perf_event.c 119.9 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4 5 6
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
16
#include <linux/file.h>
T
Thomas Gleixner 已提交
17 18
#include <linux/poll.h>
#include <linux/sysfs.h>
19
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
20
#include <linux/percpu.h>
21
#include <linux/ptrace.h>
22
#include <linux/vmstat.h>
23
#include <linux/vmalloc.h>
24 25
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
26 27 28
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
29
#include <linux/kernel_stat.h>
30
#include <linux/perf_event.h>
L
Li Zefan 已提交
31
#include <linux/ftrace_event.h>
32
#include <linux/hw_breakpoint.h>
T
Thomas Gleixner 已提交
33

34 35
#include <asm/irq_regs.h>

T
Thomas Gleixner 已提交
36
/*
37
 * Each CPU has a list of per CPU events:
T
Thomas Gleixner 已提交
38 39 40
 */
DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);

41
int perf_max_events __read_mostly = 1;
T
Thomas Gleixner 已提交
42 43 44
static int perf_reserved_percpu __read_mostly;
static int perf_overcommit __read_mostly = 1;

45 46 47 48
static atomic_t nr_events __read_mostly;
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
49

50
/*
51
 * perf event paranoia level:
52 53
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
54
 *   1 - disallow cpu events for unpriv
55
 *   2 - disallow kernel profiling for unpriv
56
 */
57
int sysctl_perf_event_paranoid __read_mostly = 1;
58

59 60
static inline bool perf_paranoid_tracepoint_raw(void)
{
61
	return sysctl_perf_event_paranoid > -1;
62 63
}

64 65
static inline bool perf_paranoid_cpu(void)
{
66
	return sysctl_perf_event_paranoid > 0;
67 68 69 70
}

static inline bool perf_paranoid_kernel(void)
{
71
	return sysctl_perf_event_paranoid > 1;
72 73
}

74
int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
75 76

/*
77
 * max perf event sample rate
78
 */
79
int sysctl_perf_event_sample_rate __read_mostly = 100000;
80

81
static atomic64_t perf_event_id;
82

T
Thomas Gleixner 已提交
83
/*
84
 * Lock for (sysadmin-configurable) event reservations:
T
Thomas Gleixner 已提交
85
 */
86
static DEFINE_SPINLOCK(perf_resource_lock);
T
Thomas Gleixner 已提交
87 88 89 90

/*
 * Architecture provided APIs - weak aliases:
 */
91
extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
T
Thomas Gleixner 已提交
92
{
93
	return NULL;
T
Thomas Gleixner 已提交
94 95
}

96 97 98
void __weak hw_perf_disable(void)		{ barrier(); }
void __weak hw_perf_enable(void)		{ barrier(); }

99 100
void __weak hw_perf_event_setup(int cpu)	{ barrier(); }
void __weak hw_perf_event_setup_online(int cpu)	{ barrier(); }
101 102

int __weak
103
hw_perf_group_sched_in(struct perf_event *group_leader,
104
	       struct perf_cpu_context *cpuctx,
105
	       struct perf_event_context *ctx, int cpu)
106 107 108
{
	return 0;
}
T
Thomas Gleixner 已提交
109

110
void __weak perf_event_print_debug(void)	{ }
111

112
static DEFINE_PER_CPU(int, perf_disable_count);
113 114 115

void __perf_disable(void)
{
116
	__get_cpu_var(perf_disable_count)++;
117 118 119 120
}

bool __perf_enable(void)
{
121
	return !--__get_cpu_var(perf_disable_count);
122 123 124 125 126 127 128 129 130 131 132 133 134 135
}

void perf_disable(void)
{
	__perf_disable();
	hw_perf_disable();
}

void perf_enable(void)
{
	if (__perf_enable())
		hw_perf_enable();
}

136
static void get_ctx(struct perf_event_context *ctx)
137
{
138
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
139 140
}

141 142
static void free_ctx(struct rcu_head *head)
{
143
	struct perf_event_context *ctx;
144

145
	ctx = container_of(head, struct perf_event_context, rcu_head);
146 147 148
	kfree(ctx);
}

149
static void put_ctx(struct perf_event_context *ctx)
150
{
151 152 153
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
154 155 156
		if (ctx->task)
			put_task_struct(ctx->task);
		call_rcu(&ctx->rcu_head, free_ctx);
157
	}
158 159
}

160
static void unclone_ctx(struct perf_event_context *ctx)
161 162 163 164 165 166 167
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

168
/*
169
 * If we inherit events we want to return the parent event id
170 171
 * to userspace.
 */
172
static u64 primary_event_id(struct perf_event *event)
173
{
174
	u64 id = event->id;
175

176 177
	if (event->parent)
		id = event->parent->id;
178 179 180 181

	return id;
}

182
/*
183
 * Get the perf_event_context for a task and lock it.
184 185 186
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
187
static struct perf_event_context *
188
perf_lock_task_context(struct task_struct *task, unsigned long *flags)
189
{
190
	struct perf_event_context *ctx;
191 192 193

	rcu_read_lock();
 retry:
194
	ctx = rcu_dereference(task->perf_event_ctxp);
195 196 197 198
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
199
		 * perf_event_task_sched_out, though the
200 201 202 203 204 205 206
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
		spin_lock_irqsave(&ctx->lock, *flags);
207
		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
208 209 210
			spin_unlock_irqrestore(&ctx->lock, *flags);
			goto retry;
		}
211 212 213 214 215

		if (!atomic_inc_not_zero(&ctx->refcount)) {
			spin_unlock_irqrestore(&ctx->lock, *flags);
			ctx = NULL;
		}
216 217 218 219 220 221 222 223 224 225
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
226
static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
227
{
228
	struct perf_event_context *ctx;
229 230 231 232 233 234 235 236 237 238
	unsigned long flags;

	ctx = perf_lock_task_context(task, &flags);
	if (ctx) {
		++ctx->pin_count;
		spin_unlock_irqrestore(&ctx->lock, flags);
	}
	return ctx;
}

239
static void perf_unpin_context(struct perf_event_context *ctx)
240 241 242 243 244 245 246 247 248
{
	unsigned long flags;

	spin_lock_irqsave(&ctx->lock, flags);
	--ctx->pin_count;
	spin_unlock_irqrestore(&ctx->lock, flags);
	put_ctx(ctx);
}

249
/*
250
 * Add a event from the lists for its context.
251 252
 * Must be called with ctx->mutex and ctx->lock held.
 */
253
static void
254
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
255
{
256
	struct perf_event *group_leader = event->group_leader;
257 258

	/*
259 260
	 * Depending on whether it is a standalone or sibling event,
	 * add it straight to the context's event list, or to the group
261 262
	 * leader's sibling list:
	 */
263 264
	if (group_leader == event)
		list_add_tail(&event->group_entry, &ctx->group_list);
P
Peter Zijlstra 已提交
265
	else {
266
		list_add_tail(&event->group_entry, &group_leader->sibling_list);
P
Peter Zijlstra 已提交
267 268
		group_leader->nr_siblings++;
	}
P
Peter Zijlstra 已提交
269

270 271 272
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
273
		ctx->nr_stat++;
274 275
}

276
/*
277
 * Remove a event from the lists for its context.
278
 * Must be called with ctx->mutex and ctx->lock held.
279
 */
280
static void
281
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
282
{
283
	struct perf_event *sibling, *tmp;
284

285
	if (list_empty(&event->group_entry))
286
		return;
287 288
	ctx->nr_events--;
	if (event->attr.inherit_stat)
289
		ctx->nr_stat--;
290

291 292
	list_del_init(&event->group_entry);
	list_del_rcu(&event->event_entry);
293

294 295
	if (event->group_leader != event)
		event->group_leader->nr_siblings--;
P
Peter Zijlstra 已提交
296

297
	/*
298 299
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
300 301
	 * to the context list directly:
	 */
302
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
303

304
		list_move_tail(&sibling->group_entry, &ctx->group_list);
305 306 307 308
		sibling->group_leader = sibling;
	}
}

309
static void
310
event_sched_out(struct perf_event *event,
311
		  struct perf_cpu_context *cpuctx,
312
		  struct perf_event_context *ctx)
313
{
314
	if (event->state != PERF_EVENT_STATE_ACTIVE)
315 316
		return;

317 318 319 320
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
321
	}
322 323 324
	event->tstamp_stopped = ctx->time;
	event->pmu->disable(event);
	event->oncpu = -1;
325

326
	if (!is_software_event(event))
327 328
		cpuctx->active_oncpu--;
	ctx->nr_active--;
329
	if (event->attr.exclusive || !cpuctx->active_oncpu)
330 331 332
		cpuctx->exclusive = 0;
}

333
static void
334
group_sched_out(struct perf_event *group_event,
335
		struct perf_cpu_context *cpuctx,
336
		struct perf_event_context *ctx)
337
{
338
	struct perf_event *event;
339

340
	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
341 342
		return;

343
	event_sched_out(group_event, cpuctx, ctx);
344 345 346 347

	/*
	 * Schedule out siblings (if any):
	 */
348 349
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
350

351
	if (group_event->attr.exclusive)
352 353 354
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
355
/*
356
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
357
 *
358
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
359 360
 * remove it from the context list.
 */
361
static void __perf_event_remove_from_context(void *info)
T
Thomas Gleixner 已提交
362 363
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
364 365
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
366 367 368 369 370 371

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
372
	if (ctx->task && cpuctx->task_ctx != ctx)
T
Thomas Gleixner 已提交
373 374
		return;

375
	spin_lock(&ctx->lock);
376 377
	/*
	 * Protect the list operation against NMI by disabling the
378
	 * events on a global level.
379 380
	 */
	perf_disable();
T
Thomas Gleixner 已提交
381

382
	event_sched_out(event, cpuctx, ctx);
383

384
	list_del_event(event, ctx);
T
Thomas Gleixner 已提交
385 386 387

	if (!ctx->task) {
		/*
388
		 * Allow more per task events with respect to the
T
Thomas Gleixner 已提交
389 390 391
		 * reservation:
		 */
		cpuctx->max_pertask =
392 393
			min(perf_max_events - ctx->nr_events,
			    perf_max_events - perf_reserved_percpu);
T
Thomas Gleixner 已提交
394 395
	}

396
	perf_enable();
397
	spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
398 399 400 401
}


/*
402
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
403
 *
404
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
405
 *
406
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
407
 * call when the task is on a CPU.
408
 *
409 410
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
411 412
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
413
 * When called from perf_event_exit_task, it's OK because the
414
 * context has been detached from its task.
T
Thomas Gleixner 已提交
415
 */
416
static void perf_event_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
417
{
418
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
419 420 421 422
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
423
		 * Per cpu events are removed via an smp call and
T
Thomas Gleixner 已提交
424 425
		 * the removal is always sucessful.
		 */
426 427 428
		smp_call_function_single(event->cpu,
					 __perf_event_remove_from_context,
					 event, 1);
T
Thomas Gleixner 已提交
429 430 431 432
		return;
	}

retry:
433 434
	task_oncpu_function_call(task, __perf_event_remove_from_context,
				 event);
T
Thomas Gleixner 已提交
435 436 437 438 439

	spin_lock_irq(&ctx->lock);
	/*
	 * If the context is active we need to retry the smp call.
	 */
440
	if (ctx->nr_active && !list_empty(&event->group_entry)) {
T
Thomas Gleixner 已提交
441 442 443 444 445 446
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
447
	 * can remove the event safely, if the call above did not
T
Thomas Gleixner 已提交
448 449
	 * succeed.
	 */
450 451
	if (!list_empty(&event->group_entry)) {
		list_del_event(event, ctx);
T
Thomas Gleixner 已提交
452 453 454 455
	}
	spin_unlock_irq(&ctx->lock);
}

456
static inline u64 perf_clock(void)
457
{
458
	return cpu_clock(smp_processor_id());
459 460 461 462 463
}

/*
 * Update the record of the current time in a context.
 */
464
static void update_context_time(struct perf_event_context *ctx)
465
{
466 467 468 469
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
470 471 472
}

/*
473
 * Update the total_time_enabled and total_time_running fields for a event.
474
 */
475
static void update_event_times(struct perf_event *event)
476
{
477
	struct perf_event_context *ctx = event->ctx;
478 479
	u64 run_end;

480 481
	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
482 483
		return;

484
	event->total_time_enabled = ctx->time - event->tstamp_enabled;
485

486 487
	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
488 489 490
	else
		run_end = ctx->time;

491
	event->total_time_running = run_end - event->tstamp_running;
492 493 494
}

/*
495
 * Update total_time_enabled and total_time_running for all events in a group.
496
 */
497
static void update_group_times(struct perf_event *leader)
498
{
499
	struct perf_event *event;
500

501 502 503
	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
504 505
}

506
/*
507
 * Cross CPU call to disable a performance event
508
 */
509
static void __perf_event_disable(void *info)
510
{
511
	struct perf_event *event = info;
512
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
513
	struct perf_event_context *ctx = event->ctx;
514 515

	/*
516 517
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
518
	 */
519
	if (ctx->task && cpuctx->task_ctx != ctx)
520 521
		return;

522
	spin_lock(&ctx->lock);
523 524

	/*
525
	 * If the event is on, turn it off.
526 527
	 * If it is in error state, leave it in error state.
	 */
528
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
529
		update_context_time(ctx);
530 531 532
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
533
		else
534 535
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
536 537
	}

538
	spin_unlock(&ctx->lock);
539 540 541
}

/*
542
 * Disable a event.
543
 *
544 545
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
546
 * remains valid.  This condition is satisifed when called through
547 548 549 550
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
551
 * is the current context on this CPU and preemption is disabled,
552
 * hence we can't get into perf_event_task_sched_out for this context.
553
 */
554
static void perf_event_disable(struct perf_event *event)
555
{
556
	struct perf_event_context *ctx = event->ctx;
557 558 559 560
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
561
		 * Disable the event on the cpu that it's on
562
		 */
563 564
		smp_call_function_single(event->cpu, __perf_event_disable,
					 event, 1);
565 566 567 568
		return;
	}

 retry:
569
	task_oncpu_function_call(task, __perf_event_disable, event);
570 571 572

	spin_lock_irq(&ctx->lock);
	/*
573
	 * If the event is still active, we need to retry the cross-call.
574
	 */
575
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
576 577 578 579 580 581 582 583
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
584 585 586
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
587
	}
588 589 590 591

	spin_unlock_irq(&ctx->lock);
}

592
static int
593
event_sched_in(struct perf_event *event,
594
		 struct perf_cpu_context *cpuctx,
595
		 struct perf_event_context *ctx,
596 597
		 int cpu)
{
598
	if (event->state <= PERF_EVENT_STATE_OFF)
599 600
		return 0;

601 602
	event->state = PERF_EVENT_STATE_ACTIVE;
	event->oncpu = cpu;	/* TODO: put 'cpu' into cpuctx->cpu */
603 604 605 606 607
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

608 609 610
	if (event->pmu->enable(event)) {
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
611 612 613
		return -EAGAIN;
	}

614
	event->tstamp_running += ctx->time - event->tstamp_stopped;
615

616
	if (!is_software_event(event))
617
		cpuctx->active_oncpu++;
618 619
	ctx->nr_active++;

620
	if (event->attr.exclusive)
621 622
		cpuctx->exclusive = 1;

623 624 625
	return 0;
}

626
static int
627
group_sched_in(struct perf_event *group_event,
628
	       struct perf_cpu_context *cpuctx,
629
	       struct perf_event_context *ctx,
630 631
	       int cpu)
{
632
	struct perf_event *event, *partial_group;
633 634
	int ret;

635
	if (group_event->state == PERF_EVENT_STATE_OFF)
636 637
		return 0;

638
	ret = hw_perf_group_sched_in(group_event, cpuctx, ctx, cpu);
639 640 641
	if (ret)
		return ret < 0 ? ret : 0;

642
	if (event_sched_in(group_event, cpuctx, ctx, cpu))
643 644 645 646 647
		return -EAGAIN;

	/*
	 * Schedule in siblings as one group (if any):
	 */
648 649 650
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event_sched_in(event, cpuctx, ctx, cpu)) {
			partial_group = event;
651 652 653 654 655 656 657 658 659 660 661
			goto group_error;
		}
	}

	return 0;

group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
662 663
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
664
			break;
665
		event_sched_out(event, cpuctx, ctx);
666
	}
667
	event_sched_out(group_event, cpuctx, ctx);
668 669 670 671

	return -EAGAIN;
}

672
/*
673 674
 * Return 1 for a group consisting entirely of software events,
 * 0 if the group contains any hardware events.
675
 */
676
static int is_software_only_group(struct perf_event *leader)
677
{
678
	struct perf_event *event;
679

680
	if (!is_software_event(leader))
681
		return 0;
P
Peter Zijlstra 已提交
682

683 684
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		if (!is_software_event(event))
685
			return 0;
P
Peter Zijlstra 已提交
686

687 688 689 690
	return 1;
}

/*
691
 * Work out whether we can put this event group on the CPU now.
692
 */
693
static int group_can_go_on(struct perf_event *event,
694 695 696 697
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
698
	 * Groups consisting entirely of software events can always go on.
699
	 */
700
	if (is_software_only_group(event))
701 702 703
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
704
	 * events can go on.
705 706 707 708 709
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
710
	 * events on the CPU, it can't go on.
711
	 */
712
	if (event->attr.exclusive && cpuctx->active_oncpu)
713 714 715 716 717 718 719 720
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

721 722
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
723
{
724 725 726 727
	list_add_event(event, ctx);
	event->tstamp_enabled = ctx->time;
	event->tstamp_running = ctx->time;
	event->tstamp_stopped = ctx->time;
728 729
}

T
Thomas Gleixner 已提交
730
/*
731
 * Cross CPU call to install and enable a performance event
732 733
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
734 735 736 737
 */
static void __perf_install_in_context(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
738 739 740
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
T
Thomas Gleixner 已提交
741
	int cpu = smp_processor_id();
742
	int err;
T
Thomas Gleixner 已提交
743 744 745 746 747

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
748
	 * Or possibly this is the right context but it isn't
749
	 * on this cpu because it had no events.
T
Thomas Gleixner 已提交
750
	 */
751
	if (ctx->task && cpuctx->task_ctx != ctx) {
752
		if (cpuctx->task_ctx || ctx->task != current)
753 754 755
			return;
		cpuctx->task_ctx = ctx;
	}
T
Thomas Gleixner 已提交
756

757
	spin_lock(&ctx->lock);
758
	ctx->is_active = 1;
759
	update_context_time(ctx);
T
Thomas Gleixner 已提交
760 761 762

	/*
	 * Protect the list operation against NMI by disabling the
763
	 * events on a global level. NOP for non NMI based events.
T
Thomas Gleixner 已提交
764
	 */
765
	perf_disable();
T
Thomas Gleixner 已提交
766

767
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
768

769
	/*
770
	 * Don't put the event on if it is disabled or if
771 772
	 * it is in a group and the group isn't on.
	 */
773 774
	if (event->state != PERF_EVENT_STATE_INACTIVE ||
	    (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
775 776
		goto unlock;

777
	/*
778 779 780
	 * An exclusive event can't go on if there are already active
	 * hardware events, and no hardware event can go on if there
	 * is already an exclusive event on.
781
	 */
782
	if (!group_can_go_on(event, cpuctx, 1))
783 784
		err = -EEXIST;
	else
785
		err = event_sched_in(event, cpuctx, ctx, cpu);
786

787 788
	if (err) {
		/*
789
		 * This event couldn't go on.  If it is in a group
790
		 * then we have to pull the whole group off.
791
		 * If the event group is pinned then put it in error state.
792
		 */
793
		if (leader != event)
794
			group_sched_out(leader, cpuctx, ctx);
795
		if (leader->attr.pinned) {
796
			update_group_times(leader);
797
			leader->state = PERF_EVENT_STATE_ERROR;
798
		}
799
	}
T
Thomas Gleixner 已提交
800

801
	if (!err && !ctx->task && cpuctx->max_pertask)
T
Thomas Gleixner 已提交
802 803
		cpuctx->max_pertask--;

804
 unlock:
805
	perf_enable();
806

807
	spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
808 809 810
}

/*
811
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
812
 *
813 814
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
815
 *
816
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
817 818
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
819 820
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
821 822
 */
static void
823 824
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
825 826 827 828 829 830
			int cpu)
{
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
831
		 * Per cpu events are installed via an smp call and
T
Thomas Gleixner 已提交
832 833 834
		 * the install is always sucessful.
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
835
					 event, 1);
T
Thomas Gleixner 已提交
836 837 838 839 840
		return;
	}

retry:
	task_oncpu_function_call(task, __perf_install_in_context,
841
				 event);
T
Thomas Gleixner 已提交
842 843 844 845 846

	spin_lock_irq(&ctx->lock);
	/*
	 * we need to retry the smp call.
	 */
847
	if (ctx->is_active && list_empty(&event->group_entry)) {
T
Thomas Gleixner 已提交
848 849 850 851 852 853
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
854
	 * can add the event safely, if it the call above did not
T
Thomas Gleixner 已提交
855 856
	 * succeed.
	 */
857 858
	if (list_empty(&event->group_entry))
		add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
859 860 861
	spin_unlock_irq(&ctx->lock);
}

862
/*
863
 * Put a event into inactive state and update time fields.
864 865 866 867 868 869
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
870 871
static void __perf_event_mark_enabled(struct perf_event *event,
					struct perf_event_context *ctx)
872
{
873
	struct perf_event *sub;
874

875 876 877 878
	event->state = PERF_EVENT_STATE_INACTIVE;
	event->tstamp_enabled = ctx->time - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry)
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
879 880 881 882
			sub->tstamp_enabled =
				ctx->time - sub->total_time_enabled;
}

883
/*
884
 * Cross CPU call to enable a performance event
885
 */
886
static void __perf_event_enable(void *info)
887
{
888
	struct perf_event *event = info;
889
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
890 891
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
892
	int err;
893

894
	/*
895 896
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
897
	 */
898
	if (ctx->task && cpuctx->task_ctx != ctx) {
899
		if (cpuctx->task_ctx || ctx->task != current)
900 901 902
			return;
		cpuctx->task_ctx = ctx;
	}
903

904
	spin_lock(&ctx->lock);
905
	ctx->is_active = 1;
906
	update_context_time(ctx);
907

908
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
909
		goto unlock;
910
	__perf_event_mark_enabled(event, ctx);
911 912

	/*
913
	 * If the event is in a group and isn't the group leader,
914
	 * then don't put it on unless the group is on.
915
	 */
916
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
917
		goto unlock;
918

919
	if (!group_can_go_on(event, cpuctx, 1)) {
920
		err = -EEXIST;
921
	} else {
922
		perf_disable();
923 924
		if (event == leader)
			err = group_sched_in(event, cpuctx, ctx,
925 926
					     smp_processor_id());
		else
927
			err = event_sched_in(event, cpuctx, ctx,
928
					       smp_processor_id());
929
		perf_enable();
930
	}
931 932 933

	if (err) {
		/*
934
		 * If this event can't go on and it's part of a
935 936
		 * group, then the whole group has to come off.
		 */
937
		if (leader != event)
938
			group_sched_out(leader, cpuctx, ctx);
939
		if (leader->attr.pinned) {
940
			update_group_times(leader);
941
			leader->state = PERF_EVENT_STATE_ERROR;
942
		}
943 944 945
	}

 unlock:
946
	spin_unlock(&ctx->lock);
947 948 949
}

/*
950
 * Enable a event.
951
 *
952 953
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
954
 * remains valid.  This condition is satisfied when called through
955 956
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
957
 */
958
static void perf_event_enable(struct perf_event *event)
959
{
960
	struct perf_event_context *ctx = event->ctx;
961 962 963 964
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
965
		 * Enable the event on the cpu that it's on
966
		 */
967 968
		smp_call_function_single(event->cpu, __perf_event_enable,
					 event, 1);
969 970 971 972
		return;
	}

	spin_lock_irq(&ctx->lock);
973
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
974 975 976
		goto out;

	/*
977 978
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
979 980 981 982
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
983 984
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
985 986 987

 retry:
	spin_unlock_irq(&ctx->lock);
988
	task_oncpu_function_call(task, __perf_event_enable, event);
989 990 991 992

	spin_lock_irq(&ctx->lock);

	/*
993
	 * If the context is active and the event is still off,
994 995
	 * we need to retry the cross-call.
	 */
996
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
997 998 999 1000 1001 1002
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1003 1004
	if (event->state == PERF_EVENT_STATE_OFF)
		__perf_event_mark_enabled(event, ctx);
1005

1006 1007 1008 1009
 out:
	spin_unlock_irq(&ctx->lock);
}

1010
static int perf_event_refresh(struct perf_event *event, int refresh)
1011
{
1012
	/*
1013
	 * not supported on inherited events
1014
	 */
1015
	if (event->attr.inherit)
1016 1017
		return -EINVAL;

1018 1019
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1020 1021

	return 0;
1022 1023
}

1024
void __perf_event_sched_out(struct perf_event_context *ctx,
1025 1026
			      struct perf_cpu_context *cpuctx)
{
1027
	struct perf_event *event;
1028

1029 1030
	spin_lock(&ctx->lock);
	ctx->is_active = 0;
1031
	if (likely(!ctx->nr_events))
1032
		goto out;
1033
	update_context_time(ctx);
1034

1035
	perf_disable();
1036 1037 1038 1039
	if (ctx->nr_active)
		list_for_each_entry(event, &ctx->group_list, group_entry)
			group_sched_out(event, cpuctx, ctx);

1040
	perf_enable();
1041
 out:
1042 1043 1044
	spin_unlock(&ctx->lock);
}

1045 1046 1047
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1048 1049 1050 1051
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1052
 * in them directly with an fd; we can only enable/disable all
1053
 * events via prctl, or enable/disable all events in a family
1054 1055
 * via ioctl, which will have the same effect on both contexts.
 */
1056 1057
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1058 1059
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1060
		&& ctx1->parent_gen == ctx2->parent_gen
1061
		&& !ctx1->pin_count && !ctx2->pin_count;
1062 1063
}

1064
static void __perf_event_read(void *event);
1065

1066 1067
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1068 1069 1070
{
	u64 value;

1071
	if (!event->attr.inherit_stat)
1072 1073 1074
		return;

	/*
1075
	 * Update the event value, we cannot use perf_event_read()
1076 1077
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1078
	 * we know the event must be on the current CPU, therefore we
1079 1080
	 * don't need to use it.
	 */
1081 1082 1083
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
		__perf_event_read(event);
1084 1085
		break;

1086 1087
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1088 1089 1090 1091 1092 1093 1094
		break;

	default:
		break;
	}

	/*
1095
	 * In order to keep per-task stats reliable we need to flip the event
1096 1097
	 * values when we flip the contexts.
	 */
1098 1099 1100
	value = atomic64_read(&next_event->count);
	value = atomic64_xchg(&event->count, value);
	atomic64_set(&next_event->count, value);
1101

1102 1103
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1104

1105
	/*
1106
	 * Since we swizzled the values, update the user visible data too.
1107
	 */
1108 1109
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1110 1111 1112 1113 1114
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1115 1116
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1117
{
1118
	struct perf_event *event, *next_event;
1119 1120 1121 1122

	if (!ctx->nr_stat)
		return;

1123 1124
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1125

1126 1127
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1128

1129 1130
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1131

1132
		__perf_event_sync_stat(event, next_event);
1133

1134 1135
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1136 1137 1138
	}
}

T
Thomas Gleixner 已提交
1139
/*
1140
 * Called from scheduler to remove the events of the current task,
T
Thomas Gleixner 已提交
1141 1142
 * with interrupts disabled.
 *
1143
 * We stop each event and update the event value in event->count.
T
Thomas Gleixner 已提交
1144
 *
I
Ingo Molnar 已提交
1145
 * This does not protect us against NMI, but disable()
1146 1147 1148
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
T
Thomas Gleixner 已提交
1149
 */
1150
void perf_event_task_sched_out(struct task_struct *task,
1151
				 struct task_struct *next, int cpu)
T
Thomas Gleixner 已提交
1152 1153
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1154 1155 1156
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
1157
	struct pt_regs *regs;
1158
	int do_switch = 1;
T
Thomas Gleixner 已提交
1159

1160
	regs = task_pt_regs(task);
1161
	perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1162

1163
	if (likely(!ctx || !cpuctx->task_ctx))
T
Thomas Gleixner 已提交
1164 1165
		return;

1166
	update_context_time(ctx);
1167 1168 1169

	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
1170
	next_ctx = next->perf_event_ctxp;
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
		spin_lock(&ctx->lock);
		spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
		if (context_equiv(ctx, next_ctx)) {
1185 1186
			/*
			 * XXX do we need a memory barrier of sorts
1187
			 * wrt to rcu_dereference() of perf_event_ctxp
1188
			 */
1189 1190
			task->perf_event_ctxp = next_ctx;
			next->perf_event_ctxp = ctx;
1191 1192 1193
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1194

1195
			perf_event_sync_stat(ctx, next_ctx);
1196 1197 1198
		}
		spin_unlock(&next_ctx->lock);
		spin_unlock(&ctx->lock);
1199
	}
1200
	rcu_read_unlock();
1201

1202
	if (do_switch) {
1203
		__perf_event_sched_out(ctx, cpuctx);
1204 1205
		cpuctx->task_ctx = NULL;
	}
T
Thomas Gleixner 已提交
1206 1207
}

1208 1209 1210
/*
 * Called with IRQs disabled
 */
1211
static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1212 1213 1214
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);

1215 1216
	if (!cpuctx->task_ctx)
		return;
1217 1218 1219 1220

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

1221
	__perf_event_sched_out(ctx, cpuctx);
1222 1223 1224
	cpuctx->task_ctx = NULL;
}

1225 1226 1227
/*
 * Called with IRQs disabled
 */
1228
static void perf_event_cpu_sched_out(struct perf_cpu_context *cpuctx)
1229
{
1230
	__perf_event_sched_out(&cpuctx->ctx, cpuctx);
1231 1232
}

1233
static void
1234
__perf_event_sched_in(struct perf_event_context *ctx,
1235
			struct perf_cpu_context *cpuctx, int cpu)
T
Thomas Gleixner 已提交
1236
{
1237
	struct perf_event *event;
1238
	int can_add_hw = 1;
T
Thomas Gleixner 已提交
1239

1240 1241
	spin_lock(&ctx->lock);
	ctx->is_active = 1;
1242
	if (likely(!ctx->nr_events))
1243
		goto out;
T
Thomas Gleixner 已提交
1244

1245
	ctx->timestamp = perf_clock();
1246

1247
	perf_disable();
1248 1249 1250 1251 1252

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
1253 1254 1255
	list_for_each_entry(event, &ctx->group_list, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF ||
		    !event->attr.pinned)
1256
			continue;
1257
		if (event->cpu != -1 && event->cpu != cpu)
1258 1259
			continue;

1260 1261
		if (group_can_go_on(event, cpuctx, 1))
			group_sched_in(event, cpuctx, ctx, cpu);
1262 1263 1264 1265 1266

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
1267 1268 1269
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
1270
		}
1271 1272
	}

1273
	list_for_each_entry(event, &ctx->group_list, group_entry) {
1274
		/*
1275 1276
		 * Ignore events in OFF or ERROR state, and
		 * ignore pinned events since we did them already.
1277
		 */
1278 1279
		if (event->state <= PERF_EVENT_STATE_OFF ||
		    event->attr.pinned)
1280 1281
			continue;

1282 1283
		/*
		 * Listen to the 'cpu' scheduling filter constraint
1284
		 * of events:
1285
		 */
1286
		if (event->cpu != -1 && event->cpu != cpu)
T
Thomas Gleixner 已提交
1287 1288
			continue;

1289 1290
		if (group_can_go_on(event, cpuctx, can_add_hw))
			if (group_sched_in(event, cpuctx, ctx, cpu))
1291
				can_add_hw = 0;
T
Thomas Gleixner 已提交
1292
	}
1293
	perf_enable();
1294
 out:
T
Thomas Gleixner 已提交
1295
	spin_unlock(&ctx->lock);
1296 1297 1298
}

/*
1299
 * Called from scheduler to add the events of the current task
1300 1301
 * with interrupts disabled.
 *
1302
 * We restore the event value and then enable it.
1303 1304
 *
 * This does not protect us against NMI, but enable()
1305 1306 1307
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
1308
 */
1309
void perf_event_task_sched_in(struct task_struct *task, int cpu)
1310 1311
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1312
	struct perf_event_context *ctx = task->perf_event_ctxp;
1313

1314 1315
	if (likely(!ctx))
		return;
1316 1317
	if (cpuctx->task_ctx == ctx)
		return;
1318
	__perf_event_sched_in(ctx, cpuctx, cpu);
T
Thomas Gleixner 已提交
1319 1320 1321
	cpuctx->task_ctx = ctx;
}

1322
static void perf_event_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1323
{
1324
	struct perf_event_context *ctx = &cpuctx->ctx;
1325

1326
	__perf_event_sched_in(ctx, cpuctx, cpu);
1327 1328
}

1329 1330
#define MAX_INTERRUPTS (~0ULL)

1331
static void perf_log_throttle(struct perf_event *event, int enable);
1332

1333
static void perf_adjust_period(struct perf_event *event, u64 events)
1334
{
1335
	struct hw_perf_event *hwc = &event->hw;
1336 1337 1338 1339
	u64 period, sample_period;
	s64 delta;

	events *= hwc->sample_period;
1340
	period = div64_u64(events, event->attr.sample_freq);
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
}

1353
static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1354
{
1355 1356
	struct perf_event *event;
	struct hw_perf_event *hwc;
1357
	u64 interrupts, freq;
1358 1359

	spin_lock(&ctx->lock);
1360
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1361
		if (event->state != PERF_EVENT_STATE_ACTIVE)
1362 1363
			continue;

1364
		hwc = &event->hw;
1365 1366 1367

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
1368

1369
		/*
1370
		 * unthrottle events on the tick
1371
		 */
1372
		if (interrupts == MAX_INTERRUPTS) {
1373 1374 1375
			perf_log_throttle(event, 1);
			event->pmu->unthrottle(event);
			interrupts = 2*sysctl_perf_event_sample_rate/HZ;
1376 1377
		}

1378
		if (!event->attr.freq || !event->attr.sample_freq)
1379 1380
			continue;

1381 1382 1383
		/*
		 * if the specified freq < HZ then we need to skip ticks
		 */
1384 1385
		if (event->attr.sample_freq < HZ) {
			freq = event->attr.sample_freq;
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398

			hwc->freq_count += freq;
			hwc->freq_interrupts += interrupts;

			if (hwc->freq_count < HZ)
				continue;

			interrupts = hwc->freq_interrupts;
			hwc->freq_interrupts = 0;
			hwc->freq_count -= HZ;
		} else
			freq = HZ;

1399
		perf_adjust_period(event, freq * interrupts);
1400

1401 1402 1403 1404 1405 1406 1407
		/*
		 * In order to avoid being stalled by an (accidental) huge
		 * sample period, force reset the sample period if we didn't
		 * get any events in this freq period.
		 */
		if (!interrupts) {
			perf_disable();
1408
			event->pmu->disable(event);
1409
			atomic64_set(&hwc->period_left, 0);
1410
			event->pmu->enable(event);
1411 1412
			perf_enable();
		}
1413 1414 1415 1416
	}
	spin_unlock(&ctx->lock);
}

1417
/*
1418
 * Round-robin a context's events:
1419
 */
1420
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
1421
{
1422
	struct perf_event *event;
T
Thomas Gleixner 已提交
1423

1424
	if (!ctx->nr_events)
T
Thomas Gleixner 已提交
1425 1426 1427 1428
		return;

	spin_lock(&ctx->lock);
	/*
1429
	 * Rotate the first entry last (works just fine for group events too):
T
Thomas Gleixner 已提交
1430
	 */
1431
	perf_disable();
1432 1433
	list_for_each_entry(event, &ctx->group_list, group_entry) {
		list_move_tail(&event->group_entry, &ctx->group_list);
T
Thomas Gleixner 已提交
1434 1435
		break;
	}
1436
	perf_enable();
T
Thomas Gleixner 已提交
1437 1438

	spin_unlock(&ctx->lock);
1439 1440
}

1441
void perf_event_task_tick(struct task_struct *curr, int cpu)
1442
{
1443
	struct perf_cpu_context *cpuctx;
1444
	struct perf_event_context *ctx;
1445

1446
	if (!atomic_read(&nr_events))
1447 1448 1449
		return;

	cpuctx = &per_cpu(perf_cpu_context, cpu);
1450
	ctx = curr->perf_event_ctxp;
1451

1452
	perf_ctx_adjust_freq(&cpuctx->ctx);
1453
	if (ctx)
1454
		perf_ctx_adjust_freq(ctx);
1455

1456
	perf_event_cpu_sched_out(cpuctx);
1457
	if (ctx)
1458
		__perf_event_task_sched_out(ctx);
T
Thomas Gleixner 已提交
1459

1460
	rotate_ctx(&cpuctx->ctx);
1461 1462
	if (ctx)
		rotate_ctx(ctx);
1463

1464
	perf_event_cpu_sched_in(cpuctx, cpu);
1465
	if (ctx)
1466
		perf_event_task_sched_in(curr, cpu);
T
Thomas Gleixner 已提交
1467 1468
}

1469
/*
1470
 * Enable all of a task's events that have been marked enable-on-exec.
1471 1472
 * This expects task == current.
 */
1473
static void perf_event_enable_on_exec(struct task_struct *task)
1474
{
1475 1476
	struct perf_event_context *ctx;
	struct perf_event *event;
1477 1478 1479 1480
	unsigned long flags;
	int enabled = 0;

	local_irq_save(flags);
1481 1482
	ctx = task->perf_event_ctxp;
	if (!ctx || !ctx->nr_events)
1483 1484
		goto out;

1485
	__perf_event_task_sched_out(ctx);
1486 1487 1488

	spin_lock(&ctx->lock);

1489 1490
	list_for_each_entry(event, &ctx->group_list, group_entry) {
		if (!event->attr.enable_on_exec)
1491
			continue;
1492 1493
		event->attr.enable_on_exec = 0;
		if (event->state >= PERF_EVENT_STATE_INACTIVE)
1494
			continue;
1495
		__perf_event_mark_enabled(event, ctx);
1496 1497 1498 1499
		enabled = 1;
	}

	/*
1500
	 * Unclone this context if we enabled any event.
1501
	 */
1502 1503
	if (enabled)
		unclone_ctx(ctx);
1504 1505 1506

	spin_unlock(&ctx->lock);

1507
	perf_event_task_sched_in(task, smp_processor_id());
1508 1509 1510 1511
 out:
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
1512
/*
1513
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
1514
 */
1515
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
1516
{
1517
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1518 1519
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
I
Ingo Molnar 已提交
1520
	unsigned long flags;
I
Ingo Molnar 已提交
1521

1522 1523 1524 1525
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
1526 1527
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
1528 1529 1530 1531
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

1532
	local_irq_save(flags);
1533
	if (ctx->is_active)
1534
		update_context_time(ctx);
1535 1536
	event->pmu->read(event);
	update_event_times(event);
1537
	local_irq_restore(flags);
T
Thomas Gleixner 已提交
1538 1539
}

1540
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
1541 1542
{
	/*
1543 1544
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
1545
	 */
1546 1547 1548 1549 1550
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_event_times(event);
T
Thomas Gleixner 已提交
1551 1552
	}

1553
	return atomic64_read(&event->count);
T
Thomas Gleixner 已提交
1554 1555
}

1556
/*
1557
 * Initialize the perf_event context in a task_struct:
1558 1559
 */
static void
1560
__perf_event_init_context(struct perf_event_context *ctx,
1561 1562 1563 1564 1565
			    struct task_struct *task)
{
	memset(ctx, 0, sizeof(*ctx));
	spin_lock_init(&ctx->lock);
	mutex_init(&ctx->mutex);
1566
	INIT_LIST_HEAD(&ctx->group_list);
1567 1568 1569 1570 1571
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
	ctx->task = task;
}

1572
static struct perf_event_context *find_get_context(pid_t pid, int cpu)
T
Thomas Gleixner 已提交
1573
{
1574
	struct perf_event_context *ctx;
1575
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
1576
	struct task_struct *task;
1577
	unsigned long flags;
1578
	int err;
T
Thomas Gleixner 已提交
1579 1580

	/*
1581
	 * If cpu is not a wildcard then this is a percpu event:
T
Thomas Gleixner 已提交
1582 1583
	 */
	if (cpu != -1) {
1584
		/* Must be root to operate on a CPU event: */
1585
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
1586 1587 1588 1589 1590 1591
			return ERR_PTR(-EACCES);

		if (cpu < 0 || cpu > num_possible_cpus())
			return ERR_PTR(-EINVAL);

		/*
1592
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
1593 1594 1595 1596 1597 1598 1599 1600
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
		if (!cpu_isset(cpu, cpu_online_map))
			return ERR_PTR(-ENODEV);

		cpuctx = &per_cpu(perf_cpu_context, cpu);
		ctx = &cpuctx->ctx;
1601
		get_ctx(ctx);
T
Thomas Gleixner 已提交
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

1618
	/*
1619
	 * Can't attach events to a dying task.
1620 1621 1622 1623 1624
	 */
	err = -ESRCH;
	if (task->flags & PF_EXITING)
		goto errout;

T
Thomas Gleixner 已提交
1625
	/* Reuse ptrace permission checks for now. */
1626 1627 1628 1629 1630
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

 retry:
1631
	ctx = perf_lock_task_context(task, &flags);
1632
	if (ctx) {
1633
		unclone_ctx(ctx);
1634
		spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1635 1636
	}

1637
	if (!ctx) {
1638
		ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1639 1640 1641
		err = -ENOMEM;
		if (!ctx)
			goto errout;
1642
		__perf_event_init_context(ctx, task);
1643
		get_ctx(ctx);
1644
		if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1645 1646 1647 1648 1649
			/*
			 * We raced with some other task; use
			 * the context they set.
			 */
			kfree(ctx);
1650
			goto retry;
1651
		}
1652
		get_task_struct(task);
1653 1654
	}

1655
	put_task_struct(task);
T
Thomas Gleixner 已提交
1656
	return ctx;
1657 1658 1659 1660

 errout:
	put_task_struct(task);
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
1661 1662
}

L
Li Zefan 已提交
1663 1664
static void perf_event_free_filter(struct perf_event *event);

1665
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
1666
{
1667
	struct perf_event *event;
P
Peter Zijlstra 已提交
1668

1669 1670 1671
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
1672
	perf_event_free_filter(event);
1673
	kfree(event);
P
Peter Zijlstra 已提交
1674 1675
}

1676
static void perf_pending_sync(struct perf_event *event);
1677

1678
static void free_event(struct perf_event *event)
1679
{
1680
	perf_pending_sync(event);
1681

1682 1683 1684 1685 1686 1687 1688 1689
	if (!event->parent) {
		atomic_dec(&nr_events);
		if (event->attr.mmap)
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
1690
	}
1691

1692 1693 1694
	if (event->output) {
		fput(event->output->filp);
		event->output = NULL;
1695 1696
	}

1697 1698
	if (event->destroy)
		event->destroy(event);
1699

1700 1701
	put_ctx(event->ctx);
	call_rcu(&event->rcu_head, free_event_rcu);
1702 1703
}

T
Thomas Gleixner 已提交
1704 1705 1706 1707 1708
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
{
1709 1710
	struct perf_event *event = file->private_data;
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1711 1712 1713

	file->private_data = NULL;

1714
	WARN_ON_ONCE(ctx->parent_ctx);
1715
	mutex_lock(&ctx->mutex);
1716
	perf_event_remove_from_context(event);
1717
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
1718

1719 1720 1721 1722
	mutex_lock(&event->owner->perf_event_mutex);
	list_del_init(&event->owner_entry);
	mutex_unlock(&event->owner->perf_event_mutex);
	put_task_struct(event->owner);
1723

1724
	free_event(event);
T
Thomas Gleixner 已提交
1725 1726 1727 1728

	return 0;
}

1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
int perf_event_release_kernel(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_event_remove_from_context(event);
	mutex_unlock(&ctx->mutex);

	mutex_lock(&event->owner->perf_event_mutex);
	list_del_init(&event->owner_entry);
	mutex_unlock(&event->owner->perf_event_mutex);
	put_task_struct(event->owner);

	free_event(event);

	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

1749
static int perf_event_read_size(struct perf_event *event)
1750 1751 1752 1753 1754
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

1755
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1756 1757
		size += sizeof(u64);

1758
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1759 1760
		size += sizeof(u64);

1761
	if (event->attr.read_format & PERF_FORMAT_ID)
1762 1763
		entry += sizeof(u64);

1764 1765
	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
1766 1767 1768 1769 1770 1771 1772 1773
		size += sizeof(u64);
	}

	size += entry * nr;

	return size;
}

1774
u64 perf_event_read_value(struct perf_event *event)
1775
{
1776
	struct perf_event *child;
1777 1778
	u64 total = 0;

1779 1780 1781
	total += perf_event_read(event);
	list_for_each_entry(child, &event->child_list, child_list)
		total += perf_event_read(child);
1782 1783 1784

	return total;
}
1785
EXPORT_SYMBOL_GPL(perf_event_read_value);
1786

1787
static int perf_event_read_group(struct perf_event *event,
1788 1789
				   u64 read_format, char __user *buf)
{
1790
	struct perf_event *leader = event->group_leader, *sub;
1791 1792 1793 1794 1795
	int n = 0, size = 0, ret = 0;
	u64 values[5];
	u64 count;

	count = perf_event_read_value(leader);
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805

	values[n++] = 1 + leader->nr_siblings;
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
		values[n++] = leader->total_time_enabled +
			atomic64_read(&leader->child_total_time_enabled);
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
		values[n++] = leader->total_time_running +
			atomic64_read(&leader->child_total_time_running);
	}
1806 1807 1808
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
1809 1810 1811 1812 1813 1814

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
		return -EFAULT;

1815
	ret += size;
1816

1817
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1818
		n = 0;
1819

1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
		values[n++] = perf_event_read_value(sub);
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

		if (copy_to_user(buf + size, values, size))
			return -EFAULT;

		ret += size;
1830 1831
	}

1832
	return ret;
1833 1834
}

1835
static int perf_event_read_one(struct perf_event *event,
1836 1837 1838 1839 1840
				 u64 read_format, char __user *buf)
{
	u64 values[4];
	int n = 0;

1841
	values[n++] = perf_event_read_value(event);
1842
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1843 1844
		values[n++] = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
1845 1846
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1847 1848
		values[n++] = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
1849 1850
	}
	if (read_format & PERF_FORMAT_ID)
1851
		values[n++] = primary_event_id(event);
1852 1853 1854 1855 1856 1857 1858

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
1859
/*
1860
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
1861 1862
 */
static ssize_t
1863
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
1864
{
1865
	u64 read_format = event->attr.read_format;
1866
	int ret;
T
Thomas Gleixner 已提交
1867

1868
	/*
1869
	 * Return end-of-file for a read on a event that is in
1870 1871 1872
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
1873
	if (event->state == PERF_EVENT_STATE_ERROR)
1874 1875
		return 0;

1876
	if (count < perf_event_read_size(event))
1877 1878
		return -ENOSPC;

1879 1880
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
1881
	if (read_format & PERF_FORMAT_GROUP)
1882
		ret = perf_event_read_group(event, read_format, buf);
1883
	else
1884 1885
		ret = perf_event_read_one(event, read_format, buf);
	mutex_unlock(&event->child_mutex);
T
Thomas Gleixner 已提交
1886

1887
	return ret;
T
Thomas Gleixner 已提交
1888 1889 1890 1891 1892
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
1893
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
1894

1895
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
1896 1897 1898 1899
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
1900
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
1901
	struct perf_mmap_data *data;
1902
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
1903 1904

	rcu_read_lock();
1905
	data = rcu_dereference(event->data);
P
Peter Zijlstra 已提交
1906
	if (data)
1907
		events = atomic_xchg(&data->poll, 0);
P
Peter Zijlstra 已提交
1908
	rcu_read_unlock();
T
Thomas Gleixner 已提交
1909

1910
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
1911 1912 1913 1914

	return events;
}

1915
static void perf_event_reset(struct perf_event *event)
1916
{
1917 1918 1919
	(void)perf_event_read(event);
	atomic64_set(&event->count, 0);
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
1920 1921
}

1922
/*
1923 1924 1925 1926
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
1927
 */
1928 1929
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
1930
{
1931
	struct perf_event *child;
P
Peter Zijlstra 已提交
1932

1933 1934 1935 1936
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
1937
		func(child);
1938
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
1939 1940
}

1941 1942
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
1943
{
1944 1945
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
1946

1947 1948
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
1949
	event = event->group_leader;
1950

1951 1952 1953 1954
	perf_event_for_each_child(event, func);
	func(event);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
		perf_event_for_each_child(event, func);
1955
	mutex_unlock(&ctx->mutex);
1956 1957
}

1958
static int perf_event_period(struct perf_event *event, u64 __user *arg)
1959
{
1960
	struct perf_event_context *ctx = event->ctx;
1961 1962 1963 1964
	unsigned long size;
	int ret = 0;
	u64 value;

1965
	if (!event->attr.sample_period)
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
		return -EINVAL;

	size = copy_from_user(&value, arg, sizeof(value));
	if (size != sizeof(value))
		return -EFAULT;

	if (!value)
		return -EINVAL;

	spin_lock_irq(&ctx->lock);
1976 1977
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
1978 1979 1980 1981
			ret = -EINVAL;
			goto unlock;
		}

1982
		event->attr.sample_freq = value;
1983
	} else {
1984 1985
		event->attr.sample_period = value;
		event->hw.sample_period = value;
1986 1987 1988 1989 1990 1991 1992
	}
unlock:
	spin_unlock_irq(&ctx->lock);

	return ret;
}

L
Li Zefan 已提交
1993 1994
static int perf_event_set_output(struct perf_event *event, int output_fd);
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
1995

1996 1997
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
1998 1999
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
2000
	u32 flags = arg;
2001 2002

	switch (cmd) {
2003 2004
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
2005
		break;
2006 2007
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
2008
		break;
2009 2010
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
2011
		break;
P
Peter Zijlstra 已提交
2012

2013 2014
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
2015

2016 2017
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
2018

2019 2020
	case PERF_EVENT_IOC_SET_OUTPUT:
		return perf_event_set_output(event, arg);
2021

L
Li Zefan 已提交
2022 2023 2024
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

2025
	default:
P
Peter Zijlstra 已提交
2026
		return -ENOTTY;
2027
	}
P
Peter Zijlstra 已提交
2028 2029

	if (flags & PERF_IOC_FLAG_GROUP)
2030
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
2031
	else
2032
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
2033 2034

	return 0;
2035 2036
}

2037
int perf_event_task_enable(void)
2038
{
2039
	struct perf_event *event;
2040

2041 2042 2043 2044
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
2045 2046 2047 2048

	return 0;
}

2049
int perf_event_task_disable(void)
2050
{
2051
	struct perf_event *event;
2052

2053 2054 2055 2056
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
2057 2058 2059 2060

	return 0;
}

2061 2062
#ifndef PERF_EVENT_INDEX_OFFSET
# define PERF_EVENT_INDEX_OFFSET 0
I
Ingo Molnar 已提交
2063 2064
#endif

2065
static int perf_event_index(struct perf_event *event)
2066
{
2067
	if (event->state != PERF_EVENT_STATE_ACTIVE)
2068 2069
		return 0;

2070
	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2071 2072
}

2073 2074 2075 2076 2077
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
2078
void perf_event_update_userpage(struct perf_event *event)
2079
{
2080
	struct perf_event_mmap_page *userpg;
2081
	struct perf_mmap_data *data;
2082 2083

	rcu_read_lock();
2084
	data = rcu_dereference(event->data);
2085 2086 2087 2088
	if (!data)
		goto unlock;

	userpg = data->user_page;
2089

2090 2091 2092 2093 2094
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
2095
	++userpg->lock;
2096
	barrier();
2097 2098 2099 2100
	userpg->index = perf_event_index(event);
	userpg->offset = atomic64_read(&event->count);
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		userpg->offset -= atomic64_read(&event->hw.prev_count);
2101

2102 2103
	userpg->time_enabled = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
2104

2105 2106
	userpg->time_running = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
2107

2108
	barrier();
2109
	++userpg->lock;
2110
	preempt_enable();
2111
unlock:
2112
	rcu_read_unlock();
2113 2114
}

2115
static unsigned long perf_data_size(struct perf_mmap_data *data)
2116
{
2117 2118
	return data->nr_pages << (PAGE_SHIFT + data->data_order);
}
2119

2120
#ifndef CONFIG_PERF_USE_VMALLOC
2121

2122 2123 2124
/*
 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
 */
2125

2126 2127 2128 2129 2130
static struct page *
perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
{
	if (pgoff > data->nr_pages)
		return NULL;
2131

2132 2133
	if (pgoff == 0)
		return virt_to_page(data->user_page);
2134

2135
	return virt_to_page(data->data_pages[pgoff - 1]);
2136 2137
}

2138 2139
static struct perf_mmap_data *
perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2140 2141 2142 2143 2144
{
	struct perf_mmap_data *data;
	unsigned long size;
	int i;

2145
	WARN_ON(atomic_read(&event->mmap_count));
2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163

	size = sizeof(struct perf_mmap_data);
	size += nr_pages * sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
	if (!data->user_page)
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
		data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
		if (!data->data_pages[i])
			goto fail_data_pages;
	}

2164
	data->data_order = 0;
2165 2166
	data->nr_pages = nr_pages;

2167
	return data;
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178

fail_data_pages:
	for (i--; i >= 0; i--)
		free_page((unsigned long)data->data_pages[i]);

	free_page((unsigned long)data->user_page);

fail_user_page:
	kfree(data);

fail:
2179
	return NULL;
2180 2181
}

2182 2183
static void perf_mmap_free_page(unsigned long addr)
{
K
Kevin Cernekee 已提交
2184
	struct page *page = virt_to_page((void *)addr);
2185 2186 2187 2188 2189

	page->mapping = NULL;
	__free_page(page);
}

2190
static void perf_mmap_data_free(struct perf_mmap_data *data)
2191 2192 2193
{
	int i;

2194
	perf_mmap_free_page((unsigned long)data->user_page);
2195
	for (i = 0; i < data->nr_pages; i++)
2196
		perf_mmap_free_page((unsigned long)data->data_pages[i]);
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
}

#else

/*
 * Back perf_mmap() with vmalloc memory.
 *
 * Required for architectures that have d-cache aliasing issues.
 */

static struct page *
perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
{
	if (pgoff > (1UL << data->data_order))
		return NULL;

	return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
}

static void perf_mmap_unmark_page(void *addr)
{
	struct page *page = vmalloc_to_page(addr);

	page->mapping = NULL;
}

static void perf_mmap_data_free_work(struct work_struct *work)
{
	struct perf_mmap_data *data;
	void *base;
	int i, nr;

	data = container_of(work, struct perf_mmap_data, work);
	nr = 1 << data->data_order;

	base = data->user_page;
	for (i = 0; i < nr + 1; i++)
		perf_mmap_unmark_page(base + (i * PAGE_SIZE));

	vfree(base);
}

static void perf_mmap_data_free(struct perf_mmap_data *data)
{
	schedule_work(&data->work);
}

static struct perf_mmap_data *
perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
{
	struct perf_mmap_data *data;
	unsigned long size;
	void *all_buf;

	WARN_ON(atomic_read(&event->mmap_count));
2252

2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
	size = sizeof(struct perf_mmap_data);
	size += sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	INIT_WORK(&data->work, perf_mmap_data_free_work);

	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
	if (!all_buf)
		goto fail_all_buf;

	data->user_page = all_buf;
	data->data_pages[0] = all_buf + PAGE_SIZE;
	data->data_order = ilog2(nr_pages);
	data->nr_pages = 1;

	return data;

fail_all_buf:
	kfree(data);

fail:
	return NULL;
}

#endif

static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
	struct perf_mmap_data *data;
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
	data = rcu_dereference(event->data);
	if (!data)
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

	vmf->page = perf_mmap_to_page(data, vmf->pgoff);
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

static void
perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
{
	long max_size = perf_data_size(data);

	atomic_set(&data->lock, -1);

	if (event->attr.watermark) {
		data->watermark = min_t(long, max_size,
					event->attr.wakeup_watermark);
	}

	if (!data->watermark)
		data->watermark = max_t(long, PAGE_SIZE, max_size / 2);


	rcu_assign_pointer(event->data, data);
}

static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
{
	struct perf_mmap_data *data;

	data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
	perf_mmap_data_free(data);
2342 2343 2344
	kfree(data);
}

2345
static void perf_mmap_data_release(struct perf_event *event)
2346
{
2347
	struct perf_mmap_data *data = event->data;
2348

2349
	WARN_ON(atomic_read(&event->mmap_count));
2350

2351
	rcu_assign_pointer(event->data, NULL);
2352
	call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2353 2354 2355 2356
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
2357
	struct perf_event *event = vma->vm_file->private_data;
2358

2359
	atomic_inc(&event->mmap_count);
2360 2361 2362 2363
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
2364
	struct perf_event *event = vma->vm_file->private_data;
2365

2366 2367
	WARN_ON_ONCE(event->ctx->parent_ctx);
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2368
		unsigned long size = perf_data_size(event->data);
2369 2370
		struct user_struct *user = current_user();

2371
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2372
		vma->vm_mm->locked_vm -= event->data->nr_locked;
2373
		perf_mmap_data_release(event);
2374
		mutex_unlock(&event->mmap_mutex);
2375
	}
2376 2377
}

2378
static const struct vm_operations_struct perf_mmap_vmops = {
2379 2380 2381 2382
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
2383 2384 2385 2386
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
2387
	struct perf_event *event = file->private_data;
2388
	unsigned long user_locked, user_lock_limit;
2389
	struct user_struct *user = current_user();
2390
	unsigned long locked, lock_limit;
2391
	struct perf_mmap_data *data;
2392 2393
	unsigned long vma_size;
	unsigned long nr_pages;
2394
	long user_extra, extra;
2395
	int ret = 0;
2396

2397
	if (!(vma->vm_flags & VM_SHARED))
2398
		return -EINVAL;
2399 2400 2401 2402

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

2403 2404 2405 2406 2407
	/*
	 * If we have data pages ensure they're a power-of-two number, so we
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
2408 2409
		return -EINVAL;

2410
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
2411 2412
		return -EINVAL;

2413 2414
	if (vma->vm_pgoff != 0)
		return -EINVAL;
2415

2416 2417 2418
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
	if (event->output) {
2419 2420 2421 2422
		ret = -EINVAL;
		goto unlock;
	}

2423 2424
	if (atomic_inc_not_zero(&event->mmap_count)) {
		if (nr_pages != event->data->nr_pages)
2425 2426 2427 2428
			ret = -EINVAL;
		goto unlock;
	}

2429
	user_extra = nr_pages + 1;
2430
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
2431 2432 2433 2434 2435 2436

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

2437
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2438

2439 2440 2441
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
2442 2443 2444

	lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
	lock_limit >>= PAGE_SHIFT;
2445
	locked = vma->vm_mm->locked_vm + extra;
2446

2447 2448
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
2449 2450 2451
		ret = -EPERM;
		goto unlock;
	}
2452

2453
	WARN_ON(event->data);
2454 2455 2456 2457

	data = perf_mmap_data_alloc(event, nr_pages);
	ret = -ENOMEM;
	if (!data)
2458 2459
		goto unlock;

2460 2461 2462
	ret = 0;
	perf_mmap_data_init(event, data);

2463
	atomic_set(&event->mmap_count, 1);
2464
	atomic_long_add(user_extra, &user->locked_vm);
2465
	vma->vm_mm->locked_vm += extra;
2466
	event->data->nr_locked = extra;
2467
	if (vma->vm_flags & VM_WRITE)
2468
		event->data->writable = 1;
2469

2470
unlock:
2471
	mutex_unlock(&event->mmap_mutex);
2472 2473 2474

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
2475 2476

	return ret;
2477 2478
}

P
Peter Zijlstra 已提交
2479 2480 2481
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
2482
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
2483 2484 2485
	int retval;

	mutex_lock(&inode->i_mutex);
2486
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
2487 2488 2489 2490 2491 2492 2493 2494
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
2495 2496 2497 2498
static const struct file_operations perf_fops = {
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
2499 2500
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
2501
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
2502
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
2503 2504
};

2505
/*
2506
 * Perf event wakeup
2507 2508 2509 2510 2511
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

2512
void perf_event_wakeup(struct perf_event *event)
2513
{
2514
	wake_up_all(&event->waitq);
2515

2516 2517 2518
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
2519
	}
2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530
}

/*
 * Pending wakeups
 *
 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
 *
 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
 * single linked list and use cmpxchg() to add entries lockless.
 */

2531
static void perf_pending_event(struct perf_pending_entry *entry)
2532
{
2533 2534
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
2535

2536 2537 2538
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
2539 2540
	}

2541 2542 2543
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
2544 2545 2546
	}
}

2547
#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2548

2549
static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2550 2551 2552
	PENDING_TAIL,
};

2553 2554
static void perf_pending_queue(struct perf_pending_entry *entry,
			       void (*func)(struct perf_pending_entry *))
2555
{
2556
	struct perf_pending_entry **head;
2557

2558
	if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2559 2560
		return;

2561 2562 2563
	entry->func = func;

	head = &get_cpu_var(perf_pending_head);
2564 2565

	do {
2566 2567
		entry->next = *head;
	} while (cmpxchg(head, entry->next, entry) != entry->next);
2568

2569
	set_perf_event_pending();
2570

2571
	put_cpu_var(perf_pending_head);
2572 2573 2574 2575
}

static int __perf_pending_run(void)
{
2576
	struct perf_pending_entry *list;
2577 2578
	int nr = 0;

2579
	list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2580
	while (list != PENDING_TAIL) {
2581 2582
		void (*func)(struct perf_pending_entry *);
		struct perf_pending_entry *entry = list;
2583 2584 2585

		list = list->next;

2586 2587
		func = entry->func;
		entry->next = NULL;
2588 2589 2590 2591 2592 2593 2594
		/*
		 * Ensure we observe the unqueue before we issue the wakeup,
		 * so that we won't be waiting forever.
		 * -- see perf_not_pending().
		 */
		smp_wmb();

2595
		func(entry);
2596 2597 2598 2599 2600 2601
		nr++;
	}

	return nr;
}

2602
static inline int perf_not_pending(struct perf_event *event)
2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
{
	/*
	 * If we flush on whatever cpu we run, there is a chance we don't
	 * need to wait.
	 */
	get_cpu();
	__perf_pending_run();
	put_cpu();

	/*
	 * Ensure we see the proper queue state before going to sleep
	 * so that we do not miss the wakeup. -- see perf_pending_handle()
	 */
	smp_rmb();
2617
	return event->pending.next == NULL;
2618 2619
}

2620
static void perf_pending_sync(struct perf_event *event)
2621
{
2622
	wait_event(event->waitq, perf_not_pending(event));
2623 2624
}

2625
void perf_event_do_pending(void)
2626 2627 2628 2629
{
	__perf_pending_run();
}

2630 2631 2632 2633
/*
 * Callchain support -- arch specific
 */

2634
__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2635 2636 2637 2638
{
	return NULL;
}

2639 2640 2641
/*
 * Output
 */
2642 2643
static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
			      unsigned long offset, unsigned long head)
2644 2645 2646 2647 2648 2649
{
	unsigned long mask;

	if (!data->writable)
		return true;

2650
	mask = perf_data_size(data) - 1;
2651 2652 2653 2654 2655 2656 2657 2658 2659 2660

	offset = (offset - tail) & mask;
	head   = (head   - tail) & mask;

	if ((int)(head - offset) < 0)
		return false;

	return true;
}

2661
static void perf_output_wakeup(struct perf_output_handle *handle)
2662
{
2663 2664
	atomic_set(&handle->data->poll, POLL_IN);

2665
	if (handle->nmi) {
2666 2667 2668
		handle->event->pending_wakeup = 1;
		perf_pending_queue(&handle->event->pending,
				   perf_pending_event);
2669
	} else
2670
		perf_event_wakeup(handle->event);
2671 2672
}

2673 2674 2675
/*
 * Curious locking construct.
 *
2676 2677
 * We need to ensure a later event_id doesn't publish a head when a former
 * event_id isn't done writing. However since we need to deal with NMIs we
2678 2679 2680 2681 2682 2683
 * cannot fully serialize things.
 *
 * What we do is serialize between CPUs so we only have to deal with NMI
 * nesting on a single CPU.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
2684
 * event_id completes.
2685 2686 2687 2688
 */
static void perf_output_lock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
2689
	int cur, cpu = get_cpu();
2690 2691 2692

	handle->locked = 0;

2693 2694 2695 2696 2697 2698 2699 2700
	for (;;) {
		cur = atomic_cmpxchg(&data->lock, -1, cpu);
		if (cur == -1) {
			handle->locked = 1;
			break;
		}
		if (cur == cpu)
			break;
2701 2702

		cpu_relax();
2703
	}
2704 2705 2706 2707 2708
}

static void perf_output_unlock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
2709 2710
	unsigned long head;
	int cpu;
2711

2712
	data->done_head = data->head;
2713 2714 2715 2716 2717 2718 2719 2720 2721 2722

	if (!handle->locked)
		goto out;

again:
	/*
	 * The xchg implies a full barrier that ensures all writes are done
	 * before we publish the new head, matched by a rmb() in userspace when
	 * reading this position.
	 */
2723
	while ((head = atomic_long_xchg(&data->done_head, 0)))
2724 2725 2726
		data->user_page->data_head = head;

	/*
2727
	 * NMI can happen here, which means we can miss a done_head update.
2728 2729
	 */

2730
	cpu = atomic_xchg(&data->lock, -1);
2731 2732 2733 2734 2735
	WARN_ON_ONCE(cpu != smp_processor_id());

	/*
	 * Therefore we have to validate we did not indeed do so.
	 */
2736
	if (unlikely(atomic_long_read(&data->done_head))) {
2737 2738 2739
		/*
		 * Since we had it locked, we can lock it again.
		 */
2740
		while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2741 2742 2743 2744 2745
			cpu_relax();

		goto again;
	}

2746
	if (atomic_xchg(&data->wakeup, 0))
2747 2748
		perf_output_wakeup(handle);
out:
2749
	put_cpu();
2750 2751
}

2752 2753
void perf_output_copy(struct perf_output_handle *handle,
		      const void *buf, unsigned int len)
2754 2755
{
	unsigned int pages_mask;
2756
	unsigned long offset;
2757 2758 2759 2760 2761 2762 2763 2764
	unsigned int size;
	void **pages;

	offset		= handle->offset;
	pages_mask	= handle->data->nr_pages - 1;
	pages		= handle->data->data_pages;

	do {
2765 2766
		unsigned long page_offset;
		unsigned long page_size;
2767 2768 2769
		int nr;

		nr	    = (offset >> PAGE_SHIFT) & pages_mask;
2770 2771 2772
		page_size   = 1UL << (handle->data->data_order + PAGE_SHIFT);
		page_offset = offset & (page_size - 1);
		size	    = min_t(unsigned int, page_size - page_offset, len);
2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789

		memcpy(pages[nr] + page_offset, buf, size);

		len	    -= size;
		buf	    += size;
		offset	    += size;
	} while (len);

	handle->offset = offset;

	/*
	 * Check we didn't copy past our reservation window, taking the
	 * possible unsigned int wrap into account.
	 */
	WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
}

2790
int perf_output_begin(struct perf_output_handle *handle,
2791
		      struct perf_event *event, unsigned int size,
2792
		      int nmi, int sample)
2793
{
2794
	struct perf_event *output_event;
2795
	struct perf_mmap_data *data;
2796
	unsigned long tail, offset, head;
2797 2798 2799 2800 2801 2802
	int have_lost;
	struct {
		struct perf_event_header header;
		u64			 id;
		u64			 lost;
	} lost_event;
2803

2804
	rcu_read_lock();
2805
	/*
2806
	 * For inherited events we send all the output towards the parent.
2807
	 */
2808 2809
	if (event->parent)
		event = event->parent;
2810

2811 2812 2813
	output_event = rcu_dereference(event->output);
	if (output_event)
		event = output_event;
2814

2815
	data = rcu_dereference(event->data);
2816 2817 2818
	if (!data)
		goto out;

2819
	handle->data	= data;
2820
	handle->event	= event;
2821 2822
	handle->nmi	= nmi;
	handle->sample	= sample;
2823

2824
	if (!data->nr_pages)
2825
		goto fail;
2826

2827 2828 2829 2830
	have_lost = atomic_read(&data->lost);
	if (have_lost)
		size += sizeof(lost_event);

2831 2832
	perf_output_lock(handle);

2833
	do {
2834 2835 2836 2837 2838 2839 2840
		/*
		 * Userspace could choose to issue a mb() before updating the
		 * tail pointer. So that all reads will be completed before the
		 * write is issued.
		 */
		tail = ACCESS_ONCE(data->user_page->data_tail);
		smp_rmb();
2841
		offset = head = atomic_long_read(&data->head);
P
Peter Zijlstra 已提交
2842
		head += size;
2843
		if (unlikely(!perf_output_space(data, tail, offset, head)))
2844
			goto fail;
2845
	} while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2846

2847
	handle->offset	= offset;
2848
	handle->head	= head;
2849

2850
	if (head - tail > data->watermark)
2851
		atomic_set(&data->wakeup, 1);
2852

2853
	if (have_lost) {
2854
		lost_event.header.type = PERF_RECORD_LOST;
2855 2856
		lost_event.header.misc = 0;
		lost_event.header.size = sizeof(lost_event);
2857
		lost_event.id          = event->id;
2858 2859 2860 2861 2862
		lost_event.lost        = atomic_xchg(&data->lost, 0);

		perf_output_put(handle, lost_event);
	}

2863
	return 0;
2864

2865
fail:
2866 2867
	atomic_inc(&data->lost);
	perf_output_unlock(handle);
2868 2869
out:
	rcu_read_unlock();
2870

2871 2872
	return -ENOSPC;
}
2873

2874
void perf_output_end(struct perf_output_handle *handle)
2875
{
2876
	struct perf_event *event = handle->event;
2877 2878
	struct perf_mmap_data *data = handle->data;

2879
	int wakeup_events = event->attr.wakeup_events;
P
Peter Zijlstra 已提交
2880

2881
	if (handle->sample && wakeup_events) {
2882
		int events = atomic_inc_return(&data->events);
P
Peter Zijlstra 已提交
2883
		if (events >= wakeup_events) {
2884
			atomic_sub(wakeup_events, &data->events);
2885
			atomic_set(&data->wakeup, 1);
P
Peter Zijlstra 已提交
2886
		}
2887 2888 2889
	}

	perf_output_unlock(handle);
2890
	rcu_read_unlock();
2891 2892
}

2893
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
2894 2895
{
	/*
2896
	 * only top level events have the pid namespace they were created in
2897
	 */
2898 2899
	if (event->parent)
		event = event->parent;
2900

2901
	return task_tgid_nr_ns(p, event->ns);
2902 2903
}

2904
static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
2905 2906
{
	/*
2907
	 * only top level events have the pid namespace they were created in
2908
	 */
2909 2910
	if (event->parent)
		event = event->parent;
2911

2912
	return task_pid_nr_ns(p, event->ns);
2913 2914
}

2915
static void perf_output_read_one(struct perf_output_handle *handle,
2916
				 struct perf_event *event)
2917
{
2918
	u64 read_format = event->attr.read_format;
2919 2920 2921
	u64 values[4];
	int n = 0;

2922
	values[n++] = atomic64_read(&event->count);
2923
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2924 2925
		values[n++] = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
2926 2927
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2928 2929
		values[n++] = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
2930 2931
	}
	if (read_format & PERF_FORMAT_ID)
2932
		values[n++] = primary_event_id(event);
2933 2934 2935 2936 2937

	perf_output_copy(handle, values, n * sizeof(u64));
}

/*
2938
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
2939 2940
 */
static void perf_output_read_group(struct perf_output_handle *handle,
2941
			    struct perf_event *event)
2942
{
2943 2944
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = leader->total_time_enabled;

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = leader->total_time_running;

2956
	if (leader != event)
2957 2958 2959 2960
		leader->pmu->read(leader);

	values[n++] = atomic64_read(&leader->count);
	if (read_format & PERF_FORMAT_ID)
2961
		values[n++] = primary_event_id(leader);
2962 2963 2964

	perf_output_copy(handle, values, n * sizeof(u64));

2965
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2966 2967
		n = 0;

2968
		if (sub != event)
2969 2970 2971 2972
			sub->pmu->read(sub);

		values[n++] = atomic64_read(&sub->count);
		if (read_format & PERF_FORMAT_ID)
2973
			values[n++] = primary_event_id(sub);
2974 2975 2976 2977 2978 2979

		perf_output_copy(handle, values, n * sizeof(u64));
	}
}

static void perf_output_read(struct perf_output_handle *handle,
2980
			     struct perf_event *event)
2981
{
2982 2983
	if (event->attr.read_format & PERF_FORMAT_GROUP)
		perf_output_read_group(handle, event);
2984
	else
2985
		perf_output_read_one(handle, event);
2986 2987
}

2988 2989 2990
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
2991
			struct perf_event *event)
2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
3022
		perf_output_read(handle, event);
3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

			perf_output_copy(handle, data->callchain, size);
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
			perf_output_copy(handle, data->raw->data,
					 data->raw->size);
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
3060
			 struct perf_event *event,
3061
			 struct pt_regs *regs)
3062
{
3063
	u64 sample_type = event->attr.sample_type;
3064

3065
	data->type = sample_type;
3066

3067
	header->type = PERF_RECORD_SAMPLE;
3068 3069 3070 3071
	header->size = sizeof(*header);

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
3072

3073
	if (sample_type & PERF_SAMPLE_IP) {
3074 3075 3076
		data->ip = perf_instruction_pointer(regs);

		header->size += sizeof(data->ip);
3077
	}
3078

3079
	if (sample_type & PERF_SAMPLE_TID) {
3080
		/* namespace issues */
3081 3082
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
3083

3084
		header->size += sizeof(data->tid_entry);
3085 3086
	}

3087
	if (sample_type & PERF_SAMPLE_TIME) {
P
Peter Zijlstra 已提交
3088
		data->time = perf_clock();
3089

3090
		header->size += sizeof(data->time);
3091 3092
	}

3093
	if (sample_type & PERF_SAMPLE_ADDR)
3094
		header->size += sizeof(data->addr);
3095

3096
	if (sample_type & PERF_SAMPLE_ID) {
3097
		data->id = primary_event_id(event);
3098

3099 3100 3101 3102
		header->size += sizeof(data->id);
	}

	if (sample_type & PERF_SAMPLE_STREAM_ID) {
3103
		data->stream_id = event->id;
3104 3105 3106

		header->size += sizeof(data->stream_id);
	}
3107

3108
	if (sample_type & PERF_SAMPLE_CPU) {
3109 3110
		data->cpu_entry.cpu		= raw_smp_processor_id();
		data->cpu_entry.reserved	= 0;
3111

3112
		header->size += sizeof(data->cpu_entry);
3113 3114
	}

3115
	if (sample_type & PERF_SAMPLE_PERIOD)
3116
		header->size += sizeof(data->period);
3117

3118
	if (sample_type & PERF_SAMPLE_READ)
3119
		header->size += perf_event_read_size(event);
3120

3121
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3122
		int size = 1;
3123

3124 3125 3126 3127 3128 3129
		data->callchain = perf_callchain(regs);

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
3130 3131
	}

3132
	if (sample_type & PERF_SAMPLE_RAW) {
3133 3134 3135 3136 3137 3138 3139 3140
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
3141
		header->size += size;
3142
	}
3143
}
3144

3145
static void perf_event_output(struct perf_event *event, int nmi,
3146 3147 3148 3149 3150
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
3151

3152
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
3153

3154
	if (perf_output_begin(&handle, event, header.size, nmi, 1))
3155
		return;
3156

3157
	perf_output_sample(&handle, &header, data, event);
3158

3159
	perf_output_end(&handle);
3160 3161
}

3162
/*
3163
 * read event_id
3164 3165 3166 3167 3168 3169 3170 3171 3172 3173
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
3174
perf_event_read_event(struct perf_event *event,
3175 3176 3177
			struct task_struct *task)
{
	struct perf_output_handle handle;
3178
	struct perf_read_event read_event = {
3179
		.header = {
3180
			.type = PERF_RECORD_READ,
3181
			.misc = 0,
3182
			.size = sizeof(read_event) + perf_event_read_size(event),
3183
		},
3184 3185
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
3186
	};
3187
	int ret;
3188

3189
	ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3190 3191 3192
	if (ret)
		return;

3193
	perf_output_put(&handle, read_event);
3194
	perf_output_read(&handle, event);
3195

3196 3197 3198
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
3199
/*
P
Peter Zijlstra 已提交
3200 3201 3202
 * task tracking -- fork/exit
 *
 * enabled by: attr.comm | attr.mmap | attr.task
P
Peter Zijlstra 已提交
3203 3204
 */

P
Peter Zijlstra 已提交
3205
struct perf_task_event {
3206
	struct task_struct		*task;
3207
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
3208 3209 3210 3211 3212 3213

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
3214 3215
		u32				tid;
		u32				ptid;
3216
		u64				time;
3217
	} event_id;
P
Peter Zijlstra 已提交
3218 3219
};

3220
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
3221
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3222 3223
{
	struct perf_output_handle handle;
3224
	int size;
P
Peter Zijlstra 已提交
3225
	struct task_struct *task = task_event->task;
3226 3227
	int ret;

3228 3229
	size  = task_event->event_id.header.size;
	ret = perf_output_begin(&handle, event, size, 0, 0);
P
Peter Zijlstra 已提交
3230 3231 3232 3233

	if (ret)
		return;

3234 3235
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
3236

3237 3238
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
3239

3240
	task_event->event_id.time = perf_clock();
3241

3242
	perf_output_put(&handle, task_event->event_id);
3243

P
Peter Zijlstra 已提交
3244 3245 3246
	perf_output_end(&handle);
}

3247
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
3248
{
3249
	if (event->attr.comm || event->attr.mmap || event->attr.task)
P
Peter Zijlstra 已提交
3250 3251 3252 3253 3254
		return 1;

	return 0;
}

3255
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
3256
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3257
{
3258
	struct perf_event *event;
P
Peter Zijlstra 已提交
3259

3260 3261 3262
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
3263 3264 3265
	}
}

3266
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3267 3268
{
	struct perf_cpu_context *cpuctx;
3269
	struct perf_event_context *ctx = task_event->task_ctx;
P
Peter Zijlstra 已提交
3270

3271
	rcu_read_lock();
P
Peter Zijlstra 已提交
3272
	cpuctx = &get_cpu_var(perf_cpu_context);
3273
	perf_event_task_ctx(&cpuctx->ctx, task_event);
P
Peter Zijlstra 已提交
3274 3275
	put_cpu_var(perf_cpu_context);

3276
	if (!ctx)
3277
		ctx = rcu_dereference(task_event->task->perf_event_ctxp);
P
Peter Zijlstra 已提交
3278
	if (ctx)
3279
		perf_event_task_ctx(ctx, task_event);
P
Peter Zijlstra 已提交
3280 3281 3282
	rcu_read_unlock();
}

3283 3284
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
3285
			      int new)
P
Peter Zijlstra 已提交
3286
{
P
Peter Zijlstra 已提交
3287
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
3288

3289 3290 3291
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
3292 3293
		return;

P
Peter Zijlstra 已提交
3294
	task_event = (struct perf_task_event){
3295 3296
		.task	  = task,
		.task_ctx = task_ctx,
3297
		.event_id    = {
P
Peter Zijlstra 已提交
3298
			.header = {
3299
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3300
				.misc = 0,
3301
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
3302
			},
3303 3304
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
3305 3306
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
3307 3308 3309
		},
	};

3310
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
3311 3312
}

3313
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
3314
{
3315
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
3316 3317
}

3318 3319 3320 3321 3322
/*
 * comm tracking
 */

struct perf_comm_event {
3323 3324
	struct task_struct	*task;
	char			*comm;
3325 3326 3327 3328 3329 3330 3331
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
3332
	} event_id;
3333 3334
};

3335
static void perf_event_comm_output(struct perf_event *event,
3336 3337 3338
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
3339 3340
	int size = comm_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3341 3342 3343 3344

	if (ret)
		return;

3345 3346
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3347

3348
	perf_output_put(&handle, comm_event->event_id);
3349 3350 3351 3352 3353
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
	perf_output_end(&handle);
}

3354
static int perf_event_comm_match(struct perf_event *event)
3355
{
3356
	if (event->attr.comm)
3357 3358 3359 3360 3361
		return 1;

	return 0;
}

3362
static void perf_event_comm_ctx(struct perf_event_context *ctx,
3363 3364
				  struct perf_comm_event *comm_event)
{
3365
	struct perf_event *event;
3366

3367 3368 3369
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
3370 3371 3372
	}
}

3373
static void perf_event_comm_event(struct perf_comm_event *comm_event)
3374 3375
{
	struct perf_cpu_context *cpuctx;
3376
	struct perf_event_context *ctx;
3377
	unsigned int size;
3378
	char comm[TASK_COMM_LEN];
3379

3380 3381
	memset(comm, 0, sizeof(comm));
	strncpy(comm, comm_event->task->comm, sizeof(comm));
3382
	size = ALIGN(strlen(comm)+1, sizeof(u64));
3383 3384 3385 3386

	comm_event->comm = comm;
	comm_event->comm_size = size;

3387
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3388

3389
	rcu_read_lock();
3390
	cpuctx = &get_cpu_var(perf_cpu_context);
3391
	perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3392
	put_cpu_var(perf_cpu_context);
3393 3394 3395 3396 3397

	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
3398
	ctx = rcu_dereference(current->perf_event_ctxp);
3399
	if (ctx)
3400
		perf_event_comm_ctx(ctx, comm_event);
3401
	rcu_read_unlock();
3402 3403
}

3404
void perf_event_comm(struct task_struct *task)
3405
{
3406 3407
	struct perf_comm_event comm_event;

3408 3409
	if (task->perf_event_ctxp)
		perf_event_enable_on_exec(task);
3410

3411
	if (!atomic_read(&nr_comm_events))
3412
		return;
3413

3414
	comm_event = (struct perf_comm_event){
3415
		.task	= task,
3416 3417
		/* .comm      */
		/* .comm_size */
3418
		.event_id  = {
3419
			.header = {
3420
				.type = PERF_RECORD_COMM,
3421 3422 3423 3424 3425
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
3426 3427 3428
		},
	};

3429
	perf_event_comm_event(&comm_event);
3430 3431
}

3432 3433 3434 3435 3436
/*
 * mmap tracking
 */

struct perf_mmap_event {
3437 3438 3439 3440
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
3441 3442 3443 3444 3445 3446 3447 3448 3449

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
3450
	} event_id;
3451 3452
};

3453
static void perf_event_mmap_output(struct perf_event *event,
3454 3455 3456
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
3457 3458
	int size = mmap_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3459 3460 3461 3462

	if (ret)
		return;

3463 3464
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
3465

3466
	perf_output_put(&handle, mmap_event->event_id);
3467 3468
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
3469
	perf_output_end(&handle);
3470 3471
}

3472
static int perf_event_mmap_match(struct perf_event *event,
3473 3474
				   struct perf_mmap_event *mmap_event)
{
3475
	if (event->attr.mmap)
3476 3477 3478 3479 3480
		return 1;

	return 0;
}

3481
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3482 3483
				  struct perf_mmap_event *mmap_event)
{
3484
	struct perf_event *event;
3485

3486 3487 3488
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_mmap_match(event, mmap_event))
			perf_event_mmap_output(event, mmap_event);
3489 3490 3491
	}
}

3492
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3493 3494
{
	struct perf_cpu_context *cpuctx;
3495
	struct perf_event_context *ctx;
3496 3497
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
3498 3499 3500
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
3501
	const char *name;
3502

3503 3504
	memset(tmp, 0, sizeof(tmp));

3505
	if (file) {
3506 3507 3508 3509 3510 3511
		/*
		 * d_path works from the end of the buffer backwards, so we
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3512 3513 3514 3515
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
3516
		name = d_path(&file->f_path, buf, PATH_MAX);
3517 3518 3519 3520 3521
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
3522 3523 3524
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
3525
			goto got_name;
3526
		}
3527 3528 3529 3530 3531 3532

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
		}

3533 3534 3535 3536 3537
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
3538
	size = ALIGN(strlen(name)+1, sizeof(u64));
3539 3540 3541 3542

	mmap_event->file_name = name;
	mmap_event->file_size = size;

3543
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3544

3545
	rcu_read_lock();
3546
	cpuctx = &get_cpu_var(perf_cpu_context);
3547
	perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
3548 3549
	put_cpu_var(perf_cpu_context);

3550 3551 3552 3553
	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
3554
	ctx = rcu_dereference(current->perf_event_ctxp);
3555
	if (ctx)
3556
		perf_event_mmap_ctx(ctx, mmap_event);
3557 3558
	rcu_read_unlock();

3559 3560 3561
	kfree(buf);
}

3562
void __perf_event_mmap(struct vm_area_struct *vma)
3563
{
3564 3565
	struct perf_mmap_event mmap_event;

3566
	if (!atomic_read(&nr_mmap_events))
3567 3568 3569
		return;

	mmap_event = (struct perf_mmap_event){
3570
		.vma	= vma,
3571 3572
		/* .file_name */
		/* .file_size */
3573
		.event_id  = {
3574
			.header = {
3575
				.type = PERF_RECORD_MMAP,
3576 3577 3578 3579 3580
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
3581 3582 3583
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
			.pgoff  = vma->vm_pgoff,
3584 3585 3586
		},
	};

3587
	perf_event_mmap_event(&mmap_event);
3588 3589
}

3590 3591 3592 3593
/*
 * IRQ throttle logging
 */

3594
static void perf_log_throttle(struct perf_event *event, int enable)
3595 3596 3597 3598 3599 3600 3601
{
	struct perf_output_handle handle;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
3602
		u64				id;
3603
		u64				stream_id;
3604 3605
	} throttle_event = {
		.header = {
3606
			.type = PERF_RECORD_THROTTLE,
3607 3608 3609
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
3610
		.time		= perf_clock(),
3611 3612
		.id		= primary_event_id(event),
		.stream_id	= event->id,
3613 3614
	};

3615
	if (enable)
3616
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3617

3618
	ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3619 3620 3621 3622 3623 3624 3625
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
	perf_output_end(&handle);
}

3626
/*
3627
 * Generic event overflow handling, sampling.
3628 3629
 */

3630
static int __perf_event_overflow(struct perf_event *event, int nmi,
3631 3632
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
3633
{
3634 3635
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
3636 3637
	int ret = 0;

3638
	throttle = (throttle && event->pmu->unthrottle != NULL);
3639

3640
	if (!throttle) {
3641
		hwc->interrupts++;
3642
	} else {
3643 3644
		if (hwc->interrupts != MAX_INTERRUPTS) {
			hwc->interrupts++;
3645
			if (HZ * hwc->interrupts >
3646
					(u64)sysctl_perf_event_sample_rate) {
3647
				hwc->interrupts = MAX_INTERRUPTS;
3648
				perf_log_throttle(event, 0);
3649 3650 3651 3652
				ret = 1;
			}
		} else {
			/*
3653
			 * Keep re-disabling events even though on the previous
3654
			 * pass we disabled it - just in case we raced with a
3655
			 * sched-in and the event got enabled again:
3656
			 */
3657 3658 3659
			ret = 1;
		}
	}
3660

3661
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
3662
		u64 now = perf_clock();
3663 3664 3665 3666 3667
		s64 delta = now - hwc->freq_stamp;

		hwc->freq_stamp = now;

		if (delta > 0 && delta < TICK_NSEC)
3668
			perf_adjust_period(event, NSEC_PER_SEC / (int)delta);
3669 3670
	}

3671 3672
	/*
	 * XXX event_limit might not quite work as expected on inherited
3673
	 * events
3674 3675
	 */

3676 3677
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
3678
		ret = 1;
3679
		event->pending_kill = POLL_HUP;
3680
		if (nmi) {
3681 3682 3683
			event->pending_disable = 1;
			perf_pending_queue(&event->pending,
					   perf_pending_event);
3684
		} else
3685
			perf_event_disable(event);
3686 3687
	}

3688 3689 3690 3691 3692
	if (event->overflow_handler)
		event->overflow_handler(event, nmi, data, regs);
	else
		perf_event_output(event, nmi, data, regs);

3693
	return ret;
3694 3695
}

3696
int perf_event_overflow(struct perf_event *event, int nmi,
3697 3698
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
3699
{
3700
	return __perf_event_overflow(event, nmi, 1, data, regs);
3701 3702
}

3703
/*
3704
 * Generic software event infrastructure
3705 3706
 */

3707
/*
3708 3709
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
3710 3711 3712 3713
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

3714
static u64 perf_swevent_set_period(struct perf_event *event)
3715
{
3716
	struct hw_perf_event *hwc = &event->hw;
3717 3718 3719 3720 3721
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
3722 3723

again:
3724 3725 3726
	old = val = atomic64_read(&hwc->period_left);
	if (val < 0)
		return 0;
3727

3728 3729 3730 3731 3732
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
	if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
		goto again;
3733

3734
	return nr;
3735 3736
}

3737
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
3738 3739
				    int nmi, struct perf_sample_data *data,
				    struct pt_regs *regs)
3740
{
3741
	struct hw_perf_event *hwc = &event->hw;
3742
	int throttle = 0;
3743

3744
	data->period = event->hw.last_period;
3745 3746
	if (!overflow)
		overflow = perf_swevent_set_period(event);
3747

3748 3749
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
3750

3751
	for (; overflow; overflow--) {
3752
		if (__perf_event_overflow(event, nmi, throttle,
3753
					    data, regs)) {
3754 3755 3756 3757 3758 3759
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
3760
		throttle = 1;
3761
	}
3762 3763
}

3764
static void perf_swevent_unthrottle(struct perf_event *event)
3765 3766
{
	/*
3767
	 * Nothing to do, we already reset hwc->interrupts.
3768
	 */
3769
}
3770

3771
static void perf_swevent_add(struct perf_event *event, u64 nr,
3772 3773
			       int nmi, struct perf_sample_data *data,
			       struct pt_regs *regs)
3774
{
3775
	struct hw_perf_event *hwc = &event->hw;
3776

3777
	atomic64_add(nr, &event->count);
3778

3779 3780 3781
	if (!regs)
		return;

3782 3783
	if (!hwc->sample_period)
		return;
3784

3785 3786 3787 3788
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
		return perf_swevent_overflow(event, 1, nmi, data, regs);

	if (atomic64_add_negative(nr, &hwc->period_left))
3789
		return;
3790

3791
	perf_swevent_overflow(event, 0, nmi, data, regs);
3792 3793
}

3794
static int perf_swevent_is_counting(struct perf_event *event)
3795
{
3796
	/*
3797
	 * The event is active, we're good!
3798
	 */
3799
	if (event->state == PERF_EVENT_STATE_ACTIVE)
3800 3801
		return 1;

3802
	/*
3803
	 * The event is off/error, not counting.
3804
	 */
3805
	if (event->state != PERF_EVENT_STATE_INACTIVE)
3806 3807 3808
		return 0;

	/*
3809
	 * The event is inactive, if the context is active
3810 3811
	 * we're part of a group that didn't make it on the 'pmu',
	 * not counting.
3812
	 */
3813
	if (event->ctx->is_active)
3814 3815 3816 3817 3818 3819 3820 3821
		return 0;

	/*
	 * We're inactive and the context is too, this means the
	 * task is scheduled out, we're counting events that happen
	 * to us, like migration events.
	 */
	return 1;
3822 3823
}

L
Li Zefan 已提交
3824 3825 3826
static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data);

3827
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
3828
				enum perf_type_id type,
L
Li Zefan 已提交
3829 3830 3831
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
3832
{
3833
	if (!perf_swevent_is_counting(event))
3834 3835
		return 0;

3836
	if (event->attr.type != type)
3837
		return 0;
3838
	if (event->attr.config != event_id)
3839 3840
		return 0;

3841
	if (regs) {
3842
		if (event->attr.exclude_user && user_mode(regs))
3843
			return 0;
3844

3845
		if (event->attr.exclude_kernel && !user_mode(regs))
3846 3847
			return 0;
	}
3848

L
Li Zefan 已提交
3849 3850 3851 3852
	if (event->attr.type == PERF_TYPE_TRACEPOINT &&
	    !perf_tp_event_match(event, data))
		return 0;

3853 3854 3855
	return 1;
}

3856
static void perf_swevent_ctx_event(struct perf_event_context *ctx,
3857
				     enum perf_type_id type,
3858
				     u32 event_id, u64 nr, int nmi,
3859 3860
				     struct perf_sample_data *data,
				     struct pt_regs *regs)
3861
{
3862
	struct perf_event *event;
3863

3864
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
L
Li Zefan 已提交
3865
		if (perf_swevent_match(event, type, event_id, data, regs))
3866
			perf_swevent_add(event, nr, nmi, data, regs);
3867 3868 3869
	}
}

3870
static int *perf_swevent_recursion_context(struct perf_cpu_context *cpuctx)
P
Peter Zijlstra 已提交
3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883
{
	if (in_nmi())
		return &cpuctx->recursion[3];

	if (in_irq())
		return &cpuctx->recursion[2];

	if (in_softirq())
		return &cpuctx->recursion[1];

	return &cpuctx->recursion[0];
}

3884
static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
3885
				    u64 nr, int nmi,
3886 3887
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
3888 3889
{
	struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
3890 3891
	int *recursion = perf_swevent_recursion_context(cpuctx);
	struct perf_event_context *ctx;
P
Peter Zijlstra 已提交
3892 3893 3894 3895 3896 3897

	if (*recursion)
		goto out;

	(*recursion)++;
	barrier();
3898

3899
	rcu_read_lock();
3900
	perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
3901
				 nr, nmi, data, regs);
3902 3903 3904 3905
	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
3906
	ctx = rcu_dereference(current->perf_event_ctxp);
3907
	if (ctx)
3908
		perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
3909
	rcu_read_unlock();
3910

P
Peter Zijlstra 已提交
3911 3912 3913 3914
	barrier();
	(*recursion)--;

out:
3915 3916 3917
	put_cpu_var(perf_cpu_context);
}

3918
void __perf_sw_event(u32 event_id, u64 nr, int nmi,
3919
			    struct pt_regs *regs, u64 addr)
3920
{
3921 3922 3923 3924
	struct perf_sample_data data = {
		.addr = addr,
	};

3925
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi,
3926
				&data, regs);
3927 3928
}

3929
static void perf_swevent_read(struct perf_event *event)
3930 3931 3932
{
}

3933
static int perf_swevent_enable(struct perf_event *event)
3934
{
3935
	struct hw_perf_event *hwc = &event->hw;
3936 3937 3938

	if (hwc->sample_period) {
		hwc->last_period = hwc->sample_period;
3939
		perf_swevent_set_period(event);
3940
	}
3941 3942 3943
	return 0;
}

3944
static void perf_swevent_disable(struct perf_event *event)
3945 3946 3947
{
}

3948
static const struct pmu perf_ops_generic = {
3949 3950 3951 3952
	.enable		= perf_swevent_enable,
	.disable	= perf_swevent_disable,
	.read		= perf_swevent_read,
	.unthrottle	= perf_swevent_unthrottle,
3953 3954
};

3955
/*
3956
 * hrtimer based swevent callback
3957 3958
 */

3959
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
3960 3961 3962
{
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
3963
	struct pt_regs *regs;
3964
	struct perf_event *event;
3965 3966
	u64 period;

3967 3968
	event	= container_of(hrtimer, struct perf_event, hw.hrtimer);
	event->pmu->read(event);
3969 3970

	data.addr = 0;
3971
	regs = get_irq_regs();
3972 3973 3974 3975
	/*
	 * In case we exclude kernel IPs or are somehow not in interrupt
	 * context, provide the next best thing, the user IP.
	 */
3976 3977
	if ((event->attr.exclude_kernel || !regs) &&
			!event->attr.exclude_user)
3978
		regs = task_pt_regs(current);
3979

3980
	if (regs) {
3981 3982 3983
		if (!(event->attr.exclude_idle && current->pid == 0))
			if (perf_event_overflow(event, 0, &data, regs))
				ret = HRTIMER_NORESTART;
3984 3985
	}

3986
	period = max_t(u64, 10000, event->hw.sample_period);
3987 3988 3989 3990 3991
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));

	return ret;
}

3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027
static void perf_swevent_start_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;
	if (hwc->sample_period) {
		u64 period;

		if (hwc->remaining) {
			if (hwc->remaining < 0)
				period = 10000;
			else
				period = hwc->remaining;
			hwc->remaining = 0;
		} else {
			period = max_t(u64, 10000, hwc->sample_period);
		}
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(period), 0,
				HRTIMER_MODE_REL, 0);
	}
}

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (hwc->sample_period) {
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
		hwc->remaining = ktime_to_ns(remaining);

		hrtimer_cancel(&hwc->hrtimer);
	}
}

4028
/*
4029
 * Software event: cpu wall time clock
4030 4031
 */

4032
static void cpu_clock_perf_event_update(struct perf_event *event)
4033 4034 4035 4036 4037 4038
{
	int cpu = raw_smp_processor_id();
	s64 prev;
	u64 now;

	now = cpu_clock(cpu);
4039 4040 4041
	prev = atomic64_read(&event->hw.prev_count);
	atomic64_set(&event->hw.prev_count, now);
	atomic64_add(now - prev, &event->count);
4042 4043
}

4044
static int cpu_clock_perf_event_enable(struct perf_event *event)
4045
{
4046
	struct hw_perf_event *hwc = &event->hw;
4047 4048 4049
	int cpu = raw_smp_processor_id();

	atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4050
	perf_swevent_start_hrtimer(event);
4051 4052 4053 4054

	return 0;
}

4055
static void cpu_clock_perf_event_disable(struct perf_event *event)
4056
{
4057
	perf_swevent_cancel_hrtimer(event);
4058
	cpu_clock_perf_event_update(event);
4059 4060
}

4061
static void cpu_clock_perf_event_read(struct perf_event *event)
4062
{
4063
	cpu_clock_perf_event_update(event);
4064 4065
}

4066
static const struct pmu perf_ops_cpu_clock = {
4067 4068 4069
	.enable		= cpu_clock_perf_event_enable,
	.disable	= cpu_clock_perf_event_disable,
	.read		= cpu_clock_perf_event_read,
4070 4071
};

4072
/*
4073
 * Software event: task time clock
4074 4075
 */

4076
static void task_clock_perf_event_update(struct perf_event *event, u64 now)
I
Ingo Molnar 已提交
4077
{
4078
	u64 prev;
I
Ingo Molnar 已提交
4079 4080
	s64 delta;

4081
	prev = atomic64_xchg(&event->hw.prev_count, now);
I
Ingo Molnar 已提交
4082
	delta = now - prev;
4083
	atomic64_add(delta, &event->count);
4084 4085
}

4086
static int task_clock_perf_event_enable(struct perf_event *event)
I
Ingo Molnar 已提交
4087
{
4088
	struct hw_perf_event *hwc = &event->hw;
4089 4090
	u64 now;

4091
	now = event->ctx->time;
4092

4093
	atomic64_set(&hwc->prev_count, now);
4094 4095

	perf_swevent_start_hrtimer(event);
4096 4097

	return 0;
I
Ingo Molnar 已提交
4098 4099
}

4100
static void task_clock_perf_event_disable(struct perf_event *event)
4101
{
4102
	perf_swevent_cancel_hrtimer(event);
4103
	task_clock_perf_event_update(event, event->ctx->time);
4104

4105
}
I
Ingo Molnar 已提交
4106

4107
static void task_clock_perf_event_read(struct perf_event *event)
4108
{
4109 4110 4111
	u64 time;

	if (!in_nmi()) {
4112 4113
		update_context_time(event->ctx);
		time = event->ctx->time;
4114 4115
	} else {
		u64 now = perf_clock();
4116 4117
		u64 delta = now - event->ctx->timestamp;
		time = event->ctx->time + delta;
4118 4119
	}

4120
	task_clock_perf_event_update(event, time);
4121 4122
}

4123
static const struct pmu perf_ops_task_clock = {
4124 4125 4126
	.enable		= task_clock_perf_event_enable,
	.disable	= task_clock_perf_event_disable,
	.read		= task_clock_perf_event_read,
4127 4128
};

4129
#ifdef CONFIG_EVENT_PROFILE
L
Li Zefan 已提交
4130

4131
void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4132
			  int entry_size)
4133
{
4134
	struct perf_raw_record raw = {
4135
		.size = entry_size,
4136
		.data = record,
4137 4138
	};

4139
	struct perf_sample_data data = {
4140
		.addr = addr,
4141
		.raw = &raw,
4142
	};
4143

4144 4145 4146 4147
	struct pt_regs *regs = get_irq_regs();

	if (!regs)
		regs = task_pt_regs(current);
4148

4149
	do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
4150
				&data, regs);
4151
}
4152
EXPORT_SYMBOL_GPL(perf_tp_event);
4153

L
Li Zefan 已提交
4154 4155 4156 4157 4158 4159 4160 4161 4162
static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}
4163

4164
static void tp_perf_event_destroy(struct perf_event *event)
4165
{
4166
	ftrace_profile_disable(event->attr.config);
4167 4168
}

4169
static const struct pmu *tp_perf_event_init(struct perf_event *event)
4170
{
4171 4172 4173 4174
	/*
	 * Raw tracepoint data is a severe data leak, only allow root to
	 * have these.
	 */
4175
	if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4176
			perf_paranoid_tracepoint_raw() &&
4177 4178 4179
			!capable(CAP_SYS_ADMIN))
		return ERR_PTR(-EPERM);

4180
	if (ftrace_profile_enable(event->attr.config))
4181 4182
		return NULL;

4183
	event->destroy = tp_perf_event_destroy;
4184 4185 4186

	return &perf_ops_generic;
}
L
Li Zefan 已提交
4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

4211
#else
L
Li Zefan 已提交
4212 4213 4214 4215 4216 4217 4218

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	return 1;
}

4219
static const struct pmu *tp_perf_event_init(struct perf_event *event)
4220 4221 4222
{
	return NULL;
}
L
Li Zefan 已提交
4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

#endif /* CONFIG_EVENT_PROFILE */
4234

4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279
#ifdef CONFIG_HAVE_HW_BREAKPOINT
static void bp_perf_event_destroy(struct perf_event *event)
{
	release_bp_slot(event);
}

static const struct pmu *bp_perf_event_init(struct perf_event *bp)
{
	int err;
	/*
	 * The breakpoint is already filled if we haven't created the counter
	 * through perf syscall
	 * FIXME: manage to get trigerred to NULL if it comes from syscalls
	 */
	if (!bp->callback)
		err = register_perf_hw_breakpoint(bp);
	else
		err = __register_perf_hw_breakpoint(bp);
	if (err)
		return ERR_PTR(err);

	bp->destroy = bp_perf_event_destroy;

	return &perf_ops_bp;
}

void perf_bp_event(struct perf_event *bp, void *regs)
{
	/* TODO */
}
#else
static void bp_perf_event_destroy(struct perf_event *event)
{
}

static const struct pmu *bp_perf_event_init(struct perf_event *bp)
{
	return NULL;
}

void perf_bp_event(struct perf_event *bp, void *regs)
{
}
#endif

4280
atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4281

4282
static void sw_perf_event_destroy(struct perf_event *event)
4283
{
4284
	u64 event_id = event->attr.config;
4285

4286
	WARN_ON(event->parent);
4287

4288
	atomic_dec(&perf_swevent_enabled[event_id]);
4289 4290
}

4291
static const struct pmu *sw_perf_event_init(struct perf_event *event)
4292
{
4293
	const struct pmu *pmu = NULL;
4294
	u64 event_id = event->attr.config;
4295

4296
	/*
4297
	 * Software events (currently) can't in general distinguish
4298 4299 4300 4301 4302
	 * between user, kernel and hypervisor events.
	 * However, context switches and cpu migrations are considered
	 * to be kernel events, and page faults are never hypervisor
	 * events.
	 */
4303
	switch (event_id) {
4304
	case PERF_COUNT_SW_CPU_CLOCK:
4305
		pmu = &perf_ops_cpu_clock;
4306

4307
		break;
4308
	case PERF_COUNT_SW_TASK_CLOCK:
4309
		/*
4310 4311
		 * If the user instantiates this as a per-cpu event,
		 * use the cpu_clock event instead.
4312
		 */
4313
		if (event->ctx->task)
4314
			pmu = &perf_ops_task_clock;
4315
		else
4316
			pmu = &perf_ops_cpu_clock;
4317

4318
		break;
4319 4320 4321 4322 4323
	case PERF_COUNT_SW_PAGE_FAULTS:
	case PERF_COUNT_SW_PAGE_FAULTS_MIN:
	case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
	case PERF_COUNT_SW_CONTEXT_SWITCHES:
	case PERF_COUNT_SW_CPU_MIGRATIONS:
4324 4325
	case PERF_COUNT_SW_ALIGNMENT_FAULTS:
	case PERF_COUNT_SW_EMULATION_FAULTS:
4326 4327 4328
		if (!event->parent) {
			atomic_inc(&perf_swevent_enabled[event_id]);
			event->destroy = sw_perf_event_destroy;
4329
		}
4330
		pmu = &perf_ops_generic;
4331
		break;
4332
	}
4333

4334
	return pmu;
4335 4336
}

T
Thomas Gleixner 已提交
4337
/*
4338
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
4339
 */
4340 4341
static struct perf_event *
perf_event_alloc(struct perf_event_attr *attr,
4342
		   int cpu,
4343 4344 4345
		   struct perf_event_context *ctx,
		   struct perf_event *group_leader,
		   struct perf_event *parent_event,
4346
		   perf_callback_t callback,
4347
		   gfp_t gfpflags)
T
Thomas Gleixner 已提交
4348
{
4349
	const struct pmu *pmu;
4350 4351
	struct perf_event *event;
	struct hw_perf_event *hwc;
4352
	long err;
T
Thomas Gleixner 已提交
4353

4354 4355
	event = kzalloc(sizeof(*event), gfpflags);
	if (!event)
4356
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
4357

4358
	/*
4359
	 * Single events are their own group leaders, with an
4360 4361 4362
	 * empty sibling list:
	 */
	if (!group_leader)
4363
		group_leader = event;
4364

4365 4366
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
4367

4368 4369 4370 4371
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
	init_waitqueue_head(&event->waitq);
T
Thomas Gleixner 已提交
4372

4373
	mutex_init(&event->mmap_mutex);
4374

4375 4376 4377 4378 4379 4380
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->ctx		= ctx;
	event->oncpu		= -1;
4381

4382
	event->parent		= parent_event;
4383

4384 4385
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
4386

4387
	event->state		= PERF_EVENT_STATE_INACTIVE;
4388

4389 4390 4391 4392 4393
	if (!callback && parent_event)
		callback = parent_event->callback;
	
	event->callback	= callback;

4394
	if (attr->disabled)
4395
		event->state = PERF_EVENT_STATE_OFF;
4396

4397
	pmu = NULL;
4398

4399
	hwc = &event->hw;
4400
	hwc->sample_period = attr->sample_period;
4401
	if (attr->freq && attr->sample_freq)
4402
		hwc->sample_period = 1;
4403
	hwc->last_period = hwc->sample_period;
4404 4405

	atomic64_set(&hwc->period_left, hwc->sample_period);
4406

4407
	/*
4408
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
4409
	 */
4410
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4411 4412
		goto done;

4413
	switch (attr->type) {
4414
	case PERF_TYPE_RAW:
4415
	case PERF_TYPE_HARDWARE:
4416
	case PERF_TYPE_HW_CACHE:
4417
		pmu = hw_perf_event_init(event);
4418 4419 4420
		break;

	case PERF_TYPE_SOFTWARE:
4421
		pmu = sw_perf_event_init(event);
4422 4423 4424
		break;

	case PERF_TYPE_TRACEPOINT:
4425
		pmu = tp_perf_event_init(event);
4426
		break;
4427

4428 4429 4430 4431 4432
	case PERF_TYPE_BREAKPOINT:
		pmu = bp_perf_event_init(event);
		break;


4433 4434
	default:
		break;
4435
	}
4436 4437
done:
	err = 0;
4438
	if (!pmu)
4439
		err = -EINVAL;
4440 4441
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
4442

4443
	if (err) {
4444 4445 4446
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
4447
		return ERR_PTR(err);
I
Ingo Molnar 已提交
4448
	}
4449

4450
	event->pmu = pmu;
T
Thomas Gleixner 已提交
4451

4452 4453 4454 4455 4456 4457 4458 4459
	if (!event->parent) {
		atomic_inc(&nr_events);
		if (event->attr.mmap)
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
4460
	}
4461

4462
	return event;
T
Thomas Gleixner 已提交
4463 4464
}

4465 4466
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
4467 4468
{
	u32 size;
4469
	int ret;
4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
4494 4495 4496
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
4497 4498
	 */
	if (size > sizeof(*attr)) {
4499 4500 4501
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
4502

4503 4504
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
4505

4506
		for (; addr < end; addr++) {
4507 4508 4509 4510 4511 4512
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
4513
		size = sizeof(*attr);
4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * If the type exists, the corresponding creation will verify
	 * the attr->config.
	 */
	if (attr->type >= PERF_TYPE_MAX)
		return -EINVAL;

	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

L
Li Zefan 已提交
4545
static int perf_event_set_output(struct perf_event *event, int output_fd)
4546
{
4547
	struct perf_event *output_event = NULL;
4548
	struct file *output_file = NULL;
4549
	struct perf_event *old_output;
4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562
	int fput_needed = 0;
	int ret = -EINVAL;

	if (!output_fd)
		goto set;

	output_file = fget_light(output_fd, &fput_needed);
	if (!output_file)
		return -EBADF;

	if (output_file->f_op != &perf_fops)
		goto out;

4563
	output_event = output_file->private_data;
4564 4565

	/* Don't chain output fds */
4566
	if (output_event->output)
4567 4568 4569
		goto out;

	/* Don't set an output fd when we already have an output channel */
4570
	if (event->data)
4571 4572 4573 4574 4575
		goto out;

	atomic_long_inc(&output_file->f_count);

set:
4576 4577 4578 4579
	mutex_lock(&event->mmap_mutex);
	old_output = event->output;
	rcu_assign_pointer(event->output, output_event);
	mutex_unlock(&event->mmap_mutex);
4580 4581 4582 4583

	if (old_output) {
		/*
		 * we need to make sure no existing perf_output_*()
4584
		 * is still referencing this event.
4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595
		 */
		synchronize_rcu();
		fput(old_output->filp);
	}

	ret = 0;
out:
	fput_light(output_file, fput_needed);
	return ret;
}

T
Thomas Gleixner 已提交
4596
/**
4597
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
4598
 *
4599
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
4600
 * @pid:		target pid
I
Ingo Molnar 已提交
4601
 * @cpu:		target cpu
4602
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
4603
 */
4604 4605
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
4606
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
4607
{
4608 4609 4610 4611
	struct perf_event *event, *group_leader;
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
4612 4613
	struct file *group_file = NULL;
	int fput_needed = 0;
4614
	int fput_needed2 = 0;
4615
	int err;
T
Thomas Gleixner 已提交
4616

4617
	/* for future expandability... */
4618
	if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4619 4620
		return -EINVAL;

4621 4622 4623
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
4624

4625 4626 4627 4628 4629
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

4630
	if (attr.freq) {
4631
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
4632 4633 4634
			return -EINVAL;
	}

4635
	/*
I
Ingo Molnar 已提交
4636 4637 4638 4639 4640 4641 4642
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pid, cpu);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	/*
4643
	 * Look up the group leader (we will attach this event to it):
4644 4645
	 */
	group_leader = NULL;
4646
	if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4647
		err = -EINVAL;
4648 4649
		group_file = fget_light(group_fd, &fput_needed);
		if (!group_file)
I
Ingo Molnar 已提交
4650
			goto err_put_context;
4651
		if (group_file->f_op != &perf_fops)
I
Ingo Molnar 已提交
4652
			goto err_put_context;
4653 4654 4655

		group_leader = group_file->private_data;
		/*
I
Ingo Molnar 已提交
4656 4657 4658 4659 4660 4661 4662 4663
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
			goto err_put_context;
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
4664
		 */
I
Ingo Molnar 已提交
4665 4666
		if (group_leader->ctx != ctx)
			goto err_put_context;
4667 4668 4669
		/*
		 * Only a group leader can be exclusive or pinned
		 */
4670
		if (attr.exclusive || attr.pinned)
4671
			goto err_put_context;
4672 4673
	}

4674
	event = perf_event_alloc(&attr, cpu, ctx, group_leader,
4675
				     NULL, NULL, GFP_KERNEL);
4676 4677
	err = PTR_ERR(event);
	if (IS_ERR(event))
T
Thomas Gleixner 已提交
4678 4679
		goto err_put_context;

4680
	err = anon_inode_getfd("[perf_event]", &perf_fops, event, 0);
4681
	if (err < 0)
4682 4683
		goto err_free_put_context;

4684 4685
	event_file = fget_light(err, &fput_needed2);
	if (!event_file)
4686 4687
		goto err_free_put_context;

4688
	if (flags & PERF_FLAG_FD_OUTPUT) {
4689
		err = perf_event_set_output(event, group_fd);
4690 4691
		if (err)
			goto err_fput_free_put_context;
4692 4693
	}

4694
	event->filp = event_file;
4695
	WARN_ON_ONCE(ctx->parent_ctx);
4696
	mutex_lock(&ctx->mutex);
4697
	perf_install_in_context(ctx, event, cpu);
4698
	++ctx->generation;
4699
	mutex_unlock(&ctx->mutex);
4700

4701
	event->owner = current;
4702
	get_task_struct(current);
4703 4704 4705
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
4706

4707
err_fput_free_put_context:
4708
	fput_light(event_file, fput_needed2);
T
Thomas Gleixner 已提交
4709

4710
err_free_put_context:
4711
	if (err < 0)
4712
		kfree(event);
T
Thomas Gleixner 已提交
4713 4714

err_put_context:
4715 4716 4717 4718
	if (err < 0)
		put_ctx(ctx);

	fput_light(group_file, fput_needed);
T
Thomas Gleixner 已提交
4719

4720
	return err;
T
Thomas Gleixner 已提交
4721 4722
}

4723 4724 4725 4726 4727 4728 4729 4730 4731
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
 * @pid: task to profile
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
4732
				 pid_t pid, perf_callback_t callback)
4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743
{
	struct perf_event *event;
	struct perf_event_context *ctx;
	int err;

	/*
	 * Get the target context (task or percpu):
	 */

	ctx = find_get_context(pid, cpu);
	if (IS_ERR(ctx))
4744
		return NULL;
4745 4746

	event = perf_event_alloc(attr, cpu, ctx, NULL,
4747
				     NULL, callback, GFP_KERNEL);
4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774
	err = PTR_ERR(event);
	if (IS_ERR(event))
		goto err_put_context;

	event->filp = NULL;
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
	mutex_unlock(&ctx->mutex);

	event->owner = current;
	get_task_struct(current);
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);

	return event;

err_put_context:
	if (err < 0)
		put_ctx(ctx);

	return NULL;
}
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);

4775
/*
4776
 * inherit a event from parent task to child task:
4777
 */
4778 4779
static struct perf_event *
inherit_event(struct perf_event *parent_event,
4780
	      struct task_struct *parent,
4781
	      struct perf_event_context *parent_ctx,
4782
	      struct task_struct *child,
4783 4784
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
4785
{
4786
	struct perf_event *child_event;
4787

4788
	/*
4789 4790
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
4791 4792 4793
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
4794 4795
	if (parent_event->parent)
		parent_event = parent_event->parent;
4796

4797 4798 4799
	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu, child_ctx,
					   group_leader, parent_event,
4800
					   NULL, GFP_KERNEL);
4801 4802
	if (IS_ERR(child_event))
		return child_event;
4803
	get_ctx(child_ctx);
4804

4805
	/*
4806
	 * Make the child state follow the state of the parent event,
4807
	 * not its attr.disabled bit.  We hold the parent's mutex,
4808
	 * so we won't race with perf_event_{en, dis}able_family.
4809
	 */
4810 4811
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
4812
	else
4813
		child_event->state = PERF_EVENT_STATE_OFF;
4814

4815 4816
	if (parent_event->attr.freq)
		child_event->hw.sample_period = parent_event->hw.sample_period;
4817

4818 4819
	child_event->overflow_handler = parent_event->overflow_handler;

4820 4821 4822
	/*
	 * Link it up in the child's context:
	 */
4823
	add_event_to_ctx(child_event, child_ctx);
4824 4825 4826

	/*
	 * Get a reference to the parent filp - we will fput it
4827
	 * when the child event exits. This is safe to do because
4828 4829 4830
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
4831
	atomic_long_inc(&parent_event->filp->f_count);
4832

4833
	/*
4834
	 * Link this into the parent event's child list
4835
	 */
4836 4837 4838 4839
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
4840

4841
	return child_event;
4842 4843
}

4844
static int inherit_group(struct perf_event *parent_event,
4845
	      struct task_struct *parent,
4846
	      struct perf_event_context *parent_ctx,
4847
	      struct task_struct *child,
4848
	      struct perf_event_context *child_ctx)
4849
{
4850 4851 4852
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;
4853

4854
	leader = inherit_event(parent_event, parent, parent_ctx,
4855
				 child, NULL, child_ctx);
4856 4857
	if (IS_ERR(leader))
		return PTR_ERR(leader);
4858 4859
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
4860 4861 4862
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
4863
	}
4864 4865 4866
	return 0;
}

4867
static void sync_child_event(struct perf_event *child_event,
4868
			       struct task_struct *child)
4869
{
4870
	struct perf_event *parent_event = child_event->parent;
4871
	u64 child_val;
4872

4873 4874
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
4875

4876
	child_val = atomic64_read(&child_event->count);
4877 4878 4879 4880

	/*
	 * Add back the child's count to the parent's count:
	 */
4881 4882 4883 4884 4885
	atomic64_add(child_val, &parent_event->count);
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
4886 4887

	/*
4888
	 * Remove this event from the parent's list
4889
	 */
4890 4891 4892 4893
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
4894 4895

	/*
4896
	 * Release the parent event, if this was the last
4897 4898
	 * reference to it.
	 */
4899
	fput(parent_event->filp);
4900 4901
}

4902
static void
4903 4904
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
4905
			 struct task_struct *child)
4906
{
4907
	struct perf_event *parent_event;
4908

4909 4910
	update_event_times(child_event);
	perf_event_remove_from_context(child_event);
4911

4912
	parent_event = child_event->parent;
4913
	/*
4914
	 * It can happen that parent exits first, and has events
4915
	 * that are still around due to the child reference. These
4916
	 * events need to be zapped - but otherwise linger.
4917
	 */
4918 4919 4920
	if (parent_event) {
		sync_child_event(child_event, child);
		free_event(child_event);
4921
	}
4922 4923 4924
}

/*
4925
 * When a child task exits, feed back event values to parent events.
4926
 */
4927
void perf_event_exit_task(struct task_struct *child)
4928
{
4929 4930
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
4931
	unsigned long flags;
4932

4933 4934
	if (likely(!child->perf_event_ctxp)) {
		perf_event_task(child, NULL, 0);
4935
		return;
P
Peter Zijlstra 已提交
4936
	}
4937

4938
	local_irq_save(flags);
4939 4940 4941 4942 4943 4944
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
4945 4946
	child_ctx = child->perf_event_ctxp;
	__perf_event_task_sched_out(child_ctx);
4947 4948 4949

	/*
	 * Take the context lock here so that if find_get_context is
4950
	 * reading child->perf_event_ctxp, we wait until it has
4951 4952 4953
	 * incremented the context's refcount before we do put_ctx below.
	 */
	spin_lock(&child_ctx->lock);
4954
	child->perf_event_ctxp = NULL;
4955 4956 4957
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
4958
	 * the events from it.
4959 4960
	 */
	unclone_ctx(child_ctx);
P
Peter Zijlstra 已提交
4961 4962 4963
	spin_unlock_irqrestore(&child_ctx->lock, flags);

	/*
4964 4965 4966
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
4967
	 */
4968
	perf_event_task(child, child_ctx, 0);
4969

4970 4971 4972
	/*
	 * We can recurse on the same lock type through:
	 *
4973 4974 4975
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       fput(parent_event->filp)
4976 4977 4978 4979 4980 4981
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
	mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
4982

4983
again:
4984
	list_for_each_entry_safe(child_event, tmp, &child_ctx->group_list,
4985
				 group_entry)
4986
		__perf_event_exit_task(child_event, child_ctx, child);
4987 4988

	/*
4989
	 * If the last event was a group event, it will have appended all
4990 4991 4992
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
4993
	if (!list_empty(&child_ctx->group_list))
4994
		goto again;
4995 4996 4997 4998

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
4999 5000
}

5001 5002 5003 5004
/*
 * free an unexposed, unused context as created by inheritance by
 * init_task below, used by fork() in case of fail.
 */
5005
void perf_event_free_task(struct task_struct *task)
5006
{
5007 5008
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event *event, *tmp;
5009 5010 5011 5012 5013 5014

	if (!ctx)
		return;

	mutex_lock(&ctx->mutex);
again:
5015 5016
	list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) {
		struct perf_event *parent = event->parent;
5017 5018 5019 5020 5021

		if (WARN_ON_ONCE(!parent))
			continue;

		mutex_lock(&parent->child_mutex);
5022
		list_del_init(&event->child_list);
5023 5024 5025 5026
		mutex_unlock(&parent->child_mutex);

		fput(parent->filp);

5027 5028
		list_del_event(event, ctx);
		free_event(event);
5029 5030
	}

5031
	if (!list_empty(&ctx->group_list))
5032 5033 5034 5035 5036 5037 5038
		goto again;

	mutex_unlock(&ctx->mutex);

	put_ctx(ctx);
}

5039
/*
5040
 * Initialize the perf_event context in task_struct
5041
 */
5042
int perf_event_init_task(struct task_struct *child)
5043
{
5044 5045 5046
	struct perf_event_context *child_ctx, *parent_ctx;
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
5047
	struct task_struct *parent = current;
5048
	int inherited_all = 1;
5049
	int ret = 0;
5050

5051
	child->perf_event_ctxp = NULL;
5052

5053 5054
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);
5055

5056
	if (likely(!parent->perf_event_ctxp))
5057 5058
		return 0;

5059 5060
	/*
	 * This is executed from the parent task context, so inherit
5061
	 * events that have been marked for cloning.
5062
	 * First allocate and initialize a context for the child.
5063 5064
	 */

5065
	child_ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
5066
	if (!child_ctx)
5067
		return -ENOMEM;
5068

5069 5070
	__perf_event_init_context(child_ctx, child);
	child->perf_event_ctxp = child_ctx;
5071
	get_task_struct(child);
5072

5073
	/*
5074 5075
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
5076
	 */
5077 5078
	parent_ctx = perf_pin_task_context(parent);

5079 5080 5081 5082 5083 5084 5085
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

5086 5087 5088 5089
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
5090
	mutex_lock(&parent_ctx->mutex);
5091 5092 5093 5094 5095

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
5096
	list_for_each_entry(event, &parent_ctx->group_list, group_entry) {
5097

5098
		if (!event->attr.inherit) {
5099
			inherited_all = 0;
5100
			continue;
5101
		}
5102

5103
		ret = inherit_group(event, parent, parent_ctx,
5104 5105
					     child, child_ctx);
		if (ret) {
5106
			inherited_all = 0;
5107
			break;
5108 5109 5110 5111 5112 5113 5114
		}
	}

	if (inherited_all) {
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
5115 5116
		 * Note that if the parent is a clone, it could get
		 * uncloned at any point, but that doesn't matter
5117
		 * because the list of events and the generation
5118
		 * count can't have changed since we took the mutex.
5119
		 */
5120 5121 5122
		cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
5123
			child_ctx->parent_gen = parent_ctx->parent_gen;
5124 5125 5126 5127 5128
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
5129 5130
	}

5131
	mutex_unlock(&parent_ctx->mutex);
5132

5133
	perf_unpin_context(parent_ctx);
5134

5135
	return ret;
5136 5137
}

5138
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
5139
{
5140
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
5141

5142
	cpuctx = &per_cpu(perf_cpu_context, cpu);
5143
	__perf_event_init_context(&cpuctx->ctx, NULL);
T
Thomas Gleixner 已提交
5144

5145
	spin_lock(&perf_resource_lock);
5146
	cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5147
	spin_unlock(&perf_resource_lock);
5148

5149
	hw_perf_event_setup(cpu);
T
Thomas Gleixner 已提交
5150 5151 5152
}

#ifdef CONFIG_HOTPLUG_CPU
5153
static void __perf_event_exit_cpu(void *info)
T
Thomas Gleixner 已提交
5154 5155
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5156 5157
	struct perf_event_context *ctx = &cpuctx->ctx;
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
5158

5159 5160
	list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry)
		__perf_event_remove_from_context(event);
T
Thomas Gleixner 已提交
5161
}
5162
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
5163
{
5164
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5165
	struct perf_event_context *ctx = &cpuctx->ctx;
5166 5167

	mutex_lock(&ctx->mutex);
5168
	smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5169
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
5170 5171
}
#else
5172
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

	switch (action) {

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
5184
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
5185 5186
		break;

5187 5188
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
5189
		hw_perf_event_setup_online(cpu);
5190 5191
		break;

T
Thomas Gleixner 已提交
5192 5193
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
5194
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
5195 5196 5197 5198 5199 5200 5201 5202 5203
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

5204 5205 5206
/*
 * This has to have a higher priority than migration_notifier in sched.c.
 */
T
Thomas Gleixner 已提交
5207 5208
static struct notifier_block __cpuinitdata perf_cpu_nb = {
	.notifier_call		= perf_cpu_notify,
5209
	.priority		= 20,
T
Thomas Gleixner 已提交
5210 5211
};

5212
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
5213 5214 5215
{
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
			(void *)(long)smp_processor_id());
5216 5217
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
			(void *)(long)smp_processor_id());
T
Thomas Gleixner 已提交
5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237
	register_cpu_notifier(&perf_cpu_nb);
}

static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_reserved_percpu);
}

static ssize_t
perf_set_reserve_percpu(struct sysdev_class *class,
			const char *buf,
			size_t count)
{
	struct perf_cpu_context *cpuctx;
	unsigned long val;
	int err, cpu, mpt;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
5238
	if (val > perf_max_events)
T
Thomas Gleixner 已提交
5239 5240
		return -EINVAL;

5241
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5242 5243 5244 5245
	perf_reserved_percpu = val;
	for_each_online_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
		spin_lock_irq(&cpuctx->ctx.lock);
5246 5247
		mpt = min(perf_max_events - cpuctx->ctx.nr_events,
			  perf_max_events - perf_reserved_percpu);
T
Thomas Gleixner 已提交
5248 5249 5250
		cpuctx->max_pertask = mpt;
		spin_unlock_irq(&cpuctx->ctx.lock);
	}
5251
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272

	return count;
}

static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_overcommit);
}

static ssize_t
perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
{
	unsigned long val;
	int err;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > 1)
		return -EINVAL;

5273
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5274
	perf_overcommit = val;
5275
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301

	return count;
}

static SYSDEV_CLASS_ATTR(
				reserve_percpu,
				0644,
				perf_show_reserve_percpu,
				perf_set_reserve_percpu
			);

static SYSDEV_CLASS_ATTR(
				overcommit,
				0644,
				perf_show_overcommit,
				perf_set_overcommit
			);

static struct attribute *perfclass_attrs[] = {
	&attr_reserve_percpu.attr,
	&attr_overcommit.attr,
	NULL
};

static struct attribute_group perfclass_attr_group = {
	.attrs			= perfclass_attrs,
5302
	.name			= "perf_events",
T
Thomas Gleixner 已提交
5303 5304
};

5305
static int __init perf_event_sysfs_init(void)
T
Thomas Gleixner 已提交
5306 5307 5308 5309
{
	return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
				  &perfclass_attr_group);
}
5310
device_initcall(perf_event_sysfs_init);