perf_event.c 129.4 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4 5 6
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
16
#include <linux/file.h>
T
Thomas Gleixner 已提交
17
#include <linux/poll.h>
18
#include <linux/slab.h>
19
#include <linux/hash.h>
T
Thomas Gleixner 已提交
20
#include <linux/sysfs.h>
21
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
22
#include <linux/percpu.h>
23
#include <linux/ptrace.h>
24
#include <linux/vmstat.h>
25
#include <linux/vmalloc.h>
26 27
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
28 29 30
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
31
#include <linux/kernel_stat.h>
32
#include <linux/perf_event.h>
L
Li Zefan 已提交
33
#include <linux/ftrace_event.h>
34
#include <linux/hw_breakpoint.h>
T
Thomas Gleixner 已提交
35

36 37
#include <asm/irq_regs.h>

T
Thomas Gleixner 已提交
38
/*
39
 * Each CPU has a list of per CPU events:
T
Thomas Gleixner 已提交
40
 */
41
static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
T
Thomas Gleixner 已提交
42

43
int perf_max_events __read_mostly = 1;
T
Thomas Gleixner 已提交
44 45 46
static int perf_reserved_percpu __read_mostly;
static int perf_overcommit __read_mostly = 1;

47 48 49 50
static atomic_t nr_events __read_mostly;
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
51

52
/*
53
 * perf event paranoia level:
54 55
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
56
 *   1 - disallow cpu events for unpriv
57
 *   2 - disallow kernel profiling for unpriv
58
 */
59
int sysctl_perf_event_paranoid __read_mostly = 1;
60

61
int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
62 63

/*
64
 * max perf event sample rate
65
 */
66
int sysctl_perf_event_sample_rate __read_mostly = 100000;
67

68
static atomic64_t perf_event_id;
69

T
Thomas Gleixner 已提交
70
/*
71
 * Lock for (sysadmin-configurable) event reservations:
T
Thomas Gleixner 已提交
72
 */
73
static DEFINE_SPINLOCK(perf_resource_lock);
T
Thomas Gleixner 已提交
74 75 76 77

/*
 * Architecture provided APIs - weak aliases:
 */
78
extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
T
Thomas Gleixner 已提交
79
{
80
	return NULL;
T
Thomas Gleixner 已提交
81 82
}

83 84 85
void __weak hw_perf_disable(void)		{ barrier(); }
void __weak hw_perf_enable(void)		{ barrier(); }

86
void __weak perf_event_print_debug(void)	{ }
87

88
static DEFINE_PER_CPU(int, perf_disable_count);
89 90 91

void perf_disable(void)
{
P
Peter Zijlstra 已提交
92 93
	if (!__get_cpu_var(perf_disable_count)++)
		hw_perf_disable();
94 95 96 97
}

void perf_enable(void)
{
P
Peter Zijlstra 已提交
98
	if (!--__get_cpu_var(perf_disable_count))
99 100 101
		hw_perf_enable();
}

102
static void get_ctx(struct perf_event_context *ctx)
103
{
104
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
105 106
}

107 108
static void free_ctx(struct rcu_head *head)
{
109
	struct perf_event_context *ctx;
110

111
	ctx = container_of(head, struct perf_event_context, rcu_head);
112 113 114
	kfree(ctx);
}

115
static void put_ctx(struct perf_event_context *ctx)
116
{
117 118 119
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
120 121 122
		if (ctx->task)
			put_task_struct(ctx->task);
		call_rcu(&ctx->rcu_head, free_ctx);
123
	}
124 125
}

126
static void unclone_ctx(struct perf_event_context *ctx)
127 128 129 130 131 132 133
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

134
/*
135
 * If we inherit events we want to return the parent event id
136 137
 * to userspace.
 */
138
static u64 primary_event_id(struct perf_event *event)
139
{
140
	u64 id = event->id;
141

142 143
	if (event->parent)
		id = event->parent->id;
144 145 146 147

	return id;
}

148
/*
149
 * Get the perf_event_context for a task and lock it.
150 151 152
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
153
static struct perf_event_context *
154
perf_lock_task_context(struct task_struct *task, unsigned long *flags)
155
{
156
	struct perf_event_context *ctx;
157 158 159

	rcu_read_lock();
 retry:
160
	ctx = rcu_dereference(task->perf_event_ctxp);
161 162 163 164
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
165
		 * perf_event_task_sched_out, though the
166 167 168 169 170 171
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
172
		raw_spin_lock_irqsave(&ctx->lock, *flags);
173
		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
174
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
175 176
			goto retry;
		}
177 178

		if (!atomic_inc_not_zero(&ctx->refcount)) {
179
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
180 181
			ctx = NULL;
		}
182 183 184 185 186 187 188 189 190 191
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
192
static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
193
{
194
	struct perf_event_context *ctx;
195 196 197 198 199
	unsigned long flags;

	ctx = perf_lock_task_context(task, &flags);
	if (ctx) {
		++ctx->pin_count;
200
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
201 202 203 204
	}
	return ctx;
}

205
static void perf_unpin_context(struct perf_event_context *ctx)
206 207 208
{
	unsigned long flags;

209
	raw_spin_lock_irqsave(&ctx->lock, flags);
210
	--ctx->pin_count;
211
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
212 213 214
	put_ctx(ctx);
}

215 216
static inline u64 perf_clock(void)
{
217
	return cpu_clock(raw_smp_processor_id());
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
}

/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;

243 244 245 246 247 248
	if (ctx->is_active)
		run_end = ctx->time;
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
249 250 251 252 253 254 255 256 257

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
		run_end = ctx->time;

	event->total_time_running = run_end - event->tstamp_running;
}

258 259 260 261 262 263 264 265 266
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

267
/*
268
 * Add a event from the lists for its context.
269 270
 * Must be called with ctx->mutex and ctx->lock held.
 */
271
static void
272
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
273
{
274
	struct perf_event *group_leader = event->group_leader;
275 276

	/*
277 278
	 * Depending on whether it is a standalone or sibling event,
	 * add it straight to the context's event list, or to the group
279 280
	 * leader's sibling list:
	 */
281 282 283
	if (group_leader == event) {
		struct list_head *list;

284 285 286
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

287 288 289
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
	} else {
290 291 292 293
		if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
		    !is_software_event(event))
			group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

294
		list_add_tail(&event->group_entry, &group_leader->sibling_list);
P
Peter Zijlstra 已提交
295 296
		group_leader->nr_siblings++;
	}
P
Peter Zijlstra 已提交
297

298 299 300
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
301
		ctx->nr_stat++;
302 303
}

304
/*
305
 * Remove a event from the lists for its context.
306
 * Must be called with ctx->mutex and ctx->lock held.
307
 */
308
static void
309
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
310
{
311
	struct perf_event *sibling, *tmp;
312

313
	if (list_empty(&event->group_entry))
314
		return;
315 316
	ctx->nr_events--;
	if (event->attr.inherit_stat)
317
		ctx->nr_stat--;
318

319 320
	list_del_init(&event->group_entry);
	list_del_rcu(&event->event_entry);
321

322 323
	if (event->group_leader != event)
		event->group_leader->nr_siblings--;
P
Peter Zijlstra 已提交
324

325
	update_event_times(event);
326 327 328 329 330 331 332 333 334 335

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
336

337 338 339
	if (event->state > PERF_EVENT_STATE_FREE)
		return;

340
	/*
341 342
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
343 344
	 * to the context list directly:
	 */
345
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
346
		struct list_head *list;
347

348 349
		list = ctx_group_list(event, ctx);
		list_move_tail(&sibling->group_entry, list);
350
		sibling->group_leader = sibling;
351 352 353

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
354 355 356
	}
}

357
static void
358
event_sched_out(struct perf_event *event,
359
		  struct perf_cpu_context *cpuctx,
360
		  struct perf_event_context *ctx)
361
{
362
	if (event->state != PERF_EVENT_STATE_ACTIVE)
363 364
		return;

365 366 367 368
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
369
	}
370 371 372
	event->tstamp_stopped = ctx->time;
	event->pmu->disable(event);
	event->oncpu = -1;
373

374
	if (!is_software_event(event))
375 376
		cpuctx->active_oncpu--;
	ctx->nr_active--;
377
	if (event->attr.exclusive || !cpuctx->active_oncpu)
378 379 380
		cpuctx->exclusive = 0;
}

381
static void
382
group_sched_out(struct perf_event *group_event,
383
		struct perf_cpu_context *cpuctx,
384
		struct perf_event_context *ctx)
385
{
386
	struct perf_event *event;
387

388
	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
389 390
		return;

391
	event_sched_out(group_event, cpuctx, ctx);
392 393 394 395

	/*
	 * Schedule out siblings (if any):
	 */
396 397
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
398

399
	if (group_event->attr.exclusive)
400 401 402
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
403
/*
404
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
405
 *
406
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
407 408
 * remove it from the context list.
 */
409
static void __perf_event_remove_from_context(void *info)
T
Thomas Gleixner 已提交
410 411
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
412 413
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
414 415 416 417 418 419

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
420
	if (ctx->task && cpuctx->task_ctx != ctx)
T
Thomas Gleixner 已提交
421 422
		return;

423
	raw_spin_lock(&ctx->lock);
424 425
	/*
	 * Protect the list operation against NMI by disabling the
426
	 * events on a global level.
427 428
	 */
	perf_disable();
T
Thomas Gleixner 已提交
429

430
	event_sched_out(event, cpuctx, ctx);
431

432
	list_del_event(event, ctx);
T
Thomas Gleixner 已提交
433 434 435

	if (!ctx->task) {
		/*
436
		 * Allow more per task events with respect to the
T
Thomas Gleixner 已提交
437 438 439
		 * reservation:
		 */
		cpuctx->max_pertask =
440 441
			min(perf_max_events - ctx->nr_events,
			    perf_max_events - perf_reserved_percpu);
T
Thomas Gleixner 已提交
442 443
	}

444
	perf_enable();
445
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
446 447 448 449
}


/*
450
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
451
 *
452
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
453
 *
454
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
455
 * call when the task is on a CPU.
456
 *
457 458
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
459 460
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
461
 * When called from perf_event_exit_task, it's OK because the
462
 * context has been detached from its task.
T
Thomas Gleixner 已提交
463
 */
464
static void perf_event_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
465
{
466
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
467 468 469 470
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
471
		 * Per cpu events are removed via an smp call and
472
		 * the removal is always successful.
T
Thomas Gleixner 已提交
473
		 */
474 475 476
		smp_call_function_single(event->cpu,
					 __perf_event_remove_from_context,
					 event, 1);
T
Thomas Gleixner 已提交
477 478 479 480
		return;
	}

retry:
481 482
	task_oncpu_function_call(task, __perf_event_remove_from_context,
				 event);
T
Thomas Gleixner 已提交
483

484
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
485 486 487
	/*
	 * If the context is active we need to retry the smp call.
	 */
488
	if (ctx->nr_active && !list_empty(&event->group_entry)) {
489
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
490 491 492 493 494
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
495
	 * can remove the event safely, if the call above did not
T
Thomas Gleixner 已提交
496 497
	 * succeed.
	 */
P
Peter Zijlstra 已提交
498
	if (!list_empty(&event->group_entry))
499
		list_del_event(event, ctx);
500
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
501 502
}

503
/*
504
 * Update total_time_enabled and total_time_running for all events in a group.
505
 */
506
static void update_group_times(struct perf_event *leader)
507
{
508
	struct perf_event *event;
509

510 511 512
	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
513 514
}

515
/*
516
 * Cross CPU call to disable a performance event
517
 */
518
static void __perf_event_disable(void *info)
519
{
520
	struct perf_event *event = info;
521
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
522
	struct perf_event_context *ctx = event->ctx;
523 524

	/*
525 526
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
527
	 */
528
	if (ctx->task && cpuctx->task_ctx != ctx)
529 530
		return;

531
	raw_spin_lock(&ctx->lock);
532 533

	/*
534
	 * If the event is on, turn it off.
535 536
	 * If it is in error state, leave it in error state.
	 */
537
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
538
		update_context_time(ctx);
539 540 541
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
542
		else
543 544
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
545 546
	}

547
	raw_spin_unlock(&ctx->lock);
548 549 550
}

/*
551
 * Disable a event.
552
 *
553 554
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
555
 * remains valid.  This condition is satisifed when called through
556 557 558 559
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
560
 * is the current context on this CPU and preemption is disabled,
561
 * hence we can't get into perf_event_task_sched_out for this context.
562
 */
563
void perf_event_disable(struct perf_event *event)
564
{
565
	struct perf_event_context *ctx = event->ctx;
566 567 568 569
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
570
		 * Disable the event on the cpu that it's on
571
		 */
572 573
		smp_call_function_single(event->cpu, __perf_event_disable,
					 event, 1);
574 575 576 577
		return;
	}

 retry:
578
	task_oncpu_function_call(task, __perf_event_disable, event);
579

580
	raw_spin_lock_irq(&ctx->lock);
581
	/*
582
	 * If the event is still active, we need to retry the cross-call.
583
	 */
584
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
585
		raw_spin_unlock_irq(&ctx->lock);
586 587 588 589 590 591 592
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
593 594 595
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
596
	}
597

598
	raw_spin_unlock_irq(&ctx->lock);
599 600
}

601
static int
602
event_sched_in(struct perf_event *event,
603
		 struct perf_cpu_context *cpuctx,
604
		 struct perf_event_context *ctx)
605
{
606
	if (event->state <= PERF_EVENT_STATE_OFF)
607 608
		return 0;

609
	event->state = PERF_EVENT_STATE_ACTIVE;
610
	event->oncpu = smp_processor_id();
611 612 613 614 615
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

616 617 618
	if (event->pmu->enable(event)) {
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
619 620 621
		return -EAGAIN;
	}

622
	event->tstamp_running += ctx->time - event->tstamp_stopped;
623

624
	if (!is_software_event(event))
625
		cpuctx->active_oncpu++;
626 627
	ctx->nr_active++;

628
	if (event->attr.exclusive)
629 630
		cpuctx->exclusive = 1;

631 632 633
	return 0;
}

634
static int
635
group_sched_in(struct perf_event *group_event,
636
	       struct perf_cpu_context *cpuctx,
637
	       struct perf_event_context *ctx)
638
{
639 640 641
	struct perf_event *event, *partial_group = NULL;
	const struct pmu *pmu = group_event->pmu;
	bool txn = false;
642 643
	int ret;

644
	if (group_event->state == PERF_EVENT_STATE_OFF)
645 646
		return 0;

647 648 649 650 651 652
	/* Check if group transaction availabe */
	if (pmu->start_txn)
		txn = true;

	if (txn)
		pmu->start_txn(pmu);
653

654
	if (event_sched_in(group_event, cpuctx, ctx))
655 656 657 658 659
		return -EAGAIN;

	/*
	 * Schedule in siblings as one group (if any):
	 */
660
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
661
		if (event_sched_in(event, cpuctx, ctx)) {
662
			partial_group = event;
663 664 665 666
			goto group_error;
		}
	}

667 668 669 670 671 672 673 674
	if (txn) {
		ret = pmu->commit_txn(pmu);
		if (!ret) {
			pmu->cancel_txn(pmu);

			return 0;
		}
	}
675 676

group_error:
677 678 679
	if (txn)
		pmu->cancel_txn(pmu);

680 681 682 683
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
684 685
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
686
			break;
687
		event_sched_out(event, cpuctx, ctx);
688
	}
689
	event_sched_out(group_event, cpuctx, ctx);
690 691 692 693

	return -EAGAIN;
}

694
/*
695
 * Work out whether we can put this event group on the CPU now.
696
 */
697
static int group_can_go_on(struct perf_event *event,
698 699 700 701
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
702
	 * Groups consisting entirely of software events can always go on.
703
	 */
704
	if (event->group_flags & PERF_GROUP_SOFTWARE)
705 706 707
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
708
	 * events can go on.
709 710 711 712 713
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
714
	 * events on the CPU, it can't go on.
715
	 */
716
	if (event->attr.exclusive && cpuctx->active_oncpu)
717 718 719 720 721 722 723 724
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

725 726
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
727
{
728 729 730 731
	list_add_event(event, ctx);
	event->tstamp_enabled = ctx->time;
	event->tstamp_running = ctx->time;
	event->tstamp_stopped = ctx->time;
732 733
}

T
Thomas Gleixner 已提交
734
/*
735
 * Cross CPU call to install and enable a performance event
736 737
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
738 739 740 741
 */
static void __perf_install_in_context(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
742 743 744
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
745
	int err;
T
Thomas Gleixner 已提交
746 747 748 749 750

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
751
	 * Or possibly this is the right context but it isn't
752
	 * on this cpu because it had no events.
T
Thomas Gleixner 已提交
753
	 */
754
	if (ctx->task && cpuctx->task_ctx != ctx) {
755
		if (cpuctx->task_ctx || ctx->task != current)
756 757 758
			return;
		cpuctx->task_ctx = ctx;
	}
T
Thomas Gleixner 已提交
759

760
	raw_spin_lock(&ctx->lock);
761
	ctx->is_active = 1;
762
	update_context_time(ctx);
T
Thomas Gleixner 已提交
763 764 765

	/*
	 * Protect the list operation against NMI by disabling the
766
	 * events on a global level. NOP for non NMI based events.
T
Thomas Gleixner 已提交
767
	 */
768
	perf_disable();
T
Thomas Gleixner 已提交
769

770
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
771

772 773 774
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

775
	/*
776
	 * Don't put the event on if it is disabled or if
777 778
	 * it is in a group and the group isn't on.
	 */
779 780
	if (event->state != PERF_EVENT_STATE_INACTIVE ||
	    (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
781 782
		goto unlock;

783
	/*
784 785 786
	 * An exclusive event can't go on if there are already active
	 * hardware events, and no hardware event can go on if there
	 * is already an exclusive event on.
787
	 */
788
	if (!group_can_go_on(event, cpuctx, 1))
789 790
		err = -EEXIST;
	else
791
		err = event_sched_in(event, cpuctx, ctx);
792

793 794
	if (err) {
		/*
795
		 * This event couldn't go on.  If it is in a group
796
		 * then we have to pull the whole group off.
797
		 * If the event group is pinned then put it in error state.
798
		 */
799
		if (leader != event)
800
			group_sched_out(leader, cpuctx, ctx);
801
		if (leader->attr.pinned) {
802
			update_group_times(leader);
803
			leader->state = PERF_EVENT_STATE_ERROR;
804
		}
805
	}
T
Thomas Gleixner 已提交
806

807
	if (!err && !ctx->task && cpuctx->max_pertask)
T
Thomas Gleixner 已提交
808 809
		cpuctx->max_pertask--;

810
 unlock:
811
	perf_enable();
812

813
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
814 815 816
}

/*
817
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
818
 *
819 820
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
821
 *
822
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
823 824
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
825 826
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
827 828
 */
static void
829 830
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
831 832 833 834 835 836
			int cpu)
{
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
837
		 * Per cpu events are installed via an smp call and
838
		 * the install is always successful.
T
Thomas Gleixner 已提交
839 840
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
841
					 event, 1);
T
Thomas Gleixner 已提交
842 843 844 845 846
		return;
	}

retry:
	task_oncpu_function_call(task, __perf_install_in_context,
847
				 event);
T
Thomas Gleixner 已提交
848

849
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
850 851 852
	/*
	 * we need to retry the smp call.
	 */
853
	if (ctx->is_active && list_empty(&event->group_entry)) {
854
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
855 856 857 858 859
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
860
	 * can add the event safely, if it the call above did not
T
Thomas Gleixner 已提交
861 862
	 * succeed.
	 */
863 864
	if (list_empty(&event->group_entry))
		add_event_to_ctx(event, ctx);
865
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
866 867
}

868
/*
869
 * Put a event into inactive state and update time fields.
870 871 872 873 874 875
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
876 877
static void __perf_event_mark_enabled(struct perf_event *event,
					struct perf_event_context *ctx)
878
{
879
	struct perf_event *sub;
880

881 882 883 884
	event->state = PERF_EVENT_STATE_INACTIVE;
	event->tstamp_enabled = ctx->time - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry)
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
885 886 887 888
			sub->tstamp_enabled =
				ctx->time - sub->total_time_enabled;
}

889
/*
890
 * Cross CPU call to enable a performance event
891
 */
892
static void __perf_event_enable(void *info)
893
{
894
	struct perf_event *event = info;
895
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
896 897
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
898
	int err;
899

900
	/*
901 902
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
903
	 */
904
	if (ctx->task && cpuctx->task_ctx != ctx) {
905
		if (cpuctx->task_ctx || ctx->task != current)
906 907 908
			return;
		cpuctx->task_ctx = ctx;
	}
909

910
	raw_spin_lock(&ctx->lock);
911
	ctx->is_active = 1;
912
	update_context_time(ctx);
913

914
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
915
		goto unlock;
916
	__perf_event_mark_enabled(event, ctx);
917

918 919 920
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

921
	/*
922
	 * If the event is in a group and isn't the group leader,
923
	 * then don't put it on unless the group is on.
924
	 */
925
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
926
		goto unlock;
927

928
	if (!group_can_go_on(event, cpuctx, 1)) {
929
		err = -EEXIST;
930
	} else {
931
		perf_disable();
932
		if (event == leader)
933
			err = group_sched_in(event, cpuctx, ctx);
934
		else
935
			err = event_sched_in(event, cpuctx, ctx);
936
		perf_enable();
937
	}
938 939 940

	if (err) {
		/*
941
		 * If this event can't go on and it's part of a
942 943
		 * group, then the whole group has to come off.
		 */
944
		if (leader != event)
945
			group_sched_out(leader, cpuctx, ctx);
946
		if (leader->attr.pinned) {
947
			update_group_times(leader);
948
			leader->state = PERF_EVENT_STATE_ERROR;
949
		}
950 951 952
	}

 unlock:
953
	raw_spin_unlock(&ctx->lock);
954 955 956
}

/*
957
 * Enable a event.
958
 *
959 960
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
961
 * remains valid.  This condition is satisfied when called through
962 963
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
964
 */
965
void perf_event_enable(struct perf_event *event)
966
{
967
	struct perf_event_context *ctx = event->ctx;
968 969 970 971
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
972
		 * Enable the event on the cpu that it's on
973
		 */
974 975
		smp_call_function_single(event->cpu, __perf_event_enable,
					 event, 1);
976 977 978
		return;
	}

979
	raw_spin_lock_irq(&ctx->lock);
980
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
981 982 983
		goto out;

	/*
984 985
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
986 987 988 989
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
990 991
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
992 993

 retry:
994
	raw_spin_unlock_irq(&ctx->lock);
995
	task_oncpu_function_call(task, __perf_event_enable, event);
996

997
	raw_spin_lock_irq(&ctx->lock);
998 999

	/*
1000
	 * If the context is active and the event is still off,
1001 1002
	 * we need to retry the cross-call.
	 */
1003
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1004 1005 1006 1007 1008 1009
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1010 1011
	if (event->state == PERF_EVENT_STATE_OFF)
		__perf_event_mark_enabled(event, ctx);
1012

1013
 out:
1014
	raw_spin_unlock_irq(&ctx->lock);
1015 1016
}

1017
static int perf_event_refresh(struct perf_event *event, int refresh)
1018
{
1019
	/*
1020
	 * not supported on inherited events
1021
	 */
1022
	if (event->attr.inherit)
1023 1024
		return -EINVAL;

1025 1026
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1027 1028

	return 0;
1029 1030
}

1031 1032 1033 1034 1035 1036 1037 1038 1039
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
1040
{
1041
	struct perf_event *event;
1042

1043
	raw_spin_lock(&ctx->lock);
1044
	ctx->is_active = 0;
1045
	if (likely(!ctx->nr_events))
1046
		goto out;
1047
	update_context_time(ctx);
1048

1049
	perf_disable();
1050 1051 1052 1053
	if (!ctx->nr_active)
		goto out_enable;

	if (event_type & EVENT_PINNED)
1054 1055 1056
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);

1057
	if (event_type & EVENT_FLEXIBLE)
1058
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1059
			group_sched_out(event, cpuctx, ctx);
1060 1061

 out_enable:
1062
	perf_enable();
1063
 out:
1064
	raw_spin_unlock(&ctx->lock);
1065 1066
}

1067 1068 1069
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1070 1071 1072 1073
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1074
 * in them directly with an fd; we can only enable/disable all
1075
 * events via prctl, or enable/disable all events in a family
1076 1077
 * via ioctl, which will have the same effect on both contexts.
 */
1078 1079
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1080 1081
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1082
		&& ctx1->parent_gen == ctx2->parent_gen
1083
		&& !ctx1->pin_count && !ctx2->pin_count;
1084 1085
}

1086 1087
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1088 1089 1090
{
	u64 value;

1091
	if (!event->attr.inherit_stat)
1092 1093 1094
		return;

	/*
1095
	 * Update the event value, we cannot use perf_event_read()
1096 1097
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1098
	 * we know the event must be on the current CPU, therefore we
1099 1100
	 * don't need to use it.
	 */
1101 1102
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1103 1104
		event->pmu->read(event);
		/* fall-through */
1105

1106 1107
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1108 1109 1110 1111 1112 1113 1114
		break;

	default:
		break;
	}

	/*
1115
	 * In order to keep per-task stats reliable we need to flip the event
1116 1117
	 * values when we flip the contexts.
	 */
1118 1119 1120
	value = atomic64_read(&next_event->count);
	value = atomic64_xchg(&event->count, value);
	atomic64_set(&next_event->count, value);
1121

1122 1123
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1124

1125
	/*
1126
	 * Since we swizzled the values, update the user visible data too.
1127
	 */
1128 1129
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1130 1131 1132 1133 1134
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1135 1136
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1137
{
1138
	struct perf_event *event, *next_event;
1139 1140 1141 1142

	if (!ctx->nr_stat)
		return;

1143 1144
	update_context_time(ctx);

1145 1146
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1147

1148 1149
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1150

1151 1152
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1153

1154
		__perf_event_sync_stat(event, next_event);
1155

1156 1157
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1158 1159 1160
	}
}

T
Thomas Gleixner 已提交
1161
/*
1162
 * Called from scheduler to remove the events of the current task,
T
Thomas Gleixner 已提交
1163 1164
 * with interrupts disabled.
 *
1165
 * We stop each event and update the event value in event->count.
T
Thomas Gleixner 已提交
1166
 *
I
Ingo Molnar 已提交
1167
 * This does not protect us against NMI, but disable()
1168 1169 1170
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
T
Thomas Gleixner 已提交
1171
 */
1172
void perf_event_task_sched_out(struct task_struct *task,
1173
				 struct task_struct *next)
T
Thomas Gleixner 已提交
1174
{
1175
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1176 1177 1178
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
1179
	int do_switch = 1;
T
Thomas Gleixner 已提交
1180

1181
	perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1182

1183
	if (likely(!ctx || !cpuctx->task_ctx))
T
Thomas Gleixner 已提交
1184 1185
		return;

1186 1187
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
1188
	next_ctx = next->perf_event_ctxp;
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
1200 1201
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1202
		if (context_equiv(ctx, next_ctx)) {
1203 1204
			/*
			 * XXX do we need a memory barrier of sorts
1205
			 * wrt to rcu_dereference() of perf_event_ctxp
1206
			 */
1207 1208
			task->perf_event_ctxp = next_ctx;
			next->perf_event_ctxp = ctx;
1209 1210 1211
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1212

1213
			perf_event_sync_stat(ctx, next_ctx);
1214
		}
1215 1216
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
1217
	}
1218
	rcu_read_unlock();
1219

1220
	if (do_switch) {
1221
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1222 1223
		cpuctx->task_ctx = NULL;
	}
T
Thomas Gleixner 已提交
1224 1225
}

1226 1227
static void task_ctx_sched_out(struct perf_event_context *ctx,
			       enum event_type_t event_type)
1228 1229 1230
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);

1231 1232
	if (!cpuctx->task_ctx)
		return;
1233 1234 1235 1236

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

1237
	ctx_sched_out(ctx, cpuctx, event_type);
1238 1239 1240
	cpuctx->task_ctx = NULL;
}

1241 1242 1243
/*
 * Called with IRQs disabled
 */
1244
static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1245
{
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
	task_ctx_sched_out(ctx, EVENT_ALL);
}

/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1256 1257
}

1258
static void
1259
ctx_pinned_sched_in(struct perf_event_context *ctx,
1260
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
1261
{
1262
	struct perf_event *event;
T
Thomas Gleixner 已提交
1263

1264 1265
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
1266
			continue;
1267
		if (event->cpu != -1 && event->cpu != smp_processor_id())
1268 1269
			continue;

1270
		if (group_can_go_on(event, cpuctx, 1))
1271
			group_sched_in(event, cpuctx, ctx);
1272 1273 1274 1275 1276

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
1277 1278 1279
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
1280
		}
1281
	}
1282 1283 1284 1285
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
1286
		      struct perf_cpu_context *cpuctx)
1287 1288 1289
{
	struct perf_event *event;
	int can_add_hw = 1;
1290

1291 1292 1293
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
1294
			continue;
1295 1296
		/*
		 * Listen to the 'cpu' scheduling filter constraint
1297
		 * of events:
1298
		 */
1299
		if (event->cpu != -1 && event->cpu != smp_processor_id())
T
Thomas Gleixner 已提交
1300 1301
			continue;

1302
		if (group_can_go_on(event, cpuctx, can_add_hw))
1303
			if (group_sched_in(event, cpuctx, ctx))
1304
				can_add_hw = 0;
T
Thomas Gleixner 已提交
1305
	}
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type)
{
	raw_spin_lock(&ctx->lock);
	ctx->is_active = 1;
	if (likely(!ctx->nr_events))
		goto out;

	ctx->timestamp = perf_clock();

	perf_disable();

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	if (event_type & EVENT_PINNED)
1327
		ctx_pinned_sched_in(ctx, cpuctx);
1328 1329 1330

	/* Then walk through the lower prio flexible groups */
	if (event_type & EVENT_FLEXIBLE)
1331
		ctx_flexible_sched_in(ctx, cpuctx);
1332

1333
	perf_enable();
1334
 out:
1335
	raw_spin_unlock(&ctx->lock);
1336 1337
}

1338 1339 1340 1341 1342 1343 1344 1345
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
			     enum event_type_t event_type)
{
	struct perf_event_context *ctx = &cpuctx->ctx;

	ctx_sched_in(ctx, cpuctx, event_type);
}

1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
static void task_ctx_sched_in(struct task_struct *task,
			      enum event_type_t event_type)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_event_context *ctx = task->perf_event_ctxp;

	if (likely(!ctx))
		return;
	if (cpuctx->task_ctx == ctx)
		return;
	ctx_sched_in(ctx, cpuctx, event_type);
	cpuctx->task_ctx = ctx;
}
1359
/*
1360
 * Called from scheduler to add the events of the current task
1361 1362
 * with interrupts disabled.
 *
1363
 * We restore the event value and then enable it.
1364 1365
 *
 * This does not protect us against NMI, but enable()
1366 1367 1368
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
1369
 */
1370
void perf_event_task_sched_in(struct task_struct *task)
1371
{
1372 1373
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_event_context *ctx = task->perf_event_ctxp;
T
Thomas Gleixner 已提交
1374

1375 1376
	if (likely(!ctx))
		return;
1377

1378 1379 1380
	if (cpuctx->task_ctx == ctx)
		return;

1381 1382
	perf_disable();

1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

	ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
	ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);

	cpuctx->task_ctx = ctx;
1395 1396

	perf_enable();
1397 1398
}

1399 1400
#define MAX_INTERRUPTS (~0ULL)

1401
static void perf_log_throttle(struct perf_event *event, int enable);
1402

1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
#define REDUCE_FLS(a, b) 		\
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

	return div64_u64(dividend, divisor);
}

1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
static void perf_event_stop(struct perf_event *event)
{
	if (!event->pmu->stop)
		return event->pmu->disable(event);

	return event->pmu->stop(event);
}

static int perf_event_start(struct perf_event *event)
{
	if (!event->pmu->start)
		return event->pmu->enable(event);

	return event->pmu->start(event);
}

1489
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1490
{
1491
	struct hw_perf_event *hwc = &event->hw;
1492 1493 1494
	u64 period, sample_period;
	s64 delta;

1495
	period = perf_calculate_period(event, nsec, count);
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
1506 1507 1508

	if (atomic64_read(&hwc->period_left) > 8*sample_period) {
		perf_disable();
1509
		perf_event_stop(event);
1510
		atomic64_set(&hwc->period_left, 0);
1511
		perf_event_start(event);
1512 1513
		perf_enable();
	}
1514 1515
}

1516
static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1517
{
1518 1519
	struct perf_event *event;
	struct hw_perf_event *hwc;
1520 1521
	u64 interrupts, now;
	s64 delta;
1522

1523
	raw_spin_lock(&ctx->lock);
1524
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1525
		if (event->state != PERF_EVENT_STATE_ACTIVE)
1526 1527
			continue;

1528 1529 1530
		if (event->cpu != -1 && event->cpu != smp_processor_id())
			continue;

1531
		hwc = &event->hw;
1532 1533 1534

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
1535

1536
		/*
1537
		 * unthrottle events on the tick
1538
		 */
1539
		if (interrupts == MAX_INTERRUPTS) {
1540
			perf_log_throttle(event, 1);
1541
			perf_disable();
1542
			event->pmu->unthrottle(event);
1543
			perf_enable();
1544 1545
		}

1546
		if (!event->attr.freq || !event->attr.sample_freq)
1547 1548
			continue;

1549
		perf_disable();
1550 1551 1552 1553
		event->pmu->read(event);
		now = atomic64_read(&event->count);
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
1554

1555 1556
		if (delta > 0)
			perf_adjust_period(event, TICK_NSEC, delta);
1557
		perf_enable();
1558
	}
1559
	raw_spin_unlock(&ctx->lock);
1560 1561
}

1562
/*
1563
 * Round-robin a context's events:
1564
 */
1565
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
1566
{
1567
	raw_spin_lock(&ctx->lock);
1568 1569 1570 1571

	/* Rotate the first entry last of non-pinned groups */
	list_rotate_left(&ctx->flexible_groups);

1572
	raw_spin_unlock(&ctx->lock);
1573 1574
}

1575
void perf_event_task_tick(struct task_struct *curr)
1576
{
1577
	struct perf_cpu_context *cpuctx;
1578
	struct perf_event_context *ctx;
1579
	int rotate = 0;
1580

1581
	if (!atomic_read(&nr_events))
1582 1583
		return;

1584
	cpuctx = &__get_cpu_var(perf_cpu_context);
1585 1586 1587
	if (cpuctx->ctx.nr_events &&
	    cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
		rotate = 1;
1588

1589 1590 1591
	ctx = curr->perf_event_ctxp;
	if (ctx && ctx->nr_events && ctx->nr_events != ctx->nr_active)
		rotate = 1;
1592

1593
	perf_ctx_adjust_freq(&cpuctx->ctx);
1594
	if (ctx)
1595
		perf_ctx_adjust_freq(ctx);
1596

1597 1598 1599 1600
	if (!rotate)
		return;

	perf_disable();
1601
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1602
	if (ctx)
1603
		task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
1604

1605
	rotate_ctx(&cpuctx->ctx);
1606 1607
	if (ctx)
		rotate_ctx(ctx);
1608

1609
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1610
	if (ctx)
1611
		task_ctx_sched_in(curr, EVENT_FLEXIBLE);
1612
	perf_enable();
T
Thomas Gleixner 已提交
1613 1614
}

1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

	__perf_event_mark_enabled(event, ctx);

	return 1;
}

1630
/*
1631
 * Enable all of a task's events that have been marked enable-on-exec.
1632 1633
 * This expects task == current.
 */
1634
static void perf_event_enable_on_exec(struct task_struct *task)
1635
{
1636 1637
	struct perf_event_context *ctx;
	struct perf_event *event;
1638 1639
	unsigned long flags;
	int enabled = 0;
1640
	int ret;
1641 1642

	local_irq_save(flags);
1643 1644
	ctx = task->perf_event_ctxp;
	if (!ctx || !ctx->nr_events)
1645 1646
		goto out;

1647
	__perf_event_task_sched_out(ctx);
1648

1649
	raw_spin_lock(&ctx->lock);
1650

1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
	}

	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
1661 1662 1663
	}

	/*
1664
	 * Unclone this context if we enabled any event.
1665
	 */
1666 1667
	if (enabled)
		unclone_ctx(ctx);
1668

1669
	raw_spin_unlock(&ctx->lock);
1670

1671
	perf_event_task_sched_in(task);
1672 1673 1674 1675
 out:
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
1676
/*
1677
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
1678
 */
1679
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
1680
{
1681
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1682 1683
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
I
Ingo Molnar 已提交
1684

1685 1686 1687 1688
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
1689 1690
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
1691 1692 1693 1694
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

1695
	raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1696
	update_context_time(ctx);
1697
	update_event_times(event);
1698
	raw_spin_unlock(&ctx->lock);
P
Peter Zijlstra 已提交
1699

P
Peter Zijlstra 已提交
1700
	event->pmu->read(event);
T
Thomas Gleixner 已提交
1701 1702
}

1703
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
1704 1705
{
	/*
1706 1707
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
1708
	 */
1709 1710 1711 1712
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
1713 1714 1715
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

1716
		raw_spin_lock_irqsave(&ctx->lock, flags);
P
Peter Zijlstra 已提交
1717
		update_context_time(ctx);
1718
		update_event_times(event);
1719
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1720 1721
	}

1722
	return atomic64_read(&event->count);
T
Thomas Gleixner 已提交
1723 1724
}

1725
/*
1726
 * Initialize the perf_event context in a task_struct:
1727 1728
 */
static void
1729
__perf_event_init_context(struct perf_event_context *ctx,
1730 1731
			    struct task_struct *task)
{
1732
	raw_spin_lock_init(&ctx->lock);
1733
	mutex_init(&ctx->mutex);
1734 1735
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
1736 1737 1738 1739 1740
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
	ctx->task = task;
}

1741
static struct perf_event_context *find_get_context(pid_t pid, int cpu)
T
Thomas Gleixner 已提交
1742
{
1743
	struct perf_event_context *ctx;
1744
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
1745
	struct task_struct *task;
1746
	unsigned long flags;
1747
	int err;
T
Thomas Gleixner 已提交
1748

1749
	if (pid == -1 && cpu != -1) {
1750
		/* Must be root to operate on a CPU event: */
1751
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
1752 1753
			return ERR_PTR(-EACCES);

1754
		if (cpu < 0 || cpu >= nr_cpumask_bits)
T
Thomas Gleixner 已提交
1755 1756 1757
			return ERR_PTR(-EINVAL);

		/*
1758
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
1759 1760 1761
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
1762
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
1763 1764 1765 1766
			return ERR_PTR(-ENODEV);

		cpuctx = &per_cpu(perf_cpu_context, cpu);
		ctx = &cpuctx->ctx;
1767
		get_ctx(ctx);
T
Thomas Gleixner 已提交
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

1784
	/*
1785
	 * Can't attach events to a dying task.
1786 1787 1788 1789 1790
	 */
	err = -ESRCH;
	if (task->flags & PF_EXITING)
		goto errout;

T
Thomas Gleixner 已提交
1791
	/* Reuse ptrace permission checks for now. */
1792 1793 1794 1795 1796
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

 retry:
1797
	ctx = perf_lock_task_context(task, &flags);
1798
	if (ctx) {
1799
		unclone_ctx(ctx);
1800
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1801 1802
	}

1803
	if (!ctx) {
1804
		ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1805 1806 1807
		err = -ENOMEM;
		if (!ctx)
			goto errout;
1808
		__perf_event_init_context(ctx, task);
1809
		get_ctx(ctx);
1810
		if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1811 1812 1813 1814 1815
			/*
			 * We raced with some other task; use
			 * the context they set.
			 */
			kfree(ctx);
1816
			goto retry;
1817
		}
1818
		get_task_struct(task);
1819 1820
	}

1821
	put_task_struct(task);
T
Thomas Gleixner 已提交
1822
	return ctx;
1823 1824 1825 1826

 errout:
	put_task_struct(task);
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
1827 1828
}

L
Li Zefan 已提交
1829 1830
static void perf_event_free_filter(struct perf_event *event);

1831
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
1832
{
1833
	struct perf_event *event;
P
Peter Zijlstra 已提交
1834

1835 1836 1837
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
1838
	perf_event_free_filter(event);
1839
	kfree(event);
P
Peter Zijlstra 已提交
1840 1841
}

1842
static void perf_pending_sync(struct perf_event *event);
1843

1844
static void free_event(struct perf_event *event)
1845
{
1846
	perf_pending_sync(event);
1847

1848 1849 1850 1851 1852 1853 1854 1855
	if (!event->parent) {
		atomic_dec(&nr_events);
		if (event->attr.mmap)
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
1856
	}
1857

1858 1859 1860
	if (event->output) {
		fput(event->output->filp);
		event->output = NULL;
1861 1862
	}

1863 1864
	if (event->destroy)
		event->destroy(event);
1865

1866 1867
	put_ctx(event->ctx);
	call_rcu(&event->rcu_head, free_event_rcu);
1868 1869
}

1870
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
1871
{
1872
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1873

1874 1875
	event->state = PERF_EVENT_STATE_FREE;

1876
	WARN_ON_ONCE(ctx->parent_ctx);
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
1890
	perf_event_remove_from_context(event);
1891
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
1892

1893 1894 1895 1896
	mutex_lock(&event->owner->perf_event_mutex);
	list_del_init(&event->owner_entry);
	mutex_unlock(&event->owner->perf_event_mutex);
	put_task_struct(event->owner);
1897

1898
	free_event(event);
T
Thomas Gleixner 已提交
1899 1900 1901

	return 0;
}
1902
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
1903

1904 1905 1906 1907
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
1908
{
1909
	struct perf_event *event = file->private_data;
1910

1911
	file->private_data = NULL;
1912

1913
	return perf_event_release_kernel(event);
1914 1915
}

1916
static int perf_event_read_size(struct perf_event *event)
1917 1918 1919 1920 1921
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

1922
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1923 1924
		size += sizeof(u64);

1925
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1926 1927
		size += sizeof(u64);

1928
	if (event->attr.read_format & PERF_FORMAT_ID)
1929 1930
		entry += sizeof(u64);

1931 1932
	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
1933 1934 1935 1936 1937 1938 1939 1940
		size += sizeof(u64);
	}

	size += entry * nr;

	return size;
}

1941
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
1942
{
1943
	struct perf_event *child;
1944 1945
	u64 total = 0;

1946 1947 1948
	*enabled = 0;
	*running = 0;

1949
	mutex_lock(&event->child_mutex);
1950
	total += perf_event_read(event);
1951 1952 1953 1954 1955 1956
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
1957
		total += perf_event_read(child);
1958 1959 1960
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
1961
	mutex_unlock(&event->child_mutex);
1962 1963 1964

	return total;
}
1965
EXPORT_SYMBOL_GPL(perf_event_read_value);
1966

1967
static int perf_event_read_group(struct perf_event *event,
1968 1969
				   u64 read_format, char __user *buf)
{
1970
	struct perf_event *leader = event->group_leader, *sub;
1971 1972
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
1973
	u64 values[5];
1974
	u64 count, enabled, running;
1975

1976
	mutex_lock(&ctx->mutex);
1977
	count = perf_event_read_value(leader, &enabled, &running);
1978 1979

	values[n++] = 1 + leader->nr_siblings;
1980 1981 1982 1983
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
1984 1985 1986
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
1987 1988 1989 1990

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
1991
		goto unlock;
1992

1993
	ret = size;
1994

1995
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1996
		n = 0;
1997

1998
		values[n++] = perf_event_read_value(sub, &enabled, &running);
1999 2000 2001 2002 2003
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

2004
		if (copy_to_user(buf + ret, values, size)) {
2005 2006 2007
			ret = -EFAULT;
			goto unlock;
		}
2008 2009

		ret += size;
2010
	}
2011 2012
unlock:
	mutex_unlock(&ctx->mutex);
2013

2014
	return ret;
2015 2016
}

2017
static int perf_event_read_one(struct perf_event *event,
2018 2019
				 u64 read_format, char __user *buf)
{
2020
	u64 enabled, running;
2021 2022 2023
	u64 values[4];
	int n = 0;

2024 2025 2026 2027 2028
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
2029
	if (read_format & PERF_FORMAT_ID)
2030
		values[n++] = primary_event_id(event);
2031 2032 2033 2034 2035 2036 2037

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
2038
/*
2039
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
2040 2041
 */
static ssize_t
2042
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
2043
{
2044
	u64 read_format = event->attr.read_format;
2045
	int ret;
T
Thomas Gleixner 已提交
2046

2047
	/*
2048
	 * Return end-of-file for a read on a event that is in
2049 2050 2051
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
2052
	if (event->state == PERF_EVENT_STATE_ERROR)
2053 2054
		return 0;

2055
	if (count < perf_event_read_size(event))
2056 2057
		return -ENOSPC;

2058
	WARN_ON_ONCE(event->ctx->parent_ctx);
2059
	if (read_format & PERF_FORMAT_GROUP)
2060
		ret = perf_event_read_group(event, read_format, buf);
2061
	else
2062
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
2063

2064
	return ret;
T
Thomas Gleixner 已提交
2065 2066 2067 2068 2069
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
2070
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
2071

2072
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
2073 2074 2075 2076
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
2077
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
2078
	struct perf_mmap_data *data;
2079
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
2080 2081

	rcu_read_lock();
2082
	data = rcu_dereference(event->data);
P
Peter Zijlstra 已提交
2083
	if (data)
2084
		events = atomic_xchg(&data->poll, 0);
P
Peter Zijlstra 已提交
2085
	rcu_read_unlock();
T
Thomas Gleixner 已提交
2086

2087
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
2088 2089 2090 2091

	return events;
}

2092
static void perf_event_reset(struct perf_event *event)
2093
{
2094 2095 2096
	(void)perf_event_read(event);
	atomic64_set(&event->count, 0);
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
2097 2098
}

2099
/*
2100 2101 2102 2103
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
2104
 */
2105 2106
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
2107
{
2108
	struct perf_event *child;
P
Peter Zijlstra 已提交
2109

2110 2111 2112 2113
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
2114
		func(child);
2115
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
2116 2117
}

2118 2119
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
2120
{
2121 2122
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
2123

2124 2125
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
2126
	event = event->group_leader;
2127

2128 2129 2130 2131
	perf_event_for_each_child(event, func);
	func(event);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
		perf_event_for_each_child(event, func);
2132
	mutex_unlock(&ctx->mutex);
2133 2134
}

2135
static int perf_event_period(struct perf_event *event, u64 __user *arg)
2136
{
2137
	struct perf_event_context *ctx = event->ctx;
2138 2139 2140 2141
	unsigned long size;
	int ret = 0;
	u64 value;

2142
	if (!event->attr.sample_period)
2143 2144 2145 2146 2147 2148 2149 2150 2151
		return -EINVAL;

	size = copy_from_user(&value, arg, sizeof(value));
	if (size != sizeof(value))
		return -EFAULT;

	if (!value)
		return -EINVAL;

2152
	raw_spin_lock_irq(&ctx->lock);
2153 2154
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
2155 2156 2157 2158
			ret = -EINVAL;
			goto unlock;
		}

2159
		event->attr.sample_freq = value;
2160
	} else {
2161 2162
		event->attr.sample_period = value;
		event->hw.sample_period = value;
2163 2164
	}
unlock:
2165
	raw_spin_unlock_irq(&ctx->lock);
2166 2167 2168 2169

	return ret;
}

L
Li Zefan 已提交
2170 2171
static int perf_event_set_output(struct perf_event *event, int output_fd);
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2172

2173 2174
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
2175 2176
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
2177
	u32 flags = arg;
2178 2179

	switch (cmd) {
2180 2181
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
2182
		break;
2183 2184
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
2185
		break;
2186 2187
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
2188
		break;
P
Peter Zijlstra 已提交
2189

2190 2191
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
2192

2193 2194
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
2195

2196 2197
	case PERF_EVENT_IOC_SET_OUTPUT:
		return perf_event_set_output(event, arg);
2198

L
Li Zefan 已提交
2199 2200 2201
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

2202
	default:
P
Peter Zijlstra 已提交
2203
		return -ENOTTY;
2204
	}
P
Peter Zijlstra 已提交
2205 2206

	if (flags & PERF_IOC_FLAG_GROUP)
2207
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
2208
	else
2209
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
2210 2211

	return 0;
2212 2213
}

2214
int perf_event_task_enable(void)
2215
{
2216
	struct perf_event *event;
2217

2218 2219 2220 2221
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
2222 2223 2224 2225

	return 0;
}

2226
int perf_event_task_disable(void)
2227
{
2228
	struct perf_event *event;
2229

2230 2231 2232 2233
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
2234 2235 2236 2237

	return 0;
}

2238 2239
#ifndef PERF_EVENT_INDEX_OFFSET
# define PERF_EVENT_INDEX_OFFSET 0
I
Ingo Molnar 已提交
2240 2241
#endif

2242
static int perf_event_index(struct perf_event *event)
2243
{
2244
	if (event->state != PERF_EVENT_STATE_ACTIVE)
2245 2246
		return 0;

2247
	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2248 2249
}

2250 2251 2252 2253 2254
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
2255
void perf_event_update_userpage(struct perf_event *event)
2256
{
2257
	struct perf_event_mmap_page *userpg;
2258
	struct perf_mmap_data *data;
2259 2260

	rcu_read_lock();
2261
	data = rcu_dereference(event->data);
2262 2263 2264 2265
	if (!data)
		goto unlock;

	userpg = data->user_page;
2266

2267 2268 2269 2270 2271
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
2272
	++userpg->lock;
2273
	barrier();
2274 2275 2276 2277
	userpg->index = perf_event_index(event);
	userpg->offset = atomic64_read(&event->count);
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		userpg->offset -= atomic64_read(&event->hw.prev_count);
2278

2279 2280
	userpg->time_enabled = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
2281

2282 2283
	userpg->time_running = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
2284

2285
	barrier();
2286
	++userpg->lock;
2287
	preempt_enable();
2288
unlock:
2289
	rcu_read_unlock();
2290 2291
}

2292
static unsigned long perf_data_size(struct perf_mmap_data *data)
2293
{
2294 2295
	return data->nr_pages << (PAGE_SHIFT + data->data_order);
}
2296

2297
#ifndef CONFIG_PERF_USE_VMALLOC
2298

2299 2300 2301
/*
 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
 */
2302

2303 2304 2305 2306 2307
static struct page *
perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
{
	if (pgoff > data->nr_pages)
		return NULL;
2308

2309 2310
	if (pgoff == 0)
		return virt_to_page(data->user_page);
2311

2312
	return virt_to_page(data->data_pages[pgoff - 1]);
2313 2314
}

2315 2316
static struct perf_mmap_data *
perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2317 2318 2319 2320 2321
{
	struct perf_mmap_data *data;
	unsigned long size;
	int i;

2322
	WARN_ON(atomic_read(&event->mmap_count));
2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340

	size = sizeof(struct perf_mmap_data);
	size += nr_pages * sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
	if (!data->user_page)
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
		data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
		if (!data->data_pages[i])
			goto fail_data_pages;
	}

2341
	data->data_order = 0;
2342 2343
	data->nr_pages = nr_pages;

2344
	return data;
2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355

fail_data_pages:
	for (i--; i >= 0; i--)
		free_page((unsigned long)data->data_pages[i]);

	free_page((unsigned long)data->user_page);

fail_user_page:
	kfree(data);

fail:
2356
	return NULL;
2357 2358
}

2359 2360
static void perf_mmap_free_page(unsigned long addr)
{
K
Kevin Cernekee 已提交
2361
	struct page *page = virt_to_page((void *)addr);
2362 2363 2364 2365 2366

	page->mapping = NULL;
	__free_page(page);
}

2367
static void perf_mmap_data_free(struct perf_mmap_data *data)
2368 2369 2370
{
	int i;

2371
	perf_mmap_free_page((unsigned long)data->user_page);
2372
	for (i = 0; i < data->nr_pages; i++)
2373
		perf_mmap_free_page((unsigned long)data->data_pages[i]);
2374
	kfree(data);
2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
}

#else

/*
 * Back perf_mmap() with vmalloc memory.
 *
 * Required for architectures that have d-cache aliasing issues.
 */

static struct page *
perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
{
	if (pgoff > (1UL << data->data_order))
		return NULL;

	return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
}

static void perf_mmap_unmark_page(void *addr)
{
	struct page *page = vmalloc_to_page(addr);

	page->mapping = NULL;
}

static void perf_mmap_data_free_work(struct work_struct *work)
{
	struct perf_mmap_data *data;
	void *base;
	int i, nr;

	data = container_of(work, struct perf_mmap_data, work);
	nr = 1 << data->data_order;

	base = data->user_page;
	for (i = 0; i < nr + 1; i++)
		perf_mmap_unmark_page(base + (i * PAGE_SIZE));

	vfree(base);
2415
	kfree(data);
2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430
}

static void perf_mmap_data_free(struct perf_mmap_data *data)
{
	schedule_work(&data->work);
}

static struct perf_mmap_data *
perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
{
	struct perf_mmap_data *data;
	unsigned long size;
	void *all_buf;

	WARN_ON(atomic_read(&event->mmap_count));
2431

2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
	size = sizeof(struct perf_mmap_data);
	size += sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	INIT_WORK(&data->work, perf_mmap_data_free_work);

	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
	if (!all_buf)
		goto fail_all_buf;

	data->user_page = all_buf;
	data->data_pages[0] = all_buf + PAGE_SIZE;
	data->data_order = ilog2(nr_pages);
	data->nr_pages = 1;

	return data;

fail_all_buf:
	kfree(data);

fail:
	return NULL;
}

#endif

static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
	struct perf_mmap_data *data;
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
	data = rcu_dereference(event->data);
	if (!data)
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

	vmf->page = perf_mmap_to_page(data, vmf->pgoff);
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

static void
perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
{
	long max_size = perf_data_size(data);

	atomic_set(&data->lock, -1);

	if (event->attr.watermark) {
		data->watermark = min_t(long, max_size,
					event->attr.wakeup_watermark);
	}

	if (!data->watermark)
2509
		data->watermark = max_size / 2;
2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520


	rcu_assign_pointer(event->data, data);
}

static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
{
	struct perf_mmap_data *data;

	data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
	perf_mmap_data_free(data);
2521 2522
}

2523
static void perf_mmap_data_release(struct perf_event *event)
2524
{
2525
	struct perf_mmap_data *data = event->data;
2526

2527
	WARN_ON(atomic_read(&event->mmap_count));
2528

2529
	rcu_assign_pointer(event->data, NULL);
2530
	call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2531 2532 2533 2534
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
2535
	struct perf_event *event = vma->vm_file->private_data;
2536

2537
	atomic_inc(&event->mmap_count);
2538 2539 2540 2541
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
2542
	struct perf_event *event = vma->vm_file->private_data;
2543

2544 2545
	WARN_ON_ONCE(event->ctx->parent_ctx);
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2546
		unsigned long size = perf_data_size(event->data);
2547 2548
		struct user_struct *user = current_user();

2549
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2550
		vma->vm_mm->locked_vm -= event->data->nr_locked;
2551
		perf_mmap_data_release(event);
2552
		mutex_unlock(&event->mmap_mutex);
2553
	}
2554 2555
}

2556
static const struct vm_operations_struct perf_mmap_vmops = {
2557 2558 2559 2560
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
2561 2562 2563 2564
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
2565
	struct perf_event *event = file->private_data;
2566
	unsigned long user_locked, user_lock_limit;
2567
	struct user_struct *user = current_user();
2568
	unsigned long locked, lock_limit;
2569
	struct perf_mmap_data *data;
2570 2571
	unsigned long vma_size;
	unsigned long nr_pages;
2572
	long user_extra, extra;
2573
	int ret = 0;
2574

2575
	if (!(vma->vm_flags & VM_SHARED))
2576
		return -EINVAL;
2577 2578 2579 2580

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

2581 2582 2583 2584 2585
	/*
	 * If we have data pages ensure they're a power-of-two number, so we
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
2586 2587
		return -EINVAL;

2588
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
2589 2590
		return -EINVAL;

2591 2592
	if (vma->vm_pgoff != 0)
		return -EINVAL;
2593

2594 2595 2596
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
	if (event->output) {
2597 2598 2599 2600
		ret = -EINVAL;
		goto unlock;
	}

2601 2602
	if (atomic_inc_not_zero(&event->mmap_count)) {
		if (nr_pages != event->data->nr_pages)
2603 2604 2605 2606
			ret = -EINVAL;
		goto unlock;
	}

2607
	user_extra = nr_pages + 1;
2608
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
2609 2610 2611 2612 2613 2614

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

2615
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2616

2617 2618 2619
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
2620

2621
	lock_limit = rlimit(RLIMIT_MEMLOCK);
2622
	lock_limit >>= PAGE_SHIFT;
2623
	locked = vma->vm_mm->locked_vm + extra;
2624

2625 2626
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
2627 2628 2629
		ret = -EPERM;
		goto unlock;
	}
2630

2631
	WARN_ON(event->data);
2632 2633 2634 2635

	data = perf_mmap_data_alloc(event, nr_pages);
	ret = -ENOMEM;
	if (!data)
2636 2637
		goto unlock;

2638 2639 2640
	ret = 0;
	perf_mmap_data_init(event, data);

2641
	atomic_set(&event->mmap_count, 1);
2642
	atomic_long_add(user_extra, &user->locked_vm);
2643
	vma->vm_mm->locked_vm += extra;
2644
	event->data->nr_locked = extra;
2645
	if (vma->vm_flags & VM_WRITE)
2646
		event->data->writable = 1;
2647

2648
unlock:
2649
	mutex_unlock(&event->mmap_mutex);
2650 2651 2652

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
2653 2654

	return ret;
2655 2656
}

P
Peter Zijlstra 已提交
2657 2658 2659
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
2660
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
2661 2662 2663
	int retval;

	mutex_lock(&inode->i_mutex);
2664
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
2665 2666 2667 2668 2669 2670 2671 2672
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
2673
static const struct file_operations perf_fops = {
2674
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
2675 2676 2677
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
2678 2679
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
2680
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
2681
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
2682 2683
};

2684
/*
2685
 * Perf event wakeup
2686 2687 2688 2689 2690
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

2691
void perf_event_wakeup(struct perf_event *event)
2692
{
2693
	wake_up_all(&event->waitq);
2694

2695 2696 2697
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
2698
	}
2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
}

/*
 * Pending wakeups
 *
 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
 *
 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
 * single linked list and use cmpxchg() to add entries lockless.
 */

2710
static void perf_pending_event(struct perf_pending_entry *entry)
2711
{
2712 2713
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
2714

2715 2716 2717
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
2718 2719
	}

2720 2721 2722
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
2723 2724 2725
	}
}

2726
#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2727

2728
static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2729 2730 2731
	PENDING_TAIL,
};

2732 2733
static void perf_pending_queue(struct perf_pending_entry *entry,
			       void (*func)(struct perf_pending_entry *))
2734
{
2735
	struct perf_pending_entry **head;
2736

2737
	if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2738 2739
		return;

2740 2741 2742
	entry->func = func;

	head = &get_cpu_var(perf_pending_head);
2743 2744

	do {
2745 2746
		entry->next = *head;
	} while (cmpxchg(head, entry->next, entry) != entry->next);
2747

2748
	set_perf_event_pending();
2749

2750
	put_cpu_var(perf_pending_head);
2751 2752 2753 2754
}

static int __perf_pending_run(void)
{
2755
	struct perf_pending_entry *list;
2756 2757
	int nr = 0;

2758
	list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2759
	while (list != PENDING_TAIL) {
2760 2761
		void (*func)(struct perf_pending_entry *);
		struct perf_pending_entry *entry = list;
2762 2763 2764

		list = list->next;

2765 2766
		func = entry->func;
		entry->next = NULL;
2767 2768 2769 2770 2771 2772 2773
		/*
		 * Ensure we observe the unqueue before we issue the wakeup,
		 * so that we won't be waiting forever.
		 * -- see perf_not_pending().
		 */
		smp_wmb();

2774
		func(entry);
2775 2776 2777 2778 2779 2780
		nr++;
	}

	return nr;
}

2781
static inline int perf_not_pending(struct perf_event *event)
2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795
{
	/*
	 * If we flush on whatever cpu we run, there is a chance we don't
	 * need to wait.
	 */
	get_cpu();
	__perf_pending_run();
	put_cpu();

	/*
	 * Ensure we see the proper queue state before going to sleep
	 * so that we do not miss the wakeup. -- see perf_pending_handle()
	 */
	smp_rmb();
2796
	return event->pending.next == NULL;
2797 2798
}

2799
static void perf_pending_sync(struct perf_event *event)
2800
{
2801
	wait_event(event->waitq, perf_not_pending(event));
2802 2803
}

2804
void perf_event_do_pending(void)
2805 2806 2807 2808
{
	__perf_pending_run();
}

2809 2810 2811 2812
/*
 * Callchain support -- arch specific
 */

2813
__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2814 2815 2816 2817
{
	return NULL;
}

2818 2819 2820 2821
__weak
void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip, int skip)
{
}
2822

2823

2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

2845 2846 2847
/*
 * Output
 */
2848 2849
static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
			      unsigned long offset, unsigned long head)
2850 2851 2852 2853 2854 2855
{
	unsigned long mask;

	if (!data->writable)
		return true;

2856
	mask = perf_data_size(data) - 1;
2857 2858 2859 2860 2861 2862 2863 2864 2865 2866

	offset = (offset - tail) & mask;
	head   = (head   - tail) & mask;

	if ((int)(head - offset) < 0)
		return false;

	return true;
}

2867
static void perf_output_wakeup(struct perf_output_handle *handle)
2868
{
2869 2870
	atomic_set(&handle->data->poll, POLL_IN);

2871
	if (handle->nmi) {
2872 2873 2874
		handle->event->pending_wakeup = 1;
		perf_pending_queue(&handle->event->pending,
				   perf_pending_event);
2875
	} else
2876
		perf_event_wakeup(handle->event);
2877 2878
}

2879 2880 2881
/*
 * Curious locking construct.
 *
2882 2883
 * We need to ensure a later event_id doesn't publish a head when a former
 * event_id isn't done writing. However since we need to deal with NMIs we
2884 2885 2886 2887 2888 2889
 * cannot fully serialize things.
 *
 * What we do is serialize between CPUs so we only have to deal with NMI
 * nesting on a single CPU.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
2890
 * event_id completes.
2891 2892 2893 2894
 */
static void perf_output_lock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
2895
	int cur, cpu = get_cpu();
2896 2897 2898

	handle->locked = 0;

2899 2900 2901 2902 2903 2904 2905 2906
	for (;;) {
		cur = atomic_cmpxchg(&data->lock, -1, cpu);
		if (cur == -1) {
			handle->locked = 1;
			break;
		}
		if (cur == cpu)
			break;
2907 2908

		cpu_relax();
2909
	}
2910 2911 2912 2913 2914
}

static void perf_output_unlock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
2915 2916
	unsigned long head;
	int cpu;
2917

2918
	data->done_head = data->head;
2919 2920 2921 2922 2923 2924 2925 2926 2927 2928

	if (!handle->locked)
		goto out;

again:
	/*
	 * The xchg implies a full barrier that ensures all writes are done
	 * before we publish the new head, matched by a rmb() in userspace when
	 * reading this position.
	 */
2929
	while ((head = atomic_long_xchg(&data->done_head, 0)))
2930 2931 2932
		data->user_page->data_head = head;

	/*
2933
	 * NMI can happen here, which means we can miss a done_head update.
2934 2935
	 */

2936
	cpu = atomic_xchg(&data->lock, -1);
2937 2938 2939 2940 2941
	WARN_ON_ONCE(cpu != smp_processor_id());

	/*
	 * Therefore we have to validate we did not indeed do so.
	 */
2942
	if (unlikely(atomic_long_read(&data->done_head))) {
2943 2944 2945
		/*
		 * Since we had it locked, we can lock it again.
		 */
2946
		while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2947 2948 2949 2950 2951
			cpu_relax();

		goto again;
	}

2952
	if (atomic_xchg(&data->wakeup, 0))
2953 2954
		perf_output_wakeup(handle);
out:
2955
	put_cpu();
2956 2957
}

2958 2959
void perf_output_copy(struct perf_output_handle *handle,
		      const void *buf, unsigned int len)
2960 2961
{
	unsigned int pages_mask;
2962
	unsigned long offset;
2963 2964 2965 2966 2967 2968 2969 2970
	unsigned int size;
	void **pages;

	offset		= handle->offset;
	pages_mask	= handle->data->nr_pages - 1;
	pages		= handle->data->data_pages;

	do {
2971 2972
		unsigned long page_offset;
		unsigned long page_size;
2973 2974 2975
		int nr;

		nr	    = (offset >> PAGE_SHIFT) & pages_mask;
2976 2977 2978
		page_size   = 1UL << (handle->data->data_order + PAGE_SHIFT);
		page_offset = offset & (page_size - 1);
		size	    = min_t(unsigned int, page_size - page_offset, len);
2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995

		memcpy(pages[nr] + page_offset, buf, size);

		len	    -= size;
		buf	    += size;
		offset	    += size;
	} while (len);

	handle->offset = offset;

	/*
	 * Check we didn't copy past our reservation window, taking the
	 * possible unsigned int wrap into account.
	 */
	WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
}

2996
int perf_output_begin(struct perf_output_handle *handle,
2997
		      struct perf_event *event, unsigned int size,
2998
		      int nmi, int sample)
2999
{
3000
	struct perf_event *output_event;
3001
	struct perf_mmap_data *data;
3002
	unsigned long tail, offset, head;
3003 3004 3005 3006 3007 3008
	int have_lost;
	struct {
		struct perf_event_header header;
		u64			 id;
		u64			 lost;
	} lost_event;
3009

3010
	rcu_read_lock();
3011
	/*
3012
	 * For inherited events we send all the output towards the parent.
3013
	 */
3014 3015
	if (event->parent)
		event = event->parent;
3016

3017 3018 3019
	output_event = rcu_dereference(event->output);
	if (output_event)
		event = output_event;
3020

3021
	data = rcu_dereference(event->data);
3022 3023 3024
	if (!data)
		goto out;

3025
	handle->data	= data;
3026
	handle->event	= event;
3027 3028
	handle->nmi	= nmi;
	handle->sample	= sample;
3029

3030
	if (!data->nr_pages)
3031
		goto fail;
3032

3033 3034 3035 3036
	have_lost = atomic_read(&data->lost);
	if (have_lost)
		size += sizeof(lost_event);

3037 3038
	perf_output_lock(handle);

3039
	do {
3040 3041 3042 3043 3044 3045 3046
		/*
		 * Userspace could choose to issue a mb() before updating the
		 * tail pointer. So that all reads will be completed before the
		 * write is issued.
		 */
		tail = ACCESS_ONCE(data->user_page->data_tail);
		smp_rmb();
3047
		offset = head = atomic_long_read(&data->head);
P
Peter Zijlstra 已提交
3048
		head += size;
3049
		if (unlikely(!perf_output_space(data, tail, offset, head)))
3050
			goto fail;
3051
	} while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
3052

3053
	handle->offset	= offset;
3054
	handle->head	= head;
3055

3056
	if (head - tail > data->watermark)
3057
		atomic_set(&data->wakeup, 1);
3058

3059
	if (have_lost) {
3060
		lost_event.header.type = PERF_RECORD_LOST;
3061 3062
		lost_event.header.misc = 0;
		lost_event.header.size = sizeof(lost_event);
3063
		lost_event.id          = event->id;
3064 3065 3066 3067 3068
		lost_event.lost        = atomic_xchg(&data->lost, 0);

		perf_output_put(handle, lost_event);
	}

3069
	return 0;
3070

3071
fail:
3072 3073
	atomic_inc(&data->lost);
	perf_output_unlock(handle);
3074 3075
out:
	rcu_read_unlock();
3076

3077 3078
	return -ENOSPC;
}
3079

3080
void perf_output_end(struct perf_output_handle *handle)
3081
{
3082
	struct perf_event *event = handle->event;
3083 3084
	struct perf_mmap_data *data = handle->data;

3085
	int wakeup_events = event->attr.wakeup_events;
P
Peter Zijlstra 已提交
3086

3087
	if (handle->sample && wakeup_events) {
3088
		int events = atomic_inc_return(&data->events);
P
Peter Zijlstra 已提交
3089
		if (events >= wakeup_events) {
3090
			atomic_sub(wakeup_events, &data->events);
3091
			atomic_set(&data->wakeup, 1);
P
Peter Zijlstra 已提交
3092
		}
3093 3094 3095
	}

	perf_output_unlock(handle);
3096
	rcu_read_unlock();
3097 3098
}

3099
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3100 3101
{
	/*
3102
	 * only top level events have the pid namespace they were created in
3103
	 */
3104 3105
	if (event->parent)
		event = event->parent;
3106

3107
	return task_tgid_nr_ns(p, event->ns);
3108 3109
}

3110
static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3111 3112
{
	/*
3113
	 * only top level events have the pid namespace they were created in
3114
	 */
3115 3116
	if (event->parent)
		event = event->parent;
3117

3118
	return task_pid_nr_ns(p, event->ns);
3119 3120
}

3121
static void perf_output_read_one(struct perf_output_handle *handle,
3122
				 struct perf_event *event)
3123
{
3124
	u64 read_format = event->attr.read_format;
3125 3126 3127
	u64 values[4];
	int n = 0;

3128
	values[n++] = atomic64_read(&event->count);
3129
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3130 3131
		values[n++] = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
3132 3133
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3134 3135
		values[n++] = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
3136 3137
	}
	if (read_format & PERF_FORMAT_ID)
3138
		values[n++] = primary_event_id(event);
3139 3140 3141 3142 3143

	perf_output_copy(handle, values, n * sizeof(u64));
}

/*
3144
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3145 3146
 */
static void perf_output_read_group(struct perf_output_handle *handle,
3147
			    struct perf_event *event)
3148
{
3149 3150
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = leader->total_time_enabled;

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = leader->total_time_running;

3162
	if (leader != event)
3163 3164 3165 3166
		leader->pmu->read(leader);

	values[n++] = atomic64_read(&leader->count);
	if (read_format & PERF_FORMAT_ID)
3167
		values[n++] = primary_event_id(leader);
3168 3169 3170

	perf_output_copy(handle, values, n * sizeof(u64));

3171
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3172 3173
		n = 0;

3174
		if (sub != event)
3175 3176 3177 3178
			sub->pmu->read(sub);

		values[n++] = atomic64_read(&sub->count);
		if (read_format & PERF_FORMAT_ID)
3179
			values[n++] = primary_event_id(sub);
3180 3181 3182 3183 3184 3185

		perf_output_copy(handle, values, n * sizeof(u64));
	}
}

static void perf_output_read(struct perf_output_handle *handle,
3186
			     struct perf_event *event)
3187
{
3188 3189
	if (event->attr.read_format & PERF_FORMAT_GROUP)
		perf_output_read_group(handle, event);
3190
	else
3191
		perf_output_read_one(handle, event);
3192 3193
}

3194 3195 3196
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
3197
			struct perf_event *event)
3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
3228
		perf_output_read(handle, event);
3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

			perf_output_copy(handle, data->callchain, size);
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
			perf_output_copy(handle, data->raw->data,
					 data->raw->size);
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
3266
			 struct perf_event *event,
3267
			 struct pt_regs *regs)
3268
{
3269
	u64 sample_type = event->attr.sample_type;
3270

3271
	data->type = sample_type;
3272

3273
	header->type = PERF_RECORD_SAMPLE;
3274 3275 3276 3277
	header->size = sizeof(*header);

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
3278

3279
	if (sample_type & PERF_SAMPLE_IP) {
3280 3281 3282
		data->ip = perf_instruction_pointer(regs);

		header->size += sizeof(data->ip);
3283
	}
3284

3285
	if (sample_type & PERF_SAMPLE_TID) {
3286
		/* namespace issues */
3287 3288
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
3289

3290
		header->size += sizeof(data->tid_entry);
3291 3292
	}

3293
	if (sample_type & PERF_SAMPLE_TIME) {
P
Peter Zijlstra 已提交
3294
		data->time = perf_clock();
3295

3296
		header->size += sizeof(data->time);
3297 3298
	}

3299
	if (sample_type & PERF_SAMPLE_ADDR)
3300
		header->size += sizeof(data->addr);
3301

3302
	if (sample_type & PERF_SAMPLE_ID) {
3303
		data->id = primary_event_id(event);
3304

3305 3306 3307 3308
		header->size += sizeof(data->id);
	}

	if (sample_type & PERF_SAMPLE_STREAM_ID) {
3309
		data->stream_id = event->id;
3310 3311 3312

		header->size += sizeof(data->stream_id);
	}
3313

3314
	if (sample_type & PERF_SAMPLE_CPU) {
3315 3316
		data->cpu_entry.cpu		= raw_smp_processor_id();
		data->cpu_entry.reserved	= 0;
3317

3318
		header->size += sizeof(data->cpu_entry);
3319 3320
	}

3321
	if (sample_type & PERF_SAMPLE_PERIOD)
3322
		header->size += sizeof(data->period);
3323

3324
	if (sample_type & PERF_SAMPLE_READ)
3325
		header->size += perf_event_read_size(event);
3326

3327
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3328
		int size = 1;
3329

3330 3331 3332 3333 3334 3335
		data->callchain = perf_callchain(regs);

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
3336 3337
	}

3338
	if (sample_type & PERF_SAMPLE_RAW) {
3339 3340 3341 3342 3343 3344 3345 3346
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
3347
		header->size += size;
3348
	}
3349
}
3350

3351
static void perf_event_output(struct perf_event *event, int nmi,
3352 3353 3354 3355 3356
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
3357

3358
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
3359

3360
	if (perf_output_begin(&handle, event, header.size, nmi, 1))
3361
		return;
3362

3363
	perf_output_sample(&handle, &header, data, event);
3364

3365
	perf_output_end(&handle);
3366 3367
}

3368
/*
3369
 * read event_id
3370 3371 3372 3373 3374 3375 3376 3377 3378 3379
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
3380
perf_event_read_event(struct perf_event *event,
3381 3382 3383
			struct task_struct *task)
{
	struct perf_output_handle handle;
3384
	struct perf_read_event read_event = {
3385
		.header = {
3386
			.type = PERF_RECORD_READ,
3387
			.misc = 0,
3388
			.size = sizeof(read_event) + perf_event_read_size(event),
3389
		},
3390 3391
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
3392
	};
3393
	int ret;
3394

3395
	ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3396 3397 3398
	if (ret)
		return;

3399
	perf_output_put(&handle, read_event);
3400
	perf_output_read(&handle, event);
3401

3402 3403 3404
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
3405
/*
P
Peter Zijlstra 已提交
3406 3407 3408
 * task tracking -- fork/exit
 *
 * enabled by: attr.comm | attr.mmap | attr.task
P
Peter Zijlstra 已提交
3409 3410
 */

P
Peter Zijlstra 已提交
3411
struct perf_task_event {
3412
	struct task_struct		*task;
3413
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
3414 3415 3416 3417 3418 3419

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
3420 3421
		u32				tid;
		u32				ptid;
3422
		u64				time;
3423
	} event_id;
P
Peter Zijlstra 已提交
3424 3425
};

3426
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
3427
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3428 3429
{
	struct perf_output_handle handle;
P
Peter Zijlstra 已提交
3430
	struct task_struct *task = task_event->task;
3431 3432 3433 3434 3435 3436 3437 3438
	unsigned long flags;
	int size, ret;

	/*
	 * If this CPU attempts to acquire an rq lock held by a CPU spinning
	 * in perf_output_lock() from interrupt context, it's game over.
	 */
	local_irq_save(flags);
3439

3440 3441
	size  = task_event->event_id.header.size;
	ret = perf_output_begin(&handle, event, size, 0, 0);
P
Peter Zijlstra 已提交
3442

3443 3444
	if (ret) {
		local_irq_restore(flags);
P
Peter Zijlstra 已提交
3445
		return;
3446
	}
P
Peter Zijlstra 已提交
3447

3448 3449
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
3450

3451 3452
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
3453

3454
	perf_output_put(&handle, task_event->event_id);
3455

P
Peter Zijlstra 已提交
3456
	perf_output_end(&handle);
3457
	local_irq_restore(flags);
P
Peter Zijlstra 已提交
3458 3459
}

3460
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
3461
{
P
Peter Zijlstra 已提交
3462
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3463 3464
		return 0;

3465 3466 3467
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3468
	if (event->attr.comm || event->attr.mmap || event->attr.task)
P
Peter Zijlstra 已提交
3469 3470 3471 3472 3473
		return 1;

	return 0;
}

3474
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
3475
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3476
{
3477
	struct perf_event *event;
P
Peter Zijlstra 已提交
3478

3479 3480 3481
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
3482 3483 3484
	}
}

3485
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3486 3487
{
	struct perf_cpu_context *cpuctx;
3488
	struct perf_event_context *ctx = task_event->task_ctx;
P
Peter Zijlstra 已提交
3489

3490
	rcu_read_lock();
P
Peter Zijlstra 已提交
3491
	cpuctx = &get_cpu_var(perf_cpu_context);
3492
	perf_event_task_ctx(&cpuctx->ctx, task_event);
3493
	if (!ctx)
P
Peter Zijlstra 已提交
3494
		ctx = rcu_dereference(current->perf_event_ctxp);
P
Peter Zijlstra 已提交
3495
	if (ctx)
3496
		perf_event_task_ctx(ctx, task_event);
3497
	put_cpu_var(perf_cpu_context);
P
Peter Zijlstra 已提交
3498 3499 3500
	rcu_read_unlock();
}

3501 3502
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
3503
			      int new)
P
Peter Zijlstra 已提交
3504
{
P
Peter Zijlstra 已提交
3505
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
3506

3507 3508 3509
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
3510 3511
		return;

P
Peter Zijlstra 已提交
3512
	task_event = (struct perf_task_event){
3513 3514
		.task	  = task,
		.task_ctx = task_ctx,
3515
		.event_id    = {
P
Peter Zijlstra 已提交
3516
			.header = {
3517
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3518
				.misc = 0,
3519
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
3520
			},
3521 3522
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
3523 3524
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
3525
			.time = perf_clock(),
P
Peter Zijlstra 已提交
3526 3527 3528
		},
	};

3529
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
3530 3531
}

3532
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
3533
{
3534
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
3535 3536
}

3537 3538 3539 3540 3541
/*
 * comm tracking
 */

struct perf_comm_event {
3542 3543
	struct task_struct	*task;
	char			*comm;
3544 3545 3546 3547 3548 3549 3550
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
3551
	} event_id;
3552 3553
};

3554
static void perf_event_comm_output(struct perf_event *event,
3555 3556 3557
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
3558 3559
	int size = comm_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3560 3561 3562 3563

	if (ret)
		return;

3564 3565
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3566

3567
	perf_output_put(&handle, comm_event->event_id);
3568 3569 3570 3571 3572
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
	perf_output_end(&handle);
}

3573
static int perf_event_comm_match(struct perf_event *event)
3574
{
P
Peter Zijlstra 已提交
3575
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3576 3577
		return 0;

3578 3579 3580
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3581
	if (event->attr.comm)
3582 3583 3584 3585 3586
		return 1;

	return 0;
}

3587
static void perf_event_comm_ctx(struct perf_event_context *ctx,
3588 3589
				  struct perf_comm_event *comm_event)
{
3590
	struct perf_event *event;
3591

3592 3593 3594
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
3595 3596 3597
	}
}

3598
static void perf_event_comm_event(struct perf_comm_event *comm_event)
3599 3600
{
	struct perf_cpu_context *cpuctx;
3601
	struct perf_event_context *ctx;
3602
	unsigned int size;
3603
	char comm[TASK_COMM_LEN];
3604

3605
	memset(comm, 0, sizeof(comm));
3606
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
3607
	size = ALIGN(strlen(comm)+1, sizeof(u64));
3608 3609 3610 3611

	comm_event->comm = comm;
	comm_event->comm_size = size;

3612
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3613

3614
	rcu_read_lock();
3615
	cpuctx = &get_cpu_var(perf_cpu_context);
3616 3617
	perf_event_comm_ctx(&cpuctx->ctx, comm_event);
	ctx = rcu_dereference(current->perf_event_ctxp);
3618
	if (ctx)
3619
		perf_event_comm_ctx(ctx, comm_event);
3620
	put_cpu_var(perf_cpu_context);
3621
	rcu_read_unlock();
3622 3623
}

3624
void perf_event_comm(struct task_struct *task)
3625
{
3626 3627
	struct perf_comm_event comm_event;

3628 3629
	if (task->perf_event_ctxp)
		perf_event_enable_on_exec(task);
3630

3631
	if (!atomic_read(&nr_comm_events))
3632
		return;
3633

3634
	comm_event = (struct perf_comm_event){
3635
		.task	= task,
3636 3637
		/* .comm      */
		/* .comm_size */
3638
		.event_id  = {
3639
			.header = {
3640
				.type = PERF_RECORD_COMM,
3641 3642 3643 3644 3645
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
3646 3647 3648
		},
	};

3649
	perf_event_comm_event(&comm_event);
3650 3651
}

3652 3653 3654 3655 3656
/*
 * mmap tracking
 */

struct perf_mmap_event {
3657 3658 3659 3660
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
3661 3662 3663 3664 3665 3666 3667 3668 3669

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
3670
	} event_id;
3671 3672
};

3673
static void perf_event_mmap_output(struct perf_event *event,
3674 3675 3676
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
3677 3678
	int size = mmap_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3679 3680 3681 3682

	if (ret)
		return;

3683 3684
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
3685

3686
	perf_output_put(&handle, mmap_event->event_id);
3687 3688
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
3689
	perf_output_end(&handle);
3690 3691
}

3692
static int perf_event_mmap_match(struct perf_event *event,
3693 3694
				   struct perf_mmap_event *mmap_event)
{
P
Peter Zijlstra 已提交
3695
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3696 3697
		return 0;

3698 3699 3700
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3701
	if (event->attr.mmap)
3702 3703 3704 3705 3706
		return 1;

	return 0;
}

3707
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3708 3709
				  struct perf_mmap_event *mmap_event)
{
3710
	struct perf_event *event;
3711

3712 3713 3714
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_mmap_match(event, mmap_event))
			perf_event_mmap_output(event, mmap_event);
3715 3716 3717
	}
}

3718
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3719 3720
{
	struct perf_cpu_context *cpuctx;
3721
	struct perf_event_context *ctx;
3722 3723
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
3724 3725 3726
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
3727
	const char *name;
3728

3729 3730
	memset(tmp, 0, sizeof(tmp));

3731
	if (file) {
3732 3733 3734 3735 3736 3737
		/*
		 * d_path works from the end of the buffer backwards, so we
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3738 3739 3740 3741
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
3742
		name = d_path(&file->f_path, buf, PATH_MAX);
3743 3744 3745 3746 3747
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
3748 3749 3750
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
3751
			goto got_name;
3752
		}
3753 3754 3755 3756 3757 3758

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
		}

3759 3760 3761 3762 3763
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
3764
	size = ALIGN(strlen(name)+1, sizeof(u64));
3765 3766 3767 3768

	mmap_event->file_name = name;
	mmap_event->file_size = size;

3769
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3770

3771
	rcu_read_lock();
3772
	cpuctx = &get_cpu_var(perf_cpu_context);
3773 3774
	perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
	ctx = rcu_dereference(current->perf_event_ctxp);
3775
	if (ctx)
3776
		perf_event_mmap_ctx(ctx, mmap_event);
3777
	put_cpu_var(perf_cpu_context);
3778 3779
	rcu_read_unlock();

3780 3781 3782
	kfree(buf);
}

3783
void __perf_event_mmap(struct vm_area_struct *vma)
3784
{
3785 3786
	struct perf_mmap_event mmap_event;

3787
	if (!atomic_read(&nr_mmap_events))
3788 3789 3790
		return;

	mmap_event = (struct perf_mmap_event){
3791
		.vma	= vma,
3792 3793
		/* .file_name */
		/* .file_size */
3794
		.event_id  = {
3795
			.header = {
3796
				.type = PERF_RECORD_MMAP,
3797
				.misc = PERF_RECORD_MISC_USER,
3798 3799 3800 3801
				/* .size */
			},
			/* .pid */
			/* .tid */
3802 3803
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
3804
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
3805 3806 3807
		},
	};

3808
	perf_event_mmap_event(&mmap_event);
3809 3810
}

3811 3812 3813 3814
/*
 * IRQ throttle logging
 */

3815
static void perf_log_throttle(struct perf_event *event, int enable)
3816 3817 3818 3819 3820 3821 3822
{
	struct perf_output_handle handle;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
3823
		u64				id;
3824
		u64				stream_id;
3825 3826
	} throttle_event = {
		.header = {
3827
			.type = PERF_RECORD_THROTTLE,
3828 3829 3830
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
3831
		.time		= perf_clock(),
3832 3833
		.id		= primary_event_id(event),
		.stream_id	= event->id,
3834 3835
	};

3836
	if (enable)
3837
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3838

3839
	ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3840 3841 3842 3843 3844 3845 3846
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
	perf_output_end(&handle);
}

3847
/*
3848
 * Generic event overflow handling, sampling.
3849 3850
 */

3851
static int __perf_event_overflow(struct perf_event *event, int nmi,
3852 3853
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
3854
{
3855 3856
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
3857 3858
	int ret = 0;

3859
	throttle = (throttle && event->pmu->unthrottle != NULL);
3860

3861
	if (!throttle) {
3862
		hwc->interrupts++;
3863
	} else {
3864 3865
		if (hwc->interrupts != MAX_INTERRUPTS) {
			hwc->interrupts++;
3866
			if (HZ * hwc->interrupts >
3867
					(u64)sysctl_perf_event_sample_rate) {
3868
				hwc->interrupts = MAX_INTERRUPTS;
3869
				perf_log_throttle(event, 0);
3870 3871 3872 3873
				ret = 1;
			}
		} else {
			/*
3874
			 * Keep re-disabling events even though on the previous
3875
			 * pass we disabled it - just in case we raced with a
3876
			 * sched-in and the event got enabled again:
3877
			 */
3878 3879 3880
			ret = 1;
		}
	}
3881

3882
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
3883
		u64 now = perf_clock();
3884
		s64 delta = now - hwc->freq_time_stamp;
3885

3886
		hwc->freq_time_stamp = now;
3887

3888 3889
		if (delta > 0 && delta < 2*TICK_NSEC)
			perf_adjust_period(event, delta, hwc->last_period);
3890 3891
	}

3892 3893
	/*
	 * XXX event_limit might not quite work as expected on inherited
3894
	 * events
3895 3896
	 */

3897 3898
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
3899
		ret = 1;
3900
		event->pending_kill = POLL_HUP;
3901
		if (nmi) {
3902 3903 3904
			event->pending_disable = 1;
			perf_pending_queue(&event->pending,
					   perf_pending_event);
3905
		} else
3906
			perf_event_disable(event);
3907 3908
	}

3909 3910 3911 3912 3913
	if (event->overflow_handler)
		event->overflow_handler(event, nmi, data, regs);
	else
		perf_event_output(event, nmi, data, regs);

3914
	return ret;
3915 3916
}

3917
int perf_event_overflow(struct perf_event *event, int nmi,
3918 3919
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
3920
{
3921
	return __perf_event_overflow(event, nmi, 1, data, regs);
3922 3923
}

3924
/*
3925
 * Generic software event infrastructure
3926 3927
 */

3928
/*
3929 3930
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
3931 3932 3933 3934
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

3935
static u64 perf_swevent_set_period(struct perf_event *event)
3936
{
3937
	struct hw_perf_event *hwc = &event->hw;
3938 3939 3940 3941 3942
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
3943 3944

again:
3945 3946 3947
	old = val = atomic64_read(&hwc->period_left);
	if (val < 0)
		return 0;
3948

3949 3950 3951 3952 3953
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
	if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
		goto again;
3954

3955
	return nr;
3956 3957
}

3958
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
3959 3960
				    int nmi, struct perf_sample_data *data,
				    struct pt_regs *regs)
3961
{
3962
	struct hw_perf_event *hwc = &event->hw;
3963
	int throttle = 0;
3964

3965
	data->period = event->hw.last_period;
3966 3967
	if (!overflow)
		overflow = perf_swevent_set_period(event);
3968

3969 3970
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
3971

3972
	for (; overflow; overflow--) {
3973
		if (__perf_event_overflow(event, nmi, throttle,
3974
					    data, regs)) {
3975 3976 3977 3978 3979 3980
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
3981
		throttle = 1;
3982
	}
3983 3984
}

3985
static void perf_swevent_unthrottle(struct perf_event *event)
3986 3987
{
	/*
3988
	 * Nothing to do, we already reset hwc->interrupts.
3989
	 */
3990
}
3991

3992
static void perf_swevent_add(struct perf_event *event, u64 nr,
3993 3994
			       int nmi, struct perf_sample_data *data,
			       struct pt_regs *regs)
3995
{
3996
	struct hw_perf_event *hwc = &event->hw;
3997

3998
	atomic64_add(nr, &event->count);
3999

4000 4001 4002
	if (!regs)
		return;

4003 4004
	if (!hwc->sample_period)
		return;
4005

4006 4007 4008 4009
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
		return perf_swevent_overflow(event, 1, nmi, data, regs);

	if (atomic64_add_negative(nr, &hwc->period_left))
4010
		return;
4011

4012
	perf_swevent_overflow(event, 0, nmi, data, regs);
4013 4014
}

L
Li Zefan 已提交
4015 4016 4017
static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data);

4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

4032
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
4033
				enum perf_type_id type,
L
Li Zefan 已提交
4034 4035 4036
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
4037
{
4038
	if (event->attr.type != type)
4039
		return 0;
4040

4041
	if (event->attr.config != event_id)
4042 4043
		return 0;

4044 4045
	if (perf_exclude_event(event, regs))
		return 0;
4046

L
Li Zefan 已提交
4047 4048 4049 4050
	if (event->attr.type == PERF_TYPE_TRACEPOINT &&
	    !perf_tp_event_match(event, data))
		return 0;

4051 4052 4053
	return 1;
}

4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

static struct hlist_head *
find_swevent_head(struct perf_cpu_context *ctx, u64 type, u32 event_id)
{
	u64 hash;
	struct swevent_hlist *hlist;

	hash = swevent_hash(type, event_id);

	hlist = rcu_dereference(ctx->swevent_hlist);
	if (!hlist)
		return NULL;

	return &hlist->heads[hash];
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
				    u64 nr, int nmi,
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
4080
{
4081
	struct perf_cpu_context *cpuctx;
4082
	struct perf_event *event;
4083 4084
	struct hlist_node *node;
	struct hlist_head *head;
4085

4086 4087 4088 4089 4090 4091 4092 4093 4094 4095
	cpuctx = &__get_cpu_var(perf_cpu_context);

	rcu_read_lock();

	head = find_swevent_head(cpuctx, type, event_id);

	if (!head)
		goto end;

	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
L
Li Zefan 已提交
4096
		if (perf_swevent_match(event, type, event_id, data, regs))
4097
			perf_swevent_add(event, nr, nmi, data, regs);
4098
	}
4099 4100
end:
	rcu_read_unlock();
4101 4102
}

4103
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
4104
{
4105 4106
	struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
	int rctx;
4107

P
Peter Zijlstra 已提交
4108
	if (in_nmi())
4109
		rctx = 3;
4110
	else if (in_irq())
4111
		rctx = 2;
4112
	else if (in_softirq())
4113
		rctx = 1;
4114
	else
4115
		rctx = 0;
P
Peter Zijlstra 已提交
4116

4117 4118
	if (cpuctx->recursion[rctx]) {
		put_cpu_var(perf_cpu_context);
4119
		return -1;
4120
	}
P
Peter Zijlstra 已提交
4121

4122 4123
	cpuctx->recursion[rctx]++;
	barrier();
P
Peter Zijlstra 已提交
4124

4125
	return rctx;
P
Peter Zijlstra 已提交
4126
}
I
Ingo Molnar 已提交
4127
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
4128

4129
void perf_swevent_put_recursion_context(int rctx)
4130
{
4131 4132
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	barrier();
4133
	cpuctx->recursion[rctx]--;
4134
	put_cpu_var(perf_cpu_context);
4135
}
I
Ingo Molnar 已提交
4136
EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
P
Peter Zijlstra 已提交
4137

4138

4139
void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4140
			    struct pt_regs *regs, u64 addr)
4141
{
4142
	struct perf_sample_data data;
4143 4144 4145 4146 4147
	int rctx;

	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
4148

4149
	perf_sample_data_init(&data, addr);
4150

4151
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4152 4153

	perf_swevent_put_recursion_context(rctx);
4154 4155
}

4156
static void perf_swevent_read(struct perf_event *event)
4157 4158 4159
{
}

4160
static int perf_swevent_enable(struct perf_event *event)
4161
{
4162
	struct hw_perf_event *hwc = &event->hw;
4163 4164 4165 4166
	struct perf_cpu_context *cpuctx;
	struct hlist_head *head;

	cpuctx = &__get_cpu_var(perf_cpu_context);
4167 4168 4169

	if (hwc->sample_period) {
		hwc->last_period = hwc->sample_period;
4170
		perf_swevent_set_period(event);
4171
	}
4172 4173 4174 4175 4176 4177 4178

	head = find_swevent_head(cpuctx, event->attr.type, event->attr.config);
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

4179 4180 4181
	return 0;
}

4182
static void perf_swevent_disable(struct perf_event *event)
4183
{
4184
	hlist_del_rcu(&event->hlist_entry);
4185 4186
}

4187
static const struct pmu perf_ops_generic = {
4188 4189 4190 4191
	.enable		= perf_swevent_enable,
	.disable	= perf_swevent_disable,
	.read		= perf_swevent_read,
	.unthrottle	= perf_swevent_unthrottle,
4192 4193
};

4194
/*
4195
 * hrtimer based swevent callback
4196 4197
 */

4198
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4199 4200 4201
{
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
4202
	struct pt_regs *regs;
4203
	struct perf_event *event;
4204 4205
	u64 period;

4206
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4207
	event->pmu->read(event);
4208

4209
	perf_sample_data_init(&data, 0);
4210
	data.period = event->hw.last_period;
4211
	regs = get_irq_regs();
4212

4213
	if (regs && !perf_exclude_event(event, regs)) {
4214 4215 4216
		if (!(event->attr.exclude_idle && current->pid == 0))
			if (perf_event_overflow(event, 0, &data, regs))
				ret = HRTIMER_NORESTART;
4217 4218
	}

4219
	period = max_t(u64, 10000, event->hw.sample_period);
4220 4221 4222 4223 4224
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));

	return ret;
}

4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260
static void perf_swevent_start_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;
	if (hwc->sample_period) {
		u64 period;

		if (hwc->remaining) {
			if (hwc->remaining < 0)
				period = 10000;
			else
				period = hwc->remaining;
			hwc->remaining = 0;
		} else {
			period = max_t(u64, 10000, hwc->sample_period);
		}
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(period), 0,
				HRTIMER_MODE_REL, 0);
	}
}

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (hwc->sample_period) {
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
		hwc->remaining = ktime_to_ns(remaining);

		hrtimer_cancel(&hwc->hrtimer);
	}
}

4261
/*
4262
 * Software event: cpu wall time clock
4263 4264
 */

4265
static void cpu_clock_perf_event_update(struct perf_event *event)
4266 4267 4268 4269 4270 4271
{
	int cpu = raw_smp_processor_id();
	s64 prev;
	u64 now;

	now = cpu_clock(cpu);
4272
	prev = atomic64_xchg(&event->hw.prev_count, now);
4273
	atomic64_add(now - prev, &event->count);
4274 4275
}

4276
static int cpu_clock_perf_event_enable(struct perf_event *event)
4277
{
4278
	struct hw_perf_event *hwc = &event->hw;
4279 4280 4281
	int cpu = raw_smp_processor_id();

	atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4282
	perf_swevent_start_hrtimer(event);
4283 4284 4285 4286

	return 0;
}

4287
static void cpu_clock_perf_event_disable(struct perf_event *event)
4288
{
4289
	perf_swevent_cancel_hrtimer(event);
4290
	cpu_clock_perf_event_update(event);
4291 4292
}

4293
static void cpu_clock_perf_event_read(struct perf_event *event)
4294
{
4295
	cpu_clock_perf_event_update(event);
4296 4297
}

4298
static const struct pmu perf_ops_cpu_clock = {
4299 4300 4301
	.enable		= cpu_clock_perf_event_enable,
	.disable	= cpu_clock_perf_event_disable,
	.read		= cpu_clock_perf_event_read,
4302 4303
};

4304
/*
4305
 * Software event: task time clock
4306 4307
 */

4308
static void task_clock_perf_event_update(struct perf_event *event, u64 now)
I
Ingo Molnar 已提交
4309
{
4310
	u64 prev;
I
Ingo Molnar 已提交
4311 4312
	s64 delta;

4313
	prev = atomic64_xchg(&event->hw.prev_count, now);
I
Ingo Molnar 已提交
4314
	delta = now - prev;
4315
	atomic64_add(delta, &event->count);
4316 4317
}

4318
static int task_clock_perf_event_enable(struct perf_event *event)
I
Ingo Molnar 已提交
4319
{
4320
	struct hw_perf_event *hwc = &event->hw;
4321 4322
	u64 now;

4323
	now = event->ctx->time;
4324

4325
	atomic64_set(&hwc->prev_count, now);
4326 4327

	perf_swevent_start_hrtimer(event);
4328 4329

	return 0;
I
Ingo Molnar 已提交
4330 4331
}

4332
static void task_clock_perf_event_disable(struct perf_event *event)
4333
{
4334
	perf_swevent_cancel_hrtimer(event);
4335
	task_clock_perf_event_update(event, event->ctx->time);
4336

4337
}
I
Ingo Molnar 已提交
4338

4339
static void task_clock_perf_event_read(struct perf_event *event)
4340
{
4341 4342 4343
	u64 time;

	if (!in_nmi()) {
4344 4345
		update_context_time(event->ctx);
		time = event->ctx->time;
4346 4347
	} else {
		u64 now = perf_clock();
4348 4349
		u64 delta = now - event->ctx->timestamp;
		time = event->ctx->time + delta;
4350 4351
	}

4352
	task_clock_perf_event_update(event, time);
4353 4354
}

4355
static const struct pmu perf_ops_task_clock = {
4356 4357 4358
	.enable		= task_clock_perf_event_enable,
	.disable	= task_clock_perf_event_disable,
	.read		= task_clock_perf_event_read,
4359 4360
};

4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459
static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
{
	struct swevent_hlist *hlist;

	hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
	kfree(hlist);
}

static void swevent_hlist_release(struct perf_cpu_context *cpuctx)
{
	struct swevent_hlist *hlist;

	if (!cpuctx->swevent_hlist)
		return;

	hlist = cpuctx->swevent_hlist;
	rcu_assign_pointer(cpuctx->swevent_hlist, NULL);
	call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);

	mutex_lock(&cpuctx->hlist_mutex);

	if (!--cpuctx->hlist_refcount)
		swevent_hlist_release(cpuctx);

	mutex_unlock(&cpuctx->hlist_mutex);
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	if (event->cpu != -1) {
		swevent_hlist_put_cpu(event, event->cpu);
		return;
	}

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	int err = 0;

	mutex_lock(&cpuctx->hlist_mutex);

	if (!cpuctx->swevent_hlist && cpu_online(cpu)) {
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
		rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
	}
	cpuctx->hlist_refcount++;
 exit:
	mutex_unlock(&cpuctx->hlist_mutex);

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	if (event->cpu != -1)
		return swevent_hlist_get_cpu(event, event->cpu);

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
 fail:
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489
#ifdef CONFIG_EVENT_TRACING

void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
		   int entry_size, struct pt_regs *regs)
{
	struct perf_sample_data data;
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

	perf_sample_data_init(&data, addr);
	data.raw = &raw;

	/* Trace events already protected against recursion */
	do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
			 &data, regs);
}
EXPORT_SYMBOL_GPL(perf_tp_event);

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

4490
static void tp_perf_event_destroy(struct perf_event *event)
4491
{
4492
	perf_trace_disable(event->attr.config);
4493
	swevent_hlist_put(event);
4494 4495
}

4496
static const struct pmu *tp_perf_event_init(struct perf_event *event)
4497
{
4498 4499
	int err;

4500 4501 4502 4503
	/*
	 * Raw tracepoint data is a severe data leak, only allow root to
	 * have these.
	 */
4504
	if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4505
			perf_paranoid_tracepoint_raw() &&
4506 4507 4508
			!capable(CAP_SYS_ADMIN))
		return ERR_PTR(-EPERM);

4509
	if (perf_trace_enable(event->attr.config))
4510 4511
		return NULL;

4512
	event->destroy = tp_perf_event_destroy;
4513 4514 4515 4516 4517
	err = swevent_hlist_get(event);
	if (err) {
		perf_trace_disable(event->attr.config);
		return ERR_PTR(err);
	}
4518 4519 4520

	return &perf_ops_generic;
}
L
Li Zefan 已提交
4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

4545
#else
L
Li Zefan 已提交
4546 4547 4548 4549 4550 4551 4552

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	return 1;
}

4553
static const struct pmu *tp_perf_event_init(struct perf_event *event)
4554 4555 4556
{
	return NULL;
}
L
Li Zefan 已提交
4557 4558 4559 4560 4561 4562 4563 4564 4565 4566

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

4567
#endif /* CONFIG_EVENT_TRACING */
4568

4569 4570 4571 4572 4573 4574 4575 4576 4577
#ifdef CONFIG_HAVE_HW_BREAKPOINT
static void bp_perf_event_destroy(struct perf_event *event)
{
	release_bp_slot(event);
}

static const struct pmu *bp_perf_event_init(struct perf_event *bp)
{
	int err;
4578 4579

	err = register_perf_hw_breakpoint(bp);
4580 4581 4582 4583 4584 4585 4586 4587
	if (err)
		return ERR_PTR(err);

	bp->destroy = bp_perf_event_destroy;

	return &perf_ops_bp;
}

4588
void perf_bp_event(struct perf_event *bp, void *data)
4589
{
4590 4591 4592
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

4593
	perf_sample_data_init(&sample, bp->attr.bp_addr);
4594 4595 4596

	if (!perf_exclude_event(bp, regs))
		perf_swevent_add(bp, 1, 1, &sample, regs);
4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608
}
#else
static const struct pmu *bp_perf_event_init(struct perf_event *bp)
{
	return NULL;
}

void perf_bp_event(struct perf_event *bp, void *regs)
{
}
#endif

4609
atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4610

4611
static void sw_perf_event_destroy(struct perf_event *event)
4612
{
4613
	u64 event_id = event->attr.config;
4614

4615
	WARN_ON(event->parent);
4616

4617
	atomic_dec(&perf_swevent_enabled[event_id]);
4618
	swevent_hlist_put(event);
4619 4620
}

4621
static const struct pmu *sw_perf_event_init(struct perf_event *event)
4622
{
4623
	const struct pmu *pmu = NULL;
4624
	u64 event_id = event->attr.config;
4625

4626
	/*
4627
	 * Software events (currently) can't in general distinguish
4628 4629 4630 4631 4632
	 * between user, kernel and hypervisor events.
	 * However, context switches and cpu migrations are considered
	 * to be kernel events, and page faults are never hypervisor
	 * events.
	 */
4633
	switch (event_id) {
4634
	case PERF_COUNT_SW_CPU_CLOCK:
4635
		pmu = &perf_ops_cpu_clock;
4636

4637
		break;
4638
	case PERF_COUNT_SW_TASK_CLOCK:
4639
		/*
4640 4641
		 * If the user instantiates this as a per-cpu event,
		 * use the cpu_clock event instead.
4642
		 */
4643
		if (event->ctx->task)
4644
			pmu = &perf_ops_task_clock;
4645
		else
4646
			pmu = &perf_ops_cpu_clock;
4647

4648
		break;
4649 4650 4651 4652 4653
	case PERF_COUNT_SW_PAGE_FAULTS:
	case PERF_COUNT_SW_PAGE_FAULTS_MIN:
	case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
	case PERF_COUNT_SW_CONTEXT_SWITCHES:
	case PERF_COUNT_SW_CPU_MIGRATIONS:
4654 4655
	case PERF_COUNT_SW_ALIGNMENT_FAULTS:
	case PERF_COUNT_SW_EMULATION_FAULTS:
4656
		if (!event->parent) {
4657 4658 4659 4660 4661 4662
			int err;

			err = swevent_hlist_get(event);
			if (err)
				return ERR_PTR(err);

4663 4664
			atomic_inc(&perf_swevent_enabled[event_id]);
			event->destroy = sw_perf_event_destroy;
4665
		}
4666
		pmu = &perf_ops_generic;
4667
		break;
4668
	}
4669

4670
	return pmu;
4671 4672
}

T
Thomas Gleixner 已提交
4673
/*
4674
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
4675
 */
4676 4677
static struct perf_event *
perf_event_alloc(struct perf_event_attr *attr,
4678
		   int cpu,
4679 4680 4681
		   struct perf_event_context *ctx,
		   struct perf_event *group_leader,
		   struct perf_event *parent_event,
4682
		   perf_overflow_handler_t overflow_handler,
4683
		   gfp_t gfpflags)
T
Thomas Gleixner 已提交
4684
{
4685
	const struct pmu *pmu;
4686 4687
	struct perf_event *event;
	struct hw_perf_event *hwc;
4688
	long err;
T
Thomas Gleixner 已提交
4689

4690 4691
	event = kzalloc(sizeof(*event), gfpflags);
	if (!event)
4692
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
4693

4694
	/*
4695
	 * Single events are their own group leaders, with an
4696 4697 4698
	 * empty sibling list:
	 */
	if (!group_leader)
4699
		group_leader = event;
4700

4701 4702
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
4703

4704 4705 4706 4707
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
	init_waitqueue_head(&event->waitq);
T
Thomas Gleixner 已提交
4708

4709
	mutex_init(&event->mmap_mutex);
4710

4711 4712 4713 4714 4715 4716
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->ctx		= ctx;
	event->oncpu		= -1;
4717

4718
	event->parent		= parent_event;
4719

4720 4721
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
4722

4723
	event->state		= PERF_EVENT_STATE_INACTIVE;
4724

4725 4726
	if (!overflow_handler && parent_event)
		overflow_handler = parent_event->overflow_handler;
4727
	
4728
	event->overflow_handler	= overflow_handler;
4729

4730
	if (attr->disabled)
4731
		event->state = PERF_EVENT_STATE_OFF;
4732

4733
	pmu = NULL;
4734

4735
	hwc = &event->hw;
4736
	hwc->sample_period = attr->sample_period;
4737
	if (attr->freq && attr->sample_freq)
4738
		hwc->sample_period = 1;
4739
	hwc->last_period = hwc->sample_period;
4740 4741

	atomic64_set(&hwc->period_left, hwc->sample_period);
4742

4743
	/*
4744
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
4745
	 */
4746
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4747 4748
		goto done;

4749
	switch (attr->type) {
4750
	case PERF_TYPE_RAW:
4751
	case PERF_TYPE_HARDWARE:
4752
	case PERF_TYPE_HW_CACHE:
4753
		pmu = hw_perf_event_init(event);
4754 4755 4756
		break;

	case PERF_TYPE_SOFTWARE:
4757
		pmu = sw_perf_event_init(event);
4758 4759 4760
		break;

	case PERF_TYPE_TRACEPOINT:
4761
		pmu = tp_perf_event_init(event);
4762
		break;
4763

4764 4765 4766 4767 4768
	case PERF_TYPE_BREAKPOINT:
		pmu = bp_perf_event_init(event);
		break;


4769 4770
	default:
		break;
4771
	}
4772 4773
done:
	err = 0;
4774
	if (!pmu)
4775
		err = -EINVAL;
4776 4777
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
4778

4779
	if (err) {
4780 4781 4782
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
4783
		return ERR_PTR(err);
I
Ingo Molnar 已提交
4784
	}
4785

4786
	event->pmu = pmu;
T
Thomas Gleixner 已提交
4787

4788 4789 4790 4791 4792 4793 4794 4795
	if (!event->parent) {
		atomic_inc(&nr_events);
		if (event->attr.mmap)
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
4796
	}
4797

4798
	return event;
T
Thomas Gleixner 已提交
4799 4800
}

4801 4802
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
4803 4804
{
	u32 size;
4805
	int ret;
4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
4830 4831 4832
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
4833 4834
	 */
	if (size > sizeof(*attr)) {
4835 4836 4837
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
4838

4839 4840
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
4841

4842
		for (; addr < end; addr++) {
4843 4844 4845 4846 4847 4848
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
4849
		size = sizeof(*attr);
4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * If the type exists, the corresponding creation will verify
	 * the attr->config.
	 */
	if (attr->type >= PERF_TYPE_MAX)
		return -EINVAL;

4863
	if (attr->__reserved_1)
4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

L
Li Zefan 已提交
4881
static int perf_event_set_output(struct perf_event *event, int output_fd)
4882
{
4883
	struct perf_event *output_event = NULL;
4884
	struct file *output_file = NULL;
4885
	struct perf_event *old_output;
4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898
	int fput_needed = 0;
	int ret = -EINVAL;

	if (!output_fd)
		goto set;

	output_file = fget_light(output_fd, &fput_needed);
	if (!output_file)
		return -EBADF;

	if (output_file->f_op != &perf_fops)
		goto out;

4899
	output_event = output_file->private_data;
4900 4901

	/* Don't chain output fds */
4902
	if (output_event->output)
4903 4904 4905
		goto out;

	/* Don't set an output fd when we already have an output channel */
4906
	if (event->data)
4907 4908 4909 4910 4911
		goto out;

	atomic_long_inc(&output_file->f_count);

set:
4912 4913 4914 4915
	mutex_lock(&event->mmap_mutex);
	old_output = event->output;
	rcu_assign_pointer(event->output, output_event);
	mutex_unlock(&event->mmap_mutex);
4916 4917 4918 4919

	if (old_output) {
		/*
		 * we need to make sure no existing perf_output_*()
4920
		 * is still referencing this event.
4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931
		 */
		synchronize_rcu();
		fput(old_output->filp);
	}

	ret = 0;
out:
	fput_light(output_file, fput_needed);
	return ret;
}

T
Thomas Gleixner 已提交
4932
/**
4933
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
4934
 *
4935
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
4936
 * @pid:		target pid
I
Ingo Molnar 已提交
4937
 * @cpu:		target cpu
4938
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
4939
 */
4940 4941
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
4942
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
4943
{
4944 4945 4946 4947
	struct perf_event *event, *group_leader;
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
4948 4949
	struct file *group_file = NULL;
	int fput_needed = 0;
4950
	int fput_needed2 = 0;
4951
	int err;
T
Thomas Gleixner 已提交
4952

4953
	/* for future expandability... */
4954
	if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4955 4956
		return -EINVAL;

4957 4958 4959
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
4960

4961 4962 4963 4964 4965
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

4966
	if (attr.freq) {
4967
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
4968 4969 4970
			return -EINVAL;
	}

4971
	/*
I
Ingo Molnar 已提交
4972 4973 4974 4975 4976 4977 4978
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pid, cpu);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	/*
4979
	 * Look up the group leader (we will attach this event to it):
4980 4981
	 */
	group_leader = NULL;
4982
	if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4983
		err = -EINVAL;
4984 4985
		group_file = fget_light(group_fd, &fput_needed);
		if (!group_file)
I
Ingo Molnar 已提交
4986
			goto err_put_context;
4987
		if (group_file->f_op != &perf_fops)
I
Ingo Molnar 已提交
4988
			goto err_put_context;
4989 4990 4991

		group_leader = group_file->private_data;
		/*
I
Ingo Molnar 已提交
4992 4993 4994 4995 4996 4997 4998 4999
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
			goto err_put_context;
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
5000
		 */
I
Ingo Molnar 已提交
5001 5002
		if (group_leader->ctx != ctx)
			goto err_put_context;
5003 5004 5005
		/*
		 * Only a group leader can be exclusive or pinned
		 */
5006
		if (attr.exclusive || attr.pinned)
5007
			goto err_put_context;
5008 5009
	}

5010
	event = perf_event_alloc(&attr, cpu, ctx, group_leader,
5011
				     NULL, NULL, GFP_KERNEL);
5012 5013
	err = PTR_ERR(event);
	if (IS_ERR(event))
T
Thomas Gleixner 已提交
5014 5015
		goto err_put_context;

5016
	err = anon_inode_getfd("[perf_event]", &perf_fops, event, O_RDWR);
5017
	if (err < 0)
5018 5019
		goto err_free_put_context;

5020 5021
	event_file = fget_light(err, &fput_needed2);
	if (!event_file)
5022 5023
		goto err_free_put_context;

5024
	if (flags & PERF_FLAG_FD_OUTPUT) {
5025
		err = perf_event_set_output(event, group_fd);
5026 5027
		if (err)
			goto err_fput_free_put_context;
5028 5029
	}

5030
	event->filp = event_file;
5031
	WARN_ON_ONCE(ctx->parent_ctx);
5032
	mutex_lock(&ctx->mutex);
5033
	perf_install_in_context(ctx, event, cpu);
5034
	++ctx->generation;
5035
	mutex_unlock(&ctx->mutex);
5036

5037
	event->owner = current;
5038
	get_task_struct(current);
5039 5040 5041
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
5042

5043
err_fput_free_put_context:
5044
	fput_light(event_file, fput_needed2);
T
Thomas Gleixner 已提交
5045

5046
err_free_put_context:
5047
	if (err < 0)
5048
		free_event(event);
T
Thomas Gleixner 已提交
5049 5050

err_put_context:
5051 5052 5053 5054
	if (err < 0)
		put_ctx(ctx);

	fput_light(group_file, fput_needed);
T
Thomas Gleixner 已提交
5055

5056
	return err;
T
Thomas Gleixner 已提交
5057 5058
}

5059 5060 5061 5062 5063 5064 5065 5066 5067
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
 * @pid: task to profile
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5068 5069
				 pid_t pid,
				 perf_overflow_handler_t overflow_handler)
5070 5071 5072 5073 5074 5075 5076 5077 5078 5079
{
	struct perf_event *event;
	struct perf_event_context *ctx;
	int err;

	/*
	 * Get the target context (task or percpu):
	 */

	ctx = find_get_context(pid, cpu);
5080 5081 5082 5083
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
		goto err_exit;
	}
5084 5085

	event = perf_event_alloc(attr, cpu, ctx, NULL,
5086
				 NULL, overflow_handler, GFP_KERNEL);
5087 5088
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
5089
		goto err_put_context;
5090
	}
5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106

	event->filp = NULL;
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
	mutex_unlock(&ctx->mutex);

	event->owner = current;
	get_task_struct(current);
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);

	return event;

5107 5108 5109 5110
 err_put_context:
	put_ctx(ctx);
 err_exit:
	return ERR_PTR(err);
5111 5112 5113
}
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);

5114
/*
5115
 * inherit a event from parent task to child task:
5116
 */
5117 5118
static struct perf_event *
inherit_event(struct perf_event *parent_event,
5119
	      struct task_struct *parent,
5120
	      struct perf_event_context *parent_ctx,
5121
	      struct task_struct *child,
5122 5123
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
5124
{
5125
	struct perf_event *child_event;
5126

5127
	/*
5128 5129
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
5130 5131 5132
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
5133 5134
	if (parent_event->parent)
		parent_event = parent_event->parent;
5135

5136 5137 5138
	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu, child_ctx,
					   group_leader, parent_event,
5139
					   NULL, GFP_KERNEL);
5140 5141
	if (IS_ERR(child_event))
		return child_event;
5142
	get_ctx(child_ctx);
5143

5144
	/*
5145
	 * Make the child state follow the state of the parent event,
5146
	 * not its attr.disabled bit.  We hold the parent's mutex,
5147
	 * so we won't race with perf_event_{en, dis}able_family.
5148
	 */
5149 5150
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
5151
	else
5152
		child_event->state = PERF_EVENT_STATE_OFF;
5153

5154 5155 5156 5157 5158 5159 5160 5161 5162
	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		atomic64_set(&hwc->period_left, sample_period);
	}
5163

5164 5165
	child_event->overflow_handler = parent_event->overflow_handler;

5166 5167 5168
	/*
	 * Link it up in the child's context:
	 */
5169
	add_event_to_ctx(child_event, child_ctx);
5170 5171 5172

	/*
	 * Get a reference to the parent filp - we will fput it
5173
	 * when the child event exits. This is safe to do because
5174 5175 5176
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
5177
	atomic_long_inc(&parent_event->filp->f_count);
5178

5179
	/*
5180
	 * Link this into the parent event's child list
5181
	 */
5182 5183 5184 5185
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
5186

5187
	return child_event;
5188 5189
}

5190
static int inherit_group(struct perf_event *parent_event,
5191
	      struct task_struct *parent,
5192
	      struct perf_event_context *parent_ctx,
5193
	      struct task_struct *child,
5194
	      struct perf_event_context *child_ctx)
5195
{
5196 5197 5198
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;
5199

5200
	leader = inherit_event(parent_event, parent, parent_ctx,
5201
				 child, NULL, child_ctx);
5202 5203
	if (IS_ERR(leader))
		return PTR_ERR(leader);
5204 5205
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
5206 5207 5208
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
5209
	}
5210 5211 5212
	return 0;
}

5213
static void sync_child_event(struct perf_event *child_event,
5214
			       struct task_struct *child)
5215
{
5216
	struct perf_event *parent_event = child_event->parent;
5217
	u64 child_val;
5218

5219 5220
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
5221

5222
	child_val = atomic64_read(&child_event->count);
5223 5224 5225 5226

	/*
	 * Add back the child's count to the parent's count:
	 */
5227 5228 5229 5230 5231
	atomic64_add(child_val, &parent_event->count);
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
5232 5233

	/*
5234
	 * Remove this event from the parent's list
5235
	 */
5236 5237 5238 5239
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
5240 5241

	/*
5242
	 * Release the parent event, if this was the last
5243 5244
	 * reference to it.
	 */
5245
	fput(parent_event->filp);
5246 5247
}

5248
static void
5249 5250
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
5251
			 struct task_struct *child)
5252
{
5253
	struct perf_event *parent_event;
5254

5255
	perf_event_remove_from_context(child_event);
5256

5257
	parent_event = child_event->parent;
5258
	/*
5259
	 * It can happen that parent exits first, and has events
5260
	 * that are still around due to the child reference. These
5261
	 * events need to be zapped - but otherwise linger.
5262
	 */
5263 5264 5265
	if (parent_event) {
		sync_child_event(child_event, child);
		free_event(child_event);
5266
	}
5267 5268 5269
}

/*
5270
 * When a child task exits, feed back event values to parent events.
5271
 */
5272
void perf_event_exit_task(struct task_struct *child)
5273
{
5274 5275
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
5276
	unsigned long flags;
5277

5278 5279
	if (likely(!child->perf_event_ctxp)) {
		perf_event_task(child, NULL, 0);
5280
		return;
P
Peter Zijlstra 已提交
5281
	}
5282

5283
	local_irq_save(flags);
5284 5285 5286 5287 5288 5289
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
5290 5291
	child_ctx = child->perf_event_ctxp;
	__perf_event_task_sched_out(child_ctx);
5292 5293 5294

	/*
	 * Take the context lock here so that if find_get_context is
5295
	 * reading child->perf_event_ctxp, we wait until it has
5296 5297
	 * incremented the context's refcount before we do put_ctx below.
	 */
5298
	raw_spin_lock(&child_ctx->lock);
5299
	child->perf_event_ctxp = NULL;
5300 5301 5302
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
5303
	 * the events from it.
5304 5305
	 */
	unclone_ctx(child_ctx);
5306
	update_context_time(child_ctx);
5307
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
5308 5309

	/*
5310 5311 5312
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
5313
	 */
5314
	perf_event_task(child, child_ctx, 0);
5315

5316 5317 5318
	/*
	 * We can recurse on the same lock type through:
	 *
5319 5320 5321
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       fput(parent_event->filp)
5322 5323 5324 5325 5326
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
5327
	mutex_lock(&child_ctx->mutex);
5328

5329
again:
5330 5331 5332 5333 5334
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5335
				 group_entry)
5336
		__perf_event_exit_task(child_event, child_ctx, child);
5337 5338

	/*
5339
	 * If the last event was a group event, it will have appended all
5340 5341 5342
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
5343 5344
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
5345
		goto again;
5346 5347 5348 5349

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
5350 5351
}

5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

	fput(parent->filp);

	list_del_event(event, ctx);
	free_event(event);
}

5370 5371 5372 5373
/*
 * free an unexposed, unused context as created by inheritance by
 * init_task below, used by fork() in case of fail.
 */
5374
void perf_event_free_task(struct task_struct *task)
5375
{
5376 5377
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event *event, *tmp;
5378 5379 5380 5381 5382 5383

	if (!ctx)
		return;

	mutex_lock(&ctx->mutex);
again:
5384 5385
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
		perf_free_event(event, ctx);
5386

5387 5388 5389
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				 group_entry)
		perf_free_event(event, ctx);
5390

5391 5392 5393
	if (!list_empty(&ctx->pinned_groups) ||
	    !list_empty(&ctx->flexible_groups))
		goto again;
5394

5395
	mutex_unlock(&ctx->mutex);
5396

5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411
	put_ctx(ctx);
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
		   struct task_struct *child,
		   int *inherited_all)
{
	int ret;
	struct perf_event_context *child_ctx = child->perf_event_ctxp;

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
5412 5413
	}

5414 5415 5416 5417 5418 5419 5420
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
5421

5422 5423 5424 5425
		child_ctx = kzalloc(sizeof(struct perf_event_context),
				    GFP_KERNEL);
		if (!child_ctx)
			return -ENOMEM;
5426

5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438
		__perf_event_init_context(child_ctx, child);
		child->perf_event_ctxp = child_ctx;
		get_task_struct(child);
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
5439 5440
}

5441

5442
/*
5443
 * Initialize the perf_event context in task_struct
5444
 */
5445
int perf_event_init_task(struct task_struct *child)
5446
{
5447
	struct perf_event_context *child_ctx, *parent_ctx;
5448 5449
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
5450
	struct task_struct *parent = current;
5451
	int inherited_all = 1;
5452
	int ret = 0;
5453

5454
	child->perf_event_ctxp = NULL;
5455

5456 5457
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);
5458

5459
	if (likely(!parent->perf_event_ctxp))
5460 5461
		return 0;

5462
	/*
5463 5464
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
5465
	 */
5466 5467
	parent_ctx = perf_pin_task_context(parent);

5468 5469 5470 5471 5472 5473 5474
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

5475 5476 5477 5478
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
5479
	mutex_lock(&parent_ctx->mutex);
5480 5481 5482 5483 5484

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
5485 5486 5487 5488 5489 5490
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
		ret = inherit_task_group(event, parent, parent_ctx, child,
					 &inherited_all);
		if (ret)
			break;
	}
5491

5492 5493 5494 5495
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
		ret = inherit_task_group(event, parent, parent_ctx, child,
					 &inherited_all);
		if (ret)
5496
			break;
5497 5498
	}

5499 5500
	child_ctx = child->perf_event_ctxp;

5501
	if (child_ctx && inherited_all) {
5502 5503 5504
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
5505 5506
		 * Note that if the parent is a clone, it could get
		 * uncloned at any point, but that doesn't matter
5507
		 * because the list of events and the generation
5508
		 * count can't have changed since we took the mutex.
5509
		 */
5510 5511 5512
		cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
5513
			child_ctx->parent_gen = parent_ctx->parent_gen;
5514 5515 5516 5517 5518
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
5519 5520
	}

5521
	mutex_unlock(&parent_ctx->mutex);
5522

5523
	perf_unpin_context(parent_ctx);
5524

5525
	return ret;
5526 5527
}

5528 5529 5530 5531 5532 5533 5534
static void __init perf_event_init_all_cpus(void)
{
	int cpu;
	struct perf_cpu_context *cpuctx;

	for_each_possible_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
5535
		mutex_init(&cpuctx->hlist_mutex);
5536 5537 5538 5539
		__perf_event_init_context(&cpuctx->ctx, NULL);
	}
}

5540
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
5541
{
5542
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
5543

5544
	cpuctx = &per_cpu(perf_cpu_context, cpu);
T
Thomas Gleixner 已提交
5545

5546
	spin_lock(&perf_resource_lock);
5547
	cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5548
	spin_unlock(&perf_resource_lock);
5549 5550 5551 5552 5553 5554 5555 5556 5557 5558

	mutex_lock(&cpuctx->hlist_mutex);
	if (cpuctx->hlist_refcount > 0) {
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		WARN_ON_ONCE(!hlist);
		rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
	}
	mutex_unlock(&cpuctx->hlist_mutex);
T
Thomas Gleixner 已提交
5559 5560 5561
}

#ifdef CONFIG_HOTPLUG_CPU
5562
static void __perf_event_exit_cpu(void *info)
T
Thomas Gleixner 已提交
5563 5564
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5565 5566
	struct perf_event_context *ctx = &cpuctx->ctx;
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
5567

5568 5569 5570
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
		__perf_event_remove_from_context(event);
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
5571
		__perf_event_remove_from_context(event);
T
Thomas Gleixner 已提交
5572
}
5573
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
5574
{
5575
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5576
	struct perf_event_context *ctx = &cpuctx->ctx;
5577

5578 5579 5580 5581
	mutex_lock(&cpuctx->hlist_mutex);
	swevent_hlist_release(cpuctx);
	mutex_unlock(&cpuctx->hlist_mutex);

5582
	mutex_lock(&ctx->mutex);
5583
	smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5584
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
5585 5586
}
#else
5587
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

	switch (action) {

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
5599
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
5600 5601 5602 5603
		break;

	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
5604
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
5605 5606 5607 5608 5609 5610 5611 5612 5613
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

5614 5615 5616
/*
 * This has to have a higher priority than migration_notifier in sched.c.
 */
T
Thomas Gleixner 已提交
5617 5618
static struct notifier_block __cpuinitdata perf_cpu_nb = {
	.notifier_call		= perf_cpu_notify,
5619
	.priority		= 20,
T
Thomas Gleixner 已提交
5620 5621
};

5622
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
5623
{
5624
	perf_event_init_all_cpus();
T
Thomas Gleixner 已提交
5625 5626
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
			(void *)(long)smp_processor_id());
5627 5628
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
			(void *)(long)smp_processor_id());
T
Thomas Gleixner 已提交
5629 5630 5631
	register_cpu_notifier(&perf_cpu_nb);
}

5632 5633 5634
static ssize_t perf_show_reserve_percpu(struct sysdev_class *class,
					struct sysdev_class_attribute *attr,
					char *buf)
T
Thomas Gleixner 已提交
5635 5636 5637 5638 5639 5640
{
	return sprintf(buf, "%d\n", perf_reserved_percpu);
}

static ssize_t
perf_set_reserve_percpu(struct sysdev_class *class,
5641
			struct sysdev_class_attribute *attr,
T
Thomas Gleixner 已提交
5642 5643 5644 5645 5646 5647 5648 5649 5650 5651
			const char *buf,
			size_t count)
{
	struct perf_cpu_context *cpuctx;
	unsigned long val;
	int err, cpu, mpt;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
5652
	if (val > perf_max_events)
T
Thomas Gleixner 已提交
5653 5654
		return -EINVAL;

5655
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5656 5657 5658
	perf_reserved_percpu = val;
	for_each_online_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
5659
		raw_spin_lock_irq(&cpuctx->ctx.lock);
5660 5661
		mpt = min(perf_max_events - cpuctx->ctx.nr_events,
			  perf_max_events - perf_reserved_percpu);
T
Thomas Gleixner 已提交
5662
		cpuctx->max_pertask = mpt;
5663
		raw_spin_unlock_irq(&cpuctx->ctx.lock);
T
Thomas Gleixner 已提交
5664
	}
5665
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5666 5667 5668 5669

	return count;
}

5670 5671 5672
static ssize_t perf_show_overcommit(struct sysdev_class *class,
				    struct sysdev_class_attribute *attr,
				    char *buf)
T
Thomas Gleixner 已提交
5673 5674 5675 5676 5677
{
	return sprintf(buf, "%d\n", perf_overcommit);
}

static ssize_t
5678 5679 5680
perf_set_overcommit(struct sysdev_class *class,
		    struct sysdev_class_attribute *attr,
		    const char *buf, size_t count)
T
Thomas Gleixner 已提交
5681 5682 5683 5684 5685 5686 5687 5688 5689 5690
{
	unsigned long val;
	int err;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > 1)
		return -EINVAL;

5691
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5692
	perf_overcommit = val;
5693
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719

	return count;
}

static SYSDEV_CLASS_ATTR(
				reserve_percpu,
				0644,
				perf_show_reserve_percpu,
				perf_set_reserve_percpu
			);

static SYSDEV_CLASS_ATTR(
				overcommit,
				0644,
				perf_show_overcommit,
				perf_set_overcommit
			);

static struct attribute *perfclass_attrs[] = {
	&attr_reserve_percpu.attr,
	&attr_overcommit.attr,
	NULL
};

static struct attribute_group perfclass_attr_group = {
	.attrs			= perfclass_attrs,
5720
	.name			= "perf_events",
T
Thomas Gleixner 已提交
5721 5722
};

5723
static int __init perf_event_sysfs_init(void)
T
Thomas Gleixner 已提交
5724 5725 5726 5727
{
	return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
				  &perfclass_attr_group);
}
5728
device_initcall(perf_event_sysfs_init);