	int ret = 0;
	u64 value;

2112
	if (!event->attr.sample_period)
2113 2114 2115 2116 2117 2118 2119 2120 2121
		return -EINVAL;

	size = copy_from_user(&value, arg, sizeof(value));
	if (size != sizeof(value))
		return -EFAULT;

	if (!value)
		return -EINVAL;

2122
	raw_spin_lock_irq(&ctx->lock);
2123 2124
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
2125 2126 2127 2128
			ret = -EINVAL;
			goto unlock;
		}

2129
		event->attr.sample_freq = value;
2130
	} else {
2131 2132
		event->attr.sample_period = value;
		event->hw.sample_period = value;
2133 2134
	}
unlock:
2135
	raw_spin_unlock_irq(&ctx->lock);
2136 2137 2138 2139

	return ret;
}

L
Li Zefan 已提交
2140 2141
static int perf_event_set_output(struct perf_event *event, int output_fd);
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2142

2143 2144
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
2145 2146
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
2147
	u32 flags = arg;
2148 2149

	switch (cmd) {
2150 2151
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
2152
		break;
2153 2154
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
2155
		break;
2156 2157
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
2158
		break;
P
Peter Zijlstra 已提交
2159

2160 2161
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
2162

2163 2164
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
2165

2166 2167
	case PERF_EVENT_IOC_SET_OUTPUT:
		return perf_event_set_output(event, arg);
2168

L
Li Zefan 已提交
2169 2170 2171
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

2172
	default:
P
Peter Zijlstra 已提交
2173
		return -ENOTTY;
2174
	}
P
Peter Zijlstra 已提交
2175 2176

	if (flags & PERF_IOC_FLAG_GROUP)
2177
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
2178
	else
2179
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
2180 2181

	return 0;
2182 2183
}

2184
int perf_event_task_enable(void)
2185
{
2186
	struct perf_event *event;
2187

2188 2189 2190 2191
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
2192 2193 2194 2195

	return 0;
}

2196
int perf_event_task_disable(void)
2197
{
2198
	struct perf_event *event;
2199

2200 2201 2202 2203
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
2204 2205 2206 2207

	return 0;
}

2208 2209
#ifndef PERF_EVENT_INDEX_OFFSET
# define PERF_EVENT_INDEX_OFFSET 0
I
Ingo Molnar 已提交
2210 2211
#endif

2212
static int perf_event_index(struct perf_event *event)
2213
{
2214
	if (event->state != PERF_EVENT_STATE_ACTIVE)
2215 2216
		return 0;

2217
	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2218 2219
}

2220 2221 2222 2223 2224
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
2225
void perf_event_update_userpage(struct perf_event *event)
2226
{
2227
	struct perf_event_mmap_page *userpg;
2228
	struct perf_mmap_data *data;
2229 2230

	rcu_read_lock();
2231
	data = rcu_dereference(event->data);
2232 2233 2234 2235
	if (!data)
		goto unlock;

	userpg = data->user_page;
2236

2237 2238 2239 2240 2241
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
2242
	++userpg->lock;
2243
	barrier();
2244 2245 2246 2247
	userpg->index = perf_event_index(event);
	userpg->offset = atomic64_read(&event->count);
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		userpg->offset -= atomic64_read(&event->hw.prev_count);
2248

2249 2250
	userpg->time_enabled = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
2251

2252 2253
	userpg->time_running = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
2254

2255
	barrier();
2256
	++userpg->lock;
2257
	preempt_enable();
2258
unlock:
2259
	rcu_read_unlock();
2260 2261
}

2262
static unsigned long perf_data_size(struct perf_mmap_data *data)
2263
{
2264 2265
	return data->nr_pages << (PAGE_SHIFT + data->data_order);
}
2266

2267
#ifndef CONFIG_PERF_USE_VMALLOC
2268

2269 2270 2271
/*
 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
 */
2272

2273 2274 2275 2276 2277
static struct page *
perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
{
	if (pgoff > data->nr_pages)
		return NULL;
2278

2279 2280
	if (pgoff == 0)
		return virt_to_page(data->user_page);
2281

2282
	return virt_to_page(data->data_pages[pgoff - 1]);
2283 2284
}

2285 2286
static struct perf_mmap_data *
perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2287 2288 2289 2290 2291
{
	struct perf_mmap_data *data;
	unsigned long size;
	int i;

2292
	WARN_ON(atomic_read(&event->mmap_count));
2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310

	size = sizeof(struct perf_mmap_data);
	size += nr_pages * sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
	if (!data->user_page)
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
		data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
		if (!data->data_pages[i])
			goto fail_data_pages;
	}

2311
	data->data_order = 0;
2312 2313
	data->nr_pages = nr_pages;

2314
	return data;
2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325

fail_data_pages:
	for (i--; i >= 0; i--)
		free_page((unsigned long)data->data_pages[i]);

	free_page((unsigned long)data->user_page);

fail_user_page:
	kfree(data);

fail:
2326
	return NULL;
2327 2328
}

2329 2330
static void perf_mmap_free_page(unsigned long addr)
{
K
Kevin Cernekee 已提交
2331
	struct page *page = virt_to_page((void *)addr);
2332 2333 2334 2335 2336

	page->mapping = NULL;
	__free_page(page);
}

2337
static void perf_mmap_data_free(struct perf_mmap_data *data)
2338 2339 2340
{
	int i;

2341
	perf_mmap_free_page((unsigned long)data->user_page);
2342
	for (i = 0; i < data->nr_pages; i++)
2343
		perf_mmap_free_page((unsigned long)data->data_pages[i]);
2344
	kfree(data);
2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
}

#else

/*
 * Back perf_mmap() with vmalloc memory.
 *
 * Required for architectures that have d-cache aliasing issues.
 */

static struct page *
perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
{
	if (pgoff > (1UL << data->data_order))
		return NULL;

	return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
}

static void perf_mmap_unmark_page(void *addr)
{
	struct page *page = vmalloc_to_page(addr);

	page->mapping = NULL;
}

static void perf_mmap_data_free_work(struct work_struct *work)
{
	struct perf_mmap_data *data;
	void *base;
	int i, nr;

	data = container_of(work, struct perf_mmap_data, work);
	nr = 1 << data->data_order;

	base = data->user_page;
	for (i = 0; i < nr + 1; i++)
		perf_mmap_unmark_page(base + (i * PAGE_SIZE));

	vfree(base);
2385
	kfree(data);
2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
}

static void perf_mmap_data_free(struct perf_mmap_data *data)
{
	schedule_work(&data->work);
}

static struct perf_mmap_data *
perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
{
	struct perf_mmap_data *data;
	unsigned long size;
	void *all_buf;

	WARN_ON(atomic_read(&event->mmap_count));
2401

2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
	size = sizeof(struct perf_mmap_data);
	size += sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	INIT_WORK(&data->work, perf_mmap_data_free_work);

	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
	if (!all_buf)
		goto fail_all_buf;

	data->user_page = all_buf;
	data->data_pages[0] = all_buf + PAGE_SIZE;
	data->data_order = ilog2(nr_pages);
	data->nr_pages = 1;

	return data;

fail_all_buf:
	kfree(data);

fail:
	return NULL;
}

#endif

static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
	struct perf_mmap_data *data;
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
	data = rcu_dereference(event->data);
	if (!data)
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

	vmf->page = perf_mmap_to_page(data, vmf->pgoff);
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

static void
perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
{
	long max_size = perf_data_size(data);

	atomic_set(&data->lock, -1);

	if (event->attr.watermark) {
		data->watermark = min_t(long, max_size,
					event->attr.wakeup_watermark);
	}

	if (!data->watermark)
2479
		data->watermark = max_size / 2;
2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490


	rcu_assign_pointer(event->data, data);
}

static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
{
	struct perf_mmap_data *data;

	data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
	perf_mmap_data_free(data);
2491 2492
}

2493
static void perf_mmap_data_release(struct perf_event *event)
2494
{
2495
	struct perf_mmap_data *data = event->data;
2496

2497
	WARN_ON(atomic_read(&event->mmap_count));
2498

2499
	rcu_assign_pointer(event->data, NULL);
2500
	call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2501 2502 2503 2504
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
2505
	struct perf_event *event = vma->vm_file->private_data;
2506

2507
	atomic_inc(&event->mmap_count);
2508 2509 2510 2511
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
2512
	struct perf_event *event = vma->vm_file->private_data;
2513

2514 2515
	WARN_ON_ONCE(event->ctx->parent_ctx);
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2516
		unsigned long size = perf_data_size(event->data);
2517 2518
		struct user_struct *user = current_user();

2519
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2520
		vma->vm_mm->locked_vm -= event->data->nr_locked;
2521
		perf_mmap_data_release(event);
2522
		mutex_unlock(&event->mmap_mutex);
2523
	}
2524 2525
}

2526
static const struct vm_operations_struct perf_mmap_vmops = {
2527 2528 2529 2530
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
2531 2532 2533 2534
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
2535
	struct perf_event *event = file->private_data;
2536
	unsigned long user_locked, user_lock_limit;
2537
	struct user_struct *user = current_user();
2538
	unsigned long locked, lock_limit;
2539
	struct perf_mmap_data *data;
2540 2541
	unsigned long vma_size;
	unsigned long nr_pages;
2542
	long user_extra, extra;
2543
	int ret = 0;
2544

2545
	if (!(vma->vm_flags & VM_SHARED))
2546
		return -EINVAL;
2547 2548 2549 2550

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

2551 2552 2553 2554 2555
	/*
	 * If we have data pages ensure they're a power-of-two number, so we
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
2556 2557
		return -EINVAL;

2558
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
2559 2560
		return -EINVAL;

2561 2562
	if (vma->vm_pgoff != 0)
		return -EINVAL;
2563

2564 2565 2566
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
	if (event->output) {
2567 2568 2569 2570
		ret = -EINVAL;
		goto unlock;
	}

2571 2572
	if (atomic_inc_not_zero(&event->mmap_count)) {
		if (nr_pages != event->data->nr_pages)
2573 2574 2575 2576
			ret = -EINVAL;
		goto unlock;
	}

2577
	user_extra = nr_pages + 1;
2578
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
2579 2580 2581 2582 2583 2584

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

2585
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2586

2587 2588 2589
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
2590

2591
	lock_limit = rlimit(RLIMIT_MEMLOCK);
2592
	lock_limit >>= PAGE_SHIFT;
2593
	locked = vma->vm_mm->locked_vm + extra;
2594

2595 2596
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
2597 2598 2599
		ret = -EPERM;
		goto unlock;
	}
2600

2601
	WARN_ON(event->data);
2602 2603 2604 2605

	data = perf_mmap_data_alloc(event, nr_pages);
	ret = -ENOMEM;
	if (!data)
2606 2607
		goto unlock;

2608 2609 2610
	ret = 0;
	perf_mmap_data_init(event, data);

2611
	atomic_set(&event->mmap_count, 1);
2612
	atomic_long_add(user_extra, &user->locked_vm);
2613
	vma->vm_mm->locked_vm += extra;
2614
	event->data->nr_locked = extra;
2615
	if (vma->vm_flags & VM_WRITE)
2616
		event->data->writable = 1;
2617

2618
unlock:
2619
	mutex_unlock(&event->mmap_mutex);
2620 2621 2622

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
2623 2624

	return ret;
2625 2626
}

P
Peter Zijlstra 已提交
2627 2628 2629
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
2630
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
2631 2632 2633
	int retval;

	mutex_lock(&inode->i_mutex);
2634
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
2635 2636 2637 2638 2639 2640 2641 2642
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
2643 2644 2645 2646
static const struct file_operations perf_fops = {
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
2647 2648
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
2649
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
2650
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
2651 2652
};

2653
/*
2654
 * Perf event wakeup
2655 2656 2657 2658 2659
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

2660
void perf_event_wakeup(struct perf_event *event)
2661
{
2662
	wake_up_all(&event->waitq);
2663

2664 2665 2666
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
2667
	}
2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678
}

/*
 * Pending wakeups
 *
 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
 *
 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
 * single linked list and use cmpxchg() to add entries lockless.
 */

2679
static void perf_pending_event(struct perf_pending_entry *entry)
2680
{
2681 2682
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
2683

2684 2685 2686
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
2687 2688
	}

2689 2690 2691
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
2692 2693 2694
	}
}

2695
#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2696

2697
static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2698 2699 2700
	PENDING_TAIL,
};

2701 2702
static void perf_pending_queue(struct perf_pending_entry *entry,
			       void (*func)(struct perf_pending_entry *))
2703
{
2704
	struct perf_pending_entry **head;
2705

2706
	if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2707 2708
		return;

2709 2710 2711
	entry->func = func;

	head = &get_cpu_var(perf_pending_head);
2712 2713

	do {
2714 2715
		entry->next = *head;
	} while (cmpxchg(head, entry->next, entry) != entry->next);
2716

2717
	set_perf_event_pending();
2718

2719
	put_cpu_var(perf_pending_head);
2720 2721 2722 2723
}

static int __perf_pending_run(void)
{
2724
	struct perf_pending_entry *list;
2725 2726
	int nr = 0;

2727
	list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2728
	while (list != PENDING_TAIL) {
2729 2730
		void (*func)(struct perf_pending_entry *);
		struct perf_pending_entry *entry = list;
2731 2732 2733

		list = list->next;

2734 2735
		func = entry->func;
		entry->next = NULL;
2736 2737 2738 2739 2740 2741 2742
		/*
		 * Ensure we observe the unqueue before we issue the wakeup,
		 * so that we won't be waiting forever.
		 * -- see perf_not_pending().
		 */
		smp_wmb();

2743
		func(entry);
2744 2745 2746 2747 2748 2749
		nr++;
	}

	return nr;
}

2750
static inline int perf_not_pending(struct perf_event *event)
2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764
{
	/*
	 * If we flush on whatever cpu we run, there is a chance we don't
	 * need to wait.
	 */
	get_cpu();
	__perf_pending_run();
	put_cpu();

	/*
	 * Ensure we see the proper queue state before going to sleep
	 * so that we do not miss the wakeup. -- see perf_pending_handle()
	 */
	smp_rmb();
2765
	return event->pending.next == NULL;
2766 2767
}

2768
static void perf_pending_sync(struct perf_event *event)
2769
{
2770
	wait_event(event->waitq, perf_not_pending(event));
2771 2772
}

2773
void perf_event_do_pending(void)
2774 2775 2776 2777
{
	__perf_pending_run();
}

2778 2779 2780 2781
/*
 * Callchain support -- arch specific
 */

2782
__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2783 2784 2785 2786
{
	return NULL;
}

2787
#ifdef CONFIG_EVENT_TRACING
2788 2789 2790 2791
__weak
void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip, int skip)
{
}
2792
#endif
2793

2794 2795 2796
/*
 * Output
 */
2797 2798
static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
			      unsigned long offset, unsigned long head)
2799 2800 2801 2802 2803 2804
{
	unsigned long mask;

	if (!data->writable)
		return true;

2805
	mask = perf_data_size(data) - 1;
2806 2807 2808 2809 2810 2811 2812 2813 2814 2815

	offset = (offset - tail) & mask;
	head   = (head   - tail) & mask;

	if ((int)(head - offset) < 0)
		return false;

	return true;
}

2816
static void perf_output_wakeup(struct perf_output_handle *handle)
2817
{
2818 2819
	atomic_set(&handle->data->poll, POLL_IN);

2820
	if (handle->nmi) {
2821 2822 2823
		handle->event->pending_wakeup = 1;
		perf_pending_queue(&handle->event->pending,
				   perf_pending_event);
2824
	} else
2825
		perf_event_wakeup(handle->event);
2826 2827
}

2828 2829 2830
/*
 * Curious locking construct.
 *
2831 2832
 * We need to ensure a later event_id doesn't publish a head when a former
 * event_id isn't done writing. However since we need to deal with NMIs we
2833 2834 2835 2836 2837 2838
 * cannot fully serialize things.
 *
 * What we do is serialize between CPUs so we only have to deal with NMI
 * nesting on a single CPU.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
2839
 * event_id completes.
2840 2841 2842 2843
 */
static void perf_output_lock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
2844
	int cur, cpu = get_cpu();
2845 2846 2847

	handle->locked = 0;

2848 2849 2850 2851 2852 2853 2854 2855
	for (;;) {
		cur = atomic_cmpxchg(&data->lock, -1, cpu);
		if (cur == -1) {
			handle->locked = 1;
			break;
		}
		if (cur == cpu)
			break;
2856 2857

		cpu_relax();
2858
	}
2859 2860 2861 2862 2863
}

static void perf_output_unlock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
2864 2865
	unsigned long head;
	int cpu;
2866

2867
	data->done_head = data->head;
2868 2869 2870 2871 2872 2873 2874 2875 2876 2877

	if (!handle->locked)
		goto out;

again:
	/*
	 * The xchg implies a full barrier that ensures all writes are done
	 * before we publish the new head, matched by a rmb() in userspace when
	 * reading this position.
	 */
2878
	while ((head = atomic_long_xchg(&data->done_head, 0)))
2879 2880 2881
		data->user_page->data_head = head;

	/*
2882
	 * NMI can happen here, which means we can miss a done_head update.
2883 2884
	 */

2885
	cpu = atomic_xchg(&data->lock, -1);
2886 2887 2888 2889 2890
	WARN_ON_ONCE(cpu != smp_processor_id());

	/*
	 * Therefore we have to validate we did not indeed do so.
	 */
2891
	if (unlikely(atomic_long_read(&data->done_head))) {
2892 2893 2894
		/*
		 * Since we had it locked, we can lock it again.
		 */
2895
		while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2896 2897 2898 2899 2900
			cpu_relax();

		goto again;
	}

2901
	if (atomic_xchg(&data->wakeup, 0))
2902 2903
		perf_output_wakeup(handle);
out:
2904
	put_cpu();
2905 2906
}

2907 2908
void perf_output_copy(struct perf_output_handle *handle,
		      const void *buf, unsigned int len)
2909 2910
{
	unsigned int pages_mask;
2911
	unsigned long offset;
2912 2913 2914 2915 2916 2917 2918 2919
	unsigned int size;
	void **pages;

	offset		= handle->offset;
	pages_mask	= handle->data->nr_pages - 1;
	pages		= handle->data->data_pages;

	do {
2920 2921
		unsigned long page_offset;
		unsigned long page_size;
2922 2923 2924
		int nr;

		nr	    = (offset >> PAGE_SHIFT) & pages_mask;
2925 2926 2927
		page_size   = 1UL << (handle->data->data_order + PAGE_SHIFT);
		page_offset = offset & (page_size - 1);
		size	    = min_t(unsigned int, page_size - page_offset, len);
2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944

		memcpy(pages[nr] + page_offset, buf, size);

		len	    -= size;
		buf	    += size;
		offset	    += size;
	} while (len);

	handle->offset = offset;

	/*
	 * Check we didn't copy past our reservation window, taking the
	 * possible unsigned int wrap into account.
	 */
	WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
}

2945
int perf_output_begin(struct perf_output_handle *handle,
2946
		      struct perf_event *event, unsigned int size,
2947
		      int nmi, int sample)
2948
{
2949
	struct perf_event *output_event;
2950
	struct perf_mmap_data *data;
2951
	unsigned long tail, offset, head;
2952 2953 2954 2955 2956 2957
	int have_lost;
	struct {
		struct perf_event_header header;
		u64			 id;
		u64			 lost;
	} lost_event;
2958

2959
	rcu_read_lock();
2960
	/*
2961
	 * For inherited events we send all the output towards the parent.
2962
	 */
2963 2964
	if (event->parent)
		event = event->parent;
2965

2966 2967 2968
	output_event = rcu_dereference(event->output);
	if (output_event)
		event = output_event;
2969

2970
	data = rcu_dereference(event->data);
2971 2972 2973
	if (!data)
		goto out;

2974
	handle->data	= data;
2975
	handle->event	= event;
2976 2977
	handle->nmi	= nmi;
	handle->sample	= sample;
2978

2979
	if (!data->nr_pages)
2980
		goto fail;
2981

2982 2983 2984 2985
	have_lost = atomic_read(&data->lost);
	if (have_lost)
		size += sizeof(lost_event);

2986 2987
	perf_output_lock(handle);

2988
	do {
2989 2990 2991 2992 2993 2994 2995
		/*
		 * Userspace could choose to issue a mb() before updating the
		 * tail pointer. So that all reads will be completed before the
		 * write is issued.
		 */
		tail = ACCESS_ONCE(data->user_page->data_tail);
		smp_rmb();
2996
		offset = head = atomic_long_read(&data->head);
P
Peter Zijlstra 已提交
2997
		head += size;
2998
		if (unlikely(!perf_output_space(data, tail, offset, head)))
2999
			goto fail;
3000
	} while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
3001

3002
	handle->offset	= offset;
3003
	handle->head	= head;
3004

3005
	if (head - tail > data->watermark)
3006
		atomic_set(&data->wakeup, 1);
3007

3008
	if (have_lost) {
3009
		lost_event.header.type = PERF_RECORD_LOST;
3010 3011
		lost_event.header.misc = 0;
		lost_event.header.size = sizeof(lost_event);
3012
		lost_event.id          = event->id;
3013 3014 3015 3016 3017
		lost_event.lost        = atomic_xchg(&data->lost, 0);

		perf_output_put(handle, lost_event);
	}

3018
	return 0;
3019

3020
fail:
3021 3022
	atomic_inc(&data->lost);
	perf_output_unlock(handle);
3023 3024
out:
	rcu_read_unlock();
3025

3026 3027
	return -ENOSPC;
}
3028

3029
void perf_output_end(struct perf_output_handle *handle)
3030
{
3031
	struct perf_event *event = handle->event;
3032 3033
	struct perf_mmap_data *data = handle->data;

3034
	int wakeup_events = event->attr.wakeup_events;
P
Peter Zijlstra 已提交
3035

3036
	if (handle->sample && wakeup_events) {
3037
		int events = atomic_inc_return(&data->events);
P
Peter Zijlstra 已提交
3038
		if (events >= wakeup_events) {
3039
			atomic_sub(wakeup_events, &data->events);
3040
			atomic_set(&data->wakeup, 1);
P
Peter Zijlstra 已提交
3041
		}
3042 3043 3044
	}

	perf_output_unlock(handle);
3045
	rcu_read_unlock();
3046 3047
}

3048
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3049 3050
{
	/*
3051
	 * only top level events have the pid namespace they were created in
3052
	 */
3053 3054
	if (event->parent)
		event = event->parent;
3055

3056
	return task_tgid_nr_ns(p, event->ns);
3057 3058
}

3059
static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3060 3061
{
	/*
3062
	 * only top level events have the pid namespace they were created in
3063
	 */
3064 3065
	if (event->parent)
		event = event->parent;
3066

3067
	return task_pid_nr_ns(p, event->ns);
3068 3069
}

3070
static void perf_output_read_one(struct perf_output_handle *handle,
3071
				 struct perf_event *event)
3072
{
3073
	u64 read_format = event->attr.read_format;
3074 3075 3076
	u64 values[4];
	int n = 0;

3077
	values[n++] = atomic64_read(&event->count);
3078
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3079 3080
		values[n++] = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
3081 3082
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3083 3084
		values[n++] = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
3085 3086
	}
	if (read_format & PERF_FORMAT_ID)
3087
		values[n++] = primary_event_id(event);
3088 3089 3090 3091 3092

	perf_output_copy(handle, values, n * sizeof(u64));
}

/*
3093
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3094 3095
 */
static void perf_output_read_group(struct perf_output_handle *handle,
3096
			    struct perf_event *event)
3097
{
3098 3099
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = leader->total_time_enabled;

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = leader->total_time_running;

3111
	if (leader != event)
3112 3113 3114 3115
		leader->pmu->read(leader);

	values[n++] = atomic64_read(&leader->count);
	if (read_format & PERF_FORMAT_ID)
3116
		values[n++] = primary_event_id(leader);
3117 3118 3119

	perf_output_copy(handle, values, n * sizeof(u64));

3120
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3121 3122
		n = 0;

3123
		if (sub != event)
3124 3125 3126 3127
			sub->pmu->read(sub);

		values[n++] = atomic64_read(&sub->count);
		if (read_format & PERF_FORMAT_ID)
3128
			values[n++] = primary_event_id(sub);
3129 3130 3131 3132 3133 3134

		perf_output_copy(handle, values, n * sizeof(u64));
	}
}

static void perf_output_read(struct perf_output_handle *handle,
3135
			     struct perf_event *event)
3136
{
3137 3138
	if (event->attr.read_format & PERF_FORMAT_GROUP)
		perf_output_read_group(handle, event);
3139
	else
3140
		perf_output_read_one(handle, event);
3141 3142
}

3143 3144 3145
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
3146
			struct perf_event *event)
3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
3177
		perf_output_read(handle, event);
3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

			perf_output_copy(handle, data->callchain, size);
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
			perf_output_copy(handle, data->raw->data,
					 data->raw->size);
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
3215
			 struct perf_event *event,
3216
			 struct pt_regs *regs)
3217
{
3218
	u64 sample_type = event->attr.sample_type;
3219

3220
	data->type = sample_type;
3221

3222
	header->type = PERF_RECORD_SAMPLE;
3223 3224 3225 3226
	header->size = sizeof(*header);

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
3227

3228
	if (sample_type & PERF_SAMPLE_IP) {
3229 3230 3231
		data->ip = perf_instruction_pointer(regs);

		header->size += sizeof(data->ip);
3232
	}
3233

3234
	if (sample_type & PERF_SAMPLE_TID) {
3235
		/* namespace issues */
3236 3237
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
3238

3239
		header->size += sizeof(data->tid_entry);
3240 3241
	}

3242
	if (sample_type & PERF_SAMPLE_TIME) {
P
Peter Zijlstra 已提交
3243
		data->time = perf_clock();
3244

3245
		header->size += sizeof(data->time);
3246 3247
	}

3248
	if (sample_type & PERF_SAMPLE_ADDR)
3249
		header->size += sizeof(data->addr);
3250

3251
	if (sample_type & PERF_SAMPLE_ID) {
3252
		data->id = primary_event_id(event);
3253

3254 3255 3256 3257
		header->size += sizeof(data->id);
	}

	if (sample_type & PERF_SAMPLE_STREAM_ID) {
3258
		data->stream_id = event->id;
3259 3260 3261

		header->size += sizeof(data->stream_id);
	}
3262

3263
	if (sample_type & PERF_SAMPLE_CPU) {
3264 3265
		data->cpu_entry.cpu		= raw_smp_processor_id();
		data->cpu_entry.reserved	= 0;
3266

3267
		header->size += sizeof(data->cpu_entry);
3268 3269
	}

3270
	if (sample_type & PERF_SAMPLE_PERIOD)
3271
		header->size += sizeof(data->period);
3272

3273
	if (sample_type & PERF_SAMPLE_READ)
3274
		header->size += perf_event_read_size(event);
3275

3276
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3277
		int size = 1;
3278

3279 3280 3281 3282 3283 3284
		data->callchain = perf_callchain(regs);

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
3285 3286
	}

3287
	if (sample_type & PERF_SAMPLE_RAW) {
3288 3289 3290 3291 3292 3293 3294 3295
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
3296
		header->size += size;
3297
	}
3298
}
3299

3300
static void perf_event_output(struct perf_event *event, int nmi,
3301 3302 3303 3304 3305
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
3306

3307
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
3308

3309
	if (perf_output_begin(&handle, event, header.size, nmi, 1))
3310
		return;
3311

3312
	perf_output_sample(&handle, &header, data, event);
3313

3314
	perf_output_end(&handle);
3315 3316
}

3317
/*
3318
 * read event_id
3319 3320 3321 3322 3323 3324 3325 3326 3327 3328
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
3329
perf_event_read_event(struct perf_event *event,
3330 3331 3332
			struct task_struct *task)
{
	struct perf_output_handle handle;
3333
	struct perf_read_event read_event = {
3334
		.header = {
3335
			.type = PERF_RECORD_READ,
3336
			.misc = 0,
3337
			.size = sizeof(read_event) + perf_event_read_size(event),
3338
		},
3339 3340
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
3341
	};
3342
	int ret;
3343

3344
	ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3345 3346 3347
	if (ret)
		return;

3348
	perf_output_put(&handle, read_event);
3349
	perf_output_read(&handle, event);
3350

3351 3352 3353
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
3354
/*
P
Peter Zijlstra 已提交
3355 3356 3357
 * task tracking -- fork/exit
 *
 * enabled by: attr.comm | attr.mmap | attr.task
P
Peter Zijlstra 已提交
3358 3359
 */

P
Peter Zijlstra 已提交
3360
struct perf_task_event {
3361
	struct task_struct		*task;
3362
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
3363 3364 3365 3366 3367 3368

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
3369 3370
		u32				tid;
		u32				ptid;
3371
		u64				time;
3372
	} event_id;
P
Peter Zijlstra 已提交
3373 3374
};

3375
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
3376
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3377 3378
{
	struct perf_output_handle handle;
3379
	int size;
P
Peter Zijlstra 已提交
3380
	struct task_struct *task = task_event->task;
3381 3382
	int ret;

3383 3384
	size  = task_event->event_id.header.size;
	ret = perf_output_begin(&handle, event, size, 0, 0);
P
Peter Zijlstra 已提交
3385 3386 3387 3388

	if (ret)
		return;

3389 3390
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
3391

3392 3393
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
3394

3395
	perf_output_put(&handle, task_event->event_id);
3396

P
Peter Zijlstra 已提交
3397 3398 3399
	perf_output_end(&handle);
}

3400
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
3401
{
P
Peter Zijlstra 已提交
3402
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3403 3404
		return 0;

3405 3406 3407
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3408
	if (event->attr.comm || event->attr.mmap || event->attr.task)
P
Peter Zijlstra 已提交
3409 3410 3411 3412 3413
		return 1;

	return 0;
}

3414
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
3415
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3416
{
3417
	struct perf_event *event;
P
Peter Zijlstra 已提交
3418

3419 3420 3421
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
3422 3423 3424
	}
}

3425
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3426 3427
{
	struct perf_cpu_context *cpuctx;
3428
	struct perf_event_context *ctx = task_event->task_ctx;
P
Peter Zijlstra 已提交
3429

3430
	rcu_read_lock();
P
Peter Zijlstra 已提交
3431
	cpuctx = &get_cpu_var(perf_cpu_context);
3432
	perf_event_task_ctx(&cpuctx->ctx, task_event);
3433
	if (!ctx)
P
Peter Zijlstra 已提交
3434
		ctx = rcu_dereference(current->perf_event_ctxp);
P
Peter Zijlstra 已提交
3435
	if (ctx)
3436
		perf_event_task_ctx(ctx, task_event);
3437
	put_cpu_var(perf_cpu_context);
P
Peter Zijlstra 已提交
3438 3439 3440
	rcu_read_unlock();
}

3441 3442
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
3443
			      int new)
P
Peter Zijlstra 已提交
3444
{
P
Peter Zijlstra 已提交
3445
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
3446

3447 3448 3449
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
3450 3451
		return;

P
Peter Zijlstra 已提交
3452
	task_event = (struct perf_task_event){
3453 3454
		.task	  = task,
		.task_ctx = task_ctx,
3455
		.event_id    = {
P
Peter Zijlstra 已提交
3456
			.header = {
3457
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3458
				.misc = 0,
3459
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
3460
			},
3461 3462
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
3463 3464
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
3465
			.time = perf_clock(),
P
Peter Zijlstra 已提交
3466 3467 3468
		},
	};

3469
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
3470 3471
}

3472
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
3473
{
3474
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
3475 3476
}

3477 3478 3479 3480 3481
/*
 * comm tracking
 */

struct perf_comm_event {
3482 3483
	struct task_struct	*task;
	char			*comm;
3484 3485 3486 3487 3488 3489 3490
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
3491
	} event_id;
3492 3493
};

3494
static void perf_event_comm_output(struct perf_event *event,
3495 3496 3497
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
3498 3499
	int size = comm_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3500 3501 3502 3503

	if (ret)
		return;

3504 3505
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3506

3507
	perf_output_put(&handle, comm_event->event_id);
3508 3509 3510 3511 3512
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
	perf_output_end(&handle);
}

3513
static int perf_event_comm_match(struct perf_event *event)
3514
{
P
Peter Zijlstra 已提交
3515
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3516 3517
		return 0;

3518 3519 3520
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3521
	if (event->attr.comm)
3522 3523 3524 3525 3526
		return 1;

	return 0;
}

3527
static void perf_event_comm_ctx(struct perf_event_context *ctx,
3528 3529
				  struct perf_comm_event *comm_event)
{
3530
	struct perf_event *event;
3531

3532 3533 3534
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
3535 3536 3537
	}
}

3538
static void perf_event_comm_event(struct perf_comm_event *comm_event)
3539 3540
{
	struct perf_cpu_context *cpuctx;
3541
	struct perf_event_context *ctx;
3542
	unsigned int size;
3543
	char comm[TASK_COMM_LEN];
3544

3545
	memset(comm, 0, sizeof(comm));
3546
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
3547
	size = ALIGN(strlen(comm)+1, sizeof(u64));
3548 3549 3550 3551

	comm_event->comm = comm;
	comm_event->comm_size = size;

3552
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3553

3554
	rcu_read_lock();
3555
	cpuctx = &get_cpu_var(perf_cpu_context);
3556 3557
	perf_event_comm_ctx(&cpuctx->ctx, comm_event);
	ctx = rcu_dereference(current->perf_event_ctxp);
3558
	if (ctx)
3559
		perf_event_comm_ctx(ctx, comm_event);
3560
	put_cpu_var(perf_cpu_context);
3561
	rcu_read_unlock();
3562 3563
}

3564
void perf_event_comm(struct task_struct *task)
3565
{
3566 3567
	struct perf_comm_event comm_event;

3568 3569
	if (task->perf_event_ctxp)
		perf_event_enable_on_exec(task);
3570

3571
	if (!atomic_read(&nr_comm_events))
3572
		return;
3573

3574
	comm_event = (struct perf_comm_event){
3575
		.task	= task,
3576 3577
		/* .comm      */
		/* .comm_size */
3578
		.event_id  = {
3579
			.header = {
3580
				.type = PERF_RECORD_COMM,
3581 3582 3583 3584 3585
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
3586 3587 3588
		},
	};

3589
	perf_event_comm_event(&comm_event);
3590 3591
}

3592 3593 3594 3595 3596
/*
 * mmap tracking
 */

struct perf_mmap_event {
3597 3598 3599 3600
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
3601 3602 3603 3604 3605 3606 3607 3608 3609

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
3610
	} event_id;
3611 3612
};

3613
static void perf_event_mmap_output(struct perf_event *event,
3614 3615 3616
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
3617 3618
	int size = mmap_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3619 3620 3621 3622

	if (ret)
		return;

3623 3624
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
3625

3626
	perf_output_put(&handle, mmap_event->event_id);
3627 3628
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
3629
	perf_output_end(&handle);
3630 3631
}

3632
static int perf_event_mmap_match(struct perf_event *event,
3633 3634
				   struct perf_mmap_event *mmap_event)
{
P
Peter Zijlstra 已提交
3635
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3636 3637
		return 0;

3638 3639 3640
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3641
	if (event->attr.mmap)
3642 3643 3644 3645 3646
		return 1;

	return 0;
}

3647
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3648 3649
				  struct perf_mmap_event *mmap_event)
{
3650
	struct perf_event *event;
3651

3652 3653 3654
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_mmap_match(event, mmap_event))
			perf_event_mmap_output(event, mmap_event);
3655 3656 3657
	}
}

3658
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3659 3660
{
	struct perf_cpu_context *cpuctx;
3661
	struct perf_event_context *ctx;
3662 3663
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
3664 3665 3666
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
3667
	const char *name;
3668

3669 3670
	memset(tmp, 0, sizeof(tmp));

3671
	if (file) {
3672 3673 3674 3675 3676 3677
		/*
		 * d_path works from the end of the buffer backwards, so we
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3678 3679 3680 3681
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
3682
		name = d_path(&file->f_path, buf, PATH_MAX);
3683 3684 3685 3686 3687
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
3688 3689 3690
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
3691
			goto got_name;
3692
		}
3693 3694 3695 3696 3697 3698

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
		}

3699 3700 3701 3702 3703
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
3704
	size = ALIGN(strlen(name)+1, sizeof(u64));
3705 3706 3707 3708

	mmap_event->file_name = name;
	mmap_event->file_size = size;

3709
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3710

3711
	rcu_read_lock();
3712
	cpuctx = &get_cpu_var(perf_cpu_context);
3713 3714
	perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
	ctx = rcu_dereference(current->perf_event_ctxp);
3715
	if (ctx)
3716
		perf_event_mmap_ctx(ctx, mmap_event);
3717
	put_cpu_var(perf_cpu_context);
3718 3719
	rcu_read_unlock();

3720 3721 3722
	kfree(buf);
}

3723
void __perf_event_mmap(struct vm_area_struct *vma)
3724
{
3725 3726
	struct perf_mmap_event mmap_event;

3727
	if (!atomic_read(&nr_mmap_events))
3728 3729 3730
		return;

	mmap_event = (struct perf_mmap_event){
3731
		.vma	= vma,
3732 3733
		/* .file_name */
		/* .file_size */
3734
		.event_id  = {
3735
			.header = {
3736
				.type = PERF_RECORD_MMAP,
3737 3738 3739 3740 3741
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
3742 3743
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
3744
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
3745 3746 3747
		},
	};

3748
	perf_event_mmap_event(&mmap_event);
3749 3750
}

3751 3752 3753 3754
/*
 * IRQ throttle logging
 */

3755
static void perf_log_throttle(struct perf_event *event, int enable)
3756 3757 3758 3759 3760 3761 3762
{
	struct perf_output_handle handle;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
3763
		u64				id;
3764
		u64				stream_id;
3765 3766
	} throttle_event = {
		.header = {
3767
			.type = PERF_RECORD_THROTTLE,
3768 3769 3770
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
3771
		.time		= perf_clock(),
3772 3773
		.id		= primary_event_id(event),
		.stream_id	= event->id,
3774 3775
	};

3776
	if (enable)
3777
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3778

3779
	ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3780 3781 3782 3783 3784 3785 3786
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
	perf_output_end(&handle);
}

3787
/*
3788
 * Generic event overflow handling, sampling.
3789 3790
 */

3791
static int __perf_event_overflow(struct perf_event *event, int nmi,
3792 3793
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
3794
{
3795 3796
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
3797 3798
	int ret = 0;

3799
	throttle = (throttle && event->pmu->unthrottle != NULL);
3800

3801
	if (!throttle) {
3802
		hwc->interrupts++;
3803
	} else {
3804 3805
		if (hwc->interrupts != MAX_INTERRUPTS) {
			hwc->interrupts++;
3806
			if (HZ * hwc->interrupts >
3807
					(u64)sysctl_perf_event_sample_rate) {
3808
				hwc->interrupts = MAX_INTERRUPTS;
3809
				perf_log_throttle(event, 0);
3810 3811 3812 3813
				ret = 1;
			}
		} else {
			/*
3814
			 * Keep re-disabling events even though on the previous
3815
			 * pass we disabled it - just in case we raced with a
3816
			 * sched-in and the event got enabled again:
3817
			 */
3818 3819 3820
			ret = 1;
		}
	}
3821

3822
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
3823
		u64 now = perf_clock();
3824
		s64 delta = now - hwc->freq_time_stamp;
3825

3826
		hwc->freq_time_stamp = now;
3827

3828 3829
		if (delta > 0 && delta < 2*TICK_NSEC)
			perf_adjust_period(event, delta, hwc->last_period);
3830 3831
	}

3832 3833
	/*
	 * XXX event_limit might not quite work as expected on inherited
3834
	 * events
3835 3836
	 */

3837 3838
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
3839
		ret = 1;
3840
		event->pending_kill = POLL_HUP;
3841
		if (nmi) {
3842 3843 3844
			event->pending_disable = 1;
			perf_pending_queue(&event->pending,
					   perf_pending_event);
3845
		} else
3846
			perf_event_disable(event);
3847 3848
	}

3849 3850 3851 3852 3853
	if (event->overflow_handler)
		event->overflow_handler(event, nmi, data, regs);
	else
		perf_event_output(event, nmi, data, regs);

3854
	return ret;
3855 3856
}

3857
int perf_event_overflow(struct perf_event *event, int nmi,
3858 3859
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
3860
{
3861
	return __perf_event_overflow(event, nmi, 1, data, regs);
3862 3863
}

3864
/*
3865
 * Generic software event infrastructure
3866 3867
 */

3868
/*
3869 3870
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
3871 3872 3873 3874
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

3875
static u64 perf_swevent_set_period(struct perf_event *event)
3876
{
3877
	struct hw_perf_event *hwc = &event->hw;
3878 3879 3880 3881 3882
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
3883 3884

again:
3885 3886 3887
	old = val = atomic64_read(&hwc->period_left);
	if (val < 0)
		return 0;
3888

3889 3890 3891 3892 3893
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
	if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
		goto again;
3894

3895
	return nr;
3896 3897
}

3898
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
3899 3900
				    int nmi, struct perf_sample_data *data,
				    struct pt_regs *regs)
3901
{
3902
	struct hw_perf_event *hwc = &event->hw;
3903
	int throttle = 0;
3904

3905
	data->period = event->hw.last_period;
3906 3907
	if (!overflow)
		overflow = perf_swevent_set_period(event);
3908

3909 3910
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
3911

3912
	for (; overflow; overflow--) {
3913
		if (__perf_event_overflow(event, nmi, throttle,
3914
					    data, regs)) {
3915 3916 3917 3918 3919 3920
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
3921
		throttle = 1;
3922
	}
3923 3924
}

3925
static void perf_swevent_unthrottle(struct perf_event *event)
3926 3927
{
	/*
3928
	 * Nothing to do, we already reset hwc->interrupts.
3929
	 */
3930
}
3931

3932
static void perf_swevent_add(struct perf_event *event, u64 nr,
3933 3934
			       int nmi, struct perf_sample_data *data,
			       struct pt_regs *regs)
3935
{
3936
	struct hw_perf_event *hwc = &event->hw;
3937

3938
	atomic64_add(nr, &event->count);
3939

3940 3941 3942
	if (!regs)
		return;

3943 3944
	if (!hwc->sample_period)
		return;
3945

3946 3947 3948 3949
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
		return perf_swevent_overflow(event, 1, nmi, data, regs);

	if (atomic64_add_negative(nr, &hwc->period_left))
3950
		return;
3951

3952
	perf_swevent_overflow(event, 0, nmi, data, regs);
3953 3954
}

3955
static int perf_swevent_is_counting(struct perf_event *event)
3956
{
3957
	/*
3958
	 * The event is active, we're good!
3959
	 */
3960
	if (event->state == PERF_EVENT_STATE_ACTIVE)
3961 3962
		return 1;

3963
	/*
3964
	 * The event is off/error, not counting.
3965
	 */
3966
	if (event->state != PERF_EVENT_STATE_INACTIVE)
3967 3968 3969
		return 0;

	/*
3970
	 * The event is inactive, if the context is active
3971 3972
	 * we're part of a group that didn't make it on the 'pmu',
	 * not counting.
3973
	 */
3974
	if (event->ctx->is_active)
3975 3976 3977 3978 3979 3980 3981 3982
		return 0;

	/*
	 * We're inactive and the context is too, this means the
	 * task is scheduled out, we're counting events that happen
	 * to us, like migration events.
	 */
	return 1;
3983 3984
}

L
Li Zefan 已提交
3985 3986 3987
static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data);

3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

4002
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
4003
				enum perf_type_id type,
L
Li Zefan 已提交
4004 4005 4006
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
4007
{
4008 4009 4010
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

4011
	if (!perf_swevent_is_counting(event))
4012 4013
		return 0;

4014
	if (event->attr.type != type)
4015
		return 0;
4016

4017
	if (event->attr.config != event_id)
4018 4019
		return 0;

4020 4021
	if (perf_exclude_event(event, regs))
		return 0;
4022

L
Li Zefan 已提交
4023 4024 4025 4026
	if (event->attr.type == PERF_TYPE_TRACEPOINT &&
	    !perf_tp_event_match(event, data))
		return 0;

4027 4028 4029
	return 1;
}

4030
static void perf_swevent_ctx_event(struct perf_event_context *ctx,
4031
				     enum perf_type_id type,
4032
				     u32 event_id, u64 nr, int nmi,
4033 4034
				     struct perf_sample_data *data,
				     struct pt_regs *regs)
4035
{
4036
	struct perf_event *event;
4037

4038
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
L
Li Zefan 已提交
4039
		if (perf_swevent_match(event, type, event_id, data, regs))
4040
			perf_swevent_add(event, nr, nmi, data, regs);
4041 4042 4043
	}
}

4044
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
4045
{
4046 4047
	struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
	int rctx;
4048

P
Peter Zijlstra 已提交
4049
	if (in_nmi())
4050
		rctx = 3;
4051
	else if (in_irq())
4052
		rctx = 2;
4053
	else if (in_softirq())
4054
		rctx = 1;
4055
	else
4056
		rctx = 0;
P
Peter Zijlstra 已提交
4057

4058 4059
	if (cpuctx->recursion[rctx]) {
		put_cpu_var(perf_cpu_context);
4060
		return -1;
4061
	}
P
Peter Zijlstra 已提交
4062

4063 4064
	cpuctx->recursion[rctx]++;
	barrier();
P
Peter Zijlstra 已提交
4065

4066
	return rctx;
P
Peter Zijlstra 已提交
4067
}
I
Ingo Molnar 已提交
4068
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
4069

4070
void perf_swevent_put_recursion_context(int rctx)
4071
{
4072 4073
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	barrier();
4074
	cpuctx->recursion[rctx]--;
4075
	put_cpu_var(perf_cpu_context);
4076
}
I
Ingo Molnar 已提交
4077
EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
P
Peter Zijlstra 已提交
4078

4079 4080 4081 4082
static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
				    u64 nr, int nmi,
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
4083
{
4084
	struct perf_cpu_context *cpuctx;
4085
	struct perf_event_context *ctx;
4086

4087
	cpuctx = &__get_cpu_var(perf_cpu_context);
4088
	rcu_read_lock();
4089
	perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
4090
				 nr, nmi, data, regs);
4091 4092 4093 4094
	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
4095
	ctx = rcu_dereference(current->perf_event_ctxp);
4096
	if (ctx)
4097
		perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
4098
	rcu_read_unlock();
4099
}
4100

4101
void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4102
			    struct pt_regs *regs, u64 addr)
4103
{
4104
	struct perf_sample_data data;
4105 4106 4107 4108 4109
	int rctx;

	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
4110

4111
	perf_sample_data_init(&data, addr);
4112

4113
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4114 4115

	perf_swevent_put_recursion_context(rctx);
4116 4117
}

4118
static void perf_swevent_read(struct perf_event *event)
4119 4120 4121
{
}

4122
static int perf_swevent_enable(struct perf_event *event)
4123
{
4124
	struct hw_perf_event *hwc = &event->hw;
4125 4126 4127

	if (hwc->sample_period) {
		hwc->last_period = hwc->sample_period;
4128
		perf_swevent_set_period(event);
4129
	}
4130 4131 4132
	return 0;
}

4133
static void perf_swevent_disable(struct perf_event *event)
4134 4135 4136
{
}

4137
static const struct pmu perf_ops_generic = {
4138 4139 4140 4141
	.enable		= perf_swevent_enable,
	.disable	= perf_swevent_disable,
	.read		= perf_swevent_read,
	.unthrottle	= perf_swevent_unthrottle,
4142 4143
};

4144
/*
4145
 * hrtimer based swevent callback
4146 4147
 */

4148
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4149 4150 4151
{
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
4152
	struct pt_regs *regs;
4153
	struct perf_event *event;
4154 4155
	u64 period;

4156
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4157
	event->pmu->read(event);
4158

4159
	perf_sample_data_init(&data, 0);
4160
	data.period = event->hw.last_period;
4161
	regs = get_irq_regs();
4162 4163 4164 4165
	/*
	 * In case we exclude kernel IPs or are somehow not in interrupt
	 * context, provide the next best thing, the user IP.
	 */
4166 4167
	if ((event->attr.exclude_kernel || !regs) &&
			!event->attr.exclude_user)
4168
		regs = task_pt_regs(current);
4169

4170
	if (regs) {
4171 4172 4173
		if (!(event->attr.exclude_idle && current->pid == 0))
			if (perf_event_overflow(event, 0, &data, regs))
				ret = HRTIMER_NORESTART;
4174 4175
	}

4176
	period = max_t(u64, 10000, event->hw.sample_period);
4177 4178 4179 4180 4181
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));

	return ret;
}

4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217
static void perf_swevent_start_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;
	if (hwc->sample_period) {
		u64 period;

		if (hwc->remaining) {
			if (hwc->remaining < 0)
				period = 10000;
			else
				period = hwc->remaining;
			hwc->remaining = 0;
		} else {
			period = max_t(u64, 10000, hwc->sample_period);
		}
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(period), 0,
				HRTIMER_MODE_REL, 0);
	}
}

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (hwc->sample_period) {
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
		hwc->remaining = ktime_to_ns(remaining);

		hrtimer_cancel(&hwc->hrtimer);
	}
}

4218
/*
4219
 * Software event: cpu wall time clock
4220 4221
 */

4222
static void cpu_clock_perf_event_update(struct perf_event *event)
4223 4224 4225 4226 4227 4228
{
	int cpu = raw_smp_processor_id();
	s64 prev;
	u64 now;

	now = cpu_clock(cpu);
4229
	prev = atomic64_xchg(&event->hw.prev_count, now);
4230
	atomic64_add(now - prev, &event->count);
4231 4232
}

4233
static int cpu_clock_perf_event_enable(struct perf_event *event)
4234
{
4235
	struct hw_perf_event *hwc = &event->hw;
4236 4237 4238
	int cpu = raw_smp_processor_id();

	atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4239
	perf_swevent_start_hrtimer(event);
4240 4241 4242 4243

	return 0;
}

4244
static void cpu_clock_perf_event_disable(struct perf_event *event)
4245
{
4246
	perf_swevent_cancel_hrtimer(event);
4247
	cpu_clock_perf_event_update(event);
4248 4249
}

4250
static void cpu_clock_perf_event_read(struct perf_event *event)
4251
{
4252
	cpu_clock_perf_event_update(event);
4253 4254
}

4255
static const struct pmu perf_ops_cpu_clock = {
4256 4257 4258
	.enable		= cpu_clock_perf_event_enable,
	.disable	= cpu_clock_perf_event_disable,
	.read		= cpu_clock_perf_event_read,
4259 4260
};

4261
/*
4262
 * Software event: task time clock
4263 4264
 */

4265
static void task_clock_perf_event_update(struct perf_event *event, u64 now)
I
Ingo Molnar 已提交
4266
{
4267
	u64 prev;
I
Ingo Molnar 已提交
4268 4269
	s64 delta;

4270
	prev = atomic64_xchg(&event->hw.prev_count, now);
I
Ingo Molnar 已提交
4271
	delta = now - prev;
4272
	atomic64_add(delta, &event->count);
4273 4274
}

4275
static int task_clock_perf_event_enable(struct perf_event *event)
I
Ingo Molnar 已提交
4276
{
4277
	struct hw_perf_event *hwc = &event->hw;
4278 4279
	u64 now;

4280
	now = event->ctx->time;
4281

4282
	atomic64_set(&hwc->prev_count, now);
4283 4284

	perf_swevent_start_hrtimer(event);
4285 4286

	return 0;
I
Ingo Molnar 已提交
4287 4288
}

4289
static void task_clock_perf_event_disable(struct perf_event *event)
4290
{
4291
	perf_swevent_cancel_hrtimer(event);
4292
	task_clock_perf_event_update(event, event->ctx->time);
4293

4294
}
I
Ingo Molnar 已提交
4295

4296
static void task_clock_perf_event_read(struct perf_event *event)
4297
{
4298 4299 4300
	u64 time;

	if (!in_nmi()) {
4301 4302
		update_context_time(event->ctx);
		time = event->ctx->time;
4303 4304
	} else {
		u64 now = perf_clock();
4305 4306
		u64 delta = now - event->ctx->timestamp;
		time = event->ctx->time + delta;
4307 4308
	}

4309
	task_clock_perf_event_update(event, time);
4310 4311
}

4312
static const struct pmu perf_ops_task_clock = {
4313 4314 4315
	.enable		= task_clock_perf_event_enable,
	.disable	= task_clock_perf_event_disable,
	.read		= task_clock_perf_event_read,
4316 4317
};

4318
#ifdef CONFIG_EVENT_TRACING
L
Li Zefan 已提交
4319

4320
void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4321
		   int entry_size, struct pt_regs *regs)
4322
{
4323
	struct perf_sample_data data;
4324
	struct perf_raw_record raw = {
4325
		.size = entry_size,
4326
		.data = record,
4327 4328
	};

4329 4330
	perf_sample_data_init(&data, addr);
	data.raw = &raw;
4331

4332
	/* Trace events already protected against recursion */
4333
	do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
4334
			 &data, regs);
4335
}
4336
EXPORT_SYMBOL_GPL(perf_tp_event);
4337

L
Li Zefan 已提交
4338 4339 4340 4341 4342 4343 4344 4345 4346
static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}
4347

4348
static void tp_perf_event_destroy(struct perf_event *event)
4349
{
4350
	perf_trace_disable(event->attr.config);
4351 4352
}

4353
static const struct pmu *tp_perf_event_init(struct perf_event *event)
4354
{
4355 4356 4357 4358
	/*
	 * Raw tracepoint data is a severe data leak, only allow root to
	 * have these.
	 */
4359
	if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4360
			perf_paranoid_tracepoint_raw() &&
4361 4362 4363
			!capable(CAP_SYS_ADMIN))
		return ERR_PTR(-EPERM);

4364
	if (perf_trace_enable(event->attr.config))
4365 4366
		return NULL;

4367
	event->destroy = tp_perf_event_destroy;
4368 4369 4370

	return &perf_ops_generic;
}
L
Li Zefan 已提交
4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

4395
#else
L
Li Zefan 已提交
4396 4397 4398 4399 4400 4401 4402

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	return 1;
}

4403
static const struct pmu *tp_perf_event_init(struct perf_event *event)
4404 4405 4406
{
	return NULL;
}
L
Li Zefan 已提交
4407 4408 4409 4410 4411 4412 4413 4414 4415 4416

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

4417
#endif /* CONFIG_EVENT_TRACING */
4418

4419 4420 4421 4422 4423 4424 4425 4426 4427
#ifdef CONFIG_HAVE_HW_BREAKPOINT
static void bp_perf_event_destroy(struct perf_event *event)
{
	release_bp_slot(event);
}

static const struct pmu *bp_perf_event_init(struct perf_event *bp)
{
	int err;
4428 4429

	err = register_perf_hw_breakpoint(bp);
4430 4431 4432 4433 4434 4435 4436 4437
	if (err)
		return ERR_PTR(err);

	bp->destroy = bp_perf_event_destroy;

	return &perf_ops_bp;
}

4438
void perf_bp_event(struct perf_event *bp, void *data)
4439
{
4440 4441 4442
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

4443
	perf_sample_data_init(&sample, bp->attr.bp_addr);
4444 4445 4446

	if (!perf_exclude_event(bp, regs))
		perf_swevent_add(bp, 1, 1, &sample, regs);
4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458
}
#else
static const struct pmu *bp_perf_event_init(struct perf_event *bp)
{
	return NULL;
}

void perf_bp_event(struct perf_event *bp, void *regs)
{
}
#endif

4459
atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4460

4461
static void sw_perf_event_destroy(struct perf_event *event)
4462
{
4463
	u64 event_id = event->attr.config;
4464

4465
	WARN_ON(event->parent);
4466

4467
	atomic_dec(&perf_swevent_enabled[event_id]);
4468 4469
}

4470
static const struct pmu *sw_perf_event_init(struct perf_event *event)
4471
{
4472
	const struct pmu *pmu = NULL;
4473
	u64 event_id = event->attr.config;
4474

4475
	/*
4476
	 * Software events (currently) can't in general distinguish
4477 4478 4479 4480 4481
	 * between user, kernel and hypervisor events.
	 * However, context switches and cpu migrations are considered
	 * to be kernel events, and page faults are never hypervisor
	 * events.
	 */
4482
	switch (event_id) {
4483
	case PERF_COUNT_SW_CPU_CLOCK:
4484
		pmu = &perf_ops_cpu_clock;
4485

4486
		break;
4487
	case PERF_COUNT_SW_TASK_CLOCK:
4488
		/*
4489 4490
		 * If the user instantiates this as a per-cpu event,
		 * use the cpu_clock event instead.
4491
		 */
4492
		if (event->ctx->task)
4493
			pmu = &perf_ops_task_clock;
4494
		else
4495
			pmu = &perf_ops_cpu_clock;
4496

4497
		break;
4498 4499 4500 4501 4502
	case PERF_COUNT_SW_PAGE_FAULTS:
	case PERF_COUNT_SW_PAGE_FAULTS_MIN:
	case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
	case PERF_COUNT_SW_CONTEXT_SWITCHES:
	case PERF_COUNT_SW_CPU_MIGRATIONS:
4503 4504
	case PERF_COUNT_SW_ALIGNMENT_FAULTS:
	case PERF_COUNT_SW_EMULATION_FAULTS:
4505 4506 4507
		if (!event->parent) {
			atomic_inc(&perf_swevent_enabled[event_id]);
			event->destroy = sw_perf_event_destroy;
4508
		}
4509
		pmu = &perf_ops_generic;
4510
		break;
4511
	}
4512

4513
	return pmu;
4514 4515
}

T
Thomas Gleixner 已提交
4516
/*
4517
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
4518
 */
4519 4520
static struct perf_event *
perf_event_alloc(struct perf_event_attr *attr,
4521
		   int cpu,
4522 4523 4524
		   struct perf_event_context *ctx,
		   struct perf_event *group_leader,
		   struct perf_event *parent_event,
4525
		   perf_overflow_handler_t overflow_handler,
4526
		   gfp_t gfpflags)
T
Thomas Gleixner 已提交
4527
{
4528
	const struct pmu *pmu;
4529 4530
	struct perf_event *event;
	struct hw_perf_event *hwc;
4531
	long err;
T
Thomas Gleixner 已提交
4532

4533 4534
	event = kzalloc(sizeof(*event), gfpflags);
	if (!event)
4535
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
4536

4537
	/*
4538
	 * Single events are their own group leaders, with an
4539 4540 4541
	 * empty sibling list:
	 */
	if (!group_leader)
4542
		group_leader = event;
4543

4544 4545
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
4546

4547 4548 4549 4550
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
	init_waitqueue_head(&event->waitq);
T
Thomas Gleixner 已提交
4551

4552
	mutex_init(&event->mmap_mutex);
4553

4554 4555 4556 4557 4558 4559
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->ctx		= ctx;
	event->oncpu		= -1;
4560

4561
	event->parent		= parent_event;
4562

4563 4564
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
4565

4566
	event->state		= PERF_EVENT_STATE_INACTIVE;
4567

4568 4569
	if (!overflow_handler && parent_event)
		overflow_handler = parent_event->overflow_handler;
4570
	
4571
	event->overflow_handler	= overflow_handler;
4572

4573
	if (attr->disabled)
4574
		event->state = PERF_EVENT_STATE_OFF;
4575

4576
	pmu = NULL;
4577

4578
	hwc = &event->hw;
4579
	hwc->sample_period = attr->sample_period;
4580
	if (attr->freq && attr->sample_freq)
4581
		hwc->sample_period = 1;
4582
	hwc->last_period = hwc->sample_period;
4583 4584

	atomic64_set(&hwc->period_left, hwc->sample_period);
4585

4586
	/*
4587
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
4588
	 */
4589
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4590 4591
		goto done;

4592
	switch (attr->type) {
4593
	case PERF_TYPE_RAW:
4594
	case PERF_TYPE_HARDWARE:
4595
	case PERF_TYPE_HW_CACHE:
4596
		pmu = hw_perf_event_init(event);
4597 4598 4599
		break;

	case PERF_TYPE_SOFTWARE:
4600
		pmu = sw_perf_event_init(event);
4601 4602 4603
		break;

	case PERF_TYPE_TRACEPOINT:
4604
		pmu = tp_perf_event_init(event);
4605
		break;
4606

4607 4608 4609 4610 4611
	case PERF_TYPE_BREAKPOINT:
		pmu = bp_perf_event_init(event);
		break;


4612 4613
	default:
		break;
4614
	}
4615 4616
done:
	err = 0;
4617
	if (!pmu)
4618
		err = -EINVAL;
4619 4620
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
4621

4622
	if (err) {
4623 4624 4625
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
4626
		return ERR_PTR(err);
I
Ingo Molnar 已提交
4627
	}
4628

4629
	event->pmu = pmu;
T
Thomas Gleixner 已提交
4630

4631 4632 4633 4634 4635 4636 4637 4638
	if (!event->parent) {
		atomic_inc(&nr_events);
		if (event->attr.mmap)
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
4639
	}
4640

4641
	return event;
T
Thomas Gleixner 已提交
4642 4643
}

4644 4645
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
4646 4647
{
	u32 size;
4648
	int ret;
4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
4673 4674 4675
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
4676 4677
	 */
	if (size > sizeof(*attr)) {
4678 4679 4680
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
4681

4682 4683
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
4684

4685
		for (; addr < end; addr++) {
4686 4687 4688 4689 4690 4691
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
4692
		size = sizeof(*attr);
4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * If the type exists, the corresponding creation will verify
	 * the attr->config.
	 */
	if (attr->type >= PERF_TYPE_MAX)
		return -EINVAL;

4706
	if (attr->__reserved_1)
4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

L
Li Zefan 已提交
4724
static int perf_event_set_output(struct perf_event *event, int output_fd)
4725
{
4726
	struct perf_event *output_event = NULL;
4727
	struct file *output_file = NULL;
4728
	struct perf_event *old_output;
4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741
	int fput_needed = 0;
	int ret = -EINVAL;

	if (!output_fd)
		goto set;

	output_file = fget_light(output_fd, &fput_needed);
	if (!output_file)
		return -EBADF;

	if (output_file->f_op != &perf_fops)
		goto out;

4742
	output_event = output_file->private_data;
4743 4744

	/* Don't chain output fds */
4745
	if (output_event->output)
4746 4747 4748
		goto out;

	/* Don't set an output fd when we already have an output channel */
4749
	if (event->data)
4750 4751 4752 4753 4754
		goto out;

	atomic_long_inc(&output_file->f_count);

set:
4755 4756 4757 4758
	mutex_lock(&event->mmap_mutex);
	old_output = event->output;
	rcu_assign_pointer(event->output, output_event);
	mutex_unlock(&event->mmap_mutex);
4759 4760 4761 4762

	if (old_output) {
		/*
		 * we need to make sure no existing perf_output_*()
4763
		 * is still referencing this event.
4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774
		 */
		synchronize_rcu();
		fput(old_output->filp);
	}

	ret = 0;
out:
	fput_light(output_file, fput_needed);
	return ret;
}

T
Thomas Gleixner 已提交
4775
/**
4776
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
4777
 *
4778
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
4779
 * @pid:		target pid
I
Ingo Molnar 已提交
4780
 * @cpu:		target cpu
4781
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
4782
 */
4783 4784
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
4785
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
4786
{
4787 4788 4789 4790
	struct perf_event *event, *group_leader;
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
4791 4792
	struct file *group_file = NULL;
	int fput_needed = 0;
4793
	int fput_needed2 = 0;
4794
	int err;
T
Thomas Gleixner 已提交
4795

4796
	/* for future expandability... */
4797
	if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4798 4799
		return -EINVAL;

4800 4801 4802
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
4803

4804 4805 4806 4807 4808
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

4809
	if (attr.freq) {
4810
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
4811 4812 4813
			return -EINVAL;
	}

4814
	/*
I
Ingo Molnar 已提交
4815 4816 4817 4818 4819 4820 4821
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pid, cpu);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	/*
4822
	 * Look up the group leader (we will attach this event to it):
4823 4824
	 */
	group_leader = NULL;
4825
	if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4826
		err = -EINVAL;
4827 4828
		group_file = fget_light(group_fd, &fput_needed);
		if (!group_file)
I
Ingo Molnar 已提交
4829
			goto err_put_context;
4830
		if (group_file->f_op != &perf_fops)
I
Ingo Molnar 已提交
4831
			goto err_put_context;
4832 4833 4834

		group_leader = group_file->private_data;
		/*
I
Ingo Molnar 已提交
4835 4836 4837 4838 4839 4840 4841 4842
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
			goto err_put_context;
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
4843
		 */
I
Ingo Molnar 已提交
4844 4845
		if (group_leader->ctx != ctx)
			goto err_put_context;
4846 4847 4848
		/*
		 * Only a group leader can be exclusive or pinned
		 */
4849
		if (attr.exclusive || attr.pinned)
4850
			goto err_put_context;
4851 4852
	}

4853
	event = perf_event_alloc(&attr, cpu, ctx, group_leader,
4854
				     NULL, NULL, GFP_KERNEL);
4855 4856
	err = PTR_ERR(event);
	if (IS_ERR(event))
T
Thomas Gleixner 已提交
4857 4858
		goto err_put_context;

4859
	err = anon_inode_getfd("[perf_event]", &perf_fops, event, O_RDWR);
4860
	if (err < 0)
4861 4862
		goto err_free_put_context;

4863 4864
	event_file = fget_light(err, &fput_needed2);
	if (!event_file)
4865 4866
		goto err_free_put_context;

4867
	if (flags & PERF_FLAG_FD_OUTPUT) {
4868
		err = perf_event_set_output(event, group_fd);
4869 4870
		if (err)
			goto err_fput_free_put_context;
4871 4872
	}

4873
	event->filp = event_file;
4874
	WARN_ON_ONCE(ctx->parent_ctx);
4875
	mutex_lock(&ctx->mutex);
4876
	perf_install_in_context(ctx, event, cpu);
4877
	++ctx->generation;
4878
	mutex_unlock(&ctx->mutex);
4879

4880
	event->owner = current;
4881
	get_task_struct(current);
4882 4883 4884
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
4885

4886
err_fput_free_put_context:
4887
	fput_light(event_file, fput_needed2);
T
Thomas Gleixner 已提交
4888

4889
err_free_put_context:
4890
	if (err < 0)
4891
		kfree(event);
T
Thomas Gleixner 已提交
4892 4893

err_put_context:
4894 4895 4896 4897
	if (err < 0)
		put_ctx(ctx);

	fput_light(group_file, fput_needed);
T
Thomas Gleixner 已提交
4898

4899
	return err;
T
Thomas Gleixner 已提交
4900 4901
}

4902 4903 4904 4905 4906 4907 4908 4909 4910
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
 * @pid: task to profile
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
4911 4912
				 pid_t pid,
				 perf_overflow_handler_t overflow_handler)
4913 4914 4915 4916 4917 4918 4919 4920 4921 4922
{
	struct perf_event *event;
	struct perf_event_context *ctx;
	int err;

	/*
	 * Get the target context (task or percpu):
	 */

	ctx = find_get_context(pid, cpu);
4923 4924 4925 4926
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
		goto err_exit;
	}
4927 4928

	event = perf_event_alloc(attr, cpu, ctx, NULL,
4929
				 NULL, overflow_handler, GFP_KERNEL);
4930 4931
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
4932
		goto err_put_context;
4933
	}
4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949

	event->filp = NULL;
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
	mutex_unlock(&ctx->mutex);

	event->owner = current;
	get_task_struct(current);
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);

	return event;

4950 4951 4952 4953
 err_put_context:
	put_ctx(ctx);
 err_exit:
	return ERR_PTR(err);
4954 4955 4956
}
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);

4957
/*
4958
 * inherit a event from parent task to child task:
4959
 */
4960 4961
static struct perf_event *
inherit_event(struct perf_event *parent_event,
4962
	      struct task_struct *parent,
4963
	      struct perf_event_context *parent_ctx,
4964
	      struct task_struct *child,
4965 4966
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
4967
{
4968
	struct perf_event *child_event;
4969

4970
	/*
4971 4972
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
4973 4974 4975
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
4976 4977
	if (parent_event->parent)
		parent_event = parent_event->parent;
4978

4979 4980 4981
	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu, child_ctx,
					   group_leader, parent_event,
4982
					   NULL, GFP_KERNEL);
4983 4984
	if (IS_ERR(child_event))
		return child_event;
4985
	get_ctx(child_ctx);
4986

4987
	/*
4988
	 * Make the child state follow the state of the parent event,
4989
	 * not its attr.disabled bit.  We hold the parent's mutex,
4990
	 * so we won't race with perf_event_{en, dis}able_family.
4991
	 */
4992 4993
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
4994
	else
4995
		child_event->state = PERF_EVENT_STATE_OFF;
4996

4997 4998 4999 5000 5001 5002 5003 5004 5005
	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		atomic64_set(&hwc->period_left, sample_period);
	}
5006

5007 5008
	child_event->overflow_handler = parent_event->overflow_handler;

5009 5010 5011
	/*
	 * Link it up in the child's context:
	 */
5012
	add_event_to_ctx(child_event, child_ctx);
5013 5014 5015

	/*
	 * Get a reference to the parent filp - we will fput it
5016
	 * when the child event exits. This is safe to do because
5017 5018 5019
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
5020
	atomic_long_inc(&parent_event->filp->f_count);
5021

5022
	/*
5023
	 * Link this into the parent event's child list
5024
	 */
5025 5026 5027 5028
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
5029

5030
	return child_event;
5031 5032
}

5033
static int inherit_group(struct perf_event *parent_event,
5034
	      struct task_struct *parent,
5035
	      struct perf_event_context *parent_ctx,
5036
	      struct task_struct *child,
5037
	      struct perf_event_context *child_ctx)
5038
{
5039 5040 5041
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;
5042

5043
	leader = inherit_event(parent_event, parent, parent_ctx,
5044
				 child, NULL, child_ctx);
5045 5046
	if (IS_ERR(leader))
		return PTR_ERR(leader);
5047 5048
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
5049 5050 5051
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
5052
	}
5053 5054 5055
	return 0;
}

5056
static void sync_child_event(struct perf_event *child_event,
5057
			       struct task_struct *child)
5058
{
5059
	struct perf_event *parent_event = child_event->parent;
5060
	u64 child_val;
5061

5062 5063
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
5064

5065
	child_val = atomic64_read(&child_event->count);
5066 5067 5068 5069

	/*
	 * Add back the child's count to the parent's count:
	 */
5070 5071 5072 5073 5074
	atomic64_add(child_val, &parent_event->count);
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
5075 5076

	/*
5077
	 * Remove this event from the parent's list
5078
	 */
5079 5080 5081 5082
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
5083 5084

	/*
5085
	 * Release the parent event, if this was the last
5086 5087
	 * reference to it.
	 */
5088
	fput(parent_event->filp);
5089 5090
}

5091
static void
5092 5093
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
5094
			 struct task_struct *child)
5095
{
5096
	struct perf_event *parent_event;
5097

5098
	perf_event_remove_from_context(child_event);
5099

5100
	parent_event = child_event->parent;
5101
	/*
5102
	 * It can happen that parent exits first, and has events
5103
	 * that are still around due to the child reference. These
5104
	 * events need to be zapped - but otherwise linger.
5105
	 */
5106 5107 5108
	if (parent_event) {
		sync_child_event(child_event, child);
		free_event(child_event);
5109
	}
5110 5111 5112
}

/*
5113
 * When a child task exits, feed back event values to parent events.
5114
 */
5115
void perf_event_exit_task(struct task_struct *child)
5116
{
5117 5118
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
5119
	unsigned long flags;
5120

5121 5122
	if (likely(!child->perf_event_ctxp)) {
		perf_event_task(child, NULL, 0);
5123
		return;
P
Peter Zijlstra 已提交
5124
	}
5125

5126
	local_irq_save(flags);
5127 5128 5129 5130 5131 5132
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
5133 5134
	child_ctx = child->perf_event_ctxp;
	__perf_event_task_sched_out(child_ctx);
5135 5136 5137

	/*
	 * Take the context lock here so that if find_get_context is
5138
	 * reading child->perf_event_ctxp, we wait until it has
5139 5140
	 * incremented the context's refcount before we do put_ctx below.
	 */
5141
	raw_spin_lock(&child_ctx->lock);
5142
	child->perf_event_ctxp = NULL;
5143 5144 5145
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
5146
	 * the events from it.
5147 5148
	 */
	unclone_ctx(child_ctx);
5149
	update_context_time(child_ctx);
5150
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
5151 5152

	/*
5153 5154 5155
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
5156
	 */
5157
	perf_event_task(child, child_ctx, 0);
5158

5159 5160 5161
	/*
	 * We can recurse on the same lock type through:
	 *
5162 5163 5164
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       fput(parent_event->filp)
5165 5166 5167 5168 5169 5170
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
	mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
5171

5172
again:
5173 5174 5175 5176 5177
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5178
				 group_entry)
5179
		__perf_event_exit_task(child_event, child_ctx, child);
5180 5181

	/*
5182
	 * If the last event was a group event, it will have appended all
5183 5184 5185
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
5186 5187
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
5188
		goto again;
5189 5190 5191 5192

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
5193 5194
}

5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

	fput(parent->filp);

	list_del_event(event, ctx);
	free_event(event);
}

5213 5214 5215 5216
/*
 * free an unexposed, unused context as created by inheritance by
 * init_task below, used by fork() in case of fail.
 */
5217
void perf_event_free_task(struct task_struct *task)
5218
{
5219 5220
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event *event, *tmp;
5221 5222 5223 5224 5225 5226

	if (!ctx)
		return;

	mutex_lock(&ctx->mutex);
again:
5227 5228
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
		perf_free_event(event, ctx);
5229

5230 5231 5232
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				 group_entry)
		perf_free_event(event, ctx);
5233

5234 5235 5236
	if (!list_empty(&ctx->pinned_groups) ||
	    !list_empty(&ctx->flexible_groups))
		goto again;
5237

5238
	mutex_unlock(&ctx->mutex);
5239

5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254
	put_ctx(ctx);
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
		   struct task_struct *child,
		   int *inherited_all)
{
	int ret;
	struct perf_event_context *child_ctx = child->perf_event_ctxp;

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
5255 5256
	}

5257 5258 5259 5260 5261 5262 5263
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
5264

5265 5266 5267 5268
		child_ctx = kzalloc(sizeof(struct perf_event_context),
				    GFP_KERNEL);
		if (!child_ctx)
			return -ENOMEM;
5269

5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281
		__perf_event_init_context(child_ctx, child);
		child->perf_event_ctxp = child_ctx;
		get_task_struct(child);
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
5282 5283
}

5284

5285
/*
5286
 * Initialize the perf_event context in task_struct
5287
 */
5288
int perf_event_init_task(struct task_struct *child)
5289
{
5290
	struct perf_event_context *child_ctx, *parent_ctx;
5291 5292
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
5293
	struct task_struct *parent = current;
5294
	int inherited_all = 1;
5295
	int ret = 0;
5296

5297
	child->perf_event_ctxp = NULL;
5298

5299 5300
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);
5301

5302
	if (likely(!parent->perf_event_ctxp))
5303 5304
		return 0;

5305
	/*
5306 5307
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
5308
	 */
5309 5310
	parent_ctx = perf_pin_task_context(parent);

5311 5312 5313 5314 5315 5316 5317
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

5318 5319 5320 5321
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
5322
	mutex_lock(&parent_ctx->mutex);
5323 5324 5325 5326 5327

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
5328 5329 5330 5331 5332 5333
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
		ret = inherit_task_group(event, parent, parent_ctx, child,
					 &inherited_all);
		if (ret)
			break;
	}
5334

5335 5336 5337 5338
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
		ret = inherit_task_group(event, parent, parent_ctx, child,
					 &inherited_all);
		if (ret)
5339
			break;
5340 5341
	}

5342 5343
	child_ctx = child->perf_event_ctxp;

5344
	if (child_ctx && inherited_all) {
5345 5346 5347
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
5348 5349
		 * Note that if the parent is a clone, it could get
		 * uncloned at any point, but that doesn't matter
5350
		 * because the list of events and the generation
5351
		 * count can't have changed since we took the mutex.
5352
		 */
5353 5354 5355
		cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
5356
			child_ctx->parent_gen = parent_ctx->parent_gen;
5357 5358 5359 5360 5361
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
5362 5363
	}

5364
	mutex_unlock(&parent_ctx->mutex);
5365

5366
	perf_unpin_context(parent_ctx);
5367

5368
	return ret;
5369 5370
}

5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381
static void __init perf_event_init_all_cpus(void)
{
	int cpu;
	struct perf_cpu_context *cpuctx;

	for_each_possible_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
		__perf_event_init_context(&cpuctx->ctx, NULL);
	}
}

5382
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
5383
{
5384
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
5385

5386
	cpuctx = &per_cpu(perf_cpu_context, cpu);
T
Thomas Gleixner 已提交
5387

5388
	spin_lock(&perf_resource_lock);
5389
	cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5390
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5391 5392 5393
}

#ifdef CONFIG_HOTPLUG_CPU
5394
static void __perf_event_exit_cpu(void *info)
T
Thomas Gleixner 已提交
5395 5396
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5397 5398
	struct perf_event_context *ctx = &cpuctx->ctx;
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
5399

5400 5401 5402
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
		__perf_event_remove_from_context(event);
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
5403
		__perf_event_remove_from_context(event);
T
Thomas Gleixner 已提交
5404
}
5405
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
5406
{
5407
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5408
	struct perf_event_context *ctx = &cpuctx->ctx;
5409 5410

	mutex_lock(&ctx->mutex);
5411
	smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5412
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
5413 5414
}
#else
5415
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

	switch (action) {

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
5427
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
5428 5429 5430 5431
		break;

	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
5432
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
5433 5434 5435 5436 5437 5438 5439 5440 5441
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

5442 5443 5444
/*
 * This has to have a higher priority than migration_notifier in sched.c.
 */
T
Thomas Gleixner 已提交
5445 5446
static struct notifier_block __cpuinitdata perf_cpu_nb = {
	.notifier_call		= perf_cpu_notify,
5447
	.priority		= 20,
T
Thomas Gleixner 已提交
5448 5449
};

5450
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
5451
{
5452
	perf_event_init_all_cpus();
T
Thomas Gleixner 已提交
5453 5454
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
			(void *)(long)smp_processor_id());
5455 5456
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
			(void *)(long)smp_processor_id());
T
Thomas Gleixner 已提交
5457 5458 5459
	register_cpu_notifier(&perf_cpu_nb);
}

5460 5461 5462
static ssize_t perf_show_reserve_percpu(struct sysdev_class *class,
					struct sysdev_class_attribute *attr,
					char *buf)
T
Thomas Gleixner 已提交
5463 5464 5465 5466 5467 5468
{
	return sprintf(buf, "%d\n", perf_reserved_percpu);
}

static ssize_t
perf_set_reserve_percpu(struct sysdev_class *class,
5469
			struct sysdev_class_attribute *attr,
T
Thomas Gleixner 已提交
5470 5471 5472 5473 5474 5475 5476 5477 5478 5479
			const char *buf,
			size_t count)
{
	struct perf_cpu_context *cpuctx;
	unsigned long val;
	int err, cpu, mpt;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
5480
	if (val > perf_max_events)
T
Thomas Gleixner 已提交
5481 5482
		return -EINVAL;

5483
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5484 5485 5486
	perf_reserved_percpu = val;
	for_each_online_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
5487
		raw_spin_lock_irq(&cpuctx->ctx.lock);
5488 5489
		mpt = min(perf_max_events - cpuctx->ctx.nr_events,
			  perf_max_events - perf_reserved_percpu);
T
Thomas Gleixner 已提交
5490
		cpuctx->max_pertask = mpt;
5491
		raw_spin_unlock_irq(&cpuctx->ctx.lock);
T
Thomas Gleixner 已提交
5492
	}
5493
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5494 5495 5496 5497

	return count;
}

5498 5499 5500
static ssize_t perf_show_overcommit(struct sysdev_class *class,
				    struct sysdev_class_attribute *attr,
				    char *buf)
T
Thomas Gleixner 已提交
5501 5502 5503 5504 5505
{
	return sprintf(buf, "%d\n", perf_overcommit);
}

static ssize_t
5506 5507 5508
perf_set_overcommit(struct sysdev_class *class,
		    struct sysdev_class_attribute *attr,
		    const char *buf, size_t count)
T
Thomas Gleixner 已提交
5509 5510 5511 5512 5513 5514 5515 5516 5517 5518
{
	unsigned long val;
	int err;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > 1)
		return -EINVAL;

5519
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5520
	perf_overcommit = val;
5521
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547

	return count;
}

static SYSDEV_CLASS_ATTR(
				reserve_percpu,
				0644,
				perf_show_reserve_percpu,
				perf_set_reserve_percpu
			);

static SYSDEV_CLASS_ATTR(
				overcommit,
				0644,
				perf_show_overcommit,
				perf_set_overcommit
			);

static struct attribute *perfclass_attrs[] = {
	&attr_reserve_percpu.attr,
	&attr_overcommit.attr,
	NULL
};

static struct attribute_group perfclass_attr_group = {
	.attrs			= perfclass_attrs,
5548
	.name			= "perf_events",
T
Thomas Gleixner 已提交
5549 5550
};

5551
static int __init perf_event_sysfs_init(void)
T
Thomas Gleixner 已提交
5552 5553 5554 5555
{
	return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
				  &perfclass_attr_group);
}
5556
device_initcall(perf_event_sysfs_init);