perf_event.c 126.4 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4 5 6
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
16
#include <linux/file.h>
T
Thomas Gleixner 已提交
17 18
#include <linux/poll.h>
#include <linux/sysfs.h>
19
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
20
#include <linux/percpu.h>
21
#include <linux/ptrace.h>
22
#include <linux/vmstat.h>
23
#include <linux/vmalloc.h>
24 25
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
26 27 28
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
29
#include <linux/kernel_stat.h>
30
#include <linux/perf_event.h>
L
Li Zefan 已提交
31
#include <linux/ftrace_event.h>
32
#include <linux/hw_breakpoint.h>
T
Thomas Gleixner 已提交
33

34 35
#include <asm/irq_regs.h>

T
Thomas Gleixner 已提交
36
/*
37
 * Each CPU has a list of per CPU events:
T
Thomas Gleixner 已提交
38
 */
39
static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
T
Thomas Gleixner 已提交
40

41
int perf_max_events __read_mostly = 1;
T
Thomas Gleixner 已提交
42 43 44
static int perf_reserved_percpu __read_mostly;
static int perf_overcommit __read_mostly = 1;

45 46 47 48
static atomic_t nr_events __read_mostly;
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
49

50
/*
51
 * perf event paranoia level:
52 53
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
54
 *   1 - disallow cpu events for unpriv
55
 *   2 - disallow kernel profiling for unpriv
56
 */
57
int sysctl_perf_event_paranoid __read_mostly = 1;
58

59 60
static inline bool perf_paranoid_tracepoint_raw(void)
{
61
	return sysctl_perf_event_paranoid > -1;
62 63
}

64 65
static inline bool perf_paranoid_cpu(void)
{
66
	return sysctl_perf_event_paranoid > 0;
67 68 69 70
}

static inline bool perf_paranoid_kernel(void)
{
71
	return sysctl_perf_event_paranoid > 1;
72 73
}

74
int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
75 76

/*
77
 * max perf event sample rate
78
 */
79
int sysctl_perf_event_sample_rate __read_mostly = 100000;
80

81
static atomic64_t perf_event_id;
82

T
Thomas Gleixner 已提交
83
/*
84
 * Lock for (sysadmin-configurable) event reservations:
T
Thomas Gleixner 已提交
85
 */
86
static DEFINE_SPINLOCK(perf_resource_lock);
T
Thomas Gleixner 已提交
87 88 89 90

/*
 * Architecture provided APIs - weak aliases:
 */
91
extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
T
Thomas Gleixner 已提交
92
{
93
	return NULL;
T
Thomas Gleixner 已提交
94 95
}

96 97 98
void __weak hw_perf_disable(void)		{ barrier(); }
void __weak hw_perf_enable(void)		{ barrier(); }

99 100
void __weak hw_perf_event_setup(int cpu)	{ barrier(); }
void __weak hw_perf_event_setup_online(int cpu)	{ barrier(); }
101
void __weak hw_perf_event_setup_offline(int cpu)	{ barrier(); }
102 103

int __weak
104
hw_perf_group_sched_in(struct perf_event *group_leader,
105
	       struct perf_cpu_context *cpuctx,
106
	       struct perf_event_context *ctx, int cpu)
107 108 109
{
	return 0;
}
T
Thomas Gleixner 已提交
110

111
void __weak perf_event_print_debug(void)	{ }
112

113
static DEFINE_PER_CPU(int, perf_disable_count);
114 115 116

void __perf_disable(void)
{
117
	__get_cpu_var(perf_disable_count)++;
118 119 120 121
}

bool __perf_enable(void)
{
122
	return !--__get_cpu_var(perf_disable_count);
123 124 125 126 127 128 129 130 131 132 133 134 135 136
}

void perf_disable(void)
{
	__perf_disable();
	hw_perf_disable();
}

void perf_enable(void)
{
	if (__perf_enable())
		hw_perf_enable();
}

137
static void get_ctx(struct perf_event_context *ctx)
138
{
139
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
140 141
}

142 143
static void free_ctx(struct rcu_head *head)
{
144
	struct perf_event_context *ctx;
145

146
	ctx = container_of(head, struct perf_event_context, rcu_head);
147 148 149
	kfree(ctx);
}

150
static void put_ctx(struct perf_event_context *ctx)
151
{
152 153 154
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
155 156 157
		if (ctx->task)
			put_task_struct(ctx->task);
		call_rcu(&ctx->rcu_head, free_ctx);
158
	}
159 160
}

161
static void unclone_ctx(struct perf_event_context *ctx)
162 163 164 165 166 167 168
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

169
/*
170
 * If we inherit events we want to return the parent event id
171 172
 * to userspace.
 */
173
static u64 primary_event_id(struct perf_event *event)
174
{
175
	u64 id = event->id;
176

177 178
	if (event->parent)
		id = event->parent->id;
179 180 181 182

	return id;
}

183
/*
184
 * Get the perf_event_context for a task and lock it.
185 186 187
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
188
static struct perf_event_context *
189
perf_lock_task_context(struct task_struct *task, unsigned long *flags)
190
{
191
	struct perf_event_context *ctx;
192 193 194

	rcu_read_lock();
 retry:
195
	ctx = rcu_dereference(task->perf_event_ctxp);
196 197 198 199
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
200
		 * perf_event_task_sched_out, though the
201 202 203 204 205 206
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
207
		raw_spin_lock_irqsave(&ctx->lock, *flags);
208
		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
209
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
210 211
			goto retry;
		}
212 213

		if (!atomic_inc_not_zero(&ctx->refcount)) {
214
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
215 216
			ctx = NULL;
		}
217 218 219 220 221 222 223 224 225 226
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
227
static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
228
{
229
	struct perf_event_context *ctx;
230 231 232 233 234
	unsigned long flags;

	ctx = perf_lock_task_context(task, &flags);
	if (ctx) {
		++ctx->pin_count;
235
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
236 237 238 239
	}
	return ctx;
}

240
static void perf_unpin_context(struct perf_event_context *ctx)
241 242 243
{
	unsigned long flags;

244
	raw_spin_lock_irqsave(&ctx->lock, flags);
245
	--ctx->pin_count;
246
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
247 248 249
	put_ctx(ctx);
}

250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
static inline u64 perf_clock(void)
{
	return cpu_clock(smp_processor_id());
}

/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;

278 279 280 281 282 283
	if (ctx->is_active)
		run_end = ctx->time;
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
284 285 286 287 288 289 290 291 292

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
		run_end = ctx->time;

	event->total_time_running = run_end - event->tstamp_running;
}

293 294 295 296 297 298 299 300 301
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

302
/*
303
 * Add a event from the lists for its context.
304 305
 * Must be called with ctx->mutex and ctx->lock held.
 */
306
static void
307
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
308
{
309
	struct perf_event *group_leader = event->group_leader;
310 311

	/*
312 313
	 * Depending on whether it is a standalone or sibling event,
	 * add it straight to the context's event list, or to the group
314 315
	 * leader's sibling list:
	 */
316 317 318
	if (group_leader == event) {
		struct list_head *list;

319 320 321
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

322 323 324
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
	} else {
325 326 327 328
		if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
		    !is_software_event(event))
			group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

329
		list_add_tail(&event->group_entry, &group_leader->sibling_list);
P
Peter Zijlstra 已提交
330 331
		group_leader->nr_siblings++;
	}
P
Peter Zijlstra 已提交
332

333 334 335
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
336
		ctx->nr_stat++;
337 338
}

339
/*
340
 * Remove a event from the lists for its context.
341
 * Must be called with ctx->mutex and ctx->lock held.
342
 */
343
static void
344
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
345
{
346
	struct perf_event *sibling, *tmp;
347

348
	if (list_empty(&event->group_entry))
349
		return;
350 351
	ctx->nr_events--;
	if (event->attr.inherit_stat)
352
		ctx->nr_stat--;
353

354 355
	list_del_init(&event->group_entry);
	list_del_rcu(&event->event_entry);
356

357 358
	if (event->group_leader != event)
		event->group_leader->nr_siblings--;
P
Peter Zijlstra 已提交
359

360
	update_event_times(event);
361 362 363 364 365 366 367 368 369 370

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
371

372
	/*
373 374
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
375 376
	 * to the context list directly:
	 */
377
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
378
		struct list_head *list;
379

380 381
		list = ctx_group_list(event, ctx);
		list_move_tail(&sibling->group_entry, list);
382
		sibling->group_leader = sibling;
383 384 385

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
386 387 388
	}
}

389
static void
390
event_sched_out(struct perf_event *event,
391
		  struct perf_cpu_context *cpuctx,
392
		  struct perf_event_context *ctx)
393
{
394
	if (event->state != PERF_EVENT_STATE_ACTIVE)
395 396
		return;

397 398 399 400
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
401
	}
402 403 404
	event->tstamp_stopped = ctx->time;
	event->pmu->disable(event);
	event->oncpu = -1;
405

406
	if (!is_software_event(event))
407 408
		cpuctx->active_oncpu--;
	ctx->nr_active--;
409
	if (event->attr.exclusive || !cpuctx->active_oncpu)
410 411 412
		cpuctx->exclusive = 0;
}

413
static void
414
group_sched_out(struct perf_event *group_event,
415
		struct perf_cpu_context *cpuctx,
416
		struct perf_event_context *ctx)
417
{
418
	struct perf_event *event;
419

420
	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
421 422
		return;

423
	event_sched_out(group_event, cpuctx, ctx);
424 425 426 427

	/*
	 * Schedule out siblings (if any):
	 */
428 429
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
430

431
	if (group_event->attr.exclusive)
432 433 434
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
435
/*
436
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
437
 *
438
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
439 440
 * remove it from the context list.
 */
441
static void __perf_event_remove_from_context(void *info)
T
Thomas Gleixner 已提交
442 443
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
444 445
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
446 447 448 449 450 451

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
452
	if (ctx->task && cpuctx->task_ctx != ctx)
T
Thomas Gleixner 已提交
453 454
		return;

455
	raw_spin_lock(&ctx->lock);
456 457
	/*
	 * Protect the list operation against NMI by disabling the
458
	 * events on a global level.
459 460
	 */
	perf_disable();
T
Thomas Gleixner 已提交
461

462
	event_sched_out(event, cpuctx, ctx);
463

464
	list_del_event(event, ctx);
T
Thomas Gleixner 已提交
465 466 467

	if (!ctx->task) {
		/*
468
		 * Allow more per task events with respect to the
T
Thomas Gleixner 已提交
469 470 471
		 * reservation:
		 */
		cpuctx->max_pertask =
472 473
			min(perf_max_events - ctx->nr_events,
			    perf_max_events - perf_reserved_percpu);
T
Thomas Gleixner 已提交
474 475
	}

476
	perf_enable();
477
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
478 479 480 481
}


/*
482
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
483
 *
484
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
485
 *
486
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
487
 * call when the task is on a CPU.
488
 *
489 490
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
491 492
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
493
 * When called from perf_event_exit_task, it's OK because the
494
 * context has been detached from its task.
T
Thomas Gleixner 已提交
495
 */
496
static void perf_event_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
497
{
498
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
499 500 501 502
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
503
		 * Per cpu events are removed via an smp call and
504
		 * the removal is always successful.
T
Thomas Gleixner 已提交
505
		 */
506 507 508
		smp_call_function_single(event->cpu,
					 __perf_event_remove_from_context,
					 event, 1);
T
Thomas Gleixner 已提交
509 510 511 512
		return;
	}

retry:
513 514
	task_oncpu_function_call(task, __perf_event_remove_from_context,
				 event);
T
Thomas Gleixner 已提交
515

516
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
517 518 519
	/*
	 * If the context is active we need to retry the smp call.
	 */
520
	if (ctx->nr_active && !list_empty(&event->group_entry)) {
521
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
522 523 524 525 526
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
527
	 * can remove the event safely, if the call above did not
T
Thomas Gleixner 已提交
528 529
	 * succeed.
	 */
P
Peter Zijlstra 已提交
530
	if (!list_empty(&event->group_entry))
531
		list_del_event(event, ctx);
532
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
533 534
}

535
/*
536
 * Update total_time_enabled and total_time_running for all events in a group.
537
 */
538
static void update_group_times(struct perf_event *leader)
539
{
540
	struct perf_event *event;
541

542 543 544
	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
545 546
}

547
/*
548
 * Cross CPU call to disable a performance event
549
 */
550
static void __perf_event_disable(void *info)
551
{
552
	struct perf_event *event = info;
553
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
554
	struct perf_event_context *ctx = event->ctx;
555 556

	/*
557 558
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
559
	 */
560
	if (ctx->task && cpuctx->task_ctx != ctx)
561 562
		return;

563
	raw_spin_lock(&ctx->lock);
564 565

	/*
566
	 * If the event is on, turn it off.
567 568
	 * If it is in error state, leave it in error state.
	 */
569
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
570
		update_context_time(ctx);
571 572 573
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
574
		else
575 576
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
577 578
	}

579
	raw_spin_unlock(&ctx->lock);
580 581 582
}

/*
583
 * Disable a event.
584
 *
585 586
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
587
 * remains valid.  This condition is satisifed when called through
588 589 590 591
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
592
 * is the current context on this CPU and preemption is disabled,
593
 * hence we can't get into perf_event_task_sched_out for this context.
594
 */
595
void perf_event_disable(struct perf_event *event)
596
{
597
	struct perf_event_context *ctx = event->ctx;
598 599 600 601
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
602
		 * Disable the event on the cpu that it's on
603
		 */
604 605
		smp_call_function_single(event->cpu, __perf_event_disable,
					 event, 1);
606 607 608 609
		return;
	}

 retry:
610
	task_oncpu_function_call(task, __perf_event_disable, event);
611

612
	raw_spin_lock_irq(&ctx->lock);
613
	/*
614
	 * If the event is still active, we need to retry the cross-call.
615
	 */
616
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
617
		raw_spin_unlock_irq(&ctx->lock);
618 619 620 621 622 623 624
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
625 626 627
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
628
	}
629

630
	raw_spin_unlock_irq(&ctx->lock);
631 632
}

633
static int
634
event_sched_in(struct perf_event *event,
635
		 struct perf_cpu_context *cpuctx,
636
		 struct perf_event_context *ctx,
637 638
		 int cpu)
{
639
	if (event->state <= PERF_EVENT_STATE_OFF)
640 641
		return 0;

642 643
	event->state = PERF_EVENT_STATE_ACTIVE;
	event->oncpu = cpu;	/* TODO: put 'cpu' into cpuctx->cpu */
644 645 646 647 648
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

649 650 651
	if (event->pmu->enable(event)) {
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
652 653 654
		return -EAGAIN;
	}

655
	event->tstamp_running += ctx->time - event->tstamp_stopped;
656

657
	if (!is_software_event(event))
658
		cpuctx->active_oncpu++;
659 660
	ctx->nr_active++;

661
	if (event->attr.exclusive)
662 663
		cpuctx->exclusive = 1;

664 665 666
	return 0;
}

667
static int
668
group_sched_in(struct perf_event *group_event,
669
	       struct perf_cpu_context *cpuctx,
670
	       struct perf_event_context *ctx,
671 672
	       int cpu)
{
673
	struct perf_event *event, *partial_group;
674 675
	int ret;

676
	if (group_event->state == PERF_EVENT_STATE_OFF)
677 678
		return 0;

679
	ret = hw_perf_group_sched_in(group_event, cpuctx, ctx, cpu);
680 681 682
	if (ret)
		return ret < 0 ? ret : 0;

683
	if (event_sched_in(group_event, cpuctx, ctx, cpu))
684 685 686 687 688
		return -EAGAIN;

	/*
	 * Schedule in siblings as one group (if any):
	 */
689 690 691
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event_sched_in(event, cpuctx, ctx, cpu)) {
			partial_group = event;
692 693 694 695 696 697 698 699 700 701 702
			goto group_error;
		}
	}

	return 0;

group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
703 704
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
705
			break;
706
		event_sched_out(event, cpuctx, ctx);
707
	}
708
	event_sched_out(group_event, cpuctx, ctx);
709 710 711 712

	return -EAGAIN;
}

713
/*
714
 * Work out whether we can put this event group on the CPU now.
715
 */
716
static int group_can_go_on(struct perf_event *event,
717 718 719 720
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
721
	 * Groups consisting entirely of software events can always go on.
722
	 */
723
	if (event->group_flags & PERF_GROUP_SOFTWARE)
724 725 726
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
727
	 * events can go on.
728 729 730 731 732
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
733
	 * events on the CPU, it can't go on.
734
	 */
735
	if (event->attr.exclusive && cpuctx->active_oncpu)
736 737 738 739 740 741 742 743
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

744 745
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
746
{
747 748 749 750
	list_add_event(event, ctx);
	event->tstamp_enabled = ctx->time;
	event->tstamp_running = ctx->time;
	event->tstamp_stopped = ctx->time;
751 752
}

T
Thomas Gleixner 已提交
753
/*
754
 * Cross CPU call to install and enable a performance event
755 756
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
757 758 759 760
 */
static void __perf_install_in_context(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
761 762 763
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
T
Thomas Gleixner 已提交
764
	int cpu = smp_processor_id();
765
	int err;
T
Thomas Gleixner 已提交
766 767 768 769 770

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
771
	 * Or possibly this is the right context but it isn't
772
	 * on this cpu because it had no events.
T
Thomas Gleixner 已提交
773
	 */
774
	if (ctx->task && cpuctx->task_ctx != ctx) {
775
		if (cpuctx->task_ctx || ctx->task != current)
776 777 778
			return;
		cpuctx->task_ctx = ctx;
	}
T
Thomas Gleixner 已提交
779

780
	raw_spin_lock(&ctx->lock);
781
	ctx->is_active = 1;
782
	update_context_time(ctx);
T
Thomas Gleixner 已提交
783 784 785

	/*
	 * Protect the list operation against NMI by disabling the
786
	 * events on a global level. NOP for non NMI based events.
T
Thomas Gleixner 已提交
787
	 */
788
	perf_disable();
T
Thomas Gleixner 已提交
789

790
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
791

792 793 794
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

795
	/*
796
	 * Don't put the event on if it is disabled or if
797 798
	 * it is in a group and the group isn't on.
	 */
799 800
	if (event->state != PERF_EVENT_STATE_INACTIVE ||
	    (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
801 802
		goto unlock;

803
	/*
804 805 806
	 * An exclusive event can't go on if there are already active
	 * hardware events, and no hardware event can go on if there
	 * is already an exclusive event on.
807
	 */
808
	if (!group_can_go_on(event, cpuctx, 1))
809 810
		err = -EEXIST;
	else
811
		err = event_sched_in(event, cpuctx, ctx, cpu);
812

813 814
	if (err) {
		/*
815
		 * This event couldn't go on.  If it is in a group
816
		 * then we have to pull the whole group off.
817
		 * If the event group is pinned then put it in error state.
818
		 */
819
		if (leader != event)
820
			group_sched_out(leader, cpuctx, ctx);
821
		if (leader->attr.pinned) {
822
			update_group_times(leader);
823
			leader->state = PERF_EVENT_STATE_ERROR;
824
		}
825
	}
T
Thomas Gleixner 已提交
826

827
	if (!err && !ctx->task && cpuctx->max_pertask)
T
Thomas Gleixner 已提交
828 829
		cpuctx->max_pertask--;

830
 unlock:
831
	perf_enable();
832

833
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
834 835 836
}

/*
837
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
838
 *
839 840
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
841
 *
842
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
843 844
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
845 846
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
847 848
 */
static void
849 850
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
851 852 853 854 855 856
			int cpu)
{
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
857
		 * Per cpu events are installed via an smp call and
858
		 * the install is always successful.
T
Thomas Gleixner 已提交
859 860
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
861
					 event, 1);
T
Thomas Gleixner 已提交
862 863 864 865 866
		return;
	}

retry:
	task_oncpu_function_call(task, __perf_install_in_context,
867
				 event);
T
Thomas Gleixner 已提交
868

869
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
870 871 872
	/*
	 * we need to retry the smp call.
	 */
873
	if (ctx->is_active && list_empty(&event->group_entry)) {
874
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
875 876 877 878 879
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
880
	 * can add the event safely, if it the call above did not
T
Thomas Gleixner 已提交
881 882
	 * succeed.
	 */
883 884
	if (list_empty(&event->group_entry))
		add_event_to_ctx(event, ctx);
885
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
886 887
}

888
/*
889
 * Put a event into inactive state and update time fields.
890 891 892 893 894 895
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
896 897
static void __perf_event_mark_enabled(struct perf_event *event,
					struct perf_event_context *ctx)
898
{
899
	struct perf_event *sub;
900

901 902 903 904
	event->state = PERF_EVENT_STATE_INACTIVE;
	event->tstamp_enabled = ctx->time - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry)
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
905 906 907 908
			sub->tstamp_enabled =
				ctx->time - sub->total_time_enabled;
}

909
/*
910
 * Cross CPU call to enable a performance event
911
 */
912
static void __perf_event_enable(void *info)
913
{
914
	struct perf_event *event = info;
915
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
916 917
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
918
	int err;
919

920
	/*
921 922
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
923
	 */
924
	if (ctx->task && cpuctx->task_ctx != ctx) {
925
		if (cpuctx->task_ctx || ctx->task != current)
926 927 928
			return;
		cpuctx->task_ctx = ctx;
	}
929

930
	raw_spin_lock(&ctx->lock);
931
	ctx->is_active = 1;
932
	update_context_time(ctx);
933

934
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
935
		goto unlock;
936
	__perf_event_mark_enabled(event, ctx);
937

938 939 940
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

941
	/*
942
	 * If the event is in a group and isn't the group leader,
943
	 * then don't put it on unless the group is on.
944
	 */
945
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
946
		goto unlock;
947

948
	if (!group_can_go_on(event, cpuctx, 1)) {
949
		err = -EEXIST;
950
	} else {
951
		perf_disable();
952 953
		if (event == leader)
			err = group_sched_in(event, cpuctx, ctx,
954 955
					     smp_processor_id());
		else
956
			err = event_sched_in(event, cpuctx, ctx,
957
					       smp_processor_id());
958
		perf_enable();
959
	}
960 961 962

	if (err) {
		/*
963
		 * If this event can't go on and it's part of a
964 965
		 * group, then the whole group has to come off.
		 */
966
		if (leader != event)
967
			group_sched_out(leader, cpuctx, ctx);
968
		if (leader->attr.pinned) {
969
			update_group_times(leader);
970
			leader->state = PERF_EVENT_STATE_ERROR;
971
		}
972 973 974
	}

 unlock:
975
	raw_spin_unlock(&ctx->lock);
976 977 978
}

/*
979
 * Enable a event.
980
 *
981 982
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
983
 * remains valid.  This condition is satisfied when called through
984 985
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
986
 */
987
void perf_event_enable(struct perf_event *event)
988
{
989
	struct perf_event_context *ctx = event->ctx;
990 991 992 993
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
994
		 * Enable the event on the cpu that it's on
995
		 */
996 997
		smp_call_function_single(event->cpu, __perf_event_enable,
					 event, 1);
998 999 1000
		return;
	}

1001
	raw_spin_lock_irq(&ctx->lock);
1002
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1003 1004 1005
		goto out;

	/*
1006 1007
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
1008 1009 1010 1011
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
1012 1013
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
1014 1015

 retry:
1016
	raw_spin_unlock_irq(&ctx->lock);
1017
	task_oncpu_function_call(task, __perf_event_enable, event);
1018

1019
	raw_spin_lock_irq(&ctx->lock);
1020 1021

	/*
1022
	 * If the context is active and the event is still off,
1023 1024
	 * we need to retry the cross-call.
	 */
1025
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1026 1027 1028 1029 1030 1031
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1032 1033
	if (event->state == PERF_EVENT_STATE_OFF)
		__perf_event_mark_enabled(event, ctx);
1034

1035
 out:
1036
	raw_spin_unlock_irq(&ctx->lock);
1037 1038
}

1039
static int perf_event_refresh(struct perf_event *event, int refresh)
1040
{
1041
	/*
1042
	 * not supported on inherited events
1043
	 */
1044
	if (event->attr.inherit)
1045 1046
		return -EINVAL;

1047 1048
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1049 1050

	return 0;
1051 1052
}

1053 1054 1055 1056 1057 1058 1059 1060 1061
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
1062
{
1063
	struct perf_event *event;
1064

1065
	raw_spin_lock(&ctx->lock);
1066
	ctx->is_active = 0;
1067
	if (likely(!ctx->nr_events))
1068
		goto out;
1069
	update_context_time(ctx);
1070

1071
	perf_disable();
1072 1073 1074 1075
	if (!ctx->nr_active)
		goto out_enable;

	if (event_type & EVENT_PINNED)
1076 1077 1078
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);

1079
	if (event_type & EVENT_FLEXIBLE)
1080
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1081
			group_sched_out(event, cpuctx, ctx);
1082 1083

 out_enable:
1084
	perf_enable();
1085
 out:
1086
	raw_spin_unlock(&ctx->lock);
1087 1088
}

1089 1090 1091
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1092 1093 1094 1095
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1096
 * in them directly with an fd; we can only enable/disable all
1097
 * events via prctl, or enable/disable all events in a family
1098 1099
 * via ioctl, which will have the same effect on both contexts.
 */
1100 1101
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1102 1103
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1104
		&& ctx1->parent_gen == ctx2->parent_gen
1105
		&& !ctx1->pin_count && !ctx2->pin_count;
1106 1107
}

1108 1109
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1110 1111 1112
{
	u64 value;

1113
	if (!event->attr.inherit_stat)
1114 1115 1116
		return;

	/*
1117
	 * Update the event value, we cannot use perf_event_read()
1118 1119
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1120
	 * we know the event must be on the current CPU, therefore we
1121 1122
	 * don't need to use it.
	 */
1123 1124
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1125 1126
		event->pmu->read(event);
		/* fall-through */
1127

1128 1129
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1130 1131 1132 1133 1134 1135 1136
		break;

	default:
		break;
	}

	/*
1137
	 * In order to keep per-task stats reliable we need to flip the event
1138 1139
	 * values when we flip the contexts.
	 */
1140 1141 1142
	value = atomic64_read(&next_event->count);
	value = atomic64_xchg(&event->count, value);
	atomic64_set(&next_event->count, value);
1143

1144 1145
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1146

1147
	/*
1148
	 * Since we swizzled the values, update the user visible data too.
1149
	 */
1150 1151
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1152 1153 1154 1155 1156
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1157 1158
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1159
{
1160
	struct perf_event *event, *next_event;
1161 1162 1163 1164

	if (!ctx->nr_stat)
		return;

1165 1166
	update_context_time(ctx);

1167 1168
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1169

1170 1171
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1172

1173 1174
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1175

1176
		__perf_event_sync_stat(event, next_event);
1177

1178 1179
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1180 1181 1182
	}
}

T
Thomas Gleixner 已提交
1183
/*
1184
 * Called from scheduler to remove the events of the current task,
T
Thomas Gleixner 已提交
1185 1186
 * with interrupts disabled.
 *
1187
 * We stop each event and update the event value in event->count.
T
Thomas Gleixner 已提交
1188
 *
I
Ingo Molnar 已提交
1189
 * This does not protect us against NMI, but disable()
1190 1191 1192
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
T
Thomas Gleixner 已提交
1193
 */
1194
void perf_event_task_sched_out(struct task_struct *task,
1195
				 struct task_struct *next)
T
Thomas Gleixner 已提交
1196
{
1197
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1198 1199 1200
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
1201
	struct pt_regs *regs;
1202
	int do_switch = 1;
T
Thomas Gleixner 已提交
1203

1204
	regs = task_pt_regs(task);
1205
	perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1206

1207
	if (likely(!ctx || !cpuctx->task_ctx))
T
Thomas Gleixner 已提交
1208 1209
		return;

1210 1211
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
1212
	next_ctx = next->perf_event_ctxp;
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
1224 1225
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1226
		if (context_equiv(ctx, next_ctx)) {
1227 1228
			/*
			 * XXX do we need a memory barrier of sorts
1229
			 * wrt to rcu_dereference() of perf_event_ctxp
1230
			 */
1231 1232
			task->perf_event_ctxp = next_ctx;
			next->perf_event_ctxp = ctx;
1233 1234 1235
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1236

1237
			perf_event_sync_stat(ctx, next_ctx);
1238
		}
1239 1240
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
1241
	}
1242
	rcu_read_unlock();
1243

1244
	if (do_switch) {
1245
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1246 1247
		cpuctx->task_ctx = NULL;
	}
T
Thomas Gleixner 已提交
1248 1249
}

1250 1251
static void task_ctx_sched_out(struct perf_event_context *ctx,
			       enum event_type_t event_type)
1252 1253 1254
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);

1255 1256
	if (!cpuctx->task_ctx)
		return;
1257 1258 1259 1260

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

1261
	ctx_sched_out(ctx, cpuctx, event_type);
1262 1263 1264
	cpuctx->task_ctx = NULL;
}

1265 1266 1267
/*
 * Called with IRQs disabled
 */
1268
static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1269
{
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
	task_ctx_sched_out(ctx, EVENT_ALL);
}

/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1280 1281
}

1282
static void
1283 1284 1285
ctx_pinned_sched_in(struct perf_event_context *ctx,
		    struct perf_cpu_context *cpuctx,
		    int cpu)
T
Thomas Gleixner 已提交
1286
{
1287
	struct perf_event *event;
T
Thomas Gleixner 已提交
1288

1289 1290
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
1291
			continue;
1292
		if (event->cpu != -1 && event->cpu != cpu)
1293 1294
			continue;

1295 1296
		if (group_can_go_on(event, cpuctx, 1))
			group_sched_in(event, cpuctx, ctx, cpu);
1297 1298 1299 1300 1301

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
1302 1303 1304
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
1305
		}
1306
	}
1307 1308 1309 1310 1311 1312 1313 1314 1315
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
		      struct perf_cpu_context *cpuctx,
		      int cpu)
{
	struct perf_event *event;
	int can_add_hw = 1;
1316

1317 1318 1319
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
1320
			continue;
1321 1322
		/*
		 * Listen to the 'cpu' scheduling filter constraint
1323
		 * of events:
1324
		 */
1325
		if (event->cpu != -1 && event->cpu != cpu)
T
Thomas Gleixner 已提交
1326 1327
			continue;

1328 1329
		if (group_can_go_on(event, cpuctx, can_add_hw))
			if (group_sched_in(event, cpuctx, ctx, cpu))
1330
				can_add_hw = 0;
T
Thomas Gleixner 已提交
1331
	}
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type)
{
	int cpu = smp_processor_id();

	raw_spin_lock(&ctx->lock);
	ctx->is_active = 1;
	if (likely(!ctx->nr_events))
		goto out;

	ctx->timestamp = perf_clock();

	perf_disable();

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	if (event_type & EVENT_PINNED)
		ctx_pinned_sched_in(ctx, cpuctx, cpu);

	/* Then walk through the lower prio flexible groups */
	if (event_type & EVENT_FLEXIBLE)
		ctx_flexible_sched_in(ctx, cpuctx, cpu);

1361
	perf_enable();
1362
 out:
1363
	raw_spin_unlock(&ctx->lock);
1364 1365
}

1366 1367 1368 1369 1370 1371 1372 1373
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
			     enum event_type_t event_type)
{
	struct perf_event_context *ctx = &cpuctx->ctx;

	ctx_sched_in(ctx, cpuctx, event_type);
}

1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
static void task_ctx_sched_in(struct task_struct *task,
			      enum event_type_t event_type)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_event_context *ctx = task->perf_event_ctxp;

	if (likely(!ctx))
		return;
	if (cpuctx->task_ctx == ctx)
		return;
	ctx_sched_in(ctx, cpuctx, event_type);
	cpuctx->task_ctx = ctx;
}
1387
/*
1388
 * Called from scheduler to add the events of the current task
1389 1390
 * with interrupts disabled.
 *
1391
 * We restore the event value and then enable it.
1392 1393
 *
 * This does not protect us against NMI, but enable()
1394 1395 1396
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
1397
 */
1398
void perf_event_task_sched_in(struct task_struct *task)
1399
{
1400 1401
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_event_context *ctx = task->perf_event_ctxp;
T
Thomas Gleixner 已提交
1402

1403 1404
	if (likely(!ctx))
		return;
1405

1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
	if (cpuctx->task_ctx == ctx)
		return;

	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

	ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
	ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);

	cpuctx->task_ctx = ctx;
1421 1422
}

1423 1424
#define MAX_INTERRUPTS (~0ULL)

1425
static void perf_log_throttle(struct perf_event *event, int enable);
1426

1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
#define REDUCE_FLS(a, b) 		\
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

	return div64_u64(dividend, divisor);
}

1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
static void perf_event_stop(struct perf_event *event)
{
	if (!event->pmu->stop)
		return event->pmu->disable(event);

	return event->pmu->stop(event);
}

static int perf_event_start(struct perf_event *event)
{
	if (!event->pmu->start)
		return event->pmu->enable(event);

	return event->pmu->start(event);
}

1513
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1514
{
1515
	struct hw_perf_event *hwc = &event->hw;
1516 1517 1518
	u64 period, sample_period;
	s64 delta;

1519
	period = perf_calculate_period(event, nsec, count);
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
1530 1531 1532

	if (atomic64_read(&hwc->period_left) > 8*sample_period) {
		perf_disable();
1533
		perf_event_stop(event);
1534
		atomic64_set(&hwc->period_left, 0);
1535
		perf_event_start(event);
1536 1537
		perf_enable();
	}
1538 1539
}

1540
static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1541
{
1542 1543
	struct perf_event *event;
	struct hw_perf_event *hwc;
1544 1545
	u64 interrupts, now;
	s64 delta;
1546

1547
	raw_spin_lock(&ctx->lock);
1548
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1549
		if (event->state != PERF_EVENT_STATE_ACTIVE)
1550 1551
			continue;

1552 1553 1554
		if (event->cpu != -1 && event->cpu != smp_processor_id())
			continue;

1555
		hwc = &event->hw;
1556 1557 1558

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
1559

1560
		/*
1561
		 * unthrottle events on the tick
1562
		 */
1563
		if (interrupts == MAX_INTERRUPTS) {
1564 1565
			perf_log_throttle(event, 1);
			event->pmu->unthrottle(event);
1566 1567
		}

1568
		if (!event->attr.freq || !event->attr.sample_freq)
1569 1570
			continue;

1571 1572 1573 1574
		event->pmu->read(event);
		now = atomic64_read(&event->count);
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
1575

1576 1577
		if (delta > 0)
			perf_adjust_period(event, TICK_NSEC, delta);
1578
	}
1579
	raw_spin_unlock(&ctx->lock);
1580 1581
}

1582
/*
1583
 * Round-robin a context's events:
1584
 */
1585
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
1586
{
1587
	if (!ctx->nr_events)
T
Thomas Gleixner 已提交
1588 1589
		return;

1590
	raw_spin_lock(&ctx->lock);
1591 1592 1593 1594

	/* Rotate the first entry last of non-pinned groups */
	list_rotate_left(&ctx->flexible_groups);

1595
	raw_spin_unlock(&ctx->lock);
1596 1597
}

1598
void perf_event_task_tick(struct task_struct *curr)
1599
{
1600
	struct perf_cpu_context *cpuctx;
1601
	struct perf_event_context *ctx;
1602

1603
	if (!atomic_read(&nr_events))
1604 1605
		return;

1606
	cpuctx = &__get_cpu_var(perf_cpu_context);
1607
	ctx = curr->perf_event_ctxp;
1608

1609 1610
	perf_disable();

1611
	perf_ctx_adjust_freq(&cpuctx->ctx);
1612
	if (ctx)
1613
		perf_ctx_adjust_freq(ctx);
1614

1615
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1616
	if (ctx)
1617
		task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
1618

1619
	rotate_ctx(&cpuctx->ctx);
1620 1621
	if (ctx)
		rotate_ctx(ctx);
1622

1623
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1624
	if (ctx)
1625
		task_ctx_sched_in(curr, EVENT_FLEXIBLE);
1626 1627

	perf_enable();
T
Thomas Gleixner 已提交
1628 1629
}

1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

	__perf_event_mark_enabled(event, ctx);

	return 1;
}

1645
/*
1646
 * Enable all of a task's events that have been marked enable-on-exec.
1647 1648
 * This expects task == current.
 */
1649
static void perf_event_enable_on_exec(struct task_struct *task)
1650
{
1651 1652
	struct perf_event_context *ctx;
	struct perf_event *event;
1653 1654
	unsigned long flags;
	int enabled = 0;
1655
	int ret;
1656 1657

	local_irq_save(flags);
1658 1659
	ctx = task->perf_event_ctxp;
	if (!ctx || !ctx->nr_events)
1660 1661
		goto out;

1662
	__perf_event_task_sched_out(ctx);
1663

1664
	raw_spin_lock(&ctx->lock);
1665

1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
	}

	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
1676 1677 1678
	}

	/*
1679
	 * Unclone this context if we enabled any event.
1680
	 */
1681 1682
	if (enabled)
		unclone_ctx(ctx);
1683

1684
	raw_spin_unlock(&ctx->lock);
1685

1686
	perf_event_task_sched_in(task);
1687 1688 1689 1690
 out:
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
1691
/*
1692
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
1693
 */
1694
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
1695
{
1696
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1697 1698
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
I
Ingo Molnar 已提交
1699

1700 1701 1702 1703
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
1704 1705
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
1706 1707 1708 1709
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

1710
	raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1711
	update_context_time(ctx);
1712
	update_event_times(event);
1713
	raw_spin_unlock(&ctx->lock);
P
Peter Zijlstra 已提交
1714

P
Peter Zijlstra 已提交
1715
	event->pmu->read(event);
T
Thomas Gleixner 已提交
1716 1717
}

1718
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
1719 1720
{
	/*
1721 1722
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
1723
	 */
1724 1725 1726 1727
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
1728 1729 1730
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

1731
		raw_spin_lock_irqsave(&ctx->lock, flags);
P
Peter Zijlstra 已提交
1732
		update_context_time(ctx);
1733
		update_event_times(event);
1734
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1735 1736
	}

1737
	return atomic64_read(&event->count);
T
Thomas Gleixner 已提交
1738 1739
}

1740
/*
1741
 * Initialize the perf_event context in a task_struct:
1742 1743
 */
static void
1744
__perf_event_init_context(struct perf_event_context *ctx,
1745 1746
			    struct task_struct *task)
{
1747
	raw_spin_lock_init(&ctx->lock);
1748
	mutex_init(&ctx->mutex);
1749 1750
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
1751 1752 1753 1754 1755
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
	ctx->task = task;
}

1756
static struct perf_event_context *find_get_context(pid_t pid, int cpu)
T
Thomas Gleixner 已提交
1757
{
1758
	struct perf_event_context *ctx;
1759
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
1760
	struct task_struct *task;
1761
	unsigned long flags;
1762
	int err;
T
Thomas Gleixner 已提交
1763

1764
	if (pid == -1 && cpu != -1) {
1765
		/* Must be root to operate on a CPU event: */
1766
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
1767 1768
			return ERR_PTR(-EACCES);

1769
		if (cpu < 0 || cpu >= nr_cpumask_bits)
T
Thomas Gleixner 已提交
1770 1771 1772
			return ERR_PTR(-EINVAL);

		/*
1773
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
1774 1775 1776
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
1777
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
1778 1779 1780 1781
			return ERR_PTR(-ENODEV);

		cpuctx = &per_cpu(perf_cpu_context, cpu);
		ctx = &cpuctx->ctx;
1782
		get_ctx(ctx);
T
Thomas Gleixner 已提交
1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

1799
	/*
1800
	 * Can't attach events to a dying task.
1801 1802 1803 1804 1805
	 */
	err = -ESRCH;
	if (task->flags & PF_EXITING)
		goto errout;

T
Thomas Gleixner 已提交
1806
	/* Reuse ptrace permission checks for now. */
1807 1808 1809 1810 1811
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

 retry:
1812
	ctx = perf_lock_task_context(task, &flags);
1813
	if (ctx) {
1814
		unclone_ctx(ctx);
1815
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1816 1817
	}

1818
	if (!ctx) {
1819
		ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1820 1821 1822
		err = -ENOMEM;
		if (!ctx)
			goto errout;
1823
		__perf_event_init_context(ctx, task);
1824
		get_ctx(ctx);
1825
		if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1826 1827 1828 1829 1830
			/*
			 * We raced with some other task; use
			 * the context they set.
			 */
			kfree(ctx);
1831
			goto retry;
1832
		}
1833
		get_task_struct(task);
1834 1835
	}

1836
	put_task_struct(task);
T
Thomas Gleixner 已提交
1837
	return ctx;
1838 1839 1840 1841

 errout:
	put_task_struct(task);
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
1842 1843
}

L
Li Zefan 已提交
1844 1845
static void perf_event_free_filter(struct perf_event *event);

1846
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
1847
{
1848
	struct perf_event *event;
P
Peter Zijlstra 已提交
1849

1850 1851 1852
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
1853
	perf_event_free_filter(event);
1854
	kfree(event);
P
Peter Zijlstra 已提交
1855 1856
}

1857
static void perf_pending_sync(struct perf_event *event);
1858

1859
static void free_event(struct perf_event *event)
1860
{
1861
	perf_pending_sync(event);
1862

1863 1864 1865 1866 1867 1868 1869 1870
	if (!event->parent) {
		atomic_dec(&nr_events);
		if (event->attr.mmap)
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
1871
	}
1872

1873 1874 1875
	if (event->output) {
		fput(event->output->filp);
		event->output = NULL;
1876 1877
	}

1878 1879
	if (event->destroy)
		event->destroy(event);
1880

1881 1882
	put_ctx(event->ctx);
	call_rcu(&event->rcu_head, free_event_rcu);
1883 1884
}

1885
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
1886
{
1887
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1888

1889
	WARN_ON_ONCE(ctx->parent_ctx);
1890
	mutex_lock(&ctx->mutex);
1891
	perf_event_remove_from_context(event);
1892
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
1893

1894 1895 1896 1897
	mutex_lock(&event->owner->perf_event_mutex);
	list_del_init(&event->owner_entry);
	mutex_unlock(&event->owner->perf_event_mutex);
	put_task_struct(event->owner);
1898

1899
	free_event(event);
T
Thomas Gleixner 已提交
1900 1901 1902

	return 0;
}
1903
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
1904

1905 1906 1907 1908
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
1909
{
1910
	struct perf_event *event = file->private_data;
1911

1912
	file->private_data = NULL;
1913

1914
	return perf_event_release_kernel(event);
1915 1916
}

1917
static int perf_event_read_size(struct perf_event *event)
1918 1919 1920 1921 1922
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

1923
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1924 1925
		size += sizeof(u64);

1926
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1927 1928
		size += sizeof(u64);

1929
	if (event->attr.read_format & PERF_FORMAT_ID)
1930 1931
		entry += sizeof(u64);

1932 1933
	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
1934 1935 1936 1937 1938 1939 1940 1941
		size += sizeof(u64);
	}

	size += entry * nr;

	return size;
}

1942
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
1943
{
1944
	struct perf_event *child;
1945 1946
	u64 total = 0;

1947 1948 1949
	*enabled = 0;
	*running = 0;

1950
	mutex_lock(&event->child_mutex);
1951
	total += perf_event_read(event);
1952 1953 1954 1955 1956 1957
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
1958
		total += perf_event_read(child);
1959 1960 1961
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
1962
	mutex_unlock(&event->child_mutex);
1963 1964 1965

	return total;
}
1966
EXPORT_SYMBOL_GPL(perf_event_read_value);
1967

1968
static int perf_event_read_group(struct perf_event *event,
1969 1970
				   u64 read_format, char __user *buf)
{
1971
	struct perf_event *leader = event->group_leader, *sub;
1972 1973
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
1974
	u64 values[5];
1975
	u64 count, enabled, running;
1976

1977
	mutex_lock(&ctx->mutex);
1978
	count = perf_event_read_value(leader, &enabled, &running);
1979 1980

	values[n++] = 1 + leader->nr_siblings;
1981 1982 1983 1984
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
1985 1986 1987
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
1988 1989 1990 1991

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
1992
		goto unlock;
1993

1994
	ret = size;
1995

1996
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1997
		n = 0;
1998

1999
		values[n++] = perf_event_read_value(sub, &enabled, &running);
2000 2001 2002 2003 2004
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

2005
		if (copy_to_user(buf + ret, values, size)) {
2006 2007 2008
			ret = -EFAULT;
			goto unlock;
		}
2009 2010

		ret += size;
2011
	}
2012 2013
unlock:
	mutex_unlock(&ctx->mutex);
2014

2015
	return ret;
2016 2017
}

2018
static int perf_event_read_one(struct perf_event *event,
2019 2020
				 u64 read_format, char __user *buf)
{
2021
	u64 enabled, running;
2022 2023 2024
	u64 values[4];
	int n = 0;

2025 2026 2027 2028 2029
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
2030
	if (read_format & PERF_FORMAT_ID)
2031
		values[n++] = primary_event_id(event);
2032 2033 2034 2035 2036 2037 2038

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
2039
/*
2040
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
2041 2042
 */
static ssize_t
2043
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
2044
{
2045
	u64 read_format = event->attr.read_format;
2046
	int ret;
T
Thomas Gleixner 已提交
2047

2048
	/*
2049
	 * Return end-of-file for a read on a event that is in
2050 2051 2052
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
2053
	if (event->state == PERF_EVENT_STATE_ERROR)
2054 2055
		return 0;

2056
	if (count < perf_event_read_size(event))
2057 2058
		return -ENOSPC;

2059
	WARN_ON_ONCE(event->ctx->parent_ctx);
2060
	if (read_format & PERF_FORMAT_GROUP)
2061
		ret = perf_event_read_group(event, read_format, buf);
2062
	else
2063
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
2064

2065
	return ret;
T
Thomas Gleixner 已提交
2066 2067 2068 2069 2070
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
2071
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
2072

2073
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
2074 2075 2076 2077
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
2078
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
2079
	struct perf_mmap_data *data;
2080
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
2081 2082

	rcu_read_lock();
2083
	data = rcu_dereference(event->data);
P
Peter Zijlstra 已提交
2084
	if (data)
2085
		events = atomic_xchg(&data->poll, 0);
P
Peter Zijlstra 已提交
2086
	rcu_read_unlock();
T
Thomas Gleixner 已提交
2087

2088
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
2089 2090 2091 2092

	return events;
}

2093
static void perf_event_reset(struct perf_event *event)
2094
{
2095 2096 2097
	(void)perf_event_read(event);
	atomic64_set(&event->count, 0);
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
2098 2099
}

2100
/*
2101 2102 2103 2104
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
2105
 */
2106 2107
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
2108
{
2109
	struct perf_event *child;
P
Peter Zijlstra 已提交
2110

2111 2112 2113 2114
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
2115
		func(child);
2116
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
2117 2118
}

2119 2120
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
2121
{
2122 2123
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
2124

2125 2126
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
2127
	event = event->group_leader;
2128

2129 2130 2131 2132
	perf_event_for_each_child(event, func);
	func(event);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
		perf_event_for_each_child(event, func);
2133
	mutex_unlock(&ctx->mutex);
2134 2135
}

2136
static int perf_event_period(struct perf_event *event, u64 __user *arg)
2137
{
2138
	struct perf_event_context *ctx = event->ctx;
2139 2140 2141 2142
	unsigned long size;
	int ret = 0;
	u64 value;

2143
	if (!event->attr.sample_period)
2144 2145 2146 2147 2148 2149 2150 2151 2152
		return -EINVAL;

	size = copy_from_user(&value, arg, sizeof(value));
	if (size != sizeof(value))
		return -EFAULT;

	if (!value)
		return -EINVAL;

2153
	raw_spin_lock_irq(&ctx->lock);
2154 2155
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
2156 2157 2158 2159
			ret = -EINVAL;
			goto unlock;
		}

2160
		event->attr.sample_freq = value;
2161
	} else {
2162 2163
		event->attr.sample_period = value;
		event->hw.sample_period = value;
2164 2165
	}
unlock:
2166
	raw_spin_unlock_irq(&ctx->lock);
2167 2168 2169 2170

	return ret;
}

L
Li Zefan 已提交
2171 2172
static int perf_event_set_output(struct perf_event *event, int output_fd);
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2173

2174 2175
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
2176 2177
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
2178
	u32 flags = arg;
2179 2180

	switch (cmd) {
2181 2182
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
2183
		break;
2184 2185
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
2186
		break;
2187 2188
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
2189
		break;
P
Peter Zijlstra 已提交
2190

2191 2192
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
2193

2194 2195
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
2196

2197 2198
	case PERF_EVENT_IOC_SET_OUTPUT:
		return perf_event_set_output(event, arg);
2199

L
Li Zefan 已提交
2200 2201 2202
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

2203
	default:
P
Peter Zijlstra 已提交
2204
		return -ENOTTY;
2205
	}
P
Peter Zijlstra 已提交
2206 2207

	if (flags & PERF_IOC_FLAG_GROUP)
2208
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
2209
	else
2210
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
2211 2212

	return 0;
2213 2214
}

2215
int perf_event_task_enable(void)
2216
{
2217
	struct perf_event *event;
2218

2219 2220 2221 2222
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
2223 2224 2225 2226

	return 0;
}

2227
int perf_event_task_disable(void)
2228
{
2229
	struct perf_event *event;
2230

2231 2232 2233 2234
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
2235 2236 2237 2238

	return 0;
}

2239 2240
#ifndef PERF_EVENT_INDEX_OFFSET
# define PERF_EVENT_INDEX_OFFSET 0
I
Ingo Molnar 已提交
2241 2242
#endif

2243
static int perf_event_index(struct perf_event *event)
2244
{
2245
	if (event->state != PERF_EVENT_STATE_ACTIVE)
2246 2247
		return 0;

2248
	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2249 2250
}

2251 2252 2253 2254 2255
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
2256
void perf_event_update_userpage(struct perf_event *event)
2257
{
2258
	struct perf_event_mmap_page *userpg;
2259
	struct perf_mmap_data *data;
2260 2261

	rcu_read_lock();
2262
	data = rcu_dereference(event->data);
2263 2264 2265 2266
	if (!data)
		goto unlock;

	userpg = data->user_page;
2267

2268 2269 2270 2271 2272
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
2273
	++userpg->lock;
2274
	barrier();
2275 2276 2277 2278
	userpg->index = perf_event_index(event);
	userpg->offset = atomic64_read(&event->count);
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		userpg->offset -= atomic64_read(&event->hw.prev_count);
2279

2280 2281
	userpg->time_enabled = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
2282

2283 2284
	userpg->time_running = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
2285

2286
	barrier();
2287
	++userpg->lock;
2288
	preempt_enable();
2289
unlock:
2290
	rcu_read_unlock();
2291 2292
}

2293
static unsigned long perf_data_size(struct perf_mmap_data *data)
2294
{
2295 2296
	return data->nr_pages << (PAGE_SHIFT + data->data_order);
}
2297

2298
#ifndef CONFIG_PERF_USE_VMALLOC
2299

2300 2301 2302
/*
 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
 */
2303

2304 2305 2306 2307 2308
static struct page *
perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
{
	if (pgoff > data->nr_pages)
		return NULL;
2309

2310 2311
	if (pgoff == 0)
		return virt_to_page(data->user_page);
2312

2313
	return virt_to_page(data->data_pages[pgoff - 1]);
2314 2315
}

2316 2317
static struct perf_mmap_data *
perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2318 2319 2320 2321 2322
{
	struct perf_mmap_data *data;
	unsigned long size;
	int i;

2323
	WARN_ON(atomic_read(&event->mmap_count));
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341

	size = sizeof(struct perf_mmap_data);
	size += nr_pages * sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
	if (!data->user_page)
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
		data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
		if (!data->data_pages[i])
			goto fail_data_pages;
	}

2342
	data->data_order = 0;
2343 2344
	data->nr_pages = nr_pages;

2345
	return data;
2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356

fail_data_pages:
	for (i--; i >= 0; i--)
		free_page((unsigned long)data->data_pages[i]);

	free_page((unsigned long)data->user_page);

fail_user_page:
	kfree(data);

fail:
2357
	return NULL;
2358 2359
}

2360 2361
static void perf_mmap_free_page(unsigned long addr)
{
K
Kevin Cernekee 已提交
2362
	struct page *page = virt_to_page((void *)addr);
2363 2364 2365 2366 2367

	page->mapping = NULL;
	__free_page(page);
}

2368
static void perf_mmap_data_free(struct perf_mmap_data *data)
2369 2370 2371
{
	int i;

2372
	perf_mmap_free_page((unsigned long)data->user_page);
2373
	for (i = 0; i < data->nr_pages; i++)
2374
		perf_mmap_free_page((unsigned long)data->data_pages[i]);
2375
	kfree(data);
2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
}

#else

/*
 * Back perf_mmap() with vmalloc memory.
 *
 * Required for architectures that have d-cache aliasing issues.
 */

static struct page *
perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
{
	if (pgoff > (1UL << data->data_order))
		return NULL;

	return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
}

static void perf_mmap_unmark_page(void *addr)
{
	struct page *page = vmalloc_to_page(addr);

	page->mapping = NULL;
}

static void perf_mmap_data_free_work(struct work_struct *work)
{
	struct perf_mmap_data *data;
	void *base;
	int i, nr;

	data = container_of(work, struct perf_mmap_data, work);
	nr = 1 << data->data_order;

	base = data->user_page;
	for (i = 0; i < nr + 1; i++)
		perf_mmap_unmark_page(base + (i * PAGE_SIZE));

	vfree(base);
2416
	kfree(data);
2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
}

static void perf_mmap_data_free(struct perf_mmap_data *data)
{
	schedule_work(&data->work);
}

static struct perf_mmap_data *
perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
{
	struct perf_mmap_data *data;
	unsigned long size;
	void *all_buf;

	WARN_ON(atomic_read(&event->mmap_count));
2432

2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509
	size = sizeof(struct perf_mmap_data);
	size += sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	INIT_WORK(&data->work, perf_mmap_data_free_work);

	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
	if (!all_buf)
		goto fail_all_buf;

	data->user_page = all_buf;
	data->data_pages[0] = all_buf + PAGE_SIZE;
	data->data_order = ilog2(nr_pages);
	data->nr_pages = 1;

	return data;

fail_all_buf:
	kfree(data);

fail:
	return NULL;
}

#endif

static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
	struct perf_mmap_data *data;
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
	data = rcu_dereference(event->data);
	if (!data)
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

	vmf->page = perf_mmap_to_page(data, vmf->pgoff);
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

static void
perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
{
	long max_size = perf_data_size(data);

	atomic_set(&data->lock, -1);

	if (event->attr.watermark) {
		data->watermark = min_t(long, max_size,
					event->attr.wakeup_watermark);
	}

	if (!data->watermark)
2510
		data->watermark = max_size / 2;
2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521


	rcu_assign_pointer(event->data, data);
}

static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
{
	struct perf_mmap_data *data;

	data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
	perf_mmap_data_free(data);
2522 2523
}

2524
static void perf_mmap_data_release(struct perf_event *event)
2525
{
2526
	struct perf_mmap_data *data = event->data;
2527

2528
	WARN_ON(atomic_read(&event->mmap_count));
2529

2530
	rcu_assign_pointer(event->data, NULL);
2531
	call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2532 2533 2534 2535
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
2536
	struct perf_event *event = vma->vm_file->private_data;
2537

2538
	atomic_inc(&event->mmap_count);
2539 2540 2541 2542
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
2543
	struct perf_event *event = vma->vm_file->private_data;
2544

2545 2546
	WARN_ON_ONCE(event->ctx->parent_ctx);
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2547
		unsigned long size = perf_data_size(event->data);
2548 2549
		struct user_struct *user = current_user();

2550
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2551
		vma->vm_mm->locked_vm -= event->data->nr_locked;
2552
		perf_mmap_data_release(event);
2553
		mutex_unlock(&event->mmap_mutex);
2554
	}
2555 2556
}

2557
static const struct vm_operations_struct perf_mmap_vmops = {
2558 2559 2560 2561
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
2562 2563 2564 2565
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
2566
	struct perf_event *event = file->private_data;
2567
	unsigned long user_locked, user_lock_limit;
2568
	struct user_struct *user = current_user();
2569
	unsigned long locked, lock_limit;
2570
	struct perf_mmap_data *data;
2571 2572
	unsigned long vma_size;
	unsigned long nr_pages;
2573
	long user_extra, extra;
2574
	int ret = 0;
2575

2576
	if (!(vma->vm_flags & VM_SHARED))
2577
		return -EINVAL;
2578 2579 2580 2581

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

2582 2583 2584 2585 2586
	/*
	 * If we have data pages ensure they're a power-of-two number, so we
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
2587 2588
		return -EINVAL;

2589
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
2590 2591
		return -EINVAL;

2592 2593
	if (vma->vm_pgoff != 0)
		return -EINVAL;
2594

2595 2596 2597
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
	if (event->output) {
2598 2599 2600 2601
		ret = -EINVAL;
		goto unlock;
	}

2602 2603
	if (atomic_inc_not_zero(&event->mmap_count)) {
		if (nr_pages != event->data->nr_pages)
2604 2605 2606 2607
			ret = -EINVAL;
		goto unlock;
	}

2608
	user_extra = nr_pages + 1;
2609
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
2610 2611 2612 2613 2614 2615

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

2616
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2617

2618 2619 2620
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
2621 2622 2623

	lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
	lock_limit >>= PAGE_SHIFT;
2624
	locked = vma->vm_mm->locked_vm + extra;
2625

2626 2627
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
2628 2629 2630
		ret = -EPERM;
		goto unlock;
	}
2631

2632
	WARN_ON(event->data);
2633 2634 2635 2636

	data = perf_mmap_data_alloc(event, nr_pages);
	ret = -ENOMEM;
	if (!data)
2637 2638
		goto unlock;

2639 2640 2641
	ret = 0;
	perf_mmap_data_init(event, data);

2642
	atomic_set(&event->mmap_count, 1);
2643
	atomic_long_add(user_extra, &user->locked_vm);
2644
	vma->vm_mm->locked_vm += extra;
2645
	event->data->nr_locked = extra;
2646
	if (vma->vm_flags & VM_WRITE)
2647
		event->data->writable = 1;
2648

2649
unlock:
2650
	mutex_unlock(&event->mmap_mutex);
2651 2652 2653

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
2654 2655

	return ret;
2656 2657
}

P
Peter Zijlstra 已提交
2658 2659 2660
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
2661
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
2662 2663 2664
	int retval;

	mutex_lock(&inode->i_mutex);
2665
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
2666 2667 2668 2669 2670 2671 2672 2673
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
2674 2675 2676 2677
static const struct file_operations perf_fops = {
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
2678 2679
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
2680
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
2681
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
2682 2683
};

2684
/*
2685
 * Perf event wakeup
2686 2687 2688 2689 2690
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

2691
void perf_event_wakeup(struct perf_event *event)
2692
{
2693
	wake_up_all(&event->waitq);
2694

2695 2696 2697
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
2698
	}
2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
}

/*
 * Pending wakeups
 *
 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
 *
 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
 * single linked list and use cmpxchg() to add entries lockless.
 */

2710
static void perf_pending_event(struct perf_pending_entry *entry)
2711
{
2712 2713
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
2714

2715 2716 2717
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
2718 2719
	}

2720 2721 2722
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
2723 2724 2725
	}
}

2726
#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2727

2728
static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2729 2730 2731
	PENDING_TAIL,
};

2732 2733
static void perf_pending_queue(struct perf_pending_entry *entry,
			       void (*func)(struct perf_pending_entry *))
2734
{
2735
	struct perf_pending_entry **head;
2736

2737
	if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2738 2739
		return;

2740 2741 2742
	entry->func = func;

	head = &get_cpu_var(perf_pending_head);
2743 2744

	do {
2745 2746
		entry->next = *head;
	} while (cmpxchg(head, entry->next, entry) != entry->next);
2747

2748
	set_perf_event_pending();
2749

2750
	put_cpu_var(perf_pending_head);
2751 2752 2753 2754
}

static int __perf_pending_run(void)
{
2755
	struct perf_pending_entry *list;
2756 2757
	int nr = 0;

2758
	list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2759
	while (list != PENDING_TAIL) {
2760 2761
		void (*func)(struct perf_pending_entry *);
		struct perf_pending_entry *entry = list;
2762 2763 2764

		list = list->next;

2765 2766
		func = entry->func;
		entry->next = NULL;
2767 2768 2769 2770 2771 2772 2773
		/*
		 * Ensure we observe the unqueue before we issue the wakeup,
		 * so that we won't be waiting forever.
		 * -- see perf_not_pending().
		 */
		smp_wmb();

2774
		func(entry);
2775 2776 2777 2778 2779 2780
		nr++;
	}

	return nr;
}

2781
static inline int perf_not_pending(struct perf_event *event)
2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795
{
	/*
	 * If we flush on whatever cpu we run, there is a chance we don't
	 * need to wait.
	 */
	get_cpu();
	__perf_pending_run();
	put_cpu();

	/*
	 * Ensure we see the proper queue state before going to sleep
	 * so that we do not miss the wakeup. -- see perf_pending_handle()
	 */
	smp_rmb();
2796
	return event->pending.next == NULL;
2797 2798
}

2799
static void perf_pending_sync(struct perf_event *event)
2800
{
2801
	wait_event(event->waitq, perf_not_pending(event));
2802 2803
}

2804
void perf_event_do_pending(void)
2805 2806 2807 2808
{
	__perf_pending_run();
}

2809 2810 2811 2812
/*
 * Callchain support -- arch specific
 */

2813
__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2814 2815 2816 2817
{
	return NULL;
}

2818 2819 2820
/*
 * Output
 */
2821 2822
static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
			      unsigned long offset, unsigned long head)
2823 2824 2825 2826 2827 2828
{
	unsigned long mask;

	if (!data->writable)
		return true;

2829
	mask = perf_data_size(data) - 1;
2830 2831 2832 2833 2834 2835 2836 2837 2838 2839

	offset = (offset - tail) & mask;
	head   = (head   - tail) & mask;

	if ((int)(head - offset) < 0)
		return false;

	return true;
}

2840
static void perf_output_wakeup(struct perf_output_handle *handle)
2841
{
2842 2843
	atomic_set(&handle->data->poll, POLL_IN);

2844
	if (handle->nmi) {
2845 2846 2847
		handle->event->pending_wakeup = 1;
		perf_pending_queue(&handle->event->pending,
				   perf_pending_event);
2848
	} else
2849
		perf_event_wakeup(handle->event);
2850 2851
}

2852 2853 2854
/*
 * Curious locking construct.
 *
2855 2856
 * We need to ensure a later event_id doesn't publish a head when a former
 * event_id isn't done writing. However since we need to deal with NMIs we
2857 2858 2859 2860 2861 2862
 * cannot fully serialize things.
 *
 * What we do is serialize between CPUs so we only have to deal with NMI
 * nesting on a single CPU.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
2863
 * event_id completes.
2864 2865 2866 2867
 */
static void perf_output_lock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
2868
	int cur, cpu = get_cpu();
2869 2870 2871

	handle->locked = 0;

2872 2873 2874 2875 2876 2877 2878 2879
	for (;;) {
		cur = atomic_cmpxchg(&data->lock, -1, cpu);
		if (cur == -1) {
			handle->locked = 1;
			break;
		}
		if (cur == cpu)
			break;
2880 2881

		cpu_relax();
2882
	}
2883 2884 2885 2886 2887
}

static void perf_output_unlock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
2888 2889
	unsigned long head;
	int cpu;
2890

2891
	data->done_head = data->head;
2892 2893 2894 2895 2896 2897 2898 2899 2900 2901

	if (!handle->locked)
		goto out;

again:
	/*
	 * The xchg implies a full barrier that ensures all writes are done
	 * before we publish the new head, matched by a rmb() in userspace when
	 * reading this position.
	 */
2902
	while ((head = atomic_long_xchg(&data->done_head, 0)))
2903 2904 2905
		data->user_page->data_head = head;

	/*
2906
	 * NMI can happen here, which means we can miss a done_head update.
2907 2908
	 */

2909
	cpu = atomic_xchg(&data->lock, -1);
2910 2911 2912 2913 2914
	WARN_ON_ONCE(cpu != smp_processor_id());

	/*
	 * Therefore we have to validate we did not indeed do so.
	 */
2915
	if (unlikely(atomic_long_read(&data->done_head))) {
2916 2917 2918
		/*
		 * Since we had it locked, we can lock it again.
		 */
2919
		while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2920 2921 2922 2923 2924
			cpu_relax();

		goto again;
	}

2925
	if (atomic_xchg(&data->wakeup, 0))
2926 2927
		perf_output_wakeup(handle);
out:
2928
	put_cpu();
2929 2930
}

2931 2932
void perf_output_copy(struct perf_output_handle *handle,
		      const void *buf, unsigned int len)
2933 2934
{
	unsigned int pages_mask;
2935
	unsigned long offset;
2936 2937 2938 2939 2940 2941 2942 2943
	unsigned int size;
	void **pages;

	offset		= handle->offset;
	pages_mask	= handle->data->nr_pages - 1;
	pages		= handle->data->data_pages;

	do {
2944 2945
		unsigned long page_offset;
		unsigned long page_size;
2946 2947 2948
		int nr;

		nr	    = (offset >> PAGE_SHIFT) & pages_mask;
2949 2950 2951
		page_size   = 1UL << (handle->data->data_order + PAGE_SHIFT);
		page_offset = offset & (page_size - 1);
		size	    = min_t(unsigned int, page_size - page_offset, len);
2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968

		memcpy(pages[nr] + page_offset, buf, size);

		len	    -= size;
		buf	    += size;
		offset	    += size;
	} while (len);

	handle->offset = offset;

	/*
	 * Check we didn't copy past our reservation window, taking the
	 * possible unsigned int wrap into account.
	 */
	WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
}

2969
int perf_output_begin(struct perf_output_handle *handle,
2970
		      struct perf_event *event, unsigned int size,
2971
		      int nmi, int sample)
2972
{
2973
	struct perf_event *output_event;
2974
	struct perf_mmap_data *data;
2975
	unsigned long tail, offset, head;
2976 2977 2978 2979 2980 2981
	int have_lost;
	struct {
		struct perf_event_header header;
		u64			 id;
		u64			 lost;
	} lost_event;
2982

2983
	rcu_read_lock();
2984
	/*
2985
	 * For inherited events we send all the output towards the parent.
2986
	 */
2987 2988
	if (event->parent)
		event = event->parent;
2989

2990 2991 2992
	output_event = rcu_dereference(event->output);
	if (output_event)
		event = output_event;
2993

2994
	data = rcu_dereference(event->data);
2995 2996 2997
	if (!data)
		goto out;

2998
	handle->data	= data;
2999
	handle->event	= event;
3000 3001
	handle->nmi	= nmi;
	handle->sample	= sample;
3002

3003
	if (!data->nr_pages)
3004
		goto fail;
3005

3006 3007 3008 3009
	have_lost = atomic_read(&data->lost);
	if (have_lost)
		size += sizeof(lost_event);

3010 3011
	perf_output_lock(handle);

3012
	do {
3013 3014 3015 3016 3017 3018 3019
		/*
		 * Userspace could choose to issue a mb() before updating the
		 * tail pointer. So that all reads will be completed before the
		 * write is issued.
		 */
		tail = ACCESS_ONCE(data->user_page->data_tail);
		smp_rmb();
3020
		offset = head = atomic_long_read(&data->head);
P
Peter Zijlstra 已提交
3021
		head += size;
3022
		if (unlikely(!perf_output_space(data, tail, offset, head)))
3023
			goto fail;
3024
	} while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
3025

3026
	handle->offset	= offset;
3027
	handle->head	= head;
3028

3029
	if (head - tail > data->watermark)
3030
		atomic_set(&data->wakeup, 1);
3031

3032
	if (have_lost) {
3033
		lost_event.header.type = PERF_RECORD_LOST;
3034 3035
		lost_event.header.misc = 0;
		lost_event.header.size = sizeof(lost_event);
3036
		lost_event.id          = event->id;
3037 3038 3039 3040 3041
		lost_event.lost        = atomic_xchg(&data->lost, 0);

		perf_output_put(handle, lost_event);
	}

3042
	return 0;
3043

3044
fail:
3045 3046
	atomic_inc(&data->lost);
	perf_output_unlock(handle);
3047 3048
out:
	rcu_read_unlock();
3049

3050 3051
	return -ENOSPC;
}
3052

3053
void perf_output_end(struct perf_output_handle *handle)
3054
{
3055
	struct perf_event *event = handle->event;
3056 3057
	struct perf_mmap_data *data = handle->data;

3058
	int wakeup_events = event->attr.wakeup_events;
P
Peter Zijlstra 已提交
3059

3060
	if (handle->sample && wakeup_events) {
3061
		int events = atomic_inc_return(&data->events);
P
Peter Zijlstra 已提交
3062
		if (events >= wakeup_events) {
3063
			atomic_sub(wakeup_events, &data->events);
3064
			atomic_set(&data->wakeup, 1);
P
Peter Zijlstra 已提交
3065
		}
3066 3067 3068
	}

	perf_output_unlock(handle);
3069
	rcu_read_unlock();
3070 3071
}

3072
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3073 3074
{
	/*
3075
	 * only top level events have the pid namespace they were created in
3076
	 */
3077 3078
	if (event->parent)
		event = event->parent;
3079

3080
	return task_tgid_nr_ns(p, event->ns);
3081 3082
}

3083
static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3084 3085
{
	/*
3086
	 * only top level events have the pid namespace they were created in
3087
	 */
3088 3089
	if (event->parent)
		event = event->parent;
3090

3091
	return task_pid_nr_ns(p, event->ns);
3092 3093
}

3094
static void perf_output_read_one(struct perf_output_handle *handle,
3095
				 struct perf_event *event)
3096
{
3097
	u64 read_format = event->attr.read_format;
3098 3099 3100
	u64 values[4];
	int n = 0;

3101
	values[n++] = atomic64_read(&event->count);
3102
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3103 3104
		values[n++] = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
3105 3106
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3107 3108
		values[n++] = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
3109 3110
	}
	if (read_format & PERF_FORMAT_ID)
3111
		values[n++] = primary_event_id(event);
3112 3113 3114 3115 3116

	perf_output_copy(handle, values, n * sizeof(u64));
}

/*
3117
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3118 3119
 */
static void perf_output_read_group(struct perf_output_handle *handle,
3120
			    struct perf_event *event)
3121
{
3122 3123
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = leader->total_time_enabled;

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = leader->total_time_running;

3135
	if (leader != event)
3136 3137 3138 3139
		leader->pmu->read(leader);

	values[n++] = atomic64_read(&leader->count);
	if (read_format & PERF_FORMAT_ID)
3140
		values[n++] = primary_event_id(leader);
3141 3142 3143

	perf_output_copy(handle, values, n * sizeof(u64));

3144
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3145 3146
		n = 0;

3147
		if (sub != event)
3148 3149 3150 3151
			sub->pmu->read(sub);

		values[n++] = atomic64_read(&sub->count);
		if (read_format & PERF_FORMAT_ID)
3152
			values[n++] = primary_event_id(sub);
3153 3154 3155 3156 3157 3158

		perf_output_copy(handle, values, n * sizeof(u64));
	}
}

static void perf_output_read(struct perf_output_handle *handle,
3159
			     struct perf_event *event)
3160
{
3161 3162
	if (event->attr.read_format & PERF_FORMAT_GROUP)
		perf_output_read_group(handle, event);
3163
	else
3164
		perf_output_read_one(handle, event);
3165 3166
}

3167 3168 3169
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
3170
			struct perf_event *event)
3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
3201
		perf_output_read(handle, event);
3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

			perf_output_copy(handle, data->callchain, size);
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
			perf_output_copy(handle, data->raw->data,
					 data->raw->size);
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
3239
			 struct perf_event *event,
3240
			 struct pt_regs *regs)
3241
{
3242
	u64 sample_type = event->attr.sample_type;
3243

3244
	data->type = sample_type;
3245

3246
	header->type = PERF_RECORD_SAMPLE;
3247 3248 3249 3250
	header->size = sizeof(*header);

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
3251

3252
	if (sample_type & PERF_SAMPLE_IP) {
3253 3254 3255
		data->ip = perf_instruction_pointer(regs);

		header->size += sizeof(data->ip);
3256
	}
3257

3258
	if (sample_type & PERF_SAMPLE_TID) {
3259
		/* namespace issues */
3260 3261
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
3262

3263
		header->size += sizeof(data->tid_entry);
3264 3265
	}

3266
	if (sample_type & PERF_SAMPLE_TIME) {
P
Peter Zijlstra 已提交
3267
		data->time = perf_clock();
3268

3269
		header->size += sizeof(data->time);
3270 3271
	}

3272
	if (sample_type & PERF_SAMPLE_ADDR)
3273
		header->size += sizeof(data->addr);
3274

3275
	if (sample_type & PERF_SAMPLE_ID) {
3276
		data->id = primary_event_id(event);
3277

3278 3279 3280 3281
		header->size += sizeof(data->id);
	}

	if (sample_type & PERF_SAMPLE_STREAM_ID) {
3282
		data->stream_id = event->id;
3283 3284 3285

		header->size += sizeof(data->stream_id);
	}
3286

3287
	if (sample_type & PERF_SAMPLE_CPU) {
3288 3289
		data->cpu_entry.cpu		= raw_smp_processor_id();
		data->cpu_entry.reserved	= 0;
3290

3291
		header->size += sizeof(data->cpu_entry);
3292 3293
	}

3294
	if (sample_type & PERF_SAMPLE_PERIOD)
3295
		header->size += sizeof(data->period);
3296

3297
	if (sample_type & PERF_SAMPLE_READ)
3298
		header->size += perf_event_read_size(event);
3299

3300
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3301
		int size = 1;
3302

3303 3304 3305 3306 3307 3308
		data->callchain = perf_callchain(regs);

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
3309 3310
	}

3311
	if (sample_type & PERF_SAMPLE_RAW) {
3312 3313 3314 3315 3316 3317 3318 3319
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
3320
		header->size += size;
3321
	}
3322
}
3323

3324
static void perf_event_output(struct perf_event *event, int nmi,
3325 3326 3327 3328 3329
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
3330

3331
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
3332

3333
	if (perf_output_begin(&handle, event, header.size, nmi, 1))
3334
		return;
3335

3336
	perf_output_sample(&handle, &header, data, event);
3337

3338
	perf_output_end(&handle);
3339 3340
}

3341
/*
3342
 * read event_id
3343 3344 3345 3346 3347 3348 3349 3350 3351 3352
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
3353
perf_event_read_event(struct perf_event *event,
3354 3355 3356
			struct task_struct *task)
{
	struct perf_output_handle handle;
3357
	struct perf_read_event read_event = {
3358
		.header = {
3359
			.type = PERF_RECORD_READ,
3360
			.misc = 0,
3361
			.size = sizeof(read_event) + perf_event_read_size(event),
3362
		},
3363 3364
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
3365
	};
3366
	int ret;
3367

3368
	ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3369 3370 3371
	if (ret)
		return;

3372
	perf_output_put(&handle, read_event);
3373
	perf_output_read(&handle, event);
3374

3375 3376 3377
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
3378
/*
P
Peter Zijlstra 已提交
3379 3380 3381
 * task tracking -- fork/exit
 *
 * enabled by: attr.comm | attr.mmap | attr.task
P
Peter Zijlstra 已提交
3382 3383
 */

P
Peter Zijlstra 已提交
3384
struct perf_task_event {
3385
	struct task_struct		*task;
3386
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
3387 3388 3389 3390 3391 3392

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
3393 3394
		u32				tid;
		u32				ptid;
3395
		u64				time;
3396
	} event_id;
P
Peter Zijlstra 已提交
3397 3398
};

3399
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
3400
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3401 3402
{
	struct perf_output_handle handle;
3403
	int size;
P
Peter Zijlstra 已提交
3404
	struct task_struct *task = task_event->task;
3405 3406
	int ret;

3407 3408
	size  = task_event->event_id.header.size;
	ret = perf_output_begin(&handle, event, size, 0, 0);
P
Peter Zijlstra 已提交
3409 3410 3411 3412

	if (ret)
		return;

3413 3414
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
3415

3416 3417
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
3418

3419
	task_event->event_id.time = perf_clock();
3420

3421
	perf_output_put(&handle, task_event->event_id);
3422

P
Peter Zijlstra 已提交
3423 3424 3425
	perf_output_end(&handle);
}

3426
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
3427
{
3428 3429 3430
	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return 0;

3431 3432 3433
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3434
	if (event->attr.comm || event->attr.mmap || event->attr.task)
P
Peter Zijlstra 已提交
3435 3436 3437 3438 3439
		return 1;

	return 0;
}

3440
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
3441
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3442
{
3443
	struct perf_event *event;
P
Peter Zijlstra 已提交
3444

3445 3446 3447
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
3448 3449 3450
	}
}

3451
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3452 3453
{
	struct perf_cpu_context *cpuctx;
3454
	struct perf_event_context *ctx = task_event->task_ctx;
P
Peter Zijlstra 已提交
3455

3456
	rcu_read_lock();
P
Peter Zijlstra 已提交
3457
	cpuctx = &get_cpu_var(perf_cpu_context);
3458
	perf_event_task_ctx(&cpuctx->ctx, task_event);
3459
	if (!ctx)
3460
		ctx = rcu_dereference(task_event->task->perf_event_ctxp);
P
Peter Zijlstra 已提交
3461
	if (ctx)
3462
		perf_event_task_ctx(ctx, task_event);
3463
	put_cpu_var(perf_cpu_context);
P
Peter Zijlstra 已提交
3464 3465 3466
	rcu_read_unlock();
}

3467 3468
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
3469
			      int new)
P
Peter Zijlstra 已提交
3470
{
P
Peter Zijlstra 已提交
3471
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
3472

3473 3474 3475
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
3476 3477
		return;

P
Peter Zijlstra 已提交
3478
	task_event = (struct perf_task_event){
3479 3480
		.task	  = task,
		.task_ctx = task_ctx,
3481
		.event_id    = {
P
Peter Zijlstra 已提交
3482
			.header = {
3483
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3484
				.misc = 0,
3485
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
3486
			},
3487 3488
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
3489 3490
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
3491 3492 3493
		},
	};

3494
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
3495 3496
}

3497
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
3498
{
3499
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
3500 3501
}

3502 3503 3504 3505 3506
/*
 * comm tracking
 */

struct perf_comm_event {
3507 3508
	struct task_struct	*task;
	char			*comm;
3509 3510 3511 3512 3513 3514 3515
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
3516
	} event_id;
3517 3518
};

3519
static void perf_event_comm_output(struct perf_event *event,
3520 3521 3522
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
3523 3524
	int size = comm_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3525 3526 3527 3528

	if (ret)
		return;

3529 3530
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3531

3532
	perf_output_put(&handle, comm_event->event_id);
3533 3534 3535 3536 3537
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
	perf_output_end(&handle);
}

3538
static int perf_event_comm_match(struct perf_event *event)
3539
{
3540 3541 3542
	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return 0;

3543 3544 3545
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3546
	if (event->attr.comm)
3547 3548 3549 3550 3551
		return 1;

	return 0;
}

3552
static void perf_event_comm_ctx(struct perf_event_context *ctx,
3553 3554
				  struct perf_comm_event *comm_event)
{
3555
	struct perf_event *event;
3556

3557 3558 3559
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
3560 3561 3562
	}
}

3563
static void perf_event_comm_event(struct perf_comm_event *comm_event)
3564 3565
{
	struct perf_cpu_context *cpuctx;
3566
	struct perf_event_context *ctx;
3567
	unsigned int size;
3568
	char comm[TASK_COMM_LEN];
3569

3570
	memset(comm, 0, sizeof(comm));
3571
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
3572
	size = ALIGN(strlen(comm)+1, sizeof(u64));
3573 3574 3575 3576

	comm_event->comm = comm;
	comm_event->comm_size = size;

3577
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3578

3579
	rcu_read_lock();
3580
	cpuctx = &get_cpu_var(perf_cpu_context);
3581 3582
	perf_event_comm_ctx(&cpuctx->ctx, comm_event);
	ctx = rcu_dereference(current->perf_event_ctxp);
3583
	if (ctx)
3584
		perf_event_comm_ctx(ctx, comm_event);
3585
	put_cpu_var(perf_cpu_context);
3586
	rcu_read_unlock();
3587 3588
}

3589
void perf_event_comm(struct task_struct *task)
3590
{
3591 3592
	struct perf_comm_event comm_event;

3593 3594
	if (task->perf_event_ctxp)
		perf_event_enable_on_exec(task);
3595

3596
	if (!atomic_read(&nr_comm_events))
3597
		return;
3598

3599
	comm_event = (struct perf_comm_event){
3600
		.task	= task,
3601 3602
		/* .comm      */
		/* .comm_size */
3603
		.event_id  = {
3604
			.header = {
3605
				.type = PERF_RECORD_COMM,
3606 3607 3608 3609 3610
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
3611 3612 3613
		},
	};

3614
	perf_event_comm_event(&comm_event);
3615 3616
}

3617 3618 3619 3620 3621
/*
 * mmap tracking
 */

struct perf_mmap_event {
3622 3623 3624 3625
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
3626 3627 3628 3629 3630 3631 3632 3633 3634

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
3635
	} event_id;
3636 3637
};

3638
static void perf_event_mmap_output(struct perf_event *event,
3639 3640 3641
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
3642 3643
	int size = mmap_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3644 3645 3646 3647

	if (ret)
		return;

3648 3649
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
3650

3651
	perf_output_put(&handle, mmap_event->event_id);
3652 3653
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
3654
	perf_output_end(&handle);
3655 3656
}

3657
static int perf_event_mmap_match(struct perf_event *event,
3658 3659
				   struct perf_mmap_event *mmap_event)
{
3660 3661 3662
	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return 0;

3663 3664 3665
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3666
	if (event->attr.mmap)
3667 3668 3669 3670 3671
		return 1;

	return 0;
}

3672
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3673 3674
				  struct perf_mmap_event *mmap_event)
{
3675
	struct perf_event *event;
3676

3677 3678 3679
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_mmap_match(event, mmap_event))
			perf_event_mmap_output(event, mmap_event);
3680 3681 3682
	}
}

3683
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3684 3685
{
	struct perf_cpu_context *cpuctx;
3686
	struct perf_event_context *ctx;
3687 3688
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
3689 3690 3691
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
3692
	const char *name;
3693

3694 3695
	memset(tmp, 0, sizeof(tmp));

3696
	if (file) {
3697 3698 3699 3700 3701 3702
		/*
		 * d_path works from the end of the buffer backwards, so we
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3703 3704 3705 3706
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
3707
		name = d_path(&file->f_path, buf, PATH_MAX);
3708 3709 3710 3711 3712
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
3713 3714 3715
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
3716
			goto got_name;
3717
		}
3718 3719 3720 3721 3722 3723

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
		}

3724 3725 3726 3727 3728
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
3729
	size = ALIGN(strlen(name)+1, sizeof(u64));
3730 3731 3732 3733

	mmap_event->file_name = name;
	mmap_event->file_size = size;

3734
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3735

3736
	rcu_read_lock();
3737
	cpuctx = &get_cpu_var(perf_cpu_context);
3738 3739
	perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
	ctx = rcu_dereference(current->perf_event_ctxp);
3740
	if (ctx)
3741
		perf_event_mmap_ctx(ctx, mmap_event);
3742
	put_cpu_var(perf_cpu_context);
3743 3744
	rcu_read_unlock();

3745 3746 3747
	kfree(buf);
}

3748
void __perf_event_mmap(struct vm_area_struct *vma)
3749
{
3750 3751
	struct perf_mmap_event mmap_event;

3752
	if (!atomic_read(&nr_mmap_events))
3753 3754 3755
		return;

	mmap_event = (struct perf_mmap_event){
3756
		.vma	= vma,
3757 3758
		/* .file_name */
		/* .file_size */
3759
		.event_id  = {
3760
			.header = {
3761
				.type = PERF_RECORD_MMAP,
3762 3763 3764 3765 3766
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
3767 3768
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
3769
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
3770 3771 3772
		},
	};

3773
	perf_event_mmap_event(&mmap_event);
3774 3775
}

3776 3777 3778 3779
/*
 * IRQ throttle logging
 */

3780
static void perf_log_throttle(struct perf_event *event, int enable)
3781 3782 3783 3784 3785 3786 3787
{
	struct perf_output_handle handle;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
3788
		u64				id;
3789
		u64				stream_id;
3790 3791
	} throttle_event = {
		.header = {
3792
			.type = PERF_RECORD_THROTTLE,
3793 3794 3795
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
3796
		.time		= perf_clock(),
3797 3798
		.id		= primary_event_id(event),
		.stream_id	= event->id,
3799 3800
	};

3801
	if (enable)
3802
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3803

3804
	ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3805 3806 3807 3808 3809 3810 3811
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
	perf_output_end(&handle);
}

3812
/*
3813
 * Generic event overflow handling, sampling.
3814 3815
 */

3816
static int __perf_event_overflow(struct perf_event *event, int nmi,
3817 3818
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
3819
{
3820 3821
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
3822 3823
	int ret = 0;

3824
	throttle = (throttle && event->pmu->unthrottle != NULL);
3825

3826
	if (!throttle) {
3827
		hwc->interrupts++;
3828
	} else {
3829 3830
		if (hwc->interrupts != MAX_INTERRUPTS) {
			hwc->interrupts++;
3831
			if (HZ * hwc->interrupts >
3832
					(u64)sysctl_perf_event_sample_rate) {
3833
				hwc->interrupts = MAX_INTERRUPTS;
3834
				perf_log_throttle(event, 0);
3835 3836 3837 3838
				ret = 1;
			}
		} else {
			/*
3839
			 * Keep re-disabling events even though on the previous
3840
			 * pass we disabled it - just in case we raced with a
3841
			 * sched-in and the event got enabled again:
3842
			 */
3843 3844 3845
			ret = 1;
		}
	}
3846

3847
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
3848
		u64 now = perf_clock();
3849
		s64 delta = now - hwc->freq_time_stamp;
3850

3851
		hwc->freq_time_stamp = now;
3852

3853 3854
		if (delta > 0 && delta < 2*TICK_NSEC)
			perf_adjust_period(event, delta, hwc->last_period);
3855 3856
	}

3857 3858
	/*
	 * XXX event_limit might not quite work as expected on inherited
3859
	 * events
3860 3861
	 */

3862 3863
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
3864
		ret = 1;
3865
		event->pending_kill = POLL_HUP;
3866
		if (nmi) {
3867 3868 3869
			event->pending_disable = 1;
			perf_pending_queue(&event->pending,
					   perf_pending_event);
3870
		} else
3871
			perf_event_disable(event);
3872 3873
	}

3874 3875 3876 3877 3878
	if (event->overflow_handler)
		event->overflow_handler(event, nmi, data, regs);
	else
		perf_event_output(event, nmi, data, regs);

3879
	return ret;
3880 3881
}

3882
int perf_event_overflow(struct perf_event *event, int nmi,
3883 3884
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
3885
{
3886
	return __perf_event_overflow(event, nmi, 1, data, regs);
3887 3888
}

3889
/*
3890
 * Generic software event infrastructure
3891 3892
 */

3893
/*
3894 3895
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
3896 3897 3898 3899
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

3900
static u64 perf_swevent_set_period(struct perf_event *event)
3901
{
3902
	struct hw_perf_event *hwc = &event->hw;
3903 3904 3905 3906 3907
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
3908 3909

again:
3910 3911 3912
	old = val = atomic64_read(&hwc->period_left);
	if (val < 0)
		return 0;
3913

3914 3915 3916 3917 3918
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
	if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
		goto again;
3919

3920
	return nr;
3921 3922
}

3923
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
3924 3925
				    int nmi, struct perf_sample_data *data,
				    struct pt_regs *regs)
3926
{
3927
	struct hw_perf_event *hwc = &event->hw;
3928
	int throttle = 0;
3929

3930
	data->period = event->hw.last_period;
3931 3932
	if (!overflow)
		overflow = perf_swevent_set_period(event);
3933

3934 3935
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
3936

3937
	for (; overflow; overflow--) {
3938
		if (__perf_event_overflow(event, nmi, throttle,
3939
					    data, regs)) {
3940 3941 3942 3943 3944 3945
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
3946
		throttle = 1;
3947
	}
3948 3949
}

3950
static void perf_swevent_unthrottle(struct perf_event *event)
3951 3952
{
	/*
3953
	 * Nothing to do, we already reset hwc->interrupts.
3954
	 */
3955
}
3956

3957
static void perf_swevent_add(struct perf_event *event, u64 nr,
3958 3959
			       int nmi, struct perf_sample_data *data,
			       struct pt_regs *regs)
3960
{
3961
	struct hw_perf_event *hwc = &event->hw;
3962

3963
	atomic64_add(nr, &event->count);
3964

3965 3966 3967
	if (!regs)
		return;

3968 3969
	if (!hwc->sample_period)
		return;
3970

3971 3972 3973 3974
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
		return perf_swevent_overflow(event, 1, nmi, data, regs);

	if (atomic64_add_negative(nr, &hwc->period_left))
3975
		return;
3976

3977
	perf_swevent_overflow(event, 0, nmi, data, regs);
3978 3979
}

3980
static int perf_swevent_is_counting(struct perf_event *event)
3981
{
3982
	/*
3983
	 * The event is active, we're good!
3984
	 */
3985
	if (event->state == PERF_EVENT_STATE_ACTIVE)
3986 3987
		return 1;

3988
	/*
3989
	 * The event is off/error, not counting.
3990
	 */
3991
	if (event->state != PERF_EVENT_STATE_INACTIVE)
3992 3993 3994
		return 0;

	/*
3995
	 * The event is inactive, if the context is active
3996 3997
	 * we're part of a group that didn't make it on the 'pmu',
	 * not counting.
3998
	 */
3999
	if (event->ctx->is_active)
4000 4001 4002 4003 4004 4005 4006 4007
		return 0;

	/*
	 * We're inactive and the context is too, this means the
	 * task is scheduled out, we're counting events that happen
	 * to us, like migration events.
	 */
	return 1;
4008 4009
}

L
Li Zefan 已提交
4010 4011 4012
static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data);

4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

4027
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
4028
				enum perf_type_id type,
L
Li Zefan 已提交
4029 4030 4031
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
4032
{
4033 4034 4035
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

4036
	if (!perf_swevent_is_counting(event))
4037 4038
		return 0;

4039
	if (event->attr.type != type)
4040
		return 0;
4041

4042
	if (event->attr.config != event_id)
4043 4044
		return 0;

4045 4046
	if (perf_exclude_event(event, regs))
		return 0;
4047

L
Li Zefan 已提交
4048 4049 4050 4051
	if (event->attr.type == PERF_TYPE_TRACEPOINT &&
	    !perf_tp_event_match(event, data))
		return 0;

4052 4053 4054
	return 1;
}

4055
static void perf_swevent_ctx_event(struct perf_event_context *ctx,
4056
				     enum perf_type_id type,
4057
				     u32 event_id, u64 nr, int nmi,
4058 4059
				     struct perf_sample_data *data,
				     struct pt_regs *regs)
4060
{
4061
	struct perf_event *event;
4062

4063
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
L
Li Zefan 已提交
4064
		if (perf_swevent_match(event, type, event_id, data, regs))
4065
			perf_swevent_add(event, nr, nmi, data, regs);
4066 4067 4068
	}
}

4069
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
4070
{
4071 4072
	struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
	int rctx;
4073

P
Peter Zijlstra 已提交
4074
	if (in_nmi())
4075
		rctx = 3;
4076
	else if (in_irq())
4077
		rctx = 2;
4078
	else if (in_softirq())
4079
		rctx = 1;
4080
	else
4081
		rctx = 0;
P
Peter Zijlstra 已提交
4082

4083 4084
	if (cpuctx->recursion[rctx]) {
		put_cpu_var(perf_cpu_context);
4085
		return -1;
4086
	}
P
Peter Zijlstra 已提交
4087

4088 4089
	cpuctx->recursion[rctx]++;
	barrier();
P
Peter Zijlstra 已提交
4090

4091
	return rctx;
P
Peter Zijlstra 已提交
4092
}
I
Ingo Molnar 已提交
4093
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
4094

4095
void perf_swevent_put_recursion_context(int rctx)
4096
{
4097 4098
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	barrier();
4099
	cpuctx->recursion[rctx]--;
4100
	put_cpu_var(perf_cpu_context);
4101
}
I
Ingo Molnar 已提交
4102
EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
P
Peter Zijlstra 已提交
4103

4104 4105 4106 4107
static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
				    u64 nr, int nmi,
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
4108
{
4109
	struct perf_cpu_context *cpuctx;
4110
	struct perf_event_context *ctx;
4111

4112
	cpuctx = &__get_cpu_var(perf_cpu_context);
4113
	rcu_read_lock();
4114
	perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
4115
				 nr, nmi, data, regs);
4116 4117 4118 4119
	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
4120
	ctx = rcu_dereference(current->perf_event_ctxp);
4121
	if (ctx)
4122
		perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
4123
	rcu_read_unlock();
4124
}
4125

4126
void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4127
			    struct pt_regs *regs, u64 addr)
4128
{
4129
	struct perf_sample_data data;
4130 4131 4132 4133 4134
	int rctx;

	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
4135 4136 4137

	data.addr = addr;
	data.raw  = NULL;
4138

4139
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4140 4141

	perf_swevent_put_recursion_context(rctx);
4142 4143
}

4144
static void perf_swevent_read(struct perf_event *event)
4145 4146 4147
{
}

4148
static int perf_swevent_enable(struct perf_event *event)
4149
{
4150
	struct hw_perf_event *hwc = &event->hw;
4151 4152 4153

	if (hwc->sample_period) {
		hwc->last_period = hwc->sample_period;
4154
		perf_swevent_set_period(event);
4155
	}
4156 4157 4158
	return 0;
}

4159
static void perf_swevent_disable(struct perf_event *event)
4160 4161 4162
{
}

4163
static const struct pmu perf_ops_generic = {
4164 4165 4166 4167
	.enable		= perf_swevent_enable,
	.disable	= perf_swevent_disable,
	.read		= perf_swevent_read,
	.unthrottle	= perf_swevent_unthrottle,
4168 4169
};

4170
/*
4171
 * hrtimer based swevent callback
4172 4173
 */

4174
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4175 4176 4177
{
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
4178
	struct pt_regs *regs;
4179
	struct perf_event *event;
4180 4181
	u64 period;

4182 4183
	event	= container_of(hrtimer, struct perf_event, hw.hrtimer);
	event->pmu->read(event);
4184 4185

	data.addr = 0;
4186
	data.raw = NULL;
4187
	data.period = event->hw.last_period;
4188
	regs = get_irq_regs();
4189 4190 4191 4192
	/*
	 * In case we exclude kernel IPs or are somehow not in interrupt
	 * context, provide the next best thing, the user IP.
	 */
4193 4194
	if ((event->attr.exclude_kernel || !regs) &&
			!event->attr.exclude_user)
4195
		regs = task_pt_regs(current);
4196

4197
	if (regs) {
4198 4199 4200
		if (!(event->attr.exclude_idle && current->pid == 0))
			if (perf_event_overflow(event, 0, &data, regs))
				ret = HRTIMER_NORESTART;
4201 4202
	}

4203
	period = max_t(u64, 10000, event->hw.sample_period);
4204 4205 4206 4207 4208
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));

	return ret;
}

4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244
static void perf_swevent_start_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;
	if (hwc->sample_period) {
		u64 period;

		if (hwc->remaining) {
			if (hwc->remaining < 0)
				period = 10000;
			else
				period = hwc->remaining;
			hwc->remaining = 0;
		} else {
			period = max_t(u64, 10000, hwc->sample_period);
		}
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(period), 0,
				HRTIMER_MODE_REL, 0);
	}
}

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (hwc->sample_period) {
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
		hwc->remaining = ktime_to_ns(remaining);

		hrtimer_cancel(&hwc->hrtimer);
	}
}

4245
/*
4246
 * Software event: cpu wall time clock
4247 4248
 */

4249
static void cpu_clock_perf_event_update(struct perf_event *event)
4250 4251 4252 4253 4254 4255
{
	int cpu = raw_smp_processor_id();
	s64 prev;
	u64 now;

	now = cpu_clock(cpu);
4256
	prev = atomic64_xchg(&event->hw.prev_count, now);
4257
	atomic64_add(now - prev, &event->count);
4258 4259
}

4260
static int cpu_clock_perf_event_enable(struct perf_event *event)
4261
{
4262
	struct hw_perf_event *hwc = &event->hw;
4263 4264 4265
	int cpu = raw_smp_processor_id();

	atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4266
	perf_swevent_start_hrtimer(event);
4267 4268 4269 4270

	return 0;
}

4271
static void cpu_clock_perf_event_disable(struct perf_event *event)
4272
{
4273
	perf_swevent_cancel_hrtimer(event);
4274
	cpu_clock_perf_event_update(event);
4275 4276
}

4277
static void cpu_clock_perf_event_read(struct perf_event *event)
4278
{
4279
	cpu_clock_perf_event_update(event);
4280 4281
}

4282
static const struct pmu perf_ops_cpu_clock = {
4283 4284 4285
	.enable		= cpu_clock_perf_event_enable,
	.disable	= cpu_clock_perf_event_disable,
	.read		= cpu_clock_perf_event_read,
4286 4287
};

4288
/*
4289
 * Software event: task time clock
4290 4291
 */

4292
static void task_clock_perf_event_update(struct perf_event *event, u64 now)
I
Ingo Molnar 已提交
4293
{
4294
	u64 prev;
I
Ingo Molnar 已提交
4295 4296
	s64 delta;

4297
	prev = atomic64_xchg(&event->hw.prev_count, now);
I
Ingo Molnar 已提交
4298
	delta = now - prev;
4299
	atomic64_add(delta, &event->count);
4300 4301
}

4302
static int task_clock_perf_event_enable(struct perf_event *event)
I
Ingo Molnar 已提交
4303
{
4304
	struct hw_perf_event *hwc = &event->hw;
4305 4306
	u64 now;

4307
	now = event->ctx->time;
4308

4309
	atomic64_set(&hwc->prev_count, now);
4310 4311

	perf_swevent_start_hrtimer(event);
4312 4313

	return 0;
I
Ingo Molnar 已提交
4314 4315
}

4316
static void task_clock_perf_event_disable(struct perf_event *event)
4317
{
4318
	perf_swevent_cancel_hrtimer(event);
4319
	task_clock_perf_event_update(event, event->ctx->time);
4320

4321
}
I
Ingo Molnar 已提交
4322

4323
static void task_clock_perf_event_read(struct perf_event *event)
4324
{
4325 4326 4327
	u64 time;

	if (!in_nmi()) {
4328 4329
		update_context_time(event->ctx);
		time = event->ctx->time;
4330 4331
	} else {
		u64 now = perf_clock();
4332 4333
		u64 delta = now - event->ctx->timestamp;
		time = event->ctx->time + delta;
4334 4335
	}

4336
	task_clock_perf_event_update(event, time);
4337 4338
}

4339
static const struct pmu perf_ops_task_clock = {
4340 4341 4342
	.enable		= task_clock_perf_event_enable,
	.disable	= task_clock_perf_event_disable,
	.read		= task_clock_perf_event_read,
4343 4344
};

4345
#ifdef CONFIG_EVENT_TRACING
L
Li Zefan 已提交
4346

4347
void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4348
			  int entry_size)
4349
{
4350
	struct perf_raw_record raw = {
4351
		.size = entry_size,
4352
		.data = record,
4353 4354
	};

4355
	struct perf_sample_data data = {
4356
		.addr = addr,
4357
		.raw = &raw,
4358
	};
4359

4360 4361 4362 4363
	struct pt_regs *regs = get_irq_regs();

	if (!regs)
		regs = task_pt_regs(current);
4364

4365
	/* Trace events already protected against recursion */
4366
	do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
4367
				&data, regs);
4368
}
4369
EXPORT_SYMBOL_GPL(perf_tp_event);
4370

L
Li Zefan 已提交
4371 4372 4373 4374 4375 4376 4377 4378 4379
static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}
4380

4381
static void tp_perf_event_destroy(struct perf_event *event)
4382
{
4383
	ftrace_profile_disable(event->attr.config);
4384 4385
}

4386
static const struct pmu *tp_perf_event_init(struct perf_event *event)
4387
{
4388 4389 4390 4391
	/*
	 * Raw tracepoint data is a severe data leak, only allow root to
	 * have these.
	 */
4392
	if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4393
			perf_paranoid_tracepoint_raw() &&
4394 4395 4396
			!capable(CAP_SYS_ADMIN))
		return ERR_PTR(-EPERM);

4397
	if (ftrace_profile_enable(event->attr.config))
4398 4399
		return NULL;

4400
	event->destroy = tp_perf_event_destroy;
4401 4402 4403

	return &perf_ops_generic;
}
L
Li Zefan 已提交
4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

4428
#else
L
Li Zefan 已提交
4429 4430 4431 4432 4433 4434 4435

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	return 1;
}

4436
static const struct pmu *tp_perf_event_init(struct perf_event *event)
4437 4438 4439
{
	return NULL;
}
L
Li Zefan 已提交
4440 4441 4442 4443 4444 4445 4446 4447 4448 4449

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

4450
#endif /* CONFIG_EVENT_TRACING */
4451

4452 4453 4454 4455 4456 4457 4458 4459 4460
#ifdef CONFIG_HAVE_HW_BREAKPOINT
static void bp_perf_event_destroy(struct perf_event *event)
{
	release_bp_slot(event);
}

static const struct pmu *bp_perf_event_init(struct perf_event *bp)
{
	int err;
4461 4462

	err = register_perf_hw_breakpoint(bp);
4463 4464 4465 4466 4467 4468 4469 4470
	if (err)
		return ERR_PTR(err);

	bp->destroy = bp_perf_event_destroy;

	return &perf_ops_bp;
}

4471
void perf_bp_event(struct perf_event *bp, void *data)
4472
{
4473 4474 4475
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

4476
	sample.raw = NULL;
4477 4478 4479 4480
	sample.addr = bp->attr.bp_addr;

	if (!perf_exclude_event(bp, regs))
		perf_swevent_add(bp, 1, 1, &sample, regs);
4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492
}
#else
static const struct pmu *bp_perf_event_init(struct perf_event *bp)
{
	return NULL;
}

void perf_bp_event(struct perf_event *bp, void *regs)
{
}
#endif

4493
atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4494

4495
static void sw_perf_event_destroy(struct perf_event *event)
4496
{
4497
	u64 event_id = event->attr.config;
4498

4499
	WARN_ON(event->parent);
4500

4501
	atomic_dec(&perf_swevent_enabled[event_id]);
4502 4503
}

4504
static const struct pmu *sw_perf_event_init(struct perf_event *event)
4505
{
4506
	const struct pmu *pmu = NULL;
4507
	u64 event_id = event->attr.config;
4508

4509
	/*
4510
	 * Software events (currently) can't in general distinguish
4511 4512 4513 4514 4515
	 * between user, kernel and hypervisor events.
	 * However, context switches and cpu migrations are considered
	 * to be kernel events, and page faults are never hypervisor
	 * events.
	 */
4516
	switch (event_id) {
4517
	case PERF_COUNT_SW_CPU_CLOCK:
4518
		pmu = &perf_ops_cpu_clock;
4519

4520
		break;
4521
	case PERF_COUNT_SW_TASK_CLOCK:
4522
		/*
4523 4524
		 * If the user instantiates this as a per-cpu event,
		 * use the cpu_clock event instead.
4525
		 */
4526
		if (event->ctx->task)
4527
			pmu = &perf_ops_task_clock;
4528
		else
4529
			pmu = &perf_ops_cpu_clock;
4530

4531
		break;
4532 4533 4534 4535 4536
	case PERF_COUNT_SW_PAGE_FAULTS:
	case PERF_COUNT_SW_PAGE_FAULTS_MIN:
	case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
	case PERF_COUNT_SW_CONTEXT_SWITCHES:
	case PERF_COUNT_SW_CPU_MIGRATIONS:
4537 4538
	case PERF_COUNT_SW_ALIGNMENT_FAULTS:
	case PERF_COUNT_SW_EMULATION_FAULTS:
4539 4540 4541
		if (!event->parent) {
			atomic_inc(&perf_swevent_enabled[event_id]);
			event->destroy = sw_perf_event_destroy;
4542
		}
4543
		pmu = &perf_ops_generic;
4544
		break;
4545
	}
4546

4547
	return pmu;
4548 4549
}

T
Thomas Gleixner 已提交
4550
/*
4551
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
4552
 */
4553 4554
static struct perf_event *
perf_event_alloc(struct perf_event_attr *attr,
4555
		   int cpu,
4556 4557 4558
		   struct perf_event_context *ctx,
		   struct perf_event *group_leader,
		   struct perf_event *parent_event,
4559
		   perf_overflow_handler_t overflow_handler,
4560
		   gfp_t gfpflags)
T
Thomas Gleixner 已提交
4561
{
4562
	const struct pmu *pmu;
4563 4564
	struct perf_event *event;
	struct hw_perf_event *hwc;
4565
	long err;
T
Thomas Gleixner 已提交
4566

4567 4568
	event = kzalloc(sizeof(*event), gfpflags);
	if (!event)
4569
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
4570

4571
	/*
4572
	 * Single events are their own group leaders, with an
4573 4574 4575
	 * empty sibling list:
	 */
	if (!group_leader)
4576
		group_leader = event;
4577

4578 4579
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
4580

4581 4582 4583 4584
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
	init_waitqueue_head(&event->waitq);
T
Thomas Gleixner 已提交
4585

4586
	mutex_init(&event->mmap_mutex);
4587

4588 4589 4590 4591 4592 4593
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->ctx		= ctx;
	event->oncpu		= -1;
4594

4595
	event->parent		= parent_event;
4596

4597 4598
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
4599

4600
	event->state		= PERF_EVENT_STATE_INACTIVE;
4601

4602 4603
	if (!overflow_handler && parent_event)
		overflow_handler = parent_event->overflow_handler;
4604
	
4605
	event->overflow_handler	= overflow_handler;
4606

4607
	if (attr->disabled)
4608
		event->state = PERF_EVENT_STATE_OFF;
4609

4610
	pmu = NULL;
4611

4612
	hwc = &event->hw;
4613
	hwc->sample_period = attr->sample_period;
4614
	if (attr->freq && attr->sample_freq)
4615
		hwc->sample_period = 1;
4616
	hwc->last_period = hwc->sample_period;
4617 4618

	atomic64_set(&hwc->period_left, hwc->sample_period);
4619

4620
	/*
4621
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
4622
	 */
4623
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4624 4625
		goto done;

4626
	switch (attr->type) {
4627
	case PERF_TYPE_RAW:
4628
	case PERF_TYPE_HARDWARE:
4629
	case PERF_TYPE_HW_CACHE:
4630
		pmu = hw_perf_event_init(event);
4631 4632 4633
		break;

	case PERF_TYPE_SOFTWARE:
4634
		pmu = sw_perf_event_init(event);
4635 4636 4637
		break;

	case PERF_TYPE_TRACEPOINT:
4638
		pmu = tp_perf_event_init(event);
4639
		break;
4640

4641 4642 4643 4644 4645
	case PERF_TYPE_BREAKPOINT:
		pmu = bp_perf_event_init(event);
		break;


4646 4647
	default:
		break;
4648
	}
4649 4650
done:
	err = 0;
4651
	if (!pmu)
4652
		err = -EINVAL;
4653 4654
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
4655

4656
	if (err) {
4657 4658 4659
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
4660
		return ERR_PTR(err);
I
Ingo Molnar 已提交
4661
	}
4662

4663
	event->pmu = pmu;
T
Thomas Gleixner 已提交
4664

4665 4666 4667 4668 4669 4670 4671 4672
	if (!event->parent) {
		atomic_inc(&nr_events);
		if (event->attr.mmap)
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
4673
	}
4674

4675
	return event;
T
Thomas Gleixner 已提交
4676 4677
}

4678 4679
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
4680 4681
{
	u32 size;
4682
	int ret;
4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
4707 4708 4709
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
4710 4711
	 */
	if (size > sizeof(*attr)) {
4712 4713 4714
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
4715

4716 4717
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
4718

4719
		for (; addr < end; addr++) {
4720 4721 4722 4723 4724 4725
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
4726
		size = sizeof(*attr);
4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * If the type exists, the corresponding creation will verify
	 * the attr->config.
	 */
	if (attr->type >= PERF_TYPE_MAX)
		return -EINVAL;

4740
	if (attr->__reserved_1 || attr->__reserved_2)
4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

L
Li Zefan 已提交
4758
static int perf_event_set_output(struct perf_event *event, int output_fd)
4759
{
4760
	struct perf_event *output_event = NULL;
4761
	struct file *output_file = NULL;
4762
	struct perf_event *old_output;
4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775
	int fput_needed = 0;
	int ret = -EINVAL;

	if (!output_fd)
		goto set;

	output_file = fget_light(output_fd, &fput_needed);
	if (!output_file)
		return -EBADF;

	if (output_file->f_op != &perf_fops)
		goto out;

4776
	output_event = output_file->private_data;
4777 4778

	/* Don't chain output fds */
4779
	if (output_event->output)
4780 4781 4782
		goto out;

	/* Don't set an output fd when we already have an output channel */
4783
	if (event->data)
4784 4785 4786 4787 4788
		goto out;

	atomic_long_inc(&output_file->f_count);

set:
4789 4790 4791 4792
	mutex_lock(&event->mmap_mutex);
	old_output = event->output;
	rcu_assign_pointer(event->output, output_event);
	mutex_unlock(&event->mmap_mutex);
4793 4794 4795 4796

	if (old_output) {
		/*
		 * we need to make sure no existing perf_output_*()
4797
		 * is still referencing this event.
4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808
		 */
		synchronize_rcu();
		fput(old_output->filp);
	}

	ret = 0;
out:
	fput_light(output_file, fput_needed);
	return ret;
}

T
Thomas Gleixner 已提交
4809
/**
4810
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
4811
 *
4812
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
4813
 * @pid:		target pid
I
Ingo Molnar 已提交
4814
 * @cpu:		target cpu
4815
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
4816
 */
4817 4818
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
4819
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
4820
{
4821 4822 4823 4824
	struct perf_event *event, *group_leader;
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
4825 4826
	struct file *group_file = NULL;
	int fput_needed = 0;
4827
	int fput_needed2 = 0;
4828
	int err;
T
Thomas Gleixner 已提交
4829

4830
	/* for future expandability... */
4831
	if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4832 4833
		return -EINVAL;

4834 4835 4836
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
4837

4838 4839 4840 4841 4842
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

4843
	if (attr.freq) {
4844
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
4845 4846 4847
			return -EINVAL;
	}

4848
	/*
I
Ingo Molnar 已提交
4849 4850 4851 4852 4853 4854 4855
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pid, cpu);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	/*
4856
	 * Look up the group leader (we will attach this event to it):
4857 4858
	 */
	group_leader = NULL;
4859
	if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4860
		err = -EINVAL;
4861 4862
		group_file = fget_light(group_fd, &fput_needed);
		if (!group_file)
I
Ingo Molnar 已提交
4863
			goto err_put_context;
4864
		if (group_file->f_op != &perf_fops)
I
Ingo Molnar 已提交
4865
			goto err_put_context;
4866 4867 4868

		group_leader = group_file->private_data;
		/*
I
Ingo Molnar 已提交
4869 4870 4871 4872 4873 4874 4875 4876
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
			goto err_put_context;
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
4877
		 */
I
Ingo Molnar 已提交
4878 4879
		if (group_leader->ctx != ctx)
			goto err_put_context;
4880 4881 4882
		/*
		 * Only a group leader can be exclusive or pinned
		 */
4883
		if (attr.exclusive || attr.pinned)
4884
			goto err_put_context;
4885 4886
	}

4887
	event = perf_event_alloc(&attr, cpu, ctx, group_leader,
4888
				     NULL, NULL, GFP_KERNEL);
4889 4890
	err = PTR_ERR(event);
	if (IS_ERR(event))
T
Thomas Gleixner 已提交
4891 4892
		goto err_put_context;

4893
	err = anon_inode_getfd("[perf_event]", &perf_fops, event, O_RDWR);
4894
	if (err < 0)
4895 4896
		goto err_free_put_context;

4897 4898
	event_file = fget_light(err, &fput_needed2);
	if (!event_file)
4899 4900
		goto err_free_put_context;

4901
	if (flags & PERF_FLAG_FD_OUTPUT) {
4902
		err = perf_event_set_output(event, group_fd);
4903 4904
		if (err)
			goto err_fput_free_put_context;
4905 4906
	}

4907
	event->filp = event_file;
4908
	WARN_ON_ONCE(ctx->parent_ctx);
4909
	mutex_lock(&ctx->mutex);
4910
	perf_install_in_context(ctx, event, cpu);
4911
	++ctx->generation;
4912
	mutex_unlock(&ctx->mutex);
4913

4914
	event->owner = current;
4915
	get_task_struct(current);
4916 4917 4918
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
4919

4920
err_fput_free_put_context:
4921
	fput_light(event_file, fput_needed2);
T
Thomas Gleixner 已提交
4922

4923
err_free_put_context:
4924
	if (err < 0)
4925
		kfree(event);
T
Thomas Gleixner 已提交
4926 4927

err_put_context:
4928 4929 4930 4931
	if (err < 0)
		put_ctx(ctx);

	fput_light(group_file, fput_needed);
T
Thomas Gleixner 已提交
4932

4933
	return err;
T
Thomas Gleixner 已提交
4934 4935
}

4936 4937 4938 4939 4940 4941 4942 4943 4944
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
 * @pid: task to profile
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
4945 4946
				 pid_t pid,
				 perf_overflow_handler_t overflow_handler)
4947 4948 4949 4950 4951 4952 4953 4954 4955 4956
{
	struct perf_event *event;
	struct perf_event_context *ctx;
	int err;

	/*
	 * Get the target context (task or percpu):
	 */

	ctx = find_get_context(pid, cpu);
4957 4958 4959 4960
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
		goto err_exit;
	}
4961 4962

	event = perf_event_alloc(attr, cpu, ctx, NULL,
4963
				 NULL, overflow_handler, GFP_KERNEL);
4964 4965
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
4966
		goto err_put_context;
4967
	}
4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983

	event->filp = NULL;
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
	mutex_unlock(&ctx->mutex);

	event->owner = current;
	get_task_struct(current);
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);

	return event;

4984 4985 4986 4987
 err_put_context:
	put_ctx(ctx);
 err_exit:
	return ERR_PTR(err);
4988 4989 4990
}
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);

4991
/*
4992
 * inherit a event from parent task to child task:
4993
 */
4994 4995
static struct perf_event *
inherit_event(struct perf_event *parent_event,
4996
	      struct task_struct *parent,
4997
	      struct perf_event_context *parent_ctx,
4998
	      struct task_struct *child,
4999 5000
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
5001
{
5002
	struct perf_event *child_event;
5003

5004
	/*
5005 5006
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
5007 5008 5009
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
5010 5011
	if (parent_event->parent)
		parent_event = parent_event->parent;
5012

5013 5014 5015
	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu, child_ctx,
					   group_leader, parent_event,
5016
					   NULL, GFP_KERNEL);
5017 5018
	if (IS_ERR(child_event))
		return child_event;
5019
	get_ctx(child_ctx);
5020

5021
	/*
5022
	 * Make the child state follow the state of the parent event,
5023
	 * not its attr.disabled bit.  We hold the parent's mutex,
5024
	 * so we won't race with perf_event_{en, dis}able_family.
5025
	 */
5026 5027
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
5028
	else
5029
		child_event->state = PERF_EVENT_STATE_OFF;
5030

5031 5032 5033 5034 5035 5036 5037 5038 5039
	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		atomic64_set(&hwc->period_left, sample_period);
	}
5040

5041 5042
	child_event->overflow_handler = parent_event->overflow_handler;

5043 5044 5045
	/*
	 * Link it up in the child's context:
	 */
5046
	add_event_to_ctx(child_event, child_ctx);
5047 5048 5049

	/*
	 * Get a reference to the parent filp - we will fput it
5050
	 * when the child event exits. This is safe to do because
5051 5052 5053
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
5054
	atomic_long_inc(&parent_event->filp->f_count);
5055

5056
	/*
5057
	 * Link this into the parent event's child list
5058
	 */
5059 5060 5061 5062
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
5063

5064
	return child_event;
5065 5066
}

5067
static int inherit_group(struct perf_event *parent_event,
5068
	      struct task_struct *parent,
5069
	      struct perf_event_context *parent_ctx,
5070
	      struct task_struct *child,
5071
	      struct perf_event_context *child_ctx)
5072
{
5073 5074 5075
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;
5076

5077
	leader = inherit_event(parent_event, parent, parent_ctx,
5078
				 child, NULL, child_ctx);
5079 5080
	if (IS_ERR(leader))
		return PTR_ERR(leader);
5081 5082
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
5083 5084 5085
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
5086
	}
5087 5088 5089
	return 0;
}

5090
static void sync_child_event(struct perf_event *child_event,
5091
			       struct task_struct *child)
5092
{
5093
	struct perf_event *parent_event = child_event->parent;
5094
	u64 child_val;
5095

5096 5097
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
5098

5099
	child_val = atomic64_read(&child_event->count);
5100 5101 5102 5103

	/*
	 * Add back the child's count to the parent's count:
	 */
5104 5105 5106 5107 5108
	atomic64_add(child_val, &parent_event->count);
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
5109 5110

	/*
5111
	 * Remove this event from the parent's list
5112
	 */
5113 5114 5115 5116
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
5117 5118

	/*
5119
	 * Release the parent event, if this was the last
5120 5121
	 * reference to it.
	 */
5122
	fput(parent_event->filp);
5123 5124
}

5125
static void
5126 5127
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
5128
			 struct task_struct *child)
5129
{
5130
	struct perf_event *parent_event;
5131

5132
	perf_event_remove_from_context(child_event);
5133

5134
	parent_event = child_event->parent;
5135
	/*
5136
	 * It can happen that parent exits first, and has events
5137
	 * that are still around due to the child reference. These
5138
	 * events need to be zapped - but otherwise linger.
5139
	 */
5140 5141 5142
	if (parent_event) {
		sync_child_event(child_event, child);
		free_event(child_event);
5143
	}
5144 5145 5146
}

/*
5147
 * When a child task exits, feed back event values to parent events.
5148
 */
5149
void perf_event_exit_task(struct task_struct *child)
5150
{
5151 5152
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
5153
	unsigned long flags;
5154

5155 5156
	if (likely(!child->perf_event_ctxp)) {
		perf_event_task(child, NULL, 0);
5157
		return;
P
Peter Zijlstra 已提交
5158
	}
5159

5160
	local_irq_save(flags);
5161 5162 5163 5164 5165 5166
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
5167 5168
	child_ctx = child->perf_event_ctxp;
	__perf_event_task_sched_out(child_ctx);
5169 5170 5171

	/*
	 * Take the context lock here so that if find_get_context is
5172
	 * reading child->perf_event_ctxp, we wait until it has
5173 5174
	 * incremented the context's refcount before we do put_ctx below.
	 */
5175
	raw_spin_lock(&child_ctx->lock);
5176
	child->perf_event_ctxp = NULL;
5177 5178 5179
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
5180
	 * the events from it.
5181 5182
	 */
	unclone_ctx(child_ctx);
5183
	update_context_time(child_ctx);
5184
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
5185 5186

	/*
5187 5188 5189
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
5190
	 */
5191
	perf_event_task(child, child_ctx, 0);
5192

5193 5194 5195
	/*
	 * We can recurse on the same lock type through:
	 *
5196 5197 5198
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       fput(parent_event->filp)
5199 5200 5201 5202 5203 5204
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
	mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
5205

5206
again:
5207 5208 5209 5210 5211
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5212
				 group_entry)
5213
		__perf_event_exit_task(child_event, child_ctx, child);
5214 5215

	/*
5216
	 * If the last event was a group event, it will have appended all
5217 5218 5219
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
5220 5221
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
5222
		goto again;
5223 5224 5225 5226

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
5227 5228
}

5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

	fput(parent->filp);

	list_del_event(event, ctx);
	free_event(event);
}

5247 5248 5249 5250
/*
 * free an unexposed, unused context as created by inheritance by
 * init_task below, used by fork() in case of fail.
 */
5251
void perf_event_free_task(struct task_struct *task)
5252
{
5253 5254
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event *event, *tmp;
5255 5256 5257 5258 5259 5260

	if (!ctx)
		return;

	mutex_lock(&ctx->mutex);
again:
5261 5262
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
		perf_free_event(event, ctx);
5263

5264 5265 5266
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				 group_entry)
		perf_free_event(event, ctx);
5267

5268 5269 5270
	if (!list_empty(&ctx->pinned_groups) ||
	    !list_empty(&ctx->flexible_groups))
		goto again;
5271

5272
	mutex_unlock(&ctx->mutex);
5273

5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288
	put_ctx(ctx);
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
		   struct task_struct *child,
		   int *inherited_all)
{
	int ret;
	struct perf_event_context *child_ctx = child->perf_event_ctxp;

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
5289 5290
	}

5291 5292 5293 5294 5295 5296 5297
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
5298

5299 5300 5301 5302
		child_ctx = kzalloc(sizeof(struct perf_event_context),
				    GFP_KERNEL);
		if (!child_ctx)
			return -ENOMEM;
5303

5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315
		__perf_event_init_context(child_ctx, child);
		child->perf_event_ctxp = child_ctx;
		get_task_struct(child);
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
5316 5317
}

5318

5319
/*
5320
 * Initialize the perf_event context in task_struct
5321
 */
5322
int perf_event_init_task(struct task_struct *child)
5323
{
5324
	struct perf_event_context *child_ctx, *parent_ctx;
5325 5326
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
5327
	struct task_struct *parent = current;
5328
	int inherited_all = 1;
5329
	int ret = 0;
5330

5331
	child->perf_event_ctxp = NULL;
5332

5333 5334
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);
5335

5336
	if (likely(!parent->perf_event_ctxp))
5337 5338
		return 0;

5339
	/*
5340 5341
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
5342
	 */
5343 5344
	parent_ctx = perf_pin_task_context(parent);

5345 5346 5347 5348 5349 5350 5351
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

5352 5353 5354 5355
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
5356
	mutex_lock(&parent_ctx->mutex);
5357 5358 5359 5360 5361

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
5362 5363 5364 5365 5366 5367
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
		ret = inherit_task_group(event, parent, parent_ctx, child,
					 &inherited_all);
		if (ret)
			break;
	}
5368

5369 5370 5371 5372
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
		ret = inherit_task_group(event, parent, parent_ctx, child,
					 &inherited_all);
		if (ret)
5373
			break;
5374 5375
	}

5376 5377
	child_ctx = child->perf_event_ctxp;

5378
	if (child_ctx && inherited_all) {
5379 5380 5381
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
5382 5383
		 * Note that if the parent is a clone, it could get
		 * uncloned at any point, but that doesn't matter
5384
		 * because the list of events and the generation
5385
		 * count can't have changed since we took the mutex.
5386
		 */
5387 5388 5389
		cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
5390
			child_ctx->parent_gen = parent_ctx->parent_gen;
5391 5392 5393 5394 5395
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
5396 5397
	}

5398
	mutex_unlock(&parent_ctx->mutex);
5399

5400
	perf_unpin_context(parent_ctx);
5401

5402
	return ret;
5403 5404
}

5405
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
5406
{
5407
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
5408

5409
	cpuctx = &per_cpu(perf_cpu_context, cpu);
5410
	__perf_event_init_context(&cpuctx->ctx, NULL);
T
Thomas Gleixner 已提交
5411

5412
	spin_lock(&perf_resource_lock);
5413
	cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5414
	spin_unlock(&perf_resource_lock);
5415

5416
	hw_perf_event_setup(cpu);
T
Thomas Gleixner 已提交
5417 5418 5419
}

#ifdef CONFIG_HOTPLUG_CPU
5420
static void __perf_event_exit_cpu(void *info)
T
Thomas Gleixner 已提交
5421 5422
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5423 5424
	struct perf_event_context *ctx = &cpuctx->ctx;
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
5425

5426 5427 5428
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
		__perf_event_remove_from_context(event);
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
5429
		__perf_event_remove_from_context(event);
T
Thomas Gleixner 已提交
5430
}
5431
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
5432
{
5433
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5434
	struct perf_event_context *ctx = &cpuctx->ctx;
5435 5436

	mutex_lock(&ctx->mutex);
5437
	smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5438
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
5439 5440
}
#else
5441
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

	switch (action) {

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
5453
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
5454 5455
		break;

5456 5457
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
5458
		hw_perf_event_setup_online(cpu);
5459 5460
		break;

T
Thomas Gleixner 已提交
5461 5462
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
5463
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
5464 5465
		break;

5466 5467 5468 5469
	case CPU_DEAD:
		hw_perf_event_setup_offline(cpu);
		break;

T
Thomas Gleixner 已提交
5470 5471 5472 5473 5474 5475 5476
	default:
		break;
	}

	return NOTIFY_OK;
}

5477 5478 5479
/*
 * This has to have a higher priority than migration_notifier in sched.c.
 */
T
Thomas Gleixner 已提交
5480 5481
static struct notifier_block __cpuinitdata perf_cpu_nb = {
	.notifier_call		= perf_cpu_notify,
5482
	.priority		= 20,
T
Thomas Gleixner 已提交
5483 5484
};

5485
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
5486 5487 5488
{
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
			(void *)(long)smp_processor_id());
5489 5490
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
			(void *)(long)smp_processor_id());
T
Thomas Gleixner 已提交
5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510
	register_cpu_notifier(&perf_cpu_nb);
}

static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_reserved_percpu);
}

static ssize_t
perf_set_reserve_percpu(struct sysdev_class *class,
			const char *buf,
			size_t count)
{
	struct perf_cpu_context *cpuctx;
	unsigned long val;
	int err, cpu, mpt;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
5511
	if (val > perf_max_events)
T
Thomas Gleixner 已提交
5512 5513
		return -EINVAL;

5514
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5515 5516 5517
	perf_reserved_percpu = val;
	for_each_online_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
5518
		raw_spin_lock_irq(&cpuctx->ctx.lock);
5519 5520
		mpt = min(perf_max_events - cpuctx->ctx.nr_events,
			  perf_max_events - perf_reserved_percpu);
T
Thomas Gleixner 已提交
5521
		cpuctx->max_pertask = mpt;
5522
		raw_spin_unlock_irq(&cpuctx->ctx.lock);
T
Thomas Gleixner 已提交
5523
	}
5524
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545

	return count;
}

static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_overcommit);
}

static ssize_t
perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
{
	unsigned long val;
	int err;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > 1)
		return -EINVAL;

5546
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5547
	perf_overcommit = val;
5548
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574

	return count;
}

static SYSDEV_CLASS_ATTR(
				reserve_percpu,
				0644,
				perf_show_reserve_percpu,
				perf_set_reserve_percpu
			);

static SYSDEV_CLASS_ATTR(
				overcommit,
				0644,
				perf_show_overcommit,
				perf_set_overcommit
			);

static struct attribute *perfclass_attrs[] = {
	&attr_reserve_percpu.attr,
	&attr_overcommit.attr,
	NULL
};

static struct attribute_group perfclass_attr_group = {
	.attrs			= perfclass_attrs,
5575
	.name			= "perf_events",
T
Thomas Gleixner 已提交
5576 5577
};

5578
static int __init perf_event_sysfs_init(void)
T
Thomas Gleixner 已提交
5579 5580 5581 5582
{
	return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
				  &perfclass_attr_group);
}
5583
device_initcall(perf_event_sysfs_init);